Sample records for wake vortex model

  1. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  2. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input file, with preferred parameters values, is given in Appendix A. An example of the plot generated at a normal completion of the inversion is shown in Appendix B.

  3. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  4. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  5. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  6. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  7. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  8. Vortex Wake Geometry of a Model Tilt Rotor in Forward Flight

    Microsoft Academic Search

    Gloria K. Yamauchi; Wayne Johnson; Alan J. Wadcock

    The vortex wake trajectory from one rotor of a 0.25-scale V-22 tiltrotor model was measured for four test conditions in the NASA Ames 40- by 80-Foot Wind Tunnel. Vortex wake images were acquired using a laser light sheet and video camera. Wake trajectories were constructed by extracting vortex positions from the video images. Wake trajectories were also calculated using the

  9. Wake Vortex Free Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A 10% scale B-737-100 model was tested in the vicinity of a vortex wake generated by a wing mounted on a support in the forward section of the NASA-Langley 30 x 60 ft. Wind Tunnel. The wing span, angle of attack, and generating wing location were varied to provide vortex strengths consistent with a large variety of combinations of leader-follower aircraft pairs during vortex encounters. The test, conducted as part of the AST Terminal Area Productivity Program, will provide data for validation of aerodynamic models which will be used for developing safe separate standards to apply to aircraft in terminal areas while increasing airport capacity.

  10. Modeling of Wake-vortex Aircraft Encounters. Appendix B

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.

  11. A prediction model for the vortex shedding noise from the wake of an airfoil or axial flow fan blades

    Microsoft Academic Search

    C. Lee; M. K. Chung; Y.-H. Kim

    1993-01-01

    An analytical model is presented for predicting the vortex shedding noise generated from the wake of axial flow fan blades. The downstream wake of a fan blade is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. The fluctuating pressure and

  12. Coupling of a free wake vortex ring near-wake model with the Jensen and Larsen far-wake deficit models

    NASA Astrophysics Data System (ADS)

    van Heemst, J. W.; Baldacchino, D.; Mehta, D.; van Bussel, G. J. W.

    2015-06-01

    This paper presents a simple physical model to improve the currently used far-wake deficit models in the wind industry. The main improvement is deemed on the determination of the wake deficit in the near-wake. A Vortex Ring Model (VRM) is used to calculate the induced velocities in the near-wake, which are then coupled to the Jensen far-wake model and the Larsen far-wake model based on the concept of Eddy Viscosity (EV). The inviscid near-wake VRM is based on the shedding of discrete tip vortex rings released from a uniformly loaded actuator disc. The model is validated against wind tunnel measurements from experiments with a two- bladed turbine and a circular metal mesh with a uniform porosity to represent an actuator disc. The VRM shows a good agreement with the experimental data with respect to the wake deficit evolution. The VRM is coupled with two well-known engineering type far-wake models: the Jensen and Larsen wake deficit models. The results of the coupling of the VRM and the more elaborated Larsen far-wake model are compared against a 3D Large Eddy Simulation (LES) CFD model. This comparison shows the effect of different near-wake models on the development of centreline velocities in the far-wake. The centreline velocity deficit predicted by the VRM-Larsen model more closely matches LES calculations in comparison with the reference Larsen model.

  13. Free Wake Techniques for Rotor Aerodynamic Analylis. Volume 2: Vortex Sheet Models

    NASA Technical Reports Server (NTRS)

    Tanuwidjaja, A.

    1982-01-01

    Results of computations are presented using vortex sheets to model the wake and test the sensitivity of the solutions to various assumptions used in the development of the models. The complete codings are included.

  14. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  15. Development of a rotor wake/vortex model. Volume 2: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    The principal objective was to establish a verified rotor wake/vortex model for specific application to fan and compressor rotor-stator interaction and resulting noise generation. A description and flow chart of the Rotor Wake/Vortex Model computer program, a listing of the program, definitions of the input/output parameters, a sample input/output case, and input files for Rotor 55, the JT15D rotor, and Rotor 67, Stage 1 are provided.

  16. A mathematical model of 2P and 2C vortex wakes

    Microsoft Academic Search

    Mark A. Stremler; Alireza Salmanzadeh; Saikat Basu; Charles H. K. Williamson

    2011-01-01

    We present a mathematical model of the vortex wake modes that appear behind neighboring and\\/or oscillating, flapping, and swimming bodies in which there are four vortices generated in an anti-symmetric pattern during each shedding cycle. The two-dimensional potential flow model consists of four point vortices with strengths ±Gamma in a spatially periodic domain. The relative vortex positions are restricted by

  17. A mathematical model of 2P and 2C vortex wakes

    Microsoft Academic Search

    Mark A. Stremler; Alireza Salmanzadeh; Saikat Basu; Charles H. K. Williamson

    2011-01-01

    We present a mathematical model of the vortex wake modes that appear behind neighboring and\\/or oscillating, flapping, and swimming bodies in which there are four vortices generated in an anti-symmetric pattern during each shedding cycle. The two-dimensional potential flow model consists of four point vortices with strengths ±? in a spatially periodic domain. The relative vortex positions are restricted by

  18. Nested contour-dynamic models for axisymmetric vortex rings and vortex wakes

    NASA Astrophysics Data System (ADS)

    O'Farrell, Clara; Dabiri, John O.

    2013-11-01

    Jetting swimmers, such as squid and jellyfish, propel themselves by forming vortex rings. It is known that vortex rings cannot grow indefinitely, but rather ``pinch off'' once they reach their physical limit, and that a decrease in efficiency of fluid transport is associated with pinch-off. Previously, the Norbury family of vortices has been used as a model for axisymmetric vortex rings, and the response of this family to shape perturbations has been characterized. We improve upon the Norbury models, using nested patches of vorticity to construct a family of models for vortex rings generated by a piston-cylinder apparatus at different stroke ratios. The perturbation response of this family is considered by the introduction of a small region of vorticity at the rear of the vortex, which mimics the addition of circulation to a growing vortex ring by a feeding shear layer. Model vortex rings are found to either accept the additional circulation or shed it into a tail, depending on the perturbation size. A change in the behavior of the model vortex rings is identified at a stroke ratio of three. We hypothesize that this change in response is analogous to pinch-off, and that pinch-off might be understood and predicted based on the perturbation responses of model vortex rings.

  19. Models of Wake-Vortex Spreading Mechanisms and Their Estimated Uncertainties

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity at its busiest airports. Many airports with nearly-simultaneous operations on closely-spaced parallel runways (i.e., as close as 750 ft (246m)) suffer a severe decrease in runway acceptance rate when weather conditions do not allow full utilization. The objective of a research program at NASA Ames Research Center is to develop the technologies needed for traffic management in the airport environment so that operations now allowed on closely-spaced parallel runways under Visual Meteorological Conditions can also be carried out under Instrument Meteorological Conditions. As part of this overall research objective, the study reported here has developed improved models for the various aerodynamic mechanisms that spread and transport wake vortices. The purpose of the study is to continue the development of relationships that increase the accuracy of estimates for the along-trail separation distances available before the vortex wake of a leading aircraft intrudes into the airspace of a following aircraft. Details of the models used and their uncertainties are presented in the appendices to the paper. Suggestions are made as to the theoretical and experimental research needed to increase the accuracy of and confidence level in the models presented and instrumentation required or more precise estimates of the motion and spread of vortex wakes. The improved wake models indicate that, if the following aircraft is upwind of the leading aircraft, the vortex wakes of the leading aircraft will not intrude into the airspace of the following aircraft for about 7s (based on pessimistic assumptions) for most atmospheric conditions. The wake-spreading models also indicate that longer time intervals before wake intrusion are available when atmospheric turbulence levels are mild or moderate. However, if the estimates for those time intervals are to be reliable, further study is necessary to develop the instrumentation and procedures needed to accurately define when the more benign atmospheric conditions exist.

  20. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  1. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  2. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.

  3. A Vortex Array Model of the Unsteady Wake of a Two-dimensional Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Naguib, Ahmed; Koochesfahani, Manoochehr

    2008-11-01

    Motivated by recent interest in MAV aerodynamics, the present study is focused on obtaining a simplified, vortex-array model of the unsteady flow in the wake of an airfoil undergoing small-amplitude but high-reduced-frequency pitch oscillations. The model is used to predict the mean and unsteady velocity field in the wake of a NACA 0012 airfoil executing a sinusoidal as well as non-sinusoidal pitch oscillation. The model predictive accuracy is assessed by comparison to the LDV measurements of the streamwise velocity by Koochesfahani (AIAA J. 37, 1999) at a chord Reynolds number of 12,000 and a reduced frequency as high as 10. The results demonstrate the ability of the vortex-array model to successfully reproduce the experimentally measured mean and phase-averaged streamwise velocity profiles in the wake of the airfoil. Moreover, by using the model to reconstruct the complete velocity field in the wake, the mean streamwise force acting on the airfoil is computed for different frequencies, amplitudes and waveforms of the oscillation.

  4. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  5. Modeling von Karman vortex shedding in cylinder wake to examine energetic coherent motions on hydrokinetic turbines

    NASA Astrophysics Data System (ADS)

    Neary, V. S.; Gunawan, B.; Chamorro, L. P.; Stekovic, S.; Hill, C.

    2012-12-01

    Numerous investigators have examined vortex-shedding in the wake of cylinders. This is a classical flow problem that has many engineering applications, including pronounced flow disturbance, turbulence generation, and sediment scour in the wakes of in stream structures, e.g. bridge piers and towers for marine and hydrokinetic (MHK) turbines. It is also important to understand the contribution of large coherent motions on the unsteady loading and performance of hydrokinetic turbines. Unsteady vortex shedding is caused by flow separation and detachment within the near-wall region along the cylinder surface. Our aim is to examine the unsteady flow field and von Karman vortex shedding resulting from unsteady turbulent flow around an emergent cylinder mounted perpendicular to a fixed surface by conducting physical and numerical modeling experiments. The numerical simulation emulates an open-channel flow experiment at the St. Anthony Falls Laboratory at the University of Minnesota, where instantaneous velocity was measured using three synchronized acoustic Doppler velocimeters (ADVs). The open-channel flume is 80 m long, and 2.75 m wide. The flow depth is 1.15 m. The cylinder diameter is 0.116 m. The flow is turbulent, with a cylinder Reynolds number equal to 5.44E4. We use the commercial CFD software, STAR-CCM+, to generate the computational mesh that models the flow geometry around the cylinder, and to numerically solve the unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The generated mesh is fine enough (> 2 million elements) to resolve the coherent structures of vortex shedding. The Frost high-performance cluster (an ORNL supercomputer) is used to run the simulation. The results show how a validated CFD model can be used to design the layout and spacing of synchronized ADV point measurements to characterize essential features of the Karman shedding in the cylinder wake. A similar approach can be used to design field ADV arrays for measuring more complex vortex shedding, e.g. the tip vortices, occurring in the wakes of MHK turbine rotors.; Numerical simulation of Karman shedding in the wake of cylinder (diameter 0.116 m, Reynolds number, 5.44E4).

  6. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  7. Calculation of Rotor Blade?Vortex Interaction Airloads Using a Multiple-Trailer Free-Wake Model

    Microsoft Academic Search

    Wayne Johnson; Yung H. Yu

    2003-01-01

    Analytical results of rotor blade- vortex interaction airloads are presented with two different wake models in the comprehensive analysis CAMRAD II, and these calculated results are compared with the experimental data obtained from the higher-harmonic-control aeroacoustic rotor test (HART-I) program. The HART rotor was a 40%, Mach-scaled model of the hingeless BO-105 main rotor. Two wake models used in the

  8. How to perform measurements in a hovering animal's wake: physical modelling of the vortex wake of the hawkmoth, Manduca sexta.

    PubMed

    Tytell, Eric D; Ellington, Charles P

    2003-09-29

    The vortex wake structure of the hawkmoth, Manduca sexta, was investigated using a vortex ring generator. Based on existing kinematic and morphological data, a piston and tube apparatus was constructed to produce circular vortex rings with the same size and disc loading as a hovering hawkmoth. Results show that the artificial rings were initially laminar, but developed turbulence owing to azimuthal wave instability. The initial impulse and circulation were accurately estimated for laminar rings using particle image velocimetry; after the transition to turbulence, initial circulation was generally underestimated. The underestimate for turbulent rings can be corrected if the transition time and velocity profile are accurately known, but this correction will not be feasible for experiments on real animals. It is therefore crucial that the circulation and impulse be estimated while the wake vortices are still laminar. The scaling of the ring Reynolds number suggests that flying animals of about the size of hawkmoths may be the largest animals whose wakes stay laminar for long enough to perform such measurements during hovering. Thus, at low advance ratios, they may be the largest animals for which wake circulation and impulse can be accurately measured. PMID:14561347

  9. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  10. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model

    NASA Astrophysics Data System (ADS)

    Ribera, Maria

    This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As the?rtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.

  11. Wake Vortex Research in the USA (WakeNet-USA)

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Bryant, Wayne

    2006-01-01

    This viewgraph presentation reviews the cooperative work that FAA and NASA are engaged in to safely increase the capacity of the National Airspace System by studying the wake vortex operations. Wake vortex avoidance is a limiting factor in defining separation standards in the airport terminal area and could become a reducing separation standards in en route airspace.

  12. Analysis of vortex wake encounter upsets

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Teper, G. L.

    1974-01-01

    The problem of an airplane being upset by encountering the vortex wake of a large transport on takeoff or landing is currently receiving considerable attention. This report describes the technique and results of a study to assess the effectiveness of automatic control systems in alleviating vortex wake upsets. A six-degree-of-freedom nonlinear digital simulation was used for this purpose. The analysis included establishing the disturbance input due to penetrating a vortex wake from an arbitrary position and angle. Simulations were computed for both a general aviation airplane and a commercial jet transport. Dynamic responses were obtained for the penetrating aircraft with no augmentation, and with various command augmentation systems, as well as with human pilot control. The results of this preliminary study indicate that attitude command augmentation systems can provide significant alleviation of vortex wake upsets; and can do it better than a human pilot.

  13. Vortex shedding in compressor blade wakes

    NASA Technical Reports Server (NTRS)

    Epstein, A. H.; Gertz, J. B.; Owen, P. R.; Giles, M. B.

    1987-01-01

    The wakes of highly loaded axial compressor blades were often considered to be turbulent, unstructured flows. Recent work has suggested that the blade wakes are in fact dominated by a vortex street-like structure. The work on the wake structure at MIT is reviewed, the results of a viscous numerical simulation are presented, the blade wake vortices are compared to those shed from a cylinder, and the implications of the wake structure on compressor performance are discussed. In particular, a two-dimensional, time accurate, viscous calculation shows both a periodic wake structure and time variations in the passage shock strength. The numerical calculations are compared to laser anemometer and high frequency response probe data. The effect of the wake structure on the entropy production and apparent adiabatic efficiency of the compressor rotor is discussed.

  14. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Hingst, W. R.

    1994-01-01

    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  15. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  16. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  17. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  18. Analog Processing Assembly for the Wake Vortex Lidar Experiment

    NASA Technical Reports Server (NTRS)

    Stowe, Edwood G.

    1995-01-01

    The Federal Aviation Administration (FAA) and NASA have initiated a joint study in the development of reliable means of tracking, detecting, measuring, and predicting trailing wake-vortices of commercial aircraft. Being sought is an accurate model of the wake-vortex hazard, sufficient to increase airport capacity by reducing minimum safe spacings between planes. Several means of measurement are being evaluated for application to wake-vortex detection and tracking, including Doppler RADAR (Radio Detection and Ranging) systems, 2-micron Doppler LIDAR (Light Detection And Ranging) systems, and SODAR (Sound Detection And Ranging) systems. Of specific interest there is the lidar system, which has demonstrated numerous valuable capabilities as a vortex sensor Aerosols entrained in the vortex flow make the wake velocity signature visible to the lidar, (the observable lidar signal is essentially a measurement of the line-of-sight velocity of the aerosols). Measurement of the occurrence of a wake vortex requires effective reception and monitoring of the beat signal which results from the frequency-offset between the transmitted pulse and the backscattered radiation. This paper discusses the mounting, analysis, troubleshooting, and possible use of an analog processing assembly designed for such an application.

  19. Ground-based wake vortex monitoring, prediction, and ATC interface

    NASA Technical Reports Server (NTRS)

    Campbell, Steven D.; Evans, James E.

    1994-01-01

    This talk will discuss three elements of a proposed Wake Vortex Advisory Service: monitoring, prediction and ATC interface. The monitoring element is needed to ensure safety by warning controllers of hazardous wake vortex conditions. Such conditions exist when wake vortices persist in the approach/departure flight paths due to advection or to atmospheric conditions which prevent their decay. The prediction element is needed to provide ATC supervisors with advance warning that wake vortex separation conditions are about to change (i.e., require increased or decreased wake vortex separation). The ATC interface element is needed to provide controllers with adaptive wake vortex separations. The use of these adaptive wake vortex separations would lead to increased airport capacity under most conditions, while maintaining safety under conditions of wake vortex hazard.

  20. Vortex research facility improvements and preliminary density stratification effects on vortex wakes

    NASA Technical Reports Server (NTRS)

    Satran, D. R.; Holbrook, G. T.; Greene, G. C.; Neuhart, D.

    1985-01-01

    Recent modernization of NASA's Vortex Research Facility is described. The facility has a 300-ft test section, scheduled for a 300-ft extension, with constant test speeds of the model up to 100 ft/sec. The data acquisition hardware and software improvements included the installation of a 24-channel PCM system onboard the research vehicle, and a large dedicated 16-bit minicomputer. Flow visualization of the vortex wake in the test section is by particle seeding, and a thin sheet of argon laser light perpendicular to the line of flight; detailed flow field measurements are made with a laser velocimeter optics system. The improved experimental capabilities of the facility were used in a study of atmospheric stratification effects on wake vortex decay, showing that the effects of temperature gradient must be taken into account to avoid misleading conclusions in wake vortex research.

  1. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  2. Wake Vortex Alleviation Using Rapidly Actuated Segmented Gurney Flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude; Eaton, John

    2006-11-01

    A study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation is conducted using a half-span model wing with NACA 0012 shape and an aspect ratio of 4.1. All tests are performed with the wing at an 8.9 degree angle of attack and chord based Reynolds number around 350,000. The wing is equipped with an array of 13 MiTE pairs. Each MiTE has a flap that in the neutral position rests behind the blunt trailing edge of the wing, and in the down position extends 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Dynamic PIV is used to measure the time dependent response of the vortex in the intermediate wake to various MiTE actuation schemes that deflect the vortex in both the spanwise and liftwise directions. A maximum spanwise deflection of 0.041 chord lengths is possible while nearly conserving lift. These intermediate wake results as well as pressure profile, five-hole probe, and static PIV measurements are used to form complete, experimentally-based initial conditions for vortex filament computations that are used to compute the far wake evolution. Results from these computations show that the perturbations created by MiTEs can be used to excite vortex instability.

  3. A Probabilistic Wake Vortex Lateral Transport Model Using Data from SFO and DEN

    NASA Technical Reports Server (NTRS)

    Mellman, George R.; Delisi, Donald P.

    2008-01-01

    In a previous report, we considered the behavior of the lateral position of vortices as a function of time after vortex formation for Out of Ground Effects (OGE) data for aircraft landing at San Francisco International Airport (SFO). We quantified the spread in lateral position as a function of time and examined how predictable lateral position is under a variety of assumptions. The combination of spread and predictability allowed us to derive probability distribution functions (PDFs) for lateral position given observed crosswind (CW) velocities. In this study, we examine the portability of these PDFs with respect to other landing sites. To this end, we consider OGE data obtained by the Federal Aviation Administration for landings at Denver International Airport (DEN) between 04/05/2006 and 06/03/2006. We consider vortices from both B733 (Boeing 737 models 200-500) and B757 (Boeing 757) aircraft. The data set contains 635 B733 landings and 506 B757 landings. The glide slope altitude for these measurements was 280 m, determined by the average initial vortex observation adjusted for a 3-second delay in the initial observation. The comparable SFO altitude was 158 m. We note that the principal mechanism for lateral transport in the OGE regime is advection by the ambient wind. This implies that a simple crosswind correction may be effective in explaining much of the variation in the lateral transport data. In this study, we again consider the use of ASOS data and average Lidar crosswind data over the vortex altitude range to predict vortex location as a function of time.

  4. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude G.

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when operating in instrument flight rules. These spacing rules are the limiting factor on increasing airport capacity. We conducted an experimental and computational study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation. Wind tunnel tests were performed on a half-span model NACA 0012 wing equipped with an array of 13 independent MITE pairs. The chord-based Reynolds number was around 350,000. Each MiTE could extend 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Pressure profiles and a five-hole probe survey in the near wake were used to examine the influence that the MiTEs had upon the wing aerodynamics and the vortex rollup process. Particle image velocimetry was used to measure the static and time-dependent response of the vortex in the intermediate wake to various MiTE actuation schemes. These results were used to form complete initial conditions for vortex filament computations of the far wake evolution. Results from these computations showed that the perturbations created by MiTEs could be used to excite a variety of three-dimensional inviscid vortex instabilities. Finally, the research performed on MiTEs led to the invention of a more practical wake alleviation device: the spanwise actuating Gurney flap. Prototype tests showed that this device could produce similar perturbations to the MiTEs.

  5. Design of airport wake vortex monitoring system based on 1.5-?m pulsed coherent Doppler lidar

    Microsoft Academic Search

    Yong-Hua Wu; Yi-Hua Hu; Shi-Long Xu; Jin-Ming Li; Ding-Chuan Dai

    2011-01-01

    To shun the vortex hazard, the airport wake vortex monitoring system based on 1.5-?m pulsed coherent Doppler lidar is designed\\u000a successfully in this paper. Based on the realistic analytical model, the wake vortex generated by airbus A340 under typical\\u000a flight condition is simulated. Then the principle of airport wake vortex monitoring is introduced, and the work flow of the\\u000a monitoring

  6. Vortex shedding in high-speed compressor blade wakes

    NASA Technical Reports Server (NTRS)

    Epstein, A. H.; Gertz, J. B.; Owen, P. R.; Giles, M. B.

    1988-01-01

    The wakes of highly loaded compressor blades are generally considered to be turbulent flows. Recent work has suggested that the blade wakes are dominated by a vortex streetlike structure. The experimental evidence supporting the wake vortex structure is reviewed. This structure is shown to redistribute thermal energy within the flowfield. The effect of the wake structure on conventional aerodynamic measurements of compressor performance is noted. A two-dimensional, time-accurate, viscous numerical simulation of the flow exhibits both vortex shedding in the wake and a lower-frequency flow instability that modulates the shedding. The numerical results are shown to agree quite well with the measurement from transonic compressor rotors.

  7. Wake Vortex Alleviation Using Rapidly Actuated Segmented Gurney Flaps

    Microsoft Academic Search

    Claude Matalanis; John Eaton

    2006-01-01

    A study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation is conducted using a half-span model wing with NACA 0012 shape and an aspect ratio of 4.1. All tests are performed with the wing at an 8.9 degree angle of attack and chord based

  8. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than those considered in all the experiments to date. The RCS of a vortex happens to peak at the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate and so the present prediction could be verified in the future. Finally , we suggest that hot engine exhaust could increase RCE by 40 db and reveal vortex circulation, provided its mixing with the surroundings is prevented in the laminarising flow of the vortices.

  9. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 1: Theory and application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The current program had the objective to modify a discrete vortex wake method to efficiently compute the aerodynamic forces and moments on high fineness ratio bodies (f approximately 10.0). The approach is to increase computational efficiency by structuring the program to take advantage of new computer vector software and by developing new algorithms when vector software can not efficiently be used. An efficient program was written and substantial savings achieved. Several test cases were run for fineness ratios up to f = 16.0 and angles of attack up to 50 degrees.

  10. Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

    1999-01-01

    NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

  11. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  12. Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

    NASA Technical Reports Server (NTRS)

    Neece, Robert T.; Britt, Charles L.; White, Joseph H.; Mudukutore, Ashok; Nguyen, Chi; Hooper, Bill

    2005-01-01

    A 35 GHz, pulsed-Doppler radar system has been designed and assembled for wake vortex detection and tracking in low visibility conditions. Aircraft wake vortices continue to be an important factor in determining safe following distances or spacings for aircraft in the terminal area. Currently, under instrument meteorological conditions (IMC), aircraft adhere to conservative, fixed following-distance guidelines based primarily on aircraft weight classifications. When ambient conditions are such that vortices will either drift or dissipate, leaving the flight corridor clear, the prescribed spacings are unnecessarily long and result in decreased airport throughput. There is a potential for significant airport efficiency improvement, if a system can be employed to aid regulators and pilots in setting safe and efficient following distances based on airport conditions. The National Aeronautics and Space Administration (NASA), the Federal Aviation Agency, and Volpe National Transportation Systems Center have promoted and worked to develop systems that would increase airport capacity and provide for safe reductions in aircraft separation. The NASA Aircraft Vortex Spacing System (AVOSS), a wake vortex spacing system that can provide dynamic adjustment of spacings based on real-time airport weather conditions, has demonstrated that Lidar systems can be successfully used to detect and track vortices in clear air conditions. To fill the need for detection capability in low-visibility conditions, a 35 GHz, pulsed-Doppler radar system is being investigated for use as a complimentary, low-visibility sensor for wake vortices. The radar sensor provides spatial and temporal information similar to that provided by Lidar, but under weather conditions that a Lidar cannot penetrate. Currently, we are analyzing the radar design based upon the data and experience gained during the wake vortex Lidar deployment with AVOSS at Dallas/Fort Worth International Airport. As part of this study, two numerical models were utilized in system simulations. The results of this study improve our understanding of the method of detection, resolution requirements for range and azimuth, pulse compression, and performance prediction. Simulations applying pulse compression techniques show that detection is good in heavy fog to greater than 2000 m. Both compressed and uncompressed short pulses show the vortex structure. To explore operational challenges, siting and scanning strategies were also analyzed. Simulation results indicate that excellent wake vortex detection, tracking and classification is possible in drizzle (+15 dBZ) and heavy fog (- 13 dBZ) using short pulse techniques (<99ns) at ranges on the order of 900 m, with a modest power of 500 W output. At 1600 m, detection can be expected at reflectivities as low as -13 dBZ (heavy fog). The radar system, as designed and built, has the potential to support field studies of a wake vortex spacing system in low-visibility conditions ranging from heavy fog to rain, when sited within 2000m of the flight path.

  13. Measurements of the vortex wakes of a subsonic and supersonic transport model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Phillippe, J. J.

    1974-01-01

    The rolling moment induced on aircraft models in the wake of a model of a subsonic transport and of a supersonic transport was measured as a function of angle of attack for several configurations. The tests are described and an analysis of the data is given in this memorandum.

  14. Flight safety, aircraft vortex wake and airport operation capacity

    Microsoft Academic Search

    Victor V. Vyshinsky

    2001-01-01

    One of the major problems that challenge today's aeronautics is the problem of improving flight safety. A zone of increased hazard is the aerospace in the vicinity of an airport. Here, one of aircraft accidents' causes is wake turbulence generated by aircraft. The encountering of an aircraft on take-off or landing with the vortex wake of a preceding aircraft can

  15. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  16. Turbulence Climatology at Dallas/Ft.Worth (DFW) Airport: Implications for a Departure Wake Vortex Spacing System

    NASA Technical Reports Server (NTRS)

    Perras, G. H.; Dasey, T. J.

    2000-01-01

    Potential adaptive wake vortex spacing systems may need to rely on wake vortex decay rather than wake vortex transport in reducing wake separations. A wake vortex takeoff-spacing system in particular will need to rely on wake decay. Ambient turbulence is the primary influence on wake decay away from the ground. This study evaluated 18 months of ambient turbulence measurements at Dallas/Ft. Worth (DFW) Airport. The measurements show minor variation in the turbulence levels at various times of the year or times of the day for time periods when a departure system could be used. Arrival system operation was also examined, and a slightly lower overall turbulence level was found as compared to departure system benefit periods. The Sarpkaya model, a validated model of wake vortex behavior, was applied to various turbulence levels and compared to the DFW turbulence statistics. The results show that wake vortices from heavy aircraft on takeoff should dissipate within one minute for the majority of the time and will rarely last two minutes. These results will need to be verified by wake vortex measurements on departure.

  17. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method enables fast and accurate assessment of aerodynamic loads for initial design of complex wing configurations compared to other methods available.

  18. Evolution and breakdown of helical vortex wakes behind a wind turbine

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Sherry, M.; Lo Jacono, D.; Blackburn, H. M.; Sheridan, J.

    2014-12-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable.

  19. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  20. Scanning laser-velocimeter surveys and analysis of multiple vortex wakes of an aircraft

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Orloff, K. L.

    1976-01-01

    A laser velocimeter capable of rapidly scanning a flow field while simultaneously sensing two components of the velocity was used to measure the vertical and streamwise velocity structure 1.5 spans downstream in the wake of a model typical of a large subsonic transport (Boeing 747). This flow field was modeled by a superposition of axisymmetric vortices with finite cores. This theoretical model was found to agree with the measured velocities everywhere except where two vortices were in close proximity. Vortex strengths derived from the span loading on the wing as predicted by vortex-lattice theory also agree with the present measurements. The axisymmetric vortex model used herein is a useful tool for analytically investigating the vortex wakes of aircraft.

  1. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  2. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  3. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  4. Numerical Study of Wake Vortex Behavior in Turbulent Domains with Ambient Stratification

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2000-01-01

    A three-dimensional large eddy simulation model is used to investigate the sensitivity of ambient stratification with turbulence on the behavior of aircraft wake vortices. Modeled ambient turbulence levels range from very weak to moderate, and stratification levels range from strongly stable to unstable. The results of profound significance from this study are: 1) very little sensitivity between vortex linking time and the level of stratification, 2) the mean vortex separation remained nearly constant regardless of stratification and turbulence (at least prior to linking), 3) the wake vortices did not rise regardless of the level of stratification, and 4) for very strong stratification, the vortex stopped descending and quickly dissipated even before vortex linking could occur. These results are supported by experimental data and are contrary to conclusions from other numerical studies that assume laminar flow and/or relatively-low Reynolds numbers.

  5. Estimates of the effectiveness of automatic control in alleviating wake vortex induced roll excursions

    NASA Technical Reports Server (NTRS)

    Tinling, B. E.

    1977-01-01

    Estimates of the effectiveness of a model following type control system in reducing the roll excursion due to a wake vortex encounter were obtained from single degree of freedom computations with inputs derived from the results of wind tunnel, flight, and simulation experiments. The analysis indicates that the control power commanded by the automatic system must be roughly equal to the vortex induced roll acceleration if effective limiting of the maximum bank angle is to be achieved.

  6. WAKE VORTEX ALLEVIATION USING RAPIDLY ACTUATED SEGMENTED GURNEY FLAPS

    E-print Network

    Stanford University

    WAKE VORTEX ALLEVIATION USING RAPIDLY ACTUATED SEGMENTED GURNEY FLAPS by Claude G. Matalanis significantly degrading aircraft performance. Rapidly actuated segmented Gurney flaps, also known as Miniature: the spanwise actuating Gurney flap. A prototype of this device was designed and tested. The tests showed

  7. ASSESSMENT OF WAKE VORTEX SEPARATION DISTANCES USING THE WAVIR TOOLSET

    E-print Network

    ASSESSMENT OF WAKE VORTEX SEPARATION DISTANCES USING THE WAVIR TOOLSET Lennaert Speijker and Gerben separation distances between aircraft in the arrival and departure flows. Traditionally three methods have, aircraft separation, and pilot/aircraft response to an encounter of varying magnitudes. The WAVIR tool

  8. Wake Vortex Influence on Ambient Potential Temperature

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two-dimensional version of the Terminal Area Simulation System (TASS) was used to numerically simulate the interaction of wake vortices from closely separated aircraft. The aircraft parameters and separations are taken from observed data at an actual airport. The wake vortices are generated near the runway threshold for four successive aircraft. The ambient conditions are characterized by light crosswinds and stable stratification. This movie shows the effect that the vortices have upon the ambient potential temperature field.

  9. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Tatnall, Chris R.

    1997-01-01

    A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

  10. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  11. Experimental investigation of the asymmetric body vortex wake

    NASA Technical Reports Server (NTRS)

    Oberkampf, W. L.; Shivananda, T. P.; Owen, F. K.

    1980-01-01

    An experimental investigation of the asymmetric body vortex wake of a circular cylinder in high subsonic flow is presented. Laser velocimeter, force and moment, and surface hot wire measurements were obtained for a freestream Mach number of 0.6 and Reynolds number (based on body diameter) of 0.62 x 10 to the 6th. Two component laser velocimeter measurements were made at three body cross-flow planes, x/d = 4, 8, and 12, and angles of attack of 25, 35, and 45 deg. Laser vapor screen photographs were also obtained at these body stations and angles of attack. Surface hot wire measurements were used to determine if any vortex switching occurred at various angles of attack of the body. The laser velocimeter measurements are related to the vapor screen photographs and side force measurements. These results show that more than one asymmetric body vortex wake configuration can exist for the same angle of attack and body roll angle.

  12. A Parametric Study of Accelerations of an Airplane Due to a Wake Vortex System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1999-01-01

    A study was conducted using strip theory to systematically investigate the effects of progressively more complete descriptions of the interaction of an airplane with a wake vortex system. The emphasis was in roll-dominant, parallel, vortex encounters. That is, the simulated airplane's longitudinal axis was nearly parallel to the rotation axis of the vortex system for most of the results presented. The study began with a drag-less rectangular wing in the flow field of a single vortex and progressed to a complete airplane with aerodynamic surfaces possessing taper, sweep, dihedral, and stalling and immersed in the flow field of a vortex pair in ground effect. The effects of the pitch, roll, and yaw attitudes of the airplane on the calculated accelerations were also investigated. The airplane had the nominal characteristics of a Boeing 757, and the vortex flow field had the nominal characteristics of the wake of a Boeing 767. The Bumham-Hallock model of a vortex flow field was used throughout the study. The data are presented mainly in terms of contours of equal acceleration in a two-dimensional area centered on the vortex pair and having dimensions of 300 feet by 300 feet.

  13. Viscous effects on a vortex wake in ground effect

    NASA Technical Reports Server (NTRS)

    Zheng, Z.; Ash, Robert L.

    1992-01-01

    Wake vortex trajectories and strengths are altered radically by interactions with the ground plane. Prediction of vortex strength and location is especially important in the vicinity of airports. Simple potential flow methods have been found to yield reasonable estimates of vortex descent rates in an otherwise quiescent ambient background, but those techniques cannot be adjusted for more realistic ambient conditions and they fail to provide satisfactory estimates of ground-coupled behavior. The authors have been involved in a systematic study concerned with including viscous effects in a wake-vortex system which is near the ground plane. The study has employed numerical solutions to the Navier-Stokes equations, as well as perturbation techniques to study ground coupling with a descending vortex pair. Results of a two-dimensional, unsteady numerical-theoretical study are presented in this paper. A time-based perturbation procedure has been developed which permits the use of analytical solutions to an inner and outer flow domain for the initial flow field. Predictions have been compared with previously reported laminar experimental results. In addition, the influence of stratification and turbulence on vortex behavior near the ground plane has been studied.

  14. Stability of a wind turbine wake subject to root vortex perturbations

    NASA Astrophysics Data System (ADS)

    Smith, David; Blackburn, Hugh; Sheridan, John

    2013-11-01

    Results for DNS of a wind turbine wake will be presented. The Tjæborg wind turbine geometry is modelled using a spectral element solver in coupled to an actuator line model described by Sørensen and Shen (2002). The actuator line model considers the flow over the turbine by calculating body forces derived from two-dimensional airfoil data and flow velocity localised at the blade. Using such a model, Ivanell et al. (2010) identified instabilities in the tip vortex for sinusoidal perturbations that reduced the streamwise spacing between tip vortices. In work to be presented we consider perturbations to the blade-root vortex of the turbine. We examine whether perturbations to the root vortex can excite instability mechanisms in the tip vortex and potentially modify tip vortex downstream extents. We also explore how changes to the spacing between root and tip vortices modifies these effects. Ivanell et al. (2010) J Wind Energy 13, Sørensen and Shen. (2002) J Fluids Eng 124. Results for DNS of a wind turbine wake will be presented. The Tjæborg wind turbine geometry is modelled using a spectral element solver in coupled to an actuator line model described by Sørensen and Shen (2002). The actuator line model considers the flow over the turbine by calculating body forces derived from two-dimensional airfoil data and flow velocity localised at the blade. Using such a model, Ivanell et al. (2010) identified instabilities in the tip vortex for sinusoidal perturbations that reduced the streamwise spacing between tip vortices. In work to be presented we consider perturbations to the blade-root vortex of the turbine. We examine whether perturbations to the root vortex can excite instability mechanisms in the tip vortex and potentially modify tip vortex downstream extents. We also explore how changes to the spacing between root and tip vortices modifies these effects. Ivanell et al. (2010) J Wind Energy 13, Sørensen and Shen. (2002) J Fluids Eng 124. Supported by Australian Research Council grant DP1096444.

  15. Experimental Study of Near Wake of Micro Vortex Generators in Supersonic Flow

    E-print Network

    Texas at Arlington, University of

    Experimental Study of Near Wake of Micro Vortex Generators in Supersonic Flow Frank K. Lu, Adam J and laser lightsheet visualizations of the near wake of micro vortex generator (MVG) revealed large MICRO vortex generators (MVGs), whose height is less than the boundary layer thickness, have been lately

  16. Wake Vortex Control using Segmented Rapidly Actuated Gurney Flaps

    Microsoft Academic Search

    Claude Matalanis; John Eaton

    2004-01-01

    Gurney flaps are small flaps oriented perpendicular to the freestream at the trailing edge of a wing, which can increase the lift considerably with little drag penalty. Meso-scale trailing edge effectors (MiTEs) are segmented, rapidly actuated, independent Gurney flaps that have an analogous effect local to their spanwise position. MiTEs show great potential in helping to alleviate the wake vortex

  17. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 2: User's manual for DIVORCE

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, F. D.; Vitz, J. F.

    1979-01-01

    The users manual for the Discrete Vortex Cross flow Evaluator (DIVORCE) computer program is presented. DIVORCE was developed in FORTRAN 4 for the DCD 6600 and CDC 7600 machines. Optimal calls to a NASA vector subroutine package are provided for use with the CDC 7600.

  18. Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1995-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.

  19. Wake Vortex Control using Segmented Rapidly Actuated Gurney Flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude; Eaton, John

    2004-11-01

    Gurney flaps are small flaps oriented perpendicular to the freestream at the trailing edge of a wing, which can increase the lift considerably with little drag penalty. Meso-scale trailing edge effectors (MiTEs) are segmented, rapidly actuated, independent Gurney flaps that have an analogous effect local to their spanwise position. MiTEs show great potential in helping to alleviate the wake vortex hazard. By periodically varying the loading distribution across the span of a wing, it may be possible to excite natural instabilities that accelerate vortex destruction. The problem is to introduce large enough disturbances while holding the total lift of the wing nearly constant. The purpose of this work is to assess how different MiTE actuation patterns can alter the strength and position of the trailing vortex. Our experimental apparatus consists of an untapered NACA 0012 wing with a 30 cm chord length and an aspect ratio of 2 mounted in a wind tunnel. Reynolds numbers based on the chord are of order 105. The wing is equipped with an array of 14 MiTEs. PIV is used to measure tangential velocities of the trailing vortex roughly five chord lengths behind the wing. Data from static MiTE configurations show that the vortex core can be displaced by at least 0.01 chord lengths.

  20. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  1. Development of a Wake Vortex Spacing System for Airport Capacity Enhancement and Delay Reduction

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; OConnor, Cornelius J.

    2000-01-01

    The Terminal Area Productivity project has developed the technologies required (weather measurement, wake prediction, and wake measurement) to determine the aircraft spacing needed to prevent wake vortex encounters in various weather conditions. The system performs weather measurements, predicts bounds on wake vortex behavior in those conditions, derives safe wake spacing criteria, and validates the wake predictions with wake vortex measurements. System performance to date indicates that the potential runway arrival rate increase with Aircraft VOrtex Spacing System (AVOSS), considering common path effects and ATC delivery variance, is 5% to 12% depending on the ratio of large and heavy aircraft. The concept demonstration system, using early generation algorithms and minimal optimization, is performing the wake predictions with adequate robustness such that only 4 hard exceedances have been observed in 1235 wake validation cases. This performance demonstrates the feasibility of predicting wake behavior bounds with multiple uncertainties present, including the unknown aircraft weight and speed, weather persistence between the wake prediction and the observations, and the location of the weather sensors several kilometers from the approach location. A concept for the use of the AVOSS system for parallel runway operations has been suggested, and an initial study at the JFK International Airport suggests that a simplified AVOSS system can be successfully operated using only a single lidar as both the weather sensor and the wake validation instrument. Such a selfcontained AVOSS would be suitable for wake separation close to the airport, as is required for parallel approach concepts such as SOIA.

  2. Real-Time Visualization of Wake-Vortex Simulations Using Computational Steering and Beowulf Clusters

    Microsoft Academic Search

    Anirudh Modi; Lyle N. Long; Paul E. Plassmann

    2002-01-01

    In this paper, we present the design and implementation of POSSE, a new, lightweight computational steering system based on a client\\/server pro- gramming model. We demonstrate the effectiveness of this software system by illustrating its use for a visualization client designed for a particularly demand- ing real-time application—wake-vortex simulations for multiple aircraft running on a parallel Beowulf cluster. We describe

  3. Numerical studies of three-dimensional breakdown in trailing vortex wakes. [between aircraft

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Evans, P. F.

    1976-01-01

    The development of dangerous vortex wakes trailing between aircraft for appreciable distance downstream, and posing hazards to following aircraft, is calculated using finite-element three-dimensional relaxation methods. Near-wake, middle-wake, and far-wake conditions are delineated. Vortex system finite lifetimes can be calculated with greater facility owing to the inclusion of a self-induction term in the solution dependent upon local curvature and vortex core radius. Looping and convergence phenomena are studied for single vortex pairs, twin pairs, and multiple pairs. Proportions of flap span and wing span are shown to affect the time to convergence of vortex pairs. The self-induction term renders the convergence time of vortices a sensitive function of wavelength. Wakes trailing between wide-body ('Jumbo') aircraft are also examined.

  4. Spectral Characteristics of Wake Vortex Sound During Roll-Up

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr. (Technical Monitor); Zhang, Yan; Wang, Frank Y.; Hardin, Jay C.

    2003-01-01

    This report presents an analysis of the sound spectra generated by a trailing aircraft vortex during its rolling-up process. The study demonstrates that a rolling-up vortex could produce low frequency (less than 100 Hz) sound with very high intensity (60 dB above threshold of human hearing) at a distance of 200 ft from the vortex core. The spectrum then drops o rapidly thereafter. A rigorous analytical approach has been adopted in this report to derive the spectrum of vortex sound. First, the sound pressure was solved from an alternative treatment of the Lighthill s acoustic analogy approach [1]. After the application of Green s function for free space, a tensor analysis was applied to permit the removal of the source term singularity of the wave equation in the far field. Consequently, the sound pressure is expressed in terms of the retarded time that indicates the time history and spacial distribution of the sound source. The Fourier transformation is then applied to the sound pressure to compute its spectrum. As a result, the Fourier transformation greatly simplifies the expression of the vortex sound pressure involving the retarded time, so that the numerical computation is applicable with ease for axisymmetric line vortices during the rolling-up process. The vortex model assumes that the vortex circulation is proportional to the time and the core radius is a constant. In addition, the velocity profile is assumed to be self-similar along the aircraft flight path, so that a benchmark vortex velocity profile can be devised to obtain a closed form solution, which is then used to validate the numerical calculations for other more realistic vortex profiles for which no closed form solutions are available. The study suggests that acoustic sensors operating at low frequency band could be profitably deployed for detecting the vortex sound during the rolling-up process.

  5. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection

    NASA Astrophysics Data System (ADS)

    Akbulut, M.; Hwang, J.; Kimpel, F.; Gupta, S.; Verdun, H.

    2011-06-01

    We report on the development of a fiber-optic pulsed coherent lidar transceiver for wind-velocity and aircraft wake-vortex hazard detection. The all-fiber 1.5?m transmitter provides up to 560 ?J energy at 25 kHz with 800 ns pulse width (pump limited). Performance simulations indicate wake-vortex hazard signature detection up to ~2.5km range with a receiver sensitivity of ~2 fW (SNR=6), suited for an aircraft landing scenario. Furthermore, the transceiver is implemented using high-speed FPGA based control and digital-signal-processing, enabling its use as a flexible pulse-format multi-function in-flight lidar sensor. We present the latest laboratory results and preliminary testing of this pulsed coherent lidar transceiver, along with the lidar performance simulation of wake-vortex eddy models.

  6. Flight in a viscous fluid: Asymptotic theory of the vortex wake Yakov Afanasyeva

    E-print Network

    Afanassiev, Iakov

    American Institute of Physics. DOI: 10.1063/1.1855700 Compact vortex structures are generated in a viscous to a single force applied at a point, the generic types of vortex structures generated by the forceFlight in a viscous fluid: Asymptotic theory of the vortex wake Yakov Afanasyeva Department

  7. An Investigation of Candidate Sensor-Observable Wake Vortex Strength Parameters for the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Tatnall, Chistopher R.

    1998-01-01

    The counter-rotating pair of wake vortices shed by flying aircraft can pose a threat to ensuing aircraft, particularly on landing approach. To allow adequate time for the vortices to disperse/decay, landing aircraft are required to maintain certain fixed separation distances. The Aircraft Vortex Spacing System (AVOSS), under development at NASA, is designed to prescribe safe aircraft landing approach separation distances appropriate to the ambient weather conditions. A key component of the AVOSS is a ground sensor, to ensure, safety by making wake observations to verify predicted behavior. This task requires knowledge of a flowfield strength metric which gauges the severity of disturbance an encountering aircraft could potentially experience. Several proposed strength metric concepts are defined and evaluated for various combinations of metric parameters and sensor line-of-sight elevation angles. Representative populations of generating and following aircraft types are selected, and their associated wake flowfields are modeled using various wake geometry definitions. Strength metric candidates are then rated and compared based on the correspondence of their computed values to associated aircraft response values, using basic statistical analyses.

  8. The effects of vortex modeling on blade-vortex interaction noise prediction

    Microsoft Academic Search

    Judith M. Gallman; Chee Tung; Scott L. Low

    1995-01-01

    The use of a blade vortex interaction noise prediction scheme, based on CAMRAD\\/JA, FPR and RAPP, quantifies the effects of errors and assumptions in the modeling of the helicopter's shed vortex on the acoustic predictions. CAMRAD\\/JA computes the wake geometry and inflow angles that are used in FPR to solve for the aerodynamic surface pressures. RAPP uses these surface pressures

  9. Effect of velocity ratio on the streamwise vortex structures in the wake of a stack

    NASA Astrophysics Data System (ADS)

    Adaramola, M. S.; Sumner, D.; Bergstrom, D. J.

    2010-01-01

    The time-averaged velocity and streamwise vorticity fields within the wake of a stack were investigated in a low-speed wind tunnel using a seven-hole pressure probe. The experiments were conducted at a Reynolds number, based on the stack external diameter, of ReD=2.3×104. The stack, of aspect ratio AR=9, was mounted normal to a ground plane and was partially immersed in a flat-plate turbulent boundary layer, where the ratio of the boundary layer thickness to the stack height was ?/H?0.5. The jet-to-cross-flow velocity ratio was varied from R=0 to 3, which covered the downwash, crosswind-dominated and jet-dominated flow regimes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip vortex pair located close to the free end of the stack, and the base vortex pair located close to the ground plane within the flat-plate boundary layer, were similar to those found in the wake of a finite circular cylinder, and were associated with the upwash and downwash flow fields within the stack wake, respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair had the same orientation as the base vortex pair and was associated with the jet rise. The peak vorticity and strength of the streamwise vortex structures were functions of the jet-to-cross-flow velocity ratio. For the tip vortex structures, their peak vorticity and strength reduced as the jet-to-cross-flow velocity ratio increased.

  10. Effect of wake structure on blade-vortex interaction phenomena: Acoustic prediction and validation

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Tung, Chee; Schultz, Klaus J.; Splettstoesser, Wolf; Buchholz, Heino

    1995-01-01

    During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.

  11. The role of vortex wake dynamics in the flow-induced vibration of tube arrays

    E-print Network

    Kevlahan, Nicholas

    The role of vortex wake dynamics in the flow-induced vibration of tube arrays N.K.-R. Kevlahan­structure interaction Vortex-induced vibration Tube arrays Potential flow a b s t r a c t Potential flow and 2-D Navier of periodic tube arrays. This dual approach untangles the effects of potential and vortical flow. The negative

  12. Wake vortex detection at Denver Stapleton Airport with a pulsed 2-micron coherent lidar

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Thomson, J. Alex

    1994-01-01

    This report describes the effort undertaken to relate aircraft wake history to the local environment. This involved the monitoring of the embedded windfield, monitoring of local meteorological parameters, a high-resolution velocity field analysis in vertical scan planes and measurement of the axial velocity signature. A flashlight pumped 2.09 micron solid state coherent laser radar system was used to detect and track wake vortices. Strong wake vortex signatures were measured for moderate to large aircraft at Denver's Stapleton airport and a large vortex database was compiled.

  13. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  14. Two Dimensional Parametric Studies of Wake Vortex Interaction with the Atmosphere

    NASA Technical Reports Server (NTRS)

    Proctor, Fred

    1997-01-01

    Results from parametric runs using two-dimensional TASS are presented. First, a set of experiments are presented that examine the sensitivity of the aircraft initiation height for an "in ground effect" case with weak crosswind. Interaction between the ground and the wake vortex produces an oscillatory rebound whose phase and amplitude are a function of the generation height. A second set of experiments are presented which examine the influence on crosswind shear. Shear layers, such as may be found between the nocturnal stable layer and the residual layer, can act to deflect vortices upward. Further investigation reveals that the second derivative of the crosswind can differentially reduce the descent speed of each member of a vortex pair, causing tilting of the vortex pair. If sufficiently large, the second derivative of crosswind can deflect the vortex pair upwards, with the sign of the second derivative determining which of the two vortices rises to a higher altitude. Linear shear, on the other hand, caused no change in the descent speed of the vortices; thus having no effect on the orientation of the vortices. Observed and model data from an actual case are presented in support of the conclusion regarding the influence of shear on rising vortices.

  15. Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Berry, John D.; Zori, Laith A. J.; Elliott, Joe W.

    1996-01-01

    An experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to quantify the rotor wake behind a scale model helicopter rotor in forward level flight at one thrust level. The rotor system in this test consisted of a four-bladed fully articulated hub with blades of rectangular planform and an NACA 0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the vortex geometry in the flow in planes parallel and perpendicular to the free-stream flow. Quantitative measurements of wake geometric proper- ties, such as vortex location, vertical skew angle, and vortex particle void radius, were obtained as well as convective velocities for blade tip vortices. Comparisons were made between experimental data and four computational method predictions of experimental tip vortex locations, vortex vertical skew angles, and wake geometries. The results of these comparisons highlight difficulties of accurate wake geometry predictions.

  16. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  17. Improving actuator disk wake model

    NASA Astrophysics Data System (ADS)

    Costa Gomes, V. M. M. G.; Palma, J. M. L. M.; Silva Lopes, A.

    2014-06-01

    The wind energy industry has traditionally relied on simple wake models for estimating Wind Turbine (WT) wake losses. Despite limitations, low requirements in terms of detailed rotor information makes their use feasible, unlike more complex models, such as Blade Element Method (BEM) or Actuator Line. Froude's Actuator Disk (AD) does not suffer the simpler model's limitation of prescribing the wake through a closed set of equations, while sharing with them the low rotor data requirements. On the other hand they require some form of parametrization to close the model and calculate total thrust acting on the flow. An Actuator Disk model was developed, using an iterative algorithm based on Froude's one-dimensional momentum theory to determine the WT's performance, proving to be successful in estimating the performance of both machines in undisturbed flow and in the wake of an upstream machines. Before Froude's AD limitations compared to more complex rotor models, load distributions emulating those of a BEM model were tested. The results show that little impact is obtained at 3 rotor diameters downstream and beyond, agreeing with common definition of a far-wake that starts at 1-2 diameters downstream, where rotor characteristics become negligible and atmospheric flow effects dominate.

  18. Control of wake and vortex shedding behind a porous circular obstacle by exerting an external magnetic field

    NASA Astrophysics Data System (ADS)

    Bovand, M.; Rashidi, S.; Dehghan, M.; Esfahani, J. A.; Valipour, M. S.

    2015-07-01

    In this article the finite volume method (FVM) is carried out to simulate the flow around and through a two-dimensional porous cylinder. An external magnetic field is used to control the wake behind the bluff body and also to suppress the vortex shedding phenomena. The Darcy-Brinkman-Forchheimer model has been used for modeling the flow in the porous medium. Effects of Stuart (N), Reynolds (Re) and Darcy (Da) numbers on the flow behavior have been investigated. The results show that the critical Stuart number for suppress vortex shedding decreases with increasing the Darcy numbers. Also, the Stuart number for disappearance the re-circulating wake increases with increased Reynolds number for both porous and solid cylinders.

  19. A 3-D Vortex Dynamics Analysis in Intermediate Square Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Dobre, Adrian; Hangan, Horia

    2001-11-01

    Measurements in the near wake of a square cylinder are taken at 26 diameters downstream of a square cylinder to provide meaningful 3D information regarding the primary-secondary vortical structure interaction. The Reynolds number is 22,000 based on square cylinder edge dimension. 3D Velocity measurements are taken using a cross-holder with a 4 wire probe in the middle and six other X-wire probes in the vertical (y) and spanwise (z) directions. Spectral analysis based on Fourier and Wavelet transform is performed. It is shown that the most energetic scale in the spanwise velocity component (w) corresponds to the double frequency of vortex shedding. It can be inferred that the double frequency component is associated with the rib presence or/and with the roll deformation. These results along with Wavelet Pattern Recognition and instantaneous sectional streamlines analysis in both horizontal and vertical plane indicate that a rib arrangement that interconnects rolls on opposite sides of the wake is plausible. This analysis can be used to validate previously proposed wake topological models.

  20. Numerical modeling of initially turbulent wakes with net momentum

    NASA Astrophysics Data System (ADS)

    Gourlay, Michael J.; Arendt, S. C.; Fritts, D. C.; Werne, J.

    2001-12-01

    This paper presents results from the first fully three-dimensional direct numerical simulations of initially turbulent wakes with net momentum in unstratified and density stratified fluids. The initial conditions contain a super-position of an initially axisymmetric mean streamwise velocity profile plus a spectrally specified fluctuation velocity field with initially incoherent phases to model initial turbulence. To provide evidence in favor of their validity, we compare results from these simulations with previous measurements behind towed bodies in wind tunnels and towing tanks, and also compare with theories of turbulent wakes. Comparisons with laboratory flow experiments provide agreement, both with statistical quantities and vortex structures and evolution. We subsequently investigate open questions by analysis of the fully three-dimensional flow. Coherent vortices in stratified wakes have their origins in the vortex geometry of the mean wake flow, and do not require stratification or coherent seeding in the initial velocity fluctuations. We conclude that the simulations provide a trustworthy and valuable complement to wake research, and that the vortex structures result from a combination of the necessity that vortices form loops and diffusion of vorticity to smooth the loops into rings.

  1. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  2. Conformal FDTD modeling wake fields

    SciTech Connect

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  3. Progress Towards the Investigation of Technical Issues Relevant to the Design of an Aircraft Wake Vortex Advisory System (WakeVAS)

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.

    2003-01-01

    Wake vortex separations applied to aircraft during instrument operations have been shown to potentially introduce inefficiencies in air traffic operations during certain weather conditions conducive to short duration wake hazards between pairs of landing aircraft. NASA Langley Research Center (LaRC) demonstrated an integration of technologies that provided real-time observations and predictions of aircraft wake behavior, from which reduced wake spacing from the current criteria was derived. In order to take this proof of concept to an operational prototype system, NASA has been working in cooperation with the FAA and other government and industry members to design operational concepts for a Wake Vortex Advisory System (WakeVAS). In addition to concept development, open research issues are being addressed and activities to quantify system requirements and specifications are currently underway. This paper describes the technological issues relevant to WakeVAS development and current NASA efforts to address these issues.

  4. The effects of vortex modeling on blade-vortex interaction noise prediction

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Tung, Chee; Low, Scott L.

    1995-01-01

    The use of a blade vortex interaction noise prediction scheme, based on CAMRAD/JA, FPR and RAPP, quantifies the effects of errors and assumptions in the modeling of the helicopter's shed vortex on the acoustic predictions. CAMRAD/JA computes the wake geometry and inflow angles that are used in FPR to solve for the aerodynamic surface pressures. RAPP uses these surface pressures to predict the acoustic pressure. Both CAMRAD/JA and FPR utilize the Biot-Savart Law to determine the influence of the vortical velocities on the blade loading and both codes use an algebraic vortex model for the solid body rotation of the vortex core. Large changes in the specification of the vortex core size do not change the inplane wake geometry calculated by CAMRAD/JA and only slightly affect the out-of-plane wake geometry. However, the aerodynamic surface pressure calculated by FPR changes in both magnitude and character with small changes to the core size used by the FPR calculations. This in turn affects the acoustic predictions. Shifting the CAMRAD/JA wake geometry away from the rotor plane by 1/4 chord produces drastic changes in the acoustic predictions indicating that the prediction of acoustic pressure is extremely sensitive to the miss distance between the vortex and the blade and that this distance must be calculated as accurately as possible for acceptable noise predictions. The inclusion or exclusion of a vortex in the FPR-RAPP calculation allows for the determination of the relative importance of that vortex as a BVI noise source.

  5. The effects of vortex modeling on blade-vortex interaction noise prediction

    NASA Astrophysics Data System (ADS)

    Gallman, Judith M.; Tung, Chee; Low, Scott L.

    The use of a blade vortex interaction noise prediction scheme, based on CAMRAD/JA, FPR and RAPP, quantifies the effects of errors and assumptions in the modeling of the helicopter's shed vortex on the acoustic predictions. CAMRAD/JA computes the wake geometry and inflow angles that are used in FPR to solve for the aerodynamic surface pressures. RAPP uses these surface pressures to predict the acoustic pressure. Both CAMRAD/JA and FPR utilize the Biot-Savart Law to determine the influence of the vortical velocities on the blade loading and both codes use an algebraic vortex model for the solid body rotation of the vortex core. Large changes in the specification of the vortex core size do not change the inplane wake geometry calculated by CAMRAD/JA and only slightly affect the out-of-plane wake geometry. However, the aerodynamic surface pressure calculated by FPR changes in both magnitude and character with small changes to the core size used by the FPR calculations. This in turn affects the acoustic predictions. Shifting the CAMRAD/JA wake geometry away from the rotor plane by 1/4 chord produces drastic changes in the acoustic predictions indicating that the prediction of acoustic pressure is extremely sensitive to the miss distance between the vortex and the blade and that this distance must be calculated as accurately as possible for acceptable noise predictions. The inclusion or exclusion of a vortex in the FPR-RAPP calculation allows for the determination of the relative importance of that vortex as a BVI noise source.

  6. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  7. Comparison of Lifting-line and Lifting-surface Blade Models for Rotor Wakes

    NASA Astrophysics Data System (ADS)

    Kini, Santosh; Godavarty, Vishwanath; Conlisk, A. T.

    2001-11-01

    Rotor blades are often modeled using either the lifting-line or the lifting-surface approach. Classical lifting-line theory treats the case of a high aspect ratio blade where the blade is modeled by just a bound vortex line. The tip-vortex and the trailing vortex sheet are shed from the bound vortex line. The lifting-line approach will thus be expected to be accurate for large aspect ratio wings and blades. In the lifting-surface approach the blade is modeled by a thin lifting surface to more precisely understand the aerodynamic behavior of the chordwise flow close to the blade surface and its effect on the formation of the tip-vortex and consequently the entire wake. Due to the presence of a finite chord, this model seems to be more robust as far as chordwise changes in flow patterns are concerned. The objective of the present work is to compare results from two distinct vortex-wake models. The Wake Model with Lifting-Line has a robust model for the wake. The Lifting-Surface Model with Wake Effects has a robust model for the lifting-surface with additional terms in the governing equations representing a simplified model for the wake. Bound and tip-vortex strengths, tip-vortex trajectories and velocity profiles are evaluated using these models very close to the blade. It is observed that the results obtained from these models are comparable. The minor discrepancies observed are explained in terms of the assumptions made. To establish the validity of the models the results are also compared with experimental data. Sponsored by the Rotorcraft Center of Excellence at Georgia Institute of Technology and the Army Research Office.

  8. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna)

    PubMed Central

    Wolf, M.; Ortega-Jimenez, V. M.; Dudley, R.

    2013-01-01

    Hummingbirds are specialized hoverers for which the vortex wake has been described as a series of single vortex rings shed primarily during the downstroke. Recent findings in bats and birds, as well as in a recent study on Anna's hummingbirds, suggest that each wing may shed a discrete vortex ring, yielding a bilaterally paired wake. Here, we describe the presence of two discrete rings in the wake of hovering Anna's hummingbirds, and also infer force production through a wingbeat with contributions to weight support. Using flow visualization, we found separate vortices at the tip and root of each wing, with 15% stronger circulation at the wingtip than at the root during the downstroke. The upstroke wake is more complex, with near-continuous shedding of vorticity, and circulation of approximately equal magnitude at tip and root. Force estimates suggest that the downstroke contributes 66% of required weight support, whereas the upstroke generates 35%. We also identified a secondary vortex structure yielding 8–26% of weight support. Lift production in Anna's hummingbirds is more evenly distributed between the stroke phases than previously estimated for Rufous hummingbirds, in accordance with the generally symmetric down- and upstrokes that characterize hovering in these birds. PMID:24174113

  9. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).

    PubMed

    Wolf, M; Ortega-Jimenez, V M; Dudley, R

    2013-12-22

    Hummingbirds are specialized hoverers for which the vortex wake has been described as a series of single vortex rings shed primarily during the downstroke. Recent findings in bats and birds, as well as in a recent study on Anna's hummingbirds, suggest that each wing may shed a discrete vortex ring, yielding a bilaterally paired wake. Here, we describe the presence of two discrete rings in the wake of hovering Anna's hummingbirds, and also infer force production through a wingbeat with contributions to weight support. Using flow visualization, we found separate vortices at the tip and root of each wing, with 15% stronger circulation at the wingtip than at the root during the downstroke. The upstroke wake is more complex, with near-continuous shedding of vorticity, and circulation of approximately equal magnitude at tip and root. Force estimates suggest that the downstroke contributes 66% of required weight support, whereas the upstroke generates 35%. We also identified a secondary vortex structure yielding 8-26% of weight support. Lift production in Anna's hummingbirds is more evenly distributed between the stroke phases than previously estimated for Rufous hummingbirds, in accordance with the generally symmetric down- and upstrokes that characterize hovering in these birds. PMID:24174113

  10. Transient Vortex Structures in the Near Wake of a Wing during Pitch Up/Down Maneuvers

    NASA Astrophysics Data System (ADS)

    Graff, Emilio; Grivel, Morgane; Williams, David

    2012-11-01

    The vorticity distribution in the wake of a thin airfoil reflects the lift and bound circulation history of the wing. During a pitch-up maneuver from 0 degrees to some higher angle of attack (assuming attached flow), a ``starting vortex'' is formed in the wake whose circulation is opposite in strength to the bound circulation in the wing. However, a finite time is required for the starting vortex to fully develop, and if the wing pitches down to a smaller angle of attack before the first starting vortex has reached full strength then an imbalance in the wake circulation occurs. The delay time between the up/down pitch motions and the maximum angle of attack determine which additional vortices must be formed to satisfy Kelvin's theorem. In addition to the irrotational flow vortices that form, vorticity associated with the viscous boundary layers also accumulates into discrete vortices that accompany each ``starting vortex.'' The complicated distributions of vortices and their evolution in the wake are examined with detailed PIV, smoke-visualization, and numerical simulations at Re = 240 to 70,000. The support for David Williams by AFOSR Grant FA9550-09-1-0189 is gratefully acknowledged.

  11. Relationship between vortex ring in tail fin wake and propulsive force

    NASA Astrophysics Data System (ADS)

    Imamura, Naoto; Matsuuchi, Kazuo

    2013-10-01

    Our aim was to investigate the three-dimensional (3D) vortex ring in the wake of a tail fin and to clarify the propulsion mechanism of dolphins and fish. In this study, we replaced a tail fin in pitching motion with an oscillating wing having a drive unit. The flow fields around the wing were measured by stereoscopic particle image velocimetry. To visualize the 3D structure of the vortex in the wake, we determined the flow fields in equally spaced cross-sectional planes. We reconstructed the 3D velocity fields from the velocity data with three components in two dimensions. We visualized the 3D vortex structure from these velocity data and plotted an iso-vorticity surface. As a result, we found that the vortex ring was generated by the kick-down and kick-up motions of the wing and that the wake structure was comparable with that obtained numerically. Moreover, we calculated the propulsive forces from the temporal variations in circulation and in the area surrounded by the vortex ring.

  12. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  13. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    NASA Astrophysics Data System (ADS)

    Lawton, Stephen; Crawford, Curran

    2014-06-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.

  14. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    Microsoft Academic Search

    Claude G. Matalanis

    2007-01-01

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when

  15. Vortex suppression of the cylinder wake by deflectors

    Microsoft Academic Search

    S Ozono

    2003-01-01

    The flow around a circular cylinder with a few interference elements shifted along the wake was investigated. This paper is mainly concerned with the case where a circular cylinder of the same diameter as that of the main cylinder was used as an interference element. In fact, this situation coincides with the flow around two circular cylinders in staggered arrangement

  16. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  17. Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence

    Microsoft Academic Search

    B. W. van Oudheusden; F. Scarano; N. P. van Hinsberg; D. W. Watt

    2005-01-01

    The vortex formation and shedding process in the near wake region of a 2D square-section cylinder at incidence has been investigated by means of particle image velocimetry (PIV). Proper orthogonal decomposition (POD) is used to characterize the coherent large-scale flow unsteadiness that is associated with the wake vortex shedding process. A particular application of the POD analysis is to extract

  18. Wake Tracking and the Detection of Vortex Rings by the Canal Lateral Line of Fish Jan-Moritz P. Franosch,1

    E-print Network

    van Hemmen, J. Leo

    lateral-line signal, as shown by calculating pressure signals [18]. Artificially generated vortex ringsWake Tracking and the Detection of Vortex Rings by the Canal Lateral Line of Fish Jan-Moritz P objects. Yet many fish are able to track vortex wakes that arise from other fish. It is not yet known what

  19. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  20. Unsteady Vortex Structures in the Wake of a Piezoelectric Flapping Wing

    NASA Astrophysics Data System (ADS)

    Clemons, Lucas; Igarashi, Hirofumi; Hu, Hui

    2009-11-01

    An experimental study was conducted to characterize the behavior of Unsteady Vortex Structures in the Wake of a piezoelectric flapping wing with miniaturized size (about 10mm in chord length), large flapping amplitude (up to 2.0 times of chord length) and high flapping frequency (60Hz) to explore the potential application of piezofans as the compact, gearless flapping-wings for the development of novel piezoelectric-flapping-wing-based Nano-Air-Vehicles (NAVs). The experimental investigation was performed in a low-speed wind tunnel. A digital particle image velocimetry (PIV) system was used to achieve phased-locked flow field measurements to quantify the transient behavior of the unsteady vortex structures in wake of the piezoelectric flapping wing. The effects of important parameters such as incoming flow velocity (i.e., forward flight speed), the flapping amplitude, and the incline angle of the flapping wing in relation to the incoming flow direction (i.e. the angle of attack) on the wake vortex shedding processes were examined to elucidate underlying physics in order to explore/optimize design paradigms for the development of novel piezoelectric-flapping-wing-based NAVs.

  1. Measurements of the trailing vortex formation, structure, and evolution in the wake of a hovering rotor

    NASA Astrophysics Data System (ADS)

    Martin, Preston Bradley

    2001-07-01

    High-resolution velocity field measurements and flow visualization images were acquired in the flow field near the tip of a rotor blade operating in hover. Using three-component laser Doppler velocimetry (LDV), the measurements documented the trailing vortex formation, initial structure, and the viscous evolution of the core. The test conditions covered a range of wake ages from as young as one degree, up to about one rotor revolution. For each wake age, vortex core properties were estimated from the velocity field measurements. The test conditions also included different tip shapes including rectangular, tapered, swept, and a subwing tip. Preliminary measurements were used to refine the technique by understanding the sources of uncertainty and the spatial resolution requirements. This task included developing a new procedure for three-component laser Doppler Velocimetry (LDV) alignment using a laser beam profiler. A detailed uncertainty analysis of the LDV measurement technique was conducted and applied to helicopter rotor blade tip vortex measurements. Finally, spatial resolution requirements were formally established to enable a more accurate reconstruction of the velocity field associated with blade tip vortices. The accuracy of the LDV technique was further verified by an independent comparison with preliminary phase-resolved stereoscopic particle image velocimetry (PIV) measurements. The vortex velocity profiles were compared with three-dimensional LDV measurements using the same rotor test conditions and seeding medium. The various challenges of using PIV versus LDV to study the formation and evolution of helicopter tip vortices were also studied. A set of benchmark test cases was acquired using LDV for each of the tip shapes. The measurements were supported by detailed flow visualization. The high spatial resolution obtained with LDV has shown that the tip vortex core radius can be less than 3% chord at early wake-ages, but grows asymptotically as it ages. A significant axial velocity deficit existed in the vortex core that was of the order of the peak swirl velocity at early wake-ages, but which quickly diminished as the vortex aged. Using stability analysis combined with flow visualization, the results suggest that the inner core of the vortex is mostly laminar at the vortex Reynolds numbers tested in this experiment. The evidence suggests that the entire tip vortex structure is neither fully laminar or fully turbulent, but is instead in a continuous state of dynamic evolution with a region of relatively slow laminar diffusion and a region of accelerated turbulent diffusion. It is suggested that the variation of peak swirl velocity is the result of the competing influences of an inviscid roll-up process and viscous diffusion within the vortex. The primary effects of the tip shape modification were a change in the convection speed and direction of the vortex core trajectory and a change in the magnitude of the peak swirl velocity.

  2. Energy contents and vortex dynamics in Mode-C transition of wired-cylinder wake

    NASA Astrophysics Data System (ADS)

    Yildirim, I.; Rindt, C. C. M.; van Steenhoven, A. A.

    2013-05-01

    The 3D transition of the flow behind a circular cylinder with a near-wake wire disturbance has been investigated experimentally. The flow is oriented horizontally and the wire is positioned in the upper half of the wake. We performed flow visualization and particle image velocimetry experiments to investigate the influence of the wire on various properties of the flow, such as the dynamics of the spanwise structures. Experiments were performed in the Reynolds number range of Re = 165-300. It is shown that in Mode-C transition of the wired cylinder wake, some part of the streamwise vorticity content of the upper von Kármán vortices located at the perturbed side, is transferred to the secondary vortices. This vorticity transfer results in upper von Kármán vortices which are weaker than the lower ones. The analysis of the discrete energy content of the wake supports this analysis by showing that the energy intensity at von Kármán vortex shedding frequency f0 at the perturbed side of the wake is less than the energy intensity in the lower half. This leads to conclusion that the excess energy is transferred to the subharmonic frequency f1 ? f0/2.

  3. Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Marcolini, Michael A.; Splettstoesser, W. R.; Schultz, K.-J.

    1990-01-01

    Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed.

  4. Dynamic modeling of vortex levitation

    Microsoft Academic Search

    Xin Li; Kenji Kawashima; Toshiharu Kagawa

    2008-01-01

    Vortex levitation can achieve non-contact handling by blowing air into a vortex cup through a tangential nozzle to generate a swirling air flow. In this paper, its dynamic characteristics are analyzed through dynamic pressure response, and a dynamic modeling is developed and verified experimentally. First, we observe the pressure dynamic response inside the cup by making the cup and the

  5. Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Evans, P. F.; Hackett, J. E.

    1976-01-01

    Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.

  6. Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar

    E-print Network

    Pryor, Sara C.

    Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar R of most of the commonly used models for predicting wind speed decrease (wake) downstream of a wind turbine between 1.7 and 7.4 rotor diameters downstream of the wind turbine. Evaluation of the models compares

  7. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  8. Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rutishauser, David (Technical Monitor)

    2003-01-01

    Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.

  9. Estimation of aircraft wake vortex parameters from data measured with a 1.5-?m coherent Doppler lidar.

    PubMed

    Smalikho, I N; Banakh, V A

    2015-07-15

    A strategy of measurement by a 1.5-?m pulsed coherent Doppler lidar "Stream Line" has been developed, and a method for estimation of aircraft wake vortices from the lidar data has been proposed. The principal possibility of obtaining the information about the vortex situation over an airport airfield with the Stream-Line lidar has been demonstrated. PMID:26176481

  10. Study of the feasibility of using a sailplane as an instrument platform for the study of wake vortex phenomena

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.

    1974-01-01

    The feasibility of utilizing instrumentation mounted on a sailplane wing is investigated to determine vortex wakes from a large aircraft. The instrumentation consisted of static and total pressure tubes and a rotating vane vorticity meter mounted in a pod on the glider wing tip. It was concluded that the study was not feasible.

  11. Prospects for destructive self-induced interactions in a vortex pair due to sinusoidal disturbances. [of large transport aircraft wakes

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.

    1986-01-01

    The vortex wakes of large transport aircraft can pose a hazard to smaller following aircraft in the vicinity of airports during landing and take-off operations if certain separation guidelines are not observed. In order to reduce the hazard potential, and thereby the separation distances, efforts are being made to find more rapid wake-dissipation mechanisms. In this paper numerical simulations are made of the three-dimensional time-dependent instabilities that might be initiated in a vortex pair by sinusoidal displacements of the filaments. The objective of the study was to find those displacements and phase angles that would produce the most rapid destruction of the vortices. It is concluded that, of the wave patterns tried on the one pair of wake filaments, the only instability mode that leads to destructive interactions of the vortices is the Scorer-Crow process.

  12. Interaction of compressor rotor blade wake with wall boundary layer/vortex in the end-wall region

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Ravindranath, A.

    1981-01-01

    This paper reports the experimental study of the three-dimensional characteristics of the mean velocity of the rotor wake inside the annulus- and hub-wall boundary layers. The measurements were taken with a rotating three-sensor hot wire behind the rotor. This set of measurements probably represents the first set of comprehensive measurements taken inside the annulus- and hub-wall boundary layers. The wake was surveyed at several radial locations inside the boundary layer region and at several axial locations. Interaction of the wake with the annulus-wall boundary layer, secondary flow, tip-leakage flow, and the trailing vortex system results in slower decay and larger width of the wake. The presence of a strong vortex and its merger with the wake is also observed. The end-wall boundary layers and the secondary flow were found to have a substantial effect on both the decay characteristics and the profile of the wake. These and other measurements are reported and interpreted in this paper.

  13. Recalibrating Wind Turbine Wake Model Parameters - Validating the Wake Model Performance for Large Offshore Wind Farms

    Microsoft Academic Search

    Thomas Sørensen; Per Nielsen; Morten Lybech Thøgersen

    Summary As part of the Danish PSO sponsored project 'The Necessary Distance between Large Wind Farms at Sea ' EMD International A\\/S has implemented a number of wake models in the WindPRO software. In this paper we report the preliminary results of a case study on Horns Rev offshore wind farm, where the actual observed wake losses are compared with

  14. Particle creation in the vortex cosmological model

    Microsoft Academic Search

    V. N. Lukash; I. D. Novikov; A. A. Starobinskiy

    1976-01-01

    A complete picture of evolution of the vortex model, with allowance for matter creation, is constructed. It is shown that the effect of particle creation near the singularity at t approximately t sub pl results in a strong decrease in the primary vortex velocity of matter which ultimately proves to be completely insufficient for the vortex theory of the origin

  15. Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches (A joint NASA/FAA report)

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Kurkowski, R. L.; Garodz, L. J.; Robinson, G. H.; Smith, H. J.; Jacobsen, R. A.; Stinnett, G. W., Jr.; Mcmurtry, T. C.; Tymczyszyn, J. J.; Devereaux, R. L.

    1975-01-01

    Flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 aircraft during conventional and two-segment instrument landing approaches. Smoke generators were used for vortex marking. The vortex was intentionally intercepted by a Lear Jet and a Piper Comanche aircraft. The vortex location during landing approach was measured using a system of phototheodolites. The tests showed that at a given separation distance there are no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. The effect of the aircraft configuration on the extent and severity of the vortices is discussed.

  16. Comparing satellite SAR and wind farm wake models

    NASA Astrophysics Data System (ADS)

    Hasager, C. B.; Vincent, P.; Husson, R.; Mouche, A.; Badger, M.; Peña, A.; Volker, P.; Badger, J.; Di Bella, A.; Palomares, A.; Cantero, E.; Correia, P. M. F.

    2015-06-01

    The aim of the paper is to present offshore wind farm wake observed from satellite Synthetic Aperture Radar (SAR) wind fields from RADARSAT-1/-2 and Envisat and to compare these wakes qualitatively to wind farm wake model results. From some satellite SAR wind maps very long wakes are observed. These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting (WRF) model in high resolution and WRF with coupled microscale parametrization.

  17. Vortex dynamics and associated fluid forcing in the near wake of a light and heavy tethered sphere in uniform flow

    NASA Astrophysics Data System (ADS)

    Krakovich, A.; Eshbal, L.; van Hout, R.

    2013-11-01

    Time-resolved particle image velocimetry measurements of vortex-induced vibrations of a negatively ("heavy") and positively ("light") buoyant tethered sphere in uniform flow, and its wake characteristics were performed in a closed-loop water channel. Experiments for both spheres were performed at similar bulk velocities, ranging between 0.048 < U < 0.32 m/s, corresponding to reduced velocities, 2.2 < U * < 13.5. Initially stationary, with increasing U, the amplitude response displayed periodic oscillations beyond the Hopf bifurcation as a result of "lock-in" between vortex shedding and the natural structural frequency. However, while the heavy sphere's amplitude decreased beyond U * = 7.0, the light sphere's amplitude continuously increased. In the periodic oscillation region, flow field characteristics in the wakes of both spheres (at comparable U * ) were similar, characterized by alternately shed hairpin vortices having a horizontal symmetry plane. Primary vortex trajectories in the frame of reference of the sphere collapsed for different U * (but not for different m * ) when scaled by f 2,s/ U, where f 2,s is the sphere's transverse oscillation frequency. This allows determination of vortex positions based on sphere dynamics and bulk flow conditions only. Associated vortex convection velocities as a function of downstream position from the sphere also nearly collapsed when normalized by U. In addition, fluid forcing and energy transfer from fluid to sphere were estimated based on an analogy between aircraft trailing vortices and hairpin vortices. Maximum forcing occurred at vortex pinch-off. For the highest comparable U * , despite different amplitudes, total transferred energy during one oscillation period was similar for both spheres. Changes in sphere dynamics must therefore be related to differences in inertia.

  18. A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding

    E-print Network

    Cincinnati, University of

    A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding Mark G. Turner (SMI) rig is a high-speed, highly-loaded compressor consisting of three blade-rows: a wake generator, Wright Patterson Air Force Base, OH 45431 The time accurate blade row interactions of a transonic rotor

  19. Simulating Virtual Terminal Area Weather Data Bases for Use in the Wake Vortex Avoidance System (Wake VAS) Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the research project, sounding datasets were generated for the region surrounding 9 major airports, including Dallas, TX, Boston, MA, New York, NY, Chicago, IL, St. Louis, MO, Atlanta, GA, Miami, FL, San Francico, CA, and Los Angeles, CA. The numerical simulation of winter and summer environments during which no instrument flight rule impact was occurring at these 9 terminals was performed using the most contemporary version of the Terminal Area PBL Prediction System (TAPPS) model nested from 36 km to 6 km to 1 km horizontal resolution and very detailed vertical resolution in the planetary boundary layer. The soundings from the 1 km model were archived at 30 minute time intervals for a 24 hour period and the vertical dependent variables as well as derived quantities, i.e., 3-dimensional wind components, temperatures, pressures, mixing ratios, turbulence kinetic energy and eddy dissipation rates were then interpolated to 5 m vertical resolution up to 1000 m elevation above ground level. After partial validation against field experiment datasets for Dallas as well as larger scale and much coarser resolution observations at the other 8 airports, these sounding datasets were sent to NASA for use in the Virtual Air Space and Modeling program. The application of these datasets being to determine representative airport weather environments to diagnose the response of simulated wake vortices to realistic atmospheric environments. These virtual datasets are based on large scale observed atmospheric initial conditions that are dynamically interpolated in space and time. The 1 km nested-grid simulated datasets providing a very coarse and highly smoothed representation of airport environment meteorological conditions. Details concerning the airport surface forcing are virtually absent from these simulated datasets although the observed background atmospheric processes have been compared to the simulated fields and the fields were found to accurately replicate the flows surrounding the airport where coarse verification data were available as well as where airport scale datasets were available.

  20. The structure of the wake generated by a submarine model in yaw

    NASA Astrophysics Data System (ADS)

    Ashok, A.; Van Buren, T.; Smits, A. J.

    2015-06-01

    The turbulent wake of a submarine model in yaw was investigated using stereoscopic particle image velocimetry at The model (DARPA SUBOFF idealized submarine geometry) is mounted in a low-speed wind tunnel using a support that mimics the sail, and it is yawed so that the body moves in the plane normal to the support. The measurements reveal the formation of a pair of streamwise vortices that are asymmetric in strength. The weaker vortex quickly diffuses, and in the absence of further diffusion, the stronger vortex maintains its strength even at the furthest downstream location. It is suggested that the flow fields obtained here using a semi-infinite sail as a support will be similar to those obtained using a finite length sail since its tip vortex would not interact significantly with the body vortices present in the wake, at least for a considerable distance downstream of the stern Hence, a submarine in yaw is expected to generate wakes which are inherently more persistent than one in pitch, and the strong asymmetries in yaw are expected to produce a net rolling moment on the body.

  1. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel

    Microsoft Academic Search

    A. Hedenström; M. Rosén; G. R. Spedding

    2006-01-01

    The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were

  2. A mathematical model of the sleep\\/wake cycle

    Microsoft Academic Search

    Michael J. Rempe; Janet Best; David Terman

    2010-01-01

    We present a biologically-based mathematical model that accounts for several features of the human sleep\\/wake cycle. These\\u000a features include the timing of sleep and wakefulness under normal and sleep-deprived conditions, ultradian rhythms, more frequent\\u000a switching between sleep and wakefulness due to the loss of orexin and the circadian dependence of several sleep measures.\\u000a The model demonstrates how these features depend

  3. Wake structure of a deformable Joukowski airfoil

    Microsoft Academic Search

    Adam Ysasi; Eva Kanso; Paul K. Newton

    2011-01-01

    We examine the vortical wake structure shed from a deformable Joukowski airfoil in an unbounded volume of inviscid and incompressible fluid. The deformable airfoil is considered to model a flapping fish. The vortex shedding is accounted for using an unsteady point vortex model commonly referred to as the Brown–Michael model. The airfoil’s deformations and rotations are prescribed in terms of

  4. Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms.

    E-print Network

    Daraio, Chiara

    models take account of the effects of wakes on downstream wind turbines. ·Wake models used in the wind and wind turbine wakes in large windfarms offshore, Wind Energy 12, pp. 431-444, 2009. [2] L.P. Chamorro·Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms. ·Wake

  5. Engineering models for merging wakes in wind farm optimization applications

    NASA Astrophysics Data System (ADS)

    Machefaux, E.; Larsen, G. C.; Murcia Leon, J. P.

    2015-06-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake deficits as applied in e.g. Fuga. The second approach is the square root of sums of squares approach, which is applied in the widely used PARK program. The third approach, which is presently used with the Dynamic Wake Meandering (DWM) model, assumes that the wake affected downstream flow field to be determined by a superposition of the ambient flow field and the dominating wake among contributions from all upstream turbines at any spatial position and at any time. The last approach developed by G.C. Larsen is a newly developed model based on a parabolic type of approach, which combines wake deficits successively. The study indicates that wake interaction depends strongly on the relative wake deficit magnitude, i.e. the deficit magnitude normalized with respect to the ambient mean wind speed, and that the dominant wake assumption within the DWM framework is the most accurate.

  6. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  7. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  8. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region

    PubMed Central

    BORAZJANI, IMAN; SOTIROPOULOS, FOTIS

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281

  9. Analysis of the Relation between Vortex Generation in the Jet Wake and Induced Edgetone

    Microsoft Academic Search

    Taku Nonomura; Hiroko Muranaka; Kozo Fujii

    To reveal the relation between vortex generations and edgetones, DNS (Direct Numerical Simulation) is carried out. High-order compact difference scheme and four stage Runge-Kutta scheme are adopted for the space and time accuracy is maintained. The results show that jet-disturbance and vortex have strong relations. Vortex motions acts on the phase-lag of lateral velocity disturbance and force on the edge.

  10. An overview of modeling and experiments of vortex-induced vibration of circular cylinders

    Microsoft Academic Search

    R. D. Gabbai; H. Benaroya

    2005-01-01

    This paper reviews the literature on the mathematical models used to investigate vortex-induced vibration (VIV) of circular cylinders. Wake-oscillator models, single-degree-of-freedom, force–decomposition models, and other approaches are discussed in detail. Brief overviews are also given of numerical methods used in solving the fully coupled fluid–structure interaction problem and of key experimental studies highlighting the nature of VIV.

  11. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

    2011-08-01

    An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

  12. Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes

    NASA Astrophysics Data System (ADS)

    Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros

    2012-11-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.

  13. A simplified ring-vortex downburst model

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Bryson, A. E.

    1990-01-01

    Three dimensional incompressible vortex rings are used to model downburst flow field, and modifications are made to express the induced velocities analytically. As a result, this three dimensional downburst model can be used in trajectory optimization, as well as in flight simulations. Two such vortex rings are superposed to match the JAWS AB Corridor wind profiles and the DFW Downburst wind profiles. Model parameters are determined through nonlinear least square fit.

  14. Velocity and rolling-moment measurements in the wake of a swept-wing model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Schwind, R. G.; Frick, J. K. D.; Lemmer, O. J.

    1975-01-01

    Measurements were made in the wake of a swept wing model to study the structure of lift generated vortex wakes shed by conventional span loadings and by several span loadings designed to reduce wake velocities. Variations in the span loading on the swept wing generator were obtained by deflecting seven flap segments on each side by amounts determined by vortex lattice theory to approximate the desired span loadings. The resulting wakes were probed with a three component, hot wire probe to measure velocity, and with a wing to measure the rolling moment that would be induced on a following aircraft. The experimental techniques are described herein, and the measured velocity and rolling moments are presented, along with some comparisons with the applicable theories.

  15. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be considered. It is concluded that a RASS system, developed for the specific application of wake vortex detection, could become part of a robust Aircraft Vortex Spacing System (AVOSS). This system, in turn, could contribute to Reduced Spacing Operations (RSO) in US airports and improvements in Terminal Area productivity (TAP).

  16. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  17. Flight test to determine feasibility of a proposed airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Hastings, E. C., Jr.; Patterson, James C., Jr.

    1991-01-01

    This investigation was conducted to determine the radial extent at which aircraft mounted flow vanes or roll rate gyros can sense the circulatory flow field that exists around the lift induced vortex system generated by an aircraft in flight. The probe aircraft was equipped with wingtip sensors for measuring angle of attack and angle of sideslip, and with a fuselage mounted gyroscope for measuring roll rate. Analysis of flight test data indicated that the vortex was detectable at a lateral distance of about 105 feet (best results) using unsophisticated equipment. Measurements were made from the centerline of the probe aircraft to the center of the nearest vortex with the probe aircraft flying between one half and one and one half miles behind the vortex generating aircraft.

  18. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  19. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance for hover and helicopter mode operation, and airloads for helicopter mode. Calculated induced power, profile power, and wake geometry provide additional information about the aerodynamic behavior. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  20. Wind-tunnel measurements in the wakes of structures

    NASA Technical Reports Server (NTRS)

    Woo, H. G. C.; Peterka, J. A.; Cermak, J. E.

    1977-01-01

    Detailed measurements of longitudinal mean velocity, turbulence intensity, space correlations, and spectra made in the wake of two rectangular scaled models in simulated atmospheric boundary-layer winds are presented. The model buildings were 1:50 scale models of two trailers. Results of a flow visualization study of the wake geometry are analyzed with some singular point theorems. Two hypothetical flow patterns of the detailed wake geometry are proposed. Some preliminary studies of the vortex wake, effects of the model size, model aspect ratios, and boundary layer characteristics on the decay rate and extent of the wake are also presented and discussed.

  1. Computation of potential flows with embedded vortex rings and applications to helicopter rotor wakes

    NASA Technical Reports Server (NTRS)

    Roberts, T. W.

    1983-01-01

    A finite difference scheme for solving the motion of a number of vortex rings is developed. The method is an adaptation of the 'cloud-in-cell' technique to axisymmetric flows, and is thus a combined Eulerian-Lagrangian technique. A straightforward adaptation of the cloud-in-cell scheme to an axisymmetric flow field is shown to introduce a grid dependent self-induced velocity to each vortex ring. To correct this behavior the potential is considered to consist of two parts, a local and a global field. An improved difference formula is derived, allowing the accurate calculation of the potential at points near vortex locations. The local potential is then subtracted before calculating the velocity, leaving only the influences of the remaining vortices. The correct self-induced velocity is then explicitly added to the vortex velocity. Calculations of the motion of one and two vortex rings are performed, demonstrating the ability of the new method to eliminate the grid dependence of the self-induced velocity. The application of the method to the calculation of helicopter rotor flows in hover is attempted.

  2. Shear flow induced vibrations of long slender cylinders with a wake oscillator model

    NASA Astrophysics Data System (ADS)

    Ge, Fei; Lu, Wei; Wang, Lei; Hong, You-Shi

    2011-06-01

    A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations (VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fluid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model, such as the spanwise average displacement, vibration frequency, dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.

  3. Exploratory flight investigation of aircraft response to the wing vortex wake generated by jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, W. H.; Robinson, G. H.; Larson, R. R.

    1972-01-01

    The effect of intercepting wing tip vortices generated by large jet transports, including jumbo jets, over separation distances from 1 nautical mile to 15 nautical miles is evaluated on the basis of the response of a vortex probe airplane in the roil mode. The vortex probe test aircraft included a representative general aviation airplane, an executive jet, a fighter, and light and medium weight jet transports. The test conditions and airplane configurations were comparable to those normally used during takeoff, landing, or holding pattern operations. For flight safety the tests were performed at altitudes from 9500 feet to 12,500 feet. In addition to an evaluation of the probe airplane response, a flight test technique is suggested for determining minimum separation distance, using as variable the ratio of vortex-induced roll acceleration to maximum lateral control acceleration and the gross weight of the generating aircraft.

  4. Improvement of a near wake model for trailing vorticity

    NASA Astrophysics Data System (ADS)

    Pirrung, G. R.; Hansen, M. H.; Madsen, H. A.

    2014-12-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model.

  5. Sleep–wake architecture in mouse models for Down syndrome

    Microsoft Academic Search

    Damien Colas; Jacqueline London; Abdallah Gharib; Raymond Cespuglio; Nicole Sarda

    2004-01-01

    Sleep–wake homeostasis is crucial for behavioral performances and memory both in the general population and in patients with learning disability, among whom were Down syndrome (DS) patients. We investigated, in mouse models of DS, cortical EEG and sleep–wake architecture under baseline conditions and after a 4-h sleep deprivation (SD). Young hemizygous mice (hSODwt\\/+) transgenic for the human CuZn superoxide dismutase

  6. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases are modeled by various types of wake models. In the EERA DTOC project the model suite consists of engineering models (Ainslie, DWM, GLC, PARK, WASP/NOJ), simplified CFD models (FUGA, FarmFlow), full CFD models (CRES-flowNS, RANS), mesoscale model (SKIRON, WRF) and coupled meso-scale and microscale models. The comparison analysis between the satellite wind wake and model results will be presented and discussed. It is first time a comprehensive analysis is performed on this subject. The topic gains increasing importance because there is a growing need to precisely model also mid- and far-field wind farms wakes for development and planning of offshore wind farm clusters.

  7. Measurements of Vortex Shedding and Wake Decay Downstream of a Turbine Inlet Guide Vane

    Microsoft Academic Search

    D. Contini; G. Manfrida; V. Michelassi; G. Riccio

    2000-01-01

    The flow in the second stage stator of a gas turbine with contoured end-wall is measured in a low speed wind tunnel. The investigation\\u000a is focused on the flow in proximity to the blade trailing edge and in the wake. The measurements include mean velocity, total\\u000a and static pressure at the cascade exit together with the analysis of intensity and

  8. Effect of Wake Disturbance Frequency on the Secondary Flow Vortex Structure in a Turbine Blade Cascade

    Microsoft Academic Search

    Christopher G. Murawski; Kambiz Vafai

    2000-01-01

    An experimental study of the effect of wake disturbance frequency on the secondary flow vortices in a two-dimensional linear cascade is presented. The flow Reynolds numbers, based on exit velocity and suction side surface length were 25,000, 50,000 and 85,000. Secondary flow was visualized by injecting smoke into the boundary layer and illuminat- ing it with a laser light sheet

  9. The onset of oblique vortex shedding behind a heated circular cylinder in laminar wake regime

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Hsun; Trávní?ek, Zden?k; Wang, An-Bang

    2012-01-01

    Oblique vortex shedding (OVS) behind a heated circular cylinder in air was experimentally investigated. Similar to that in the parallel vortex shedding (PVS), the results show that the non-dimensionalized shedding frequency, Strouhal number, decreases under the influence of cylinder heating for oblique shedding mode. Although the onset Reynolds number of OVS increases with the cylinder temperature, the onset effective Reynolds number remains 63.3 ± 1.3 regardless of the cylinder heating. A general Strouhal-Reynolds-number relationship for OVS has been found based on the effective temperature concept in the present study. The ratio of the critical Reynolds numbers for the onsets of OVS and PVS is found to be an invariant with value of 4/3 for both isothermal and non-isothermal cases despite different length/diameter ratios and end conditions.

  10. Vortex Generator Model Developed for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2002-01-01

    A computational model was developed at the NASA Glenn Research Center to investigate possible uses of vortex generators (VG's) for improving the performance of turbomachinery. A vortex generator is a small, winglike device that generates vortices at its tip. The vortices mix high-speed core flow with low-speed boundary layer flow and, thus, can be used to delay flow separation. VG's also turn the flow near the walls and, thus, can be used to control flow incidence into a turbomachinery blade row or to control secondary flows.

  11. Modeling of Radio Emission from Saturn's Rings Including Wakes

    NASA Astrophysics Data System (ADS)

    Molnar, L. A.; Dunn, D. E.; Cully, J. C.; Young, D. J.

    2000-10-01

    We have extended the ``simrings" radiative transfer software package (Dunn, Molnar, and Fix 1999) to include idealized ring wakes. The package consists four principle, modular components: ``simprob," which computes Mie scattering functions for individual particles specified by size and composition; ``simrings," which uses a Monte Carlo simulation to compute the complete scattering function and thermal emission of a ring slab specified by particle size distribution and density (including the possibility of wake density enhancements); ``simplot," which uses these functions along with geometric information and a full description of the planet brightness to compute the ring brightness as a function of azimuth as viewed from Earth; and "simcoord", which combines this information for a series of rings to make a final model of the radio emission as viewed on the sky. We compare sample results from this package with those of a simple, analytic model that ignores multiple scattering. This allows us to show qualitatively under what conditions one might observe east-west asymmetry in the rings caused by multiple scattering off wakes (as we earlier suggested may be the case: Dunn, Molnar, and Fix 1996), and to quantitatively compare models with data maps. The principle advantage of our idealized wakes is the relative ease with which we can consider a wide range of parameter space. The utility of this depends on these wakes having net scattering properties resembling those of more realistic wakes. We compare our idealized wakes with the gravitational simulations of Daisaka and Ida (1999) and find that this is the case for directly transmitted flux as a function of azimuth and inclination. As complete scattering properties of realistic simulations become available, we can use them as alternative inputs to ``simplot," producing model radio maps for them. Finally, we compare preliminary runs of the ``simrings" package with radio data spanning a range of observing wavelengths and ring inclinations to demonstrate the sensitivity to various physical parameters of the rings. This work was funded by a grant from Research Corporation.

  12. Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model

    NASA Astrophysics Data System (ADS)

    Rule, John Allen

    1997-08-01

    The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.

  13. Effects of incoming wind condition and wind turbine aerodynamics on the hub vortex instability

    NASA Astrophysics Data System (ADS)

    Ashton, R.; Viola, F.; Gallaire, F.; Iungo, G. V.

    2015-06-01

    Dynamics and instabilities occurring in the near-wake of wind turbines have a crucial role for the wake downstream evolution, and for the onset of far-wake instabilities. Furthermore, wake dynamics significantly affect the intra-wind farm wake flow, wake interactions and potential power losses. Therefore, the physical understanding and predictability of wind turbine wake instabilities become a nodal point for prediction of wind power harvesting and optimization of wind farm layout. This study is focused on the prediction of the hub vortex instability encountered within wind turbine wakes under different operational conditions of the wind turbine. Linear stability analysis of the wake flow is performed by means of a novel approach that enables to take effects of turbulence on wake instabilities into account. Stability analysis is performed by using as base flow the time-averaged wake velocity field at a specific downstream location. The latter is modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex and helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disc model. The results show that hub vortex instability is promoted by increasing the turbine thrust coefficient. Indeed, a larger aerodynamic load produces an enhanced wake velocity deficit and axial shear, which are considered the main sources for the wake instability. Nonetheless, wake swirl also promotes hub vortex instability, and it can also affect the azimuthal wavenumber of the most unstable mode.

  14. Review of Wind Turbine Wake Models and Future Directions (Presentation)

    SciTech Connect

    Churchfield, M. J.

    2013-08-01

    This presentation gives a brief overview to wind turbine wake modeling, ranging from models used in the 1980s up to the present. The presentation shows the strengths and weaknesses of various models and discusses the needs of the wind energy industry and research sectors. Both power production and loads analysis are discussed.

  15. The impact of wake models on wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Schmidt, Jonas; Stoevesandt, Bernhard

    2015-06-01

    Results for nine gradient-based layout optimization runs of a wind farm with 25 turbines in flat terrain are presented, varying three different choices of the underlying wake model and three inflow scenarios. In all cases the AEP is maximised and the constraints are purely geometrical. A single inflow vector, a uniform wind rose and a realistic synthetic wind rose are studied, and the final layouts for the Jensen, the Ainslie and a CFD-based numerical wake model are compared. Prom this an estimate of the average variation of the turbine position due to the different wake models is obtained. All calculations were carried out with the in-house software flapFOAM.

  16. Diffusive dynamics and stochastic models of turbulent axisymmetric wakes

    E-print Network

    Rigas, G; Brackston, R D; Morrison, J F

    2015-01-01

    A modelling methodology to reproduce the experimental measurements of a turbulent flow under the presence of symmetry is presented. The flow is a three-dimensional wake generated by an axisymmetric body. We show that the dynamics of the turbulent wake- flow can be assimilated by a nonlinear two-dimensional Langevin equation, the deterministic part of which accounts for the broken symmetries which occur at the laminar and transitional regimes at low Reynolds numbers and the stochastic part of which accounts for the turbulent fluctuations. Comparison between theoretical and experimental results allows the extraction of the model parameters.

  17. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.

    1989-01-01

    An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.

  18. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    E-print Network

    Heinemann, Detlev

    Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans are not modelled satisfactorily. Keywords: Offshore, wind farm, wake model, Vindeby, turbulence intensity, atmospheric stability #12;1 Introduction For planning of large offshore wind farms, modelling of wake losses

  19. A free wake method for performance prediction of VAWT

    NASA Astrophysics Data System (ADS)

    Ilin, S.; Dumitrescu, H.; Cardos, V.; Dumitrache, A.

    2012-09-01

    Based on the lifting line theory and a free vortex wake model, a method including dynamic stall effects is presented for predicting the performance of a three-dimensional vertical-axis wind turbine (VAWT). A vortex model is used in which the wake is composed of trailing streamwise and shedding spanwise vortices, whose strengths are equal to the change in the bound vortex strength as dictated by Helmholtz and Kelvin's theorems. Performance parameters are calculated by application of the Biot-Savart law along with the Kutta-Joukowski theorem and a semi-empirical dynamic stall model. Predictions are shown to compare favorably with existing experimental data.

  20. RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine

    E-print Network

    Hu, Hui

    RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force

  1. Spur-type instability observed on numerically simulated vortex filaments

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1988-01-01

    An instability observed on vortex filaments during numerical simulations of the three-dimensional, time-dependent dynamics of vortex wakes is studied to determine when and why it occurs. It is concluded that the observed instability is a consequence of the use of straight-line vortex segments of finite length to model continuously curving vortex filaments. The instability appears to occur only when the link length is a sizable fraction of the vortex span and, therefore, is not expected in an experiment. Guidelines are then given that help avoid numerical instabilities when vortex filaments are used in flow simulations.

  2. Center Vortex vs. Abelian models of the QCD vacuum

    E-print Network

    Roman Höllwieser; Jeff Greensite

    2015-04-28

    We present evidence that the center vortex model of confinement is more consistent with lattice results than other currently available models. In particular we show that Abelian field distributions predicted by monopole plasma, caloron gas or dual superconductor models cannot reproduce the area-law falloff of double winding Wilson loops in full $SU(2)$ and center vortex only gauge fields.

  3. Oscillating airfoils and their wake

    NASA Technical Reports Server (NTRS)

    Send, W.

    1985-01-01

    The unsteady phenomena in the wake of an oscillating wing or rotor blade are examined theoretically using the Prandtl approximation of the vortex-transport equation. A mathematical model is developed and applied to such problems as the effect of winglets on the performance of fixed wings and the possibly of employing similar designs in rotor blades. Model predictions for several profiles are compared with published and experimental measurements, and good agreement is found. Graphs and diagrams are provided.

  4. Vortex Lattice Modelling of Winglets on Wind Turbine Blades

    E-print Network

    Vortex Lattice Modelling of Winglets on Wind Turbine Blades Mads Døssing Risø-R-1621(EN) Risø Title: Vortex Lattice Modelling of Winglets on Wind Turbine Blades Departments: Wind Energy Department turbines can be increased by the use of winglets without increasing the swept area. This makes them

  5. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  6. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  7. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    Microsoft Academic Search

    Radian Belu

    2010-01-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting

  8. Wake structure of a deformable Joukowski airfoil

    NASA Astrophysics Data System (ADS)

    Ysasi, Adam; Kanso, Eva; Newton, Paul K.

    2011-10-01

    We examine the vortical wake structure shed from a deformable Joukowski airfoil in an unbounded volume of inviscid and incompressible fluid. The deformable airfoil is considered to model a flapping fish. The vortex shedding is accounted for using an unsteady point vortex model commonly referred to as the Brown-Michael model. The airfoil’s deformations and rotations are prescribed in terms of a Jacobi elliptic function which exhibits, depending on a dimensionless parameter m, a range of periodic behaviors from sinusoidal to a more impulsive type flapping. Depending on the parameter m and the Strouhal number, one can identify five distinct wake structures, ranging from arrays of isolated point vortices to vortex dipoles and tripoles shed into the wake with every half-cycle of the airfoil flapping motion. We describe these regimes in the context of other published works which categorize wake topologies, and speculate on the importance of these wake structures in terms of periodic swimming and transient maneuvers of fish.

  9. Reduced-order models for closed-loop wake control.

    PubMed

    Tadmor, Gilead; Lehmann, Oliver; Noack, Bernd R; Cordier, Laurent; Delville, Joël; Bonnet, Jean-Paul; Morzy?ski, Marek

    2011-04-13

    We review a strategy for low- and least-order Galerkin models suitable for the design of closed-loop stabilization of wakes. These low-order models are based on a fixed set of dominant coherent structures and tend to be incurably fragile owing to two challenges. Firstly, they miss the important stabilizing effects of interactions with the base flow and stochastic fluctuations. Secondly, their range of validity is restricted by ignoring mode deformations during natural and actuated transients. We address the first challenge by including shift mode(s) and nonlinear turbulence models. The resulting robust least-order model lives on an inertial manifold, which links slow variations in the base flow and coherent and stochastic fluctuation amplitudes. The second challenge, the deformation of coherent structures, is addressed by parameter-dependent modes, allowing smooth transitions between operating conditions. Now, the Galerkin model lives on a refined manifold incorporating mode deformations. Control design is a simple corollary of the distilled model structure. We illustrate the modelling path for actuated wake flows. PMID:21382828

  10. Inter-Comparison of WRF Model Simulated Winds and MISR Stereoscopic Winds Embedded within Mesoscale von Kármán Wake Vortices

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Nunalee, C. G.; Mueller, K. J.

    2014-12-01

    Several distinct wake regimes are possible when considering atmospheric flow past a steep mountainous island. Of these regimes, coherent vortex shedding in low-Froude number flow is particularly interesting because it can produce laterally focused paths of counter rotating eddies capable of extending downstream for hundreds of kilometers (i.e., a von Kármán vortex street). Given the spatial scales of atmospheric von Kármán vortices, which typically lies on the interface of the meso-scale and the micro-scale, they are uniquely challenging to model using conventional numerical weather prediction platforms. In this presentation, we present high resolution (1-km horizontally) numerical modeling results using the Weather Research and Forecasting (WRF) model, of multiple real-world von Kármán vortex shedding events associated with steep islands (e.g., Madeira island, Gran Canaria island, etc.). In parallel, we also present corresponding cloud-motion wind and cloud-top height measurements from the satellite-based Multiangle Imaging SpectroRadiometer (MISR) instrument. The MISR stereo algorithm enables experimental retrieval of the horizontal wind vector (both along-track and cross-track components) at 4.4-km resolution, in addition to the operational 1.1-km resolution cross-track wind and cloud-top height products. These products offer the fidelity appropriate for inter-comparison with the numerically simulated vortex streets. In general, we find an agreement between the instantaneous simulated cloud level winds and the MISR stereoscopic winds; however, discrepancies in the vortex street length and localized horizontal wind shear were documented. In addition, the simulated fields demonstrate sensitivity to turbulence closure and input terrain height data.

  11. A Hydrodynamic Model of Lateral Line of Fish for Vortex Sensing

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Mohseni, Kamran

    2010-11-01

    In this study, potential flow theory is adopted to model flow field around a fish-like body in the presence of a Karman vortex street moving along one side of the body. The external flow field is modeled in two dimensions while a fish-like body is obtained by Joukowski Transformation. Pressure distribution on the body surface is computed according to the model. The lateral line trunk canal (LLTC) of a fish is modeled as a slight tube along its body with pores uniformly distributed along the surface of the tube. With the external flow known, the flow inside LLTC driven by the pressure gradient between a pair of consecutive pores has been solved analytically. Furthermore, parametric studies are performed in order to determine the effect of various flow parameters on the pressure distribution on body surface and flow distribution inside the LLTC. The results indicate that the signature of the vortex street can be found by measuring the flow velocity distribution inside the LLTC, which serves as a possible elucidation on how a fish sense the vortex street from the flow filed inside its LLTC. Hence, it is reasonable to suggest that the LLTC of a fish is able to detect the signature of the wake vortices shed by a nearby object or fish.

  12. Mode coupling in two-dimensional plasma crystals: Role of the wake model

    NASA Astrophysics Data System (ADS)

    Röcker, T. B.; Ivlev, A. V.; Kompaneets, R.; Morfill, G. E.

    2012-03-01

    The theory of mode-coupling instability in 2D plasma crystal is combined with a self-consistent model of plasma wakes. The wake model is based on the solution of a kinetic equation for ions, providing realistic representation of their kinetics for the sheath environment. Furthermore, the self-consistent approach allows us to express the interparticle interaction via experimentally measurable parameters. It is suggested that distinct features of dispersion relations predicted by different wake models can be identified experimentally.

  13. Vortex

    NSDL National Science Digital Library

    The Exploratorium

    2012-06-26

    In this activity, learners create a tornado in a bottle to observe a spiraling, funnel-shaped vortex. A simple connector device allows water to drain from a 2-liter bottle into a second bottle. Learners can observe the whirling water and then repeat the process by inverting the bottle. Use this activity to talk about surface tension, pressure, gravity, friction, angular momentum, and centripetal force.

  14. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    ERIC Educational Resources Information Center

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  15. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  16. Fixed-wake analysis of the Darrieus rotor

    Microsoft Academic Search

    R. E. Wilson; S. N. Walker

    1981-01-01

    Development and validation of a Darrieus wind turbine aerodynamic performance prediction model is described. Using a fixed-wake approach, the model combines some of the more desirable features of vortex\\/lifting line and conservation of momentum\\/streamtube approaches. The model thus accounts for up- and downwind differences that are predicted by vortex approaches while retaining the short computer run times found with streamtube

  17. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  18. Sound Generation by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Wang, Frank Y.

    2003-01-01

    This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.

  19. Lumped parameter models of vortex induced vibration with application to the design of aquatic energy harvester

    NASA Astrophysics Data System (ADS)

    Dhanwani, Manish A.; Sarkar, Abhijit; Patnaik, B. S. V.

    2013-11-01

    In the present study, a lumped parameter model for vortex-induced vibrations is analysed. In this work, the vortex-induced vibrations of an elastically mounted rigid cylinder are able to move in-line and transverse to the flow with equal mass ratio and natural frequencies. A simplified lumped mass model is proposed to study the two degree of freedom (dof) structural oscillator. A classical van der Pol equation along with acceleration coupling, models the near wake dynamics describing the fluctuating nature of vortex shedding. The model dynamics is investigated analytically and the results are compared for moderate mass ratios. The results predicted using this model show a good agreement with the experimental data. The dependence of stream-wise displacement on mass and damping is explored. The cause of cross-flow displacement magnification due to freedom to move in stream-wise direction is also explored using the proposed model. Apart from these two degrees of freedom, the cylinder can also undergo rotation about its centre of mass. The effect of freedom to move in this rotational degree of freedom is exploited to our advantage by applying it to the VIVACE (Vortex induced vibration aquatic clean energy) design which was originally proposed by Bernitsas et al. (2008). The original design was not reported to be the optimal one and the set-up was shown to work only for a given flow velocity. But, the flow environment keeps changing and hence there is a need to bring in robustness and optimize the proposed design. The values of optimized spring stiffness have been found using the lumped mass model. The design is made robust by exploiting the rotational mode. This mode is triggered by varying the overhang lengths in accordance with the varying flow velocity in order to strike resonance for a certain flow regime.

  20. Preliminary Velocity Measurements in the Wake of a Submarine Model

    NASA Astrophysics Data System (ADS)

    Jimenez, J. M.; Reynolds, R.; Smits, A. J.

    2000-11-01

    Preliminary Particle Image Velocimetry (PIV) over a submarine shape has been conducted in a low speed wind tunnel at Princeton University. The model is a 1/67 replica of the USS Albacore, an experimental submarine designed to achieve maximum underwater performance, and based on "bodies of revolution." The model is tested with a sail, and different tail appendages. Velocity vector fields and flow visualizations in the wake region are presented for Reynolds numbers based on model length up to 10^5. The experiments establish the groundwork for future investigations of submarine models in the new High Reynolds Number Test Facility (http://www.princeton.edu/ gasdyn/HRTF.html). Supported by ONR Grants N00014-97-1-0325, N00014-97-1-0340 and N00014-97-1-0618.

  1. A new approach to the free wake problem for hovering rotors

    NASA Technical Reports Server (NTRS)

    Bliss, D. B.; Wachspress, D. A.; Quackenbush, T. R.

    1985-01-01

    In the present approach to the hovering rotor free wake problem, an influence coefficient solution method is used to find that rotor wake solution which is steady in a reference frame that rotates with the blades; this scheme solves directly for the conditions of free wake equilibrium by a procedure that does not involve time-stepping and the associated use of numerical damping or special convergence methods. The solution method has been implemented in a hover wake computer program having a three-part wake model for the tip vortex. All three wake regions are represented by the new Basic Curved Vortex Elements. Sample hover calculations are presented for single blade and multiblade rotors.

  2. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th–11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and vortex dynamics, instabilities in trailing vortices and wakes, simulation and measurements of wakes, analytical approaches for modeling wakes, wake interaction and other wind farm investigations. Many people have been involved in producing the 2015 Wake Conference proceedings. The work by the more than 60 reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of the section editors: Christian Masson, ÉTS, Fernando Porté-Agel, EPFL, Gerard Schepers, ECN Wind Energy, Gijs Van Kuik, Delft University, Gunner Larsen, DTU Wind Energy, Jakob Mann, DTU Wind Energy, Javier Sanz Rodrigo, CENER, Johan Meyers, KU Leuven, Rebecca Barthelmie, Cornell University, Sandrine Aubrun-Sanches, Université d'Orléans and Thomas Leweke, IRPHE-CNRS. We are also immensely indebted to the very responsive support from the editorial team at IOP Publishing, especially Sarah Toms, during the review process of these proceedings. Visby, Sweden, June 2015 Andrew Barney, Jens Nørkær Sørensen and Stefan Ivanell Uppsala University - Campus Gotland

  3. Information Requirements for Supervisory Air Traffic Controllers in Support of a Mid-Term Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.

    2008-01-01

    A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.

  4. Turbulent near wake of an Ahmed vehicle model

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Zhou, Y.; Pin, Y. F.; Chan, T. L.

    2013-04-01

    The lasting high fuel cost has recently inspired resurgence in drag reduction research for vehicles, which calls for a thorough understanding of the vehicle wake. The simplified Ahmed vehicle model is characterized by controllable flow separation, thus especially suitable for this purpose. In spite of a considerable number of previous investigations, our knowledge of flow around this model remains incomplete. This work aims to revisit turbulent flow structure behind this model. Two rear slant angles, i.e., ? = 25º and 35º, of the model were examined, representing two distinct flow regimes. The Reynolds number was 5.26 × 104 based on the model height ( H) and incident flow velocity. Using particle image velocimetry (PIV), flow was measured with and without a gap ( g/H = 0.174) between the vehicle underside and ground in three orthogonal planes, viz. the x- z, x- y and y- z planes, where x, y, and z are the coordinates along longitudinal, transverse, and spanwise directions, respectively. The flow at g/H = 0 serves as an important reference for the understanding of the highly complicated vehicle wake ( g/H ? 0). While reconfirming the well-documented major characteristics of the mean flow structure, both instantaneous and time-averaged PIV data unveil a number of important features of the flow structure, which have not been previously reported. As such, considerably modified flow structure models are proposed for both regimes. The time-averaged velocities, second moments of fluctuating velocities, and vorticity components are presented and discussed, along with their dependence on g/H in the two distinct flow regimes.

  5. Potential Flow Model of a Vortex Street Near a Fish-like Body

    E-print Network

    Anlage, Steven

    Potential Flow Model of a Vortex Street Near a Fish-like Body Joshua Brulé, University of Maryland to inviscid, irrotational solutions of Navier-Stokes · Vortex potential: "A model of the lateral line of fish for vortex sensing." Ren Z, Mohseni K. 2012 #12;Vortex near a (circular) fish · (Insert your own spherical

  6. A Mathematical Model of Homeostatic Regulation of Sleep-Wake Cycles by Hypocretin\\/Orexin

    Microsoft Academic Search

    Svetlana Postnova; Karlheinz Voigt; Hans Albert Braun

    2009-01-01

    We introduce a physiology-based mathematical model of sleep-wake cycles, suggesting a novel mechanism of homeostatic regulation of sleep. In this model, the homeostatic process is determined by the neuropeptide hypocretin\\/ orexin, which is a cotransmitter of the lateral hypothalamus. Hypocretin\\/ orexin neurons are silent during sleep and active during wakefulness. Firing of these neurons is sustained by reciprocal excitatory synaptic

  7. Wake II model for hydrodynamic forces on marine pipelines for the wave plus current case

    E-print Network

    Ramirez Sabag, Said

    1999-01-01

    The concept of the Wake II model for the determination of the hydrodynamic forces on marine pipelines is extended to include the wave plus current case. There are two main differences between the Wake II and the traditional model that uses Morison...

  8. Wake II model for hydrodynamic forces on marine pipelines for the wave plus current case 

    E-print Network

    Ramirez Sabag, Said

    1999-01-01

    The concept of the Wake II model for the determination of the hydrodynamic forces on marine pipelines is extended to include the wave plus current case. There are two main differences between the Wake II and the traditional model that uses Morison...

  9. Wake Turbulence Mitigation for Arrivals (WTMA)

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.

    2008-01-01

    The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.

  10. STATUS OF WAKE VORTEX ALLEVIATION IN THE FRAMEWORK OF EUROPEAN COLLABORATION: VALIDATION ATTEMPTS USING TESTS AND CFD RESULTS

    Microsoft Academic Search

    Eric COUSTOLS; Laurent JACQUIN; Geza SCHRAUF

    2006-01-01

    This document provides a synthesis of recent research studies that have been conducted in the last decade within several European projects from the 5 th and 6 th Framework Programmes. All these studies aimed at a better characterization of aircraft wake vortices and then at their subsequent control. In the latter case, the goal is to minimize the strength of

  11. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  12. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  13. Modelling of Offshore Wind Turbine Wakes with the Wind Farm Program FLaP

    Microsoft Academic Search

    Bernhard Lange; Hans-Peter Waldl; Algert Gil Guerrero; Detlev Heinemann; Rebecca J. Barthelmie

    2003-01-01

    The wind farm layout program FLaP estimates the wind speed at any point in a wind farm and the power output of the turbines. The ambient flow conditions and the properties of the turbines and the farm are used as input. The core of the program is an axisymmetric wake model describing the wake behind one rotor. Here an approach

  14. On the estimation of swimming and flying forces from wake measurements.

    PubMed

    Dabiri, John O

    2005-09-01

    The transfer of momentum from an animal to fluid in its wake is fundamental to many swimming and flying modes of locomotion. Hence, properties of the wake are commonly studied in experiments to infer the magnitude and direction of locomotive forces. The determination of which wake properties are necessary and sufficient to empirically deduce swimming and flying forces is currently made ad hoc. This paper systematically addresses the question of the minimum number of wake properties whose combination is sufficient to determine swimming and flying forces from wake measurements. In particular, it is confirmed that the spatial velocity distribution (i.e. the velocity field) in the wake is by itself insufficient to determine swimming and flying forces, and must be combined with the fluid pressure distribution. Importantly, it is also shown that the spatial distribution of rotation and shear (i.e. the vorticity field) in the wake is by itself insufficient to determine swimming and flying forces, and must be combined with a parameter that is analogous to the fluid pressure. The measurement of this parameter in the wake is shown to be identical to a calculation of the added-mass contribution from fluid surrounding vortices in the wake, and proceeds identically to a measurement of the added-mass traditionally associated with fluid surrounding solid bodies. It is demonstrated that the velocity/pressure perspective is equivalent to the vorticity/vortex-added-mass approach in the equations of motion. A model is developed to approximate the contribution of wake vortex added-mass to locomotive forces, given a combination of velocity and vorticity field measurements in the wake. A dimensionless parameter, the wake vortex ratio (denoted Wa), is introduced to predict the types of wake flows for which the contribution of forces due to wake vortex added-mass will become non-negligible. Previous wake analyses are re-examined in light of this parameter to infer the existence and importance of wake vortex added-mass in those cases. In the process, it is demonstrated that the commonly used time-averaged force estimates based on wake measurements are not sufficient to prove that an animal is generating the locomotive forces necessary to sustain flight or maintain neutral buoyancy. PMID:16155224

  15. Site Suitability Assessment with Dynamic Wake Meandering Model. A Certification Point of View.

    NASA Astrophysics Data System (ADS)

    Tomas Bayo, Ricard; Parro, Gema

    2015-04-01

    Establishment of large wind farms requires enormous investments putting steadily greater emphasis on optimal topology design and control of these. This requires not only an optimization of the power output, but also the development of strategies to cope with the higher loading expected. The cornerstone of such strategies is a realistic characterization and modelling of the wake flow field inside the wind farm, beyond Frandsen's equivalent turbulence method. Whereas Frandsen model has been mostly considered in the industry so far, it has not proved completely satisfactory when facing current problems such as wake effects on turbines placed at short distances or consequences of half wake for turbine loading. The objective of the present work is to address these questions from a certification point of view within the framework of Risoe's Dynamic Wake Meandering (DWM) model. The DWM model is based on the combination of three parts: modeling of quasi-steady wake deficits, a stochastic model of the downwind wake meandering and an added or self-generated wake turbulence. The analysis carried out is two-fold: First, a comparative study of the wake effects generated in Frandsen model as well as in various realizations of the DWM model is performed. For this purpose wake-induced loads are calculated using two different aeroelastic codes: HAWC2 and Bladed. Second, the applicability of DWM for the assessment of wind turbines under site-specific conditions is discussed and the conclusions summarized in a Recommended Practice. Clear prescriptions are thereby provided for the use of DWMM for site suitability assessments, including the aforementioned extreme situations, along with the interpretation of the future version of the IEC 61400-1 standards.

  16. The critical state - A trapped wave model of vortex breakdown.

    NASA Technical Reports Server (NTRS)

    Randall, J. D.; Leibovich, S.

    1973-01-01

    A model of vortex breakdown is presented, and its predictions are compared with the experiments of Sarpkaya (1971). The model is centered about a theory of long, weakly nonlinear waves propagating on critical flows in tubes of variable cross section. Although the weakly nonlinear theory must be extended beyond its domain of formal validity, many of the experimentally observed features of vortex breakdown are reproduced by the model. The description of the time evolution of the flowfield that is presented requires numerical calculations that are not simple, but some important conclusions may be determined by easy computations. In particular, the axial position of a breakdown may be found from a very simple equation.

  17. Data-driven Reduced Order Model for prediction of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Santoni-Ortiz, C.; Abkar, M.; Porté-Agel, F.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In this paper a new paradigm for prediction of wind turbine wakes is proposed, which is based on a reduced order model (ROM) embedded in a Kalman filter. The ROM is evaluated by means of dynamic mode decomposition performed on high fidelity LES numerical simulations of wind turbines operating under different operational regimes. The ROM enables to capture the main physical processes underpinning the downstream evolution and dynamics of wind turbine wakes. The ROM is then embedded within a Kalman filter in order to produce a time-marching algorithm for prediction of wind turbine wake flows. This data-driven algorithm enables data assimilation of new measurements simultaneously to the wake prediction, which leads to an improved accuracy and a dynamic update of the ROM in presence of emerging coherent wake dynamics observed from new available data. Thanks to its low computational cost, this numerical tool is particularly suitable for real-time applications, control and optimization of large wind farms.

  18. Modelling of wind turbine wakes in complex terrain using computational fluid dynamics 

    E-print Network

    Makridis, Alexandros

    2012-06-25

    This thesis focuses on modelling of wind turbine wakes when they are affected by real complex terrain features, such as hills and forests, and also examines the effect of the rotational momentum imparted to the downstream ...

  19. Dispersion of aircraft emissions due to wake vortices in stratified shear flows: a two-dimensional numerical study

    Microsoft Academic Search

    V. Schilling; S. Siano; D. Etling

    1996-01-01

    The development of the wake vortex system behind an airplane (B-747) at cruising altitude (8-15 km) and the dispersion of the aircraft emissions due to this vortex system have been studied by means of a two-dimensional numerical model. Simulation experiments are presented which examine the influence of atmospheric stratification and vertical wind shear on the combined vortex-emission system. Although the

  20. Application of Three-Component PIV to a Hovering Rotor Wake

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Lourenco, Luiz; Heineck, James T.; Wadcock, Alan J.; Abrego, Anita I.; Aiken, Edwin W. (Technical Monitor)

    2000-01-01

    The key to accurate predictions of rotorcraft aerodynamics, acoustics, and dynamics lies in the accurate representation of the rotor wake. The vortical wake computed by rotorcraft CFD analyses typically suffer from numerical dissipation before the first blade passage. With some a priori knowledge of the wake trajectory, grid points can be concentrated along the trajectory to minimize the dissipation. Comprehensive rotorcraft analyses based on lifting-line theory rely on classical vortex models and/or semi-empirical information about the tip vortex structure. Until the location, size, and strength of the trailed tip vortex can be measured over a range of wake ages, the analyses will continue to be adjusted on a trial and error basis in order to correctly predict blade airloads, acoustics, dynamics, and performance. Using the laser light sheet technique, tip vortex location can be acquired in a straightforward manner. Measuring wake velocities and vortex core size, however, has been difficult and tedious using point-measurement techniques such as laser velocimetry. Recently, the Particle Image Velocimetry (PIV) technique has proven to be an efficient method for acquiring velocity measurements over relatively large areas and volumes of a rotor wake. The work reported to date, however, has been restricted to 2-component velocity measurements of the rotor wake. Three-component velocity measurements of a hovering rotor wake were acquired at NASA Ames Research Center in May 1999. This experiment represents a major step toward understanding the detailed structure of a rotor wake. This paper will focus primarily on the experimental technique used in acquiring this data. The accuracy and limitations of the current technique will also be discussed. Representative velocity field measurements will be included.

  1. Dynamics of wake structure in clapping propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2009-11-01

    Some animals such as insects and frogs use a pair of symmetric flaps for locomotion. In some cases, these flappers operate in close proximity or even touch each other. In order to understand the underlying physics of these kinds of motion, we have studied the wake structures induced by clapping and their associated thrust performance. A simple mechanical model with two acrylic plates was used to simulate the power stroke of the clapping motion and three-dimensional flow fields were obtained using defocusing digital particle image velocimetry. Our studies show that the process of vortex connection plays a critical role in forming a downstream closed vortex loop. Under some kinematic conditions, this vortex loop changes its shape dynamically, which is analogous to the process of an elliptical vortex ring switching its minor and major axis. As the length of the plate along the rotating shaft decreases to change an aspect ratio, the downstream motion of the vortex is retarded due to the outward motion of side edge vortices and less propulsive force is generated per the surface area of the plate. The impact of compliance and stroke angle of the plate on wake structures and thrust magnitudes are also presented.

  2. Modeling the effect of exogenous melatonin on the sleep-wake switch.

    PubMed

    Johnson, Nicholas; Jain, Gauray; Sandberg, Lianne; Sheets, Kevin

    2012-01-01

    According to the Centers for Disease Control and Prevention and the Institute of Medicine of the National Academies, insufficient sleep has become a public health epidemic. Approximately 50-70 million adults (20 years or older) suffer from some disorder of sleep and wakefulness, hindering daily functioning and adversely affecting health and longevity. Melatonin, a naturally produced hormone which plays a role in sleep-wake regulation, is currently offered as an over-the-counter sleep aid. However, the effects of melatonin on the sleep-wake cycle are incompletely understood. The goal of this modeling study was to incorporate the effects of exogenous melatonin administration into a mathematical model of the human sleep-wake switch. The model developed herein adds a simple kinetic model of the MT1 melatonin receptor to an existing model which simulates the interactions of different neuronal groups thought to be involved in sleep-wake regulation. Preliminary results were obtained by simulating the effects of an exogenous melatonin dose typical of over-the-counter sleep aids. The model predicted an increase in homeostatic sleep drive and a resulting alteration in circadian rhythm consistent with experimental results. The time of melatonin administration was also observed to have a strong influence on the sleep-wake effects elicited, which is also consistent with prior experimental findings. PMID:22846284

  3. Island Wake Dynamics and Wake Influence on the Evaporation Duct and Radar Propagation.

    NASA Astrophysics Data System (ADS)

    Burk, S. D.; Haack, T.; Rogers, L. T.; Wagner, L. J.

    2003-03-01

    The conditions under which atmospheric island wakes form leeward of Kauai, Hawaii, are investigated using idealized numerical simulations and real data forecasts from the U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS). Nondimensional mountain height is varied in a series of idealized simulations by altering the island's terrain height; with increasing , the wake configuration varies from two small counterrotating vortices to a straight wake to a meandering wake to a von Kármán vortex street. In both the idealized and real data forecasts, stability changes across the wake alter the surface layer temperature and moisture profiles, thereby modifying the refractivity and evaporation duct height (EDH) fields. An electromagnetic (EM) propagation model and a radar clutter model are used to demonstrate that the alterations to the refractivity field created by the wake are capable of strongly affecting near-surface EM propagation. Substantial azimuthal variability in radar sea clutter was observed during radar performance tests conducted by the USS O'Kane leeward of Kauai in December of 1999; these anomalies were postulated to result from an island wake. Results from the linkage of COAMPS output with the two EM codes are compared with the radar returns collected aboard the O'Kane, and metrics are developed for comparing COAMPS forecast EDH values with those calculated directly from the shipboard observations.

  4. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-11-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  5. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  6. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  7. A cockpit-display concept for executing a multiple glide-slope approach for wake-vortex avoidance

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1984-01-01

    A piloted simulation study was undertaken to determine the feasibility of utilizing a forward-looking display to provide information that would enable aircraft to rredue their in-trail separation interval, and hence increase airport capacity, through the application of multiple glide-path approach techniques. The primary objective of this study was to determine whether information could be satisfactorily provided on a head-up display (HUD) format to permit the pilot to conduct a multiple glide-slope approach while maintaining a prespecified in-trail separation interval. The tests were conducted in a motion-base cockpit simulator configured as a current-generation transport aircraft and included dynamic effects of the vortices generated by the lead aircraft. The information provided on the HUD included typical aircraft guidance information and the current and past positions of the lead aircraft. Additionally, the displayed information provided self-separation cues that allowed the pilot to maintain separation on the lead aircraft. Performance data and pilot subjective ratings and comments were obtained during the tests. The results of this study indicate that multiple glide-slope approaches, procedurally designed for vortex avoidance, are possible while maintaining pilot work load and performance within operationally acceptable limits. In general, it would seem that multiple glide-slope approaches are possible even under reduced in-trail separation conditions if the pilot is provided with adequate situational information.

  8. Spatial evolution of a quasi-two-dimensional Kármán vortex street subjected to a strong uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hamid, Ahmad H. A.; Hussam, Wisam K.; Pothérat, Alban; Sheard, Gregory J.

    2015-05-01

    A vortex decay model for predicting spatial evolution of peak vorticity in a wake behind a cylinder is presented. For wake vortices in the stable region behind the formation region, results have shown that the presented model has a good capability of predicting spatial evolution of peak vorticity within an advecting vortex across 0.1 ? ? ? 0.4, 500 ? H ? 5000, and 1500 ? ReL ? 8250. The model is also generalized to predict the decay behaviour of wake vortices in a class of quasi-two-dimensional magnetohydrodynamic duct flows. Comparison with published data demonstrates remarkable consistency.

  9. Point vortex dynamics: Recent results and open problems

    SciTech Connect

    Aref, H.; Kadtke, J.B.; Zawadzki, I.; Campbell, L.J.; Eckhardt, B.

    1987-01-01

    The concept of point vortex motion, a classical model in the theory of two-dimensional, incompressible fluid mechanics, was introduced by Helmholtz in 1858. Exploration of the solutions to these equations has made fitful progress since that time as the point vortex model has been brought to bear on various physical situations: atomic structure, large-scale weather patterns, ''vortex street'' wakes, vortex lattices in superfluids and superconductors, etc. The point vortex equations also provide an interesting example of transition to chaotic behavior. We give a brief historical introduction to these topics and develop two of them in particular to the point of current understanding: steadily moving configurations of point vortices; and collision dynamics of vortex pairs. 26 refs.

  10. Diversity and Noise Effects in a Model of Homeostatic Regulation of the Sleep-Wake Cycle

    PubMed Central

    Patriarca, Marco; Postnova, Svetlana; Braun, Hans A.; Hernández-García, Emilio; Toral, Raúl

    2012-01-01

    Recent advances in sleep neurobiology have allowed development of physiologically based mathematical models of sleep regulation that account for the neuronal dynamics responsible for the regulation of sleep-wake cycles and allow detailed examination of the underlying mechanisms. Neuronal systems in general, and those involved in sleep regulation in particular, are noisy and heterogeneous by their nature. It has been shown in various systems that certain levels of noise and diversity can significantly improve signal encoding. However, these phenomena, especially the effects of diversity, are rarely considered in the models of sleep regulation. The present paper is focused on a neuron-based physiologically motivated model of sleep-wake cycles that proposes a novel mechanism of the homeostatic regulation of sleep based on the dynamics of a wake-promoting neuropeptide orexin. Here this model is generalized by the introduction of intrinsic diversity and noise in the orexin-producing neurons, in order to study the effect of their presence on the sleep-wake cycle. A simple quantitative measure of the quality of a sleep-wake cycle is introduced and used to systematically study the generalized model for different levels of noise and diversity. The model is shown to exhibit a clear diversity-induced resonance: that is, the best wake-sleep cycle turns out to correspond to an intermediate level of diversity at the synapses of the orexin-producing neurons. On the other hand, only a mild evidence of stochastic resonance is found, when the level of noise is varied. These results show that disorder, especially in the form of quenched diversity, can be a key-element for an efficient or optimal functioning of the homeostatic regulation of the sleep-wake cycle. Furthermore, this study provides an example of a constructive role of diversity in a neuronal system that can be extended beyond the system studied here. PMID:22927806

  11. A Control-Oriented Dynamic Model for Wakes in Wind Plants

    NASA Astrophysics Data System (ADS)

    Gebraad, Pieter M. O.; van Wingerden, J. W.

    2014-06-01

    In this paper, we present a novel control-oriented model for predicting wake effects in wind plants, called the FLOw Redirection and Induction Dynamics (FLORIDYN) model. The model predicts the wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy productions, as a function of the control degrees of freedom of the turbines (the axial induction and the yaw angle of the different rotors). The model is an extension of a previously presented static model (FLORIS). It includes the dynamic wake propagation effects that cause time delays between control setting changes and the response of downstream turbines. These delays are associated with a mass of air in the wake taking some time to travel from one turbine to the next, and the delays are dependent on the spatially- and time-varying state of the wake. The extended model has a state-space structure combined with a nonlinear feedback term. While including the control-relevant dynamics of the wind plant, it still has a relatively small amount of parameters, and the computational complexity of the model is small enough such that it has the potential to be used for dynamic optimization of the control reference signals for improved wind plant control.

  12. Fixed-wake analysis of the Darrieus rotor

    SciTech Connect

    Wilson, R.E.; Walker, S.N.

    1981-07-01

    Development and validation of a Darrieus wind turbine aerodynamic performance prediction model is described. Using a fixed-wake approach, the model combines some of the more desirable features of vortex/lifting line and conservation of momentum/streamtube approaches. The model thus accounts for up- and downwind differences that are predicted by vortex approaches while retaining the short computer run times found with streamtube models. The model treats the effects of stall, curved blades, blade pitch, and blade attachment location. Results agree with those obtained with Sandia National Laboratories' 17-m-diameter Darrieus VAWT.

  13. Recent Developments on Airborne Forward Looking Interferometer for the Detection of Wake Vortices

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Smith, William L.; Kirev, Stanislav

    2012-01-01

    A goal of these studies was development of the measurement methods and algorithms necessary to detect wake vortex hazards in real time from either an aircraft or ground-based hyperspectral Fourier Transform Spectrometer (FTS). This paper provides an update on research to model FTS detection of wake vortices. The Terminal Area Simulation System (TASS) was used to generate wake vortex fields of 3-D winds, temperature, and absolute humidity. These fields were input to the Line by Line Radiative Transfer Model (LBLRTM), a hyperspectral radiance model in the infrared, employed for the FTS numerical modeling. An initial set of cases has been analyzed to identify a wake vortex IR signature and signature sensitivities to various state variables. Results from the numerical modeling case studies will be presented. Preliminary results indicated that an imaging IR instrument sensitive to six narrow bands within the 670 to 3150 per centimeter spectral region would be sufficient for wake vortex detection. Noise floor estimates for a recommended instrument are a current research topic.

  14. Investigating three-dimensional wake topology of a low aspect ratio dual step cylinder with 2D PIV measurements

    NASA Astrophysics Data System (ADS)

    Morton, Chris; Yarusevych, Serhiy

    2013-11-01

    A dual step cylinder is composed of a large diameter cylinder (D) of small aspect ratio (L/D) attached to the mid-span of a small diameter cylinder (d). The present work investigates the flow past dual step cylinders for ReD = 2100, 0.2 <= L/D <= 3, and 1.33 <= D/d <= 2.67. Experiments are completed in a water flume facility employing Laser Doppler Velocimetry (LDV) and planar Particle Image Velocimetry (PIV), as well as hydrogen bubble flow visualization. Turbulent vortex shedding occurs in the wake of the dual step cylinder for all the cases investigated. However, wake topology and vortex dynamics are influenced significantly by the geometrical parameters of the model, namely, L/D and D/d. A novel method is introduced for reconstructing salient features of the three-dimensional wake topology using phase-averaged 2D PIV measurements. The results show that flow development in the small cylinder wake away from the large cylinder is similar to that expected for a uniform cylinder of the same diameter. However, complex three-dimensional vortex deformations and splitting occur downstream of the large diameter cylinder. Four distinct flow regimes are identified based on changes in large cylinder wake development: (i) vortex shedding at a frequency lower than that expected for a uniform cylinder, (ii) irregular shedding, (iii) vortex shedding at a frequency higher than that for a uniform cylinder, and (iv) suppression of large cylinder vortex shedding.

  15. Magneto-Vortex Dynamo Model in Solar convection zone

    E-print Network

    Sergey V. Ershkov

    2011-01-06

    Here is presented a new magneto-vortex dynamo model for modeling & predicting of a processes in Solar plasma convection zone. Solar convection zone is located above the level r > 0,6-0,7 R, where R is a Solar radius. A key feature of such a model is that equation of Solar plasma motion as well as equation of magnetic fields evolution - are reduced to Helmholtz's vortex equation, which is up-graded in according with alpha-effect (Coriolis force forms an additional vorticity field or magnetic field due to Sun's differential rotation). Such an additional vorticity or magnetic field are proved to be concentrated at the proper belt in Solar convection zone under the influence of Coriolis force (at the middle latitudes of the Sun in respect to equator). Besides, such an an additional vorticity & magnetic fields are to be the basic sources of well-known phenomena "Maunder's butterfly" diagram.

  16. On vortex bursting

    NASA Technical Reports Server (NTRS)

    Werle, H.

    1984-01-01

    Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

  17. Inviscid Interactions Between Wake Vortices and Shear Layers

    NASA Technical Reports Server (NTRS)

    Zheng, Z. C.; Baek, K.

    1998-01-01

    Aircraft trailing vortices can be influenced significantly by atmospheric conditions such as crosswind, turbulence, and stratification. According to the NASA 1994 and 1995 field measurement program in Memphis, Tennessee, the descending aircraft wake vortices could stall or be deflected at the top of low-level temperature inversions that usually produce pronounced shear zones. Numerical simulations of vortex/shear interactions with ground effects have been performed by several groups. Burnham used a series of evenly spaced line vortices at a particular altitude to model the ground shear layer of the cross- wind. He found that the wind shear was swept up around the downwind vortex and caused the downwind vortex to move upward, and claimed that the effect was actually produced by the vertical gradient in the wind shear rather than by the wind shear directly, because uniformly distributed wind-shear vortices would have no effect on the trailing vortex vertical motion. Recently, Proctor et al. numerically tested the effects of narrow shear zones on the behavior of the vortex pair, motivated by the observation of the Memphis field data. The shear-layer sensitivity tests indicated that the downwind vortex was more sensitive and deflected to a higher altitude than its upwind counterpart. The downstream vortex contained vorticity of opposite sign to that of the shear. There was no detectable preference for the downwind vortex (or upwind vortex) to weaken (or strengthen) at a greater rate.

  18. Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat

    1990-01-01

    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.

  19. Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle

    E-print Network

    Patriarca, Marco; Braun, Hans A; Hernández-García, Emilio; Toral, Raúl; 10.1371/journal.pcbi.1002650

    2012-01-01

    Recent advances in sleep neurobiology have allowed development of physiologically based mathematical models of sleep regulation that account for the neuronal dynamics responsible for the regulation of sleep-wake cycles and allow detailed examination of the underlying mechanisms. Neuronal systems in general, and those involved in sleep regulation in particular, are noisy and heterogeneous by their nature. It has been shown in various systems that certain levels of noise and diversity can significantly improve signal encoding. However, these phenomena, especially the effects of diversity, are rarely considered in the models of sleep regulation. The present paper is focused on a neuron-based physiologically motivated model of sleep-wake cycles that proposes a novel mechanism of the homeostatic regulation of sleep based on the dynamics of a wake-promoting neuropeptide orexin. Here this model is generalized by the introduction of intrinsic diversity and noise in the orexin-producing neurons in order to study the e...

  20. Fractional vortex molecules and vortex polygons in a baby Skyrme model

    E-print Network

    Michikazu Kobayashi; Muneto Nitta

    2013-06-30

    We construct a molecule of fractional vortices with fractional topological lump charges as a baby Skyrmion with the unit topological lump charge in the anti-ferromagnetic (or XY) baby Skyrme model, that is, an O(3) sigma model with a four derivative term and an anti-ferromagnetic or XY-type potential term quadratic in fields. We further construct configurations with topological lump charges Q <= 7 and find that bound states of vortex molecules constitute regular polygons with 2Q vertices as vortices, where the rotational symmetry SO(2) in real space is spontaneously broken into a discrete subgroup Z_Q. We also find metastable and arrayed bound states of fractional vortices for Q=5,6. On the other hand, we find for Q=7 that the regular polygon is metastable and the arrayed bound state is stable. We calculate binding energies of all configurations.

  1. Fractional vortex molecules and vortex polygons in a baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Kobayashi, Michikazu; Nitta, Muneto

    2013-06-01

    We construct a molecule of fractional vortices with fractional topological lump charges as a baby Skyrmion with the unit topological lump charge in the antiferromagnetic (or XY) baby Skyrme model, that is, an O(3) sigma model with a four-derivative term and an antiferromagnetic or XY-type potential term quadratic in fields. We further construct configurations with topological lump charges Q?7 and find that bound states of vortex molecules constitute regular polygons with 2Q vertices as vortices, where the rotational symmetry SO(2) in real space is spontaneously broken into a discrete subgroup ZQ. We also find metastable and arrayed bound states of fractional vortices for Q=5, 6. On the other hand, we find for Q=7 that the regular polygon is metastable and the arrayed bound state is stable. We calculate binding energies of all configurations.

  2. Fractional vortex molecules and vortex polygons in a baby Skyrme model

    E-print Network

    Kobayashi, Michikazu

    2013-01-01

    We construct a molecule of fractional vortices with fractional topological lump charges as a baby Skyrmion with the unit topological lump charge in the anti-ferromagnetic (or XY) baby Skyrme model, that is, an O(3) sigma model with a four derivative term and an anti-ferromagnetic or XY-type potential term quadratic in fields. We further construct configurations with topological lump charges Q <= 7 and find that bound states of vortex molecules constitute regular polygons with 2Q vertices as vortices, where the rotational symmetry SO(2) in real space is spontaneously broken into a discrete subgroup Z_Q. We also find metastable and arrayed bound states of fractional vortices for Q=5,6. On the other hand, we find for Q=7 that the regular polygon is metastable and the arrayed bound state is stable. We calculate binding energies of all configurations.

  3. Experimental study of the coupled wakes of two spheres

    NASA Astrophysics Data System (ADS)

    Provansal, Michel; Schouveiler, Lionel

    1999-11-01

    We have studied the coupled wakes of two spheres (diameter d), separated by a transverse distance h between their centers and aligned normal to a uniform flow (velocity U). The dynamics of this system is controlled by the Reynolds number Re = Ud/nu, and the transverse spacing h/d. The vortex structures have been visualized by injection of dye in a small hole drilled downstream of the center of the spheres. Each sphere is hold by a thin pipe, slighty inclined on the flow direction in order to control the orientation of the wake[1]. The wake of a single sphere is periodic in the Reynolds number range [280, 400]. When the spacing h/d is much larger than 1, the vortices shed behind the spheres exhibit three-dimensional characteristic horeshoe shape. A small asymmetry, for instance due to the dye injection, might lead to different frequencies of vortex shedding. For intermediate values of h/d (e.g. between 1.3 and 2.5 for Re = 360) locked regimes of simultaneous or alternate vortex shedding have been observed. Finally, when h/d is lower than 1.3 (also for Re =360), the system behaves like a single wake and gives rise to a double alternate vortex street, similar to the Benard-von Karman street. In this case the two-sphere wake behave like a small aspect ratio cylinder. The coupling of these two oscillators along the spanwise direction is coherent with the Ginzburg-Landau model used to describe the vortex street behind a cylinder[2]. [1] Leweke T., Ormieres D., Provansal M., Schouveiler L. 1999, Proc. Fluvisu'99, Toulouse, France, 103 [2] Albarede P., Provansal M. 1995, J. Fluid Mech. 291, 191

  4. A vortex-filament and core model for wings with edge vortex separation

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1982-01-01

    A vortex filament-vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semi-empirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: (1) the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; (2) the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; (3) the two vortex core system applied to the double delta and strake wings produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and (4) the computer time for the present method is about two thirds of that of Mehrotra's method.

  5. Wake effect on a uniform flow behind wind-turbine model

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Naumov, I. V.; Mikkelsen, R. F.; Sørensen, J. N.

    2015-06-01

    LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. The rotor is three-bladed and designed using Glauert's optimum theory at a tip speed ratio ? = 5 with a constant of the lift coefficient along the span, CL= 0.8. The wake development has been studied in the range of tip speed ratios from 3 to 9, and at different cross-sections from 10 to 100 rotor radii downstream from the rotor. By using regression techniques to fit the velocity profiles it was possible to obtain accurate velocity deficits and estimate length scales of the wake attenuation. The data are compared with different analytical models for wind turbine wakes.

  6. Experiments on vortex stability

    Microsoft Academic Search

    Param Indar Singh; Mahinder S. Uberoi

    1976-01-01

    The tip vortex of a laminar flow wing was studied at a sectional lift-to-drag ratio of 60. The vortex Reynolds number was ?0\\/?=7.8×104, where ?0 is the total circulation and ? is the kinematic viscosity. At and near the wing the vortex core was turbulent with an axial jet. Downstream of the wing the jet rapidly dissipated and a wake

  7. Three-dimensional topology and dynamical modelling of vortex shedding from finite surface-mounted bluff bodies

    NASA Astrophysics Data System (ADS)

    Bourgeois, Jason A.

    While the dynamically rich behaviour of fully turbulent wakes is very high dimensional, the most energetic, large scale coherent structures generated through instability processes are typically low dimensional and are thereby conducive to reduced order modeling procedures. These large scale eddies associated with the flow instability have the most anisotropic and geometry dependent topology and act as a source of kinetic energy in the cascade process, making them the most important to characterize. Dissipative small scale structure can then be modelled with reasonable accuracy by traditional means. The present study experimentally educes the coherent structures in the complex three-dimensional wake of a wall-mounted finite square-cross-section cylinder of aspect ratio h/d = 4 and 8 immersed in boundary layers of thickness delta/d = 0.72 and 2.6 at a Reynolds number of 12,000. Coherent structure eduction is carried out using phase averaging and a novel generalized phase averaging technique that incorporates proper orthogonal decomposition (POD) modes that are most important in the nonlinear instability saturation process. Global flow estimation and mode construction is undertaken using linear pressure-POD coefficient correlations, applicable to experimental investigations where practicality demands that subdomains of the global field are measured asynchronously. The large-scale coherent structures of the wakes investigated are analyzed in terms of their topology, their turbulent kinetic energy (amounting to roughly half the total fluctuation energy), and their influence on turbulence production. The educed coherent vortical structures are found to have either full-loop or half-loop topological structure depending on the boundary layer thickness, showing vortical connector strands connecting alternately shed vortices from either side of the obstacle. The structure provides an explanation of the dipole and quadrupole distributions of streamwise vorticity that have previously been observed in these types of three-dimensional wakes. The reduced order nonlinear Galerkin models derived for the dynamics of the coherent structures using the generalized phase average are shown to successfully account for the slow base flow transients, the instability saturation mechanism, and the excitation of the second harmonic modes. KEYWORDS: Full-loop vortex shedding, Half-loop vortex shedding, Finite wall-mounted bluff-bodies, Coherent structures, Trailing vortices, Reduced order modelling, Proper orthogonal decomposition, Linear stochastic estimation, Particle image velocimetry.

  8. Dynamic parameters in models of atmospheric vortex structures

    NASA Astrophysics Data System (ADS)

    Dobryshman, E. M.; Kochina, V. G.; Letunova, T. A.

    2013-09-01

    Vortex simulation and the computation of fields of dynamic parameters of vortex structures (velocity, rotor velocity, and helicity) are carried out with the use of exact hydrodynamic equations in a cylindrical coordinate system. Components of centripetal and Coriolis accelerations are taken into account in the initial equations. Internal and external solutions are defined. Internal solutions ignore the disturbances of the pressure field, but they are considered in external solutions. The simulation is carried out so that the effect of accounting for spatial coordinates on the structure of the above fields is pronounced. It is shown that the initial kinetic energy of rotating motion transforms into the kinetic energy of radial and vertical velocity components in models with centripetal acceleration. In models with Coriolis acceleration, the Rossby effect is clearly pronounced. The method of an "inverse problem" is used for finding external solutions, i.e., reconstruction of the pressure field at specified velocity components. Computations have shown that tangential components mainly contribute to the velocity and helicity vortex moduli at the initial stage.

  9. Diversity and Noise Effects in a Model of Homeostatic Regulation of the Sleep-Wake Cycle

    E-print Network

    Toral, Raúl

    advances in sleep neurobiology have allowed development of physiologically based mathematical modelsDiversity and Noise Effects in a Model of Homeostatic Regulation of the Sleep-Wake Cycle Marco for Integrated Research and Understanding of Sleep, The University of Sydney, Sydney, New South Wales, Australia

  10. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  11. American Institute of Aeronautics and Astronautics An Experimental Investigation on the Wake Characteristics of a

    E-print Network

    Hu, Hui

    aerodynamic forces and moments) acting on a wind turbine model, a high-resolution Particle Image Velocimetry evolution of the turbulence vortex and flow structures in the wake of the wind turbine model. The detailed require at least 150,000 additional large wind turbines installed in onshore or/and offshore wind farms

  12. A Model For the Limiting Time in Vortex Ring Formation

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Gharib, Morteza; Rambod, Edmond; Merriam, Marshal (Technical Monitor)

    1997-01-01

    In another presentation, Gharib et at provide experimental results to show that when a vortex ring is created from a pipe by a piston, there is a limiting time or piston stroke length beyond which multiple rings appear. This time appeared to be insensitive to piston velocity history and Reynolds number. Nature might exploit such a. limit in different contexts to coherently deliver mass or momentum flux with the least number of strokes. Here, a simple hypothesis is considered: the limiting time occurs when the apparatus is no longer able to deliver energy at a rate compatible with the requirement, due to Kelvin, that a steady vortex ring have maximum energy given circulation and impulse. More specifically, the limit is expected to occur when the quantity alpha = E/square root of Gamma(sup 3)I delivered by the piston drops below the value, alpha(sub lim) for a limiting steady vortex ring solution. The resulting predictions agree very well with the experiments (after using alpha(sub lim) measured using the experimental flow fields). The insensitivity to piston history also emerges from the model. Finally, piston histories are designed that may extend the limiting time somewhat.

  13. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  14. The prediction on in-line vortex-induced vibration of slender marine structures

    NASA Astrophysics Data System (ADS)

    Xu, Wan-Hai; Gao, Xi-Feng; Du, Jie

    2012-10-01

    The in-line (IL) vortex-induced vibration (VIV) that occurs frequently in ocean engineering may cause severe fatigue damage in slender marine structures. To the best knowledge of the authors, in existing literatures, there is no efficient analytical model for predicting pure IL VIV. In this paper, a wake oscillator model capable of analyzing the IL VIV of slender marine structures has been developed. Two different kinds of van der Pol equations are used to describe the near wake dynamics related to the fluctuating nature of symmetric vortex shedding in the first excitation region and alternate vortex shedding in the second one. Some comparisons are carried out between the present model results and experimental data. It is found that many phenomena observed in experiments could be reproduced by the present wake oscillator model.

  15. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  16. Multi-Gaussian Schell-model vortex beam

    NASA Astrophysics Data System (ADS)

    Zhang, Yongtao; Liu, Lin; Zhao, Chengliang; Cai, Yangjian

    2014-02-01

    Multi-Gaussian Schell-model (MGSM) beam was introduced recently (Sahin and Korotkova, 2012 [34], and Korotkova et al., 2012 [35]). In this paper, multi-Gaussian Schell-model vortex (MGSMV) beam is introduced as a natural extension of MGSM beam. The explicit expression for the cross-spectral density of a MGSMV beam propagating through a stigmatic ABCD optical system is derived and the focusing properties of a MGSMV beam are studied in detail. It is found that we can shape the focused beam profile by varying the initial beam parameters, which will be useful in material thermal processing and particle trapping.

  17. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.

    PubMed

    Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A

    2015-01-01

    The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors. PMID:24730546

  18. PRELIMINARY STUDIES OF VIDEO IMAGES OF SMOKE DISPERSION IN THE NEAR WAKE OF A MODEL BUILDING

    EPA Science Inventory

    A scary of analyses of video images of smoke in a wind tunnel study of dispersion in the near wake of a model building is presented. The analyses provide information on both the instantaneous and the time- average patterns of dispersion. ince the images represent vertically-integ...

  19. Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model

    Microsoft Academic Search

    Terence A. Ghee; John D. Berry; Laith A. J. Zori

    1996-01-01

    An experimental investigation was conducted in the Langley 14- by 22-Foot SubsonicTunnel to quantify the rotor wake behind a scale model helicopter rotor in forwardlevel flight at one thrust level. The rotor system in this test consisted of a fourbladedfully articulated hub with blades of rectangular planform and an NACA 0012airfoil section. A laser light sheet, seeded with propylene glycol

  20. Calculation of symmetric and asymmetric vortex seperation on cones and tangent ogives based on discrete vortex models

    NASA Technical Reports Server (NTRS)

    Chin, S.; Lan, C. Edward

    1988-01-01

    An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.

  1. A vortex-filament and core model for wings with edge vortex separation

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1981-01-01

    A method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semiempirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; the two vortex core system applied to the double delta and strake wing produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and the computer time for the present method is about two thirds of that of Mehrotra's method.

  2. Prescribed wake methodologies for wind turbine design codes

    SciTech Connect

    Galbraith, R.A.M.; Coton, F.N.; Robison, D.J. [Univ. of Glasgow (United Kingdom). Dept. of Aerospace Engineering

    1995-12-31

    Prescribed wake performance assessment models have been developed successfully for both vertical (VAWT) and horizontal (HAWT) axis wind turbines. In the case of the VAWT model the Beddoes and Leishman dynamic stall model has been incorporated. This has resulted in a fully unsteady 3-D code, establishing extremely accurate performance prediction across a wide range of operating conditions. Comparison of performance estimates from the prescribed wake model with those from free wake models have shown excellent correlation. To date, the HAWT model has been developed for the consideration of steady axial and yawed inflows. In the axial flow case comparisons of predicted power output with field data and free wake predictions have shown excellent agreement. Full validation of the yawed flow model is currently underway, with very encouraging initial results. The capabilities of the HAWT model are currently being extended by the inclusion of the Beddoes and Leishman dynamic stall model. Consideration of the significant unsteady aerodynamic influences acting on HAWTs while operating in yaw will significantly improve the models performance. The power of this modelling technique is the significant reduction in the computational overhead it offers. The prescribed wake models offer performance estimates of comparable detail and accuracy to those from free vortex analyses in minutes rather than hours. As such these models are highly suited to design assessment, with particular application to fatigue load analysis.

  3. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  4. ARTEMIS observations of lunar wake structure compared with hybrid ­kinetic simulations and an analytic model

    NASA Astrophysics Data System (ADS)

    Gharaee, H.; Rankin, R.; Marchand, R.; Paral, J.

    2014-12-01

    The ARTEMIS mission has made extensive measurements on the density and magnetic field structure of the lunar wake under different solar wind and magnetosphere conditions. Hybrid-kinetic simulations of the lunar wake have been found to be generally in good agreement with observations [Wiehle, S., et al., Planet. Space Sci., 2011], but are not readily available as they require access to large computers and human resources with expertise using this technology. It would be very useful to have an analytic model of the lunar wake, and one such model will be presented. It is based on an approach outlined by Hutchinson [Hutchinson, I., Physics Of Plasmas, 2008], and makes assumptions of cylindrical geometry, a strong and constant magnetic field, and fixed transverse velocity and temperature. Under these approximations the ion fluid equations (with massless electrons assumed) can be solved analytically by the method of characteristics. This paper demonstrates that the analytic model under these assumptions provides excellent agreement with observations and hybrid-kinetic simulations of the lunar wake. The approach outlined by Hutchinson is generalized to include an arbitrary angle between the interplanetary magnetic field and solar wind flow. This results in two angle-dependent characteristics for the fluid flow that can be solved for the density inside the wake region. The Density profiles for different orientations of magnetic field with respect to solar wind flow are in a good qualitative agreement with 2D Hybrid simulation results of the model developed by [Paral and Rankin, Nature Comms, 2012], and with ARTEMIS observations. Refrences, -Wiehle, S., et al. (2011), First Lunar wake passage of Artemis: Discrimination of wake effects and solar wind flactuations by 3D hybrid simulations, Planet. Space Sci., 59, 661-671, doi:10.1016/j.pss.2011.01.012. -Hutchinson, I. (2008),Oblique ion collection in the drift approximation:How magnetized Mach probes really work, Physics Of Plasmas, 15, 123503, doi:10.1063/1.3028314. - Paral and Rankin (2012),Dawn-dusk asymmetry in the Kelvin-Helmholtz instability at Mercurry, Nature Communications, 4, 1645, doi:10.1038/ncomms2676.

  5. Diagnostics of swirl flow spatial structure in a vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.; Anufriev, I. S.; Shadrin, E. Yu.; Sharypov, O. V.

    2014-12-01

    The method of laser Doppler anemometry was applied for study of the spatial structure of a swirl turbulent flow occurred in isothermal lab-scale model of a vortex furnace ("CBTI design"). The criterion of "minimum of total pressure" was applied for visualization of a vortex core; the latter possesses a W-shaped geometry. Velocity and pressure pulsation spectra were measured for a wide range of operational parameters; these spectra testify about zero precession of a vortex core.

  6. Mathematical Models for Sleep-Wake Dynamics: Comparison of the Two-Process Model and a Mutual Inhibition Neuronal Model

    PubMed Central

    Skeldon, Anne C.; Dijk, Derk-Jan; Derks, Gianne

    2014-01-01

    Sleep is essential for the maintenance of the brain and the body, yet many features of sleep are poorly understood and mathematical models are an important tool for probing proposed biological mechanisms. The most well-known mathematical model of sleep regulation, the two-process model, models the sleep-wake cycle by two oscillators: a circadian oscillator and a homeostatic oscillator. An alternative, more recent, model considers the mutual inhibition of sleep promoting neurons and the ascending arousal system regulated by homeostatic and circadian processes. Here we show there are fundamental similarities between these two models. The implications are illustrated with two important sleep-wake phenomena. Firstly, we show that in the two-process model, transitions between different numbers of daily sleep episodes can be classified as grazing bifurcations. This provides the theoretical underpinning for numerical results showing that the sleep patterns of many mammals can be explained by the mutual inhibition model. Secondly, we show that when sleep deprivation disrupts the sleep-wake cycle, ostensibly different measures of sleepiness in the two models are closely related. The demonstration of the mathematical similarities of the two models is valuable because not only does it allow some features of the two-process model to be interpreted physiologically but it also means that knowledge gained from study of the two-process model can be used to inform understanding of the behaviour of the mutual inhibition model. This is important because the mutual inhibition model and its extensions are increasingly being used as a tool to understand a diverse range of sleep-wake phenomena such as the design of optimal shift-patterns, yet the values it uses for parameters associated with the circadian and homeostatic processes are very different from those that have been experimentally measured in the context of the two-process model. PMID:25084361

  7. A model for universal time scale of vortex ring formation Kamran Mohseni

    E-print Network

    Mohseni, Kamran

    A model for universal time scale of vortex ring formation Kamran Mohseni Division of Engineering for formation of vortex rings generated through impulsively started jets is considered. The model is based in the Norbury family. The nondimensional stroke length L/D referred to as ``formation number,'' following Gharib

  8. Theories, Models, and Frameworks Related to Sleep-Wake Disturbances in the Context of Cancer

    PubMed Central

    Otte, Julie L.; Carpenter, Janet S.

    2010-01-01

    The purpose of this article was to review theories, models, and frameworks of sleep disturbances referenced in the cancer literature. Sleep-wake disturbances in cancer are a significant problem that negatively affects quality of life. There is no previously published review of the theories, models, or frameworks used to study sleep-wake disturbances in the context of cancer. Describing existing theories or models and their application in cancer is important to advance knowledge in this area. Two theories and 9 models were identified for review. These have been used to further understand the problem of sleep-wake disturbances as a primary or secondary symptom within the cancer literature. Searches were conducted from January 1, 1970, to July 31, 2008, to find relevant articles using 4 electronic databases: MEDLINE, CINAHL, PubMed, and PsychINFO. On the basis of the search, 73 descriptive or intervention studies were identified and reviewed. Most research was atheoretical, with no identified theory, model, or framework. In studies that did use theory or models, few were applied in more than one study. Although several commonalities across models did emerge, a more comprehensive and widely used model could help guide nursing research to facilitate effective symptom management for this prominent problem in cancer. PMID:19125121

  9. Numerical modelling of the impulsive orthogonal cutting of a trailing vortex

    NASA Astrophysics Data System (ADS)

    Yildirim, E.; Hillier, R.

    2013-07-01

    This paper presents inviscid compressible simulations for the impulsive blocking of a vortex, with non-zero axial velocity along its core, by a flat plate orthogonal to the vortex axis. This is a simplified model of the blade-vortex interaction between the tail rotor of a helicopter and the trailing vortex system formed by the main rotor system. There are two important elements to this phenomenon. One is the vortex response, including a physical description for the evolution of complex vortical structures near the plate surface, and the second is the resultant pressure wave structure and the manner of its propagation away from the plate surface. This paper focusses more on the vortex structure, and how this is affected by compressibility and the initial transient shock structures that form at the plate surface.

  10. On the homogenization of turbulent flow structures in the wake of a model wind turbine

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Howard, Kevin B.; Guala, Michele

    2014-02-01

    The structure of flow turbulence, measured experimentally, in the wake of a model wind turbine is investigated here through higher order scale-dependent statistics of the velocity increments and compared to the smooth wall turbulent boundary layer (base flow) case. The wind turbine wake flow is observed to possess higher turbulent kinetic energy, when compared to the base flow, though it contains more homogenized scale-dependent velocity increments, as confirmed via magnitude cumulant analysis of the streamwise velocities. Along with a reduction in intermittency (a measure of inhomogeneity) in the wake of the wind turbine, the asymmetry of the probability density functions of the velocity increments is also observed to be reduced. This is interpreted in terms of scale decoupling mechanisms and attenuating interactions and non-local energy transfer. In other words, wind turbines reduce the intermittency and asymmetry in the wake flow by breaking and/or deflecting the large-scale flow structures of the incoming flow, thus rendering the structure of the velocity fluctuations more homogenized as compared to the base flow. Experiments were conducted in a large scale, boundary layer wind tunnel at the St. Anthony Falls Laboratory.

  11. Dynamical properties of the two-process model for sleep-wake cycles in infantile autism

    Microsoft Academic Search

    Hirotsune Matsuura; Katsumi Tateno; Shuji Aou

    2008-01-01

    The two-process model is a scheme for the timing of sleep that consists of homeostatic (Process S) and circadian (Process\\u000a C) variables. The two-process model exhibits abnormal sleep patterns such as internal desynchronization or sleep fragmentation.\\u000a Early infants with autism often experience sleep difficulties. Large day-by-day changes are found in the sleep onset and waking\\u000a times in autistic children. Frequent

  12. Experimental modeling of a cavitation vortex in the draft tube of a Francis turbine using artificial neural networks

    Microsoft Academic Search

    Marko Ho? Evar; Brane Širok; Bogdan Blagojevi?; Igor Grabec

    2007-01-01

    Experimental modeling of a cavitation vortex structure in a Francis turbine draft tube is presented. Pressure in the draft tube and images of vortex structure were acquired simultaneously for the experiment. Non-parametric radial basis neural networks were used for the experimental modeling. Two variables were modeled: average image intensities in the selected region, and entire images of the cavitation vortex.

  13. Proceedings of the ARO Rotorcraft Wake Prediction Basic Research Workshop

    E-print Network

    Vortex Calculations To Wind Tunnel Measurements 5 S. P´eron, C. Benoit, G. Jeanfaivre ONERA High of the rotor wake continues to pose challenges in prediction and measurement. There have been advances Wake Structure Of A Horizontal-Axis Wind Turbine 7 A.G. Brand BHTI The Nature Of Vortex Ring State 8 S

  14. Base Flow Asymmetry Effects on the Absolute Stability of Non-uniform Density Wakes

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Noble, David; Lieuwen, Tim

    2013-11-01

    This work investigates the hydrodynamic stability of bluff body wakes with non-uniform mean density. Such flows are common in bluff body combustors. The absolute/convective stability characteristics of the wake are important, because vortex shedding from the bluff body participates in such processes as mixing, flame blowoff, and combustion instability. Non-uniform density is a sensitive stability parameter for wake flows. Reduction of the wake density relative to the free stream density can stabilize the flow and suppress coherent vortex shedding. Practical bluff body combustors operate at a range of flame density ratios spanning this stability limit. Recent experimental bluff body combustor work by Tuttle et al. investigates wakes with asymmetry in the base flow density profiles. This motivates a hydrodynamic stability model for non-uniform density wakes that includes base flow asymmetry. The model developed in this study investigates the effects of asymmetric base flow velocity and density profiles. It begins with a parameterization of the base flow asymmetries. Results show that base flow asymmetry influences the absolute stability of the flow, and has a strong effect on the most amplified mode shape. The investigation concludes with a comparison to the vorticity equation. Here, we elucidate the physics of the model, and comment on the limitations of such a model.

  15. Stratified wake of an accelerating hydrofoil

    E-print Network

    Ben-Gida, Hadar; Gurka, Roi

    2015-01-01

    Wakes of towed and self-propelled bodies in stratified fluids are significantly different from non-stratified wakes. Long time effects of stratification on the development of the wakes of bluff bodies moving at constant speed are well known. In this experimental study we demonstrate how buoyancy affects the initial growth of vortices developing in the wake of a hydrofoil accelerating from rest. Particle image velocimetry measurements were applied to characterize the wake evolution behind a NACA 0015 hydrofoil accelerating in water and for low Reynolds number and relatively strong and stably stratified fluid (Re=5,000, Fr~O(1)). The analysis of velocity and vorticity fields, following vortex identification and an estimate of the circulation, reveal that the vortices in the stratified fluid case are stretched along the streamwise direction in the near wake. The momentum thickness profiles show lower momentum thickness values for the stratified late wake compared to the non-stratified wake, implying that the dra...

  16. ACOUSTIC VALIDATION OF A NEW CODE USING PARTICLE WAKE AERODYNAMICS AND GEOMETRICALLY-EXACT BEAM STRUCTURAL DYNAMICS

    Microsoft Academic Search

    Daniel G. Opoku; Fred Nitzsche

    This paper describes the validation of a new code for predicting both aeroacoustic and aeroelastic behaviour of hingeless rotors. The structural component was based a non-linear beam element model considering small strains and finite rotations, which uses a mixed variational intrinsic formulation. The aerodynamic component was built on a low- order panel method incorporating a vortex particle free-wake model. The

  17. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    NASA Astrophysics Data System (ADS)

    Volker, P. J. H.; Badger, J.; Hahmann, A. N.; Ott, S.

    2015-04-01

    We describe the theoretical basis, implementation and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  18. Effective dipole moment for the mode coupling instability: Mapping of self-consistent wake models

    SciTech Connect

    Roecker, T. B.; Zhdanov, S. K.; Ivlev, A. V.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Lampe, M. [Department of Astronomy, University of Maryland, College Park, Maryland 20740 (United States); Joyce, G. [Icarus Research, Inc., Bethesda, Maryland 20814 (United States)

    2012-07-15

    The theory of the mode coupling instability operating in two-dimensional plasma crystals is generalized, by employing the linear plasma response formalism to describe the interparticle interactions self-consistently. In this approach, the underlying ion distribution function is calculated from first principles. Subthermal and suprathermal regimes of the ion flow are considered. A mapping procedure is proposed, which relates the self-consistent coupling coefficients to the effective dipole moment of the wake-the parameter which characterizes the mode coupling in the framework of the conventionally used Yukawa/point-wake model. The importance of the self-consistent approach is demonstrated by comparing the theoretically obtained dipole moments with the values deduced from experiments.

  19. Effective dipole moment for the mode coupling instability: Mapping of self-consistent wake models

    NASA Astrophysics Data System (ADS)

    Röcker, T. B.; Zhdanov, S. K.; Ivlev, A. V.; Lampe, M.; Joyce, G.; Morfill, G. E.

    2012-07-01

    The theory of the mode coupling instability operating in two-dimensional plasma crystals is generalized, by employing the linear plasma response formalism to describe the interparticle interactions self-consistently. In this approach, the underlying ion distribution function is calculated from first principles. Subthermal and suprathermal regimes of the ion flow are considered. A mapping procedure is proposed, which relates the self-consistent coupling coefficients to the effective dipole moment of the wake—the parameter which characterizes the mode coupling in the framework of the conventionally used Yukawa/point-wake model. The importance of the self-consistent approach is demonstrated by comparing the theoretically obtained dipole moments with the values deduced from experiments.

  20. Sites of action of sleep and wake drugs: insights from model organisms.

    PubMed

    Rihel, Jason; Schier, Alexander F

    2013-10-01

    Small molecules have been used since antiquity to regulate our sleep. Despite the explosion of diverse drugs to treat problems of too much or too little sleep, the detailed mechanisms of action and especially the neuronal targets by which these compounds alter human behavioural states are not well understood. Research efforts in model systems such as mouse, zebrafish and fruit fly are combining conditional genetics and optogenetics with pharmacology to map the effects of sleep-promoting drugs onto neural circuits. Recent studies raise the possibility that many small molecules alter sleep and wake via specific sets of critical neurons rather than through the global modulation of multiple brain targets. These findings also uncover novel brain areas as sleep/wake regulators and indicate that the development of circuit-selective drugs might alleviate sleep disorders with fewer side effects. PMID:23706898

  1. Sites of Action of Sleep and Wake Drugs: Insights from Model Organisms

    PubMed Central

    Rihel, Jason; Schier, Alexander F.

    2013-01-01

    Small molecules have been used since antiquity to regulate our sleep. Despite the explosion of diverse drugs to treat problems of too much or too little sleep, the detailed mechanisms of action and especially the neuronal targets by which these compounds alter human behavioural states are not well understood. Research efforts in model systems such as mouse, zebrafish, and fruit fly are combining conditional genetics and optogenetics with pharmacology to map the effects of sleep-promoting drugs onto neural circuits. Recent studies raise the possibility that many small molecules alter sleep and wake via specific sets of critical neurons rather than through the global modulation of multiple brain targets. These findings also uncover novel brain areas as sleep/wake regulators and indicate that the development of circuit-selective drugs might alleviate sleep disorders with fewer side effects. PMID:23706898

  2. Wake interference behind two flat plates normal to the flow - A finite-element study

    NASA Technical Reports Server (NTRS)

    Behr, M.; Tezduyar, T. E.; Higuchi, H.

    1991-01-01

    A finite-element model of the Navier-Stokes equations is used for numerical simulation of flow past two normal flat plates arranged side by side at Reynolds number 80 and 160. The results from this simulation indicate that when the gap between the plates is twice the width of a single plate, the individual wakes of the plates behave independently, with the antiphase vortex shedding being dominant. At smaller gap sizes, the in-phase vortex shedding, with strong wake interaction, is favored. The gap flow in those cases becomes biased, with one of the wakes engulfing the other. The direction of the biased flow was found to be switching at irregular intervals, with the time histories of the indicative flow parameters and their power spectra resembling those of a chaotic system.

  3. Harbor seal whiskers synchronize with frequency of upstream wake

    NASA Astrophysics Data System (ADS)

    Beem, Heather; Triantafyllou, Michael

    2013-11-01

    Harbor seals are able to use their whiskers to track minute water movements, such as those left in the wake of a fish. The current study is a simple representation of what the whiskers experience as the seal chases a fish. A scaled whisker model (average cross-flow diameter: dw) is first tested in a towing tank by itself and then towed behind a larger cylinder (dc = 2 . 5dw), which serves as a wake generator. A flexing plate attached to the model base allows the whisker to freely vibrate in response to the flow. Measurements from strain gages on the plate are calibrated to tip deflections. While in the cylinder wake, the whisker vibrates with an amplitude up to ten times higher than it does on its own (A /dw = 0 . 15). Also, the whisker synchronizes with the vortex shedding frequency (fs =0/. 2 U dc) of the upstream cylinder over the range of reduced velocities tested, whereas on its own, the whisker oscillates around its own natural frequency in water. Seals may use the difference in vibration amplitude and frequency between these two cases to help detect the presence of a vortex wake.

  4. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  5. Vortex decay in the Kármán eddy street

    NASA Astrophysics Data System (ADS)

    Ponta, Fernando L.

    2010-09-01

    In this paper, we analyze the effect of viscosity on the vorticity distribution and its rate of decay in the Kármán vortex street behind a circular cylinder. We used direct numerical simulation data, which we compare to well-known experimental measurements. By decomposing the incompressible velocity field in a frame of reference attached to the cylinder into its solenoidal and harmonic components, we identify the eddy structures associated with the formation, shedding, and rearrangement of the vortices into the Kármán street, and study their subsequent decay. This allows us to extend the conclusions of the partially viscous model by Hooker ["On the action of viscosity in increasing the spacing ratio of a vortex street," Proc. R. Soc. London, Ser. A 154, 67 (1936)], who made several simplifying hypotheses: initial infinite-length filament-vortex wake, circular Lamb vortices of equal age at subsequent times, and no overlapping of the vortex cores. We show that the vortices have elliptical cores with an elliptical ratio that evolves downstream according to a systematic law. We also find that the vortex cores exhibit a Gaussian vorticity profile and a vorticity versus stream-function scatter plot clearly consistent with the Lamb-vortex model. The peak vorticity in the core decays downstream with a hyperbolic decay rate determined by the amount of circulation contained in the core at the early stages of the street, which is also consistent with Lamb's solution.

  6. A Model for the Vortex Pair Associated with a Jet in a Cross Flow

    NASA Technical Reports Server (NTRS)

    Sellers, William L.

    1975-01-01

    A model is presented for the contrarotating vortex pair that is formed by a round, turbulent, subsonic jet directed normally into a uniform, subsonic cross flow. The model consists of a set of algebraic equations that describe the properties of the vortex pair as a function of their location in the jet plume. The parameters of the model are physical characteristics of the vortices such as the vortex strength, spacing, and core size. These parameters are determined by velocity measurements at selective points in the jet plume.

  7. Modeling the Thin Flapping Wing with Leading Edge Separation

    NASA Astrophysics Data System (ADS)

    Butoescu, Valentin

    2007-09-01

    A vortex model of a flapping aerofoil with LE detached vortex sheet is presented. A system of equations, one integral that imposes the boundary condition and other describing the motion of the wakes and vorticity conservation are written. To these one must add the Kutta-like condition and the initial conditions for the wakes. A numerical solution was given that consists of a modified Glauert method in connection with vortex range wake models with finite cores. Mathcad worksheets were written to obtain numerical values and diagrams.

  8. Specified discharge velocity models for numerical simulations of laminar vortex rings

    NASA Astrophysics Data System (ADS)

    Danaila, Ionut; Vadean, Claudiu; Danaila, Sterian

    2009-09-01

    We numerically and theoretically investigate the flow generated at the exit section of a piston/cylinder arrangement that is generally used in experiments to produce vortex rings. Accurate models for the velocity profile in this section (also called specified discharge velocity, SDV models) are necessary in (i) numerical simulations of laminar vortex rings that do not compute the flow inside the cylinder and (ii) in slug-models that provide a formula for the total circulation of the flow. Based on the theoretical and numerical analysis of the flow evolution in the entrance region of a pipe, we derive two new and easy to implement SDV models. A first model takes into account the unsteady evolution of the centerline velocity, while the second model also includes the time variation of the characteristics of the boundary layer at the exit plane of the vortex generator. The models are tested in axisymmetric direct numerical simulations of vortex rings. As distinguished from classical SDV model, the new models allow to accurately reproduce the characteristics of the flow. In particular, the time evolution of the total circulation is in good agreement with experimental results and previous numerical simulations including the vortex generator. The second model also provides a more realistic time evolution of the vortex ring circulation. Using the classical slug-model and the new correction for the centerline velocity, we finally derive a new and accurate analytical expression for the total circulation of the flow.

  9. Influence of Wake Models on Calculated Tiltrotor Aerodynamics

    Microsoft Academic Search

    Wayne Johnson

    2002-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1\\/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons

  10. Transverse forces on a vortex in lattice models of superfluids

    NASA Astrophysics Data System (ADS)

    Sonin, E. B.

    2013-12-01

    The paper derives the transverse forces (the Magnus and the Lorentz forces) in the lattice models of superfluids in the continuous approximation. The continuous approximation restores translational invariance absent in the original lattice model, but the theory is not Galilean invariant. As a result, calculation of the two transverse forces on the vortex, Magnus force and Lorentz force, requires the analysis of two balances, for the true momentum of particles in the lattice (Magnus force) and for the quasimomentum (Lorentz force) known from the Bloch theory of particles in the periodic potential. While the developed theory yields the same Lorentz force, which was well known before, a new general expression for the Magnus force was obtained. The theory demonstrates how a small Magnus force emerges in the Josephson-junction array if the particle-hole symmetry is broken. The continuous approximation for the Bose-Hubbard model close to the superfluid-insulator transition was developed, which was used for calculation of the Magnus force. The theory shows that there is an area in the phase diagram for the Bose-Hubbard model, where the Magnus force has an inverse sign with respect to that which is expected from the sign of velocity circulation.

  11. Artifacts in the Wake: Leadership via an Oriented Compass Model

    ERIC Educational Resources Information Center

    Fallon, Paul D.

    2013-01-01

    Although inextricable, the act of leading, the leader, and outcome of leadership are unique entities. Lack of such differentiation may ensnare novice leaders in broad suppositions. This conceptual article introduces a tool for analyzing leadership. Leaders can leverage the model to evaluate the act of leading, in route, via a measurable trajectory…

  12. The Role of Wakes in Modelling Tidal Current Turbines

    Microsoft Academic Search

    Daniel Conley; Thomas Roc; Deborah Greaves

    2010-01-01

    The eventual proper development of arrays of Tidal Current Turbines (TCT) will require a balance which maximizes power extraction while minimizing environmental impacts. Idealized analytical analogues and simple 2-D models are useful tools for investigating questions of a general nature but do not represent a practical tool for application to realistic cases. Some form of 3-D numerical simulations will be

  13. Source Term Model for Vortex Generator Vanes in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2004-01-01

    A source term model for an array of vortex generators was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the side force created by a vortex generator vane. The model is obtained by introducing a side force to the momentum and energy equations that can adjust its strength automatically based on the local flow. The model was tested and calibrated by comparing data from numerical simulations and experiments of a single low profile vortex generator vane on a flat plate. In addition, the model was compared to experimental data of an S-duct with 22 co-rotating, low profile vortex generators. The source term model allowed a grid reduction of about seventy percent when compared with the numerical simulations performed on a fully gridded vortex generator on a flat plate without adversely affecting the development and capture of the vortex created. The source term model was able to predict the shape and size of the stream-wise vorticity and velocity contours very well when compared with both numerical simulations and experimental data. The peak vorticity and its location were also predicted very well when compared to numerical simulations and experimental data. The circulation predicted by the source term model matches the prediction of the numerical simulation. The source term model predicted the engine fan face distortion and total pressure recovery of the S-duct with 22 co-rotating vortex generators very well. The source term model allows a researcher to quickly investigate different locations of individual or a row of vortex generators. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  14. Numerical simulation and validation of helicopter blade-vortex interaction using coupled CFD/CSD and three levels of aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Amiraux, Mathieu

    Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes. However, it proved to be much more expensive than the other two methods. Wake coupling with RANS solver had very good loading magnitude predictions, and therefore good acoustic intensities, with acceptable computational cost. The lifting-line based technique often had over-predicted aerodynamic levels, due to the degree of empiricism of the model, but its very short run-times, thanks to GPU technology, makes it a very attractive approach.

  15. An Actuator Curve Embedding Method to Model Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Schmitz, Sven

    2013-11-01

    The Actuator Line Method (ALM) is widely used in the wind energy community to model the complex interactions within large wind farms in large-eddy simulation (LES) of the atmospheric boundary layer (ABL) at various stability states. The state-of-the-art in ALM modeling is rooted in the work of Sorensen and Shen (2002). The major weakness of the ALM still remains in having the actuator line discretized as a superposition of individual spherically-spread body forces. The associated overlap of adjacent spherical force fields leads to a large sensitivity of computed blade loads to the way in which the spherical spreading radius is altered along the actuator line (Jha et al. 2013). An Actuator Curve Embedding (ACE) method is developed that considers a general actuator line in 3-D space where the force distribution along the actuator curve is embedded continuously onto the background mesh and without overlap. The ACE method thus is expected to show improved body-force discretization for wind turbine blades, in particular those subject to aeroelastic deformations. Some preliminary results contrasting the ALM and ACE methods are discussed. Support: DOE. The Actuator Line Method (ALM) is widely used in the wind energy community to model the complex interactions within large wind farms in large-eddy simulation (LES) of the atmospheric boundary layer (ABL) at various stability states. The state-of-the-art in ALM modeling is rooted in the work of Sorensen and Shen (2002). The major weakness of the ALM still remains in having the actuator line discretized as a superposition of individual spherically-spread body forces. The associated overlap of adjacent spherical force fields leads to a large sensitivity of computed blade loads to the way in which the spherical spreading radius is altered along the actuator line (Jha et al. 2013). An Actuator Curve Embedding (ACE) method is developed that considers a general actuator line in 3-D space where the force distribution along the actuator curve is embedded continuously onto the background mesh and without overlap. The ACE method thus is expected to show improved body-force discretization for wind turbine blades, in particular those subject to aeroelastic deformations. Some preliminary results contrasting the ALM and ACE methods are discussed. Support: DOE. Graduate Research Assistant, Aerospace Engineering.

  16. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance

    NASA Astrophysics Data System (ADS)

    Stevens, Richard J. A. M.; Gayme, Dennice; Meneveau, Charles

    2015-06-01

    We use the recently introduced coupled wake boundary layer (CWBL) model to predict the effect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a “top-down” approach to get improved predictions for the power output compared to a stand-alone wake model. Here we compare the CWBL model results for different turbulence intensities with the Horns Rev field measurements by Hansen et al., Wind Energy 15, 183196 (2012). We show that the main trends as function of the turbulence intensity are captured very well by the model and discuss differences between the field measurements and model results based on comparisons with LES results from Wu and Porté-Agel, Renewable Energy 75, 945-955 (2015).

  17. Nonlinear vortex trail dynamics

    NASA Technical Reports Server (NTRS)

    Lim, Chjan C.; Sirovich, Lawrence

    1988-01-01

    The nonlinear evolution of periodic disturbances on vortex trails is considered. In addition to following small initial perturbations, large amplitude initial disturbances of the vortex trails are also studied. It is shown that the equations support a rich variety of essentially nonlinear solutions including unbounded and quasisteady ones. These solutions are found to correspond to various modes of vortex clustering in the physical plane. At the close of the paper, comparisons of these results with recent numerical and experimental findings on the wakes behind stationary cylinders, and also transversely oscillating bluff objects, are made.

  18. Nonlinear vortex trail dynamics

    NASA Astrophysics Data System (ADS)

    Lim, Chjan C.; Sirovich, Lawrence

    1988-05-01

    The nonlinear evolution of periodic disturbances on vortex trails is considered. In addition to following small initial perturbations, large amplitude initial disturbances of the vortex trails are also studied. It is shown that the equations support a rich variety of essentially nonlinear solutions including unbounded and quasisteady ones. These solutions are found to correspond to various modes of vortex clustering in the physical plane. At the close of the paper, comparisons of these results with recent numerical and experimental findings on the wakes behind stationary cylinders, and also transversely oscillating bluff objects, are made.

  19. Numerical simulation of vortex shedding of flow over a circular cylinder at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Chein, Reiyu-Ray

    1990-04-01

    The discrete vortex method is applied to predict the flow over a circular cylinder. The vortex shedding phenomenon at the separation points is simulated by vorticity creation technique according to the Kutta condition. A vorticity reduction model (Vortex strength decaying law) is introduced to account for the viscous diffusion on vorticity. It was found that this model is dependent upon the flow Reynolds number and only applicable for the Reynolds number of the order of 1000. For gross features of the flow, the current model closely predicts the trends of variation of many characteristics observed in experimental measurements. For the microscopic features in the wake flow, the predictions of the current model are in good agreement with the typical types of wake flows.

  20. About the effects of an oscillating miniflap upon the wake on an airfoil, all immersed in turbulent flow

    NASA Astrophysics Data System (ADS)

    S, Delnero J.; J, Marañón Di Leo; Colman; J; M, Camocardi; Sainz M, García; F, Muñoz

    2011-12-01

    The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.

  1. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease.

    PubMed

    Sethi, M; Joshi, S S; Webb, R L; Beckett, T L; Donohue, K D; Murphy, M P; O'Hara, B F; Duncan, M J

    2015-04-01

    Sleep perturbations including fragmented sleep with frequent night-time awakenings and daytime naps are common in patients with Alzheimer's disease (AD), and these daily disruptions are a major factor for institutionalization. The objective of this study was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized double transgenic mouse model of AD which exhibits an early onset of robust AD pathology and memory deficits. These mice have five distinct human mutations in two genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two transgenes driven by a neuron-specific promoter (Thy1), and thus develop severe amyloid deposition by 4 months of age. Age-matched (4-6.5 months old) male and female 5XFAD mice were monitored and compared to wild-type littermate controls for multiple sleep traits using a non-invasive, high throughput, automated piezoelectric system which detects breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns were recorded continuously under baseline conditions (undisturbed) for 3 days and after sleep deprivation of 4h, which in mice produces a significant sleep debt and challenge to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout lengths (14% lower values for males and 26% for females) as compared to controls (p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT (p<0.01). Bout length reductions were greater during the night (the active phase for mice) than during the day, which does not model the human condition of disrupted sleep at night (the inactive period). However, the overall decrease in bout length suggests increased fragmentation and disruption in sleep consolidation that may be relevant to human sleep. The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve sleep consolidation in AD patients. PMID:25637807

  2. Comparison of model and observations of the wake of a MOD-OA wind turbine

    SciTech Connect

    Doran, J.C.; Packard, K.R.

    1982-10-01

    A series of wind velocity measurements upwind and downwind of the MOD-OA wind turbine at Clayton, New Mexico, was used to determine some of the characteristics of wakes within approximately two blade diameters of the machine. The magnitudes and shapes of the velocity profiles downwind of the turbine were compared with results obtained from a model. Generally good agreement was obtained at speeds well below the rated speed of the MOD-OA, but the results were not as satisfactory for higher values.

  3. In-line and cross-flow multi-frequency vortex-induced vibrations of a long flexible cylinder are phase-locked under wake-body synchronization

    NASA Astrophysics Data System (ADS)

    Bourguet, Remi; Karniadakis, George; Triantafyllou, Michael

    2012-11-01

    A slender flexible body with bluff cross-section immersed in cross-flow exhibits vortex-induced vibrations. The vibrations are excited by the flow under a condition of lock-in defined as the synchronization between vortex formation and body displacement. Within a sheared current, the possible occurrence of the lock-in condition at a number of different locations can lead to broadband vibrations involving a wide range of excited frequencies and structural wavenumbers. In a previous study focusing on the vortex-induced vibrations of a flexible cylinder at a single frequency in each direction, we have found that the lock-in condition is established through counter-clockwise figure-eight trajectories where the body moves upstream at the extremes of the cross-flow oscillation. In the present work, on the basis of direct numerical simulation results, we show that this mechanism can be generalized to multi-frequency responses: even if the trajectory shape substantially departs from a figure eight, the phase difference between the components of the in-line and cross-flow vibrations locally involved in the lock-in phenomenon remains within a particular range, associated with counter-clockwise figure-eight orbits in the mono-frequency case.

  4. Evaluation of Wind Turbine Wake Interaction Models in a RANS Framework

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan; Venayagamoorthy, Karan

    2012-11-01

    Wind energy produced from horizontal axis wind turbines (HAWTs) remains the most cost effective source of renewable energy production. Computational fluid dynamics (CFD) model studies are widely used as an a priori means to study wind farm environments for adequacy of wind resources and optimal configurations. This body of research explores the velocity deficit effect and flow fluctuations created by turbine wakes in a RANS framework for National Renewable Energy Laboratory (NREL) 5MW reference turbines. Various turbine models are explored to determine the most computationally efficient model that accurately captures the physics of interest. While only neutral ABL conditions are simulated in this study, consideration is also given to future work looking at the stable ABL and a full diurnal cycle when selecting a closure model. The objective of this current research is to further understand the development and resolution of turbine wakes for power optimization in neutral ABL conditions with a mind toward fatigue load minimization. Funded by the Clean Energy Supercluster, CSU.

  5. New free-wake analysis of rotorcraft hover performance using influence coefficients

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Wachspress, Daniel A.; Bliss, Donald B.

    1989-01-01

    Free-wake analyses of helicopter rotor wakes in hover using time stepping have been shown to encounter instabilities which preclude convergence to valid free-vortex solutions for rotor-wake geometries. Previous work has demonstrated that these convergence difficulties can be overcome by implementing a new free-wake analysis method based on the use of influence coefficients. The present paper reviews this approach and documents its incorporation into a hover performance analysis called Evaluation of Hover Performance using Influence Coefficients (EHPIC). The technical principles underlying the EHPIC code are described with emphasis on steps taken to develop the single-filament wake models used in previous work into a multifilament wake valid for realistic hover performance predictions. The coupling of the wake model to a lifting surface loads analysis is described, and sample problems are solved that illustrate the robustness of the method. Performance calculations are also undertaken for hover to illustrate the utility of EHPIC in the analysis of rotorcraft performance.

  6. A comparison of actuator disc and BEM models in CFD simulations for the prediction of offshore wake losses

    NASA Astrophysics Data System (ADS)

    Lavaroni, Luca; Watson, Simon J.; Cook, Malcolm J.; Dubal, Mark R.

    2014-06-01

    In this paper computational fluid dynamics (CFD) simulations are performed using ANSYS CFX to compare wake interaction results obtained from two rotor modelling methodologies: the standard actuator disc and the blade element momentum model (BEM). The unsteady simulations embed Coriolis forces and neutral stability conditions in the surface layer and stable conditions in the free stream. The BEM method is implemented in the CFD code through a pre-processing set of files that employs look-up tables. The control system for the wind turbines is considered through look-up tables that are constructed based on operational wind farm data. Simulations using the actuator disc and BEM methodologies have been performed using a number of different turbulence models in order to compare the wind turbine wake structure results. The use of URANS and LES numerical methods, coupled with the two different methodologies of representing the turbine, enables an assessment to be made of the details required for varying degrees of accuracy in computing the wake structures. The findings stress the importance of including the rotation of the wake and the non-uniform load on the rotor in LES simulations to account for more accurate turbulence intensity levels in the near wake.

  7. Wind tunnel investigation on wind turbine wakes and wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the development of improved parameterizations of wind turbines in high-resolution numerical models, such as large-eddy simulations (LES).

  8. Experimental and Numerical Study of Unsteady Wakes Behind an Oscillating Car Model

    NASA Astrophysics Data System (ADS)

    Guilmineau, E.; Chometon, F.

    This research focuses on the analysis of the instability of passenger vehicles associated with transient crosswind gusts. A new vehicle model, created to analyze the behavior of unsteady wakes on bluff bodies, is proposed. This test model called Willy is designed using the following criteria: the geometry is realistic compared to a real vehicle, the model's plane under-body surface is parallel to the ground, and the separations are limited to the region of the base for a moderated yaw angle. In the present paper, the tests are performed on the model animated by an oscillating yaw angle at a frequency of 2 Hz in a steady wind. Experiments are carried out at Reynolds number of 0.9 × 106 at the Conservatoire National des Arts et Métiers and computations are performed at the Ecole Centrale de Nantes. The numerical results are compared with experimental data.

  9. Influence of diameter ratio and aspect ratio on wake development of a dual step cylinder

    NASA Astrophysics Data System (ADS)

    Yarusevych, Serhiy; Morton, Chris

    2012-11-01

    A dual step cylinder is composed of a large diameter cylinder (D) attached to the mid-span of a small diameter cylinder (d). In a uniform cross flow, vortex shedding occurs from the small cylinder, above and below the large cylinder. The characteristics of the shed vortices are similar to those found in the wake of a uniform circular cylinder. However, wake characteristics of the large cylinder are influenced significantly by the geometric parameters of the model, namely, the ratio between the large and small cylinder diameters (D/d) and the large cylinder aspect ratio (L/D). The present work investigates the flow past dual step cylinders for ReD = 2100, 0.2 <= L/D <= 3, and 1.33 <= D/d <= 2.67. Experiments have been completed in a water flume facility employing Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV) systems, as well as hydrogen bubble flow visualization. The results show that the following three distinct large cylinder wake topologies can be observed for the investigated ranges of L/D and D/d: (i) shedding of uniform spanwise vortices, (ii) shedding of highly deformed three-dimensional vortices, and (iii) no distinct vortex shedding. Complex vortex interactions taking place in the wake of the large cylinder are investigated for the identified flow regimes. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding of this work.

  10. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  11. Combined Vorticity Confinement and Total Variation Diminishing Technique for Modeling of Blade Tip Vortex

    NASA Astrophysics Data System (ADS)

    Povitsky, Alex; Pierson, Kristopher

    2013-11-01

    The Vorticity Confinement (VC) approach is combined with Total Variation Diminishing (TVD) technique to avoid over-confinement and divergence of upwind second-order of approximation schemes. The TVD schemes were combined with the first (constant confinement parameter ?) and second (constant unit-less confinement parameter c) VC formulations and with adoptive VC formulation by Hahn and Iaccarino. Combined VC/TVD techniques were first applied to convected Taylor vortex, which represent a model of wing tip vortex. For the former two VC methods combination of the second-order upwind discretization scheme with VC shows significant over-confinement of vortex whereas the first-order discretization scheme leads to strong dissipation of vortex. While the latter VC technique shows acceptable results for first-order upwind scheme, it either diverges or strongly over-confines when the second-order upwind discretization scheme is used. The VC/TVD techniques were tested with non-differentiable minmod and Van Leer flux limiters and with differentiable Van Albada limiter. The combination of VC and TVD with differential limiter computes most accurate vortex. The proposed technique is applied to tip vortex generated by rotating blade. Implementation of combined VC with TVD equipped with differential flux limiter to CFD code FLUENT shows much more close comparison to experimental results in terms of vortex velocity profile and size of vortex core compared to the same CFD code without VC approach. The Vorticity Confinement (VC) approach is combined with Total Variation Diminishing (TVD) technique to avoid over-confinement and divergence of upwind second-order of approximation schemes. The TVD schemes were combined with the first (constant confinement parameter ?) and second (constant unit-less confinement parameter c) VC formulations and with adoptive VC formulation by Hahn and Iaccarino. Combined VC/TVD techniques were first applied to convected Taylor vortex, which represent a model of wing tip vortex. For the former two VC methods combination of the second-order upwind discretization scheme with VC shows significant over-confinement of vortex whereas the first-order discretization scheme leads to strong dissipation of vortex. While the latter VC technique shows acceptable results for first-order upwind scheme, it either diverges or strongly over-confines when the second-order upwind discretization scheme is used. The VC/TVD techniques were tested with non-differentiable minmod and Van Leer flux limiters and with differentiable Van Albada limiter. The combination of VC and TVD with differential limiter computes most accurate vortex. The proposed technique is applied to tip vortex generated by rotating blade. Implementation of combined VC with TVD equipped with differential flux limiter to CFD code FLUENT shows much more close comparison to experimental results in terms of vortex velocity profile and size of vortex core compared to the same CFD code without VC approach. Grant support from ARO, AFRL, DAGSI.

  12. A summary of recent refinements to the WAKE dispersion model, a component of the HGSYSTEM/UF{sub 6} model suite

    SciTech Connect

    Yambert, M.W.; Lombardi, D.A.; Goode, W.D. Jr.; Bloom, S.G.

    1998-08-01

    The original WAKE dispersion model a component of the HGSYSTEM/UF{sub 6} model suite, is based on Shell Research Ltd.`s HGSYSTEM Version 3.0 and was developed by the US Department of Energy for use in estimating downwind dispersion of materials due to accidental releases from gaseous diffusion plant (GDP) process buildings. The model is applicable to scenarios involving both ground-level and elevated releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. Over the 2-year period since its creation, the WAKE model has been used to perform consequence analyses for Safety Analysis Reports (SARs) associated with gaseous diffusion plants in Portsmouth (PORTS), Paducah (PGDP), and Oak Ridge. These applications have identified the need for additional model capabilities (such as the treatment of complex terrain and time-variant releases) not present in the original utilities which, in turn, has resulted in numerous modifications to these codes as well as the development of additional, stand-alone postprocessing utilities. Consequently, application of the model has become increasingly complex as the number of executable, input, and output files associated with a single model run has steadily grown. In response to these problems, a streamlined version of the WAKE model has been developed which integrates all calculations that are currently performed by the existing WAKE, and the various post-processing utilities. This report summarizes the efforts involved in developing this revised version of the WAKE model.

  13. Calculation of vortex shedding from bluff bodies with the Reynolds-stress model

    NASA Astrophysics Data System (ADS)

    Basara, B.; Bachler, G.; Schiffermuller, H.

    The paper examines the validity of the SSG (Speziale, Sarkar and Gatski, (1991)) Reynolds-stress model in vortex-shedding flows by comparing the calculations with published data on vortex-shedding past a square and a circular cylinder in a free stream. Moreover, calculations are reported for the square cylinder placed at various distances from an adjacent wall. All calculations are compared with previous ones performed with different models and published elsewhere. The results show that the SSG model is able to provide reasonably good agreement with data and also to give the results which are very comparable with LRR (Launder, Reece and Rodi (1975)) Reynolds-stress model.

  14. Mapping optical ray trajectories through island wake vortices

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Minet, Jean; Vorontsov, Mikhail A.

    2015-06-01

    Optical wave propagation through the atmosphere is complicated by organized atmospheric structures, spanning a wide range of length and time scales, which induce spatio-temporal variability in refraction. Therefore, when considering long-range optical ray trajectories, the influence of such structures on the propagation path becomes significantly more complex compared to a hypothetically homogeneous atmosphere. In this paper, we use a coupled mesoscale model and ray tracing framework to analyze the refractive anomalies associated with the wake vortices induced by three geographically diverse islands under various meteorological conditions. We identify organized mesoscale wake vortices (e.g., von Kármán vortices) which are sometimes capable of distorting optical ray trajectories, through ray bending, tens of meters at a range of approximately 50 km. In addition, we find in some cases that vertical oscillations, or perturbations, to the simulated ray trajectories share a frequency with the vortex shedding frequency on the order of hours. At the same time, it is also observed that the intensity and predictability of the wake vortex-induced ray bending varies from case to case. Collectively, these results highlight the value of using mesoscale models in optical wave propagation studies above conventional approaches which do not explicitly consider horizontally heterogeneous atmospheres.

  15. Vortex Shedding From a Flexible Hydrofoil

    E-print Network

    Dreyer, Matthieu

    2011-01-01

    Video of vortex shedding in the wake of a Naca0009 hydrofoil made of polyoxymethylene type C (POM C). This video was submitted as part of the Gallery of Fluid Motion 2011 which is showcase of fluid dynamics videos.

  16. The VAWT in skew: stereo-PIV and vortex modeling

    Microsoft Academic Search

    C. J. Simao Ferreira; K. R. Dixon; C. Hofemann; G. A. M. Van Kuik; G. J. W. Van Bussel

    2009-01-01

    One of the results of the development of wind energy conversion solutions for the built environment is the reappearance of Vertical Axis Wind Turbines (VAWTs).\\u000aThe application of wind turbines in urban environments presents design challenges driven by the complex wind fields experienced in the urban boundary layer. Urban Wind Turbines operate near, on and in the wake of bluff

  17. The Near Wake Of A 2-Bladed Rotor In Forward Flight Wong, O., Mahalingam, R., Tongchitpakdee, C., Komerath, N.M.

    E-print Network

    ., Komerath, N.M. School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332 Abstract vortices of rotary wings, and the usage of vortex models from fixed-wing wake measurements increases of vortices, especially in the rotary wing case. Fixed-wing vortices are known to persist for durations

  18. Turbulence Measurements in the Near Field of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Chow, Jim; Zilliac, Greg; Bradshaw, Peter

    1997-01-01

    The roll-up of a wingtip vortex, at Reynolds number based on chord of 4.6 million was studied with an emphasis on suction side and near wake measurements. The research was conducted in a 32 in. x 48 in. low-speed wind tunnel. The half-wing model had a semi-span of 36 in. a chord of 48 in. and a rounded tip. Seven-hole pressure probe measurements of the velocity field surrounding the wingtip showed that a large axial velocity of up to 1.77 U(sub infinity) developed in the vortex core. This level of axial velocity has not been previously measured. Triple-wire probes have been used to measure all components of the Reynolds stress tensor. It was determined from correlation measurements that meandering of the vortex was small and did not appreciably contribute to the turbulence measurements. The flow was found to be turbulent in the near-field (as high as 24 percent RMS w - velocity on the edge of the core) and the turbulence decayed quickly with streamwise distance because of the nearly solid body rotation of the vortex core mean flow. A streamwise variation of the location of peak levels of turbulence, relative to the core centerline, was also found. Close to the trailing edge of the wing, the peak shear stress levels were found at the edge of the vortex core, whereas in the most downstream wake planes they occurred at a radius roughly equal to one-third of the vortex core radius. The Reynolds shear stresses were not aligned with the mean strain rate, indicating that an isotropic-eddy-viscosity based prediction method cannot accurately model the turbulence in the cortex. In cylindrical coordinates, with the origin at the vortex centerline, the radial normal stress was found to be larger than the circumferential.

  19. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 1: Flow aerodynamics in a vortex furnace

    NASA Astrophysics Data System (ADS)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-02-01

    Some results of the complex experimental and numerical study of aerodynamics and transfer processes in a vortex furnace, whose design was improved via the distributed tangential injection of fuel-air flows through the upper and lower burners, were presented. The experimental study of the aerodynamic characteristics of a spatial turbulent flow was performed on the isothermal laboratory model (at a scale of 1 : 20) of an improved vortex furnace using a laser Doppler measurement system. The comparison of experimental data with the results of the numerical modeling of an isothermal flow for the same laboratory furnace model demonstrated their agreement to be acceptable for engineering practice.

  20. Vortex-Surface Collisions^

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.

    1998-11-01

    The interaction of vortices with solid surfaces occurs in many different situations including, but not limited to tornadoes, propeller wakes, flows over swept wings and missile forebodies, turbomachinery flows, blade-vortex interactions and tip vortex-surface interactions on helicopters. Often, parts of a system must operate within such flows and thus encounter these vortices. In the present paper we discuss the nature of a particular subset of interactions called ``collisions''. A ``collision'' is characterized by the fact that the core of the vortex is permanently altered; usually the core is locally destroyed. The focus is on fully three-dimensional collisions although two-dimensional collisions are discussed as well. Examples of collisions in helicopter aerodynamics and turbomachinery flows are discussed and the dynamics of the vortex core during a collision process are illustrated for a 90^o collision. ^Supported by the US Army Research Office

  1. Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model

    Microsoft Academic Search

    A. R. Mishra; D. L. James; C. W. Letchford

    2008-01-01

    A tornado vortex simulator was used to generate a single-celled tornado-like vortex whose flow field was presented and compared with available data from tornadoes recorded in Manchester and Spencer, South Dakota, both rated F4 on the Fujita scale, as described in Part A. A 30mm cubical model, scale ?1:3500, was placed at various locations relative to the vortex core and

  2. Effects of Chemistry on Blunt-Body Wake Structure

    NASA Technical Reports Server (NTRS)

    Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.

    1995-01-01

    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.

  3. Modelling of dynamics of vortex reversal in nanodisc of cobalt

    NASA Astrophysics Data System (ADS)

    Dzienisiuk, U.; Kisielewski, M.; Maziewski, A.

    2013-11-01

    By micromagnetic simulations, the dynamic of vortex-core-polarization reversal under the influence of an in-plane oriented magnetic field pulse has been examined for a 3 nm thick cobalt disc. The results are summarized in a diagram showing the range of both pulse strength and pulse width, which should be used in the aim to force a controlled toggle switch of the core of vortex in discs of diameter varying from 90 nm to 180 nm. Typical values of these parameters are the following: pulse width is in the range of one-tenth of nanosecond and pulse strength is in the range of hundred mT. The smaller disc diameter, the more right-side-limited range of pulse width. The obtained results are qualitatively similar to previously reported ones for a 200 nm diameter and 20 nm thick Permalloy discs (R. Hertel, S. Gliga, M. Fa¨hnle, C. M. Schneider, Physical Review Letters 98 (2007) 117201).

  4. Wake Instabilities Behind Bluff Bodies

    Microsoft Academic Search

    Michel Provansal

    \\u000a The observation by Bénard of a vortex street in the wake of a circular cylinder has been commonly associated with the stability\\u000a analysis of the double alternate street proposed by von Kármán. After a short historical review of these studies, we present\\u000a the main progress in understanding this instability during the last decade. New experiments and the control of two-dimensional

  5. Investigation on 3D t wake flow structures of swimming bionic fish

    NASA Astrophysics Data System (ADS)

    Shen, G.-X.; Tan, G.-K.; Lai, G.-J.

    2012-10-01

    A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.

  6. Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines based on nacelle based lidar measurements"

    E-print Network

    Peinke, Joachim

    Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines analysis are performed of near wake measurements of a 5 MW wind turbine at the offshore test field alpha, in an early stage of wind farm layout optimisation and wind turbine loading calculation in wind farms

  7. Analyzing the aerodynamic structure of swirl flow in vortex burner models

    NASA Astrophysics Data System (ADS)

    Gesheva, E. S.; Litvinov, I. V.; Shtork, S. I.; Alekseenko, S. V.

    2014-09-01

    The article presents the results from experimental and numerical investigations of the parameters characterizing large-scale vortex structures formed in the models of various burners with flow swirling. The experiments included flow visualization and velocity field measurements carried out using a modern contact-less diagnostic system constructed on the basis of a laser Doppler anemometer. In addition, the frequency responses of unsteady vortex flow modes were investigated using dedicated acoustic sensors. The distribution of static pressure induced by an unsteady vortex was obtained using the phase averaging method. Along with experiments, the swirl flow parameters were calculated using an analytic theory and the Star CCM+ commercial software package. The adequacy of the mathematical modeling results was checked by comparing them with the physical experiment data.

  8. Topological Features of a Compressible Plasma Vortex Sheet - a Model of the Outer Heliospheric Wind

    NSDL National Science Digital Library

    Cindy Starr

    1993-12-17

    The Voyager and Pioneer Spacecraft have detected large-scale quasi-periodic plasma fluctuations in the outer heliosphere beyond 20 AU. A plasma vortex sheet model can explain these fluctuations and the observed correlations between various physical variables. The large scale outer heliosphere is modeled by solving the 3-D compressible magnetohydrodynamic equations involving three interacting shear layers. Computations were done on a Cray computer at the NASA Center for Computational Sciences. Six cases are animated: Weak magnetic field and strong magnetic field, each at three values of tau, the vortex street characteristic time. Contours of density are shown as dark transparent tubes. Critical points of the velocity field are represented by Glyphs. Vortex cores are shown in orange and blue.

  9. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  10. Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Vortex Suppress Device Studies

    SciTech Connect

    Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.

    2006-12-01

    A computational fluid dynamics (CFD) model was used in an investigation into the suppression of a surface vortex that forms and the south-most spilling bay at The Dalles Project. The CFD work complemented work at the prototype and the reduced-scale physical models. The CFD model was based on a model developed for other work in the forebay but had additional resolution added near the spillway. Vortex suppression devices (VSDs) were to placed between pier noses and/or in the bulkhead slot of the spillway bays. The simulations in this study showed that placing VSD structures or a combination of structures to suppress the vortex would still result in near-surface flows to be entrained in a vortex near the downstream spillwall. These results were supported by physical model and prototype studies. However, there was a consensus of the fish biologists at the physical model that the fish would most likely move north and if the fish went under the VSD it would immediately exit the forebay through the tainter gate and not get trapped between VSDs or the VSDs and the tainter gate if the VSDs were deep enough.

  11. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  12. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  13. Beam wander of random electromagnetic Gaussian-shell model vortex beams propagating through a Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Dai, Wen; Tang, Hua; Guo, Hong

    2015-02-01

    Beam wander of random electromagnetic Gaussian-Shell model (EGSM) vortex beams propagating through atmospheric turbulence is investigated. We develop the expression for beam wander of random EGSM vortex beams in theory. The effects of topological charge, turbulence strength, initial spatially coherent length, transverse scale, and wavelength on beam wander are illustrated numerically. The numerical results show that vortex beams with both positive and negative topological charges have the same beam wander, decreasing the coherent length and decreasing the transverse scale, or increasing the topological charge, can decrease the beam wander. In free-space optical (FSO) communication, we can choose beams with smaller coherent length, smaller wavelength, and larger topological charge to reduce beam wander.

  14. Model of vortex states in hole-doped iron-pnictide superconductors.

    PubMed

    Gao, Yi; Huang, Huai-Xiang; Chen, Chun; Ting, C S; Su, Wu-Pei

    2011-01-14

    Based on a phenomenological model with competing spin-density-wave (SDW) and extended s-wave superconductivity, the vortex states in Ba(1-x)K(x)Fe2As2 are investigated by solving Bogoliubov-de Gennes equations. Our result for the optimally doped compound without induced SDW is in qualitative agreement with recent scanning tunneling microscopy experiment. We also propose that the main effect of the SDW on the vortex states is to reduce the intensity of the in-gap peak in the local density of states and transfer the spectral weight to form additional peaks outside the gap. PMID:21405248

  15. Model experiments to evaluate vortex dissipation devices proposed for installation on or near aircraft runways

    NASA Technical Reports Server (NTRS)

    Kohl, R. E.

    1973-01-01

    The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.

  16. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For ReC = O(104), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Kármán vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and ReC = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195

  17. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.

    PubMed

    Buchholz, James H J; Smits, Alexander J

    2008-04-30

    Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For Re(C) = O(10(4)), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Kármán vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and Re(C) = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195

  18. Wave optics simulation of Gaussian Schell-model vortex beam propagation in turbulence: intensity and scintillation analysis

    Microsoft Academic Search

    Xifeng Xiao; David Voelz

    2010-01-01

    The propagation of partially coherent vortex beams through atmospheric turbulence in weak-to-strong fluctuation regimes is investigated. Irradiance profiles from wave optics simulations and analytical theory compare favorably for a variety of link parameters. Simulation results indicate that partially coherent vortex beams can reduce scintillation index values relative to comparable classic Gaussian Schell model beams when turbulence conditions are mediate to

  19. Source of Gravity Waves within a Vortex-Dipole Jet Revealed by a Linear Model SHUGUANG WANG*

    E-print Network

    Source of Gravity Waves within a Vortex-Dipole Jet Revealed by a Linear Model SHUGUANG WANG to address the source mechanism of the gravity waves gen- erated within a vortex dipole simulated in a fully of these imbalanced forcings obtained from the linear dynamics shows well-defined gravity wave signals, which compare

  20. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  1. Decay of potential vortex for a viscoelastic fluid with fractional Maxwell model

    Microsoft Academic Search

    M. Khan; S. Hyder Ali; C. Fetecau; Haitao Qi

    2009-01-01

    This paper is concerned with the exact analytic solutions for the velocity field and the associated tangential stress corresponding to a potential vortex for a fractional Maxwell fluid. The fractional calculus approach is taken into account in the constitutive relationship of a non-Newtonian fluid model. Exact analytic solutions are obtained by using the Hankel transform and the discrete Laplace transform

  2. Vortex model of the Darrieus turbine: an analytical and experimental study. Final report

    SciTech Connect

    Strickland, J.H.; Smith, T.; Sun, K.

    1981-06-01

    Improvements in a vortex/lifting, line-based Darrieus wind turbine, aerodynamic performance/loads model are described. These improvements include consideration of dynamic stall, pitching circulation, and added mass. Validation of these calculations was done through water tow tank experiments. Certain computer run time reduction schemes for the code are discussed.

  3. MODELING COMBUSTION CHAMBER DYNAMICS OF IMPINGING STREAM VORTEX ENGINES FUELED WITH HYDRAZINE-ALTERNATIVE HYPERGOLS

    Microsoft Academic Search

    C.-C. Chen; M. J. Nusca; M. J. McQuaid

    To advance the development of Impinging Stream Vortex Engines (ISVEs) for tactical missile propulsion system applications, a computational fluid dynamics (CFD) modeling capability has been developed and employed to simulate the combustion chamber dynamics of various ISVE designs. Simulations of first- generation ISVE configurations fueled with mono- methylhydrazine\\/red fuming nitric acid (MMH\\/RFNA) led to insights that inspired a combustion chamber

  4. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  5. A simplified free wake method for horizontal-axis wind turbine performance prediction

    SciTech Connect

    Afjen, A.A.; Keith, T.G. Jr.

    1987-01-01

    Based on the assumption that wake geometry of a horizontal-axis wind turbine closely resembles that of a hovering helicopter, a method is presented for predicting the performance of a horizontal-axis wind turbine. A vortex method is used in which the wake is composed of an intense tip-vortex and a diffused inboard wake. Performance parameters are calculated by application of the Bio-Savart law along with the Kutta-Joukowski theorem. Predictions are shown to compare favorably with values from a more complicated full free wake analysis and with existing experimental data, but require more computational effort than an existing fast free wake method.

  6. Fixed wake theory for vertical axis wind turbines

    Microsoft Academic Search

    R. E. Wilson; S. N. Walker

    1983-01-01

    A theory for vertical axis wind turbines has been developed using a fixed wake approach. The theory combines some of the best features of vortex and streamtube approaches. This approach accounts for flow differences between fore-and-aft blade positions that are predicted by vortex methods while retaining the low computation costs associated with streamtube theories. The theory is applied to high

  7. Characterization of the Near Wake of a Helicopter Rotor

    Microsoft Academic Search

    Raghav Mahalingam; Narayanan Komerath

    Vortex characteristics in the near wake of a 2-bladed teetering rotor in steady forward flight are measured using a laser velocimeter. The vortex passage at a measurement point is seen to be repeatable to within 1? of rotor revolution. Velocity was measured in the planes intersected by the rotor-blade tip at the rotor azimuths of ? = 0?, 90?, 180?,

  8. Symmetry plane model for turbulent flows with vortex generators

    NASA Technical Reports Server (NTRS)

    Arnaud, Gilles L.; Russell, David A.

    1991-01-01

    An approximate procedure is proposed for predicting the performance of counterrotating vortex-generator installations in incompressible flow. An inviscid calculation that includes the motion of the vortices is used to obtain crossflow velocities at the boundary-layer edge as a function of initial position, spacing, and strength of the vortices, and local values of the spanwise gradient are then folded into an integral turbulent-boundary layer procedure applied in the plane of symmetry. Special attention is paid to the consistency of the approximations and equations used. The two-dimensional aerodynamics of vortex generator installations on a NACA 0016 airfoil at angle-of-attack are estimated in this manner, and the results compared with experiments carried out with a 30-cm chord wing mounted in a 2.4 x 3.6-m cross-section wind tunnel and tested at chord Reynolds numbers of 0.7 and 1.4 x 10 to the 6th. Agreement in the separation location is found for these complex flows for a range of conditions.

  9. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness.

    PubMed

    Bhattacharya, Basabdatta S; Patterson, Cameron; Galluppi, Francesco; Durrant, Simon J; Furber, Steve

    2014-01-01

    We present a preliminary study of a thalamo-cortico-thalamic (TCT) implementation on SpiNNaker (Spiking Neural Network architecture), a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behavior similar to Electroencephalogram (EEG) time and power-spectra signatures in sleep-wake transition. The scale of the model is minimized for simplicity in this proof-of-concept study; thus the total number of spiking neurons is ?1000 and represents a "mini-column" of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG power spectra characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity-the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms. PMID:24904294

  10. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  11. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  12. Experimental Results on Rotor Wakes Narayanan Komerath

    E-print Network

    -Gray deconstruction of the hover wake structure into tip vortices and helical vortex sheets, done in the early 1960s through chaotic processes, even at high Reynolds number. Similarly, mysterious "jitter" phenomena have these advances, shown both experimentally and through analysis and computation, it has become possible

  13. Review of CFD for wind-turbine wake aerodynamics

    Microsoft Academic Search

    B. Sanderse; Pijl van der S. P; B. Koren

    2010-01-01

    This article reviews the state of the art of the numerical calculation of wind-turbine wake aerodynamics. Different CFD techniques for modeling the rotor and the wake are discussed. Regarding rotor modeling, recent advances in the generalized actuator approach and the direct model are discussed, as far as it attributes to the wake description. For the wake, the focus is on

  14. 8000 Ways to Model a Vortex: A Review of Hindcast Wind Field Methodologies

    NASA Astrophysics Data System (ADS)

    Sweeney, J.

    2014-12-01

    Hindcasts of cyclonic wind fields are crucial for extreme analysis in the oil and gas industry. Recent scientific developments have increased the number of parameterization options for tropical cyclone vortices, leading to well over 8000 permutations of model choices. Which is best? Also problematic is how best to blend modelled vortex winds into a global wind model (such as the Climate Forecast System Reanalysis (CFSR)) in order to resolve tropical cyclones to sufficient detail for wave modelling. Standard blending schemes can leave a 'moat' between the vortex and the CFSR circulation (see Figure 1 from TC Olivia 1996). Using a 35-year track database from the Australian Bureau of Meteorology, this study assesses model configurations and blending schemes against the most extensive measured meteorological dataset in the north-east Indian Ocean (largely commercial-in-confidence). The Holland profile models of 1980 and 2008 are two starting points, with other options examined for radius to maximum wind calculations, pressure-wind relationships, averaging periods, atmospheric profiles, gust factors, and asymmetry methods. Once a vortex is modelled, the winds are then fitted to the radius of gales and blended into the CFSR before further verification. Initial results support recent theoretical developments by Hu et al (2012), with additional results that call for a new asymmetry method and the separation of pressure and wind field modelling.

  15. Island wakes in the Southern California Bight

    Microsoft Academic Search

    R. M. A. Caldeira; P. Marchesiello; N. P. Nezlin; P. M. DiGiacomo; J. C. McWilliams

    2005-01-01

    Wind- and current-induced island wakes were investigated using a multiplatform approach of in situ, remote sensing, and numerical model simulations for the Southern California Bight (SCB). Island wind wakes are a result of sheltering from the wind, with weak wind mixing, strong heat storage, and consequent high sea surface temperature (SST). Wind wakes around Santa Catalina Island are most persistent

  16. Modeling and simulation of vortex induced vibration on the subsea riser/pipeline (GRP pipe)

    NASA Astrophysics Data System (ADS)

    Raja Adli, Raja Nor Fauziah bt; Ibrahim, Idris

    2012-06-01

    This paper presents the research work conducted to investigate the dynamics characteristics of the offshore riser pipeline due to vortex flow and to develop a model that could predict its vortex induced responses. Glass-fiber reinforced plastic (GRP) pipe is used for this study which has smaller density from the steel. A two-dimensional finite element computational method is implemented to describe the dynamic behavior of the riser. The governing equation of motion was based on Hamilton's principle, consists of the strain energy due to bending and axial deformation, kinetic energy due to both riser and internal fluid movement and also external force from currents and waves. A direct integration method namely Newmark integration scheme is proposed to solve the equation of motion. A MATLAB program code was developed to obtain the simulation results. The natural frequency and damping ratio are presented for each mode. Dynamic response of riser is shown in time-domain and the numerical results are discussed. Several parameter effects are used to investigate dynamic responses and the results show an agreement with the theory. Vortex shedding phenomenon also has been discussed in this paper. As a conclusion, the simulation results have successfully shown the vortex induced vibration responses for GRP pipeline.

  17. On the vortex stretching modification of the k-epsilon turbulence model - Radial jets

    Microsoft Academic Search

    A. Rubel

    1985-01-01

    The invariant vortex stretching modification to the kappa-epsilon model is applied to the self-preserving radial jet and shown to be inadequate. Results are obtained which support the contention that the Pope (1978) modification to the kappa-epsilon model affects a radial jet more substantially than a round one. It is also noted that radial far-field behavior can impose an additional constraint

  18. Sleep-Wake Cycle Dysfunction in the TgCRND8 Mouse Model of Alzheimer's Disease: From Early to Advanced Pathological Stages.

    PubMed

    Colby-Milley, Jessica; Cavanagh, Chelsea; Jego, Sonia; Breitner, John C S; Quirion, Rémi; Adamantidis, Antoine

    2015-01-01

    In addition to cognitive decline, individuals affected by Alzheimer's disease (AD) can experience important neuropsychiatric symptoms including sleep disturbances. We characterized the sleep-wake cycle in the TgCRND8 mouse model of AD, which overexpresses a mutant human form of amyloid precursor protein resulting in high levels of ?-amyloid and plaque formation by 3 months of age. Polysomnographic recordings in freely-moving mice were conducted to study sleep-wake cycle architecture at 3, 7 and 11 months of age and corresponding levels of ?-amyloid in brain regions regulating sleep-wake states were measured. At all ages, TgCRND8 mice showed increased wakefulness and reduced non-rapid eye movement (NREM) sleep during the resting and active phases. Increased wakefulness in TgCRND8 mice was accompanied by a shift in the waking power spectrum towards fast frequency oscillations in the beta (14-20 Hz) and low gamma range (20-50 Hz). Given the phenotype of hyperarousal observed in TgCRND8 mice, the role of noradrenergic transmission in the promotion of arousal, and previous work reporting an early disruption of the noradrenergic system in TgCRND8, we tested the effects of the alpha-1-adrenoreceptor antagonist, prazosin, on sleep-wake patterns in TgCRND8 and non-transgenic (NTg) mice. We found that a lower dose (2 mg/kg) of prazosin increased NREM sleep in NTg but not in TgCRND8 mice, whereas a higher dose (5 mg/kg) increased NREM sleep in both genotypes, suggesting altered sensitivity to noradrenergic blockade in TgCRND8 mice. Collectively our results demonstrate that amyloidosis in TgCRND8 mice is associated with sleep-wake cycle dysfunction, characterized by hyperarousal, validating this model as a tool towards understanding the relationship between ?-amyloid overproduction and disrupted sleep-wake patterns in AD. PMID:26076358

  19. Sleep-Wake Cycle Dysfunction in the TgCRND8 Mouse Model of Alzheimer’s Disease: From Early to Advanced Pathological Stages

    PubMed Central

    Colby-Milley, Jessica; Cavanagh, Chelsea; Jego, Sonia; Breitner, John C. S.; Quirion, Rémi; Adamantidis, Antoine

    2015-01-01

    In addition to cognitive decline, individuals affected by Alzheimer’s disease (AD) can experience important neuropsychiatric symptoms including sleep disturbances. We characterized the sleep-wake cycle in the TgCRND8 mouse model of AD, which overexpresses a mutant human form of amyloid precursor protein resulting in high levels of ?-amyloid and plaque formation by 3 months of age. Polysomnographic recordings in freely-moving mice were conducted to study sleep-wake cycle architecture at 3, 7 and 11 months of age and corresponding levels of ?-amyloid in brain regions regulating sleep-wake states were measured. At all ages, TgCRND8 mice showed increased wakefulness and reduced non-rapid eye movement (NREM) sleep during the resting and active phases. Increased wakefulness in TgCRND8 mice was accompanied by a shift in the waking power spectrum towards fast frequency oscillations in the beta (14-20 Hz) and low gamma range (20-50 Hz). Given the phenotype of hyperarousal observed in TgCRND8 mice, the role of noradrenergic transmission in the promotion of arousal, and previous work reporting an early disruption of the noradrenergic system in TgCRND8, we tested the effects of the alpha-1-adrenoreceptor antagonist, prazosin, on sleep-wake patterns in TgCRND8 and non-transgenic (NTg) mice. We found that a lower dose (2 mg/kg) of prazosin increased NREM sleep in NTg but not in TgCRND8 mice, whereas a higher dose (5 mg/kg) increased NREM sleep in both genotypes, suggesting altered sensitivity to noradrenergic blockade in TgCRND8 mice. Collectively our results demonstrate that amyloidosis in TgCRND8 mice is associated with sleep-wake cycle dysfunction, characterized by hyperarousal, validating this model as a tool towards understanding the relationship between ?-amyloid overproduction and disrupted sleep-wake patterns in AD. PMID:26076358

  20. Unsteady rotor aerodynamics using a vortex panel method

    NASA Technical Reports Server (NTRS)

    Crispin, Y.

    1982-01-01

    The problem of the potential incompressible flow about a helicopter rotor blade is solved using an unsteady vortex-panel method where the mutual interaction between the blade and the distorting free wake is taken into account. The present method alleviates the need to rely upon measured-wake geometries or p5escribed-wake models in order to calculate the airloads. A computer program has been developed which is capable of predicting the geometry of the time-dependent three-dimensional (3-D) wake and the instantaneous loadings for a single blade in hover, climb, and forward flight. The solution is obtained by using a time-accurate step-by-step procedure. The complex-wake geometry at any time is presented graphically with a computer graphics system. Calculated results are compared with published data for a rotor blade in both hover and forward flight. The code has also been applied to the study of the effect of changing blade tip geometry.

  1. Computation and analysis of a cylinder wake flow

    NASA Astrophysics Data System (ADS)

    Townsend, J. C.; Rudy, D. H.; Sirovich, L.

    The Karman vortex wake of a circular cylinder at low Reynolds number was computed by a time-accurate, two-dimensional compressible Navier-Stokes equation solver which uses the MacCormack predictor-corrector finite-difference scheme and a nonreflecting boundary condition on the outer flow boundary. The results from a large number of time steps were analyzed using Fast Fourier Transform techniques to identify the important frequency components for comparison with published experimental data. A strong low-frequency component was found below the vortex shedding frequency and not harmonically related to it. The experimentally discovered low-frequency fluctuations in the cylinder wake are considered possibly to be precursors to transition from laminar to turbulent flow conditions. The present finding of similar frequencies in a computed wake tends to confirm their existence as a real wake phenomenon. This computational work provides a complementary means to experimental investigations of wake phenomena.

  2. Computation and analysis of a cylinder wake flow

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Rudy, D. H.; Sirovich, L.

    1987-01-01

    The Karman vortex wake of a circular cylinder at low Reynolds number was computed by a time-accurate, two-dimensional compressible Navier-Stokes equation solver which uses the MacCormack predictor-corrector finite-difference scheme and a nonreflecting boundary condition on the outer flow boundary. The results from a large number of time steps were analyzed using Fast Fourier Transform techniques to identify the important frequency components for comparison with published experimental data. A strong low-frequency component was found below the vortex shedding frequency and not harmonically related to it. The experimentally discovered low-frequency fluctuations in the cylinder wake are considered possibly to be precursors to transition from laminar to turbulent flow conditions. The present finding of similar frequencies in a computed wake tends to confirm their existence as a real wake phenomenon. This computational work provides a complementary means to experimental investigations of wake phenomena.

  3. Performance and wake development behind two in-line and offset model wind turbines - "Blind test" experiments and calculations

    NASA Astrophysics Data System (ADS)

    Sætran, Lars; Krogstad, Per-Åge; Adaramola, Muyiwa Samuel

    2014-06-01

    This is a report on data presented at the "Blind test 3" Workshop organized jointly by Nowitech and Norcowe in Bergen, December 2013. A number of research groups were invited to predict the performances and the wake development behind two model wind turbines that have been extensively tested at the Department of Energy and Process Engineering, NTNU. The turbines were arranged in-line, but slightly offset so that the wake of the upstream turbine only affected roughly half the area swept by the second rotor. This is a common event in most wind parks and produces flow fields that are both complicated and harmful for the downstream turbine. Contributions were received from five different groups using a range of methods, from fully resolved Reynolds averaged Computational Fluid Dynamics (CFD) models to Large Eddy Simulations (LES). The range of results was large but the overall trend is that the current methods predict the power generation as well as the thrust force reasonably well. But there is a large uncertainty in the prediction of the turbulence field in the wake.

  4. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    NASA Astrophysics Data System (ADS)

    Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng

    2015-05-01

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  5. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds

    Microsoft Academic Search

    G. R. Spedding; M. Rosén

    2003-01-01

    In view of the complexity of the wing-beat kinematics and geometry, an important class of theoretical models for analysis and prediction of bird flight performance entirely, or almost entirely, ignores the action of the wing itself and considers only the resulting motions in the air behind the bird. These motions can also be complicated, but some success has previously been

  6. Waking Up to Waste

    ERIC Educational Resources Information Center

    Vrdlovcova, Jill

    2005-01-01

    All homes and schools produce waste. Children may have been astonished at how much people throw away, and this could be the "wake-up call" that arouses their interest. At Carymoor Environmental Centre (an Eco-Centre in South Somerset) getting children involved in active waste reduction and recycling is a priority. Carymoor tries to model waste…

  7. Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    This paper is divided into four parts. First, the level set/vortex sheet method for three-dimensional two-phase interface dynamics is presented. Second, the LSS model for the primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring subgrid modeling are identified. Then, preliminary three-dimensional results of the level set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and an outlook to future work is given.

  8. Evolution of the 1991-1992 Arctic vortex and comparison with the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Rosenfield, J. E.; Loewenstein, M.; Podolske, J. R.; Weaver, A.

    1994-01-01

    Nitrous oxide (N2O) measured on board the ER-2 aircraft during the Airborne Arctic Stratospheric Expedition 2 (AASE 2) has been used to monitor descent of air inside the Arctic vortex between October 1991 and March 1992. Monthly mean N2O fields are calculated from the flight data and then compared with mean fields calculated from the high-resolution Geophysical Fluid Dynamics Laboratory general circulation model SKYHI in order to evaluate the model's simulation of the polar vortex. From late fall through winter the model vortex evolves in much the same way as the 1991-1992 vortex, with N2O gradients at the edge becoming progressively steeper. The October to March trends in N2O profiles inside the vortex are used to verify daily net heating rates in the vortex that were computed from clear sky radiative heating rates and National Meteorological Center temperature observations. The computed heating rates successfully estimate the descent of vortex air from December through February but suggest that before December, air at high latitudes may not be isolated from the midlatitudes. SKYHI heating rates are in good agreement with the computed rates but tend to be slightly higher (i.e., less cooling) due to meteorological differences between SKYHI and the 1991-1992 winter. Three ER-2 flights measured N2O just north of the subtropical jet. These low-midlatitude profiles show only slight differences from the high-midlatitude profiles (45 deg - 60 deg N), indicating strong meridional mixing in the midlatitude 'surf zone.' Mean midwinter N2O profiles inside and outside the vortex calculated from AASE 2 data are shown to be nearly identical to 1989 AASE profiles, pointing to the N2O/potential temperature relationship as an excellent marker for vortex air.

  9. Devices that Alter the Tip Vortex of a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  10. A numerical study of two-dimensional vortex shedding from rectangular cylinders

    Microsoft Academic Search

    A. H. Hadid; Munir M. Sindir; R. I. Issa

    1992-01-01

    An efficient time-marching, non-iterative calculation method is used to analyze time-dependent flows around rectangular cylinders. The turbulent flow in the wake region of a square section cylinder is analyzed using an anisotropic k-epsilon model. Initiation and subsequent development of the vortex shedding phenomenon is naturally captured once a perturbation is introduced in the flow. Transient calculations using standard eddy-viscosity and

  11. On the surface manifestations of ship wakes.

    NASA Astrophysics Data System (ADS)

    Kapustin, Ivan; Ermakov, Stanislav; Lazareva, Tatyana

    2010-05-01

    During the field experiments on the Black Sea and on the Gorky Reservoir for the last 4 years the widening of the turbulent region generated by surface ships and the surface manifestations of the ship wakes has been studied. Measurements of currents in ship wakes have been made using ADCP (Acoustic Doppler Current Profiler) deployed from a motor boat. It was obtained that the time dependence of the wake width could be described approximately by a 0.4-power function, and the depth of wake remained constant at its initial stage, the latter allowed one to consider the wake widening as a one-dimensional process. We have developed a simple one-dimensional model of ship wake evolution using the semi-empirical theory of turbulence, and the initial stage of the wake widening (when neglecting dissipation) was described by the equation of turbulent energy balance with the pulse initial condition. We also observed in experiment mean circulating currents in the wake region resulting in the wind wave intensification on the boundaries of the wake region. It was shown that the later stage of the wake evolution is characterized by the presence of slicks bands on the edges of the wake. The slick bands formation is a result of the surfactants transport due to air bubbles in the turbulent wake and their compression by the mean currents. The work was supported by RFBR (projects 08-05-00634, 08-05-97011), the Program RAN Radiophysics, and the IPY THORPEX Project.

  12. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 ?m and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single turbine. The tip vortices entrain the high speed free-stream fluids and subsequently replenish the loss of momentum into the wake. Such a mechanism is greatly mitigated in the multiple-turbine scenarios. On-going analysis is to elucidate the generation, evolution and dissipation of the tip vortices in the various configurations.

  13. Generalized vortex-model for the inverse cascade of two-dimensional turbulence

    E-print Network

    Jan Friedrich; Rudolf Friedrich

    2013-11-11

    We generalize Kirchhoff's point vortex model of two-dimensional fluid motion to a rotor model which exhibits an inverse cascade by the formation of rotor clusters. A rotor is composed of two vortices with like-signed circulations glued together by an overdamped spring. The model is motivated by a treatment of the vorticity equation representing the vorticity field as a superposition of vortices with elliptic Gaussian shapes of variable widths, augmented by a suitable forcing mechanism. The rotor model opens up the way to discuss the energy transport in the inverse cascade on the basis of dynamical systems theory.

  14. Simulation of spray dispersion in a simplified heavy vehicle wake

    SciTech Connect

    Paschkewitz, J S

    2006-01-13

    Simulations of spray dispersion in a simplified tractor-trailer wake have been completed with the goal of obtaining a better understanding of how to mitigate this safety hazard. The Generic Conventional Model (GCM) for the tractor-trailer was used. The impact of aerodynamic drag reduction devices, specifically trailer-mounted base flaps, on the transport of spray in the vehicle wake was considered using the GCM. This analysis demonstrated that base flaps including a bottom plate may actually worsen motorist visibility because of the interaction of fine spray with large vortex flows in the wake. This work suggests that to use computational fluid dynamics (CFD) to design and evaluate spray mitigation strategies the jet or sheet breakup processes can be modeled using an array of injectors of small (< 0.1 mm) water droplets; however the choice of size distribution, injection locations, directions and velocities is largely unknown and requires further study. Possible containment strategies would include using flow structures to 'focus' particles into regions away from passing cars or surface treatments to capture small drops.

  15. On the characteristics of the wake meandering of a marine hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Kang, S.

    2013-12-01

    Recently Kang et al. (Journal of Fluid Mechanics, submitted) showed that the hub vortex breakdown occurring downstream of a hydrokinetic turbine plays an important role in enhancing wake meandering. In this study the hub vortex breakdown and wake meandering phenomena are further examined using large-eddy simulation (Kang et al., Advances in Water Resources, 2012). Specifically, the effect of the incoming turbulence, the presence of hub and nacelle geometries, and the tip speed ratio of the rotor on the wake meandering and the hub vortex breakdown are examined.

  16. Vortex soliton motion and steering

    NASA Astrophysics Data System (ADS)

    Christou, Jason; Tikhonenko, Vladimir; Kivshar, Yuri S.; Luther-Davies, Barry

    1996-10-01

    Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

  17. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence.

    PubMed

    Huang, Yongping; Zhang, Bin; Gao, Zenghui; Zhao, Guangpu; Duan, Zhichun

    2014-07-28

    The analytical expressions for the cross-spectral density and average intensity of Gaussian Schell-model (GSM) vortex beams propagating through oceanic turbulence are obtained by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of ocean water. The evolution behavior of GSM vortex beams through oceanic turbulence is studied in detail by numerical simulation. It is shown that the evolution behavior of coherent vortices and average intensity depends on the oceanic turbulence including the rate of dissipation of turbulent kinetic energy per unit mass of fluid, rate of dissipation of mean-square temperature, relative strength of temperature salinity fluctuations, and beam parameters including the spatial correlation length and topological charge of the beams, as well as the propagation distance. PMID:25089392

  18. Note on a novel vortex dynamics of spacetime as a heuristic model of the vacuum energy

    E-print Network

    Hirofumi Sakuma

    2014-09-09

    Vortex or spin is an important and ubiquitous form of motions existing in almost all scale ranges of the universe and its dynamics is still an active research theme in the classical as well as modern physics. As a novel attempt of such studies, here we show that a class of vortex dynamics generated by newly defined Clebsch parametrised (CP) flows parallel to geodesics exhibits an intriguing property that it is isomorphic to the spacetime structure itself on which it is defined in the sense that its energy-momentum conservation equation automatically assumes exactly the same form as the Einstein field equation. Implications of the existence of such a model is briefly discussed from the view point of a current hot cosmological interest on dark energy together with elusive concept on gravitational energy radiation.

  19. Wake patterns of the wings and tail of hovering hummingbirds

    NASA Astrophysics Data System (ADS)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    2009-05-01

    The flow fields of slowly flying bats and faster-flying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna’s hummingbirds ( Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more strongly resembles the bat model. Thus, pairs of unconnected vortex loops may be shared features of different animals during hovering and slow forward flight.

  20. Wake patterns of the wings and tail of hovering hummingbirds

    NASA Astrophysics Data System (ADS)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more strongly resembles the bat model. Thus, pairs of unconnected vortex loops may be shared features of different animals during hovering and slow forward flight.

  1. Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo P.; Troolin, Daniel R.; Lee, Seung-Jae; Arndt, R. E. A.; Sotiropoulos, Fotis

    2013-02-01

    Three-dimensional 3-component velocity measurements were made in the near wake region of a miniature 3-blade axial-flow turbine within a turbulent boundary layer. The model turbine was placed in an open channel flow and operated under subcritical conditions (Fr = 0.13). The spatial distribution of the basic flow statistics was obtained at various locations to render insights into the spatial features of the wake. Instantaneous and phase-averaged vortical structures were analyzed to get insights about their dynamics. The results showed a wake expansion proportional to the one-third power of the streamwise distance, within the first rotor diameter. Wake rotation was clearly identified up to a distance of roughly three rotor diameters. In particular, relatively high tangential velocity was observed near the wake core, but it was found to be nearly negligible at the turbine tip radius. In contrast, the radial velocity showed the opposite distribution, with higher radial velocity near the turbine tip and, due to symmetry, negligible at the rotor axis. Larger turbulence intensity was found above the hub height and near the turbine tip. Strong coherent tip vortices, visualized in terms of the instantaneous vorticity and the ? 2 criterion, were observed within the first rotor diameter downstream of the turbine. These structures, influenced by the velocity gradient in the boundary layer, appeared to loose their stability at distances greater than two rotor diameters. Hub vortices were also identified. Measurements did not exhibit significant tip-hub vortex interaction within the first rotor diameter.

  2. Mechanisms of perturbation growth and turbulence evolution in a columnar vortex

    NASA Astrophysics Data System (ADS)

    Pradeep, Dhoorjaty S.

    Some evolutionary mechanisms of coherent structures in turbulence are revealed by computations of (I) core dynamics (CD) in a vortex subjected to external straining; and (II) a vortex column embedded in finer-scaled turbulence. (I) CD evolves as a standing wave that grows when the vortex is externally strained and is damped when not. The instability results from resonance---at discrete wavelengths where the CD oscillation frequency matches the vortex's angular velocity---causing strain-vorticity locking. (II) Vortex-turbulence interaction---fundamental to turbulence modeling and to flows such as the aircraft wake---exhibits two distinct regions: (a) a vortex core with intense wave motions; and (b) a turbulent annulus containing coherent fine-scale filaments organized into dipoles. Mean momentum transport by the filaments causes an overshoot of the circulation profile, rendering the vortex centrifugally unstable, but having little effect on enhancing turbulence production. The turbulent vortex, remarkably, decays at a viscous rate: a consequence of core wave motions, which, though intense, generate little Reynolds stress. No self-similar state---assumed in theories---is found. Core fluctuation amplification---observed in vortex-turbulence interaction---is via transient growth: algebraic perturbation growth in a "stable" vortex. Energetically "optimal" perturbations---attaining up to a thousand-fold amplification at moderate vortex Reynolds numbers, Re ˜ 104---grow via two inviscid mechanisms: (a) two-dimensional perturbations with "positive-tilt" streamlines (contributing positive Reynolds stress) grow until the mean swirl transforms the streamlines to predominantly "negative tilt"; (b) three-dimensional perturbations grow through the tilting of radial vorticity to azimuthal, and concomitant vortex stretching. While the mean strain amplifies perturbations, mean vorticity promotes wave motions, which arrest growth. Strong transient growth of bending waves---through resonance with external filaments---explains their appearance on a vortex in a turbulent field. Nonlinear growth of optimal modes causes significant core distortion and, likely, core transition---hence rapid vortex decay---in high-Re practical flows, such as the aircraft trailing vortex. The failure of turbulence models to capture transient growth may be why predicted and experimentally-observed decay rates of turbulent vortices differ.

  3. Changes of K'arm'an vortex shedding from a cylinder due to weak fluid elasticity

    NASA Astrophysics Data System (ADS)

    Pipe, Chris

    2005-11-01

    Experiments on vortex shedding from a cylinder placed in uniform flows of dilute polymer solutions are reported for Reynolds numbers from 50 to 150. The fluids used were aqueous solutions of polyethylene oxide (PEO) and rheological characterization showed them to have a constant viscosity over a wide range of shear rates. Using the Zimm model relaxation time the Deborah numbers calculated for the cylinder wake are O(10-3). Parallel vortex shedding was induced with a combination of end-cylinders and end-plates. The resulting nominally two-dimensional cylinder wake was investigated using LDA, PIV, hydrogen bubble visualizations and hot film anemometry. The characteristics of the von K'arm'an instability - the critical Reynolds number, maximum perturbation amplitudes, etc. - are presented as a function of PEO concentration. It is shown that even small amounts of polymers, corresponding to low Deborah numbers, have a significant stabilizing effect which is only counteracted by shear-thinning at higher concentrations.

  4. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2012-05-01

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes ( x- z) and vertical span-wise planes ( y- z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and validation of numerical models.

  5. HART-II: Prediction of Blade-Vortex Interaction Loading

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

    2003-01-01

    During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

  6. Dynamics of non Newtonian vortex rings

    NASA Astrophysics Data System (ADS)

    Palacios-Morales, C. A.; Barbosa, C.; Zenit, R.

    2012-11-01

    The dynamics of formation and evolution of non-Newtonian vortex rings generated in a piston-cylinder arrangement are studied. The ratio of the piston displacement Lm to the internal cylinder diameter D0, the piston velocity Up and fluid properties determine the vortex properties and evolution. Measurements of the 2D velocity field were obtained with a PIV technique. The vortex circulation ? was computed considering a vortex identification scheme (Q criterion). Experiments with fluids with different rheological properties (shear thinning and viscoelastic) are presented. Our Newtonian experiments agree with previous investigations. For shear-thinning liquids, we observed that the final vortex circulation decreases with the fluid power index, n. We show that the total circulation ejected from the cylinder is reduced when the thinning property of the liquid increases; thus, the circulation confined inside the vortex ring, is reduced too. For vortex rings in a viscoelastic liquid, the formation of a `negative wake' (returning flow) and a second vortex ring with opposite whirl are observed. We show that the negative wake results from the high extension rates produced during the vortex formation.

  7. Contrail ice particle formation in the wakes of airliners - insights from in-situ measurements and modelling.

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Jeßberger, Philipp; Voigt, Christiane

    2013-04-01

    The role of soot and volatile aerosol in controlling ice particle formation in cirrus clouds is of global importance for climate. In particular, contrail studies may help to better understand the role of various aerosols in ice formation. Recent results suggest that contrails may contribute a large share to the climate impact of aviation. Hence, better knowledge on contrails is needed for developing a sustainable air transport system. So far, contrail models either specify the initial number of ice particles per flight distance or assume that the initial number of ice particles is determined by the number of soot particles emitted. Previous measurements were unable to decide conclusively whether the number of ice particles is directly related to the number of soot particles. Also information on the relative distribution of the mean ice particle concentration in the primary and secondary wakes is missing. Here, we analyze particle concentrations and trace gas mixing ratios, their dilution and their correlations in 2 min old contrails from four airliners of types A319, A340, B737, and A380 under similar meteorological conditions. The measurements were performed with the research aircraft Falcon above northern Germany during the CONCERT campaign in November 2008. The instrumentation and observation methods were described before (Voigt et al., 2010). The number of ice particles in contrails of the four airliners at cruise is determined from the measurements and a dilution model, and compared with estimated soot emissions. Dilution is derived from measured concentrations of NO, NOy, SO2 and HONO. The trace gas concentrations are largest in the primary wake and decrease with altitude in the secondary wake, consistent with emissions and aircraft-dependent dilution. In contrast, ice particle concentrations are slightly larger in the secondary wake than in the primary wake, and significantly larger than expected from dilution and emissions. The total particle concentration in the contrail is about twice and the particle concentration in the secondary wake about six times larger than expected from soot emissions. The global importance of these findings is illustrated by a simulations with the CoCiP model (Schumann, 2012). The model results show a 70 % increase in global radiative forcing for a doubled ice particle concentration in young contrails because of simultaneous increases in optical depth, age and cover of contrail cirrus. References Schumann, U.: A contrail cirrus prediction model, Geosci. Model Dev., 5, 543-580, 10.5194/gmd-5-543-2012, 2012. Voigt, C., Schumann, U., Jurkat, T., Schäuble, D., Schlager, H., Petzold, A., Gayet, J.-F., M. Krämer, Schneider, J., Borrmann, S., Schmale, J., Jessberger, P., Hamburger, T., Lichtenstern, M., Scheibe, M., Gourbeyre, C., Meyer, J., Kübbeler, M., Frey, W., Eichler, H., Butler, T., Lawrence, M. G., Holzäpfel, F., Arnold, F., Wendisch, M., Döpelheuer, A., Gottschaldt, K., Baumann, R., Zöger, M., Sölch, I., Rautenhaus, M., and Dörnbrack, A.: In-situ observations of young contrails - overview and selected results from the CONCERT campaign, Atmos. Chem. Phys., 10, 9039-9056, doi:10.5194/acp-10-9039-2010, 2010.

  8. Vortex Core and Its Effects on the Stability of Vortex Flow over Slender Conical Bodies

    E-print Network

    Liu, Feng

    Vortex Core and Its Effects on the Stability of Vortex Flow over Slender Conical Bodies Jinsheng rather than temporal. Using the simplified separation-vortex flow model of Legendre,14 Huang and Chow15

  9. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  10. Bifurcation structure and stability in models of opposite-signed vortex pairs

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, Paolo

    2014-06-01

    We employ a recently developed numerical method to examine in detail the properties of opposite-signed, translating vortex pairs. We first consider a uniform-vortex approximation; for this flow, previous studies have found essential differences between rotating and translating configurations, and have encountered numerical difficulties at the boundary between the two types of equilibria. Recently, Luzzatto-Fegiz and Williamson (2012 J. Fluid Mech. 706 323-50) used an imperfect velocity-impulse (IVI) diagram to show that the rotating pairs have a translating counterpart, arising from a bifurcation of the classical translating configurations. In this paper, we expand this IVI diagram to find two new branches of steady vortices, including antisymmetric pairs, as well as vortices without any symmetry. We next consider more realistic models for flows at moderate Reynolds number Re, by computing solution families based on a discretized Chaplygin-Lamb dipole. We find that, as the accuracy of the discretization improves, the bifurcated branches shrink rapidly, while the unstable portion of the basic solution family becomes smaller. These results indicate that the bifurcation structure of moderate-Re flows can be very different from that of solutions that use a single patch per vortex.

  11. Active twist rotor blade modelling using particle-wake aerodynamics and geometrically exact beam structural dynamics

    Microsoft Academic Search

    C. E. S. Cesnik; D. G. Opoku; F. Nitzsche; T. Cheng

    2004-01-01

    An active aeroelastic and aeroacoustic analysis of helicopter rotor systems is presented in this paper. It is a tightly coupled computational aeroelastic code that interfaces a particle-wake panel method code with an active nonlinear mixed variational intrinsic beam element code. In addition, a Ffowcs-Williams–Hawkings equation-based acoustic component is incorporated to complete the numerical implementation. The theory behind each component is

  12. Active twist rotor blade modelling using particle-wake aerodynamics and geometrically exact beam structural dynamics

    Microsoft Academic Search

    C. E. S. Cesnik; D. G. Opoku; F. Nitzsche; T. Cheng

    2004-01-01

    An active aeroelastic and aeroacoustic analysis of helicopter rotor systems is presented in this paper. It is a tightly coupled computational aeroelastic code that interfaces a particle-wake panel method code with an active nonlinear mixed variational intrinsic beam element code. In addition, a Ffowcs-Williams-Hawkings equation-based acoustic component is incorporated to complete the numerical implementation. The theory behind each component is

  13. Scanning laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1976-01-01

    A model that simulates the interaction of a laser-Doppler velocimeter with an aircraft wake flowfield is described. A hydrodynamic model is developed which represents the trailing vortex sheet and wind shear as discrete free vortices distributed over a two-dimensional grid. A sensor model is formulated for scanning both in range and in angle to produce a fan beam configuration without frequency translation. Output of this model is a frequency spectrum vs both range and angle. Once the spectrum is evaluated, simulations of the data analysis procedure are carried out. Patterns of various features of the signature are presented in range-elevation angle plots. The problem of locating the vortex centers is discussed as a pattern recognition problem and as a point target problem.

  14. Prediction of BVI noise patterns and correlation with wake interaction locations

    NASA Astrophysics Data System (ADS)

    Marcolini, Michael A.; Martin, Ruth M.; Lorber, Peter F.; Egolf, T. A.

    High resolution fluctuating airloads data were acquired during a test of a contemporary design United Technologies model rotor in the Duits-Nederlandse Windtunnel (DNW). The airloads are used as input to the noise prediction program WOPWOP, in order to predict the blade-vortex interaction (BVI) noise field on a large plane below the rotor. Trends of predicted advancing and retreating side BVI noise levels and directionality as functions of flight condition are presented. The measured airloads have been analyzed to determine the BVI locations on the blade surface, and are used to interpret the predicted BVI noise radiation patterns. Predicted BVI locations are obtained using the free wake model in CAMRAD/JA, the UTRC Generalized Forward Flight Distorted Wake Model, and the UTRC FREEWAKE analysis. These predicted BVI locations are compared with those obtained from the measured pressure data.

  15. Vortex model of the Darrieus turbine: an analytical and experimental study

    SciTech Connect

    Strickland, J.H.; Webster, B.T.; Nguyen, T.

    1980-02-01

    A preliminary aerodynamic performance prediction model has been constructed for the Darrieus turbine using a vortex lattice method of analysis. A series of experiments were conducted for the express purpose of validating the analytical model. These experiments were conducted on a series of two dimensional rotor configurations which were towed in a large tank of water. The use of water as a working fluid was intended to facilitate both flow visualization and the ability to measure aerodynamic blade forces while allowing operation at sufficiently high Reynolds numbers. The primary purpose of this research was to allow reasonable predictions of aerodynamic blade forces and moments to be made.

  16. Potentials and the vortex solutions in the $CP^N$ Skyrme-Faddeev model

    E-print Network

    Yuki Amari; Pawel Klimas; Nobuyuki Sawado; Yuta Tamaki

    2015-04-11

    The extended Skyrme-Faddeev model possesses vortex solutions in a (3+1) dimensional Minkowski space-time with target space $CP^N$. They have finite energy per unit of length and contain waves propagating along vortices with the speed of light. We introduce various types of the potentials which correspond with holomorphic solutions of the integrable sector and also with several numerical solutions outside of this sector. The presented solutions constitute a strong indication that the current model contains large class of solutions with much wider range of coupling constants than the previously known exact solution.

  17. Gravitational wakes in Saturn's rings

    Microsoft Academic Search

    H. Salo

    1992-01-01

    Numerical simulations, including both gravitational interactions and dissipative impacts between particles, are used here to study realistic models for Saturn's rings. For the C-ring there is no instability, but for the B- and A-rings gravitational wakes form. In the A-ring these wakes are so strong that particles trapped in them from meter-sized aggregate particles, which themselves lead to further instability.

  18. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  19. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  20. The 3-D wake measurements near a hovering rotor for determining profile and induced drag

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Schuler, C. A.; Branum, L.; Wu, J. C.

    1995-01-01

    Primarily an experimental effort, this study focuses on the velocity and vorticity fields in the near wake of a hovering rotor. Drag terminology is reviewed, and the theory for separately determining the profile-and-induced-drag components from wake quantities is introduced. Instantaneous visualizations of the flow field are used to center the laser velocimeter (LV) measurements on the vortex core and to assess the extent of the positional mandering of the trailing vortex. Velocity profiles obtained at different rotor speeds and distances behind the rotor blade clearly indicate the position, size, and rate of movement of the wake sheet and the core of the trailing vortex. The results also show the distribution of vorticity along the wake sheet and within the trailing vortex.

  1. Modelling vortex-induced fluidstructure interaction BY HAYM BENAROYA

    E-print Network

    Benaroya, Haym

    an attractive alternative to traditional offshore platforms. Traditional platforms resist forces due to current-based, reduced-order, analytical models of nonlinear fluid­structure interactions associated with offshore, and the dynamics of a compliant offshore structure. We begin with a sampling of the literature available on both

  2. Effect of the number of blades on propeller wake evolution

    Microsoft Academic Search

    Mario Felli; Giulio Guj; Roberto Camussi

    2008-01-01

    The effect of the number of blades on wake evolution was investigated on three propellers having the same blade geometry but\\u000a different numbers of blades. The experiments concerned velocity measurements along nine transversal planes of the wake by\\u000a LDV phase-sampling techniques. The study was performed with all the propellers having the same tip vortex intensity. In addition,\\u000a high-speed visualizations were

  3. Vortex Model Based Adaptive Flight Control Using Synthetic Jets

    Microsoft Academic Search

    Jonathan A. Muse; Andrew A. Tchieu; Ali T. Kutayz; Rajeev Chandramohan; Anthony J. Calise; Anthony Leonard

    A simple low-order model is derived for developing ?ight control laws for controlling the longitudinal dynamics of an aircraft using synthetic jet type actuators. Bi-directional changes in the pitching moment over a range of angles of attack are efiected by controllable, nominally-symmetric trapped vorticity concentrations on both the suction and pressure surfaces near the trailing edge. Actuation is applied on

  4. Analysis of the Vortex-Decay Process in the K'arm'an Street

    NASA Astrophysics Data System (ADS)

    Ponta, Fernando

    2007-11-01

    In this talk we shall explore the effect of viscosity upon the vorticity distribution and rate of decay of vortex cores in the K'arm'an vortex street behind a circular cylinder. We used direct numerical simulation data, which we contrasted against well-known experimental measurements. By decomposing the incompressible velocity field in its solenoidal and harmonic components, we identified the eddy structures associated with the formation, shedding and rearrangement of the vortices into the K'arm'an street. We then follow their evolution during the subsequent decay process. This allowed us to extend the conclusions of the partially-viscous model of Hooker (1936), who assumed several simplifying hypothesis: initial infinite-length filament-vortex wake, circular Lamb vortices of equal age at subsequent times, and no overlapping of the vortex cores. We found that the vortex cores exhibit a Gaussian vorticity profile, and a vorticity-stream function scatter-plot clearly consistent with the Lamb-vortex model. The vorticity peak on the core decays downstream with the systematic hyperbolic law given by Lamb's solution, with a rate of decay determined by the amount of circulation contained into the core at the early stages of the street formation.

  5. Theoretical model for angular grating-based integrated optical vortex beam emitters.

    PubMed

    Zhu, Jiangbo; Cai, Xinlun; Chen, Yujie; Yu, Siyuan

    2013-04-15

    We develop a theoretical model for the recently reported integrated optical vortex beam emitters that incorporate angular gratings in microring resonators. Using azimuthally polarized dipole oscillators to represent emissions scattered from the grating elements that are located along the inner wall of the ring waveguide, we obtain expressions for far-field components under the paraxial approximation. The results show that the emission is of the form of cylindrical vector Bessel beams with exactly defined optical orbital angular momentum, and can have azimuthal, radial, and longitudinal field components after propagation. The calculation results for field distributions in both near and far zone agree well with the experimental results. PMID:23595479

  6. Prediction of subsonic vortex shedding from forebodies with chines

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1990-01-01

    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines.

  7. Interactions between a Submesoscale Anticyclonic Vortex and a Front* CE DRIC CHAVANNE AND PIERRE FLAMENT

    E-print Network

    vortex was observed by high-frequency Doppler radio current meters and satellite radiometers. The vortex Current, and ocean eddies are generated by wake instability (Patzert 1969; Lumpkin 1998; Flament et al an extremum of 21.7f. The flow was ageostrophic near the center and around the periphery of the vortex

  8. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    ... to wind flow. These MISR images were captured on June 6, 2001, during Terra orbit 7808. The entire vortex street can be seen in the ... Other formats available at JPL June 6, 2001 - Marine stratocumulus clouds form vortex streets. ...

  9. Topological Degeneracy and Vortex Manipulation in Kitaev's Honeycomb Model

    NASA Astrophysics Data System (ADS)

    Kells, G.; Bolukbasi, A. T.; Lahtinen, V.; Slingerland, J. K.; Pachos, J. K.; Vala, J.

    2008-12-01

    The classification of loop symmetries in Kitaev’s honeycomb lattice model provides a natural framework to study the Abelian topological degeneracy. We derive a perturbative low-energy effective Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations. Using this form we demonstrate at what order the system’s topological degeneracy is lifted by finite size effects and note that in the thermodynamic limit it is robust to all orders. Further, we demonstrate that the loop symmetries themselves correspond to the creation, propagation, and annihilation of fermions. We note that these fermions, made from pairs of vortices, can be moved with no additional energy cost.

  10. Paper BL3.199 EWEC 2007 Wind Energy Conference and Exhibition BL3.199 Wake Modelling for intermediate and large wind farms

    E-print Network

    Paper BL3.199 EWEC 2007 Wind Energy Conference and Exhibition 1 BL3.199 Wake Modelling for intermediate and large wind farms Ole Rathmann1, 3 , Sten Frandsen1 , and Rebecca Barthelmie2, 1 1 Wind Energy, which is needed if the model should be used in connection with general wind resource software. 2. BASIC

  11. Dynamic wake prediction and visualization with uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)

    2005-01-01

    A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.

  12. Comment on “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation” [Phys. Fluids 26, 065105 (2014)

    SciTech Connect

    Hietala, Niklas, E-mail: niklas.hietala@aalto.fi; Hänninen, Risto [Low Temperature Laboratory, O.V. Lounasmaa Laboratory, Aalto University, FI-00076 Aalto (Finland)

    2014-11-15

    Van Gorder considers a formulation of the local induction approximation, which allows the vortex to move in the direction of the reference axis [“General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)]. However, in his analytical and numerical study he does not use it. A mistake in the torsion of a helical vortex is also corrected.

  13. On vortex shedding from low aspect ratio dual step cylinders

    NASA Astrophysics Data System (ADS)

    Morton, C.; Yarusevych, S.

    2014-01-01

    A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2?L/D?3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1?L/D?3 at ReD=2100 and 2?L/D?3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.

  14. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  15. Vortex-dominated flow with viscous core structure

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Krause, E.; Ting, L.

    1985-01-01

    Recent theoretical studies of vortex-dominated flows are reviewed with special emphasis on those for which the viscous core structures play an important role. The problems to be described are: The interaction and merging of two-dimensional vortices and of curved vortex filaments, the roll-up and decay of trailing far wakes, and the initiation of vortex breakdown. The analysis utilizes finite-difference solutions of the Navier-Stokes equations complemented by asymptotic expansion techniques.

  16. Evolution of vortex knots

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.; Samuels, David C.; Barenghi, Carlo F.

    1999-07-01

    For the first time since Lord Kelvin's original conjectures of 1875 we address and study the time evolution of vortex knots in the context of the Euler equations. The vortex knot is given by a thin vortex filament in the shape of a torus knot [script T]p,q (p>1, q>1; p, q co-prime integers). The time evolution is studied numerically by using the Biot Savart (BS) induction law and the localized induction approximation (LIA) equation. Results obtained using the two methods are compared to each other and to the analytic stability analysis of Ricca (1993, 1995). The most interesting finding is that thin vortex knots which are unstable under the LIA have a greatly extended lifetime when the BS law is used. These results provide useful information for modelling complex structures by using elementary vortex knots.

  17. High-Resolution Modeling of Typhoon Morakot (2009): Vortex Rossby Waves and Their Role in Extreme Precipitation over Taiwan

    E-print Network

    Xue, Ming

    2009-01-01

    High-Resolution Modeling of Typhoon Morakot (2009): Vortex Rossby Waves and Their Role in Extreme model, the Advanced Regional Prediction System (ARPS), was used to simulate Typhoon Morakot (2009 of the typhoon was investigated, emphasizing its associated deep convection, the development of inner rainbands

  18. Absolute instabilities and self-sustained oscillations in the wake of circular cylinders

    SciTech Connect

    Triantafyllou, G.S.; Kupfer, K.; Bers, A.

    1987-10-26

    The Karman vortex street in the wake of a circular cylinder is shown to be due to an absolute instability of the flow in the near wake. A new means of instability analysis is used, involving mappings from the complex k plane to the complex ..omega.. plane.

  19. Rotating-blade vortex noise

    NASA Technical Reports Server (NTRS)

    Scheiman, J.; Letko, W.; Shivers, J. P.; Hilton, D. A.

    1973-01-01

    An experimental investigation has been made of the Langley full-scale tunnel and outdoors to investigate some of the characteristics of vortex noise generated on a rotating-blade system. Acoustic measurements were made at several microphone positions for two different blade sections with several tip shapes and spoiler configurations. The blades were operated only at zero lift at each radial station, both for operating in their own wake and for operating with the wake blown downstream. Rotors with cylindrical blades generally created more noise throughout the noise spectrum than the rotor with NACA 0012 blades. Blowing the shed wake from the rotor with cylindrical blades did not have an appreciable effect on the frequency-amplitude spectrum. The tip shape changes had very little effect on the frequency-amplitude spectrum of the noise. Spoilers applied to the rotor with NACA 0012 blades increased the amplitude of the spectrum and decreased the number of harmonics of blade passage frequency.

  20. Dynamics of Tab-Wake Vortices

    NASA Astrophysics Data System (ADS)

    Yang, W.; Meng, H.

    1999-11-01

    The dynamics of vortex structures in the wake of surface-mounted trapezoidal tab at Re=600 based on tab height was studied in detail using time-series, 2D particle image velocimetry. From a total of over 20,000 PIV realizations acquired in x-y, x-z, and y-z planes, we successfully identified vortex structures using the methods proposed by Jeong and Hussain (JFM, vol 285, 1995) and proposed by Chong, Perry, and Cantwell (Phys. Fluids A2, 1990), and cross-checked them with conventional velocity subtraction. Similar to prior measurement at Re=2080, secondary vortices, reverse vortices, and tertiary vortices were observed frequently in the present study. Higher PIV spatial resolution and higher temporal resolution (relative to the flow periodicity) allow us to investigate these dynamical phenomena in much greater detail and confidence. Furthermore, y-z measurements demonstrate that hairpin vortex legs, taking the shape of streamwise vortices, pair with their neighbor counterparts while traveling downstream, and possibly merge with each other. Circulation distribution of the hairpin vortex heads along the x direction shows that it increases at the very near-tab region with the help of pressure induced counter-rotating vortex pairs, but gradually decreases very slowly with the increasing downstream distance, indicating that hairpin vortices are long-lived vortex structures.

  1. Possible Implications of a Vortex Gas Model and Self-Similarity for Tornadogenesis and Maintenance

    E-print Network

    Dokken, Doug; Shvartsman, Misha; B?l\\'\\ik, Pavel; Potvin, Corey; Dahl, Brittany; McGover, Amy

    2014-01-01

    We describe tornado genesis and maintenance using the 3-dimensional vortex gas model presented in Chorin (1994). High-energy vortices with negative temperature in the sense of Onsager (1949) play an important role in the model. We speculate that the formation of high-temperature vortices is related to the helicity inherited as they form or tilt into the vertical. We also exploit the notion of self-similarity to justify power laws derived from observations of weak and strong tornadoes presented in Cai (2005), Wurman and Gill (2000), and Wurman and Alexander (2005). Analysis of a Bryan Cloud Model (CM1) simulation of a tornadic supercell reveals scaling consistent with the observational studies.

  2. Vortex structure for flow over a heaving cylinder with a flexible tail

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Pan, C.; Wang, J. J.

    2014-02-01

    Hydrogen-bubble visualization technique was applied in the investigation of vortex structure for flow over a heaving cylinder attached with a flexible tail along the wake central-line in a water channel. Wake structures have been mapped in the flexible tail length-frequency ( L/D, St) phase space with the flexible tail length of L/D = 2-5 and the oscillation Strouhal number of St = 0-0.34. Four wake modes were identified as: (1) 2S_Kármán vortex mode—a Kármán-vortex-like structure with two single vortices formed per cycle in the near wake; (2) 2S_reverse Kármán vortex mode—a reverse Kármán-vortex-like structure with two single vortices per cycle; (3) 2P mode—a bifurcated vortex pair structure with two pairs of vortices per cycle; (4) P + S mode—an unstable vortex structure with three vortices per cycle as a transient mode. Moreover, the typical case of each wake mode was further examined by particle image velocimetry, and the evolutions of vortex structures for the four wake modes were studied in detail.

  3. Wake measurements around operating wind turbines

    SciTech Connect

    Baker, R.W.; Katen, P.C.; Walker, S.N.

    1985-05-01

    Researchers at Oregon State University have conducted wind measurement programs to describe the wake behind large horizontal axis turbines at Goodnoe Hills, Washington, (MOD-2), and behind the FloWind vertical axis wind turbine near Ellenburg, Washington. Wake measurements were taken using portable kite anemometers as well as fixed place anemometers under several atmospheric stability conditions and turbine operating conditions. Centerline hub height (midrotor) measurements were taken downwind and crosswind from 3-9 diameters. These wake programs are discussed and the velocity deficits measured are compared to the estimated deficits calculated from wake models.

  4. Vortex Noise Reductions from a Flexible Fiber Model of Owl Down

    NASA Astrophysics Data System (ADS)

    Jaworski, Justin; Peake, Nigel

    2013-11-01

    Many species of owl rely on specialized plumage to reduce their self-noise levels and enable hunting in acoustic stealth. In contrast to the leading-edge comb and compliant trailing-edge fringe attributes of owls, the aeroacoustic impact of the fluffy down material on the upper wing surface remains largely speculative as a means to eliminate aerodynamic noise across a broad range of frequencies. The down is presently idealized as a collection of independent and rigid fibers, which emerge perpendicularly from a rigid plane and are allowed to rotate under elastic restraint. Noise generation from an isolated fiber is effected by its interaction with a point vortex, whose motion is induced by the presence of the rigid half-plane and the elastically-restrained fiber. Numerical evaluations of the vortex path and acoustic signature furnish a comparison with known analytical results for stationary fibers, and results from this primitive model seek to address how aerodynamic noise could be mitigated by flexible fibers.

  5. Vortex crystals in fluids

    NASA Astrophysics Data System (ADS)

    Barry, Anna M.

    It is common in geophysical flows to observe localized regions of enhanced vorticity. This observation can be used to derive model equations to describe the motion and interaction of these localized regions, or vortices, and which are simpler than the original PDEs. The best known vortex model is derived from the incompressible Euler equations, and treats vortices as points in the plane. A large part of this dissertation utilizes this particular model, but we also survey other point vortex and weakly viscous models. The main focus of this thesis is an object known as the vortex crystal. These remarkable configurations of vortices maintain their basic shapes for long times, while perhaps rotating or translating rigidly in space. We study existence and stability of families of vortex crystals in the special case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stability. Whenever a critical point of this function is nondegenerate, we prove that the orbit can be continued via the Implicit Function Theorem, and its linear stability is determined by the eigenvalues of the Hessian matrix of the potential. For general N, we find at least three distinct families of critical points, one of which continues to a linearly stable class of vortex crystals. Because the stable family is most likely to be observed in nature, we study it extensively. Continuation methods allow us to follow these critical points to nonzero weak vortex strength and investigate stability and bifurcations. In the large N limit of this family, we prove that there is a unique one parameter family of distributions which minimize a "generalized" potential. Finally, we use point vortex and weakly viscous vortex models to analyze vortex crystal configurations observed in hurricane eyes and related numerical simulations. We find striking numerical and analytical agreement, thus validating the use of simplified vortex models to describe geophysical phenomena.

  6. Wake dynamics and hydrodynamic forces on a perforated circular plate in cross-flow

    NASA Astrophysics Data System (ADS)

    Huera-Huarte, Francisco

    2012-11-01

    The cross-flow past a perforated plate is known to become steady, if certain critical porosity or number of holes is imposed to the plate. This happens because the air bleed in the near wake, disrupts the vortex street formation behind the plate, and leads to suppression of the near wake shear layer interaction, forcing the instabilities to take place further away from the disk. This phenomenon is accompanied by a drag reduction. It is not clear however, what is the effect of the porosity distribution used in the plate, neither the effect of the angle of attack on the wake dynamics and the force coefficients. The experimental apparatus consists of an acrylic model in which different number and configuration of holes can be used. The disk hangs upside down from a 2-axis balance, in a way that it is being exposed to a uniform water current generated in a free surface channel. Angles of attack, porosity and its distribution on the disk, can be easily changed. Measurements of force coefficients for different angles of attack, and porosities have been taken. Digital Particle Image Velocimetry (DPIV) has been used to quantify the wake and to investigate the flow structures past the disk. Funding provided by the Spanish Ministry of Science through grant DPI2009-07104 is acknowledged.

  7. American Institute of Aeronautics and Astronautics Effects of Wake Vortices on Commercial Aircraft

    E-print Network

    Alonso, Juan J.

    Aircraft T. Economon+ University of Notre Dame, Notre Dame, Indiana, 46556 Commercial aircraft are becoming a trailing vortex which can linger behind the aircraft for miles. If a following aircraft penetrates the wake of roll which a penetrating aircraft will experience when passing through a vortex. In this study

  8. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn: Preprint

    SciTech Connect

    Ning, S. A.; Hayman, G.; Damiani, R.; Jonkman, J.

    2014-12-01

    Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of users and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.

  9. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  10. Experimental and CFD analysis for prediction of vortex and swirl angle in the pump sump station model

    NASA Astrophysics Data System (ADS)

    Kim, C. G.; Kim, B. H.; Bang, B. H.; Lee, Y. H.

    2015-01-01

    Sump model testing is mainly used to check flow conditions around the intake structure. In present paper, numerical simulation with SST turbulence model for a scaled sump model was carried out with air entrainment and two phases for prediction of locations of vortex generation. The sump model used for the CFD and experimental analysis was scaled down by a ratio of 1:10. The experiment was performed in Korea Maritime and Ocean University (KMOU) and the flow conditions around pump's intake structure were investigated. In this study, uniformity of flow distribution in the pump intake channel was examined to find out the specific causes of vortex occurrence. Furthermore, the effectiveness of an Anti Vortex Device (AVD) to suppress the vortex occurrence in a single intake pump sump model was examined. CFD and experimental analysis carried out with and without AVDs produced very similar results. Without the AVDs, the maximum swirl angle obtained for experimental and CFD analysis were 10.9 and 11.3 degree respectively. Similarly, with AVDs, the maximum swirl angle obtained for experimental and CFD analysis was 2.7 and 0.2 degree respectively. So, with reference to the ANSI/HI 98 standard that permits a maximum swirl angle of 5 degree, the use of AVDs in experimental and CFD analysis produced very desirable results which is well within the limit.

  11. Wing tip vortex control using synthetic jets

    Microsoft Academic Search

    P. Margaris; I. Gursul

    An experimental investigation was conducted to study the effect of synthetic jet (oscillatory, zero net mass flow jet) blowing near the wing tip, as a means of diffusing the trailing vortex. Velocity measurements were taken, using a Particle Image Velocimetry system, around the tip and in the near wake of a rectangular wing, which was equipped with several blowing slots.

  12. Coalescing Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  13. Flux noise resulting from vortex avalanches using a simple kinetic model

    SciTech Connect

    Mohler, G.; Stroud, D. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)] [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    1999-10-01

    We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of frequencies, we find that the flux noise S{sub {Phi}}({omega}) has a power-law dependence on frequency, S{sub {Phi}}({omega}){approximately}{omega}{sup {minus}s}, with s{approximately}1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculated S{sub {Phi}}({omega}) has a high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations between calculation and experiment are attributed mostly to uncertainties in the measured critical current densities and pinning strengths of the experimental samples. {copyright} {ital 1999} {ital The American Physical Society}

  14. Flux noise resulting from vortex avalanches using a simple kinetic model

    NASA Astrophysics Data System (ADS)

    Mohler, G.; Stroud, D.

    1999-10-01

    We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of frequencies, we find that the flux noise S?(?) has a power-law dependence on frequency, S?(?)~?-s, with s~1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculated S?(?) has a high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations between calculation and experiment are attributed mostly to uncertainties in the measured critical current densities and pinning strengths of the experimental samples.

  15. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration.

    PubMed

    Le Dantec, Y; Hache, G; Guilloux, J P; Guiard, B P; David, D J; Adrien, J; Escourrou, P

    2014-08-22

    Sleep/wake disorders are frequently associated with anxiety and depression and to elevated levels of cortisol. Even though these alterations are increasingly sought in animal models, no study has investigated the specific effects of chronic corticosterone (CORT) administration on sleep. We characterized sleep/wake disorders in a neuroendocrine mouse model of anxiety/depression, based on chronic CORT administration in the drinking water (35 ?g/ml for 4 weeks, "CORT model"). The CORT model was markedly affected during the dark phase by non-rapid eye movement sleep (NREM) increase without consistent alteration of rapid eye movement (REM) sleep. Total sleep duration (SD) and sleep efficiency (SE) increased concomitantly during both the 24h and the dark phase, due to the increase in the number of NREM sleep episodes without a change in their mean duration. Conversely, the total duration of wake decreased due to a decrease in the mean duration of wake episodes despite an increase in their number. These results reflect hypersomnia by intrusion of NREM sleep during the active period as well as a decrease in sleep/wake continuity. In addition, NREM sleep was lighter, with an increased electroencephalogram (EEG) theta activity. With regard to REM sleep, the number and the duration of episodes decreased, specifically during the first part of the light period. REM and NREM sleep changes correlated respectively with the anxiety and the anxiety/depressive-like phenotypes, supporting the notion that studying sleep could be of predictive value for altered emotional behavior. The chronic CORT model in mice that displays hallmark characteristics of anxiety and depression provides an insight into understanding the changes in overall sleep architecture that occur under pathological conditions. PMID:24909899

  16. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2013-01-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.

  17. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2012-12-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.

  18. Meander of a fin trailing vortex and the origin of its turbulence

    Microsoft Academic Search

    Steven J. Beresh; John F. Henfling; Russell W. Spillers

    2010-01-01

    The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex.

  19. Meander of a fin trailing vortex and the origin of its turbulence

    Microsoft Academic Search

    Steven J. BereshJohn; John F. Henfling; Russell W. Spillers

    2010-01-01

    The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using\\u000a stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal\\u000a that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced\\u000a external to the vortex.

  20. Vortex atoms and vortons

    NASA Astrophysics Data System (ADS)

    Alkemade, Alfons Johannes Quirinus

    1994-04-01

    The thesis deals with two topics which are related to the concept of vorticity. Therefore, it consists of two parts. The 'vortex-atom-part' shows the development of a theory of matter, introduced by the English scientist Lord Kelvin in 1867, which would attract the attention of several 19th century scientists up to the beginning of our century. Kelvin's 'vortex atom theory' can be put into the context of several developments in 19th century physics, especially those with regard to theories of matter and the still developing theory of rotational flow or vorticity. The second part, the 'vorton-part', is an account of the theoretical foundation and the application to numerical simulations of the vorton method. This is one of the many vortex methods, applied nowadays to the (numerical) study of flow phenomena. Vortex methods are based on the fact that vortices play important roles in fluid flows and can be regarded as important applications of the knowledge on vortex motion which has been gathered in the past centuries and of the surging use of numerical techniques in fluid mechanics. The vorton method will be investigated by means of numerical simulation of several test cases. Most of these were already studied by the scientists who occupied themselves with the elaboration of the vortex atom model or who were just incited to research on vortex motion by this model. However, their investigations were largely hindered by mathematical difficulties. Today, the use of vortex methods as computational tools may provide more insight into the kinematics and dynamics of vortex structures.

  1. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  2. Wind turbine wake aerodynamics

    Microsoft Academic Search

    L. J. Vermeer; J. N. Sørensen; A. Crespo

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions, thereby excluding wind shear, wind speed and rotor setting changes and yawed

  3. Tunable pinning of a superconducting vortex by a magnetic vortex

    NASA Astrophysics Data System (ADS)

    Carneiro, Gilson

    2007-03-01

    The interaction between a straight vortex line in a superconducting film and a soft magnetic nanodisk in the magnetic vortex state in the presence of a magnetic field applied parallel to the film surfaces is studied theoretically. The superconductor is described by London theory [G. Carneiro, Phys. Rev. B 69, 214504 (2004)] and the nanodisk by the Landau-Lifshitz continuum theory of magnetism [L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935); Collected Papers of L. D. Landau (Gordon and Breach, New York, 1967), p. 101], using the approximation known as the rigid vortex model. Pinning of the vortex line by the nanodisk is found to result, predominantly, from the interaction between the vortex line and the changes in the nanodisk magnetization induced by the magnetic field of the vortex line and applied field. In the context of the rigid vortex model, these changes result from the displacement of the magnetic vortex. This displacement is calculated analytically by minimizing the energy, and the pinning potential is obtained. The applied field can tune the pinning potential by controlling the displacement of the magnetic vortex. The nanodisk magnetization curve is predicted to change in the presence of the vortex line.

  4. Lift and wakes of flying snakes

    NASA Astrophysics Data System (ADS)

    Krishnan, Anush; Socha, John J.; Vlachos, Pavlos P.; Barba, L. A.

    2014-03-01

    Flying snakes use a unique method of aerial locomotion: they jump from tree branches, flatten their bodies, and undulate through the air to produce a glide. The shape of their body cross-section during the glide plays an important role in generating lift. This paper presents a computational investigation of the aerodynamics of the cross-sectional shape. Two-dimensional simulations of incompressible flow past the anatomically correct cross-section of the species Chrysopelea paradisi show that a significant enhancement in lift appears at a 35° angle of attack, above Reynolds numbers 2000. Previous experiments on physical models also obtained an increased lift, at the same angle of attack. The flow is inherently three-dimensional in physical experiments, due to fluid instabilities, and it is thus intriguing that the enhanced lift also appears in the two-dimensional simulations. The simulations point to the lift enhancement arising from the early separation of the boundary layer on the dorsal surface of the snake profile, without stall. The separated shear layer rolls up and interacts with secondary vorticity in the near-wake, inducing the primary vortex to remain closer to the body and thus cause enhanced suction, resulting in higher lift.

  5. Modeling of Vortex Flows in Direct Current (DC) Electric Arc Furnace with Different Bottom Electrode Positions

    NASA Astrophysics Data System (ADS)

    Kazak, Oleg

    2013-10-01

    This article is devoted to the numerical modeling of electrovortex and convection flows in the direct current (DC) electric arc furnace with a different position of the bottom electrode. The electromagnetic, temperature, and hydrodynamic distribution parameters are given. The shear stress on the fettle area is offered as a criterion for the estimation of vortex flow influence on the increased wearing of the fettle. It is shown that lifting the bottom electrode above the fettle surface at the electrode radius leads to the decrease of shear stress on the fettle area by 30 pct. Putting the bottom electrode lower than the fettle surface by the distance equal to the electrode radius and its expanding by the same distance reduces the stress by 10 pct.

  6. One-loop corrections to the string tension of the vortex in the Abelian Higgs model

    SciTech Connect

    Baacke, Jurgen; Kevlishvili, Nina [Fachbereich Physik, Technische Universitaet Dortmund. D-44221 Dortmund (Germany); Dipartimento di Fisica, Universita degli studi di Ferrara, I-44100 Ferrara (Italy); INFN, Sezione di Ferrara, I-44100 Ferrara, Italy, (Italy); and Andronikashvili Institute of Physics, GAS, 0177 Tbilisi (Georgia)

    2008-10-15

    We present an exact numerical computation of the one-loop correction of the string tension for the Nielsen-Olesen vortex in the Abelian Higgs model. The computation proceeds via the computation of the Euclidean Green's function for the gauge, Higgs, and Faddeev-Popov fields using mode functions, and taking the appropriate trace. Renormalization is an essential part of this computation. It is done by removing leading order contributions from the numerical results so as to make these finite, and to add the divergent parts back, after suitable regularization and renormalization. We encounter and solve some problems which are specific to gauge theories and topological solutions. The corrections to the energy are found to be sizable, but still smaller than the classical energy as long as g{sup 2} is smaller than unity.

  7. Direct Simulation and Theoretical Study of Sub- and Supersonic Wakes

    NASA Astrophysics Data System (ADS)

    Hickey, Jean-Pierre

    Wakes are constitutive components of engineering, aeronautical and geophysical flows. Despite their canonical nature, many fundamental questions surrounding wakes remain unanswered. The present work studies the nature of archetypal planar splitter-plate wakes in the sub- and supersonic regimes from a theoretical as well as a numerical perspective. A highly-parallelizable computational fluid dynamic solver was developed, from scratch, for the very-large scale direct numerical simulations of high-speed free shear flows. Wakes maintain a near indelible memory of their origins; thus, changes to the state of the flow on the generating body lead to multiple self-similar states in the far wake. To understand the source of the lack of universality, three distinct wake evolution scenarios are investigated in the incompressible limit: the Kelvin-Helmholtz transition, the bypass transition in an asymmetric wake and the initially turbulent wake. The multiplicity of self-similar states is the result of a plurality of far wake structural organizations, which maintains the memory of the flow. The structural organization is predicated on the presence or absence of near wake anti-symmetric perturbations (as a result of shedding, instability modes and/or trailing edge receptivity). The plurality of large-scale structural organization contrasts with the commonality observed in the mid-sized structures, which are dominated by inclined vortical rods, and not, as previously assumed, by horseshoe structures. The compressibility effects are a direct function of the maximal velocity defect in the wake and are therefore only important in the transitional region - the far wake having an essentially incompressible character. The compressibility simultaneously modifies the growth rate and wavelength of the primary instability mode with a concomitant effect on the emerging transitional structures. As a direct result, the spanwise rollers have an increasing ellipticity and cross-wake domain of influence with the increasing Mach number of the wake. Consequently, structural pairing - a key feature of wake transition - is inhibited at a critical Mach number, which greatly modifies the transitional dynamics. In idealized wakes, the increased stability caused by the compressibility effects leads to a vortex breakdown of secondary structures prior to the full transition of the principal mode. These findings open the door to novel mixing enhancement and flow control possibilities in the high-speed wake transition. Keywords: FLUID DYNAMICS, DIRECT NUMERICAL SIMULATIONS, FREE SHEAR FLOWS, TURBULENCE, NUMERICAL METHODS

  8. Sensitivities of eyewall replacement cycle to model physics, vortex structure, and background winds in numerical simulations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenduo; Zhu, Ping

    2015-01-01

    series of sensitivity experiments by the Weather Research and Forecasting (WRF) model is used to investigate the impact of model physics, vortex axisymmetric radial structure, and background wind on secondary eyewall formation (SEF) and eyewall replacement cycle (ERC) in three-dimensional full physics numerical simulations. It is found that the vertical turbulent mixing parameterization can substantially affect the concentric ring structure of tangential wind associated with SEF through a complicated interaction among eyewall and outer rainband heating, radial inflow in the boundary layer, surface layer processes, and shallow convection in the moat. Large snow terminal velocity can substantially change the vertical distribution of eyewall diabatic heating to result in a strong radial inflow in the boundary layer, and thus, favors the development of shallow convection in the moat allowing the outer rainband convection to move closer to the inner eyewall, which may leave little room both temporally and spatially for a full development of a secondary maximum of tangential wind. Small radius of maximum wind (RMW) of a vortex and small potential vorticity (PV) skirt outside the RMW tend to generate double-eyewall replacement and may lead to an ERC without a clean secondary concentric maximum of tangential wind. A sufficiently large background wind can smooth out an ERC that would otherwise occur without background wind for a vortex with a small or moderate PV skirt. However, background wind does not appear to have an impact on an ERC if the vortex has a sufficiently large PV skirt.

  9. Numerical investigations on the wake structures of micro-ramp and micro-vanes

    NASA Astrophysics Data System (ADS)

    DaWen, Xue; ZhiHua, Chen; XiaoHai, Jiang; BaoChun, Fan

    2014-02-01

    Based on large eddy simulation, combined with the high-order WENO (weighted essentially non-oscillatory schemes) scheme, immersed boundary method and adaptive mesh refinement technique, the supersonic flow past a wall-mounted micro-ramp and two micro-vanes have been simulated. The different wake structures are presented and discussed. Our numerical results showed that wake structures behind the micro-ramp are more complicated, including ring-like vortex train, and streamwise vortex tubes etc. However, the wake structures of the micro-vanes are quite simple; they are mainly the two counter-rotating streamwise vortex tubes. The control of boundary flow of both is achieved through the energy exchange between the main stream and the boundary layer and is presented mainly by the upwash and downwash motion of gases under the entrainment of vortex tubes.

  10. American Institute of Aeronautics and Astronautics An Experimental Study of the Stability of a Four-Vortex

    E-print Network

    Nelson, Robert C.

    trailing vortices was created in Notre Dame's atmospheric boundary layer wind tunnel. The advantage of this tunnel is the long test section, which permits the observation of wake interactions at distances up programs can be divided into two categories, vortex detection and vortex alleviation. The vortex detection

  11. The Role of Turbulence in Chemical and Dynamical Processes in the Near-Field Wake of Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. Steve

    2002-01-01

    During this grant, covering the period from September 1998 to December 2001, we continued the investigation of the role of turbulent mixing in the wake of subsonic aircraft initiated in 1994 for NASA's Atmospheric Effects of Aviation Project. The goal of the research has been to provide sufficient understanding and quantitative analytical capability to assess the dynamical, chemical, and microphysical interactions in the near-field wake that have the greatest potential to influence the global atmospheric impact of the projected fleet of subsonic aircraft. Through large-eddy simulations we have shown that turbulence in the early wake dynamics can have a strong effect on both the ice microphysics of contrail evolution and on wake chemistry. The wake vortex dynamics are the primary determinant of the vertical extent of the contrail; this together with the local wind shear largely determines the horizontal extent. The fraction of the initial ice crystals surviving the wake vortex dynamics, their spatial distribution, and the ice mass distribution are all sensitive to the aircraft type, assumed initial ice crystal number, and ambient humidity and turbulence conditions. Our model indicates that there is a significant range of conditions for which a smaller aircraft such as a B737 produces as significant a persistent contrail as a larger aircraft such as a B747, even though the latter consumes almost five times as much fuel. Large-eddy simulations of the near wake of a B757 provided a fine-grained chemical-dynamical representation of simplified NOx - HOx chemistry in wakes of ages from a few seconds to several minutes. By sampling the simulated data in a manner similar to that of in situ aircraft measurements it was possible to provide a likely explanation for a puzzle uncovered in the 1996 SUCCESS flight measurements of OH and HO2 The results illustrate the importance of considering fluid dynamics effects in interpreting chemistry results when mixing rates and species fluctuations are large, and demonstrate the feasibility of using 3D unsteady LES with coupled chemistry to study such phenomena.

  12. Simulation of vortex shedding in a turbine stage

    SciTech Connect

    Sondak, D.L. [Boston Univ., MA (United States); Dorney, D.J. [GMI Engineering and Management Inst., Flint, MI (United States)

    1999-07-01

    Vortex shedding in a turbomachine blade row is affected by passing of blades in the adjacent downstream blade row, but these effects have not been examined in the literature. A series of flow simulations has been performed to study vortex shedding in a turbine stage, and to quantify the blade interaction effects on the unsteady pressure response. The numerical issues of spatial order of accuracy and the use of Newton subiterations were investigated first. Second-order spatial accuracy was shown to be inadequate to model the shedding frequency response and time-averaged base pressure accurately. For the small time step employed for temporal accuracy, Newton iterations were shown to be unnecessary. The effects of the adjacent blade row were examined by comparing the shedding frequency response for the stage simulations to the response for isolated cascades. The vane shedding was shown to occur exactly an a series of harmonics of the blade passing frequency for the stage case, compared to a single predominant frequency for the isolated cascade. Losses were also examined in the wake region. It was shown that close to the trailing edge, losses were mainly due to wake mixing. Farther downstream of the trailing edge, losses were predominantly due to the trailing edge shock wave.

  13. Wakes of isolated Darrieus turbines

    SciTech Connect

    Akins, R.E.

    1983-01-01

    A knowledge of the flow structure in the wake of a wind turbine is important in the design of arrays of units to be used in wind-farm applications. In order to better understand this structure, an experimental program to measure the wake structure downwind of a 17m Darrieus vertical-axis wind turbine was completed. Mean-velocity deficits have been measured as a function of tip-speed ratio and incident wind direction for several downstream locations. The results will allow verification and modification of existing models and improve the capability to predict performance of clusters of wind turbines.

  14. Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Gatski, Thomas B.

    2000-01-01

    Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.

  15. Influence of atmospheric boundary layer on turbulence in wind turbine wake

    NASA Astrophysics Data System (ADS)

    Debnath, Mithu Chandra

    Full-scale wind turbines (WT) operate in the atmospheric boundary layer. The atmospheric boundary layer structure significantly influences the turbulence generated in the wake of the WT. As Atmospheric boundary layer structure is dictated by the stratification of the atmosphere, hence stratifications effects are critical in accurate representation of the turbine wake physics. Due to the dependency of several factors, such as turbulence scales, buoyancy flux, momentum flux, the atmospheric boundary layer turbulence capturing is really challenging. Large Eddy Simulation (LES) has been used as a tool to understand the effects of atmospheric stability on turbine wake turbulence. The differences between the stable and unstable atmosphere on wake of 5-MW turbine has been explored. Differences in tip and root vortex interactions, wake expansion and recovery have been analyzed. The study has revealed for stable ABL low level jets play an important role in wake dynamics and increasing stability delays the wake recovery. Tip vortex is unconditionally unstable in all stability conditions due to mutual inductance mode of stability leading to vortex merging. The study is one of the first studies that accounts for realistic atmospheric boundary turbulence on wake development.

  16. Aspects of the influence of an oscillating mini-flap upon the near wake of an airfoil NACA 4412

    NASA Astrophysics Data System (ADS)

    Delnero, J. S.; Marañón Di Leo, J.; Colman, J.; García Sainz, M.; Muñoz, F.; Hérouard, N.; Camocardi, M. E.

    2011-05-01

    A NACA 4412 airfoil was tested, in a boundary layer wind tunnel, with the aim to study the effect of a Gurney mini-flap, as an active and passive flow control device submitted to a turbulent flow field. The main objective was the experimental determination of flow pattern characteristics downstream the airfoil in the near wake. The untwisted wing model used for the experiments had 80cm wingspan and 50cm chord, with airfoil NACA 4412. The mini-flap was located on the lower surface at a distance, from the trailing edge, of 8%c (c airfoil chord). The Reynolds number, based upon the wing chord and the mean free stream velocity was 326,000 and 489,000. The turbulence intensity was 1.8%. The model was located into the wind tunnel between two panels, in order to assure a close approximation to two-dimensional flow over the model. As an active control device a rotating mini-flaps, geared by an electromechanical system (which rotate to a 30°) was constructed. The wake pattern and pressure values near the trailing edge were measured. The results obtained, for this mechanism, show us that the oscillating mini-flap change the wake flow pattern, alleviating the near wake turbulence and enhancing the vortex pair near the trailing edge at the mini-flap level and below that level, magnifying the effect described first by Liebeck [1]. That effect grows with the oscillating frequency. Additionally, the wake alleviation probably affects also the far wake. All of these facts suggest us to continue with the experiments, trying to measure the pressure distribution around the airfoil in all the cases, obtaining the lift and drag characteristics.

  17. Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone

    Microsoft Academic Search

    Yusuke Uchiyama; James C. McWilliams; Alexander F. Shchepetkin

    2010-01-01

    A vortex-force formalism for the interaction of surface gravity waves and currents is implemented in a three-dimensional (3D), terrain-following, hydrostatic, oceanic circulation model (Regional Oceanic Modeling System: ROMS; Shchepetkin and McWilliams, 2005). Eulerian wave-averaged current equations for mass, momentum, and tracers are included in ROMS based on an asymptotic theory by McWilliams et al. (2004) plus non-conservative wave effects due

  18. Numerical study of vortex reconnection

    Microsoft Academic Search

    Wm. T. Ashurst; D. I. Meiron

    1987-01-01

    With a Biot-Savart model of vortex filaments to provide initial conditions, a finite-difference scheme for the incompressible Navier-Stokes equation is used in the region of closest approach of two vortex rings. In the Navier-Stokes solutions, it is seen that the low pressure which develops between the interacting vorticity regions causes the distortion of the initially circular vortex cross section and

  19. The structure of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Leibovich, S.

    1978-01-01

    The term 'vortex breakdown', as used in the reported investigation, refers to a disturbance characterized by the formation of an internal stagnation point on the vortex axis, followed by reversed flow in a region of limited axial extent. Two forms of vortex breakdown, which predominate, are shown in photographs. One form is called 'near-axisymmetric' (sometimes 'axisymmetric'), and the other is called 'spiral'. A survey is presented of work published since the 1972 review by Hall. Most experimental data taken since Hall's review have been in tubes, and the survey deals primarily with such cases. It is found that the assumption of axial-symmetry has produced useful results. The classification of flows as supercritical or subcritical, a step that assumes symmetry, has proved universally useful. Experiments show that vortex breakdown is always preceded by an upstream supercritical flow and followed by a subcritical wake. However, a comparison between experiments and attempts at prediction is less than encouraging. For a satisfactory understanding of the structure of vortex breakdown it is apparently necessary to take into account also aspects of asymmetry.

  20. Self-excited oscillations in the wake of two-dimensional bluff bodies and their control

    NASA Astrophysics Data System (ADS)

    Schumm, Michael; Berger, Eberhard; Monkewitz, Peter A.

    1994-07-01

    The onset of Karman-vortex shedding is studied experimentally in the wake of different two-dimensional bluff bodies, namely an oblong cylinder, circular cylinders, and plates of rectangular cross section. Different control measures, such as wake heating, transverse body oscillations, and base bleed are investigated. As the steady-periodic Karman shedding has previously been identified as a limit-cycle, i.e. as self-excited oscillations, the experiments are interpreted in the framework of the Stuart-Landau model. The coefficients of the Stuart-Landau equation for the characteristic vortex shedding amplitude, i.e. the linear temporal growth rate, linear frequency, and the Landau constant, are fully determined for the two cylinders and in part for the plate. For this purpose transients are generated by suddenly switching transverse body oscillations or base bleed on or off. The analysis of these transients by a refined method based on complex demodulation provides reliable estimates of the model coefficients and yields an experimental validation of the concept that a global instability mode grows or decays as a whole. Also, it is demonstrated that the coefficients of the Stuart-Landau equation are independent of the experimental technique used to produce the transients.

  1. Gravity waves from vortex dipoles and jets 

    E-print Network

    Wang, Shuguang

    2009-05-15

    The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...

  2. Electric stimulation of the tuberomamillary nucleus affects epileptic activity and sleep-wake cycle in a genetic absence epilepsy model.

    PubMed

    Blik, Vitaliya

    2015-01-01

    Deep brain stimulation (DBS) is a promising approach for epilepsy treatment, but the optimal targets and parameters of stimulation are yet to be investigated. Tuberomamillary nucleus (TMN) is involved in EEG desynchronization-one of the proposed mechanisms for DBS action. We studied whether TMN stimulation could interfere with epileptic spike-wave discharges (SWDs) in WAG/Rij rats with inherited absence epilepsy and whether such stimulation would affect sleep-wake cycle. EEG and video registration were used to determine SWD occurrence and stages of sleep and wake during three-hours recording sessions. Stimulation (100Hz) was applied in two modes: closed-loop (with previously determined interruption threshold intensity) or open-loop mode (with 50% or 70% threshold intensity). Closed-loop stimulation successfully interrupted SWDs but elevated their number by 148 ± 54% compared to baseline. It was accompanied by increase in number of episodes but not total duration of both active and passive wakefulness. Open-loop stimulation with amplitude 50% threshold did not change measured parameters, though 70% threshold stimulation reduced SWDs number by 40 ± 9%, significantly raised the amount of active wakefulness and decreased the amount of both slow-wave and rapid eye movement sleep. These results suggest that the TMN is unfavorable as a target for DBS as its stimulation may cause alterations in sleep-wake cycle. A careful choosing of parameters and control of sleep-wake activity is necessary when applying DBS in epilepsy. PMID:25524851

  3. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

  4. Delayed thalamic astrocytosis and disrupted sleep-wake patterns in a preclinical model of traumatic brain injury.

    PubMed

    Hazra, Anupam; Macolino, Christine; Elliott, Melanie B; Chin, Jeannie

    2014-11-01

    Traumatic brain injury (TBI) involves diffuse axonal injury and induces subtle but persistent changes in brain tissue and function and poses challenges for early detection of neurological injury. The present study uses an automated behavioral analysis system to assess alterations in rodent behavior in the subacute phase in a preclinical mouse model of TBI, controlled cortical impact (CCI) injury. In the first few weeks following CCI, mice demonstrated normal exploratory behaviors and other typical home-cage behaviors. However, beginning 4 weeks post-injury, CCI mice developed disruptions in sleep-wake patterns, including an increased number of awakenings from sleep. Such impaired sleep maintenance was accompanied by an increased latency to reach peak sleep in CCI mice. These sleep disruptions implicate involvement of the thalamocortical network, the activity of which must be tightly regulated to control sleep maintenance. After injury, there was an increase in reactive microglia in thalamic regions as well as delayed reactive astrocytosis that was evident in the thalamic reticular nucleus, which preceded the development of sleep disruptions. These data suggest that cortical injury may trigger inflammatory responses in deeper neuroanatomical structures, including the thalamic reticular nucleus. Such engagement of the thalamus may perturb the thalamocortical network that regulates sleep/awake patterns and contribute to sleep disruptions observed in this model as well as those documented in patients with TBI. PMID:24964253

  5. Numerical investigation of turbulent bubbly wakes created by the ventilated partial cavity

    NASA Astrophysics Data System (ADS)

    Xiang, Min; Zhang, WeiHua; Cheung, S. C. P.; Tu, JiYuan

    2012-02-01

    This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity. A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress. Based on the Eulerian-Eulerian two-fluid modeling framework, a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region. Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements. The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect. The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction. As the bubbles develop downstream, the coleascense and breakup rate gradually reach balance, resulting in the stable bubble diameter. A close examination of the flow structures, gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.

  6. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  7. Development of a vortex combustor (VC) for space/water heating applications (cold flow modeling)

    SciTech Connect

    Nieh, S.

    1990-04-01

    This report focuses on the discussion of cold flow measurements and mathematical modeling of the vortex combustor (VC). A parallel research project on the combustion tests of a 2-4 MB/H proof-of- concept VC has been conducted by the Naval Civil Engineering Laboratory. This final report is divided into seven chapters: Chapter 1 discusses the concept and advantages of the VC, and the technical approach to develop and demonstrate this VC concept. Chapter 2 describes in details the instrumentation and test apparatuses of the VC cold models. Chapters 3 and 4 discuss the measured results of gas flow field and particle flow field. Development and atomization tests of CWF nozzles are also presented in this chapter. Chapter 5 provides the basics governing equations and numerical methods for the five sub-processes in the VC. Chapter 6 gives the calculated results of validation tests of the computer program and the results of numerical simulation of the VC processes. Finally, Chapter 7 concludes the efforts of cold flow modeling study of the VC. 52 refs., 101 figs., 39 tabs.

  8. Status of wake and array loss research

    SciTech Connect

    Elliott, D.L.

    1991-09-01

    In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

  9. Experimental study of a vortex subjected to imposed strain

    NASA Technical Reports Server (NTRS)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the waveguide theories of vortex breakdown. A rectangular wing based on the NACA 0012 airfoil was used to produce a trailing vortex which convected downstream without undergoing breakdown. Dye marked the vortex location. A disturbance was then introduced onto the vortex using a small moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. The downstream traveling wave produced a structure similar in appearance to a vortex breakdown. The upstream wave produced a moving, swirling, turbulent region that was not a vortex breakdown. The waves moving in either direction have the same swirl velocity profiles but quite different axial velocity profiles. The upstream disturbance (turbulence) moved into a flow with an axial velocity profile that had a wake-like defect in the core region. The downstream moving vortex breakdown moved into a flow with a jet-like overshoot in the core region. The fact that no breakdown was observed for the wake-like defect and breakdown was observed for the jet-like overshoot is not consistent with computational fluid dynamics (CFD) calculations. Although there are not a lot of examples, CFD results show breakdown for both types of profiles. The longitudinal and swirl velocity profiles were documented by Laser Doppler Velocimeter (LDV) measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  10. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    NASA Astrophysics Data System (ADS)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  11. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  12. Unsteady Hybrid Navier-Stokes/Vortex Model for Numerical Study of Horizontal Axis Wind Turbine Aerodynamics under Yaw Conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, Kensuke

    A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.

  13. Investigation of the Vortex Tab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoffler, K. D.

    1985-01-01

    An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.

  14. Exquisitely sensitive seal whisker-like sensors detect wakes at large distances

    E-print Network

    Beem, Heather R

    2015-01-01

    Blindfolded harbor seals are able to use their uniquely shaped whiskers to track vortex wakes left by moving animals and objects that passed by up to 30 seconds earlier; this is an impressive feat as the flow features they detect may have velocity as low as 1 mm/s, and the seals have some capacity to identify the shape of the object as well. They do so while swimming forward at high speed, hence their whiskers are sensitive enough to detect small-scale changes in the external flow field, while rejecting self-generated flow noise. Here we identify and illustrate a novel flow mechanism that allows artificial whiskers with the identical unique geometry as those of the harbor seal to detect the features of minute flow fluctuations in wakes produced by objects far away. This is shown through the study of a model problem, consisting of a harbor seal whisker model interacting with the wake of an upstream circular cylinder. We show that whereas in open water the whisker geometry results in very low vibration, once it...

  15. Measurements of Tip Vortex Characteristics and the Effect of an Anti-Cavitation Lip on a Model Kaplan Turbine Blade

    Microsoft Academic Search

    Kimon Roussopoulos; Peter A. Monkewitz

    2000-01-01

    Motivated by the problem of cavitation erosion, the position and strength of the roll-up vortex on the suction side of a Kaplan-type\\u000a turbine blade with various endings is investigated. Measurements are made on different models with simplified two-dimensional\\u000a geometries using mainly particle image velocimetry. It is found that the greatest danger of cavitation erosion exists when\\u000a the casing of the

  16. The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth

    PubMed Central

    Berg, C. van den; Ellington, C.P.

    1997-01-01

    Recent flow visualisation experiments with the hawkmoth, Manduca sexta, revealed small but clear leading-edge vortex and a pronounced three-dimensional flow. Details of this flow pattern were studied with a scaled-up, robotic insect ('the flapper') that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading-edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 per cent of the wing length, its diameter increased approximately from 10 to 50 per cent of the wing chord. The leading-edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 per cent of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading-edge vortex were fully used for lift generation, it could support up to two-thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.

  17. Helicopter tail rotor blade-vortex interaction noise

    NASA Astrophysics Data System (ADS)

    George, Albert R.; Chou, S.-T.

    1987-03-01

    A study is made of helicopter tail rotor noise, particularly that due to the interactions with main rotor tip vortices. Summarized here are present analysis, the computer codes, and the results of several test cases. Amiet's unsteady thin airfoil theory is used to calculate the acoustics of blade-vortex interaction. The noise source is modelled as a force dipole resulting from an airfoil of infinite span chopping through a skewed line vortex. To analyze the interactions between helicopter tail rotor and main rotor tip vortices, we developed a two-step approach: (1) the main rotor tip vortex system is obtained through a free wake geometry calculation of the main rotor using CAMRAD code; (2) acoustic analysis takes the results from the aerodynamic interaction analysis and calculates the farfield pressure signatures for the interactions. It is found that under a wide range of helicopter flight conditions, acoustic pressure fluctuations of significant magnitude can be generated by tail rotors due to a series of interactions with main rotor tip vortices. This noise mechanism depends strongly on the helicopter flight conditions and the relative location and phasing of the main and tail rotors. fluctuations of significant magnitude can be generated by tail rotors due to a series of interactions with main rotor tip vortices. This noise mechanism depends strongly upon the helicopter flight conditions and the relative location and phasing of the main and tail rotors.

  18. Large HAWT wake measurement and analysis

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-01-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of spatially diverse wind turbines.

  19. Analytical Models for the Wake-Up Receiver Power Budget for Wireless Sensor Networks

    Microsoft Academic Search

    Maarten Lont; Dusan M. Milosevic; Peter G. M. Baltus; Arthur H. M. van Roermund; Guido Dolmans

    2009-01-01

    In this paper analytical models of the energy consumption are presented which uses a real world radio model with two different low power modes. This model is used to compare energy consumption of different MAC protocols. The MAC protocols used for the comparison are chosen with sensor networks is mind. The energy consump- tion of the nodes in a sensor

  20. Wakes in Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian Norman

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/?0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC simulation particles are accounted for. Linear gain spectra including both effects are discussed. Extending the PIC simulations past when the seed exits the simulation domain reveals bursts of large-amplitude scattering in many cases, which do not occur in simulations without the seed pulse. These bursts can have amplitudes several times greater than the amplified seed pulse, and an examination of the orbits of particles trapped in the wake illustrates that the bursts are caused by a reduction of Landau damping due to particle trapping. This large-amplitude scattering is caused by the seed inducing a wake earlier in the simulation, thus modifying the distribution function. Performing simulations with longer duration seeds leads to parts of the seeds reaching amplitudes several times more than the steady-state linear theory results, similarly caused by a reduction of Landau damping. Simulations with continuous seeds demonstrate that the onset of inflation depends on the seed wavelength and incident intensity, and oscillations in the reflectivity are observed at a frequency equal to the difference between the seed frequency and the frequency at which the inflationary SRS grows. In the electron beam stopping studies, 3D PIC simulations are performed of relativistic electrons with a momentum of 10mec propagating in a cold FI core plasma. Some of the simulations use one simulation particle per real particle, and particle sizes much smaller than the interparitcle spacing. The wake made by a single electron is compared against that calculated using cold fluid theory assuming the phase velocity of the wake is near the speed of light. The results agree for the first wavelength of the wake. However, the shape of the wake changes for succeeding wavelengths and depends on the background plasma temperature, with the concavity pointing in the direction the electron is moving in cold plasmas and in the opposite direction as the plasma temperature increases. In the warm plasma the curvature is described by electrostatic Vlasov theory (for vparticle >> vth) and is due

  1. Trailing vortex-pair instability

    Microsoft Academic Search

    Jai Prakash Narain; Mahinder S. Uberoi

    1973-01-01

    The instability of a vortex-pair to infinitesimal disturbances is studied in the inviscid and incompressible fluid approximations. The cores of the vortices contain uniform axial-velocity jets of fluid density different from that of the surrounding medium. In one model a nonrotating core with surrounding potential vortex is assumed, and in the other a uniformly rotating core. In the lowest order

  2. Shear-layer acoustic radiation in an excited subsonic jet: models for vortex pairing and superdirective noise

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Bailly, Christophe; Juvé, Daniel

    2005-10-01

    The pressure field generated by a cylindrical boundary pressure wave with spatial modulation is calculated. This model is confronted to the experimental results in order to explain the two observed radiation patterns associated with subharmonic fluctuations in an excited jet shear-layer, namely either a superdirective emission, or a vortex pairing type of radiation with extinction angle. Regarding the far field, the superdirective pattern is recovered by using a generalized Gaussian as a modulation function and the vortex pairing features by a two lobe sinusoidal modulation, in agreement with the experimental description of the near pressure field. Regarding the near field, its exponential decay is also recovered in both cases. To cite this article: V. Fleury et al., C. R. Mecanique 333 (2005).

  3. Superadiabatic optical forces on a dipole: exactly solvable model for a vortex field

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Shukla, Pragya

    2014-03-01

    The forces exerted by light on a small particle are modified by the particle's motion, giving a series of superadiabatic corrections to the lowest-order approximation in which the motion is neglected. The correction forces can be calculated recursively for an electric dipole modelled as a damped oscillator. In lowest order, there is, as is known, a non-potential though non-dissipative ‘curl force’, in addition to the familiar gradient force. In the next order, there are forces of geometric magnetism and friction, related to the geometric phase 2-form and the metric of the driving field. For the paraxial field of an optical vortex, the hierarchy of superadiabatic forces can be calculated explicitly, revealing a four-sheeted Riemann surface on which fast and slow dynamics are connected. This leads to an exact ‘slow manifold’, on which the dipole is driven without oscillations by the same forces as in the first two adiabatic orders, but with frequency-renormalized strengths.

  4. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  5. Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget

    NASA Astrophysics Data System (ADS)

    Sanz, Christophe; Katul, Gabriel G.

    2007-11-01

    Within vegetation canopies, the turbulent kinetic energy ( k) budget is mainly modelled through source terms added to the free-air state formulation. The dependence of the modelled source term coefficients upon a dimensionless ratio ( ?) between the mixing length for turbulent transport ( l) and the relaxation length scale ( l) of Kolmogorov's relation is proposed. Using dimensional analysis, the order of magnitude variation of the terms involved in the newly proposed model for the coefficients of these source terms are derived. When ? is a constant, this generalized model results in a similarity constant ( C) independent of the source term model, lending support to an earlier conjecture by Seginer. To cite this article: C. Sanz, G.G. Katul, C. R. Mecanique 335 (2007).

  6. Vortex core behaviour in confined and unconfined geometries: a quasi-one-dimensional model

    NASA Astrophysics Data System (ADS)

    Darmofal, D. L.; Khan, R.; Greitzer, E. M.; Tan, C. S.

    2001-12-01

    Axisymmetric vortex core flows, in unconfined and confined geometries, are examined using a quasi-one-dimensional analysis. The goal is to provide a simple unified view of the topic which gives insight into the key physical features, and the overall parametric dependence, of the core area evolution due to boundary geometry or far-field pressure variation. The analysis yields conditions under which waves on vortex cores propagate only downstream (supercritical flow) or both upstream and downstream (subcritical flow), delineates the conditions for a Kelvin Helmholtz instability arising from the difference in core and outer flow axial velocities, and illustrates the basic mechanism for suppression of this instability due to the presence of swirl. Analytic solutions are derived for steady smoothly, varying vortex cores in unconfined geometries with specified far-field pressure and in confined flows with specified bounding area variation. For unconfined vortex cores, a maximum far-field pressure rise exists above which the vortex cannot remain smoothly varying; this coincides with locally critical conditions (axial velocity equal to wave speed) in terms of wave propagation. Comparison with axisymmetric Navier Stokes simulations and experimental results indicate that this maximum correlates with the appearance of vortex breakdown and marked core area increase in the simulations and experiments. For confined flows, the core stagnation pressure defect relative to the outer flow is found to be the dominant factor in determining conditions for large increases in core size. Comparisons with axisymmetric Navier Stokes computations show that the analysis captures qualitatively, and in many instances, quantitatively, the evolution of vortex cores in confined geometries. Finally, a strong analogy with quasi-one-dimensional compressible flow is demonstrated by construction of continuous and discontinuous flows as a function of imposed downstream core edge pressure.

  7. The role of shape and relative submergence on the structure of wakes of low-aspect-ratio wall-mounted bodies

    NASA Astrophysics Data System (ADS)

    Hajimirzaie, Seyed M.; Wojcik, Craig J.; Buchholz, James H. J.

    2012-12-01

    The effects of shape and relative submergence (the ratio of flow depth to obstacle height, d/ H) are investigated on the wakes around four different low-aspect-ratio wall-mounted obstacles at Re H = 17,800: semi-ellipsoids with the major axes of the base ellipses aligned in the streamwise and transverse directions, and two cylinders with aspect ratios matching the ellipsoids ( H/ D = 0.89 and 0.67, where D is the maximum transverse dimension). Particle Image Velocimetry was used to interrogate the flow. Streamwise features observed in the mean wake include counter-rotating distributions of vorticity inducing downwash (tip structures), upwash (base structures), and horseshoe vortices. In particular, the relatively subtle change in geometry produced by the rotation of the ellipsoid from the streamwise to the transverse orientation results in a striking modification of the mean streamwise vorticity distribution in the wake. Tip structures are dominant in the former case, while base structures are dominant in the latter. A vortex skeleton model of the wake is proposed in which arch vortex structures, shed from the obstacle, are deformed by the competing mechanisms of Biot-Savart self-induction and the external shear flow. The selection of tip or base structures in the ellipsoid wakes is caused by tilting of the arch structures either upstream or downstream, respectively, which is governed by ellipsoid curvature. An inverse relationship was observed between the relative submergence and the strength of the base structures for the ellipsoids, with a dominant base structure observed for d/ H = 1 in both cases. These results demonstrate a means by which to achieve significant modifications to flow structure and thereby also to transport mechanisms in the flow. Therefore, this work provides insight into the modeling and control of flow over wall-mounted bodies.

  8. The Interaction Vortex Flow Around Two Bluff Cylinders

    NASA Astrophysics Data System (ADS)

    Yokoi, Y.; Hirao, K.

    2013-04-01

    In this study, the interaction vortex flow features around a pair of parallel arranged bluff cylinders were observed by visualizing water flow experiment at the range of the gap ratio G/d=0~3. It was obtained that the result of established wind tunnel test and the result of this water tank test agreed about the characteristics of vortex shedding when varying the distance of circular cylinder gap. The flow pattern and vortex shedding frequency of another type bluff cylinder (triangular and square cylinder) were also investigated. As a result of the experiment, it was shown that the flow pattern of wake flow was divided into three kinds (coupled vortex streets, biased gap flow and single vortex street) regardless of the cylinder section shape and cylinder size. Then, the region of the appearance of flow pattern was shown about each case. In the case where two each other independent vortex streets were formed, three typical flow patterns of vortex formation (in-phase coupled vortex streets, out-of-phase coupled vortex streets and complication coupled vortex streets) were observed. It was known that three configuration of vortex formation appear intermittently and alternatively.

  9. AIRLOADS AND WAKE GEOMETRY CALCULATIONS FOR AN ISOLATED TILTROTOR MODEL IN A WIND TUNNEL

    Microsoft Academic Search

    Wayne Johnson

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of

  10. Cosmic string wakes

    SciTech Connect

    Stebbins, A.; Veeraraghavan, S.; Silk, J.; Brandenberger, R.; Turok, N.

    1987-11-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes. 39 references.

  11. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  12. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  13. Cosmic string wakes and large-scale structure

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.

    1988-01-01

    The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.

  14. Compressor and fan wake characteristics

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.

    1975-01-01

    Approaches for developing an analytical model capable of determining the effects of rotor flow and blade parameters and turbulence properties (i.e. energy, velocity correlations, and length scale) on the rotor wake characteristics and its diffusion properties are discussed. The three-dimensional model will employ experimental measurements, instantaneous velocities, and turbulence properties at various stations downstream from a rotor. A triaxial probe and a rotating conventional probe, which is mounted on a traverse gear operated by two step motors, are to be used for these measurements. The final rotor wake model will be capable of predicting the discrete and broadband noise generated in a fan rotor and of evaluating the aerodynamic losses, efficiency and optimum spacing between a rotor and stator in turbomachinery.

  15. On the effects of turbine geometry on the far wake dynamics of an axial flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Yang, Xiaolei; Kang, Seokkoo

    2013-11-01

    In large-eddy simulation (LES) of multi-turbine arrays actuator disk (AD) or actuator line (AL) models are employed to simulate individual turbines. Such parameterizations do not take into account the details of the turbine geometry and, therefore, cannot be expected to accurately resolve the flow in the near wake. We investigate the performance of AD and AL models by comparing their predictions with laboratory measurements and with LES resolving the geometrical details of the turbine. We simulate the flow past an axial flow hydrokinetic turbine in a fully-developed turbulent flow in an open channel using: turbine-geometry resolving LES (LES-TG) and LES-AD and LES-AL parameterizations. We show that LES-TG reveals very complex large-scale dynamics in the near wake, driven by the interaction of a counter-rotating to the turbine hub vortex and the top-tip shear layer, which appears to influence both the mean flow characteristics and the intensity of wake meandering several rotor diameters downstream. The LES-AD and LES-AL results cannot capture the geometry-induced complex near wake phenomena and yield flows that exhibit important differences with the LES-TG results in the far wake. The mechanisms that give rise to and modeling implications of these differences will be discussed. In large-eddy simulation (LES) of multi-turbine arrays actuator disk (AD) or actuator line (AL) models are employed to simulate individual turbines. Such parameterizations do not take into account the details of the turbine geometry and, therefore, cannot be expected to accurately resolve the flow in the near wake. We investigate the performance of AD and AL models by comparing their predictions with laboratory measurements and with LES resolving the geometrical details of the turbine. We simulate the flow past an axial flow hydrokinetic turbine in a fully-developed turbulent flow in an open channel using: turbine-geometry resolving LES (LES-TG) and LES-AD and LES-AL parameterizations. We show that LES-TG reveals very complex large-scale dynamics in the near wake, driven by the interaction of a counter-rotating to the turbine hub vortex and the top-tip shear layer, which appears to influence both the mean flow characteristics and the intensity of wake meandering several rotor diameters downstream. The LES-AD and LES-AL results cannot capture the geometry-induced complex near wake phenomena and yield flows that exhibit important differences with the LES-TG results in the far wake. The mechanisms that give rise to and modeling implications of these differences will be discussed. This work was supported by Department of Energy DOE (DE-EE0002980 and DE-EE0005482) and Xcel Energy through the Renewable Development Fund (grant RD3-42). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  16. Wind tunnel investigation of helicopter rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1974-01-01

    The effects of rotor downwash on helicopter fuselage aerodynamic characteristics were investigated. A rotor model for generating the downwash was mounted close to each of three fuselage models. The main report presents the force and moment data in both graphical and tabular form and the pressure data in graphical form. This supplement presents the pressure data in tabular form. Each run or parameter sweep is identified by a unique run number. The data points in each run are identified by a point number. The pressure data can be matched to the force data by matching the run and point number.

  17. Vortex dynamics, animal skin patterns, and ice Theodore Kolokolnikov

    E-print Network

    Kolokolnikov, Theodore

    ;Vortex dynamics · Equations first given by Helmholtz (1858): each vortex generates a rotational velocityVortex dynamics, animal skin patterns, and ice fishing Theodore Kolokolnikov Joint works field which advects all other vortices. Vortex model: dzj dt = i k=j k zj - zk |zj - zk|2, j = 1 . . . N

  18. Modelling of the effect of the foregoing wake on the bypass transition on the airfoil

    NASA Astrophysics Data System (ADS)

    Straka, Petr; P?íhoda, Jaromír; Šimurda, David

    2012-04-01

    A modified algebraic model of the bypass transition was used for the simulation of the flow around the symmetrical airfoil NACA 0012 in the tandem configuration. The transition model is based on local variables only to enable its application for complex flow geometry using unstructured computational grids. The attention was especially focused on the flow near the leading edge where the boundary layer is not yet fully developed while used empirical correlations were established for the boundary-layer flow. The numerical simulation was compared with experiments of Lee and Kang [1] carried out for the Reynolds number Rec = (2÷6)×105, the zero angle of attack and various distance between both airfoils. The agreement of numerical simulation with experimental data is quite satisfactory.

  19. Fixed wake theory for vertical axis wind turbines

    SciTech Connect

    Wilson, R.E.; Walker, S.N.

    1983-12-01

    A theory for vertical axis wind turbines has been developed using a fixed wake approach. The theory combines some of the best features of vortex and streamtube approaches. This approach accounts for flow differences between fore-and-aftblade positions that are predicted by vortex methods while retaining the low computation costs associated with streamtube theories. The theory is applied to high tip speed ratio operation of a Darrieus Rotor where the use of linear aerodynamics results in explicit calculation of the induced velocities. Comparison to test results shows good agreement.

  20. Fixed wake theory for vertical axis wind turbines

    SciTech Connect

    Wilson, R.E.; Walker, S.N.

    1983-11-01

    A theory for vertical axis wind turbines has been developed using a fixed wake approach. The theory combines some of the best features of vortex and streamtube approaches. This approach accounts for flow differences between fore-and-aft blade positions that are predicted by vortex methods while retaining the low computation costs associated with streamtube theories. The theory is applied to high tip speed ratio operation of a Darrieus Rotor where the use of linear aerodynamics results in explicit calculation of the induced velocities. Comparison to test results shows good agreement.