Science.gov

Sample records for warm climatic conditions

  1. Why were Past North Atlantic Warming Conditions Associated with Drier Climate in the Western United States?

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; Potter, G. L.; Montanez, I. P.; Otto-Bliesner, B. L.; Behling, P.; Oster, J. L.

    2014-12-01

    Investigating climate dynamics governing rainfall over the western US during past warmings and coolings of the last glacial and deglaciation is pertinent to understanding how precipitation patterns might change with future global warming, especially as the processes driving the global hydrological reorganization affecting this drought-prone region during these rapid temperature changes remain unresolved. We present model climates of the Bølling warm event (14,500 years ago) and Younger Dryas cool event (12,200 years ago) that i) uniquely enable the assessment of dueling hypothesis about the atmospheric teleconnections responsible for abrupt temperature shifts in the North Atlantic region to variations in moisture conditions across the western US, and ii) show that existing hypotheses about these teleconnections are unsupported. Modeling results show no evidence for a north-south shift of the Pacific winter storm track, and we argue that a tropical moisture source with evolving trajectory cannot explain alternation between wet/dry conditions, which have been reconstructed from the proxy record. Alternatively, model results support a new hypothesis that variations in the intensity of the winter storm track, corresponding to its expansion/contraction, can account for regional moisture differences between warm and cool intervals of the last deglaciation. Furthermore, we demonstrate that the mechanism forcing the teleconnection between the North Atlantic and western US is the same across different boundary conditions. In our simulation, during the last deglaciation, and in simulations of future warming, perturbation of the Rossby wave structure reconfigures the atmospheric state. This reconfiguration affects the Aleutian Low and high-pressure ridge over and off of the northern North American coastline driving variability in the storm track. Similarity between the processes governing the climate response during these distinct time intervals illustrates the robust nature of the teleconnection, a novel result that provides context for understanding the climate processes governing the response of moisture variability to future climate change.

  2. The global climate for September-November 1991: Warm (ENSO) episode conditions strengthen

    SciTech Connect

    Janowiak, J.E. )

    1993-08-01

    After an extended period of warm episode-like conditions in the western tropical Pacific, ENSO conditions began affecting the central and eastern tropical Pacific during September through November (SON) 1991. The increased convection in the regions of positive SST anomalies provided solid evidence of atmospheric-oceanic coupling, critical in ENSO development and sustenance. In the midlatitudes, the most pronounced climatic feature during SON 91 was the preponderance of above-normal land surface temperatures throughout much of the Northern Hemisphere. 11 refs., 24 figs., 1 tab.

  3. Sea-ice and North Atlantic climate response to CO2-induced warming and cooling conditions

    NASA Astrophysics Data System (ADS)

    Nazarenko, Larissa; Tausnev, Nickolai; Hansen, James

    Using a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50 N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.

  4. The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions

    NASA Astrophysics Data System (ADS)

    Werth, D.; Avissar, R.

    2006-12-01

    Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.

  5. Climate science: Pacemakers of warming

    NASA Astrophysics Data System (ADS)

    Brnnimann, Stefan

    2015-02-01

    In the first decades of the twentieth century, the Earth warmed rapidly. A coral-based climate proxy record of westerly winds over the equatorial Pacific suggests that wind strength and warming rate were linked, as they are today.

  6. The global climate of December 1991-February 1992: Mature-phase warm (ENSO) episode conditions develop

    SciTech Connect

    Kousky, V.E. )

    1993-08-01

    The December 1991-February 1992 (DJF 91/92) season featured global scale atmospheric circulation, temperature, and precipitation anomalies consistent with those generally found during the mature phase of tropical Pacific warm ENSO episodes. The anomalous upper-tropospheric circulation features usually observed developed slowly during the season, but were well developed by February. The tropical and subtropical precipitation anomaly patterns reflected mature-phase ENSO conditions. A persistent anomalous circulation pattern in Europe was associated with highly anomalous temperatures and precipitation in sections of Europe and the eastern Mediterranean. 14 refs., 18 figs., 1 tab.

  7. About the reaction of climatic conditions of Ukraine to global warming: semi-empirical model and scenarios

    NASA Astrophysics Data System (ADS)

    Boychenko, S. G.; Voloshchuk, V. M.

    2010-09-01

    The analysis of materials of instrumental observations on a network of meteorological stations of Ukraine for last 100 years has shown that its climatic conditions have reacted to global warming as follows: - the annual temperature on plain part of the territory of Ukraine has increasing on 0.5-0.7 оС/100 years which approximately coincides with estimations of a level of global warming; - the process of alignment of an annual temperature field on plain part of the territory of Ukraine was revealed: in northern and north-east regions the annual temperature has increasing on and 0.8-1.2 оС/100 years, and in southern and south-west regions of Ukraine - only on 0.4-0.6 оС/ 100 years; - the process of decontinentalization a climate of Ukraine was revealed: the amplitude of a seasonal course of temperature has decreased on ~0,4-0,5оС/100 years; - the general alignment of a climatic field of the annual sums of precipitations was revealed. In northern, and it is especial in north-west regions of Ukraine, where the annual sum of precipitations was concerning high (650-750 mm/year), it has decreased approximately on 5-15 %; in southern, and it is especial in south-east regions, where the annual sum of precipitations was concerning low (350-450 mm/year), it has increased approximately on 10-20 %. The analysis on the basis of the developed regional stochastic scenarios of changes of climatic conditions for a plain part of territory of Ukraine in XXI century shows that it is possible to expect: -of increase of annual temperature in XXІ century on the territory of Ukraine on 1.5-2.5 оС; - of decrease of continentality of a climate of Ukraine (the reduction of amplitude of a seasonal course); - of significant warming in winter months; - of increase of the general annual sum of the atmospheric precipitations on the territory of Ukraine in XXІ century on 15-20 % at global warming on 1.5-2.5 оС; - for global warming 3-4 оС the significant decrease of sum of precipitations and increase of intensity of evaporation in southern and south-east regions of Ukraine - because of shift of northern periphery of a zone of subtropical anticyclones on these regions of Ukraine (this process already now began in south-west regions of Europe).

  8. Assessment of permafrost conditions under Northern Quebec's airports: an integrative approach for the development of adaptation strategies to climate warming

    NASA Astrophysics Data System (ADS)

    L'Hérault, E.; Allard, M.; Doré, G.; Barrette, C.; Verreault, J.; Sarrazin, D.; Doyon, J.; Guimond, A.

    2011-12-01

    Community airports in Nunavik were built between 1984 and 1992 and were designed by using a thick embankment of rock fill placed on undisturbed ground surface to prevent the thawing of the underlying permafrost. However, since around 2000, many of the runways show signs of permafrost disturbance as some localized differential settlements have begun to take place. With the anticipated rise of air temperature, the vulnerability of transportation infrastructures to permafrost degradation raises concerns. Several studies initiated by MTQ were undertaken by CEN to evaluate the permafrost conditions underneath airports. These studies provide valuable baseline information but also reveal the needs for a better understanding of the spatial variability of the surficial deposits, their geotechnical properties and permafrost conditions underneath embankments to assess its sensibility to thawing and to plan adaptation strategies in face of climate warming. A geomorphological and geotechnical investigation campaign, including surficial geology mapping using pre-construction air photographs and recovery of drilled frozen cores, was carried out in the summers 2008 and 2009 at eight airports. The impact of the runway embankments on surface drainage, snow drift accumulation and permafrost thawing was also determined. Stratigraphic information from drilling was used to reinterpret CCR and GPR surveys done in previous studies. High resolution cross-sections of the stratigraphy and permafrost conditions could then be drawn. Lab testing over undisturbed frozen samples was performed to determine the geotechnical properties of the different stratigraphic units encountered, particularly thaw consolidation ratios. Field measurements of ground temperatures and numerical modeling of the thermal regime of the embankment and subgrade were also performed to assess the potential impacts on permafrost stability alongside and beneath embankments under different climate change scenarios. Thermistor readings show that the active layer in the central part of the runways is in most case still contained in the embankment or within the prior-to-construction consolidated active layer. However, a residual thaw layer (talik) is now present at the toe of embankments where significant snow accumulations occurred. Thermal modeling indicates that water accumulation and seepage as well as snow accumulation along embankment shoulders are currently the dominant factors of permafrost degradation. In the future, centerlines of embankment built on ice rich permafrost will gradually settle as the climate warms up; therefore periodic reloading will be necessary. To counter permafrost degradation alongside runways and access roads, the proposed mitigation strategies focus on minimizing snow and water accumulation by making gentler slopes (1:6) and by improving the drainage system to avoid potential seepage through embankments.

  9. Even warm climates get the shivers

    SciTech Connect

    Kerr, R.A.

    1993-07-16

    Researchers in the Greenland Ice-Core Project (GRIP) have found evidence of sharp climate shifts during the last two intergalcials. The Greenland ice sheet evidence shows that Greenland, over and over for decades to thousands of years, cooled drastically from temperatures equal to or higher than today's, often to virtual ice age conditions. The researchers believe that disruptions in the flow of warm water from the southern Atlantic to the North Atlantic, and the return flow of cold water to the south, may be linked to these climatic fluctuations. The present climate appears relatively stable, but that may change if temperatures warm due to increases in atmospheric greenhouse gases.

  10. The global climate for September-November 1992: Weak warm ENSO episode conditions linger in the tropical Pacific

    SciTech Connect

    Chelliah, M.

    1994-10-01

    During the September-November (SON) 1992 transition season, the tropical Pacific initially featured a continuation of the normal conditions observed during July and August 1992 and then surprisingly late in the season, showed reemergence of weak warm El Nino-southern Oscillation (ENSO) eventlike conditions. The Tahiti-Darwin Southern Oscillation index, after having returned to zero in August and September, dropped to strong negative values during both October and November. During November, low-level equatorial easterliest remained anomalously weak throughout the tropical Pacific consistent with increased convective activity near the date line. Seasonal mean surface temperature over the northernmost latitudes of the Eurasian continent were much below normal in contrast to the positive anomalies generally experienced over the recent past summers. For the United States as a whole, during the SON 1992 season, the mean precipitation was near normal, however, there was considerable variability in the precipitation anomalies across the country.

  11. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes.

    PubMed

    Gerten, Dieter; Adrian, Rita

    2002-03-01

    Impacts of climate warming on freshwater ecosystems have been documented recently for a variety of sites around the globe. Here we provide a review of studies that report long-term (multidecadal) effects of warming trends on thermal properties and plankton dynamics in northern hemispheric lakes. We show that higher lake temperatures, shorter periods with ice cover, and shorter stagnation periods were common trends for lakes across the hemisphere in response to the warmer conditions. Only for shallow dimictic lakes was it observed that deep-water temperatures decreased. Moreover, it became evident that phytoplankton dynamics and primary productivity altered in conjunction with changes in lake physics. Algal spring blooms developed early and were more pronounced in several European lakes after mild winters with short ice cover periods, and primary productivity increased in North American lakes. Effects of elevated temperatures on zooplankton communities were seen in an early development of various species and groups, as is documented for cladocerans, copepods, and rotifers in European lakes. Furthermore, thermophile species reached higher abundance in warmer years. Obviously, the nature of responses is species specific, and depends on the detailed seasonal patterning of warming. Complex responses such as effects propagating across trophic levels are likely, indicating that observed climate-ecosystem relationships are not generally applicable. Nonetheless, the picture emerges that climate-driven changes in freshwater ecosystems may be synchronised to a certain extent among lakes even over great distances if climatic influences are not masked by anthropogenic impacts or differences in lake morphology. Macro-scale climatic fluctuations--such as the North Atlantic Oscillation or the El Niño-Southern Oscillation--were identified as the most important candidates responsible for such coherence, with the former predominating in Europe and the latter in North America. We emphasise, however, that the driving mechanisms and the future behaviour of these oscillations are rather uncertain, which complicates extrapolation of observed effects into the future. Thus, it is necessary to quantify the most important climate-ecosystem relationships in models of appropriate complexity. Such models will help elucidate the multiple pathways climate affects freshwater ecosystems, and will indicate possible adverse effects of a warmer future climate. PMID:12805986

  12. Is the climate warming or cooling?

    NASA Astrophysics Data System (ADS)

    Easterling, David R.; Wehner, Michael F.

    2009-04-01

    Numerous websites, blogs and articles in the media have claimed that the climate is no longer warming, and is now cooling. Here we show that periods of no trend or even cooling of the globally averaged surface air temperature are found in the last 34 years of the observed record, and in climate model simulations of the 20th and 21st century forced with increasing greenhouse gases. We show that the climate over the 21st century can and likely will produce periods of a decade or two where the globally averaged surface air temperature shows no trend or even slight cooling in the presence of longer-term warming.

  13. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  14. Carbon cycle and climate warming

    SciTech Connect

    Kerr, R.A.

    1983-12-09

    The increase in carbon dioxide in the atmosphere is expected to cause a warming of the earth. This increase is due to the fact that more carbon is released into the atmosphere than is removed by the biota and the oceans. Understanding the carbon cycle is important in predicting future warming. A major uncertainty is the timing and magnitude of future releases of CO/sub 2/ from the burning of fossil fuels. Today, 1.1 tons of carbon as CO/sub 2/ are released every year for every person on Earth. Estimates are given on how much CO/sub 2/ has been released into the atmosphere since fossil fuels have been burned. The ultimate aim of carbon cycle research is to predict how the concentration of CO/sub 2/ in the atmosphere will vary as mankind pumps more and more of it into the atmosphere.

  15. Indian Ocean warming modulates Pacific climate change

    PubMed Central

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-01-01

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east–west Walker circulation) through the Pacific ocean–atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific’s could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries. PMID:23112174

  16. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020-2050 and 2070-2100 periods

    NASA Astrophysics Data System (ADS)

    Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.

    2014-09-01

    Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes. Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the southern French Alps will not be significantly more affected than the northern French Alps, which means that the snowpack will be preserved for longer in the southern massifs which are higher on average. Regarding avalanche activity, a general decrease in mean (20-30%) and interannual variability is projected. These changes are relatively strong compared to changes in snow and meteorological variables. The decrease is amplified in spring and at low altitude. In contrast, an increase in avalanche activity is expected in winter at high altitude because of conditions favourable to wet-snow avalanches earlier in the season. Comparison with the outputs of the deterministic avalanche hazard model MEPRA (Modèle Expert d'aide à la Prévision du Risque d'Avalanche) shows generally consistent results but suggests that, even if the frequency of winters with high avalanche activity is clearly projected to decrease, the decreasing trend may be less strong and smooth than suggested by the statistical analysis based on changes in snowpack characteristics and their links to avalanches observations in the past. This important point for risk assessment pleads for further work focusing on shorter timescales. Finally, the small differences between different climate change scenarios show the robustness of the predicted avalanche activity changes.

  17. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    PubMed

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated. PMID:26528403

  18. Climate warming will not decrease winter mortality

    NASA Astrophysics Data System (ADS)

    Staddon, Philip L.; Montgomery, Hugh E.; Depledge, Michael H.

    2014-03-01

    It is widely assumed by policymakers and health professionals that the harmful health impacts of anthropogenic climate change will be partially offset by a decline in excess winter deaths (EWDs) in temperate countries, as winters warm. Recent UK government reports state that winter warming will decrease EWDs. Over the past few decades, however, the UK and other temperate countries have simultaneously experienced better housing, improved health care, higher incomes and greater awareness of the risks of cold. The link between winter temperatures and EWDs may therefore no longer be as strong as before. Here we report on the key drivers that underlie year-to-year variations in EWDs. We found that the association of year-to-year variation in EWDs with the number of cold days in winter ( <5 °C), evident until the mid 1970s, has disappeared, leaving only the incidence of influenza-like illnesses to explain any of the year-to-year variation in EWDs in the past decade. Although EWDs evidently do exist, winter cold severity no longer predicts the numbers affected. We conclude that no evidence exists that EWDs in England and Wales will fall if winters warm with climate change. These findings have important implications for climate change health adaptation policies.

  19. Stream Temperature Sensitivity to Climate Warming in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Null, S.; Viers, J. H.; Deas, M.; Tanaka, S.; Mount, J.

    2010-12-01

    Water temperatures influence the distribution, abundance, and health of aquatic organisms in stream ecosystems. Improving understanding of climate warming on the thermal regime of rivers will help water managers better manage instream habitat. This study assesses climate warming impacts on unregulated stream temperatures in California’s west-slope Sierra Nevada watersheds from the Feather River to the Kern River. We used unregulated hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year timeseries of weekly instream flow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, a simplified model based on equilibrium temperature theory, to estimate stream temperatures using net heat exchange, coarse river channel geometry, and exposure time of water to atmospheric conditions. Air temperature was uniformly increased by 2○C, 4○C, and 6○C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were left unchanged from historical values. Overall, stream temperatures increased by an average of 1.6○C for each 2○C rise in air temperature, and increased most at middle elevations. Thermal heterogeneity existed within and between basins (Figure 1). The high watersheds of the southern Sierra Nevada and the Feather River watershed were less vulnerable to changes in the thermal regime of rivers from climate warming. Precipitation as rainfall instead of snowfall, and low flow conditions were two characteristics that drove water temperatures dynamics with climate warming. These results suggest the thermal regime of rivers will change with climate warming. Viable coldwater habitat will shift to higher elevations and will likely be reduced in California. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and must be incorporated into modeling studies, restoration assessments, environmental impact statements, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes. Average annual number of weeks stream temperature exceeds 24°C with incremental uniform 2°C air temperature increases

  20. Effects of Arctic warming on Eurasian climate

    NASA Astrophysics Data System (ADS)

    Uotila, Petteri; Vihma, Timo

    2015-04-01

    The rapid warming in the Arctic has been one of the most dramatic signs of the climate change during the last decades. Arctic warming has been at least twice as fast as the global mean. Simultaneously with the strong warming in the central Arctic, an increased occurrence of extreme weather events, often of unprecedented strength and duration, has already been observed in the northern hemisphere. In this study we address the effects of Arctic warming patterns on climate extremes in Eurasia, and on the atmospheric circulation linking the Arctic with the mid-latitudes. Our objective is to enhance the understanding of the regional differences in the Arctic-mid-latitude linkages, which is an issue that has received a little attention in previous studies. We focus on the period since 1979, when high quality atmospheric reanalysis data are available. We apply the Self-Organizing Maps (SOMs) to extract the geographical patterns of Arctic surface temperature and relate these patterns with composites of atmospheric circulation and climate extreme indices. The extreme indices data are derived from the observational HadEX2 data set. We recognise the fact that the remote effects of Arctic warming may occur with a time lag of several weeks. Therefore we compare Arctic surface temperature patterns and temporally lagged composites of atmospheric circulation and climate extreme data. We compute the frequencies of occurrence of Arctic surface temperature patterns and decompose changes in relevant quantities, such as precipitation, into two components. The first component represents quantity changes associated with changes in frequencies of occurrence of temperature patterns, whilst the second component describes quantity changes due to the local temperature change within each surface temperature pattern. Our preliminary results demonstrate fundamental differences in the Arctic-mid-latitude linkages between the western and central parts of the Eurasian continent. For example, in autumn and early winter, the sea ice cover and air temperatures have a different relationship in the western and central Eurasia, but in late winter their statistical relationships turn similar. Furthermore, frequencies of occurrence of Arctic temperature change significantly from the 1980s until the latest decade. These frequency changes are associated with a particularly distinct reorganisation of the atmospheric circulation over Eurasia, while elsewhere the largest contribution to the atmospheric circulation change in the Northern Hemisphere is associated with local changes in Arctic surface temperatures. We are carrying out more analysis with the SOM technique to different seasons and variables that can provide further insights on the Arctic-mid-latitude linkages.

  1. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; Kamae, Y.; Zhang, Z.; Abe-Ouchi, A.; Chandler, M. A.; Jost, A.; Lohmann, G.; Otto-Bliesner, B. L.; Ramstein, G.; Ueda, H.

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  2. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected. However, the functionally realistic mechanisms beneath the pervasively climate-induced forest decline/dieback still remain unclear. Network-based long-term surveys and experiment studies are urgently needed for further understandings regarding the responses of forest/tree growth to climate warming/variations.

  3. Ocean change around Greenland under a warming climate

    NASA Astrophysics Data System (ADS)

    Lique, Camille; Johnson, Helen L.; Plancherel, Yves; Flanders, Robert

    2015-09-01

    The impact of climate warming on the ocean near Greenland is investigated with a high resolution coupled global climate model. The ocean around Greenland exhibits a strong warming in response to a four times increase of present-day atmospheric levels. The signal is intensified in the intermediate layer and regionally strongest in the Greenland Sea. The projected changes in temperature are driven by changes affecting the large-scale ocean circulation rather than changes of the local atmospheric heat forcing. The ocean conditions examined here provide a background for the water masses in contact with the outlet glaciers around the Greenland coast. The future warming of the warm subtropical-origin layer could thus lead to enhanced ice sheet melting, although the signal could be mitigated by other effects, including an enhanced stratification of the surface fresh layer. Applying a simple parameterization to estimate the change in melt rate along the Greenland coast, we find that ice sheet melting increases everywhere in response to the change in water mass properties, although the melt rate changes show large variations in space. The largest melting acceleration is found on the east coast between Fram Strait and Denmark Strait, where both the parameterization applied to present-day conditions and observations suggest moderate melting up to now. These model results caution that the Greenland Ice Sheet mass balance should be monitored everywhere and not only where melting occurs at the moment.

  4. Lagging adaptation to warming climate in Arabidopsis thaliana

    PubMed Central

    Wilczek, Amity M.; Cooper, Martha D.; Korves, Tonia M.; Schmitt, Johanna

    2014-01-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  5. Lagging adaptation to warming climate in Arabidopsis thaliana.

    PubMed

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  6. Contrasting the Hydrological Cycle in Past and Future Warm Climates

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Burls, N.

    2014-12-01

    Warm epochs of the past, from the Cretaceous to the Eocene to the Pliocene, are believed to have had generally wetter climate conditions than cold epochs. In particular, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 million years ago did the broad pattern of arid and semi-arid subtropical regions become fully established. However, current projections for future global warming caused by CO2 rise suggest the strengthening of such dry conditions over subtropical regions, rather than the return to a wetter state. What makes these past warm climates so different from future projections? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with an early Pliocene simulation that closely reproduces the available observations. We argue that different cloud properties, maintaining low-latitude ocean temperature patterns with reduced zonal and meridional temperature gradients and hence weaker atmospheric circulation, could explain this puzzle.

  7. Multiple vegetation states in a warm climate

    NASA Astrophysics Data System (ADS)

    Port, Ulrike; Claussen, Martin

    2014-05-01

    Using the Max Planck earth system model, multiple steady states in vegetation cover are evaluated for preindustrial and Early Eocene boundary conditions. By setting the soil albedo either to a value similar to vegetation albedo or to a value much higher than vegetation albedo, the hydrological and the albedo effect of vegetation on climate are separated. Considering only the hydrological effect, multiple solutions for the Early Eocene vegetation cover exist. In central Asia, a desert evolves. This desert is smaller when the simulation is started with trees on all continents instead of bare soil. Started with trees, the climate in central Asia is more humid than when started with bare soil. In the more humid climate, more vegetation grows. For the preindustrial climate, only one solution for vegetation exists. The atmospheric circulation prevents multiple solutions for vegetation in the Sahara. Strong subsidence prevails over the Sahara. Under strong subsidence the hydrological effect becomes ineffective. Considering the hydrological and the albedo effect of vegetation, only one solution for Early Eocene and preindustrial vegetation exists. Starting the simulations with trees, the Early Eocene central Asia and preindustrial Sahara start from a humid climate, but the initial climate is not humid enough to allow a dense vegetation cover. With shrinking vegetation cover, surface albedo increases. Increasing albedo amplifies aridification by inducing the Charney effect. The vegetation cover shrinks further until a dry desert state is reached. This study shows that the existence of multiple steady vegetation states depends on the boundary conditions, such as continent distribution. This result implies that the existence and the driving mechanisms of multiple stable vegetation states differ for present day, past, and probably future conditions.

  8. How to preserve the tundra in a warming climate?

    NASA Astrophysics Data System (ADS)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  9. Modelling middle pliocene warm climates of the USA

    USGS Publications Warehouse

    Haywood, A.M.; Valdes, P.J.; Sellwood, B.W.; Kaplan, J.O.; Dowsett, H.J.

    2001-01-01

    The middle Pliocene warm period represents a unique time slice in which to model and understand climatic processes operating under a warm climatic regime. Palaeoclimatic model simulations, focussed on the United States of America (USA), for the middle Pliocene (ca 3 Ma) were generated using the USGS PRISM2 2?? ?? 2?? data set of boundary conditions and the UK Meteorological Office's HadAMS General Circulation Model (GCM). Model results suggest that conditions in the USA during the middle Pliocene can be characterised as annually warmer (by 2?? to 4??C), less seasonal, wetter (by a maximum of 4 to 8 mm/day) and with an absence of freezing winters over the central and southern Great Plains. A sensitivity experiment suggests that the main forcing mechanisms for surface temperature changes in near coastal areas are the imposed Pliocene sea surface temperatures (SST's). In interior regions, reduced Northern Hemisphere terrestrial ice, combined with less snow cover and a reduction in the elevation of the western cordillera of North America, generate atmospheric circulation changes and positive albedo feedbacks that raise surface temperatures. A complex set of climatic feedback mechanisms cause an enhancement of the hydrological cycle magnifying the moisture bearing westerly wind belt during the winter season (Dec., Jan., Feb.). Predictions produced by the model are in broad agreement with available geological evidence. However, the GCM appears to underestimate precipitation levels in the interior and central regions of the southern USA. Copyright: Palaeontological Association, 22 June 2001.

  10. Ocean Biogeochemistry in the warm climate of the Late Paleocene

    NASA Astrophysics Data System (ADS)

    Heinze, M.; Ilyina, T.

    2014-04-01

    The Late Paleocene is characterized by warm and stable climatic conditions which served as the background climate for the Paleocene-Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore we use the Hamburg Ocean Carbon Cycle model HAMOCC, embedded into the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemistry of the Late Paleocene. We focus on the evaluation of modeled spatial and vertical distributions of the ocean carbon cycle parameters in a long-term warm steady-state ocean, based on a 560 ppm CO2 atmosphere. Model results are discussed in the context of available proxy data and simulations of pre-industrial conditions. Our results illustrate that ocean biogeochemistry is shaped by the warm and sluggish ocean state of the Late Paleocene, which affects the strength and spatial variation of the different carbon pumps. Primary production is only slightly reduced in comparison to present-day; it is intensified along the equator, especially in the Atlantic. This enhances remineralization of organic matter, resulting in strong oxygen minimum zones and CaCO3 dissolution in intermediate waters. We show that an equilibrium CO2 exchange without increasing total alkalinity concentrations above today's values is achieved. Yet, the surface ocean pH and the saturation state with respect to CaCO3 are lower than today. Our results indicate that under such conditions, the surface ocean carbonate chemistry is expected to be more sensitive to a carbon perturbation (i.e. the PETM) due to lower CO32- concentration, whereas the deep ocean calcite sediments would be less vulnerable to dissolution due to the sluggish ocean.

  11. Ocean biogeochemistry in the warm climate of the late Paleocene

    NASA Astrophysics Data System (ADS)

    Heinze, M.; Ilyina, T.

    2015-01-01

    The late Paleocene is characterized by warm and stable climatic conditions that served as the background climate for the Paleocene-Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore, we use the Hamburg Ocean Carbon Cycle model (HAMOCC), embedded in the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemistry of the late Paleocene. We focus on the evaluation of modeled spatial and vertical distributions of the ocean carbon cycle parameters in a long-term warm steady-state ocean, based on a 560 ppm CO2 atmosphere. Model results are discussed in the context of available proxy data and simulations of pre-industrial conditions. Our results illustrate that ocean biogeochemistry is shaped by the warm and sluggish ocean state of the late Paleocene. Primary production is slightly reduced in comparison to the present day; it is intensified along the Equator, especially in the Atlantic. This enhances remineralization of organic matter, resulting in strong oxygen minimum zones and CaCO3 dissolution in intermediate waters. We show that an equilibrium CO2 exchange without increasing total alkalinity concentrations above today's values is achieved. However, consistent with the higher atmospheric CO2, the surface ocean pH and the saturation state with respect to CaCO3 are lower than today. Our results indicate that, under such conditions, the surface ocean carbonate chemistry is expected to be more sensitive to a carbon perturbation (i.e., the PETM) due to lower CO32- concentration, whereas the deep ocean calcite sediments would be less vulnerable to dissolution due to the vertically stratified ocean.

  12. Arctic climate change: Greenhouse warming unleashed

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  13. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  14. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  15. Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Li, Guangqi; Harrison, Sandy P.; Bartlein, Patrick J.; Izumi, Kenji; Colin Prentice, I.

    2013-08-01

    investigate the scaling between precipitation and temperature changes in warm and cold climates using six models that have simulated the response to both increased CO2 and Last Glacial Maximum (LGM) boundary conditions. Globally, precipitation increases in warm climates and decreases in cold climates by between 1.5%/°C and 3%/°C. Precipitation sensitivity to temperature changes is lower over the land than over the ocean and lower over the tropical land than over the extratropical land, reflecting the constraint of water availability. The wet tropics get wetter in warm climates and drier in cold climates, but the changes in dry areas differ among models. Seasonal changes of tropical precipitation in a warmer world also reflect this "rich get richer" syndrome. Precipitation seasonality is decreased in the cold-climate state. The simulated changes in precipitation per degree temperature change are comparable to the observed changes in both the historical period and the LGM.

  16. Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback

    NASA Astrophysics Data System (ADS)

    Zhou, Tianjun; Chen, Xiaolong

    2015-12-01

    Climate sensitivity is an important index that measures the relationship between the increase in greenhouse gases and the magnitude of global warming. Uncertainties in climate change projection and climate modeling are mostly related to the climate sensitivity. The climate sensitivities of coupled climate models determine the magnitudes of the projected global warming. In this paper, the authors thoroughly review the literature on climate sensitivity, and discuss issues related to climate feedback processes and the methods used in estimating the equilibrium climate sensitivity and transient climate response (TCR), including the TCR to cumulative CO2 emissions. After presenting a summary of the sources that affect the uncertainty of climate sensitivity, the impact of climate sensitivity on climate change projection is discussed by addressing the uncertainties in 2°C warming. Challenges that call for further investigation in the research community, in particular the Chinese community, are discussed.

  17. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  18. Ocean climate and seal condition

    PubMed Central

    Le Boeuf, Burney J; Crocker, Daniel E

    2005-01-01

    Background The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. Results The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Conclusion Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles. PMID:15794819

  19. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change. PMID:24771521

  20. Terrestrial Carbon Cycle Feedback to Climate Warming: Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhou, X.; Sherry, R.

    2006-12-01

    Global climate modeling has demonstrated that climate warming would stimulate respiratory CO2 release from the terrestrial ecosystems to the atmosphere, which in turn leads to more warming in the climate system. This positive feedback between the climate change and the terrestrial carbon cycle can form a vicious cycle that potentially leads to a dangerous threat to ecosystem functioning and service. Some of the key processes underlying this feedback loop, however, have not been carefully examined by experimental studies. Those key processes include temperature sensitivity of ecosystem carbon influx; regulation of carbon processes by warming-induced changes in species composition, and nutrient and water availability; and phenology and timing of ecosystem processes under warming. We have conducted two warming experiments in a Southern Great Plains prairie to examine ecosystem responses to climate warming. We used infrared heaters to elevate soil temperature by approximately 2.0 and 4.0 oC, respectively, during the experimental period. Our results indicate that plant biomass growth increased by approximately 20% in the warmed plots in comparison to that in the control plots. The increased plant productivity likely resulted from extended length of growing seasons since warming advanced phenology of early-flowering species and delayed phenology of late-flowering species, leading to an extension of the growing season. Leaf photosynthesis, however, was not strongly affected by warming. Warming also considerably increased C4 plant biomass and caused slight decreases in growth of C3 plants. Increased C4 biomass and litter production resulted in decreases in quality and decomposition of bulk litter at the ecosystem scale, leading to an increase in litter mass at the soil surface. Soil respiration did not significantly increase in the first two years but increased by 8-10% in the last several years, largely due to increased root respiration and litter pool sizes. We did not observe much change in soil C content under warming, indicating that increased plant biomass counterbalanced the increased carbon loss via respiration. The increased biomass production was accompanied by increases in plant nitrogen uptake and use efficiency. Decreased litter quality and increased litter pools may trigger a negative nitrogen feedback to decrease nitrogen releases from litter and availability for plants over time. Overall, our data from the Great Plains prairie do not support the notion that warming stimulation of soil respiration is the major feedback process to climate change. A realistic prediction of the future carbon cycle and climate change may require more ecosystem processes other than the respiration to be incorporated into climate models.

  1. Climatic warming in North America: Analysis of borehole temperatures

    SciTech Connect

    Deming, D.

    1995-06-16

    The primary database used to assess climatic warming over the last 100 to 150 years is the history of surface air temperatures (SATs) as recorded on a daily basis for weather forecasting. Climatic information missing from the truncated SAT record may be found in borehole temperature profiles. Changes in ground surface temperature (GST) propagate into the subsurface, exponentially decreasing in amplitude with increasing time and depth. Studies to date have shown that changes in SAT tend to be tracted in GST changes and GST is a valid indicator of climate change. Studies of borehole temperatures provide a relatively good constraint on the total magnitude of warming; inferences concerning the date at which the warming trend began and the rate at which it proceeded are much less certain. The available evidence from both GST and SAT studies is sonsistant with a major climatic warming over the North American Continent that likely began near the middle of the 19th century in the east, later in the west. The magnitude of warming in the east estimated from changes in GST significantly exceeds that estimated from SAT. A cause and effect relationship between anthropogenic activities and climatic warming cannot be demonstrated unambiguously at the present time. 29 refs., 2 figs.

  2. Transitivity of the climate-vegetation system in a warm climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2015-11-01

    To date, the transitivity of the global system has been analysed for late Quaternary (glacial, interglacial, and present-day) climate. Here, we extend this analysis to a warm, almost ice-free climate with a different configuration of continents. We use the Earth system model of the Max Planck Institute for Meteorology to analyse the stability of the climate system under early Eocene and pre-industrial conditions. We initialize the simulations by prescribing either dense forests or bare deserts on all continents. Starting with desert continents, an extended desert remains in central Asia in the early Eocene climate. Starting with dense forest coverage, the Asian desert is much smaller, while coastal deserts develop in the Americas which appear to be larger than in the simulations with initially bare continents. These differences can be attributed to differences in the large-scale tropical circulation. With initially forested continents, a stronger dipole in the 200 hPa velocity potential develops than in the simulation with initially bare continents. This difference prevails when vegetation is allowed to adjust to and interact with climate. Further simulations with initial surface conditions that differ in the region of the Asian desert only indicate that local feedback processes are less important in the development of multiple states. In the interglacial, pre-industrial climate, multiple states develop only in the Sahel region. There, local climate-vegetation interaction seems to dominate.

  3. Peatland Carbon Dynamics in Alaska During Past Warm Climates

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Cleary, K.; Massa, C.; Hunt, S. J.; Klein, E. S.; Loisel, J.

    2013-12-01

    Peatlands represent a large belowground carbon (C) pool in the biosphere. However, how peatland C sequestration capacity varies with changes in climate and climate-induced disturbance is still poorly understood and debated. Here we summarize results from Alaskan peatlands to document how peat C accumulation has responded to past warm climate intervals. We find that the greatest C accumulation rates at sites from the Kenai Peninsula to the North Slope occurred during the Holocene thermal maximum (HTM) in the early Holocene. This time period also corresponds with explosive formation and expansion of new peatlands on the landscape across Alaska. In addition, we note that many peatlands that existed during the earlier Holocene on the North Slope have disappeared and are presently covered by mineral soils under tundra or sandy deposits. During the Medieval Climate Anomaly (MCA) around 1000-500 years ago, several peatlands in Alaska show high rates of C accumulation when compared to the period before the MCA during the Neoglacial or the following Little Ice Age period. Altogether, our results indicate that the Alaskan landscape was very different during the last 10,000 years and that peatlands can rapidly accumulate C under warm climatic conditions. We speculate that warmth-stimulated increase in plant production surpasses increase in peat decomposition during the early Holocene, and potentially also during the MCA. Other factors that might have contributed to rapid peat accumulation during the early Holocene include increased summer sunlight, lowered sea levels, and decreased sea-ice cover/duration. Summer insolation was ca. 8% higher than today during the early Holocene due to orbital variations, which likely promoted plant productivity by increasing growing seasons sunlight. Furthermore, lower sea levels and exposed shallow continental shelves in the Beaufort Sea (Arctic Ocean) would have made the present-day Arctic Coastal Plain more continental, with warmer summers and colder winters, also reducing non-growing season decomposition. Reduced summer sea ice cover would also mediate and increase summer temperatures on the North Slope. Overall, our results show that, contrary to conventional wisdom, cool and wet climates such as those that characterized the Neoglacial period may result in peatland flooding (too much water), thereby limiting peat accumulation in these wet and cold regions. If the observations from northern Alaska are also applicable to other high-latitude regions with possible 'disappeared peatlands', our findings have important implications for understanding the role of peatlands in the global C cycle in the past and future.

  4. Robust cloud feedback over tropical land in a warming climate

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Ogura, Tomoo; Watanabe, Masahiro; Xie, Shang-Ping; Ueda, Hiroaki

    2016-03-01

    Cloud-related radiative perturbations over land in a warming climate are of importance for human health, ecosystem, agriculture, and industry via solar radiation availability and local warming amplification. However, robustness and physical mechanisms responsible for the land cloud feedback were not examined sufficiently because of the limited contribution to uncertainty in global climate sensitivity. Here we show that cloud feedback in general circulation models over tropical land is robust, positive, and is relevant to atmospheric circulation change and thermodynamic constraint associated with water vapor availability. In a warming climate, spatial variations in tropospheric warming associated with climatological circulation pattern result in a general weakening of tropical circulation and a dynamic reduction of land cloud during summer monsoon season. Limited increase in availability of water vapor also reduces the land cloud. The reduction of land cloud depends on global-scale oceanic warming and is not sensitive to regional warming patterns. The robust positive feedback can contribute to the warming amplification and drying over tropical land in the future.

  5. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  6. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.

    PubMed

    Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2015-01-01

    As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. PMID:25378195

  7. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NASA Astrophysics Data System (ADS)

    Shongwe, M. E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often interpolated or extrapolated to give an indication of the likelihood of a certain event within a given period or interval. Under changing climatic conditions, the statistical properties of climate extremes are also changing. It is an important scientific goal to predict how the properties of extreme events change. To achieve this goal, observational and model studies aimed at revealing important features are a necessary prerequisite. Notable progress has been made in understanding mechanisms that influence climate variability and extremes in many parts of the globe including Europe. However, some of the recently observed unprecedented extremes cannot be fully explained from the already identified forcing factors. A better understanding of why these extreme events occur and their sensitivity to certain reinforcing and/or competing factors is useful. Understanding their basic form as well as their temporal variability is also vital and can contribute to global scientific efforts directed at advancing climate prediction capabilities, particularly making skilful forecasts and realistic projections of extremes. In this thesis temperature and precipitation extremes in Europe and Africa, respectively, are investigated. Emphasis is placed on the mechanisms underlying the occurrence of the extremes, their predictability and their likely response to global warming. The focus is on some selected seasons when extremes typically occur. An atmospheric energy budget analysis for the record-breaking European Autumn 2006 event has been carried out with the goal to identify the sources of energy for the extreme event. Net radiational heating is compared to surface turbulent fluxes of energy and dynamic horizontal advection of heat. There is clear evidence that the central North Atlantic Ocean was the major source of energy for the Autumn 2006 extreme event. Within Europe, anomalously high atmospheric water-vapor loading played a significant role through its strong greenhouse effect which resulted in an increase of downwelling infrared flux to the surface. Potential influences and connections between boreal snow cover during the melt season (February--April) and near-surface temperature in the spring season are established. Large amounts of snow act as a precursor to cold spring seasons by altering the coupling between the land and the overlying air through a modification of the surface energy and hydrological processes. In operational numerical models, a snow signal is found to provide some seasonal forecast skill for cold spring seasons in Europe. Changes in the intensity of droughts and floods in Africa in response to global warming are investigated and compared with changes in mean precipitation simulated by an ensemble of climate models selected from the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4) set. The model simulations are objectively combined using a Bayesian weighting procedure. In southern Africa south of about 15° S, the most robust climate-change signal is a shortening of the main rainfall season. This arises from a delayed onset of seasonal rainfall associated with a reduction in lower-tropospheric moisture advection from the southwestern Indian Ocean. The semi-arid areas closer to the Kalahari desert are projected to become drier, while the wet areas are projected to become wetter. East Africa is projected to get wet in the future climate, much wetter than other regions within the same latitudinal belt. The zonal asymmetry in tropical precipitation increase is associated with a shift towards positive Indian Ocean Zonal Mode (IOZM)-like events via an alteration in the structure of the Eastern Hemisphere Walker circulation.

  8. Simulated increase of hurricane intensities in a CO{sub 2}-warmed climate

    SciTech Connect

    Knutson, T.R.; Tuleya, R.E.; Kurihara, Y.

    1998-02-13

    Hurricanes can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of these powerful storms could change in response to greenhouse gas-induced global warming. The impact of climate warming on hurricane intensities was investigated with a regional, high-resolution, hurricane prediction model. In a case study, 51 western Pacific storm cases under present-day climate conditions were compared with 51 storm cases under high-CO{sub 2} conditions. More idealized experiments were also performed. The large-scale initial conditions were derived from a global climate model. For a sea surface temperature warming of about 2.2{degree}C, the simulations yielded hurricanes that were more intense by 3 to 7 meters per second (5 to 12 percent) for wind speed and 7 to 20 millibars for central surface pressure. 26 refs., 4 figs.

  9. Geoengineering: Direct Mitigation of Climate Warming

    EPA Science Inventory

    For Frank Princiottas book, Global Climate ChangeThe Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earths climate system appears to be rapidly shifting into a warmer regime....

  10. Geoengineering: Direct Mitigation of Climate Warming

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....

  11. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2007-12-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  12. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development

    PubMed Central

    Capdevielle, Jillian N.; Parker, John D.

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated. PMID:26528403

  13. Future Warming Patterns Linked to Today’s Climate Variability

    PubMed Central

    Dai, Aiguo

    2016-01-01

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations during 1950–1979 having more GHG-induced warming in the 21st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21st century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change. PMID:26750759

  14. Future warming patterns linked to today’s climate variability

    DOE PAGESBeta

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations during 1950–1979more » having more GHG-induced warming in the 21st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  15. Future Warming Patterns Linked to Today’s Climate Variability

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo

    2016-01-01

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21st century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  16. Hydrological response to climate warming: The Upper Feather River Watershed

    NASA Astrophysics Data System (ADS)

    Huang, Guobiao; Kadir, Tariq; Chung, Francis

    2012-03-01

    SummaryThe hydrological response and sensitivity to climate warming of a snow-dominated watershed, the Upper Feather River Basin (UFRB) in Northern California, were evaluated and quantified using observed changes, detrending, and specified temperature-based sensitivity simulations. The non-stationarity in historical data was detected with trend analysis and the warming trends in historical forcing data were removed by detrending. The physically-based and spatially-distributed Precipitation-Runoff Modeling System (PRMS) model was used to force uniform climate warming (+1 °C to +4 °C) to investigate hydrologic sensitivity to temperature increase. Six Global Climate Models (GCMs) with two IPCC Special Report on Emissions Scenarios (SRES), A2 and B1, were selected to represent a range of climate change projections. These projected changes were then applied to the detrended historical forcing data to simulate climate change effects in a detrended, quasi-stationary setting. The results indicate that: (1) historical annual precipitation and streamflow have no trends, but air temperature and seasonal streamflow have statistically significant trends. (2) By detrending temperature, the strong trends in seasonal streamflow are virtually eliminated. (3) Hydrologic Sensitivity to climate warming includes small changes in annual streamflow and actual evapotranspiration, significant changes in streamflow timing and increased frequency and magnitude in extreme flows. (4) All GCM projections lead to negative impact on water supply.

  17. The case for a wet, warm climate on early Mars.

    PubMed

    Pollack, J B; Kasting, J F; Richardson, S M; Poliakoff, K

    1987-01-01

    Theoretical arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. Calculations with a one-dimensional radiative-convective climate model indicate that CO2 pressures between 1 and 5 bars would have been required to keep the surface temperature above the freezing point of water early in the planet's history. The higher value corresponds to globally and orbitally averaged conditions and a 30% reduction in solar luminosity; the lower value corresponds to conditions at the equator during perihelion at times of high orbital eccentricity and the same reduced solar luminosity. The plausibility of such a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By appropriately scaling the rate of silicate weathering on present Earth, we estimate a weathering time constant of the order of several times 10(7) years for early Mars. Thus, a dense atmosphere could have persisted for a geologically significant time period (approximately 10(9) years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this might have been accomplished is the thermal decomposition of carbonate rocks induced directly and indirectly (through burial) by intense, global-scale volcanism. For plausible values of the early heat flux, the recycling time constant is also of the order of several times 10(7) years. The amount of CO2 dissolved in standing bodies of water was probably small; thus, the total surficial CO2 inventory required to maintain these conditions was approximately 2 to 10 bars. The amount of CO2 in Mars' atmosphere would eventually have dwindled, and the climate cooled, as the planet's internal heat engine ran down. A test for this theory will be provided by spectroscopic searches for carbonates in Mars' crust. PMID:11539035

  18. Assessing regional and warming level dependent differences in climate impacts

    NASA Astrophysics Data System (ADS)

    Wohland, Jan; Schleussner, Carl-Friedrich; Lissner, Tabea; Fischer, Erich M.; Frieler, Katja

    2015-04-01

    Differentiation between climate impacts at different levels of warming is of great relevance for scientists and policy makers. Knowledge of the consequences of different development and temperature pathways is essential to inform international climate negotiations and regional adaptation planning alike. At the same time, not only the warming dimension but also the regional dimension of changes in impacts is of interest, since regional changes might not be linearly related to global mean temperature increase. A detailed understanding of regionally differentiated impacts is an important basis on which to develop suitable coping strategies and adaptation options. Here we present a framework that allows for a differentiation of regional changes in climate impacts at different levels of temperature increase. Based on data from the CMIP5 archive as well as output from the AgMIP project, we assess the climate impact projections for an increase in global mean surface air temperature of 1.5 and 2 °C above pre-industrial levels for the 26 regions used in the IPCC SREX report. We show results for several extreme event indices as well as projections of water availability and agricultural yields. Based on a method developed by Fischer et al. (2013), we are able to test for statistical significance of changes in climate impact projections between the different warming levels across the model ensemble. References: Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nature Climate Change 3, 1033-1038 (2013).

  19. Climatic warming and the future of bison as grazers

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-11-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  20. Climatic warming and the future of bison as grazers

    PubMed Central

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-01-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores. PMID:26567987

  1. Climatic warming and the future of bison as grazers.

    PubMed

    Craine, Joseph M; Towne, E Gene; Miller, Mary; Fierer, Noah

    2015-01-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores. PMID:26567987

  2. The long-term fate of permafrost peatlands under rapid climate warming

    NASA Astrophysics Data System (ADS)

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.

    2015-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.

  3. The long-term fate of permafrost peatlands under rapid climate warming.

    PubMed

    Swindles, Graeme T; Morris, Paul J; Mullan, Donal; Watson, Elizabeth J; Turner, T Edward; Roland, Thomas P; Amesbury, Matthew J; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  4. The long-term fate of permafrost peatlands under rapid climate warming

    PubMed Central

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  5. African agriculture especially vulnerable to warming climate

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-09-01

    Malnourishment across Africa could jump 40% by 2050 due to climate change, according to the Africa Agriculture Status Report 2014 (AASR), released on 2 September. With temperatures predicted to rise 1.5C-2.5C by midcentury, African smallholder farms, which are generally run by one family, are more vulnerable than ever, the report finds.

  6. Warming Up the Classroom Climate for Women.

    ERIC Educational Resources Information Center

    Rosser, Sue V.

    1989-01-01

    Presents five exercises, based on the "Chilly Climate" papers, designed to enhance faculty and staff sensitivity to the need of providing a comfortable learning environment for women. Covers definition of sexism, pronouns as power, gender differences in experiences with sexism, incorporating feminist scholarship into traditional courses,

  7. Enhanced warming of the Northwest Atlantic Ocean under climate change

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Griffies, Stephen M.; Anderson, Whit G.; Winton, Michael; Alexander, Michael A.; Delworth, Thomas L.; Hare, Jonathan A.; Harrison, Matthew J.; Rosati, Anthony; Vecchi, Gabriel A.; Zhang, Rong

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) fifth assessment of projected global and regional ocean temperature change is based on global climate models that have coarse (˜100 km) ocean and atmosphere resolutions. In the Northwest Atlantic, the ensemble of global climate models has a warm bias in sea surface temperature due to a misrepresentation of the Gulf Stream position; thus, existing climate change projections are based on unrealistic regional ocean circulation. Here we compare simulations and an atmospheric CO2 doubling response from four global climate models of varying ocean and atmosphere resolution. We find that the highest resolution climate model (˜10 km ocean, ˜50 km atmosphere) resolves Northwest Atlantic circulation and water mass distribution most accurately. The CO2 doubling response from this model shows that upper-ocean (0-300 m) temperature in the Northwest Atlantic Shelf warms at a rate nearly twice as fast as the coarser models and nearly three times faster than the global average. This enhanced warming is accompanied by an increase in salinity due to a change in water mass distribution that is related to a retreat of the Labrador Current and a northerly shift of the Gulf Stream. Both observations and the climate model demonstrate a robust relationship between a weakening Atlantic Meridional Overturning Circulation (AMOC) and an increase in the proportion of Warm-Temperate Slope Water entering the Northwest Atlantic Shelf. Therefore, prior climate change projections for the Northwest Atlantic may be far too conservative. These results point to the need to improve simulations of basin and regional-scale ocean circulation.

  8. Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada

    PubMed Central

    Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.

    2010-01-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984

  9. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    PubMed

    Null, Sarah E; Viers, Joshua H; Mount, Jeffrey F

    2010-01-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984

  10. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  11. Projected changes of snow conditions and avalanche activity in a warming climate: a case study in the French Alps over the 2020-2050 and 2070-2100 periods

    NASA Astrophysics Data System (ADS)

    Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.

    2014-01-01

    Projecting changes in snow cover due to climate warming is important for many societal issues, including adaptation of avalanche risk mitigation strategies. Efficient modeling of future snow cover requires high resolution to properly resolve the topography. Here, we detail results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions for the mid- and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided with regards to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model of avalanche activity-snow conditions-meteorological conditions relationships, so as to produce the first prognoses at annual/seasonal time scales of future natural avalanche activity eventually based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of changes anticipation. At all considered spatio-temporal scales, whereas precipitations are expected to remain quite stationary, temperature increase interacting with topography will control snow-related variables, for instance the rate of decrease of total and dry snow depths, and the successive increase/decrease of the wet snow pack. Overall, with regards to the reference period, changes are strong for the end of the 21st century, but already significant for the mid-century. Changes in winter are somewhat less important than in spring, but wet snow conditions will appear at high elevations earlier in the season. For a given altitude, the Southern French Alps will not be significantly more affected than the Northern French Alps, so that the snowpack characteristics will be preserved more lately in the southern massifs of higher mean altitude. Regarding avalanche activity, a general -20-30% decrease and interannual variability is forecasted, relatively strong compared to snow and meteorological parameters changes. This decrease is amplified in spring and at low altitude. In contrast, an increase of avalanche activity is expected in winter at high altitude because of earlier wet snow avalanches triggers, at least as long as a minimal snow cover will be present. Comparison with the outputs of the deterministic avalanche hazard model MEPRA shows generally consistent results but suggests that, even if the frequency of winters with high avalanche activity will clearly decrease, the decreasing trend may be less strong and smooth than suggested by the changes in snowpack characteristics. This important point for risk assessment pleads for further work focusing on shorter time scales. Finally, small differences between different climate change scenarios show the robustness of the predicted avalanche activity changes.

  12. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  13. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  14. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was

  15. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  16. Sustained growth of the Southern Ocean carbon storage in a warming climate

    NASA Astrophysics Data System (ADS)

    Ito, Takamitsu; Bracco, Annalisa; Deutsch, Curtis; Frenzel, Hartmut; Long, Matthew; Takano, Yohei

    2015-06-01

    We investigate the mechanisms controlling the evolution of Southern Ocean carbon storage under a future climate warming scenario. A subset of Coupled Model Intercomparison Project Phase 5 models predicts that the inventory of biologically sequestered carbon south of 40°S increases about 18-34 Pg C by 2100 relative to the preindustrial condition. Sensitivity experiments with an ocean circulation and biogeochemistry model illustrates the impacts of the wind and buoyancy forcings under a warming climate. Intensified and poleward shifted westerly wind strengthens the upper overturning circulation, not only leading to an increased uptake of anthropogenic CO2 but also releasing biologically regenerated carbon to the atmosphere. Freshening of Antarctic Surface Water causes a slowdown of the lower overturning circulation, leading to an increased Southern Ocean biological carbon storage. The rectified effect of these processes operating together is the sustained growth of the carbon storage in the Southern Ocean, even under the warming climate with a weaker global ocean carbon uptake.

  17. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models. PMID:20375046

  18. Climatic irregular staircases: generalized acceleration of global warming

    NASA Astrophysics Data System (ADS)

    de Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  19. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  20. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  1. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  2. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  3. Climate warming and Bergmann's rule through time: is there any evidence?

    PubMed Central

    Teplitsky, Celine; Millien, Virginie

    2014-01-01

    Climate change is expected to induce many ecological and evolutionary changes. Among these is the hypothesis that climate warming will cause a reduction in body size. This hypothesis stems from Bergmann's rule, a trend whereby species exhibit a smaller body size in warmer climates, and larger body size under colder conditions in endotherms. The mechanisms behind this rule are still debated, and it is not clear whether Bergmann's rule can be extended to predict the effects of climate change through time. We reviewed the primary literature for evidence (i) of a decrease in body size in response to climate warming, (ii) that changing body size is an adaptive response and (iii) that these responses are evolutionary or plastic. We found weak evidence for changes in body size through time as predicted by Bergmann's rule. Only three studies investigated the adaptive nature of these size decreases. Of these, none reported evidence of selection for smaller size or of a genetic basis for the size change, suggesting that size decreases could be due to nonadaptive plasticity in response to changing environmental conditions. More studies are needed before firm conclusions can be drawn about the underlying causes of these changes in body size in response to a warming climate. PMID:24454554

  4. Spatiotemporal impacts of wildfire and climate warming on permafrost across a subarctic region, Canada

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wolfe, Stephen A.; Morse, Peter D.; Olthof, Ian; Fraser, Robert H.

    2015-11-01

    Field observations show significant impacts of wildfires on active layer thickness and ground temperatures. However, the importance of fires to permafrost conditions at regional scales remains unclear, especially with climate warming. This study evaluated the regional impacts of fire on permafrost with climate change from 1942 to 2100 using a process-based model in a large subarctic region in the Northwest Territories, Canada. Climate warming is shown to be the dominant factor for permafrost reduction. The warming trend of climate reduces permafrost extent in this region from 67% at present to 2% by 2100. For burned areas, fire increases the reduction of permafrost extent by up to 9% on average, with up to 16% for forest, 10% for tundra and bogs, and 4% for fens. Fire accelerates permafrost disappearance by 5 years on average. The effects of fire on active layer thickness and permafrost extent are much larger in forest areas than in tundra, bogs, and fens. Since active layer is thicker after a fire and cannot recover in most of the areas, the fire effects on active layer are widespread. On average, fires thickens active layer by about 0.5 m. The fire effects on active layer increased significantly after 1990 due to climate warming.

  5. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; Ault, T. R.; Bolmgren, K.; Mazer, S. J.; McCabe, G. J.; McGill, B. J.; Parmesan, C.; Salamin, N.; Schwartz, M. D.; Cleland, E. E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  6. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances

    PubMed Central

    Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  7. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    PubMed

    Magris, Rafael A; Heron, Scott F; Pressey, Robert L

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  8. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  9. Research Spotlight: Corals expanding poleward due to warming climate

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-04-01

    Corals are important organisms for ecosystems and are sensitive indicators of the effects of climate warming. While corals are bleaching and dying in tropical areas due to climate warming, a new study shows that in temperate areas they are expanding their range poleward as water temperatures increase. Yamano et al. used 80 years of records to study the range of corals around Japan. Sea surface temperatures have risen in these temperate areas during that time. They found that four of the nine species of coral they studied expanded their range northward since the 1930s, while none had its range shrink southward. The corals expanded northward as quickly as 14 kilometers per year. The study suggests that rapid modifications of temperate coastal ecosystems could be taking place. (Geophysical Research Letters, doi:10.1029/2010GL046474, 2011)

  10. Diverse responses of vegetation phenology to a warming climate

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Tarpley, Dan; Sullivan, Jerry T.

    2007-10-01

    Warming climates have been widely recognized to advance spring vegetation phenology. However, the delayed responses of vegetation phenology to rising temperature and their mechanisms are poorly understood. Using satellite and climate data from 1982 to 2005, we reveal a latitude transition zone of greenup onset in vegetation communities that has diversely responded to warming temperature in North America. From 40°N northwards, a winter chilling requirement for vegetation dormancy release is far exceeded and the decrease in chilling days by warming winter temperature has little impact on thermal-time requirements for greenup onset. Thus, warming spring temperature has constantly advanced greenup onset by 0.32 days/year. However, from 40°N southward, the shortened winter chilling days are insufficient for fulfilling vegetation chilling requirement, so that the thermal-time requirement for greenup onset during spring increases gradually. Consequently, vegetation greenup onset changes progressively from an early trend (north region) to a later trend (south region) along the latitude transition zone from 40-31°N, where the switch occurs around 35°N. The greenup onset is delayed by 0.15 days/year below 31°N.

  11. Lungs in a warming world: climate change and respiratory health.

    PubMed

    Bernstein, Aaron S; Rice, Mary B

    2013-05-01

    Climate change is a health threat no less consequential than cigarette smoking. Increased concentrations of greenhouse gases, and especially CO₂, in the earth's atmosphere have already warmed the planet substantially, causing more severe and prolonged heat waves, temperature variability, air pollution, forest fires, droughts, and floods, all of which put respiratory health at risk. These changes in climate and air quality substantially increase respiratory morbidity and mortality for patients with common chronic lung diseases such as asthma and COPD and other serious lung diseases. Physicians have a vital role in addressing climate change, just as they did with tobacco, by communicating how climate change is a serious, but remediable, hazard to their patients. PMID:23648909

  12. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  13. Climate extremes and ecosystem productivity in global warming simulations

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Torn, M. S.; Riley, W. J.; Wehner, M. F.; Collins, W.

    2013-12-01

    Ecosystem responses to present-day droughts and heat-waves are often considered indicative of future global warming impacts on ecosystems, under the assumption that the temperature above which vegetation experiences heat and drought stress is invariant with changes in climate and carbon dioxide concentration. Understanding how the impacts of temperature extremes on ecosystems can change with climate change is essential for correctly evaluating and developing Earth System Models (ESMs). The Coupled Model Inter-comparison Project (CMIP5) historical and future (RCP8.5) climate predictions were analyzed in this study to illustrate non-stationarity of climate impacts on ecosystems, as evident by changes in the distribution of Gross Primary Production (GPP) as a function of temperature between future and historical climates. These changes consist of (1) a uniform shift in the GPP distribution toward warmer temperatures between future and historical climates, and (2) a proportional increase in GPP at all temperatures, consistent with CO2 fertilization. The temperature at which GPP has a local maximum within a given climate increases with global warming and closely tracks the change in mean temperature for each ecosystem. This maximum GPP temperature can be conceptualized as a stable equilibrium determined by the temperature at which an increase in plant water stress is compensated by a decrease in light stress (decreasing cloud cover) with increasing temperature. Temperature relative to the temperature of maximum GPP is proposed as an improved measure of climate extremes more relevant to ecosystem productivity than absolute temperature. The percentage change in GPP attributed to changes in relative temperature extremes is up to 3% per K (decrease in GPP), and reflects both an increase in the frequency of climate extremes in global warming scenarios and the change in temperature criteria for negative climate impacts on ecosystem productivity. Temperature at GPP maximum as a function of the growing season average temperature, for each ecosystem type. Lengths of crosshairs indicate the standard error of the CMIP5 ensemble average. Both future and historical averages are shown (the temperature of GPP maximum increases monotonically with growing season average temperature between future and historical simulations).

  14. Data of high performance precast external walls for warm climate.

    PubMed

    Baglivo, Cristina; Maria Congedo, Paolo

    2015-09-01

    The data given in the following paper are related to input and output information of the paper entitled Design method of high performance precast external walls for warm climate by multi-objective optimization analysis by Baglivo et al. [1]. Previous studies demonstrate that the superficial mass and the internal areal heat capacity are necessary to reach the best performances for the envelope of the Zero Energy Buildings located in a warm climate [2-4]. The results show that it is possible to achieve high performance precast walls also with light and ultra-thin solutions. A multi-criteria optimization has been performed in terms of steady and dynamic thermal behavior, eco sustainability score and costs. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. A large set of the best configurations of precast external walls for warm climate with their physical and thermal properties have been reported in the data article. PMID:26306317

  15. Data of high performance precast external walls for warm climate?

    PubMed Central

    Baglivo, Cristina; Maria Congedo, Paolo

    2015-01-01

    The data given in the following paper are related to input and output information of the paper entitled Design method of high performance precast external walls for warm climate by multi-objective optimization analysis by Baglivo et al. [1]. Previous studies demonstrate that the superficial mass and the internal areal heat capacity are necessary to reach the best performances for the envelope of the Zero Energy Buildings located in a warm climate [24]. The results show that it is possible to achieve high performance precast walls also with light and ultra-thin solutions. A multi-criteria optimization has been performed in terms of steady and dynamic thermal behavior, eco sustainability score and costs. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. A large set of the best configurations of precast external walls for warm climate with their physical and thermal properties have been reported in the data article. PMID:26306317

  16. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  17. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  18. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  19. Atlantic Warm Pool Trigger for the Younger Dryas Climate Event

    NASA Astrophysics Data System (ADS)

    Abdul, N. A.; Mortlock, R. A.; Wright, J. D.; Fairbanks, R. G.; Teneva, L. T.

    2011-12-01

    There is growing evidence that variability in the size and heat content of the tropical Atlantic Warm Pool impacts circum-North Atlantic climate via the Atlantic Multi-decadal Oscillation mode (Wang et al., 2008). The Atlantic Warm Pool spans the Gulf of Mexico, Caribbean Sea and the western tropical North Atlantic. Barbados is located near the center of the tropical Atlantic Warm Pool and coupled ocean models suggest that Barbados remains near the center of the tropical Atlantic Warm Pool under varying wind stress simulations. Measurements of the oxygen isotope paleothermometer in Acropora palmata coral species recovered from cores offshore Barbados, show a 3oC monotonic decrease in sea surface temperature from 13106 ± 83 to 12744 ± 61 years before present (errors given as 2 sigma). This interval corresponds to a sea level rise from 71.4 meters to 67.1 meters below present levels at Barbados. The 3oC temperature decrease is captured in eight A. palmata specimens that are in stratigraphic sequence, 230Th/234U dated, and analyzed for oxygen isotopes. All measurements are replicated. We are confident that this is the warm pool equivalent of the Younger Dryas climate event. The initiation of this temperature drop in the Atlantic Warm Pool predates the Younger Dryas start in Greenland ice cores, reported to start at 12896 ± 138 years (relative to AD 2000) (Rasmussen et al., 2006), while few other Younger Dryas climate records are dated with similar accuracy to make the comparison. Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U., 2006, A new Greenland ice core chronology for the last glacial termination: J. Geophys. Res., v. 111, p. D06102. Wang, C., Lee, S.-K., and Enfield, D.B., 2008, Atlantic Warm Pool acting as a link between Atlantic Multidecadal Oscillation and Atlantic tropical cyclone activity: Geochem. Geophys. Geosyst., v. 9, p. Q05V03.

  20. Simulated warm periods of climate over China during the last two millennia: The Sui-Tang warm period versus the Song-Yuan warm period

    NASA Astrophysics Data System (ADS)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun; Jiang, Dabang

    2015-03-01

    A 2000 year simulation forced by the external forcings of the last two millennia is carried out with the Community Earth System Model. We compare climate changes over China between the peak Sui-Tang warm period (Sui-TangWP; 650-700 A.D.) and Song-Yuan warm period (Song-YuanWP; 950-1000 A.D.), which were two key culturally, economically, and educationally prosperous eras in Chinese history. The simulation indicates warm conditions in both periods, but the warmth is mainly seen in East China in the peak Sui-TangWP, and over the whole of China in the peak Song-YuanWP. The warming in the peak Sui-TangWP is attributed to the localized increase of atmospheric net energy with favorable heat transport, whereas the peak Song-YuanWP results from the increase of global solar radiation. The annual mean precipitation anomalies in the peak Sui-TangWP exhibit a meridional dipole pattern over East China, with enhanced precipitation in the region south of the Yangtze River and decreased precipitation to the north. In the peak Song-YuanWP, the precipitation enhances over most parts of China. The precipitation anomalies are largely attributed to the water vapor transport anomalies associated with monsoon circulation changes. The simulated climate changes are broadly consistent with reconstructions, but the magnitude is greatly underestimated. Based on the simulation and reconstructions, we suggest that the Sui-TangWP may have been a regional phenomenon in China, while the Song-YuanWP was a reflection of global/hemispheric-scale warm events that took place at the same time.

  1. Climate and tourism in the Black Forest during the warm season

    NASA Astrophysics Data System (ADS)

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.

  2. Climate and tourism in the Black Forest during the warm season.

    PubMed

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions. PMID:20490572

  3. Accelerated phenology of blacklegged ticks under climate warming

    PubMed Central

    Levi, Taal; Keesing, Felicia; Oggenfuss, Kelly; Ostfeld, Richard S.

    2015-01-01

    The phenology of tick emergence has important implications for the transmission of tick-borne pathogens. A long lag between the emergence of tick nymphs in spring and larvae in summer should increase transmission of persistent pathogens by allowing infected nymphs to inoculate the population of naive hosts that can subsequently transmit the pathogen to larvae to complete the transmission cycle. In contrast, greater synchrony between nymphs and larvae should facilitate transmission of pathogens that do not produce long-lasting infections in hosts. Here, we use 19 years of data on blacklegged ticks attached to small-mammal hosts to quantify the relationship between climate warming and tick phenology. Warmer years through May and August were associated with a nearly three-week advance in the phenology of nymphal and larval ticks relative to colder years, with little evidence of increased synchrony. Warmer Octobers were associated with fewer larvae feeding concurrently with nymphs during the following spring. Projected warming by the 2050s is expected to advance the timing of average nymph and larva activity by 8–11 and 10–14 days, respectively. If these trends continue, climate warming should maintain or increase transmission of persistent pathogens, while it might inhibit pathogens that do not produce long-lasting infections. PMID:25688016

  4. Heavy rainfall in future climate around the central Japan by pseudo global warming experiments

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.

    2012-12-01

    The central part of Japan sometimes suffers from heavy rainfall derived by a typhoon. In 2000, a severe heavy rainfall attacked the central Japan. The maximum hourly precipitation in Aichi prefecture during this event was 114 mm, and daily precipitation 492 mm. On the other hand, it is reported that, in future climate, tropical cyclones (typhoons and hurricanes) will be stronger in IPCC AR4. In this study, variations in heavy rainfall around the central Japan are assessed by a pseudo global warming experiment using numerical weather prediction model. Based on the heavy rainfall event in 2000, pseudo global warming conditions are made from a reanalysis data and climate prediction in the 3rd phase of climate model intercomparison project (CMIP3), and simulations are made by the weather research forecasting model (WRF). The results of the control run of the heavy rainfall event in 2000 agree well with observed precipitation and same rainfall processes are found. In the pseudo global warming experiment using eight different CMIP3 output, five results show heavy rainfall around Aichi prefecture. Four results from the five heavy rainfalls show the larger maximum hourly precipitation, and the events continue longer than the control run. At the same time, using the same method, changes in precipitation characteristics around the central Japan are investigate for summer. The future climate conditions are obtained from dynamic downscaling by WRF using two pseudo global warming condition made with two CMIP3 projections (MPI ECHAM5 and CCCMA CGCM3.1 T47). The results show the opposite variation in future precipitation in the central Japan. In ECHAM5, summer precipitation increases in wide area, but the result with CCCMA shows decreasing precipitation especially in the Pacific side (see Figure). Such characteristics are found in the original CMIP3 output. Detail investigations of precipitation show that there are small variations in hourly precipitation in ECHAM5 and CCCMA. However, for three-hourly and six-hourly, ECHAM5 shows increasing precipitation in future but CCCMA decreasing. Those contradictions are thought to be caused by uncertainty of climate models used for making pseudo global warming conditions. Further study using many more CMIP3 model outputs is necessary for reliable assessment.; The difference in summer precipitation (June-August) between future and present climate around the central Japan. Left: result from pseudo global warming condition made with MPI ECHAM5. Right: result with CCCMA CGCM3.1 T47. The unit of color bar is mm.

  5. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-01

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula. PMID:22914090

  6. Foraging by forest ants under experimental climatic warming: a test at two sites

    PubMed Central

    Stuble, Katharine L; Pelini, Shannon L; Diamond, Sarah E; Fowler, David A; Dunn, Robert R; Sanders, Nathan J

    2013-01-01

    Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large-scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species-specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming. PMID:23531642

  7. Potential change in forest types and stand heights in central Siberia in a warming climate

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Korets, M. A.; Conard, S. G.

    2016-03-01

    Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: a 80%-90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ˜400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30-40 m stand height) were simulated to increase at the expense of less productive forests (10-20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%-25%. Stand height increases of 10 m were simulated over 35%-50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25-30 m) would occur over 8%-12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30-40 m may cover some 15% of the area under sufficient moisture.

  8. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Lyons, J.; Stewart, J.S.; Mitro, M.

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.

  9. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Stewart, Jana S.; John Lyons; Matt Mitro

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 560935% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1 C and water 08 C), moderate warming (air 3 C and water 24 C) and major warming (air 5 C and water 4 C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.

  10. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  11. Elevated CO2 further lengthens growing season under warming conditions.

    PubMed

    Reyes-Fox, Melissa; Steltzer, Heidi; Trlica, M J; McMaster, Gregory S; Andales, Allan A; LeCain, Dan R; Morgan, Jack A

    2014-06-12

    Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles. PMID:24759322

  12. Vascular plants promote ancient peatland carbon loss with climate warming.

    PubMed

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14) C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2 . Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. PMID:26730448

  13. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  14. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  15. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  16. Trophic level responses differ as climate warms in Ireland.

    PubMed

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant (P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature (P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly (P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms. PMID:25380974

  17. Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Castro, C. L.

    2009-12-01

    The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the North American Regional Reanalysis. With these conditions, downscaled CFS-WRF reforecast simulations can produce realistic continental-scale patterns of warm season precipitation. This includes a reasonable representation of the North American monsoon in the southwest U.S. and northwest Mexico, which is notoriously difficult to represent in a global atmospheric model. We anticipate that this research will help lead the way toward substantially improved real time operational forecasts of North American summer climate with a RCM.

  18. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. PMID:26564846

  19. Warm-water coral reefs and climate change

    NASA Astrophysics Data System (ADS)

    Spalding, Mark D.; Brown, Barbara E.

    2015-11-01

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  20. Permafrost carbon-climate feedbacks accelerate global warming

    PubMed Central

    Koven, Charles D.; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-01-01

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent. PMID:21852573

  1. Climate warming and agricultural stressors interact to determine stream periphyton community composition.

    PubMed

    Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate. PMID:24942814

  2. The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees

    NASA Astrophysics Data System (ADS)

    López-Moreno, J. I.; Revuelto, J.; Gilaberte, M.; Morán-Tejeda, E.; Pons, M.; Jover, E.; Esteban, P.; García, C.; Pomeroy, J. W.

    2014-07-01

    The aim of this study was to analyse the effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. For this purpose, data available from five automatic weather stations were used to simulate the energy and mass balance of snowpack, assuming different magnitudes of an idealized climate warming (upward shifting of 1, 2 and 3 °C the temperature series). Snow energy and mass balance were simulated using the Cold Regions Hydrological Modelling platform (CRHM). CRHM was used to create a model that enabled correction of the all-wave incoming radiation fluxes from the observation sites for various slope aspects (N, NE, E, SE, S, SW,W,NW and flat areas), which enabled assessment of the differential impact of climate warming on snow processes on mountain slopes. The results showed that slope aspect was responsible for substantial variability in snow accumulation and the duration of the snowpack. Simulated variability markedly increased with warmer temperature conditions. Annual maximum snow accumulation (MSA) and annual snowpack duration (ASD) showed marked sensitivity to a warming of 1 °C. Thus, the sensitivity of the MSA in flat areas ranged from 11 to 17 % per degree C amongst the weather stations, and the ASD ranged from 11 to 20 days per degree C. There was a clear increase in the sensitivity of the snowpack to climate warming on those slopes that received intense solar radiation (S, SE and SW slopes) compared with those slopes where the incident radiation was more limited (N, NE and NW slopes). The sensitivity of the MSA and the ASD increased as the temperature increased, particularly on the most irradiated slopes. Large interannual variability was also observed. Thus, with more snow accumulation and longer duration the sensitivity of the snowpack to temperature decreased, especially on south-facing slopes.

  3. Implications of global warming for the climate of African rainforests

    PubMed Central

    James, Rachel; Washington, Richard; Rowell, David P.

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  4. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  5. Multisectoral climate impact hotspots in a warming world.

    PubMed

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A M; Clark, Douglas B; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D; Gosling, Simon N; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D; Tompkins, Adrian M; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-03-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty. PMID:24344270

  6. Aridity changes in the Tibetan Plateau in a warming climate

    DOE PAGESBeta

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  7. Aridity changes in the Tibetan Plateau in a warming climate

    SciTech Connect

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  8. Multisectoral climate impact hotspots in a warming world

    PubMed Central

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A. M.; Clark, Douglas B.; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D.; Gosling, Simon N.; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R.; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C.; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D.; Tompkins, Adrian M.; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-01-01

    The impacts of global climate change on different aspects of humanity’s diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980–2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty. PMID:24344270

  9. Aridity changes in the Tibetan Plateau in a warming climate

    NASA Astrophysics Data System (ADS)

    Gao, Yanhong; Li, Xia; Leung, L. Ruby; Chen, Deliang; Xu, Jianwei

    2015-03-01

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman-Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979-2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  10. Multisectoral Climate Impact Hotspots in a Warming World

    NASA Technical Reports Server (NTRS)

    Piontek, Franziska; Mueller, Christoph; Pugh, Thomas A. M.; Clark, Douglas B.; Deryng, Delphine; Elliott, Joshua; deJesusColonGonzalez, Felipe; Floerke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D.; Gosling, Simon N.; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R.; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C.

    2014-01-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 degC above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 degC. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  11. Changes in tropical circulation in a warming climate

    NASA Astrophysics Data System (ADS)

    Chou, C.

    2013-12-01

    Precipitation is experiencing a great change under global warming. Two major processes induced changes in precipitation are thermodynamic and dynamic contributions. The former is related to changes in water vapor and the latter is associated with changes in vertical velocity. Since water vapor increases almost everywhere, the thermodynamic contribution is determined by the corresponding mean vertical motion: positive for ascents and negative for descents, which creates a 'wet-get-wetter and dry-get-drier' tendency. The dynamic contribution, on the other hand, is much more complicated, especially on a regional basis. For a global average, all climate models in the CMIP3 and CMIP5 show a robust weakening of tropical circulation, while observed changes in tropical circulation are inconsistent among data sets. A fundamental explanation for changes in tropical circulation is related to atmospheric stability. In a warmer climate, the upper troposphere warms up faster than the lower troposphere, so dry static stability increases. Thus, the atmosphere should become more stable and the corresponding tropical circulation weakens. However, a more physically-sound index, moist static stability, shows very scattering changes in global-warming simulations. In other words, the atmosphere can become either more stable or more unstable if considering the effect of water vapor. Here we introduce a new effect associated with convection depth by proposing another index, gross moist stability, to measure changes in atmospheric stability under global warming. The gross moist stability, an effective static stability, is vertical integral of the vertical gradient of moist static energy weighted by pressure velocity. It depends not only on the vertical gradient of dry static energy, which is equivalent to dry static stability, but also on moisture vertical distribution and convection depth. The effects of dry static energy and convection depth stabilize the atmosphere, while the moisture effect tends to destabilize the atmosphere. Because tropical convection closely follows a moist adiabatic process, there is a strong cancellation between the effects of dry static energy and moisture. This leads to the dominance of the effect of convection depth in atmospheric stability.

  12. Stable warm tropical climate through the Eocene Epoch

    NASA Astrophysics Data System (ADS)

    Pearson, Paul N.; van Dongen, Bart E.; Nicholas, Christopher J.; Pancost, Richard D.; Schouten, Stefan; Singano, Joyce M.; Wade, Bridget S.

    2007-03-01

    Earth's climate cooled from a period of extreme warmth in the early Eocene Epoch (ca. 50 Ma) to the early Oligocene (ca. 33 Ma), when a large ice cap first appeared on Antarctica. Evidence from the planktonic foraminifer oxygen isotope record in deep-sea cores has suggested that tropical sea-surface temperatures declined by 5-10 degrees over this interval, eventually becoming much cooler than modern temperatures. Here we present paleotemperature estimates from foraminifer isotopes and the membrane lipids of marine Crenarcheota from new drill cores in Tanzania that indicate a warm and generally stable tropical climate over this period. We reinterpret the previously published isotope records in the light of comparative textural analysis of the deep-sea foraminifer shells, which shows that in contrast to the Tanzanian material, they have been diagenetically recrystallized. We suggest that increasingly severe alteration of the deep-sea plankton shells through the Eocene produced a diagenetic overprint on their oxygen isotope ratios that imparts the false appearance of a tropical sea-surface cooling trend. This implies that the long-term Eocene climatic cooling trend occurred mainly at the poles and had little effect at lower latitudes.

  13. NorTropical Warm Pool variability and its effects on the climate of Colombia

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodriguez, Deisy; Coca-Domínguez, Oswaldo

    2015-04-01

    Much has been said about the effects of El Niño Southern Oscillation (ENSO) on oceanographic and climatic conditions in Colombia, but little is known about the influence of the Atlantic Warm Pool (AWP), which includes the gulf of Mexico, the Caribbean and the western tropical North Atlantic. The AWP has been identified by some authors as an area that influences the Earth's climate, associated with anomalous summer rainfall and hurricane activity in the Atlantic. The aim of this study was to understand the variation in the AWP and its effects on the climate of Colombia. An annual average of sea surface temperature (SST) was obtained from the composition of monthly images of the Spectroradiometer Moderate Resolution Imaging Spectroradiometer (MODIS), with resolution of 4 km, for one area that comprises the marine territory of Colombia, Panama, Costa Rica both the Pacific and the Caribbean, and parts of the Caribbean coast of Nicaragua, for the period between 2007 and 2013. The results suggest that warm pool is not restricted to the Caribbean, but it also covers a strip Pacific bordering Central America and the northern part of the Colombian coast, so it should be called the Nor-Tropical Warm pool (NTWP). Within the NTWP higher SST correspond to a marine area extending about 1 degree north and south of Central and out of the Colombian Caribbean coast. The NTWP also showed large interannual variability, with the years 2008 and 2009 with lower SST in average, while 2010, 2011 and 2013 years with warmer conditions, matching with greater precipitation. It was also noted that during warmer conditions (high amplitude NTWP) the cold tongue from the south Pacific has less penetration on Colombian coast. Finally, the results suggest a strong influence of NTWP in climatic conditions in Colombia.

  14. Biogeochemical characteristics of Siberia's Kolyma River watershed in relation to climate warming and permafrost degradation

    NASA Astrophysics Data System (ADS)

    Willis, K. S.; Abbott, K. R.; Bulygina, E.; Frey, K. E.; Holmes, R. M.; Schade, J. D.

    2008-12-01

    The Kolyma River in northeast Siberia, one of the six largest rivers entering the Arctic Ocean, is draining a region experiencing significant climate warming and is expected to undergo ever further warming over the coming century. The Kolyma River watershed is underlain with vast deposits of Pleistocene-aged loess known as Yedoma, which is associated with ice-rich continuous permafrost and organic carbon-rich soils. When these Yedoma permafrost soils thaw under warming conditions, carbon can be released to the atmosphere as CH4 and CO2, but also to nearby lakes, streams, and rivers as dissolved organic carbon (DOC). In July 2008, we conducted a survey of the Kolyma watershed to describe biogeochemical characteristics of water in streams and rivers draining a diverse set of subwatersheds, as well as longitudinal patterns in the Kolyma mainstem itself. Forty-two water samples were analyzed for pH, conductivity, dissolved oxygen (DO), and UV light absorbance at 254 nm (UV-254; a proxy for DOC concentrations and characteristics). We focus here primarily on UV-254, as the processing and transport of DOC in streams and rivers under a warming climate in this region may have globally significant implications for carbon cycling. GIS analyses show that UV-254 is dependent upon watershed area and land cover type (e.g., tundra, forested upland, or wetland), where UV-254 (and thereby DOC concentration) is higher in smaller, wetland- dominated watersheds. Overall, we find clear spatial variation in UV-254 of waters throughout the Kolyma River watershed, indicating that variability in watershed characteristics and location in the landscape strongly impact DOC concentrations and characteristics. Establishing these relationships is critical for predicting how future climate warming may ultimately impact the flux of DOC to the Arctic Ocean. This study is the result of an undergraduate field experience called The Polaris Project (www.thepolarisproject.org), which will continue through the summers of 2009 and 2010.

  15. Unexpected response of high Alpine Lake waters to climate warming.

    PubMed

    Thies, Hansjörg; Nickus, Ulrike; Mair, Volkmar; Tessadri, Richard; Tait, Danilo; Thaler, Bertha; Psenner, Roland

    2007-11-01

    Over the past two decades, we have observed a substantial rise in solute concentration at two remote high mountain lakes in catchments of metamorphic rocks in the European Alps. At Rasass See, the electrical conductivity increased 18-fold. Unexpectedly high nickel concentrations at Rasass See, which exceeded the limit in drinking water by more than 1 order of magnitude, cannot be related to catchment geology. We attribute these changes in lake water quality to solute release from the ice of an active rock glacier in the catchment as a response to climate warming. Similar processes occurred at the higher elevation lake Schwarzsee ob Sölden, where electrical conductivity has risen 3-fold during the past two decades. PMID:18044521

  16. Geoengineering the Climate: Approaches to Counterbalancing Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, M. C.

    2005-12-01

    For the past two hundred years, the inadvertent release of carbon dioxide and other radiatively active gases and aerosols, particularly as a result of combustion of fossil fuels and changes in land cover, have been contributing to global climate change. Global warming to date is approaching 1°C, and this is being accompanied by reduced sea ice, rising sea level, shifting ecosystems and more. Rather than sharply curtailing use of fossil fuels in order to reduce CO2 emissions and eventually eliminate the net human influence on global climate, a number of approaches have been suggested that are intended to advertently modify the climate in a manner to counter-balance the warming influence of greenhouse gas emissions. One general type of approach is carbon sequestration, which focuses on capturing the CO2 and then sequestering it underground or in the ocean. This can be done at the source of emission, by pulling the CO2 out of the atmosphere through some chemical process, or by enhancing the natural processes that remove CO2 from the atmosphere, for example by fertilizing the oceans with iron. A second general approach to geoengineering the climate is to lower the warming influence of the incoming solar radiation by an amount equivalent to the energy captured by the CO2-induced enhancement of the greenhouse effect. Proposals have been made to do this by locating a deflector at the Earth-Sun Lagrange point, lofting many thousands of near-Earth mirrors, injecting aerosols into the stratosphere, or by increasing the surface albedo. A third general approach is to alter natural Earth system processes in ways that would counterbalance the effects of the warming. Among suggested approaches are constructing dams to block various ocean passages, oceanic films to limit evaporation and water vapor feedback, and even, at small scale, to insulate mountain glaciers to prevent melting. Each of these approaches has its advantages, ranging from simplicity to reversibility, and disadvantages, ranging from costs for implementation to associated inadvertent negative environmental consequences. Unless implemented as only a bridging effort, geoengineering would require diversion of substantial, and even growing, resources from the effort to move away from reliance on fossil fuels. Because the lifetime of the excess CO2 in the atmosphere is so long, such efforts would generally need to be maintained for centuries by future generations to avoid a relatively rapid increase in global average temperature, even after emissions of CO2 had eventually been halted. In that such approaches are also fraught with uncertainties, there has been very little study of the details of how such approaches might be pursued and of their overall advertent and inadvertent consequences, leaving the area open to ongoing consideration of sometimes rather speculative possibilities.

  17. The case for a wet, warm climate on early Mars

    NASA Astrophysics Data System (ADS)

    Pollack, J. B.; Kasting, J. F.; Richardson, S. M.; Poliakoff, K.

    1987-05-01

    Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism.

  18. A physiological trait-based approach to predicting the responses of species to experimental climate warming.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; McCoy, Neil; Hirsch, Christopher; Pelini, Shannon L; Sanders, Nathan J; Ellison, Aaron M; Gotelli, Nicholas J; Dunn, Robert R

    2012-11-01

    Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site, where environmental conditions are relatively close to the ants' upper thermal limits. In contrast, thermal tolerances did not predict the responses of the six species in the northern site, where environmental conditions are relatively far from the ants' upper thermal limits. Correlative SDMs were not predictive at either site. Our results suggest that, in environments close to a species' physiological limits, physiological trait-based measurements can successfully forecast the responses of species to future conditions. Although correlative SDMs may predict large-scale responses, such models may not be accurate for predicting site-level responses. PMID:23236901

  19. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  20. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details. PMID:26811764

  1. Vertical gradient of climate change and climate tourism conditions in the Black Forest

    NASA Astrophysics Data System (ADS)

    Endler, Christina; Oehler, Karoline; Matzarakis, Andreas

    2010-01-01

    Due to the public discussion about global and regional warming, the regional climate and the modified climate conditions are analyzed exemplarily for three different regions in the southern Black Forest (southwest Germany). The driving question behind the present study was how can tourism adapt to modified climate conditions and associated changes to the tourism potential in low mountain ranges. The tourism potential is predominately based on the attractiveness of natural resources being climate-sensitive. In this study, regional climate simulations (A1B) are analyzed by using the REMO model. To analyze the climatic tourism potential, the following thermal, physical and aesthetic parameters are considered for the time span 1961-2050: thermal comfort, heat and cold stress, sunshine, humid-warm conditions (sultriness), fog, precipitation, storm, and ski potential (snow cover). Frequency classes of these parameters expressed as a percentage are processed on a monthly scale. The results are presented in form of the Climate-Tourism-Information-Scheme (CTIS). Due to warmer temperatures, winters might shorten while summers might lengthen. The lowland might be more affected by heat and sultriness (e.g., Freiburg due to the effects of urban climate). To adapt to a changing climate and tourism, the awareness of both stakeholders and tourists as well as the adaptive capability are essential.

  2. Little Ice Age wintertime climate cooling linked to N-Atlantic subpolar gyre warming

    NASA Astrophysics Data System (ADS)

    Kuijpers, Antoon; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Andresen, Camilla S.; Staines-Urías, Francisca

    2015-04-01

    Traditionally, the Little Ice Age (LIA) in the North Atlantic is believed to have been marked by negative Sea Surface Temperature (SST) anomalies. In apparent contrast, we present evidence from sediment core records from the N-Atlantic Subpolar Gyre showing prevalence of warm SST conditions. Our proxy data include both alkenone-based SST reconstructions and results from faunal and geochemical foraminiferal studies. Subpolar Gyre SST warming after the Medieval Climate Anomaly is observed in the Labrador Current close to the Gulf Stream boundary off Newfoundland, which agrees with previously reported increased influence of warmer, Gulf Stream-derived Slope Water off southern Newfoundland(1). Our core records from the West- and East Greenland Current realm off southern Greenland, as well as sites in Faroese waters, correspondingly indicate increased influence of warm, saline North Atlantic / Irminger Current waters. Other recently published studies also report LIA SST warming in the northern subpolar North Atlantic(2) as well as increased heat transport into the Arctic via the West Spitsbergen Current(3). Growing evidence indicates that positive SST anomalies in the North Atlantic Ocean can promote negative NAO conditions, thus be linked with cold wintertime conditions in Northwestern Europe. A published modeling study using ensemble simulations with an atmospheric GCM forced with reconstructed SST data for the period 1871-1999 shows weakening of the westerly winds around 60o N with SST anomalies that have the same sign across the North Atlantic(4). Six other climate models show that with some years of delay, an intensified Atlantic Meridional Overturning Circulation leads to a weak negative North Atlantic Oscillation (NAO) phase during winter(5). Furthermore, it was recently found that the stratosphere is a key element of extra-tropical response to ocean variability. Observational analysis and atmospheric model experiments indicate that large-scale Atlantic Ocean warming drives high-latitude precursory stratospheric warming in the first part of the winter, which propagates downward and leads to a negative tropospheric NAO(6). In summary, our results in combination with other proxy records and modelling experiments are consistent with a prevailing NAO negative atmospheric circulation mode and thus relate LIA continental wintertime cooling to a relatively warm N-Atlantic Subpolar Gyre, a scenario which may have implications for ongoing and future ocean warming conditions. (1) Keigwin,LD,Pickart,RS(1999) Science 286,520-523 (2) Miettinen,A et al(2012) J Climate, doi:10.1175/JCLI-D-11-00581.1 (3) Spielhagen,R et al (2011) Science 331, 450-453 (4) Sutton,RT,Hodson,DLR (2003) J Climate 16, 3296-3313 (5) Gastineau, G, Frankignoul, C (2011) Climate Dynamics 39, 37-57 (6) Omrani, N.-E. et al (2014) Climate Dynamics 42, 649-663

  3. Changes in ecologically critical terrestrial climate conditions.

    PubMed

    Diffenbaugh, Noah S; Field, Christopher B

    2013-08-01

    Terrestrial ecosystems have encountered substantial warming over the past century, with temperatures increasing about twice as rapidly over land as over the oceans. Here, we review the likelihood of continued changes in terrestrial climate, including analyses of the Coupled Model Intercomparison Project global climate model ensemble. Inertia toward continued emissions creates potential 21st-century global warming that is comparable in magnitude to that of the largest global changes in the past 65 million years but is orders of magnitude more rapid. The rate of warming implies a velocity of climate change and required range shifts of up to several kilometers per year, raising the prospect of daunting challenges for ecosystems, especially in the context of extensive land use and degradation, changes in frequency and severity of extreme events, and interactions with other stresses. PMID:23908225

  4. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Cheng, Linyin; Mazdiyasni, Omid; Farahmand, Alireza

    2014-12-01

    Global warming and the associated rise in extreme temperatures substantially increase the chance of concurrent droughts and heat waves. The 2014 California drought is an archetype of an event characterized by not only low precipitation but also extreme high temperatures. From the raging wildfires, to record low storage levels and snowpack conditions, the impacts of this event can be felt throughout California. Wintertime water shortages worry decision-makers the most because it is the season to build up water supplies for the rest of the year. Here we show that the traditional univariate risk assessment methods based on precipitation condition may substantially underestimate the risk of extreme events such as the 2014 California drought because of ignoring the effects of temperature. We argue that a multivariate viewpoint is necessary for assessing risk of extreme events, especially in a warming climate. This study discusses a methodology for assessing the risk of concurrent extremes such as droughts and extreme temperatures.

  5. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003.

    PubMed

    Zeng, Biao; Yang, Tai-Bao

    2008-09-01

    The observed warming trend in the Qaidam area, an arid basin surrounded by high mountains, has caused land surface dynamics that are detectable using remotely sensed data. In this paper, we detected land-cover changes in the Qaidam Area between 1990 and 2003 in attempt to depict its spatial variability. The land-cover changes were categorized into two trends: degradation and amelioration, and their spatial patterns were examined. Then we estimated the correlation coefficients between growing-season NDVI and several climatic factors with the consideration of duration and lagging effects. The results show that the inter-annual NDVI variations are positively correlated with May to July precipitations, but not significantly correlated with sunshine duration. We observed no obvious trend in precipitation or sunshine duration from 1990 to 2003. Thus, the authors suggest that their slight fluctuations may not be responsible to the decade-scaled land-cover changes. However, our results indicate a good positive relationship between the NDVI trend and climate warming in the ameliorated areas, but a negative one in the degraded areas. By statistical analyses, we found that degradations mainly occurred at the oasis boundaries and at lower elevations in the non-oasis regions where effective soil moisture might have been reduced by the warming-caused increase in evapotranspiration. At higher elevations where thermal condition acts as a major limiting factor, ameliorations were unequivocally detected, which is attributable to the direct facilitation by temperature increases. We suggest that the impacts of the observed climate warming on vegetation are spatially heterogeneous, depending on the combinations of thermal condition and moisture availability. PMID:17965943

  6. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.

    PubMed

    Kubisch, Erika Leticia; Fernández, Jimena Beatriz; Ibargüengoytía, Nora Ruth

    2016-02-01

    The vulnerability of populations and species to global warming depends not only on the environmental temperatures, but also on the behavioral and physiological abilities to respond to these changes. In this sense, the knowledge of an organism's sensitivity to temperature variation is essential to predict potential responses to climate warming. In particular, it is interesting to know how close species are to their thermal limits in nature and whether physiological plasticity is a potential short-term response to warming climates. We exposed Liolaemus pictus lizards, from northern Patagonia, to either 21 or 31 °C for 30 days to compare the effects of these treatments on thermal sensitivity in 1 and 0.2 m runs, preferred body temperature (T pref), panting threshold (T pant), and critical minimum temperature (CTMin). Furthermore, we measured the availability of thermal microenvironments (operative temperatures; T e) to measure how close L. pictus is, in nature, to its optimal locomotor performance (T o) and thermal limits. L. pictus showed limited physiological plasticity, since the acclimation temperature (21 and 31 °C) did not affect the locomotor performance nor did it affect T pref, the T pant, or the CTMin. The mean T e was close to T o and was 17 °C lower than the CTMax. The results suggest that L. pictus, in a climate change scenario, could be vulnerable to the predicted temperature increment, as this species currently lives in an environment with temperatures close to their highest locomotor temperature threshold, and because they showed limited acclimation capacity to adjust to new thermal conditions by physiological plasticity. Nevertheless, L. pictus can run at 80 % or faster of its maximum speed across a wide range of temperatures near T o, an ability which would attenuate the impact of global warming. PMID:26679700

  7. How much do precipitation extremes change in a warming climate?

    NASA Astrophysics Data System (ADS)

    Shiu, Chein-Jung; Liu, Shaw Chen; Fu, Congbin; Dai, Aiguo; Sun, Ying

    2012-09-01

    Daily data from reanalyses of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) are analyzed to study changes in precipitation intensity with respect to global mean temperature. The results are in good agreement with those derived from the Global Precipitation Climatology Project (GPCP) data by Liu et al. (2009), providing an independent verification for large changes in the precipitation extremes: about 100% increase for the annual top 10% heavy precipitation and about 20% decrease for the light and moderate precipitation for one degree warming in the global temperature. These changes can substantially increase the risk of floods as well as droughts, thus severely affecting the global ecosystems. Atmospheric models used in the reanalysis mode, with the benefit of observed wind and moisture fields, appear to be capable of realistically simulating the change of precipitation intensity with global temperature. In comparison, coupled climate models are capable of simulating the shape of the change in precipitation intensity, but underestimate the magnitude of the change by about one order of magnitude. The most likely reason of the underestimation is that the typical spatial resolution of climate models is too coarse to resolve atmospheric convection.

  8. Darcy's law predicts widespread forest mortality under climate warming

    NASA Astrophysics Data System (ADS)

    McDowell, Nathan G.; Allen, Craig D.

    2015-07-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We use a hydraulic corollary to Darcy’s law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy’s law indicates today’s forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy’s corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. Given the robustness of Darcy’s law for predictions of vascular plant function, we conclude with high certainty that today’s forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  9. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  10. Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils.

    PubMed

    De Frenne, Pieter; Coomes, David A; De Schrijver, An; Staelens, Jeroen; Alexander, Jake M; Bernhardt-Römermann, Markus; Brunet, Jörg; Chabrerie, Olivier; Chiarucci, Alessandro; den Ouden, Jan; Eckstein, R Lutz; Graae, Bente J; Gruwez, Robert; Hédl, Radim; Hermy, Martin; Kolb, Annette; Mårell, Anders; Mullender, Samantha M; Olsen, Siri L; Orczewska, Anna; Peterken, George; Petřík, Petr; Plue, Jan; Simonson, William D; Tomescu, Cezar V; Vangansbeke, Pieter; Verstraeten, Gorik; Vesterdal, Lars; Wulf, Monika; Verheyen, Kris

    2014-04-01

    Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts. PMID:24387238

  11. Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources

    NASA Astrophysics Data System (ADS)

    Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis

    This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.

  12. Water-Vegetation Interaction in Mediterranean Climate Zones Under Global Warming

    NASA Astrophysics Data System (ADS)

    Krakauer, N. Y.; Fung, I. F.

    2006-12-01

    Water shortage controls biotic production over much of the land surface. Global warming will exacerbate water limitation in arid and semiarid areas, but high CO2 concentrations should increase plant water use efficiency; the net impact on vegetation productivity and water availability is uncertain. We analyzed the response of vegetation to historic and future (SRES A2) fossil CO2 emissions in the Climate System Model (CSM1.4) run with coupled ocean, atmosphere and land-surface components, focusing on areas with a Mediterranean climate (defined by the occurrence of precipitation mostly during the cool season, with consequent summer drought). By the 2090s, Mediterranean regions were modeled to have warmed by almost 1 {°}C more than the land surface average. Precipitation increased modestly, while NPP rose by more than the world average possibly because of warmer conditions in the spring growing season, but mean water vapor pressure deficits increased and water use efficiency fell slightly despite the favorable impact of high CO2. More work is needed to understand the contribution of vegetation responses to regional climate change, and to test the process mechanisms assumed in climate models.

  13. The land-ocean surface warming contrast in simulations of climate change with an idealized GCM

    NASA Astrophysics Data System (ADS)

    Byrne, M. P.; O'Gorman, P. A.

    2011-12-01

    Climate models robustly predict that surface temperatures will increase to a greater extent over land than over ocean under global warming, an effect known as the "land-ocean warming contrast". The enhanced warming over land is not solely a transient effect due to the different thermal inertias of the land and ocean, but rather it is a fundamental response of the climate system that persists in the equilibrium response of the system. We develop a theory, based on moist adiabatic lapse rates, that allows for the estimation of the magnitude of the warming contrast. Our analysis shows that the temperature difference between land and ocean regions increases monotonically as the climate warms, but that the amplification factor, defined as the ratio of land surface to ocean surface warming, has a maximum value for temperatures corresponding to the present-day climate. We evaluate this theory over a wide range of climates using idealized GCM simulations. The land surface hydrology is described by a simple bucket model, and we prescribe various land configurations with a mixed-layer ocean elsewhere. The warming contrast is found to be confined to low and middle latitudes and generally decreases poleward outside of the Tropics. The magnitude of the contrast is larger for zonal land bands than for continents with finite zonal extent. Increasing aridity leads to a larger warming contrast. At low latitudes and in cold or moderately warm climates, the warming contrast is well described by our theory, although it is important to account for variability in near-surface relative humidity over land. In very warm and/or very arid climates, the assumption of moist adiabatic lapse rates is inadequate over land. Consequently, a complete understanding of the warming contrast is inhibited by the need for a theory of lapse rates in both tropical and extratropical dynamical regimes and in arid and moist environments.

  14. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.; Brovkin, V.

    2015-12-01

    The biogeophysical effect of forests in a climate with permanent high-latitude ice cover has already been investigated. We extend this analysis to warm, basically ice-free climates, and we choose the early Eocene, some 54 to 52 million years ago, as paradigm for such type of climate. We use the Max Planck Institute for Meteorology Earth System Model to evaluate the radiative forcing of forests and the feedbacks triggered by forests in early Eocene and pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet in the early Eocene climate and in the pre-industrial climate. The warming can be attributed to different feedback processes, though. The lapse-rate - water-vapour feedback is stronger in early Eocene climate than in pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate - water-vapour feedback in the early Eocene climate. Subsequently, global mean warming by forests is weaker in the early Eocene climate than in the pre-industrial climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than in the pre-industrial climate. When the land is covered with dark soils, forests cool the early Eocene climate stronger than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger in the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  15. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    NASA Astrophysics Data System (ADS)

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-11-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  16. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    PubMed Central

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  17. Energetic contribution potential of building-integrated photovoltaics on airports in warm climates

    SciTech Connect

    Ruether, Ricardo; Braun, Priscila

    2009-10-15

    Especially in warm climates, a considerable fraction of the electricity demand in commercial buildings is due to the intensive use of air-conditioning systems. Airport buildings in sunny and warm regions present a perfect match between energy demand and solar resource availability. Airport buildings are also typically large and horizontal, isolated and free of shading, and have a great potential for the integration of solar photovoltaic (PV) systems. In this work, we assess the potential impact in energy demand reduction at the Florianopolis International Airport in Brazil (27 S, 48 W) with the use of building-integrated photovoltaic (BIPV) systems. We analyse the building's hourly energy consumption and solar irradiation data, to assess the match between energy demand and potential generation, and we estimate the PV power necessary to supply both the total amount and fractions of the annual energy demand. Our results show that the integration of PV systems on airport buildings in warm climates can supply the entire electric power consumption of an airport complex, in line with the general concept of a zero-energy building (ZEB). (author)

  18. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.

    PubMed

    Jassey, Vincent E J; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; Mills, Robert T E; Mitchell, Edward A D; Payne, Richard J; Robroek, Bjorn J M

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  19. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    SciTech Connect

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

  20. Activity restriction and the mechanistic basis for extinctions under climate warming.

    PubMed

    R Kearney, Michael

    2013-12-01

    Correlative analyses predict that anthropogenic climate warming will cause widespread extinction but the nature and generality of the underlying mechanisms is unclear. Warming-induced activity restriction has been proposed as a general explanatory mechanism for recent population extinctions in lizards, and has been used to forecast future extinction. Here, I test this hypothesis using globally applied biophysical calculations of the effects of warming and shade reduction on potential activity time and whole-life-cycle energy budgets. These 'thermodynamic niche' analyses show that activity restriction from climate warming is unlikely to provide a general explanation of recent extinctions, and that loss of shade is viable alternative explanation. Climate warming could cause population declines, even under increased activity potential, through joint impacts on fecundity and mortality rates. However, such responses depend strongly on behaviour, habitat (shade, food) and life history, all of which should be explicitly incorporated in mechanistic forecasts of extinction risk under climate change. PMID:24118740

  1. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  2. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David Emmanuel

    Hydropower systems and other river regulation often harm instream ecosystems, partly by altering the natural flow and temperature regimes that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower and ecosystems are increasingly valued globally due to growing values for clean energy and native species as well as and new threats from climate warming, it is important to understand how climate warming might affect these systems, to identify tradeoffs between different water uses for different climate conditions, and to identify promising water management solutions. This research uses traditional simulation and optimization to explore these issues in California's upper west slope Sierra Nevada mountains. The Sierra Nevada provides most of the water for California's vast water supply system, supporting high-elevation hydropower generation, ecosystems, recreation, and some local municipal and agricultural water supply along the way. However, regional climate warming is expected to reduce snowmelt and shift runoff to earlier in the year, affecting all water uses. This dissertation begins by reviewing important literature related to the broader motivations of this study, including river regulation, freshwater conservation, and climate change. It then describes three substantial studies. First, a weekly time step water resources management model spanning the Feather River watershed in the north to the Kern River watershed in the south is developed. The model, which uses the Water Evaluation And Planning System (WEAP), includes reservoirs, run-of-river hydropower, variable head hydropower, water supply demand, and instream flow requirements. The model is applied with a runoff dataset that considers regional air temperature increases of 0, 2, 4 and 6 °C to represent historical, near-term, mid-term and far-term (end-of-century) warming. Most major hydropower turbine flows are simulated well. Reservoir storage is also generally well simulated, mostly limited by the accuracy of inflow hydrology. System-wide hydropower generation is reduced by 9% with 6 °C warming. Most reductions in hydropower generation occur in the highly productive watersheds in the northern Sierra Nevada. The central Sierra Nevada sees less reduction in annual runoff and can adapt better to changes in runoff timing. Generation in southern watersheds is expected to decrease. System-wide, reservoirs adapt to capture earlier runoff, but mostly decrease in mean reservoir storage with warming due to decreasing annual runoff. Second, a multi-reservoir optimization model is developed using linear programming that considers the minimum instream flows (MIFs) and weekly down ramp rates (DRRs) in the Upper Yuba River in the northern Sierra Nevada. Weekly DRR constraints are used to mimic spring snowmelt flows, which are particularly important for downstream ecosystems in the Sierra Nevada but are currently missing due to the influence of dams. Trade-offs between MIFs, DRRs and hydropower are explored with air temperature warming (+0, 2, 4 and 6 °C). Under base case operations, mean annual hydropower generation increases slightly with 2 °C warming and decreases slightly with 6 °C warming. With 6 °C warming, the most ecologically beneficial MIF and DRR reduce hydropower generation 5.5% compared to base case operations and a historical climate, which has important implications for re-licensing the hydropower project. Finally, reservoir management for downstream temperatures is explored using a linear programming model to optimally release water from a reservoir using selective withdrawal. The objective function is to minimize deviations from desired downstream temperatures, which are specified to mimic the natural temperature regime in the river. One objective of this study was to develop a method that can be readily integrated into a basin-scale multi-reservoir optimization model using a network representation of system features. The second objective was to explore the potential use of reservoirs to maintain an ideal stream temperature regime to ameliorate the temperature effects of climate warming of air temperature. For proof-of-concept, the model is applied to Lake Spaulding in the Upper Yuba River. With selective withdrawal, the model hedges the release of cold water to decrease summer stream temperatures, but at a cost of warmer stream temperatures in the winter. Results also show that selective withdrawal can reduce, but not eliminate, the temperature effects of climate warming. The model can be extended to include other nearby reservoirs to optimally manage releases from multiple reservoirs for multiple downstream temperature targets in a highly interconnected system. While the outcomes of these studies contribute to our understanding of reservoir management and hydropower at the intersection of energy, water management, ecosystems, and climate warming, there are many opportunities to improve this work. Promising options for improving and building on the collective utility of these studies are presented.

  3. Disparity in elevational shifts of European trees in response to recent climate warming.

    PubMed

    Rabasa, Sonia G; Granda, Elena; Benavides, Raquel; Kunstler, Georges; Espelta, Josep M; Ogaya, Rom; Peuelas, Josep; Scherer-Lorenzen, Michael; Gil, Wojciech; Grodzki, Wojciech; Ambrozy, Slawomir; Bergh, Johan; Hdar, Jos A; Zamora, Regino; Valladares, Fernando

    2013-08-01

    Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37N) to northern Sweden (67N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography. PMID:23572443

  4. Greenland soil bacteria & biogeochemistry: a vegetation cover proxy for climate warming effects

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Sistla, S.; Buckeridge, K. M.; Schimel, J.; Schaeffer, S. M.

    2013-12-01

    Climate warming in the high Arctic is expected to increase plant biomass, deepen thaw, and stimulate decomposition of soil organic matter. However, it remains unclear how warming, plant growth, and microbial processing will interact to drive Arctic carbon and nutrient cycling. For example, greater plant growth should increase carbon storage in the ecosystem; however, increasing plant C inputs and thawing permafrost carbon should stimulate microbial biomass, potentially causing soil respiration to outpace storage. Alternatively, greater plant cover may lower soil temperature through shading, potentially curtailing the predicted increase in microbial activity. To evaluate microbial responses to climate warming in the high Arctic, we characterized the soil bacterial community and related soil biogeochemical properties, including pH, temperature, moisture, bulk density, extractable nutrient pools, extractable organic carbon and nitrogen, and total microbial biomass along a vegetation cover gradient in northwest Greenland. Vegetation cover was classified using the Normalized Difference Vegetation Index (NDVI), and vegetation cover classes were used as a proxy for changes associated with warming. We found that soil moisture increased and soil temperature decreased significantly with vegetation cover; moisture and temperature were higher in organic than in mineral horizons. Extractable nutrients (NO3-, NH4+, PO43-) and extractable organic C and N generally increased with vegetation cover and are higher in organic than in mineral horizons within a given vegetation class, with the exception of NO3-, which was comparable between horizons. Despite increases in available carbon and nutrients, microbial biomass carbon in both horizons ultimately decreased with vegetation cover, as did microbial biomass nitrogen in the mineral horizon. Moreover, the relative proportion of microbial biomass carbon to extractable organic carbon decreased with vegetation cover, indicating that decomposers in more vegetated soils do not readily use available carbon. Our results suggest that despite an increase in available substrate in high vegetation cover soils, the insulating properties of vegetation ultimately limit decomposer activity. We hypothesize that as plant cover in the high Arctic increases with climate warming, nutrient mineralization - initially heightened by higher temperatures - will ultimately be curtailed by the insulating properties of vegetation, leading to decreased nutrient availability to plants and a decline in plant cover until soils warm and dry to reach conditions more optimal for microbial processing. Following oscillations between higher and lower vegetation cover, soils may ultimately return to a 'baseline' moderate vegetation cover.

  5. Climate warming and permafrost dynamics in the Antarctic Peninsula region

    NASA Astrophysics Data System (ADS)

    Bockheim, J.; Vieira, G.; Ramos, M.; López-Martínez, J.; Serrano, E.; Guglielmin, M.; Wilhelm, K.; Nieuwendam, A.

    2013-01-01

    Dramatic warming of the climate over the last several decades has influenced the properties and distribution of permafrost in the Antarctic Peninsula region. Five approaches were used to estimate the distribution of permafrost in the region: (1) correlation of permafrost distribution with mean annual air temperature isotherms, (2) mapping the distribution of periglacial features indicative of permafrost, (3) summarizing data from shallow excavations and boreholes, (4) detection of permafrost from geophysical techniques, and (5) application of models to predict the occurrence of permafrost. Whereas permafrost is continuous in the South Orkney Islands (60-61° S) and along the eastern Antarctic Peninsula (63-65° S), it is discontinuous in the South Shetland Islands (62-63° S), and occurs only sporadically in the Palmer Archipelago and Biscoe Islands along the western Antarctic Peninsula (64-66° S). Permafrost then becomes continuous on Alexander Island (71-74° S) along the western Antarctic Peninsula as the maritime climate shifts to a more continental climate. Reports prior to 1980 mention the presence of permafrost at depths of 25 to 35 cm in ice-free areas near Palmer Station (64°46‧ S; 64°04‧ W), where the mean annual air temperature from extrapolation of data from the nearby Vernadsky Station has increased 3.4 °C and the mean winter temperature has increased 6 °C since 1950. Recent measurements suggest that permafrost is absent or close to 0 °C in the upper 14 m of the highest ice-free areas (67 m a.s.l.) near Palmer Station. Permafrost temperatures elsewhere along the western Antarctic Peninsula region range from - 0.4 to - 1.8 °C in the South Shetland Islands (62-63° S) to - 3.1 °C at Adelaide Island (67°34‧ S). Permafrost at this temperature is susceptible to thawing, which has resulted in historic increases in active-layer thicknesses and in thermokarst features such as debris flows, and active-layer detachment slides.

  6. Using Long-Term Experimental Warming To Distinguish Vegetation Responses To Warming From Other Environmental Drivers Related To Climate Change

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Welker, J. M.; Mercado-Díaz, J. A.; Anderson, A.; Menken, M.

    2010-12-01

    Long term studies of vegetation change throughout the tundra biome show increases in the height, canopy extent and dominance of vascular vegetation versus bryophytes and lichens, with mixed responses of the dominant shrub and graminoid growth forms. Increases in vascular vegetation are recorded for sites with and without measurable climatic warming over recent decades, but with other potential drivers, i.e., increased summer precipitation. Experimental warming of tundra vegetation at Toolik Lake, Alaska shows a clear increase in shrub abundance relative to graminoids, with correlated higher NDVI values, increasing canopy heights, and thaw depths. Responses were similar between moist and dry tundra vegetation, with greater responses in moist vegetation. NDVI, with its ability to distinguish shrub from graminoid vegetation, may be a tool to distinguish fine scale differences in the response of tundra vegetation to climatic change, i.e., shifting balances of shrub and graminoid relative abundances that may be related to distinct climatic change drivers.

  7. Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.

  8. The acoustical performance of building facades designed for warm and humid climates

    NASA Astrophysics Data System (ADS)

    Lobato de Moraes, Elcione Maria

    2002-11-01

    The effects of noise on man are known to range from simple nuisances to illnesses and trauma. Studies of acoustic isolation provided by buildings in urban centers assume that external openings such as windows and doors remain closed. However, this paper presents results of a study of the acoustic isolation of airborne noise for different types of facade construction in the city of Belen, Brazil. The study recognizes that windows and doors are opened as a function of the local climatic conditions since the city is located in a warm and humid tropical area. The purpose of the investigation is to provide information to planners so that they can better control acoustic contamination of buildings located in these kinds of climates. It is concluded that acoustic isolation is affected by the facade construction and by openings in the facade.

  9. Persistent Cold Air Outbreaks over North America Under Climate Warming

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Leung, L. R.; Lu, J.

    2014-12-01

    This study evaluates the change of cold air outbreaks (CAO) over North America using Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble of global climate simulations as well as regional high resolution climate simulations. In future, while robust decrease of CAO duration dominates in most of the North America, the decrease over northwestern U.S. was found to have much smaller magnitude than the surrounding regions. We found statistically significant increase of the sea level pressure over gulf of Alaska, leading to the advection of cold air to northwestern U.S.. By shifting the probability distribution of present temperature towards future warmer conditions, we identified the changes in large scale circulation contribute to about 50% of the enhanced sea level pressure. Using the high resolution regional climate model results, we found that increases of existing snowpack could potentially trigger the increase of CAO in the near future over the southwestern U.S. and Rocky Mountain through surface albedo effects. By the end of this century, the top 5 most extreme historical CAO events may still occur and wind chill warning will continue to have societal impacts over North America in particular over northwestern United States.

  10. Testing paradigms of ecosystem change under climate warming in Antarctica.

    PubMed

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations-or "paradigms of change"-that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth's most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields. PMID:23405116

  11. Testing Paradigms of Ecosystem Change under Climate Warming in Antarctica

    PubMed Central

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations–or “paradigms of change”–that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth’s most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields. PMID:23405116

  12. Warming experiments under-predict plant phenological responses to climate change

    NASA Astrophysics Data System (ADS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J.; Crimmins, T. M.; Travers, S.; Pau, S.; Cleland, E. E.

    2011-12-01

    Experimental warming studies in natural communities have become an increasingly common method to estimate plant responses to global climate change. Many of these efforts focus on plant species' phenology-a sensitive indicator of species responses to climate-and show advances in spring timing with increasing temperatures. To be useful, however, results from warming experiments should match responses to climate change observed in unmanipulated plant communities, including the responses due to anthropogenic warming that has already occurred. Here we present a comprehensive synthesis of phenological responses to climate change for both experiments and long-term monitoring of natural plant communities. By comparing 14 long-term monitoring datasets with 36 experimental warming studies spanning four continents and 1560 species, we estimate that warming experiments underpredict, by 8.2 and 4.6X (for flowering and leafing, respectively), plant responses to warming when compared to long-term observations. The warming experiments also failed to reproduce the greater temperature sensitivity observed in populations of wild species that flower early in the spring. Further, when considering species for which we had data from both study-types, experiments failed to predict both the magnitude and direction of phenological responses. Among these species, warming experiments predicted a delay of flowering, not the well-documented advance that has tracked recent warming in the observational records. This discrepancy appears unrelated to study length and degree of warming, Instead a number of known artifacts associated with warming experiments could lead to underestimated plant sensitivities. We recommend ways in which the design, documentation and analysis of future experimental and observational studies can be improved to estimate and to predict more accurately plant phenological responses to climate change.

  13. Present weather and climate: evolving conditions

    USGS Publications Warehouse

    Hoerling, Martin P; Dettinger, Michael; Wolter, Klaus; Lukas, Jeff; Eischeid, Jon K.; Nemani, Rama; Liebmann, Brant; Kunkel, Kenneth E.

    2013-01-01

    This chapter assesses weather and climate variability and trends in the Southwest, using observed climate and paleoclimate records. It analyzes the last 100 years of climate variability in comparison to the last 1,000 years, and links the important features of evolving climate conditions to river flow variability in four of the regions major drainage basins. The chapter closes with an assessment of the monitoring and scientific research needed to increase confidence in understanding when climate episodes, events, and phenomena are attributable to human-caused climate change.

  14. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments. PMID:25413864

  15. Impacts of climate extremes on gross primary production under global warming

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Torn, M. S.; Riley, W. J.; Wehner, M. F.

    2014-09-01

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.

  16. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  17. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  18. Effects of climate warming on polar bears: a review of the evidence.

    PubMed

    Stirling, Ian; Derocher, Andrew E

    2012-09-01

    Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate-driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid-century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long-term viability, with a much reduced global population size in a remnant of their former range, is uncertain. PMID:24501049

  19. Warm-season soil moisture-temperature coupling in historical and future climate projections

    NASA Astrophysics Data System (ADS)

    Williams, I. N.

    2014-12-01

    Anomalously dry soil moisture can lead to reduced evapotranspiration and increased surface temperatures. These higher temperatures have been hypothesized to further reduce soil moisture, enhance temperature variability, and prolong dry extremes, particularly in warmer climates. Historical and future climate projections from the Coupled Model Inter-comparison Project (CMIP5) were investigated in this study to identify climate trends attributable to soil moisture-temperature coupling and feedback processes. It was found that the probability of temperature extremes (departures from seasonal averages) increases under global warming, and the time taken to return toward average warm-season temperatures following temperature extremes (i.e. persistence) increases by more than 25% over many land regions. An analysis of changes in surface energy balance suggests that this increased persistence of warm temperature extremes results from decreased surface longwave radiative cooling at warm temperature extremes under global warming. This process was also found in radiative forcing experiments using a single-column climate model having a realistic radiation scheme and a simplified land surface model, where the sensitivity of extremes to the relationship between soil moisture and transpiration was further investigated. The persistence of warm extremes depends on the soil moisture content at stomatal closure (wilting point), where higher wilting points lead to larger reductions in surface longwave emission at warm extremes and increased persistence of extremes. These results highlight the importance of surface radiation regime and vegetation in soil moisture-temperature feedbacks.

  20. Allocation trade-off under climate warming in experimental amphibian populations.

    PubMed

    Gao, Xu; Jin, Changnan; Camargo, Arley; Li, Yiming

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  1. Allocation trade-off under climate warming in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Camargo, Arley

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  2. Paleoreconstruction of cool season precipitation and warm season streamflow in the Pacific Northwest with applications to climate change assessments

    NASA Astrophysics Data System (ADS)

    Lutz, Eric R.; Hamlet, Alan F.; Littell, Jeremy S.

    2012-01-01

    Long-term streamflow reconstructions help characterize climate variability and extreme climatic events, such as droughts, which play a crucial role in water resource planning. Dendrohydrological reconstructions generally build on indirect associations between streamflow and radial tree growth, both of which depend on cool season precipitation in the Pacific Northwest. We develop a new approach that integrates a tree ring reconstruction of cool season precipitation with historical meteorological data and a physically based hydrologic model to reconstruct warm season streamflow and streamflow uncertainty. The Upper Yakima Basin in Washington state is used as a test case. We applied objective screening, principal components analysis, and multiple linear regression to reconstruct 366 years of basin-average cool season precipitation. The reconstruction was integrated with five temporally and spatially distributed cool season precipitation patterns spanning the historical range of natural variability. These distributed meteorological reconstructions were used as inputs to the Variable Infiltration Capacity (VIC) hydrologic model over the Yakima basin to produce an ensemble of warm season streamflows for each reconstructed year. The resultant streamflow reconstruction retains dendroclimatic information and quantifies the inherent uncertainty in warm season streamflow associated with historical meteorology. Finally, the meteorological reconstructions were systematically perturbed and used to drive the VIC to examine the potential impacts of climate change on warm season streamflow over the 366-year record. Despite projected wetter conditions in the future, less precipitation is stored as snowpack (due to warmer winter temperatures) and consequently warm season streamflow will be systematically reduced. The combination of long records of variability and systematic changes related to climate change provides useful information about the combined effects of natural variability and projected systematic changes in climate to support 21st-century water planning.

  3. Global warming: Growing feedback from ocean carbon to climate

    NASA Astrophysics Data System (ADS)

    Joos, Fortunat

    2015-06-01

    The finding that feedbacks between the ocean's carbon cycle and climate may become larger than terrestrial carbon-climate feedbacks has implications for the socio-economic effects of today's fossil-fuel emissions.

  4. Key constraints on Earth's climate during the mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Haywood, A. M.; Dowsett, H. J.; Otto-Bliesner, B. L.; Chandler, M. A.; Naish, T.; Lunt, D. J.

    2011-12-01

    The study of warm intervals of the Pliocene Epoch (Pliocene 'interglacials') is important for understanding the long-term response of the Earth System to current or near future concentrations of atmospheric CO2; as well as global mean temperatures that will be attained during this century. The Pliocene can yield constraints on Earth System Sensitivity which would help identify a target CO2 threshold that must not be crossed if humankind is to avoid dangerous levels of climate change in the long-term. For this endeavour to succeed it requires the merger of globally distributed geological records of Pliocene environments with state-of-the-art climate and Earth System Models. These processes/products provide an extraordinary scientific resource for studying global and regional Pliocene environments and climate dynamics. However, from the perspective of the 5th Intergovernmental Panel on Climate Change Assessment Report, arguably some of most pressing questions to ask Pliocene climate researchers are (a) how much did global mean temperatures increase, (b) how is this increase expressed in reconstructions of meridional sea-surface and surface temperature gradients, and (c) how well can current climate models reproduce the observed trends in meridional temperature gradients. For the mid-Pliocene Warm Period (mPWP ~3.3 to 3.0 Ma BP) we present a comprehensive review of geologically-constrained climate model estimates of global temperature change available within the published literature. We also include data from recent simulations completed as part of international Pliocene Model Intercomparison Project. Our analysis focuses on the range in model estimated global temperature change as well as consistent differences in global temperature change observed between models which use prescribed sea surface and sea-ice boundary conditions from geological estimates, versus simulations in which these parameters are predicted by the models themselves. We present a new reconstruction of the meridional sea-surface temperature (SST) gradient for the mPWP that places confidence limits on proxy-based SSTs for the first time. This step is essential to robustly evaluate the ability of models to reproduce warm climate states during the Pliocene. Initial interrogation of three world leading climate models (UK Hadley Centre HadCM3, NCAR-CCSM4 and GISS Model-E) indicates broad agreement between the models and proxy data in the tropics and Southern Hemisphere, but highlights a consistent underestimation of SST change by the models in the North Atlantic. This study provides the necessary scientific foundation for a focussed campaign of model sensitivity experiments to determine if these errors can be eliminated or reduced within the limits of our current understanding of Pliocene geological boundary conditions (e.g. CO2, palaeobathymetry etc.) as well as model capabilities.

  5. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    PubMed

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. PMID:25930066

  6. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    ERIC Educational Resources Information Center

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  7. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    ERIC Educational Resources Information Center

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher

  8. Centennial- to millennial-scale climate shifts in continental interior Asia repeated between warm-dry and cool-wet conditions during the last three interglacial states: evidence from uranium and biogenic silica in the sediment of Lake Baikal, southeast Siberia

    NASA Astrophysics Data System (ADS)

    Murakami, Takuma; Takamatsu, Takejiro; Katsuta, Nagayoshi; Takano, Masao; Yamamoto, Koshi; Takahashi, Yoshio; Nakamura, Toshio; Kawai, Takayoshi

    2012-10-01

    We observed timescale-dependent changes in the correlations between biogenic silica (bioSi) and uranium concentrations of bulk sediment from the Buguldeika Saddle, Lake Baikal. There was a positive correlation for the glacial-interglacial (100 kyr) scales over the 180 kyr, with inverse correlations for centennial- to-millennial scales during the last three interglacial states (MIS 5, 3, and 1). The distinction of these correlations between the time scales suggests that the sedimentation processes of bioSi and U differ from each other. The Baikal bioSi concentration record is generally regarded as a paleotemperature proxy, reflecting the diatom production of the lake. On the other hand, we concluded that the temporal variation of the U concentration in the sediment reflected the weathering intensity in the south of Lake Baikal watershed associated with changes in the rainfall/moisture levels. Based on the paleoclimate proxies from Lake Baikal, climates in continental interior Asia are identified as having dry and wet conditions during the glacial and interglacial periods, respectively. This accounts for the rhythms in growth and retreat of ice sheets in Eurasia on glacial-interglacial scales. In the interglacial periods (MIS 5, 3, and 1), the continental interior is, contrary to the glacial-interglacial climate changes, characterized by alternating warm-dry and cool-wet climates with periods in tens of thousands years. In particular, such shifts in the climate stand out prominently at the beginning of MIS 5d. The detrended U record for the last 5.2 kyr shows wet events at 4.3-3.7, 3.2-2.3, 1.8-1.2, and 0.8-0.3 kyr. These events coincide with the timing of the North Atlantic ice-rafted debris events, which were possibly related to solar activity. All this evidence suggests that climate in the continental interior followed significantly different fluctuation patterns in the glacial-interglacial and shorter time scales.

  9. Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores?

    NASA Astrophysics Data System (ADS)

    Sime, Louise C.; Risi, Camille; Tindall, Julia C.; Sjolte, Jesper; Wolff, Eric W.; Masson-Delmotte, Valérie; Capron, Emilie

    2013-05-01

    Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland δ18O increased by at least 3‰ compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to interpret the stable water isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show δ18O or temperature rises of the correct magnitude, leading to difficulty in using only these experiments to inform our understanding of higher interglacial δ18O. Here, analysis of greenhouse gas warmed simulations from two isotope-enabled general circulation models, in conjunction with a set of Last Interglacial sea surface observations, indicates a possible explanation for the interglacial δ18O rise. A reduction in the winter time sea ice concentration around the northern half of Greenland, together with an increase in sea surface temperatures over the same region, is found to be sufficient to drive a >3‰ interglacial enrichment in central Greenland snow. Warm climate δ18O and δD in precipitation falling on Greenland are shown to be strongly influenced by local sea surface condition changes: local sea surface warming and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched) sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency changes, under warmer conditions, leads to geographical variability in the δ18O against temperature gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to low δ18O against temperature gradients (0.1-0.3‰ per °C), whilst large sea surface warmings in these regions leads to higher gradients (0.3-0.7‰ per °C). These gradients imply a wide possible range of present day to interglacial temperature increases (4 to >10 °C). Thus, we find that uncertainty about local interglacial sea surface conditions, rather than precipitation intermittency changes, may lead to the largest uncertainties in interpreting temperature from Greenland ice cores. We find that interglacial sea surface change observational records are currently insufficient to enable discrimination between these different δ18O against temperature gradients. In conclusion, further information on interglacial sea surface temperatures and sea ice changes around northern Greenland should indicate whether +5 °C during the Last Interglacial is sufficient to drive the observed ice core δ18O increase, or whether a larger temperature increases or ice sheet changes are also required to explain the ice core observations.

  10. Climate change drives warming in the Hudson River Estuary, New York (USA).

    TOXLINE Toxicology Bibliographic Information

    Seekell DA; Pace ML

    2011-08-01

    Estuaries may be subject to warming due to global climate change but few studies have considered the drivers or seasonality of warming empirically. We analyzed temperature trends and rates of temperature change over time for the Hudson River estuary using long-term data, mainly from daily measures taken at the Poughkeepsie Water Treatment Facility. This temperature record is among the longest in the world for a river or estuary. The Hudson River has warmed 0.945 C since 1946. Many of the warmest years in the record occurred in the last 16 years. A seasonal analysis of trends indicated significant warming for the months of April through August. The warming of the Hudson is primarily related to increasing air temperature. Increasing freshwater discharge into the estuary has not mitigated the warming trend.

  11. Climate change drives warming in the Hudson River Estuary, New York (USA).

    PubMed

    Seekell, David A; Pace, Michael L

    2011-08-01

    Estuaries may be subject to warming due to global climate change but few studies have considered the drivers or seasonality of warming empirically. We analyzed temperature trends and rates of temperature change over time for the Hudson River estuary using long-term data, mainly from daily measures taken at the Poughkeepsie Water Treatment Facility. This temperature record is among the longest in the world for a river or estuary. The Hudson River has warmed 0.945 °C since 1946. Many of the warmest years in the record occurred in the last 16 years. A seasonal analysis of trends indicated significant warming for the months of April through August. The warming of the Hudson is primarily related to increasing air temperature. Increasing freshwater discharge into the estuary has not mitigated the warming trend. PMID:21720614

  12. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.

    PubMed

    Sunday, Jennifer M; Pecl, Gretta T; Frusher, Stewart; Hobday, Alistair J; Hill, Nicole; Holbrook, Neil J; Edgar, Graham J; Stuart-Smith, Rick; Barrett, Neville; Wernberg, Thomas; Watson, Reg A; Smale, Dan A; Fulton, Elizabeth A; Slawinski, Dirk; Feng, Ming; Radford, Ben T; Thompson, Peter A; Bates, Amanda E

    2015-09-01

    Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances. PMID:26189556

  13. Boron Nutrition and Chilling Tolerance of Warm Climate Crop Species

    PubMed Central

    HUANG, LONGBIN; YE, ZHENGQIAN; BELL, RICHARD W.; DELL, BERNARD

    2005-01-01

    Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20?C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 1017?C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (25?C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field. PMID:16033777

  14. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  15. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  16. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.

    PubMed

    Heijmans, Monique M P D; van der Knaap, Yasmijn A M; Holmgren, Milena; Limpens, Juul

    2013-07-01

    Peatlands store approximately 30% of global soil carbon, most in moss-dominated bogs. Future climatic changes, such as changes in precipitation patterns and warming, are expected to affect peat bog vegetation composition and thereby its long-term carbon sequestration capacity. Theoretical work suggests that an episode of rapid environmental change is more likely to trigger transitions to alternative ecosystem states than a gradual, but equally large, change in conditions. We used a dynamic vegetation model to explore the impacts of drought events and increased temperature on vegetation composition of temperate peat bogs. We analyzed the consequences of six patterns of summer drought events combined with five temperature scenarios to test whether an open peat bog dominated by moss (Sphagnum) could shift to a tree-dominated state. Unexpectedly, neither a gradual decrease in the amount of summer precipitation nor the occurrence of a number of extremely dry summers in a row could shift the moss-dominated peat bog permanently into a tree-dominated peat bog. The increase in tree biomass during drought events was unable to trigger positive feedbacks that keep the ecosystem in a tree-dominated state after a return to previous 'normal' rainfall conditions. In contrast, temperature increases from 1 °C onward already shifted peat bogs into tree-dominated ecosystems. In our simulations, drought events facilitated tree establishment, but temperature determined how much tree biomass could develop. Our results suggest that under current climatic conditions, peat bog vegetation is rather resilient to drought events, but very sensitive to temperature increases, indicating that future warming is likely to trigger persistent vegetation shifts. PMID:23526779

  17. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-03-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  18. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics.

    PubMed

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-05-01

    Global climate change is likely to modify the ecological consequences of currently acting stressors, but potentially important interactions between climate warming and land-use related stressors remain largely unknown. Agriculture affects streams and rivers worldwide, including via nutrient enrichment and increased fine sediment input. We manipulated nutrients (simulating agricultural run-off) and deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6°C above ambient) simultaneously in 128 streamside mesocosms to determine the individual and combined effects of the three stressors on macroinvertebrate community dynamics (community composition and body size structure of benthic, drift and insect emergence assemblages). All three stressors had pervasive individual effects, but in combination often produced additive or antagonistic outcomes. Changes in benthic community composition showed a complex interplay among habitat quality (with or without sediment), resource availability (with or without nutrient enrichment) and the behavioural/physiological tendency to drift or emerge as temperature rose. The presence of sediment and raised temperature both resulted in a community of smaller organisms. Deposited fine sediment strongly increased the propensity to drift. Stressor effects were most prominent in the benthic assemblage, frequently reflected by opposite patterns in individuals quitting the benthos (in terms of their propensity to drift or emerge). Of particular importance is that community measures of stream health routinely used around the world (taxon richness, EPT richness and diversity) all showed complex three-way interactions, with either a consistently stronger temperature response or a reversal of its direction when one or both agricultural stressors were also in operation. The negative effects of added fine sediment, which were often stronger at raised temperatures, suggest that streams already impacted by high sediment loads may be further degraded under a warming climate. However, the degree to which this will occur may also depend on in-stream nutrient conditions. PMID:25581853

  19. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Bjrk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grtarsdttir, Jrngerur; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jnsdttir, Ingibjrg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenstrm, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. PMID:22136670

  20. Climate-change impact potentials as an alternative to global warming potentials

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  1. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2011-09-01

    The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  2. Predicting CO2 and CH4 Emissions from the Active Layer in Response to Climate Warming

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Travis, B. J.; Ossola, I.

    2011-12-01

    Permafrost resides beneath 25% of the land in the northern hemisphere. Observations and models suggest that permafrost is warming and thawing, the active layer is thickening, and previously frozen old soil carbon is being converted and released as CH4 and CO2. GHG release amounts and rates are poorly constrained, as is the ratio between CH4 vs CO2. This ratio is important because CH4 is significantly more powerful as a greenhouse gas than is CO2. The arctic is projected to experience more precipitation, and perhaps more thermokarst lake formation, both of which could result in wetter conditions that favor CH4 production. At the same time, permafrost degradation could lead to thermal erosion and other landscape processes that enhance drainage and drier soil conditions that favor CO2 production. As the community continues to develop techniques to identify how the soil moisture status of the Arctic landscape will evolve, we are developing a model to assess how a range of soil moisture conditions, from very wet to very dry, will drive changes in GHG emissions as warming continues. Our numerical model (named ARCHY) is designed to simulate coupled surface and subsurface processes in freezing environments. It can operate in 1-D, 2-D or 3-D, is time-dependent, and includes vertical and lateral water and vapor and gas movement in heterogeneous soils and between soils and atmosphere, snow cover, heat transport, solar irradiation, precipitation, temperature, small scale topography, change of phase between water, ice and vapor, and three spatially distributed species of microbes including aerobes, anaerobes, and methanotrophs. A number of comparisons to data, including a set of soil temperatures and CO2 and CH4 emissions vs time at Toolik lake, as well as experiments on unsaturated flow in a domain with a freezing boundary, provide validation of the coupled thermal, hydrologic and microbiological processes in our model. We are using this calibrated model to contrast gas emissions from thawing permafrost over a range of soil moisture conditions, from a warmer but drier soil to a warmer and wetter soil column. The simulations spin up the soil column from present conditions to a warmer climate over several years. Significantly more CH4 evolution occurs in a wet, anoxic column compared to the present day climate, while a drier, oxic column shows more CO2 evolution but less CH4. Amounts and rates of emissions can be quantified and related to soil moisture contents and climate temperature increases.

  3. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    ERIC Educational Resources Information Center

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized

  4. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    ERIC Educational Resources Information Center

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized…

  5. Climate Conditioning for the Learning Environment.

    ERIC Educational Resources Information Center

    Perkins and Will, Architects, Chicago, IL.

    Discusses heating, cooling, and ventilation for the classroom in relationship to students' learning abilities. It is designed to assist school boards, administrators, architects and engineers in understanding the beneficial effects of total climate control, and in evaluating the climate conditioning systems available for schools. Discussion…

  6. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    PubMed Central

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm. PMID:24424082

  7. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Brijs, Jeroen; Sundström, L Fredrik; Odelström, Anne; Adill, Anders; Aho, Teija; Jutfelt, Fredrik

    2016-01-01

    Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5-10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate. PMID:27186890

  8. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  9. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat. PMID:24736557

  10. Climatic Warming Increases Winter Wheat Yield but Reduces Grain Nitrogen Concentration in East China

    PubMed Central

    Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat. PMID:24736557

  11. Global warming: China’s contribution to climate change

    NASA Astrophysics Data System (ADS)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  12. Europe's forest management did not mitigate climate warming.

    PubMed

    Naudts, Kim; Chen, Yiying; McGrath, Matthew J; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-02-01

    Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation. PMID:26912701

  13. Clouds and climate: Unraveling a key piece of global warming

    SciTech Connect

    Seinfeld, J.H.

    2000-02-01

    Federal policy decisions relating to mitigation of greenhouse gas and other emissions have the potential to exert an enormous impact on industries in which chemical engineers play a prominent role. Many in these industries keep close watch on the development of scientific understanding associated with predictions of global climate change. The authors review one of the most critical, and most uncertain, pieces of the climate puzzle, the role of aerosols and clouds in the global energy balance.

  14. Climate warming mediates negative impacts of rapid pond drying for three amphibian species.

    PubMed

    O'Regan, Sacha M; Palen, Wendy J; Anderson, Sean C

    2014-04-01

    Anthropogenic climate change will present both opportunities and challenges for pool-breeding amphibians. Increased water temperature and accelerated drying may directly affect larval growth, development, and survival, yet the combined effects of these processes on larvae with future climate change remain poorly understood. Increased surface temperatures are projected to warm water and decrease water inputs, leading to earlier and faster wetland drying. So it is often assumed that larvae will experience negative synergistic impacts with combined warming and drying. However, an alternative hypothesis is that warming-induced increases in metabolic rate and aquatic resource availability might compensate for faster drying rates, generating antagonistic larval responses. We conducted a mesocosm experiment to test the individual and interactive effects of pool permanency (permanent vs. temporary) and water temperature (ambient vs. (+) -3 degrees C) on three anurans with fast-to-slow larval development rates (Great Basin spadefoot [Spea intermontana], Pacific chorus frog [Pseudacris regilla], and northern red-legged frog [Rana aurora]). We found that although tadpoles in warmed pools reached metamorphosis 15-17 days earlier, they did so with little cost (< 2 mm) to size, likely due to greater periphyton growth in warmed pools easing drying-induced resource competition. Warming and drying combined to act antagonistically on early growth (P = 0.06) and survival (P = 0.06), meaning the combined impact was less than the sum of the individual impacts. Warming and drying acted additively on time to and size at metamorphosis. These nonsynergistic impacts may result from cotolerance of larvae to warming and drying, as well as warming helping to offset negative impacts of drying. Our results indicate that combined pool warming and drying may not always be harmful for larval amphibians. However, they also demonstrate that antagonistic responses are difficult to predict, which poses a challenge to proactive conservation and management. Our study highlights the importance of considering the nature of multiple stressor interactions as amphibians are exposed to an increasing number of anthropogenic threats. PMID:24933805

  15. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  16. The Early Climate History of Mars: "Warm and Wet" or "Cold and Icy"?

    NASA Astrophysics Data System (ADS)

    Head, James

    2013-04-01

    The Amazonian climate (last ~66% of history) was much like today, a cold and dry climate regime, characterized by the latitudinal migration of surface ice in response to variations in spin-axis/orbital parameters. But what characterized the Noachian climate (first ~20% of history)? Some data support a "warm and wet" early Mars, but this evidence has been challenged. New models of early Mars climate (Forget, Wordsworth et al.) find that for atmospheric pressures greater than a few hundred millibars, surface temperatures vary with altitude due to atmosphere-surface thermal coupling: an adiabatic cooling effect (ACE) results in deposition of snow and ice at high altitudes, in contrast to Amazonian conditions. Without other warming mechanisms, no combination of parameters lead to mean annual surface temperatures (MAT) consistent with widespread liquid water anywhere on the planet. The ACE causes southern highland region temperatures to fall significantly below the global average leading to a "Noachian Icy Highlands" scenario: Water is transported to the highlands from low-lying regions due to the ACE and snows out to form an extended H2O ice cap at the southern pole, and altitude-dependent snow and ice deposits down to lower southern latitudes. Could the predictions of this "Noachian Icy Highlands" model be consistent with the many lines of evidence traditionally cited for a "warm, wet" early Mars? Perturbing this predominant Noachian environment with punctuated impacts and volcanism/greenhouse gases would lead to raising of global surface temperatures toward the melting point of water, with the following consequences: 1) ice above the surface ice stability line undergoes rapid altitude/latitude dependent warming during each Mars summer; 2) meltwater runoff from the continuous ice sheet drains and flows downslope to the edge of the ice sheet, where meltwater channels encounter cratered terrain, forming closed-basin and open-basin lakes; 3) seasonal top-down heating and melting of the top tens of meters of continuous ice produce a volume of water well in excess of the total volume interpreted to have occupied open-basin/closed basin lakes; 4) this meltwater initially erodes into the dry regolith down to the top of the ice table, producing a perched aquifer and more efficient erosion than infiltration alone; 5) at the end of the annual melting period, temperatures return to below 0°C, meltwater freezes and sublimes, returning to high altitudes as snowfall to replenish the snow and ice deposit; 6) this Noachian icy highlands, ACE-dominated water cycle persists until MAT drops to <0°C. The icy Noachian highlands/punctuated volcanism scenario appears to be able to account for the: 1) source and volume of water required for valley networks; 2) presence of closed/open-basin lakes; 4) evidence for recurring phases of activity over millions of years; 5) small amounts of net erosion; 6) relatively poor stream integration and lower order; 7) presence of a surface hydrological cycle that can replenish the source area and cause recurring activity with a small total budget of water; and 8) presence of melting and runoff in a Late Noachian climate compatible with other constraints (e.g., faint young Sun, low atmospheric pressure).

  17. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    PubMed Central

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species. PMID:24223283

  18. Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y

    USGS Publications Warehouse

    Ortiz, J.D.; O'Connell, S. B.; DelViscio, J.; Dean, W.; Carriquiry, J.D.; Marchitto, T.; Zheng, Yen; VanGeen, A.

    2004-01-01

    Studies of the Santa Barbara Basin off the coast of California have linked changes in its bottom-water oxygen content to millennial-scale climate changes as recorded by the oxygen isotope composition of Greenland ice. Through the use of detailed records from a sediment core collected off the Magdalena Margin of Baja California, Mexico, we demonstrate that this teleconnection predominantly arose from changes in marine productivity, rather than changes in ventilation of the North Pacific, as was originally proposed. One possible interpretation is that the modern balance of El Nin??o-La Nin??a conditions that favors a shallow nutricline and high productivity today and during warm climate intervals of the past 52 k.y. was altered toward more frequent, deep nutricline, low productivity, El Nin??o-like conditions during cool climate intervals. ?? 2004 Geological Society of America.

  19. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    PubMed

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species. PMID:24223283

  20. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    USGS Publications Warehouse

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  1. Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients.

    PubMed

    Schuldiner-Harpaz, Tarryn; Coll, Moshe

    2013-01-01

    Global warming may affect species abundance and distribution, as well as temperature-dependent morphometric traits. In this study, we first used historical data to document changes in Orius (Heteroptera: Anthocoridae) species assemblage and individual morphometric traits over the past seven decades in Israel. We then tested whether these changes could have been temperature driven by searching for similar patterns across seasonal and geographic climatic gradients in a present survey. The historical records indicated a shift in the relative abundance of dominant Orius species; the relative abundance of O. albidipennis, a desert-adapted species, increased while that of O. laevigatus decreased in recent decades by 6 and 10-15 folds, respectively. These shifts coincided with an overall increase of up to 2.1°C in mean daily temperatures over the last 25 years in Israel. Similar trends were found in contemporary data across two other climatic gradients, seasonal and geographic; O. albidipennis dominated Orius assemblages under warm conditions. Finally, specimens collected in the present survey were significantly smaller than those from the 1980's, corresponding to significantly smaller individuals collected now during warmer than colder seasons. Taken together, results provide strong support to the hypothesis that temperature is the most likely driver of the observed shifts in species composition and body sizes because (1) historical changes in both species assemblage and body size were associated with rising temperatures in the study region over the last few decades; and (2) similar changes were observed as a result of contemporary drivers that are associated with temperature. PMID:23805249

  2. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China

    NASA Astrophysics Data System (ADS)

    Su, Tao; Feng, Taichen; Feng, Guolin

    2015-08-01

    With the motivation to identify actual evapotranspiration (AE) variability under climate warming over China, an assessment is made from five sets of reanalysis data sets [National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), NCEP-Department of Energy (NCEP-DOE), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Interim Reanalysis, and Japanese 55-year Reanalysis (JRA-55)]. Based on comparison with AE estimates calculated using the Budyko equation, all five reanalysis data sets reasonably reproduce the spatial patterns of AE over China, with a clearly southeast-northwest gradient. Overall, JRA-55 (NCEP-DOE) gives the lowest (highest) reanalysis evaporation (RE) values. From 1979 to 2013, dominant modes of RE among five reanalyses are extracted using multivariate empirical orthogonal function analysis. Accordingly, the interdecadal variation of RE is likely driven by the change of temperature, and the interannual variation is constrained by the water supply conditions. Under climate warming, RE increase in the Northwest China, Yangtze-Huaihe river basin, and South China, while they decrease in Qinghai-Tibet Plateau, and northern and Northeast China. Moreover, the relationship between RE and pan evaporation (PE) are comprehensively evaluated in space-time. Negative correlations are generally confirmed in nonhumid environments, while positive correlations exist in the humid regions. Our analysis supports the interpretation that the relationship between PE and AE was complementary with water control and proportional with energy control. In view of data availability, important differences in spatial variability and the amount of RE can be found in Northwest China, the Qinghai-Tibet Plateau, and the Yangtze River Basin. Generally speaking, NCEP-NCAR and MERRA have substantial problems on describing the long-term change of RE; however, there are some inaccuracies in the JRA-55 estimates when focusing on the year-to-year variation.

  3. Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients

    PubMed Central

    Schuldiner-Harpaz, Tarryn; Coll, Moshe

    2013-01-01

    Global warming may affect species abundance and distribution, as well as temperature-dependent morphometric traits. In this study, we first used historical data to document changes in Orius (Heteroptera: Anthocoridae) species assemblage and individual morphometric traits over the past seven decades in Israel. We then tested whether these changes could have been temperature driven by searching for similar patterns across seasonal and geographic climatic gradients in a present survey. The historical records indicated a shift in the relative abundance of dominant Orius species; the relative abundance of O. albidipennis, a desert-adapted species, increased while that of O. laevigatus decreased in recent decades by 6 and 10–15 folds, respectively. These shifts coincided with an overall increase of up to 2.1°C in mean daily temperatures over the last 25 years in Israel. Similar trends were found in contemporary data across two other climatic gradients, seasonal and geographic; O. albidipennis dominated Orius assemblages under warm conditions. Finally, specimens collected in the present survey were significantly smaller than those from the 1980’s, corresponding to significantly smaller individuals collected now during warmer than colder seasons. Taken together, results provide strong support to the hypothesis that temperature is the most likely driver of the observed shifts in species composition and body sizes because (1) historical changes in both species assemblage and body size were associated with rising temperatures in the study region over the last few decades; and (2) similar changes were observed as a result of contemporary drivers that are associated with temperature. PMID:23805249

  4. Reconstruction of spatial patterns of climatic anomalies during the medieval warm period (AD 900-1300)

    SciTech Connect

    Diaz, H.F.; Hughes, M.K.

    1992-12-31

    The workshop will focus on climatic variations during the Medieval Warm Period or Little Climatic Optimum. The nominal time interval assigned to this period is AD 900--1300, but climate information available during the century or two preceding and following this episode is welcome. The aims of the workshop will be to: examine the available evidence for the existence of this episode; assess the spatial and temporal synchronicity of the climatic signals; discuss possible forcing mechanisms; and identify areas and paleoenvironmental records where additional research efforts are needed to improve our knowledge of this period. This document consists of abstracts of eighteen papers presented at the meeting.

  5. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    PubMed

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-09-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study. PMID:24934878

  6. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    PubMed Central

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-01-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study. PMID:24934878

  7. The integrated hydrologic and societal impacts of a warming climate in interior Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Charles E., Jr.

    In this dissertation, interdisciplinary research methods were used to examine how changes in hydrology associated with climate affect Alaskans. Partnerships were established with residents of Fairbanks and Tanana to develop scientific investigations relevant to rural Alaskans. In chapter 2, local knowledge was incorporated into scientific models to identify a social-ecological threshold used to model potential driftwood harvest from the Yukon River. Anecdotal evidence and subsistence calendar records were combined with scientific data to model the harvest rates of driftwood. Modeling results estimate that between 1980 and 2010 hydrologic factors alone were responsible for a 29% decrease in the annual wood harvest, which approximately balanced a 23% reduction in wood demand due to a decline in number of households. The community's installation of wood-fired boilers in 2007 created a threshold increase (76%) in wood demand that is not met by driftwood harvest. Modeling of climatic scenarios illustrates that increased hydrologic variability decreases driftwood harvest and increases the financial or temporal costs for subsistence users. In chapter 3, increased groundwater flow related to permafrost degradation was hypothesized to be affect river ice thickness in sloughs of the Tanana River. A physically-based, numerical model was developed to examine the importance of permafrost degradation in explaining unfrozen river conditions in the winter. Results indicated that ice melt is amplified by increasing groundwater upwelling rates, groundwater temperatures, and snowfall. Modeling results also suggest that permafrost degradation could be a valid explanation of the phenomenon, but does not address the potential drivers (e.g. warming climate, forest fire, etc.) of the permafrost warming. In chapter 4, remote sensing techniques were hypothesized to be useful for mapping dangerous ice conditions on the Tanana River in interior Alaska. Unsupervised classification of high-resolution satellite imagery was used to identify and map open water and degraded ice conditions on the Tanana River. Ninety-five percent of the total river channel surface was classified as "safe" for river travel, while 4% of the channel was mapped as having degraded ice and 0.6% of the channel was classified as open water (overall accuracy of 73%). This research demonstrates that the classification of high-resolution satellite images can be useful for mapping hazardous ice for recreational, transportation, or industrial applications in northern climates. These results are applicable to communities throughout the North. For people that rely upon subsistence activities, increased variability in climate cycles can have substantial financial, cultural, recreational, or even mortal consequences. This research demonstrates how collaborations between scientists and local stakeholders can create tools that help to assess the impacts of increased environmental variability (such as flooding) or to detect or predict unsafe conditions (such as thin or unpredictable ice cover). Based upon this research, I conclude that regional-scale adaptations and technological advances (such as modeling and remote sensing tools) may help to alleviate the effects of environmental variability associated by climate.

  8. Soil respiration under climate change: prolonged summer drought offsets soil warming effects

    PubMed Central

    Schindlbacher, Andreas; Wunderlich, Steve; Borken, Werner; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Jandl, Robert

    2012-01-01

    Climate change may considerably impact the carbon (C) dynamics and C stocks of forest soils. To assess the combined effects of warming and reduced precipitation on soil CO2 efflux, we conducted a two-way factorial manipulation experiment (4 °C soil warming + throughfall exclusion) in a temperate spruce forest from 2008 until 2010. Soil was warmed by heating cables throughout the growing seasons. Soil drought was simulated by throughfall exclusions with three 100 m2 roofs during 25 days in July/August 2008 and 2009. Soil warming permanently increased the CO2 efflux from soil, whereas throughfall exclusion led to a sharp decrease in soil CO2 efflux (45% and 50% reduction during roof installation in 2008 and 2009, respectively). In 2008, CO2 efflux did not recover after natural rewetting and remained lowered until autumn. In 2009, CO2 efflux recovered shortly after rewetting, but relapsed again for several weeks. Drought offset the increase in soil CO2 efflux by warming in 2008 (growing season CO2 efflux in t C ha−1: control: 7.1 ± 1.0; warmed: 9.5 ± 1.7; warmed + roof: 7.4 ± 0.3; roof: 5.9 ± 0.4) and in 2009 (control: 7.6 ± 0.8; warmed + roof: 8.3 ± 1.0). Throughfall exclusion mainly affected the organic layer and the top 5 cm of the mineral soil. Radiocarbon data suggest that heterotrophic and autotrophic respiration were affected to the same extent by soil warming and drying. Microbial biomass in the mineral soil (0–5 cm) was not affected by the treatments. Our results suggest that warming causes significant C losses from the soil as long as precipitation patterns remain steady at our site. If summer droughts become more severe in the future, warming induced C losses will likely be offset by reduced soil CO2 efflux during and after summer drought.

  9. Floods, Droughts and Global Warming: Rolling the Climate Dice

    NASA Astrophysics Data System (ADS)

    Lau, W. K.; Wu, H.; Kim, K.

    2013-12-01

    In this study, we find from analyses of projections of 14 CMIP5 models a robust, canonical global response in rainfall characteristics to CO2 greenhouse warming. Under a scenario of 1% increase per year of CO2 emission, the model ensemble projects globally more heavy precipitation (+7×2.4%K-1), less moderate precipitation (-2.5×0.6%K-1), more light precipitation (+1.8×1.3%K-1), and increased length of dry (no-rain) periods (+4.7×2.1%K-1). Regionally, a majority of the models project a consistent response with more heavy precipitation over climatologically wet regions of the deep tropics especially the equatorial Pacific Ocean and the Asian monsoon regions, and more dry periods over the land areas of the subtropics and the tropical marginal convective zones. Changes in the global circulation associated with the precipitation changes include a narrowing and deepening of convective zone, a rise of the center of gravity and acceleration of the upper branch of the Hadley circulation, an expansion of the subtropics and a poleward shift of the jetstream. Our results suggest that increased risks of severe floods and droughts worldwide induced by increased CO2 emission is the manifestation of a canonical response of the global rainfall system in association with a re-adjustment of the global circulation system, in a competition for increased availability of atmospheric moisture from global warming.

  10. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    NASA Astrophysics Data System (ADS)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision makers can arrive at invalid conclusions from a seemingly valid scientific messages. Honest discussion of uncertainties, and recognition of the spatial and time scales associated with decision making, can work to combat this potential confusion.

  11. Global and regional surface cooling in a warming climate: a multi-model analysis

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Drange, Helge

    2015-09-01

    Instrumental temperature records show that the global climate may experience decadal-scale periods without warming despite a long-term warming trend. We analysed 17 global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), identifying the likelihood and duration of periods without warming in the four Representative Concentration Pathway (RCP) scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, together with the preindustrial control and historical simulations. We find that non-warming periods may last 10, 15 and 30 years for RCP8.5, RCP6.0 and RCP4.5, respectively. In the models, anomalous ocean heat uptake and storage are the main factors explaining the decadal-scale surface temperature hiatus periods. The low-latitude East Pacific Ocean is a key region for these variations, acting in tandem with basin-scale anomalies in the sea level pressure. During anomalously cold decades, roughly 35-50 % of the heat anomalies in the upper 700 m of the ocean are located in the Pacific Ocean, and 25 % in the Atlantic Ocean. Decadal-scale ocean heat anomalies, integrated over the upper 700 m, have a magnitude of about 7.5 × 1021 J. This is comparable to the ocean heat uptake needed to maintain a 10 year period without increasing surface temperature under global warming. On sub-decadal time scales the Atlantic, Pacific and Southern Oceans all have the ability to store large amounts of heat, contributing to variations in global surface temperature. The likelihood of decadal-scale non-warming periods decrease with global warming, firstly at the low latitude region stretching eastward from the tropical Atlantic towards the western Pacific. The North Atlantic and Southern Oceans have largest likelihood of non-warming decades in a warming world.

  12. Links between plant species' spatial and temporal responses to a warming climate.

    PubMed

    Amano, Tatsuya; Freckleton, Robert P; Queenborough, Simon A; Doxford, Simon W; Smithers, Richard J; Sparks, Tim H; Sutherland, William J

    2014-03-22

    To generate realistic projections of species' responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species's climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology. PMID:24478304

  13. Warming the Climate for Women in Academic Science.

    ERIC Educational Resources Information Center

    Ginorio, Angela B.

    This paper contends that the climate or culture of academic science has been chilly to women, ethnic minorities, and people with disabilities. The paper reviews research findings in three areas: (1) numbers of women participating in science education and careers; (2) evidence of precollege patterns for girls and women in science and math; and (3)

  14. Humidity critical for grass growth in warming climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth responses to climate change might be confounded by multi-factor changes such as temperature and vapor pressure deficit (VPD). The growth and water loss of tall fescue (Festuca arundinaccea Schreb.), a cool season grass, was measured over 6 weeks with independent control of temperature a...

  15. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  16. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    SciTech Connect

    Zhuang, Qianlai; Schlosser, Courtney; Melillo, Jerry; Walter, Katey

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  17. Boreal Forests in Permafrost Landscapes: Changing Structure and Function in Response to Climate Warming

    NASA Astrophysics Data System (ADS)

    Baltzer, J. L.; Quinton, W. L.; Sonnentag, O.

    2014-12-01

    Boreal forests occupy latitudes that are experiencing the greatest rates of warming on earth, a pattern that is expected to continue over the coming decades. Much of the Boreal is underlain by permafrost, which can be expected to have important consequences for forest structure, composition and functioning as the climate warms. The southern margin of permafrost is especially susceptible to warming, since in this region, the permafrost is discontinuous, relatively thin, warm and ice-rich. In the discontinuous permafrost zone, permafrost often forms the physical foundation on which trees develop, forming tree-covered peat plateaus where trees contribute to permafrost maintenance and aggradation processes through reductions in radiation load and changes in snow accumulation. Forests are restricted to peat plateaus while wetland communities occupy intervening permafrost-free areas. The extent and distribution of each land cover type is an important determinant of how boreal forest-wetland landscapes in the discontinuous permafrost zone function as part of the climate system. Climate warming is rapidly thawing permafrost leading to ground surface subsidence and transformation of the forests into wetlands, increasing both the areal extent and connectivity of the latter. In this presentation, we will use an integrative framework at the ForestGEO Scotty Creek Forest Dynamics Plot site near Fort Simpson, Northwest Territories, Canada to demonstrate the changes in ecological, hydrological and biosphere-atmosphere interactions within this boreal forest-wetland landscape characterized by rapidly degrading permafrost.

  18. Large impacts of climatic warming on growth of boreal forests since 1960.

    PubMed

    Kauppi, Pekka E; Posch, Maximilian; Pirinen, Pentti

    2014-01-01

    Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome - more than ten million km2- important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo. PMID:25383552

  19. Sensitivity of Runoff to Climate Warming over the Western U.S

    NASA Astrophysics Data System (ADS)

    Das, T.; Pierce, D. W.; Cayan, D. R.; Dettinger, M.

    2009-12-01

    The response of runoff to climate warming, on annual water supply time scales or on shorter, flood event scales, are critical issues for water managers and for ecosystems. Here we summarize a set of analyses using the Variable Infiltration Capacity (VIC) hydrological model over the western U.S. to explore the sensitivity of runoff to prescribed increases in temperature. The prescribed warming is imposed upon a century long observed daily precipitation and temperature forcing dataset, developed at the University of Washington. The sensitivity of annual runoff and of relatively high runoff events varies considerably over the western U.S.. According to VIC, climate warming results in diminished annual discharge. When aggregated into streamflow within major western U.S. Rivers, the annual streamflow response ranges from as little as -1% per degree to as much as -6% per degree Celsius of warming. Total flow from California’s Sierra Nevada Rivers are not as sensitive to warming as are those in the Colorado and Pacific Northwest River basins. On the other hand, warming generally increases the frequency and magnitude of flow events in watersheds that have historically been fed by melting snowpacks. The greatest changes are found in basins with a large portion of the watershed lies just below larger changes in the region freezing point.

  20. Innovative empirical approaches for inferring climate-warming impacts on plants in remote areas.

    PubMed

    De Frenne, Pieter

    2015-02-01

    The prediction of the effects of climate warming on plant communities across the globe has become a major focus of ecology, evolution and biodiversity conservation. However, many of the frequently used empirical approaches for inferring how warming affects vegetation have been criticized for decades. In addition, methods that require no electricity may be preferred because of constraints of active warming, e.g. in remote areas. Efforts to overcome the limitations of earlier methods are currently under development, but these approaches have yet to be systematically evaluated side by side. Here, an overview of the benefits and limitations of a selection of innovative empirical techniques to study temperature effects on plants is presented, with a focus on practicality in relatively remote areas without an electric power supply. I focus on methods for: ecosystem aboveground and belowground warming; a fuller exploitation of spatial temperature variation; and long-term monitoring of plant ecological and microevolutionary changes in response to warming. An evaluation of the described methodological set-ups in a synthetic framework along six axes (associated with the consistency of temperature differences, disturbance, costs, confounding factors, spatial scale and versatility) highlights their potential usefulness and power. Hence, further developments of new approaches to empirically assess warming effects on plants can critically stimulate progress in climate-change biology. PMID:25729798

  1. Responses of community-level plant-insect interactions to climate warming in a meadow steppe

    PubMed Central

    Zhu, Hui; Zou, Xuehui; Wang, Deli; Wan, Shiqiang; Wang, Ling; Guo, Jixun

    2015-01-01

    Climate warming may disrupt trophic interactions, consequently influencing ecosystem functioning. Most studies have concentrated on the temperature-effects on plant-insect interactions at individual and population levels, with a particular emphasis on changes in phenology and distribution. Nevertheless, the available evidence from the community level is limited. A 3-year field manipulative experiment was performed to test potential responses of plant and insect communities, and plant-insect interactions, to elevated temperature in a meadow steppe. Warming increased the biomass of plant community and forbs, and decreased grass biomass, indicating a shift from grass-dominant to grass-forb mixed plant community. Reduced abundance of the insect community under warming, particularly the herbivorous insects, was attributed to lower abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food availability and higher defensive herbivory. Lower herbivore abundance caused lower predator species richness because of reduced prey resources and contributed to an overall decrease in insect species richness. Interestingly, warming enhanced the positive relationship between insect and plant species richness, implying that the strength of the plant-insect interactions was altered by warming. Our results suggest that alterations to plant-insect interactions at a community level under climate warming in grasslands may be more important and complex than previously thought. PMID:26686758

  2. Responses of community-level plant-insect interactions to climate warming in a meadow steppe.

    PubMed

    Zhu, Hui; Zou, Xuehui; Wang, Deli; Wan, Shiqiang; Wang, Ling; Guo, Jixun

    2015-01-01

    Climate warming may disrupt trophic interactions, consequently influencing ecosystem functioning. Most studies have concentrated on the temperature-effects on plant-insect interactions at individual and population levels, with a particular emphasis on changes in phenology and distribution. Nevertheless, the available evidence from the community level is limited. A 3-year field manipulative experiment was performed to test potential responses of plant and insect communities, and plant-insect interactions, to elevated temperature in a meadow steppe. Warming increased the biomass of plant community and forbs, and decreased grass biomass, indicating a shift from grass-dominant to grass-forb mixed plant community. Reduced abundance of the insect community under warming, particularly the herbivorous insects, was attributed to lower abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food availability and higher defensive herbivory. Lower herbivore abundance caused lower predator species richness because of reduced prey resources and contributed to an overall decrease in insect species richness. Interestingly, warming enhanced the positive relationship between insect and plant species richness, implying that the strength of the plant-insect interactions was altered by warming. Our results suggest that alterations to plant-insect interactions at a community level under climate warming in grasslands may be more important and complex than previously thought. PMID:26686758

  3. On the Predictive Landslide Susceptibility Under Climate Change Conditions

    NASA Astrophysics Data System (ADS)

    Shou, Keh-Jian

    2014-05-01

    Among the most critical issues, climate abnormalities caused by global warming also affect Taiwan significantly for the past decade. The frequency of extreme rainfall events has increased, where the concentrated and heavy rainfalls generally caused geohazards, including landslides and debris flows. Based on the rainfall data collected, this study employs rainfall frequency analysis and the domestic atmosphere general circulation model (AGCM) downscaling estimates to understand the past rainfall pattern and forecast the future rainfall trends, distributions, and the intensities. In this study, the Chingshui River Watershed, a watershed with major geohazards in Taiwan, was adopted as the study area. Rainfall estimates from the rainfall frequency analysis and AGCM were used in the susceptibility model to produce susceptibility zoning maps for various rainfall scenarios under climate change conditions. The results suggest the areas with high hazard potential, and the susceptibility maps can be used for disaster remediation, mitigation, and prevention plan for the study area.

  4. Dusting the climate for fingerprints. Has greenhouse warming arrived? Will we ever know?

    SciTech Connect

    Monastersy, R.

    1995-06-10

    The topic of global warming is front page news again. Although the annual average global temperature has risen by about 0.5 C since the late 19th century, investigators have had difficulty determining whether natural forces or human actions are to blame. This article summarizes the arguments pro and con and the search for a diffinative `human fingerprint` on global warming. For example, Max-Lanck researchers find it highly imporbable (1 in 20 chance) that natural forcers have caused the temperature rise. However other scientists acknowledge that uncertainties continue to plague studies aimed at detecting the human influence in climatic change. Computer climate models are the major approach, but distiguishing between recent abnormal warming due to greenhouse gases or to other causes is elusive.

  5. Phenological Implications of Warming Temperatures and Extreme Climatic Events

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.; Enquist, Carolyn A. F.; Denny, Ellen G.

    2013-03-01

    More than 140 phenology researchers traveled from 6 continents and 21 countries to convene and deliver more than 100 oral presentations and more than 30 posters at the University of Wisconsin-Milwaukee School of Continuing Education Conference Center in downtown Milwaukee at the second interdisciplinary international conference on phenology. The study of recurring plant and animal life-cycle stages, phenology is especially sensitive to variation and change in the environment and climate.

  6. Population decrease of Scirpophaga incertulas Walker (Lepidoptera Pyralidae) under climate warming

    PubMed Central

    Shi, Peijian; Zhong, Ling; Sandhu, Hardev S; Ge, Feng; Xu, Xiaoming; Chen, Wei

    2012-01-01

    Scirpophaga incertulas Walker is an important agricultural pest in Asia. Only few studies are available on its long-term population dynamics under climate warming. In this study, we used the linear and generalized additive models (GAMs) to analyze the historical dataset of >50 years on this pest at Xinfeng County of Jiangxi Province, China. The main objective of this study was to explore the effects of density (delayed) dependence and minimum annual temperature (MAT), which indirectly reflects climate warming, on the population dynamics of this pest. We found that both density dependence and MAT have significant influence on the annual population growth rate. The GAMs had relatively better applicability to the dataset than the linear models. Nonparametric model provided satisfactory goodness-of-fit (R2 > 0.5). At Xinfeng County, the MAT had a significant effect on the annual population growth rate of S. incertulas. The annual population growth rate of S. incertulas decreased with increase in MAT. Therefore, S. incertulas population becomes smaller and smaller in Southern China due to climate warming. The current study has two contributions: (1) providing a suitable method for predicting the annual population growth rate of S. incertulas, and (2) demonstrating that climate warming could decrease the S. incertulas population. PMID:22408726

  7. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  8. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  9. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions. PMID:24889969

  10. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem.

    PubMed

    Maphangwa, Khumbudzo Walter; Musil, Charles F; Raitt, Lincoln; Zedda, Luciana

    2012-05-01

    Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1-3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1-31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields ([Formula: see text]) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen [Formula: see text]. The decreases were more pronounced in lichens from the dry inland site (decline 34.1-46.1%) than in those from the humid coastal site (decline 11.3-13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality. PMID:22057927

  11. Freezing of Martian streams under climatic conditions

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The valley networks of Mars are widely believed to have formed at a time when climatic conditions on the planet were significantly different from those that currently prevail. This view arises from the following observations: (1) the valleys form integrated branching networks which suggests fluid drainage, and water is the most plausible fluid, (2) the present atmosphere contains only minute amounts of water, (3) the networks appear to be more akin to terrestrial valleys that are eroded by streams of modest discharges than features that form by catastrophic floods, and (4) small streams of water will rapidly freeze under present climatic conditions. Climatic conditions at the time of formation of the valleys are studied based on the assumption that they were cut by running water.

  12. Quantifying the influence of observed global warming on the probability of unprecedented extreme climate events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Rajaratnam, B.; Charland, A.; Haugen, M.; Horton, D. E.; Singh, D.; Swain, D. L.; Tsiang, M.

    2014-12-01

    Now that observed global warming has been clearly attributed to human activities, there has been increasing interest in the extent to which that warming has influenced the occurrence and severity of individual extreme climate events. However, although trends in the extremes of the seasonal- and daily-scale distributions of climate records have been analyzed for many years, quantifying the contribution of observed global warming to individual events that are unprecedented in the observed record presents a particular scientific challenge. We will describe a modified method for leveraging observations and large climate model ensembles to quantify the influence of observed global warming on the probability of unprecedented extreme events. In this approach, we first diagnose the causes of the individual event in order to understand which climate processes to target in the probability quantification. We then use advanced statistical techniques to quantify the uncertainty in the return period of the event in the observed record. We then use large ensembles of climate model simulations to quantify the distribution of return period ratios between the current level of climate forcing and the pre-industrial climate forcing. We will compare the structure of this approach to other approaches that exist in the literature. We will then examine a set of individual extreme events that have been analyzed in the literature, and compare the results of our approach with those that have been previously published. We will conclude with a discussion of the observed agreement and disagreement between the different approaches, including implications for interpretation of the role of human forcing in shaping unprecedented extreme events.

  13. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    PubMed

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. PMID:24343906

  14. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  15. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  16. Ecosystem resilience despite large-scale altered hydro climatic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  17. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2013-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are projected to experience significant but more moderate increases in forest wildfire activity in response to continued warming (e.g., Krawchuk and Mortiz 2009, Westerling et al 2011b, Rogers et al 2011, Moritz et al 2012). We will present an analysis of hydroclimatic controls on wildfire sensitivity to recent and projected climatic changes, with a particular focus on Rocky mountain forests from the Canadian border through Colorado. Krawchuk, M. A., M. A. Moritz 2012. Fire and Climate Change in California. California Energy Commission CEC-500-2012-026. Litschert, S.E., T.C. Brown, D.M. Theobald 2012. Historic and future extent of wildfires in the Southern Rockies Ecoregion, USA. Forest Ecology and Management, 269:124-133. Moritz, M.A., M.-A. Parisien, E. Batllori, M. A. Krawchuk, J. Van Dorn, D. J. Ganz, & K. Hayhoe 2012. Climate change and disruptions to global fire activity. Ecosphere 3:49. Rogers, Brendan M., et al. 2011. Impacts of climate change on fire regimes and carbon stocks of the US Pacific Northwest. JGR: Biogeosciences (2005-2012) 116.G3. Westerling, A.L., M.G. Turner, E.H. Smithwick, W.H. Romme, M.G. Ryan 2011 (a). Continued warming could transform Greater Yellowstone fire regimes by mid-21st Century. PNAS, 108(32),13165-13170. Westerling, A.L., B.P. Bryant, H.K. Preisler, T.P. Holmes, H. Hidalgo, T. Das, and S. Shrestha 2011 (b). Climate Change and Growth Scenarios for California Wildfire. Climatic Change, 109(s1):445-463.

  18. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2011-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are projected to experience significant but more moderate increases in forest wildfire activity in response to continued warming (e.g., Krawchuk and Mortiz 2009, Westerling et al 2011b, Rogers et al 2011, Moritz et al 2012). We will present an analysis of hydroclimatic controls on wildfire sensitivity to recent and projected climatic changes, with a particular focus on Rocky mountain forests from the Canadian border through Colorado. Krawchuk, M. A., M. A. Moritz 2012. Fire and Climate Change in California. California Energy Commission CEC-500-2012-026. Litschert, S.E., T.C. Brown, D.M. Theobald 2012. Historic and future extent of wildfires in the Southern Rockies Ecoregion, USA. Forest Ecology and Management, 269:124-133. Moritz, M.A., M.-A. Parisien, E. Batllori, M. A. Krawchuk, J. Van Dorn, D. J. Ganz, & K. Hayhoe 2012. Climate change and disruptions to global fire activity. Ecosphere 3:49. Rogers, Brendan M., et al. 2011. Impacts of climate change on fire regimes and carbon stocks of the US Pacific Northwest. JGR: Biogeosciences (2005-2012) 116.G3. Westerling, A.L., M.G. Turner, E.H. Smithwick, W.H. Romme, M.G. Ryan 2011 (a). Continued warming could transform Greater Yellowstone fire regimes by mid-21st Century. PNAS, 108(32),13165-13170. Westerling, A.L., B.P. Bryant, H.K. Preisler, T.P. Holmes, H. Hidalgo, T. Das, and S. Shrestha 2011 (b). Climate Change and Growth Scenarios for California Wildfire. Climatic Change, 109(s1):445-463.

  19. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  20. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  1. Comparison of "warm and wet" and "cold and icy" scenarios for early Mars in a 3-D climate model

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin D.; Kerber, Laura; Pierrehumbert, Raymond T.; Forget, Francois; Head, James W.

    2015-06-01

    We use a 3-D general circulation model to compare the primitive Martian hydrological cycle in "warm and wet" and "cold and icy" scenarios. In the warm and wet scenario, an anomalously high solar flux or intense greenhouse warming artificially added to the climate model are required to maintain warm conditions and an ice-free northern ocean. Precipitation shows strong surface variations, with high rates around Hellas basin and west of Tharsis but low rates around Margaritifer Sinus (where the observed valley network drainage density is nonetheless high). In the cold and icy scenario, snow migration is a function of both obliquity and surface pressure, and limited episodic melting is possible through combinations of seasonal, volcanic, and impact forcing. At surface pressures above those required to avoid atmospheric collapse (˜0.5 bar) and moderate to high obliquity, snow is transported to the equatorial highland regions where the concentration of valley networks is highest. Snow accumulation in the Aeolis quadrangle is high, indicating an ice-free northern ocean is not required to supply water to Gale crater. At lower surface pressures and obliquities, both H2O and CO2 are trapped as ice at the poles and the equatorial regions become extremely dry. The valley network distribution is positively correlated with snow accumulation produced by the cold and icy simulation at 41.8° obliquity but uncorrelated with precipitation produced by the warm and wet simulation. Because our simulations make specific predictions for precipitation patterns under different climate scenarios, they motivate future targeted geological studies.

  2. The effects of climate uncertainty on the stability of the Antarctic ice sheet during the mid-Pliocene warm period

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Häfliger, Tonio; Rogozhina, Irina; Thomas, Maik

    2015-04-01

    The mid-Pliocene (3.15 to 2.85 million years before present) is the most recent period in Earth's history when temperatures and CO2 concentrations were sustainedly higher than pre-industrial values [1], representing an ideal interval for studying the climate system under conditions similar to those projected for the end of this century. In these projections, the response of the Antarctic ice sheet (AIS) remains uncertain, including areas generally considered stable under a warming climate. Therefore, a better understanding of AIS's behaviour during periods like the mid-Pliocene will provide valuable information on the potential vulnerability of the composite parts of the AIS in the future. For this purpose, we have designed numerical experiments of the AIS dynamics during the mid-Pliocene warm period using the continental-scale ice sheet-shelf model SICOPOLIS [2]. To account for the uncertainties in the configuration of the AIS and climate conditions prior to this period, we employ a wide range of initial ice sheet configurations and climatologies, including modern observations, the results from the Pliocene Model Intercomparison Project (PlioMIP) climate experiments [3], and perturbations to single climatic fields, allowing us to assess the vulnerability of different AIS sectors to specific forcing mechanisms. Our simulations show that the West Antarctic ice sheet remains largely ice-free under the chosen range of climate conditions, except for small portions grounded above sea level. On the contrary, the East Antarctic ice sheet (EAIS) shows no signs of potential collapse, with an ice loss over a few peripheral sectors largely compensated by an increase in ice volume over the interior due to increased precipitation rates and surface temperatures remaining well below the freezing point. Furthermore, our results contrast with existing hypotheses that cast doubt on the stability of the EAIS during the mid-Pliocene warm period. References [1] Cook, C. P., et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geoscience 6.9 (2013): 765-769. [2] Sato, T., and Greve, R. Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology 53.60 (2012): 221-228. [3] Haywood, A. M., et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9 (2013): 191-209.

  3. The potential for behavioral thermoregulation to buffer cold-blooded animals against climate warming

    PubMed Central

    Kearney, Michael; Shine, Richard; Porter, Warren P.

    2009-01-01

    Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most cold-blooded terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts. PMID:19234117

  4. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming.

    PubMed

    Crous, Kristine Y; Quentin, Audrey G; Lin, Yan-Shih; Medlyn, Belinda E; Williams, David G; Barton, Craig V M; Ellsworth, David S

    2013-12-01

    Eucalyptus species are grown widely outside of their native ranges in plantations on all vegetated continents of the world. We predicted that such a plantation species would show high potential for acclimation of photosynthetic traits across a wide range of growth conditions, including elevated [CO2] and climate warming. To test this prediction, we planted temperate Eucalyptus globulus Labill. seedlings in climate-controlled chambers in the field located >700 km closer to the equator than the nearest natural occurrence of this species. Trees were grown in a complete factorial combination of elevated CO2 concentration (eC; ambient [CO2] +240 ppm) and air warming treatments (eT; ambient +3 °C) for 15 months until they reached ca. 10 m height. There was little acclimation of photosynthetic capacity to eC and hence the CO2-induced photosynthetic enhancement was large (ca. 50%) in this treatment during summer. The warming treatment significantly increased rates of both carboxylation capacity (V(cmax)) and electron transport (Jmax) (measured at a common temperature of 25 °C) during winter, but decreased them significantly by 20-30% in summer. The photosynthetic CO2 compensation point in the absence of dark respiration (Γ*) was relatively less sensitive to temperature in this temperate eucalypt species than for warm-season tobacco. The temperature optima for photosynthesis and Jmax significantly changed by about 6 °C between winter and summer, but without further adjustment from early to late summer. These results suggest that there is an upper limit for the photosynthetic capacity of E. globulus ssp. globulus outside its native range to acclimate to growth temperatures above 25 °C. Limitations to temperature acclimation of photosynthesis in summer may be one factor that defines climate zones where E. globulus plantation productivity can be sustained under anticipated global environmental change. PMID:23824839

  5. Is Global Warming Injecting Randomness into the Climate System?

    NASA Astrophysics Data System (ADS)

    Tsonis, A. A.

    2004-09-01

    Data analyses and model simulations have indicated that as the planet is warming, the chance for extreme events increases. Karl et al. [1995] examined precipitation records over the 20th century and showed that the high-frequency (up to interannual) variability has increased. Subsequently, Tsonis [1996] showed that the low-frequency variability has also increased. These variability trends indicate that the frequency of extremes (more drought events and more heavy precipitation events) has increased whereas the mean has remained approximately the same. Such a tendency is observed with other variables and is consistent with model projections of a warmer planet. A tendency for increased extremes is often translated as increased randomness, simply because the fluctuations increase. Strictly speaking, however, this is incorrect. An increase in the extremes affects the probability distribution of a random variable, but the variable is still random and thus is equally unpredictable. This is in agreement with the Chaitin-Kolmogorov-Solomonoff complexity definition of randomness. According to this definition, the degree of randomness of a given sequence is determined by the length of the computer program written to reproduce it. If the program involves as many steps as the length of the sequence, then the sequence is called maximally random. Random sequences generated from probability distributions are all equally maximally random because their values appear with no particular order or repetition, regardless of the form of the distribution. As such, to describe such sequences one must write a program that involves as many steps as the length of the sequence. It follows that changes in the degree of randomness cannot be assessed by changes in the probability distribution. Changes in the degree of randomness can only be probed by changes in the dynamical properties of a system with complex behavior. If the dynamics change, the system may become more (less) complex, which will imply that a longer (shorter) program will be needed to describe it.

  6. Climate warming could reduce runoff significantly in New England, USA

    USGS Publications Warehouse

    Huntington, T.G.

    2003-01-01

    The relation between mean annual temperature (MAT), mean annual precipitation (MAP) and evapotranspiration (ET) for 38 forested watersheds was determined to evaluate the potential increase in ET and resulting decrease in stream runoff that could occur following climate change and lengthening of the growing season. The watersheds were all predominantly forested and were located in eastern North America, along a gradient in MAT from 3.5??C in New Brunswick, CA, to 19.8??C in northern Florida. Regression analysis for MAT versus ET indicated that along this gradient ET increased at a rate of 2.85 cm??C-1 increase in MAT (??0.96 cm??C-1, 95% confidence limits). General circulation models (GCM) using current mid-range emission scenarios project global MAT to increase by about 3??C during the 21st century. The inferred, potential, reduction in annual runoff associated with a 3??C increase in MAT for a representative small coastal basin and an inland mountainous basin in New England would be 11-13%. Percentage reductions in average daily runoff could be substantially larger during the months of lowest flows (July-September). The largest absolute reductions in runoff are likely to be during April and May with smaller reduction in the fall. This seasonal pattern of reduction in runoff is consistent with lengthening of the growing season and an increase in the ratio of rain to snow. Future increases in water use efficiency (WUE), precipitation, and cloudiness could mitigate part or all of this reduction in runoff but the full effects of changing climate on WUE remain quite uncertain as do future trends in precipitation and cloudiness.

  7. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  8. Future Dry Spells in the Southwest US Aggravated by Climate Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Das, T.; Pierce, D. W.; Barnett, T. P.; Tyree, M.; Gershunov, A.

    2010-12-01

    The early 21st century drought is an example of the kinds of droughts the Southwest United States is prone to. Such droughts tend to take on large southwest footprints, although both observations and climate model simulations display different degrees of dryness in California, the Great Basin, and the Colorado basin. The early 21st century drought has been more severe in the Colorado basin than in California. As quantified by the VIC hydrological model, the historically most extreme droughts have tended to build up and finally abate over an extended multiyear period. Especially during the early 21st century, observed Southwest droughts have been exacerbated by anomalously warm summer temperatures. This tendency may continue—several different 21st century climate model simulations suggest that dry years will experience anomalously warm summer temperatures. These severe future droughts are aggravated by enhanced, globally warmed temperatures that reduce spring snowpack and late spring and summer soil moisture. As the climate continues to warm, soil moisture deficits accumulate beyond historical levels, indicating there could be larger reductions in runoff in the Colorado and other key basins of the Southwest.

  9. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    PubMed

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when predicting future decomposition rates and carbon storage in peatlands. PMID:26236896

  10. Climate conditions in bedded confinement buildings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confinement buildings are utilized for finishing cattle to allow more efficient collection of animal waste and to buffer animals against adverse climatic conditions. Environmental data were obtained from a 29 m wide x 318 m long bedded confinement building with the long axis oriented east to west. T...

  11. A brief history of climate - the northern seas from the Last Glacial Maximum to global warming

    NASA Astrophysics Data System (ADS)

    Eldevik, Tor; Risebrobakken, Bjørg; Bjune, Anne E.; Andersson, Carin; Birks, H. John B.; Dokken, Trond M.; Drange, Helge; Glessmer, Mirjam S.; Li, Camille; Nilsen, Jan Even Ø.; Otterå, Odd Helge; Richter, Kristin; Skagseth, Øystein

    2014-12-01

    The understanding of climate and climate change is fundamentally concerned with two things: a well-defined and sufficiently complete climate record to be explained, for example of observed temperature, and a relevant mechanistic framework for making closed and consistent inferences concerning cause-and-effect. This is the case for understanding observed climate, as it is the case for historical climate as reconstructed from proxy data and future climate as projected by models. The present study offers a holistic description of northern maritime climate - from the Last Glacial Maximum through to the projected global warming of the 21st century - in this context. It includes the compilation of the most complete temperature record for Norway and the Norwegian Sea to date based on the synthesis of available terrestrial and marine paleoclimate reconstructions into continuous times series, and their continuation into modern and future climate with the instrumental record and a model projection. The scientific literature on a variable northern climate is reviewed against this background, and with a particular emphasis on the role of the Norwegian Atlantic Current - the Gulf Stream's extension towards the Arctic. This includes the introduction of an explicit and relatively simple diagnostic relation to quantify the change in ocean circulation consistent with reconstructed ocean temperatures. It is found that maritime climate and the strength of the Norwegian Atlantic Current are closely related throughout the record. The nature of the relation is however qualitatively different as one progresses from the past, through the present, and into the future.

  12. Climate change in cities due to global warming and urban effects

    NASA Astrophysics Data System (ADS)

    McCarthy, Mark P.; Best, Martin J.; Betts, Richard A.

    2010-05-01

    Urbanisation is estimated to result in 6 billion urban dwellers by 2050. Cities will be exposed to climate change from greenhouse gas induced radiative forcing, and localised effects from urbanisation such as the urban heat island. An urban land-surface model has been included in the HadAM3 Global Climate Model. It shows that regions of high population growth coincide with regions of high urban heat island potential, most notably in the Middle East, the Indian sub-continent, and East Africa. Climate change has the capacity to modify the climatic potential for urban heat islands, with increases of 30% in some locations, but a global average reduction of 6%. Warming and extreme heat events due to urbanisation and increased energy consumption are simulated to be as large as the impact of doubled CO2 in some regions, and climate change increases the disparity in extreme hot nights between rural and urban areas.

  13. Climate warming revealed by englacial temperatures at Col du Dôme (4250 m, Mont Blanc area)

    NASA Astrophysics Data System (ADS)

    Vincent, Christian; Le Meur, Emmanuel; Six, Delphine; Possenti, Philippe; Lefebvre, Eric; Funk, Martin

    2007-08-01

    Temperatures were measured in two deep boreholes drilled at the same location in the ice at Col du Dôme (4250 m) in 1994 and 2005, providing clear evidence of atmospheric warming. The 1994 temperature profile was already far from steady state conditions. Results from a heat transfer model reveal that the englacial temperature increase cannot be explained solely by atmospheric temperature rise. The latent heat produced by the refreezing of surface meltwater below the surface also contributes to the englacial temperature increase. Although surface melting is normally very low at this altitude, this contribution became significant after 1980 for temperatures at the top of the borehole. Simulations for different climatic scenarios show that glaciated areas located between 3500 and 4250 m could become temperate in the future. This warming could have a major impact on the stability of hanging glaciers frozen to their beds if the melting point is reached.

  14. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    NASA Astrophysics Data System (ADS)

    Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S.

    2016-06-01

    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ∼7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, δ13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province).

  15. Climate Warming and 21st-Century Drought in Southwestern North America

    NASA Astrophysics Data System (ADS)

    MacDonald, Glen M.; Stahle, David W.; Diaz, Jose Villanueva; Beer, Nicholas; Busby, Simon J.; Cerano-Paredes, Julian; Cole, Julie E.; Cook, Edward R.; Endfield, Georgina; Gutierrez-Garcia, Genaro; Hall, Beth; Magana, Victor; Meko, David M.; Méndez-Pérez, Matias; Sauchyn, David J.; Watson, Emma; Woodhouse, Connie A.

    2008-02-01

    Since 2000, southwestern North America has experienced widespread drought. Lakes Powell and Mead are now at less than 50% of their reservoir capacity, and drought or fire-related states of emergency were declared this past summer by governors in six western states. As with other prolonged droughts, such as the Dust Bowl during the 1930s, aridity has at times extended from northern Mexico to the southern Canadian prairies. A synthesis of climatological and paleoclimatological studies suggests that a transition to a more arid climate may be occurring due to global warming, with the prospect of sustained droughts being exacerbated by the potential reaction of the Pacific Ocean to warming.

  16. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics. PMID:22397085

  17. Impacts of peatland forestation on regional climate conditions in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Backman, Leif; Henttonen, Helena M.; Pietikäinen, Joni-Pekka; Laaksonen, Ari

    2014-05-01

    Climate response to anthropogenic land cover change happens more locally and occurs on a shorter time scale than the global warming due to increased GHGs. Over the second half of last Century, peatlands were vastly drained in Finland to stimulate forest growth for timber production. In this study, we investigate the biophysical effects of peatland forestation on near-surface climate conditions in Finland. For this, the regional climate model REMO, developed in Max Plank Institute (currently in Climate Service Center, Germany), provides an effective way. Two sets of 15-year climate simulations were done by REMO, using the historic (1920s; The 1st Finnish National Forest Inventory) and present-day (2000s; the 10th Finnish National Forest Inventory) land cover maps, respectively. The simulated surface air temperature and precipitation were then analyzed. In the most intensive peatland forestation area in Finland, the differences in monthly averaged daily mean surface air temperature show a warming effect around 0.2 to 0.3 K in February and March and reach to 0.5 K in April, whereas a slight cooling effect, less than 0.2 K, is found from May till October. Consequently, the selected snow clearance dates in model gridboxes over that area are advanced 0.5 to 4 days in the mean of 15 years. The monthly averaged precipitation only shows small differences, less than 10 mm/month, in a varied pattern in Finland from April to September. Furthermore, a more detailed analysis was conducted on the peatland forestation area with a 23% decrease in peatland and a 15% increase in forest types. 11 day running means of simulated temperature and energy balance terms, as well as snow depth were averaged over 15 years. Results show a positive feedback induced by peatland forestation between the surface air temperature and snow depth in snow melting period. This is because the warmer temperature caused by lower surface albedo due to more forest in snow cover period leads to a quicker and earlier snow melting. Meanwhile, surface albedo is reduced and consequently surface air temperature is increased. Additionally, the maximum difference from individual gridboxes in this area over 15 years of 11 day running means of daily mean surface air temperature reaches 2 K, which is four times as much as the maximum difference of 15-year regional average of that. This illustrates that the spring warming effect from peatland forestation in Finland is highly heterogeneous spatially and temporally.

  18. Thermal state of permafrost in urban environment under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Kerimov, A. G.; Shiklomanov, N. I.; Streletskiy, D. A.; Shkoda, V. S.; Anduschenko, F. D.

    2014-12-01

    Large industrial centers on permafrost are characterized by a set of geocryological conditions different from natural environment. Thermal state of foundations on permafrost in areas of economic development depends on climate trends and upon technogenic impacts, such as type of impact, area of facility, permafrost temperature and duration of the technogenic pressure. Technogenic degradation of permafrost is evident in most urban centers on permafrost leading to deterioration of geotechnical environment and particularly foundations of buildings and structures. This situation is exacerbated by climate warming in such cities as Vorkuta, Chita, Nerungry, Salekhard and others where temperature rises at a rate of 0.4 - 1.2 oC/decade over the last 40 years. To evaluate impact of climate warming and technogenic factors on permafrost temperature regime and foundation bearing capacity we compared five facilities in Norilsk, the largest city on permafrost. The facilities were selected to represent different parts of the town, different ages of built-up environment and were located in different permafrost and lithological conditions. We found a leading role of technogenic factors relative to climatic ones in dynamics of thermal state of permafrost in urban environment. Climate warming in Norilsk (0.15 oC/decade) was a small contributor, but gave an additional input to deterioration of geotechnical environment on permafrost. At the same time, implementation of engineering solutions of permafrost temperature cooling (such as crawl spaces) result in lowering of permafrost temperature. Field surveys in Yamburg showed that under some facilities permafrost temperature decreased by 1-1.5 C oC over the last 15 years despite pronounced in the region climate warming of 0.5 oC/decade. This shows that despite deterioration of permafrost conditions in the most Arctic regions due to technogenic pressure and climate warming, implementation of adequate engineering solutions allows stabilization of permafrost thermal regime.

  19. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions

    PubMed Central

    Godbold, Jasmin A.; Solan, Martin

    2013-01-01

    Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing. PMID:23980249

  20. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    PubMed

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. PMID:26507106

  1. A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Corney, Stuart P.; Katzfey, Jack J.; Bennett, James C.; Holz, Gregory K.; White, Christopher J.; Bindoff, Nathaniel L.

    2013-04-01

    Coupled ocean-atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.

  2. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.

    PubMed

    Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-19

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860

  3. Interfacing Single Column Lake and Atmospheric Models: Application over Lake Geneva for Observed and Climate Warming Scenario

    NASA Astrophysics Data System (ADS)

    Goyette, S.; Perroud, M.

    2008-12-01

    A single-column atmospheric model has been coupled to a single-column lake model to simulate present-day as well as future lake temperature profiles following global climate warming conditions. Results of multi-year climate simulations are shown for the case of the deep station SHL2 (309 m) of Lake Geneva, Switzerland. The atmospheric model termed FIZL, is a column version of a limited-area model developed for regional climate modelling based on an off-line downscaling of GCM simulations. It is physically-based and it requires outputs from a previous GCM integration. The issues of local lake climate is addressed by combining precomputed atmospheric large-scale transports of momentum, heat, and moisture, called "the dynamics," and recomputed subgrid-scale parameterized effect (solar and infrared radiation fluxes, and latent and sensible heat fluxes), called "the physics," with the explicit numerical computations of the evolving lower boundary conditions provided by the lake model. The lake model, called k-epsilon (k-e), combines a buoyancy-extended k-e model with a seiche excitation and damping model to predict the diffusivity below the surface mixed layer. In this model, the vertical turbulent diffusivities are determined from the turbulent kinetic energy and energy dissipation. Details of the atmospheric-lake interface module, and a sensitivity analysis of the simulated thermal profiles to this coupler parameters are presented. Finally statistics of the change in the lake thermal profiles is also shown for the case of an equilibrium 2xCO2 global climate warming scenario.

  4. Formability analysis of austenitic stainless steel-304 under warm conditions

    NASA Astrophysics Data System (ADS)

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  5. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    PubMed

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health and structuring of tropical coastal communities (e.g. coral reefs). PMID:24771544

  6. Spatiotemporal change in geographical distribution of global climate types in the context of climate warming

    NASA Astrophysics Data System (ADS)

    Zhang, Xianliang; Yan, Xiaodong

    2014-08-01

    After standardizing global land climate gridded data from the Climatic Research Unit TS (time-series) 3.1 dataset for the period 1901-2009, cluster analysis is used to objectively classify world climates into 14 climate types. These climate types establish a baseline classification map and the types are named according to Köppen-Geiger climate classifications. Although the cluster analysis and Köppen classification methods are very different, the distributions of climate types obtained by the two methods are similar. Moreover, the climate types we identify also coincide well with their corresponding vegetation types. Thus, cluster analysis can be used as an effective alternative to the Köppen classification method for classifying world climate types. The spatial and temporal changes in geographical distribution of global climate types were investigated in 25-year intervals, and Cohen's kappa coefficient is used to detect agreement between the periods. Globally, although an obvious trend in increasing global temperature is found, distribution of climate types overall show no distinct changes over the periods. However, at the regional scale, spatial change in distribution of climate types is evident in South America and Africa. In South America, larger areas of the "fully humid equatorial rainforest" (Af) and "equatorial savannah with dry winter" (Aw) climate types have changed types. In Africa, changes mainly occurred in the Af, "equatorial savannah with dry summer" (As), Aw, "steppe climate" (BS), and "desert climate" (BW) climate types. Moreover, some climate types, including Af, "equatorial monsoon" (Am), BS, BW, and "tundra climate" (ET), were susceptible to temporal climate changes, especially in the period 1976-2009.

  7. Mapping climate conditions with materials corrosion

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The world's first comprehensive materials corrosion mapping system can predict the effects that climatic conditions have on the life cycle of products ranging from automobiles to bridges, according to Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Industrial Galvanizers Corporation. Both jointly announced the system on 14 November.The mapping system, which incorporates conditions such as moisture, salinity pollution, and prevailing winds, can predict the corrosion of materials in any part of Australia, they said. Ivan Cole of CSIRO Materials Engineering said the mapping system even takes into account durability factors impacting on greenhouse gas contributions and soil conditions, making it a unique tool for Australian industry.

  8. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. PMID:25146282

  9. Possible climate warming effects on vegetation, forests, biotic (insect, pathogene) disturbances and agriculture in Central Siberia for 1960- 2050

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Soja, A. J.; Lysanova, G. I.; Baranchikov, Y. N.; Kuzmina, N. A.

    2012-04-01

    Regional Siberian studies have already registered climate warming over the last half a century (1960-2010). Our analysis showed that winters are already 2-3°C warmer in the north and 1-2°C warmer in the south by 2010. Summer temperatures increased by 1°C in the north and by 1-2°C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Our goal was to summarize results of research we have done for the last decade in the context of climate warming and its consequences for biosystems in Central Siberia. We modeled climate change effects on vegetation shifts, on forest composition and agriculture change, on the insect Siberian moth (Dendrolimus suprans sibiricus Tschetv) and pathogene (Lophodermium pinastri Chev) ranges in Central Siberia for a century (1960-2050) based on historical climate data and GCM-predicted data. Principal results are: In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over 50% of central Siberia due to the dryer climate by 2080. Permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats; At least half of central Siberia is predicted to be climatically suitable for agriculture at the end of the century although potential croplands would be limited by the availability of suitable soils agriculture in central Siberia would likely benefit from climate warming Crop production may twofold increase as climate warms during the century; traditional crops (grain, potato, maize for silage) could be gradually shifted as far as 500 km from the south northwards (about 50-70 km per decade) and new crops (maize for grain, apricot, grape, gourds) may be introduced in the very south depending on winter conditions and would necessitate irrigation in a drier 2080 climate; The environment for the Siberian moth may considerably shrink in the future leaving suitable habitats only in highlands of mountains and the north of Eurasia. The moth habitats also depend on migration rates of tree species Larix spp., Abies sibirica, and Pinus sibirica being main food resources. Siberian moth may not be considered as a threat in climates with mild winter because larvae require continuos continental type winters. Needle-cast of Pinus sylvestris caused by Lophodermium pinastri Chev. was found to be strongly related to precipation including snow depth. In a predicted dryer climate, it would shift northwards followed sufficient water.

  10. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    PubMed Central

    Zięba, Grzegorz; Fox, Michael G.; Copp, Gordon H.

    2015-01-01

    Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts) appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime. PMID:26302021

  11. Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River Basins, California.

    PubMed

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2 °C, 4 °C, and 6 °C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5-21 days). The integrated agricultural model responds with increased water demands 2 °C (1.4-2.0%), 4 °C (2.8-3.9%), and 6 °C (4.2-5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84-0.90 under historical conditions to 0.75-0.79 under 6 °C warming scenario. PMID:24465455

  12. Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.

  13. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  14. Impact of a global warming on biospheric sources of methane and its climatic consequences

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  15. Assessment of thermal change in cold avalanching glaciers in relation to climate warming

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Vincent, C.; Gagliardini, O.; Krug, J.; Berthier, E.

    2015-08-01

    High-elevation glaciers covered by cold firn are undergoing substantial warming in response to ongoing climate change. This warming is affecting the ice/rock interface temperature, the primary driver of avalanching glacier instability on steep slopes. Prediction of future potential instability therefore requires appropriate modeling of the thermal evolution of these glaciers. Application of a state-of-the-art model to a glacier in the French Alps (Taconnaz) has provided the first evaluation of the temperature evolution of a cold hanging glacier through this century. Our observations and three-dimensional modeling of the glacier response (velocity, thickness, temperature, density, and water content) to climate change indicate that Taconnaz glacier will become temperate and potentially unstable over a large area by the end of the 21st century. The risk induced by this glacier hazard is high for the populated region below and makes observation and modeling of such glaciers a priority.

  16. Warm-water decapods and the trophic amplification of climate in the North Sea

    PubMed Central

    Lindley, J. A.; Beaugrand, G.; Luczak, C.; Dewarumez, J.-M.; Kirby, R. R.

    2010-01-01

    A long-term time series of plankton and benthic records in the North Sea indicates an increase in decapods and a decline in their prey species that include bivalves and flatfish recruits. Here, we show that in the southern North Sea the proportion of decapods to bivalves doubled following a temperature-driven, abrupt ecosystem shift during the 1980s. Analysis of decapod larvae in the plankton reveals a greater presence and spatial extent of warm-water species where the increase in decapods is greatest. These changes paralleled the arrival of new species such as the warm-water swimming crab Polybius henslowii now found in the southern North Sea. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and in the development of the new North Sea dynamic regime. PMID:20554562

  17. Response of the Arabian Sea to global warming and associated regional climate shift.

    PubMed

    Kumar, S Prasanna; Roshin, Raj P; Narvekar, Jayu; Kumar, P K Dinesh; Vivekanandan, E

    2009-12-01

    The response of the Arabian Sea to global warming is the disruption in the natural decadal cycle in the sea surface temperature (SST) after 1995, followed by a secular warming. The Arabian Sea is experiencing a regional climate-shift after 1995, which is accompanied by a five fold increase in the occurrence of "most intense cyclones". Signatures of this climate-shift are also perceptible over the adjacent landmass of India as: (1) progressively warmer winters, and (2) decreased decadal monsoon rainfall. The warmer winters are associated with a 16-fold decrease in the decadal wheat production after 1995, while the decreased decadal rainfall was accompanied by a decline of vegetation cover and increased occurrence of heat spells. We propose that in addition to the oceanic thermal inertia, the upwelling-driven cooling provided a mechanism that offset the CO(2)-driven SST increase in the Arabian Sea until 1995. PMID:19592084

  18. The influence of Greenland melt water on climate during past and future warm periods: a model study

    NASA Astrophysics Data System (ADS)

    Blaschek, Michael; Bakker, Pepijn; Renssen, Hans

    2013-04-01

    "Can past climates teach us something about the future?" Under this general question of interest to most palaeoclimate-modeller we specified it more to "Can past changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) related to melt water from the Greenland Ice Sheet (GIS) teach us something about future changes in the AMOC forced by predicted partial melting of the GIS?" To address this question, we developed a series of sensitivity experiments with the global atmosphere-ocean-sea-ice model LOVECLIM to better understand the relationship between the strength of the Atlantic Meridional Overturning Circulation (AMOC) and Greenland Ice Sheet (GIS) melt over the last and present interglacials (the Eemian and the Holocene, respectively) and put these into perspective of future greenhouse gas emission scenarios. In terms of radiative forcing, future emission scenarios are different from past orbitally-forced warm periods, as past insolation varied per season and per latitude, whereas radiative forcing due to future greenhouse gas emissions has no seasonal component (i.e. it is an annual forcing) and shows little variation per latitude. However, the two can be compared when we consider the radiative forcing regimes of the different considered warm climates, by focusing on the energy that is potentially available from radiative forcing to melt the GIS. In a similar approach, Swingedouw et al. (2009) have shown in simulations with an AOGCM that the AMOC sensitivity relates non-linear to freshwater input and that under Last Glacial Maximum (LGM) conditions the climate is more sensitive compared to warmer climates. They conclude that different climatic conditions share similar patterns in response and that past climates are useful for models to evaluate their abilities in reproducing past events. The authors encourage further model sensitivity testing to gain a better understanding of this highly important question. In order to test this approach we performed a series of experiments in which we applied different versions of our model that differ in the sensitivity to freshwater forcing. These experiments cover all three periods considered: the Eemian, the Holocene and the 21st Century. We used different amounts of GIS melt fluxes that correspond to a wide range of changes in percent from modern-day ice sheet volume, ranging from as little as 5% to 100%. The GIS extent and topography was kept at present-day conditions. The future greenhouse gas emissions are taken from the Representative Concentration Pathways (Meinshausen et al. 2011), the new scenarios for climate change research. Our first results suggest that the warmer Eemian and the less warm Holocene test cases have a quite linear relationship in terms of AMOC sensitivity to GIS melt. In all our sensitivity experiments the Eemian is more sensitive to freshwater forcing than the Holocene. Meinshausen, M.; Smith, S.; Calvin, K.; Daniel, J.; Kainuma, M.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.; Raper, S.; Riahi, K.; Thomson, A.; Velders, G. & van Vuuren, D.,The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change, Springer Netherlands, 2011, 109, 213-241 Swingedouw, D.; Mignot, J.; Braconnot, P.; Mosquet, E.; Kageyama, M. & Alkama, R.,Impact of Freshwater Release in the North Atlantic under Different Climate Conditions in an OAGCM, J. Climate, Journal of Climate, American Meteorological Society, 2009, 22, 6377-6403

  19. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration.

    PubMed

    Yi, Chuixiang; Wei, Suhua; Hendrey, George

    2014-01-01

    At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO₂ fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16°C T latitudinal belt poleward. Land surface area with T > 16°C and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050. Most of the land area subjected to this warming is arid or semiarid with ecosystems that are highly vulnerable to drought and land degradation. In areas now dryness-controlled, net carbon uptake is ~27% lower than in areas in which both temperature and dryness (T < 16°C) regulate plant productivity. This warming-induced extension of dryness-controlled areas may be triggering a positive feedback accelerating global warming. Continued increases in land area with T > 16°C has implications not only for positive feedback on climate change, but also for ecosystem integrity and land cover, particularly for pastoral populations in marginal lands. PMID:24980649

  20. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration

    PubMed Central

    Yi, Chuixiang; Wei, Suhua; Hendrey, George

    2014-01-01

    At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16°C T latitudinal belt poleward. Land surface area with T > 16°C and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050. Most of the land area subjected to this warming is arid or semiarid with ecosystems that are highly vulnerable to drought and land degradation. In areas now dryness-controlled, net carbon uptake is ~27% lower than in areas in which both temperature and dryness (T < 16°C) regulate plant productivity. This warming-induced extension of dryness-controlled areas may be triggering a positive feedback accelerating global warming. Continued increases in land area with T > 16°C has implications not only for positive feedback on climate change, but also for ecosystem integrity and land cover, particularly for pastoral populations in marginal lands. PMID:24980649

  1. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  2. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  3. Integrating geological archives and climate models for the mid-Pliocene warm period

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-02-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.

  4. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Astrophysics Data System (ADS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-09-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  5. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Technical Reports Server (NTRS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  6. Climate of fear: Why we shouldn`t worry about global warming

    SciTech Connect

    Moore, T.G.

    1998-04-01

    Most climate experts agree that industrial emissions of carbon dioxide either already have led or will soon lead to an increase in global temperatures. While many consider that reason enough to undertake dramatic political action, economist Thomas Gale Moore asks, `So what.` Both historical and economic analysis suggests, he argues, that a warmer climate would be, on balance, beneficial to both mankind and the environment. The book calls into question the entire campaign led by Vice President Al Gore and others to ratify the proposed treaty on global warming scheduled to be debated in the U.S. Senate early in 1998.

  7. Snow pack in the Romanian Carpathians under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Micu, Dana

    2009-09-01

    Snow pack characteristics and duration are considered to be key indicators of climate change in mountain regions, especially during the winter season (herein considered to last from the 1st of November to the 30th of April). Deviations recorded in the regime of the main explanatory variables of snow pack changes (i.e. temperature and precipitation) offer useful information on winter climate variability, in the conditions of the winter warming trend already seen in some areas of the Romanian Carpathians. The present work focuses on changes and trends in snow pack characteristics and its related parameters, registered at the 15 weather stations located in the alpine, sub-alpine and forest belts in all the three Romanian Carpathian branches (>1,000 m) over the 1961-2003 period. Changes in the snow pack regime were investigated in relation with the modifications of winter temperature and precipitation having been detected mostly at the end of the twentieth century. A winter standardized index was calculated to group winters over the 43-year period into severity classes and detect the respective changes. Links between the number of snow cover days and seasonal NAO index were also statistically analysed in this study. The general results show large regional and altitudinal variations and the complex character of the climate in the Romanian Carpathians, leading to the idea of an ongoing warming process associated with a lower incidence of snow cover, affecting to a large extent the forested mountain areas located below 1,600-1,700 m altitude. Also negative and weak correlations were found, particularly over the December-March interval, between the number of snow cover days and seasonal NAO index values.

  8. Ocean surface warming: The North Atlantic remains within the envelope of previous recorded conditions

    NASA Astrophysics Data System (ADS)

    Hobson, Victoria J.; McMahon, Clive R.; Richardson, Anthony; Hays, Graeme C.

    2008-02-01

    Anomalously warm air temperatures in various parts of the world have been widely noted in recent decades. In marine systems, biological indicators such as the range of plankton and fish have been used to indicate impacts of ocean warming, although for many regions recent ocean warming does not exceed short-term warming events over the last two centuries. Here we use International Comprehensive Ocean-Atmosphere Data Set (ICOADS) sea-surface temperature data to update analysis in the North Atlantic to show that present warm conditions are currently no more persistent than those encountered in the last 150 years. We show that the position of various isotherms, which play a central role in influencing the distribution of marine taxa ranging from plankton to fish and turtles, are more regularly found further north in recent years than at any time since the 1850s.

  9. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Wolf, Adam; Field, Christopher B.

    2010-08-01

    A large increase in Betula during a narrow 1000 year window, ˜13,800 years before present (YBP) in Alaska and Yukon corresponded in time with the extinction of mammoths and the arrival of humans. Pollen data indicate the increase in Betula during this time was widespread across Siberia and Beringia. We hypothesize that Betula increased due to a combination of a warming climate and reduced herbivory following the extinction of the Pleistocene mega herbivores. The rapid increase in Betula modified land surface albedo which climate-model simulations indicate would cause an average net warming of ˜0.021°C per percent increase in high latitude (53-73°N) Betula cover. We hypothesize that the extinction of mammoths increased Betula cover, which would have warmed Siberia and Beringia by on average 0.2°C, but regionally by up to 1°C. If humans were partially responsible for the extinction of the mammoths, then human influences on global climate predate the origin of agriculture.

  10. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record.

    PubMed

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348

  11. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record

    NASA Astrophysics Data System (ADS)

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming.

  12. Soil Warming Alters the Nitrogen Cycle: Ecosystem Implications and Feedbacks to the Climate System

    NASA Astrophysics Data System (ADS)

    Butler, S. M.; Melillo, J. M.; Johnson, J. E.; Mohan, J. E.; Steudler, P. A.; Bowles, F. P.

    2008-12-01

    Increases in soil temperatures associated with global warming have the potential to accelerate nitrogen turnover in soils, which could alter other biogeochemical processes and eventually affect the structure of these forests. Over the past five years we have been studying soil and plant responses to soil warming in large plots in a deciduous stand at Harvard Forest in central Massachusetts. We have heated the soil 5°C above ambient and measured nitrogen cycling parameters including in situ net nitrogen mineralization and nitrification, nitrogen leaching and nitrous oxide (N2O) fluxes. We have also measured various aspects of the carbon cycle including soil respiration and carbon accumulation in vegetation. Over the first five years of the study, we observed a mean annual increase in the net nitrogen mineralized in the warmed plot of 23.8 kg N ha-1. While nitrification rates were low throughout the five years in the control plot, they increased in the warmed plot to account for over 25% of the total net nitrogen mineralized in year five. The increase in nitrogen mineralization stimulated tree growth and carbon storage in woody tissue in the warmed plot. The increased carbon storage in the trees compensated for more than half of the carbon lost from the soils due to accelerated decay of soil organic matter and so reduced the magnitude of the positive feedback to the climate system due to soil warming. We hypothesize that the increase in nitrification we observed will eventually "open" the nitrogen cycle and make gaseous and solution losses more likely. To date, however, we have measured no major losses of nitrous oxide or solution losses of nitrate in response to soil warming. Trees with the capacity to use nitrate may have a competitive advantage in a warmer world. Nitrate-using plants have an inducible enzyme that transforms nitrate to ammonium, a key building block for producing essential amino acids and proteins. Studies by our research group and by others have shown that red maples (Acer rubrum), when grown with high levels of nitrate, have a greater ability to produce this enzyme than many other species common to the region's forests. We have also observed that red maple seedlings and saplings show a higher growth response to soil warming than juvenile plants of other species. Our working hypothesis is that some of this response is linked to the capacity of red maple to use the nitrate produced in the warmed soils. In the long term, warming could lead to red maples becoming a more dominant tree in the forests of southern New England.

  13. Hamburg 2K: Climate modeling and downscaling for Hamburg, Germany under a 2 K global warming scenario

    NASA Astrophysics Data System (ADS)

    Flagg, D. D.; Grawe, D.; Daneke, C.; Hoffmann, P.; Jacob, D.; Kirschner, P.; Kriegsmann, A.; Linde, M.; Mayer, B.; O'Driscoll, K. T.; Pohlmann, T.; Schlünzen, K. H.; Schoetter, R.; Teichert, W.; Zorita, E.

    2011-12-01

    The European Union has established a 2 K warming of average annual global surface temperature above pre-industrial levels as a target to avoid disruptive climate change. The Hamburg 2K project seeks to model the climate of Hamburg, Germany subject to this target warming by the end of the 21st century. A general circulation model (ECHAM5) with a greenhouse gas scenario consistent with this target (E1) provides a source for dynamical and statistical-dynamical model downscaling at the regional scale, using the Regional Model (REMO), and at the mesoscale, using the Mesoscale Transport and fluid (Stream) Model (METRAS). Regional scale model estimates provide forcing for off-line modeling of the North Sea circulation with the Hamburg Shelf-Ocean Model (HAMSOM). This presentation concentrates on the urban climate component of the 2K scenario. The approach quantifies the projected change in both the meteorology and the urban development. The modeling strategy allows for a discrete diagnosis of each contribution. For the meteorology, the project identifies an urban climate change signal between the late 20th and late 21st centuries using a statistical-dynamical downscaling technique. Cluster analysis of multiple REMO realizations generates a series of archetypical synoptic conditions, a.k.a., weather types. The frequency change of these weather types between present and future climate yields a climate change signal. The potential for distinctively new weather types in the future climate is also investigated. Regional weather types provide the forcing for simulations with METRAS at 1 km resolution. These simulations provide further assessment of urban climate change at a scale more sensitive to the heterogeneous urban surface. Some initial METRAS modeling results will be presented here. For the urban development, the METRAS model simulations benefit from a detailed surface cover map including over 50 classes of natural and artificial surfaces tailored specifically for Hamburg. The simulations of future climate incorporate estimates of future surface cover. Evaluation of current municipal construction plans helps quantify trends in building density and change in unsealed surface cover. An off-line urban planning model tuned for the 2K scenario incorporates these plans into its parameterizations and assists in deriving a future surface cover map of Hamburg.

  14. Using multiple equilibria in precipitation to understand self-aggregation of deep tropical convection in a warming climate

    NASA Astrophysics Data System (ADS)

    Sessions, Sharon; Sentic, Stipo; Raymond, David

    2013-03-01

    Understanding mechanisms of convective organization is currently an important problem in tropical meteorology. Recent numerical simulations show that the tendency for deep tropical convection to self-aggregate increases as sea surface temperatures (SSTs) increase. This has significant implications for hurricane genesis in a warming climate. Investigating the conditions over which convection self-aggregates requires large domains and is therefore computationally expensive. An alternative approach utilizes the analogy between multiple equilibria in limited domain simulations, and the dry and precipitating regions in a large domain with self-aggregated convection. Multiple equilibria refers to a steady state which either exhibits a completely dry troposphere or persistent precipitating deep convection under identical forcing conditions. The large scale circulation is parameterized based on the assumption that horizontal gradients in temperature are small in the tropics. Understanding the mechanisms which permit multiple equilibria on small domains is a computationally economic approach to understanding self-aggregation. We show how multiple equilibria depend on SSTs, and thus provide insight to self-aggregation in a warming climate. This work supported by NSF grant number AGS-1056254

  15. Cloud feedbacks on greenhouse warming in the superparameterized climate model SP-CCSM4

    NASA Astrophysics Data System (ADS)

    Bretherton, Christopher S.; Blossey, Peter N.; Stan, Cristiana

    2014-12-01

    Cloud feedbacks on greenhouse warming are studied in a superparameterized version of the Community Climate System Model (SP-CCSM4) in an atmospheric component SP-CAM4 that explicitly simulates cumulus convection. A 150 year simulation in an abrupt quadrupling of CO2 is branched from a control run. It develops moderate positive global cloud feedback and an implied climate sensitivity of 2.8 K comparable to the conventionally parameterized CCSM4 and the median of other modern climate models. All of SP-CCSM4's positive shortwave cloud feedback is due to a striking decrease in low cloud over land, which is much more pronounced than in most other climate models, including CCSM4. Four other cloud responses - decreased midlevel cloud, more Arctic water and ice cloud, a slight poleward shift of midlatitude storm track cloud, and an upward shift of high clouds - are also typical of conventional global climate models. SP-CCSM4 does not simulate the large warming-induced decrease in Southern Ocean cloud found in CCSM4. Two companion uncoupled SP-CAM4 simulations, one with a uniform 4 K sea-surface temperature increase and one with quadrupled CO2 but fixed SST, suggest that SP-CCSM4's global-scale cloud changes are primarily mediated by the warming, rather than by rapid adjustments to increased CO2. SP-CAM4 show spatial patterns of cloud response qualitatively similar to the previous-generation superparameterized SP-CAM3, but with systematically more positive low cloud feedbacks over low-latitude land and ocean.

  16. Changing hydrological conditions in the Po basin under global warming

    NASA Astrophysics Data System (ADS)

    Coppola, Erika; Verdecchia, Marco; Giorgi, Filippo; Colaiuda, Valentina; Tomassetti, Barbara; Lombardi, Annalina

    2014-05-01

    The Po River is a crucial resource for the Italian economy since 40% of the gross domestic product comes from this area. To quantify the impact of climate change on this water resource is then crucial for planning the water use and distribution in the near future. In this paper a mini ensemble of 8 hydrological simulations are completed from 1960 to 2050 under the A1B scenario, by using as input the output of two regional climate models (REMO and RegCM) at two different resolutions (25 km -10km and 25km-3km). The river discharge at the closing point of the basin shows a change in the spring pick of annual cycle and one month shift is evident from May to April. This shift is entirely due to the changing in the snowmelt timing because that drives most of the discharge in this period. The others two important changes are the increase of discharge in the wintertime and the decrease in fall from September to November. The uncertainty associated with the winter change is bigger compared to that in fall. The spring shift and the fall decrease of discharge imply an extension of the hydrological dry seasons and thus increasing water stress over the basin. The spatial distribution of the discharge changes are in agreement with what is observed at the closing point and the uncertainty associated with these changes are proportional to the amplitude of the signal. By looking at the changes in the anomaly distribution of discharge it seems evident that either the increase or decrease of seasonal discharge is tied to the changes in the tails of the distribution, namely to the increase or decrease of the extreme events.

  17. Changing hydrological conditions in the Po basin under global warming.

    PubMed

    Coppola, Erika; Verdecchia, Marco; Giorgi, Filippo; Colaiuda, Valentina; Tomassetti, Barbara; Lombardi, Annalina

    2014-09-15

    The Po River is a crucial resource for the Italian economy, since 40% of the gross domestic product comes from this area. It is thus crucial to quantify the impact of climate change on this water resource in order to plan for future water use. In this paper a mini ensemble of 8 hydrological simulations is completed from 1960 to 2050 under the A1B emission scenario, by using the output of two regional climate models as input (REMO and RegCM) at two different resolutions (25 km-10 km and 25 km-3 km). The river discharge at the outlet point of the basin shows a change in the spring peak of the annual cycle, with a one month shift from May to April. This shift is entirely due to the change in snowmelt timing which drives most of the discharge during this period. Two other important changes are an increase of discharge in the wintertime and a decrease in the fall from September to November. The uncertainty associated with the winter change is larger compared to that in the fall. The spring shift and the fall decrease of discharge imply an extension of the hydrological dry season and thus an increase in water stress over the basin. The spatial distributions of the discharge changes are in agreement with what is observed at the outlet point and the uncertainty associated with these changes is proportional to the amplitude of the signal. The analysis of the changes in the anomaly distribution of discharge shows that both the increases and decreases in seasonal discharge are tied to the changes in the tails of the distribution, i.e. to the increase or decrease of extreme events. PMID:24656403

  18. Warm-dry collocation of recent drought in southwestern China tied to moisture transport and climate warming

    NASA Astrophysics Data System (ADS)

    Dai, Xin-Gang; Liu, Ye; Wang, Ping

    2015-04-01

    This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of “Northern wetting and Southern drying”, similar to the anti-phase of the climate pattern prevailing during 1980-2000 in mainland China; southwestern China incurred a severe drought during 2009-2013. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further. Project supported by the National Basic Research and Development Program of China (Grant No. 2013CB430201), the National Natural Science Foundation of China (Grant Nos. 41075058 and 41475075), and the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201106016).

  19. Heat-related mortality in a warming climate: projections for 12 U.S. cities.

    PubMed

    Petkova, Elisaveta P; Bader, Daniel A; Anderson, G Brooke; Horton, Radley M; Knowlton, Kim; Kinney, Patrick L

    2014-11-01

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience. PMID:25365060

  20. Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities

    PubMed Central

    Petkova, Elisaveta P.; Bader, Daniel A.; Anderson, G. Brooke; Horton, Radley M.; Knowlton, Kim; Kinney, Patrick L.

    2014-01-01

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience. PMID:25365060

  1. Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities

    NASA Technical Reports Server (NTRS)

    Petkova, Elisaveta P.; Bader, Daniel A.; Anderson, G. Brooke; Horton, Radley M.; Knowlton, Kim; Kinney, Patrick L.

    2014-01-01

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.

  2. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, D.H.; Dau, C.P.; Lee, T.; Sedinger, J.S.; Anderson, B.A.; Hines, J.E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  3. Shallowness of tropical low clouds as a predictor of climate models' response to warming

    NASA Astrophysics Data System (ADS)

    Brient, Florent; Schneider, Tapio; Tan, Zhihong; Bony, Sandrine; Qu, Xin; Hall, Alex

    2015-10-01

    How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models' climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.

  4. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M; Walker, Ashley V; Edwards, Nelson T

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  5. Warm climates of the past—a lesson for the future?

    PubMed Central

    Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.

    2013-01-01

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873

  6. Predicting changes in alluvial channel patterns in North-European Russia under conditions of global warming

    NASA Astrophysics Data System (ADS)

    Anisimov, Oleg; Vandenberghe, Jef; Lobanov, Vladimir; Kondratiev, Alexander

    2008-06-01

    Global climate change may have a noticeable impact on the northern environment, leading to changes in permafrost, vegetation and fluvial morphology. In this paper we compare the results from three geomorphological models and study the potential effects of changing climatic factors on the river channel types in North-European Russia. Two of the selected models by Romashin [Romashin, V.V., 1968. Variations of the river channel types under governing factors, Annals of the Hydrological Institute, vol. 155. Hydrometeoizdat, Leningrad, pp. 56-63.] and Leopold and Wolman [Leopold, L.B., Wolman, M.G., 1957. River channel pattern: braided, meandering and straight, Physiographic and hydraulic studies of rivers. USA Geological Survey Professional Paper 252, pp. 85-98.] are conventional QS-type models, which predict the existence of either multi-thread or single-tread channel types using data on discharge and channel slope. The more advanced model by Van den Berg [Van den Berg, J.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259-270.] takes into account the size of the sediment material. We used data from 16 runoff gauges to validate the models and predict the channel types at selected locations under modern and predicted for the future climatic conditions. Two of the three models successfully replicated the currently existing channel types in all but one of the studied sites. Predictive calculations under the hypothetical scenarios of 10%, 15%, 20% and 35% runoff increase gave different results. Van den Berg's model predicted potential transformation of the channel types, from single- to multi-thread, at 4 of 16 selected locations in the next few decades, and at 5 locations by the middle of the 21st century. Each of the QS-type models predicted such transformation at one site only. Results of the study indicate that climatic warming in combination with other environmental changes may lead to transformation of the river channel types at selected locations in north-western Russia. Further efforts are needed to improve the performance of the fluvial geomorphological models and their ability to predict such changes.

  7. Modeling the response of glacier systems to climate warming in China

    NASA Astrophysics Data System (ADS)

    Xie, Zi-Chu; Wang, Xin; Feng, Qing-Hua; Kang, Er'si; Liu, Chao-Hai; Li, Qiao-Yuan

    A glacier system is regarded as the ensemble of many glaciers sharing the same region, influenced by a similar climate and organized by certain intrinsic laws. It can be either 'sensitive' or 'steady'. On the basis of the structure of the glacier system and the nature of the equilibrium-line altitudes at the steady state, functional models of a glacier system responding to climate warming were established, using the Kotlyakov-Krenke equation relating annual glacier ablation and mean summer temperature and the glacier system's median size. The modeling results under the climatic scenarios with a rate of temperature increase of 0.01, 0.03 and 0.05 K a-1 indicate that by the end of this century the glacial area of China will be reduced by -14%, -40%and -60% respectively. However, model results show distinct differences between the sensitive glacier system and the steady glacier system.

  8. Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kirk, Evan M; Kingsolver, Joel G

    2015-06-22

    Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change. PMID:26041342

  9. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-08-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 0.030, 0.282 0.042, 0.225 0.044 and 0.179 0.046 C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 0.074 C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  10. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  11. Persistent cold air outbreaks over North America in a warming climate

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Leung, L. Ruby; Lu, Jian; Masato, Giacomo

    2015-04-01

    This study examines future changes of cold air outbreaks (CAOs) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 and high resolution regional climate simulations. Overall, climate models agree on a dip in CAO duration across North America, but the percentage change is consistently smaller from western Canada to the upper mid-western US with historically more frequent CAO. By decomposing the changes of the probability density function of daily surface temperature into changes due to mean warming and changes in standard deviation (std) and skewness/higher order moments, the contributions of each factor to CAO changes are quantified. Results show that CAO changes can be explained largely by the mean warming, but the decrease in temperature std contributes to about 20% reduction of CAO from Alaska to northeastern US and eastern Canada possibly due to the Arctic amplification and weakening of storm track. A thermodynamical modulation of the skewness called the ‘0 °C mode’ effect is found to operate prominently along the 0 °C isotherm hemispherically and reduce CAO in western and northeastern US with winter snow cover by up to 10%. This effect also produces a manifold increase in CAO events over the Arctic sea ice. An increased frequency in atmospheric blocking also contributes to increases in CAO duration over Alaska and the Arctic region. Regional simulations revealed more contributions of existing snowpack to CAO in the near future over the Rocky Mountain, southwestern US, and Great Lakes areas through surface albedo effects. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern US, the top five most extreme CAO events may still occur, and wind chill will continue to have societal impacts in that region.

  12. Climate-induced warming imposes a threat to north European spring ecosystems.

    PubMed

    Jyväsjärvi, Jussi; Marttila, Hannu; Rossi, Pekka M; Ala-Aho, Pertti; Olofsson, Bo; Nisell, Jakob; Backman, Birgitta; Ilmonen, Jari; Virtanen, Risto; Paasivirta, Lauri; Britschgi, Ritva; Kløve, Bjørn; Muotka, Timo

    2015-12-01

    Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems. PMID:26300476

  13. The intrinsic growth rate as a predictor of population viability under climate warming.

    PubMed

    Amarasekare, Priyanga; Coutinho, Renato M

    2013-11-01

    1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05C per year) and to become negative, causing population extinction, well before 100 years when warming is fast (e.g. 0.1C per year). The Euler-Lotka equation predicts a slower decrease in rm when warming is slow and a longer persistence time when warming is fast, with the deviation between the two metrics increasing with increasing developmental period. These results suggest that predictions of ectotherm population viability based on rm may be valid only for species with short developmental delays, and even then, only over short time-scales and under slow warming regimes. PMID:23926903

  14. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  15. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  16. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Wolkovich, E. M.; Davies, J.; Ault, T. R.; Betancourt, J. L.; Allen, J.; Bolmgren, K.; Cleland, E. E.; Crimmins, T. M.; Kraft, N.; Lancaster, L.; Mazer, S.; McCabe, G. J.; McGill, B.; Parmesan, C.; Pau, S.; Regetz, J.; Salamin, N.; Schwartz, M. D.; Travers, S.

    2012-12-01

    Disparate ecological datasets are often organized into databases post-hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (e.g., species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (e.g., deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and undersampled systems outside of the temperature seasonal midlatitudes.

  17. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases

    USGS Publications Warehouse

    Cook, Benjamin I.; Wolkovich, Elizabeth M.; Davies, T. Jonathan; Ault, Toby R.; Betancourt, Julio L.; Allen, Jenica M.; Bolmgren, Kjell; Cleland, Elsa E.; Crimmins, Theresa M.; Kraft, Nathan J.B.; Lancaster, Lesley T.; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Pau, Stephanie; Regetz, James; Salamin, Nicolas; Schwartz, Mark D.; Travers, Steven E.

    2012-01-01

    Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

  18. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate

    NASA Astrophysics Data System (ADS)

    Huang, Ping; Xie, Shang-Ping

    2015-12-01

    El Niño/Southern Oscillation (ENSO) is a mode of natural variability that has considerable impacts on global climate and ecosystems, through rainfall variability in the tropical Pacific and atmospheric teleconnections. In response to global warming, ENSO-driven rainfall variability is projected to intensify over the central-eastern Pacific but weaken over the western Pacific, whereas ENSO-related sea surface temperature variability is projected to decrease. Here, we explore the mechanisms that lead to changes in ENSO-driven rainfall variability in the tropical Pacific in response to global warming, with the help of a moisture budget decomposition for simulations from eighteen state-of-the-art climate models. We identify two opposing mechanisms that approximately offset each other: the increase in mean-state moisture content associated with surface warming strengthens ENSO-related rainfall anomalies, whereas the projected reduction in ENSO-related variability of sea surface temperatures suppresses rainfall. Two additional effects--spatially non-uniform changes in background sea surface temperatures and structural changes in sea surface temperature related to ENSO--both enhance central-eastern Pacific rainfall variability while dampening variability in the western Pacific, in nearly equal amounts. Our decomposition method may be generalized to investigate how rainfall variability would change owing to nonlinear interactions between background sea surface temperatures and their variability.

  19. Climatic warming and basal melting of large ice sheets: possible implications for East Antarctica

    SciTech Connect

    Saari, M.R.; Yuen, D.A.; Schubert, G.

    1987-01-01

    Climatic warming is shown to be capable of inducing shear heating instability and basal melting in a model ice sheet that is creeping slowly downslope. Growth times of the instability are calculated from a nonlinear analysis of temperature and flow in the model ice sheet whose surface undergoes a prescribed increase of temperature. The source of instability lies in the decrease of maximum ice thickness for steady downslope creep with increasing surface temperature. A surface temperature increase of 5 to 10 k can cause instability on a 10/sup 4/ year time scale for realistic ice rheology. The instability occurs suddenly after a prolonged period of dormancy. The instability might be relevant to the East Antarctic ice sheet. Warming associated with the Holocene interglacial epoch that heralded the end of the last ice age may have set the East Antarctic ice sheet on a course toward wide-spread instability some 10/sup 4/ years later. The present CO/sub 2/-induced climate warming is also a potential trigger for instability and basal melting of the East Antarctic ice sheet.

  20. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  1. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  2. Thermal strain and G protection associated with wearing an enhanced anti-G protection system in a warm climate.

    PubMed

    Sowood, P J; O'Connor, E M

    1994-11-01

    A flight trial was conducted in Cyprus to assess the thermal strain associated with and the G protection provided by the prototype Eurofighter 2000 aircrew equipment assembly (AEA) in a warm climate. Six subjects flew a standardized sortie four times in a Hawk aircraft: two while wearing the Eurofighter 2000 AEA and two wearing standard Hawk summer AEA. The sortie included high-G turns and simulated air combat. Cockpit temperatures, rectal and skin temperatures, heart rate, and sweat rate were recorded. Subjective thermal comfort, fatigue, and G protection were also assessed. Skin temperatures of the back, chest and thighs, mean skin temperatures, and sweat rate were greater when the Eurofighter AEA was worn. Rectal temperature and heart rate did not differ significantly between the two conditions. Superior G protection was provided by the Eurofighter assembly. These findings suggest that wearing the Eurofighter AEA in a warm climate is associated with an increased but not unacceptable level of thermal stress while offering enhanced G protection. These results may not generalize when ambient temperatures are higher or more insulative protective clothing is worn. PMID:7840752

  3. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates

    NASA Astrophysics Data System (ADS)

    Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.

    2016-01-01

    Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.

  4. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    PubMed

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature. PMID:26044301

  5. Climate change. Projected increase in lightning strikes in the United States due to global warming.

    PubMed

    Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John

    2014-11-14

    Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century. PMID:25395536

  6. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  7. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    PubMed Central

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-01-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas. PMID:26847384

  8. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate.

    PubMed

    Rasmussen, Tine L; Thomsen, Erik; Moros, Matthias

    2016-01-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a 'push-and-pull' system rather than a seesaw system. 'Pull' during the warm interstadials, when convection in the Nordic seas was active; 'push' during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas. PMID:26847384

  9. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    NASA Astrophysics Data System (ADS)

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-02-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas.

  10. Do cities simulate climate change? A comparison of herbivore response to urban and global warming

    USGS Publications Warehouse

    Youngsteadt, Elsa; Dale, Adam G.; Terando, Adam J.; Dunn, Robert R.; Frank, Steven D.

    2014-01-01

    Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  11. Assessing Climate Change Impacts for Military Installations in the Southwest United States During the Warm Season

    NASA Astrophysics Data System (ADS)

    Castro, C.

    2013-05-01

    Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.

  12. Do cities simulate climate change? A comparison of herbivore response to urban and global warming.

    PubMed

    Youngsteadt, Elsa; Dale, Adam G; Terando, Adam J; Dunn, Robert R; Frank, Steven D

    2015-01-01

    Cities experience elevated temperature, CO2 , and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms. PMID:25163424

  13. Is equilibrium climate sensitivity the best predictor for future global warming? (Invited)

    NASA Astrophysics Data System (ADS)

    Rypdal, M.; Rypdal, K.

    2013-12-01

    When the climate system is subject to radiative forcing the planet is brought out of radiative balance and the thermal inertia of the planet makes the surface temperature lag behind the forcing. The time constant, which is the time for relaxation to a new equilibrium after a sudden change in forcing, has been considered to be an important parameter to determine. The equilibrium climate sensitivity Seq, the temperature raise per unit forcing after relaxation is complete, is another. In the industrialized epoch a major source for the present energy imbalance is the steady increase in anthropogenic forcing. If the climate system can be modeled as a hierarchy of interacting subsystems with increasing heat capacities and response times there will also be a hierarchy of climate sensitivities. One way of modeling this feature is to replace the standard exponentially decaying impulse-response function with one that is scale free, i.e., decaying like a power law. For a climate system which is subject only to random forcing modeled as a white Gaussian noise, the resulting climate variable is then a long-memory fractional Gaussian noise with a scale-free power spectral density. The final response to a step increase in the forcing is infinite for such a perfectly scale-free response function, since the response to an increase in the forcing will never saturate. This is of course unphysical, but rather than invalidating the scale-free response model it suggests the introduction of a frequency-dependent climate sensitivity S(f). Even in the exponential response model the amplitude response to an oscillation vanishes for high frequencies, but converges to Seq in the limit of low frequencies f. In the scale-free response model S(f) diverges in the low-frequency limit. We demonstrate that long-memory responses can explain important aspects of Northern hemisphere temperature variability over the last millennium and lead to new predictions of how much more warming there will be 'in the pipeline' in any given forcing scenario. The relation to scaling properties of local temperature data and spatial correlations in climate data is also discussed. References: Rypdal, M. and Rypdal, K.: Long-memory effects in linear-response models of Earth's temperature and implications for future global warming, submitted to J. Climate, http://arxiv.org/pdf/ 1305.5080v1.pdf, 2013. Rypdal, M. and Rypdal, K.: 'Predicting' northern hemisphere temperature for the previous millennium based on a parametric stochastic-dynamic model trained on the instrumental global temperature and forcing records, session PP012, this conference.

  14. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions.

    PubMed

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios. PMID:26697028

  15. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions

    PubMed Central

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios. PMID:26697028

  16. Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland.

    PubMed

    Valtonen, Anu; Leinonen, Reima; Pöyry, Juha; Roininen, Heikki; Tuomela, Jukka; Ayres, Matthew P

    2014-01-01

    The magnitude and direction of phenological shifts from climate warming could be predictably variable across the planet depending upon the nature of physiological controls on phenology, the thermal sensitivity of the developmental processes and global patterns in the climate warming. We tested this with respect to the flight phenology of adult nocturnal moths (3.33 million captures of 334 species) that were sampled at sites in southern and northern Finland during 1993-2012 (with years 2005-2012 treated as an independent model validation data set). We compared eight competing models of physiological controls on flight phenology to each species and found strong support for thermal controls of phenology in 66% of the species generations. Among species with strong thermal control of phenology in both the south and north, the average development rate was higher in northern vs. southern populations at 10 °C, but about the same at 15 and 20 °C. With a 3 °C increase in temperature (approximating A2 scenario of IPPC for 2090-2099 relative to 1980-1999) these species were predicted to advance their phenology on average by 17 (SE ± 0.3) days in the south vs. 13 (±0.4) days in the north. The higher development rates at low temperatures of poleward populations makes them less sensitive to climate warming, which opposes the tendency for stronger phenological advances in the north from greater increases in temperature. PMID:24115266

  17. Processes Controlling Baseflow and Climatic Warming Effects in Merced River, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liu, F.; Conklin, M. H.; Shaw, G.; Bales, R. C.; Conrad, M. E.; Rice, R.

    2006-12-01

    Sources of streamflow in Merced River were determined using stable isotopes and chemical tracers in order to improve our understanding of hydrologic controls on streamflow and their relationship with climatic warming in the region. Samples were collected from streamflow, groundwater, and natural springs from 2003 to 2006. Both stable isotopes and specific conductivity in streamflow showed a strong seasonality, with lower values from April to July during the snowmelt season, higher values from August to October during dry season, and intermediate values from November to March during winter rainfall and snowfall. Two components controlling baseflow (streamflow from August to October) in the Upper Merced River were identified: shallow subsurface runoff from snowmelt infiltration and groundwater from fractured bedrock. Conductivity in baseflow increased rapidly with discharge, following a power law (R2 > 0.96, p < 0.05), and peaked in October, indicating that the contribution of shallow subsurface runoff to baseflow was significant but decreased rapidly from August to October. Baseflow appears to be very sensitive to the snowmelt timing and regime. From 1976 to 2005, during a period of increasing temperature in the region, streamflow tended to decrease significantly during October (p < 0.05) and increase during March (p < 0.05). However, total annual precipitation did not change significantly, indicating that the shift in baseflow discharge is a result of the early onset of snowmelt due to climatic warming. If climatic warming continues in the region, baseflow in the Sierra Nevada may continue decreasing and water supply may suffer increased stress during the late summer, high water-demand period.

  18. Amazon Basin climate under global warming: the role of the sea surface temperature.

    PubMed

    Harris, Phil P; Huntingford, Chris; Cox, Peter M

    2008-05-27

    The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming. PMID:18267896

  19. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that

  20. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  1. Assessing the combined effect of dams and climate warming on streamflow in California's Sierra Nevada for regional-scale adaptation

    NASA Astrophysics Data System (ADS)

    Rheinheimer, D. E.; Viers, J. H.

    2012-12-01

    Dams and their operations harm river ecosystems, in part by altering the natural flow regimes that those ecosystems depend on. In the multi-reservoir water management systems of California's Sierra Nevada, greater emphasis is being placed on re-operating existing reservoir systems to recover downstream ecosystems. However, climate change is changing inflow patterns, affecting both ecosystems and traditional water system benefits across the region. As new reservoir operation schemes will be needed to manage for natural resources management objectives at the regional scale, characterizing historical and future environmental impacts of current operations across the region can aid in prioritizing planning efforts. We used a coarse-scale water resources simulation model developed for the western Sierra Nevada to explore the independent and combined effects of dams and climate warming on the flow regime directly below reservoirs, the focal point for instream flow requirements in operations licenses. We quantified changes to mean annual flow, annual low flow duration, annual runoff centroid timing, and weekly rate of decrease under binary combinations of management (unregulated/regulated) and climate (historical/future) conditions. We demonstrate that although rivers in the Sierra Nevada are currently managed in ways that are harmful to instream ecosystems, and that streamflow effects of operations are typically much worse than climate change effects, there are signals that reservoirs can potentially be used to help adapt to some of climate changes harmful effects with little additional effort in some cases. This study is the first step toward a better understanding of the environmental costs from and opportunities afforded by the current stock of reservoirs in a large hydroregion under changing social and environmental conditions.

  2. Science blogging: RealClimate.org and the Global Warming debate

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.

    2006-12-01

    The media and public policy debate suffer from an extreme form of Attention Deficit Disorder. Compared to the daily news cycle, the progress of scientific debate within the peer-reviewed literature is extremely slow. This puts serious scientists who work in relatively politicised fields (global warming, evolution, stem cell research and the like) at a huge disadvantage when it comes to having their voices heard above the noise. Since Dec 2004, RealClimate.org has been operating as a group blog (a web-based journal) run by climate scientists for interested members of the public and the media. The aim has been to provide the context for climate-related news stories that is often missing in the mainstream media and to explain the basics of our field to the often confused, but curious, members of the public. In particular, it has provided rapid reaction to mis-uses and abuses of scientific results by policy advocates across the spectrum. Reactions to the blog have been overwhelmingly (but not uniformly) positive from both professionals in the media, the scientific community and the public. It has been described as the 'go-to site' for climate science in the New York Times, and received a Scientific American Science and Technology Web award in 2005. I will discuss what impacts RealClimate may have had and the pluses and minuses of trying to reach the public through this kind of outlet.

  3. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P. C. B.; Wild, M.

    2016-04-01

    Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3 K (refs ,), well below the best estimate produced by global climate models (1.8 K). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 +/- 0.8 K) than other observational studies.

  4. Competitive and demographic leverage points of community shifts under climate warming.

    PubMed

    Sorte, Cascade J B; White, J Wilson

    2013-07-01

    Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199

  5. Elevation and connectivity define genetic refugia for mountain sheep as climate warms.

    PubMed

    Epps, Clinton W; Palsbøll, Per J; Wehausen, John D; Roderick, George K; McCullough, Dale R

    2006-12-01

    Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low-elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher-elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert-adapted ungulate. PMID:17107466

  6. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  7. Cold and Dry vs. Warm and Wet: 3D Modelling of the Late Noachian Climate and Comparison with the Geological Evidence

    NASA Astrophysics Data System (ADS)

    Wordsworth, R.; Pierrehumbert, R.; Kerber, L.; Forget, F.; Head, J.

    2014-07-01

    We present 3D climate simulations of Mars during the late Noachian / early Hesperian period. Rain and snow deposition patterns in episodically warm and warm, wet scenarios are compared with the observed spatial distribution of valley networks.

  8. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    PubMed Central

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Conclusions Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated. PMID:18470284

  9. Potential Impacts of Climate Warming on Water Supply Reliability in the Tuolumne and Merced River Basins, California

    PubMed Central

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario. PMID:24465455

  10. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake period tended to start earlier in the course of the year, potentially leading to a greater carbon sink. The large meteorological variability during the arctic summer controlled indeed the duration of the carbon uptake period and the flux rates with no clear evidence of changes in the response patterns of CO2 fluxes to climatic drivers (global radiation and air temperature) emerged from the analysis. The carbon loss associated with seasonal CH4 emissions and lateral DOC fluxes resulted equal for both terms and 6.2 gC m-2 in total. Hence the tundra ecosystem was found to act so far as a steady carbon sink exerting a negative feedback to climate warming.

  11. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GOES GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  12. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  13. Arctic shelf flooding: a negative feedback on climate warming during terminations

    NASA Astrophysics Data System (ADS)

    Blaschek, Michael; Renssen, Hans

    2013-04-01

    Glacial terminations are characterized by a strong rise in sea level related to melting ice sheets. This rise in sea level is not uniform all over the world, because regional effects (uplift and subsidence of coastal zones) are superimposed on global trends. For the Laptev Sea, Bauch et al. (2001) have shown that during the early Holocene the shelf area became flooded from 8.9 ka BP (-31 m) to 7.5 ka BP (-7 m, close to modern day coastline). An extrapolation of this result on the basis of modern bathymetry suggests that a far bigger area, covering the entire East Siberian Sea, became flooded at that time. This area is currently known as a sea-ice production zone (Tamura and Ohshima, 2010) and contributes significantly to the sea-ice exported from the Arctic through the Fram Strait (~20% of annual sea-ice area passing Fram Strait, Rigor and Colony, 1997). This leads to the following hypothesis: during times of lower sea levels, the coastline advances closer to the shelf break and reduces the amount of sea-ice production on these shelves, reducing sea-ice volume and export through Fram Strait and causing the sea-ice extent to retreat in the Nordic Seas, yielding warmer and saltier sea surface conditions. We have tested this hypothesis in a ocean-sea-ice-atmosphere coupled model of intermediate complexity (LOVECLIM), thereby focusing on an early Holocene (9 ka BP) test case. We use the results of 9 snapshot simulations with different model configurations, differing in land-sea-mask, manually prescribed ice sheets and melt fluxes from the Laurentide Ice sheet and the Greenland Ice sheet. Simulations with an unflooded East Siberian shelf show lower sea-ice production, a retreat of the sea-ice extent in the Nordic Seas and an increase in temperature and salinity on the northern East Greenland Current. Together with the retreating sea ice cover, local deep convection shifts from south of the Denmark Strait up to 9 degrees north, following the sea ice edge and resulting in heat release and surface warming during the entire year. Our analysis exhibits a surprising connection between increased sea-ice export through Fram Strait and changes in atmospheric winds that result from modifications in the atmospheric circulation, that are forced by changes in differential heating over the East Siberian Shelf and the Nordic Seas. This atmospheric teleconnection clearly shows that regional changes can affect hemispheric changes. In a first comparison with available sea-ice proxy reconstructions our results do not disagree, but show the necessity of increased temporal and spatial coverage of proxy reconstructions for future investigations. Our results indicate that shelf flooding had a significant impact on the climate during the early Holocene, namely reducing sea-ice cover and affecting atmospheric circulation. During terminations this can be considered to be a negative feedback on the progress of the termination, as a shelf area becomes flooded, sea-ice production and extent are likely to increase and reduce high latitude intake of orbitally-forced insolation, slowing down the warming trend. This can be the cause of observed cold reversals during warming phases in the continuous transformation of a glacial to an interglacial climate. This implies that shelf flooding should be taken into account when studying the climate dynamics during all glacial terminations. References Bauch, H.; Mueller-Lupp, T.; Taldenkova, E.; Spielhagen, R.; Kassens, H.; Grootes, P.; Thiede, J.; Heinemeier, J. & Petryashov, V. Chronology of the Holocene transgression at the North Siberian margin, Global and Planetary Change, 2001, 31, 125 - 139 Rigor, I. & Colony, R., Sea-ice production and transport of pollutants in the Laptev Sea, 1979-1993, Science of The Total Environment, Environmental Radioactivity in the Arctic, 1997, 202, 89-110 Tamura, T. & Ohshima, K. I., Mapping of sea ice production in the Arctic coastal polynyas, J. Geophys. Res., AGU, 2011, 116, C07030-

  14. Changing forest water yields in response to climate warming: Results from long-term experimental watershed sites across North America

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Creed, I. F.; Spargo, A.; Buttle, J. M.; Adams, M.; Beall, F. D.; Booth, E.; Campbell, J. L.; Clow, D. W.; Elder, K.; Ford, C. R.; Grimm, N. B.; Ramlal, P.; Saha, A.; Sebestyen, S. D.; Spittlehouse, D.; Sterling, S. M.; Williams, M. W.; Winkler, R. D.; Yao, H.

    2013-12-01

    Climate warming is projected to affect forest catchment water yields, but effects may vary among biomes. We hypothesized that catchments where water yields have varied relatively little in response to climate warming would be more resilient to warming effects than other types of catchments are. To test this hypothesis, we examined the variability in historical catchment water yields at long-term experimental watershed sites across Canada and the United States. Using the theoretical framework of the Budyko curve, which estimates catchment evaporation as a function of catchment dryness, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation was defined as a catchment's change in actual ET divided by P (AET/P) coincident with a shift from a cool to warm period. Elasticity was defined as the ratio of inter-annual variation in potential ET divided by P (PET/P, the dryness index) to inter-annual variation in actual ET divided by P (AET/P, the evaporative index). Deviation in water yields was related to elasticity. Alpine sites showed greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer sites included catchments with lowest elasticity and had stable to higher water yields, deciduous sites included catchments with intermediate elasticity and had stable to lower water yields, and mixed forests included catchments with highest elasticity and had stable water yields. For all forest types, there was a tendency for elasticity to converge to 1.0 with forest age. Both forest type and age were determinants of elasticity, which leads to resilience of catchment water yields to climate warming.

  15. A paleoscience approach to estimating the effects of climatic warming on salmonid fisheries of the Columbia River Basin

    SciTech Connect

    Chatters, J.C.; Butler, V.L.; Scott, M.J.; Anderson, D.M.; Neitzel, D.A.

    1992-10-01

    To understand how climatic warming might affect salmonid populations, we are following a four-step procedure, incorporating paleoenvironmental data at the beginning and ending points, as follows. First, we used geomorphic, paleobotanical, and paleomalacological data to reconstruct stream conditions during the last 8000 years. Second, we estimated the effect on salmon of conditions extant approximately 6000 to 7000 radiocarbon years before present (B.P.), when temperatures were as much as 2[degrees]C warmer than at present. This became an analog of future warmer climate and its effects on spawning, incubation, and rearing parameters of the NPPC's Tributary Parameter Model (TPM) for estimating salmoned production. Third, we ran the TPM in conjunction with the NPPC System Planning Model (SPM) to calculate the effect of these analog conditions on the population of returning adult fish in selected stream systems. Ultimately, we will run the models for all salmon-accessible subbasins of the Columbia River system. Finally, we are identifying fish remains obtained from archaeological sites along the Columbia River to compare variations in the taxonomic composition of ancient fish assemblages with model predictions.

  16. A paleoscience approach to estimating the effects of climatic warming on salmonid fisheries of the Columbia River Basin

    SciTech Connect

    Chatters, J.C.; Butler, V.L.; Scott, M.J.; Anderson, D.M.; Neitzel, D.A.

    1992-10-01

    To understand how climatic warming might affect salmonid populations, we are following a four-step procedure, incorporating paleoenvironmental data at the beginning and ending points, as follows. First, we used geomorphic, paleobotanical, and paleomalacological data to reconstruct stream conditions during the last 8000 years. Second, we estimated the effect on salmon of conditions extant approximately 6000 to 7000 radiocarbon years before present (B.P.), when temperatures were as much as 2{degrees}C warmer than at present. This became an analog of future warmer climate and its effects on spawning, incubation, and rearing parameters of the NPPC`s Tributary Parameter Model (TPM) for estimating salmoned production. Third, we ran the TPM in conjunction with the NPPC System Planning Model (SPM) to calculate the effect of these analog conditions on the population of returning adult fish in selected stream systems. Ultimately, we will run the models for all salmon-accessible subbasins of the Columbia River system. Finally, we are identifying fish remains obtained from archaeological sites along the Columbia River to compare variations in the taxonomic composition of ancient fish assemblages with model predictions.

  17. The influence of convection parameterisations under alternate climate conditions

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2013-04-01

    In the last decades several convection parameterisations have been developed to consider the impact of small-scale unresolved processes in Earth System Models associated with convective clouds. Global model simulations, which have been performed under current climate conditions with different convection schemes, significantly differ among each other in the simulated precipitation patterns due to the parameterisation assumptions and formulations, e.g. the simplified treatment of the cloud microphysics. Additionally, the simulated transport of short-lived trace gases strongly depends on the chosen convection parameterisation due to the differences in the vertical redistribution of mass. Furthermore, other meteorological parameters like the temperature or the specific humidity show substantial differences in convectively active regions. This study presents uncertainties of climate change scenarios caused by different convection parameterisations. For this analysis two experiments (reference simulation with a CO2 concentration of 348 ppm; 2xCO2-simulation with a CO2 concentration of 696 ppm) are calculated with the ECHAM/MESSy atmospheric chemistry (EMAC) model applying four different convection schemes (Tiedtke, ECMWF, Emanuel and Zhang-McFarlane - Hack) and two resolutions (T42 and T63), respectively. The results indicate that the equilibrium climate sensitivity is independent of the chosen convection parameterisation. However, the regional temperature increase, induced by a doubling of the carbon dioxide concentration, demonstrates differences of up to a few Kelvin at the surface as well as in the UTLS for the ITCZ region depending on the selected convection parameterisation. The interaction between cloud and convection parameterisations results in a large disagreement of precipitation patterns. Although every 2xCO2 -experiment simulates an increase in global mean precipitation rates, the change of regional precipitation patterns differ widely. Finally, analysing the cloud radiative forcing a huge spread of the cloud-induced radiative flux change is found in the warm pool region due to a change of the convection parameterisation.

  18. Global warming and tropical cyclone climate in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Young

    Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend. Frequency variation and super typhoon intensity variation are regarded as the addition of global warming influence on TC activity variation. The structure depicts how a previous intensity record is overtaken and frequency falls continuously in the global warming environment in a linear perspective. A peak TC activity year when global ocean warmth is the highest ever is likely to experience a record-breaking intensity. In the same way, the least number of annual TCs may appear when a lull of TC activity occurs in the warmest year.

  19. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    SciTech Connect

    Zhuang, Qianlai; Schlosser, C. Adam; Melillo, Jerry M.; Anthony, Katey Walter; Kicklighter, David; Gao, Xiang

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  20. Climatic evolution during the Middle Pleistocene warm period of Bilshausen, Germany, compared to the Holocene

    NASA Astrophysics Data System (ADS)

    Kühl, Norbert; Gobet, Erika

    2010-12-01

    Middle Pleistocene warm periods are particularly useful for comparison with our present warm period. One of them, Marine Isotope Stage (MIS) 11, has been considered a potential analogue for the Holocene, whereas older interglacials, e.g. MIS 13, are distinctly different. However, terrestrial Middle Pleistocene sites, other than the Holsteinian, and quantitative climate reconstructions for this period are very rare in Europe. A unique terrestrial site in North Central Europe is known from Bilshausen, Germany. The sediments are varved and indicate that this interglacial lasted ˜25,000 years, more than twice as long as the Holocene so far. The warm period probably correlates to MIS 11, or possibly to MIS 13. A new palynological investigation with large pollen counts is presented which forms the basis for quantitative temperature reconstructions based on the probabilistic indicator taxa approach (the so-called pdf-method). The range of tree species that formed the vegetation during the Bilshausen warm period is reminiscent of the Holocene, but the vegetational as well as the reconstructed climatic development shows distinct differences. No pronounced initial successional phase is recorded in the pollen stratigraphy from Bilshausen. In addition, a mesocratic or optimum phase of forest development as in the Holocene is unclear in the Bilshausen sequence. Reconstructed temperature values are several °C lower than Holocene temperatures for most of the Bilshausen interglacial. Only for several millennia in the late phase of the Bilshausen interglacial were July temperatures higher than the Holocene July temperatures. Seasonality was much stronger during the Bilshausen interglacial and the temperature trends differ between the two interglacials. Likely reasons for the pronounced differences are, on one hand, global temperature, insolation changes and atmospheric circulation. On the other hand, more regional factors such as the configuration of the North Sea basin may also be responsible for the colder winter temperatures and stronger seasonality during the Bilshausen interglacial compared to the Holocene. Reliable absolute dating of the Bilshausen interglacial is needed, which would allow a more detailed evaluation of the forcing factors that determined the climate during the Bilshausen interglacial.

  1. A Song of Our Warming Planet: Using Music to Communicate Critical Concepts in Climate Science

    NASA Astrophysics Data System (ADS)

    St George, S.; Crawford, D.; Reubold, T.

    2014-12-01

    When climate science is communicated to the broader public, many of its key findings are shared in the form of conceptual diagrams or information-dense data graphics. In this collaboration, we applied a data sonification approach to express NASA's global temperature record as a musical composition for the cello. The resulting piece, which we titled 'A Song of Our Warming Planet', transformed 133 years of annual global temperature anomalies into a haunting, atonal melody that stretched across almost all of the instrument's range. Since its release in June 2013, the song has been featured by several national and international media outlets, including the New York Times, the Weather Channel, and National Public Radio, and its accompanying video has received more than 140,000 views from nearly every corner of the world. We are currently preparing a new composition for string quartet that will add a geographic dimension to describe both the pace and place of global warming. We believe the success of our initial sonification project is testament to the power of music to reach audiences who respond less enthusiastically to traditional methods used to communicate climate science. We also imagine this approach could be applied more broadly to allow students to create novel, visceral, and memorable encounters with other aspects of the geophysical sciences.

  2. Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands

    NASA Astrophysics Data System (ADS)

    Bragazza, Luca; Parisod, Julien; Buttler, Alexandre; Bardgett, Richard D.

    2013-03-01

    Peatlands act as global sinks of atmospheric carbon (C) through the accumulation of organic matter, primarily made up of decay-resistant litter of peat mosses. However, climate warming has been shown to promote vascular plant growth in peatlands, especially ericaceous shrubs. A change in vegetation cover is in turn expected to modify above-ground/below-ground interactions, but the biogeochemical mechanisms involved remain unknown. Here, by selecting peatlands at different altitudes to simulate a natural gradient of soil temperature, we show that the expansion of ericaceous shrubs with warming is associated with an increase of polyphenol content in both plant litter and pore water. In turn, this retards the release of nitrogen (N) from decomposing litter, increases the amount of dissolved organic N and reduces N immobilization by soil microbes. A decrease of soil water content with increasing temperature promotes the growth of fungi, which feeds back positively on ericaceous shrubs by facilitating the symbiotic acquisition of dissolved organic N. We also observed a higher release of labile C from vascular plant roots at higher soil temperatures, which promotes the microbial investment in C-degrading enzymes. Our data suggest that climate-induced changes in plant cover can reduce the productivity of peat mosses and potentially prime the decomposition of organic matter by affecting the stoichiometry of soil enzymatic activity.

  3. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

    PubMed

    Walter, K M; Zimov, S A; Chanton, J P; Verbyla, D; Chapin, F S

    2006-09-01

    Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost. PMID:16957728

  4. Sensitivity of the Atmospheric Response to Warm Pool El Nino Events to Modeled SSTs and Future Climate Forcings

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.

    2013-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.

  5. Functional traits predict relationship between plant abundance dynamic and long-term climate warming

    PubMed Central

    Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.

    2013-01-01

    Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400

  6. Can ozone depletion and global warming interact to produce rapid climate change?

    PubMed Central

    Hartmann, Dennis L.; Wallace, John M.; Limpasuvan, Varavut; Thompson, David W. J.; Holton, James R.

    2000-01-01

    The atmosphere displays modes of variability whose structures exhibit a strong longitudinally symmetric (annular) component that extends from the surface to the stratosphere in middle and high latitudes of both hemispheres. In the past 30 years, these modes have exhibited trends that seem larger than their natural background variability, and may be related to human influences on stratospheric ozone and/or atmospheric greenhouse gas concentrations. The pattern of climate trends during the past few decades is marked by rapid cooling and ozone depletion in the polar lower stratosphere of both hemispheres, coupled with an increasing strength of the wintertime westerly polar vortex and a poleward shift of the westerly wind belt at the earth's surface. Annular modes of variability are fundamentally a result of internal dynamical feedbacks within the climate system, and as such can show a large response to rather modest external forcing. The dynamics and thermodynamics of these modes are such that strong synergistic interactions between stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible for the pronounced changes in tropospheric and stratospheric climate observed during the past few decades. If these trends continue, they could have important implications for the climate of the 21st century. PMID:10677475

  7. Functional traits predict relationship between plant abundance dynamic and long-term climate warming.

    PubMed

    Soudzilovskaia, Nadejda A; Elumeeva, Tatiana G; Onipchenko, Vladimir G; Shidakov, Islam I; Salpagarova, Fatima S; Khubiev, Anzor B; Tekeev, Dzhamal K; Cornelissen, Johannes H C

    2013-11-01

    Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year's shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400

  8. Spatial heterogeneity in the timing of birch budburst in response to future climate warming in Ireland

    NASA Astrophysics Data System (ADS)

    Caffarra, Amelia; Zottele, Fabio; Gleeson, Emily; Donnelly, Alison

    2014-05-01

    In order to predict the impact of future climate warming on trees it is important to quantify the effect climate has on their development. Our understanding of the phenological response to environmental drivers has given rise to various mathematical models of the annual growth cycle of plants. These models simulate the timing of phenophases by quantifying the relationship between development and its triggers, typically temperature. In addition, other environmental variables have an important role in determining the timing of budburst. For example, photoperiod has been shown to have a strong influence on phenological events of a number of tree species, including Betula pubescens (birch). A recently developed model for birch (DORMPHOT), which integrates the effects of temperature and photoperiod on budburst, was applied to future temperature projections from a 19-member ensemble of regional climate simulations (on a 25 km grid) generated as part of the ENSEMBLES project, to simulate the timing of birch budburst in Ireland each year up to the end of the present century. Gridded temperature time series data from the climate simulations were used as input to the DORMPHOT model to simulate future budburst timing. The results showed an advancing trend in the timing of birch budburst over most regions in Ireland up to 2100. Interestingly, this trend appeared greater in the northeast of the country than in the southwest, where budburst is currently relatively early. These results could have implications for future forest planning, species distribution modeling, and the birch allergy season.

  9. Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Cai, Shanshan; Yu, Zicheng

    2011-05-01

    Studying boreal-type peatlands near the edge of their southern limit can provide insight into responses of boreal and sub-arctic peatlands to warmer climates. In this study, we investigated peatland history using multi-proxy records of sediment composition, plant macrofossil, pollen, and diatom analysis from a 14C-dated sediment core at Tannersville Bog in northeastern Pennsylvania, USA. Our results indicate that peat accumulation began with lake infilling of a glacial lake at ~ 9 ka as a rich fen dominated by brown mosses. It changed to a poor fen dominated by Cyperaceae (sedges) and Sphagnum (peat mosses) at ~ 1.4 ka and to a Sphagnum-dominated poor fen at ~ 200 cal yr BP (~ AD 1750). Apparent carbon accumulation rates increased from 13.4 to 101.2 g C m - 2 yr - 1 during the last 8000 yr, with a time-averaged mean of 27.3 g C m - 2 yr - 1 . This relatively high accumulation rate, compared to many northern peatlands, was likely caused by high primary production associated with a warmer and wetter temperate climate. This study implies that some northern peatlands can continue to serve as carbon sinks under a warmer and wetter climate, providing a negative feedback to climate warming.

  10. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops.

    PubMed

    Rader, Romina; Reilly, James; Bartomeus, Ignasi; Winfree, Rachael

    2013-10-01

    If climate change affects pollinator-dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature-induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change. PMID:23704044

  11. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Vernet, Maria; Skvarca, Pedro; Marinsek, Sebastián.; Scambos, Ted; Domack, Eugene

    2015-11-01

    Rapid warming of the Antarctic Peninsula over the past several decades has led to extensive surface melting on its eastern side, and the disintegration of the Prince Gustav, Larsen A, and Larsen B ice shelves. The warming trend has been attributed to strengthening of circumpolar westerlies resulting from a positive trend in the Southern Annular Mode (SAM), which is thought to promote more frequent warm, dry, downsloping foehn winds along the lee, or eastern side, of the peninsula. We examined variability in foehn frequency and its relationship to temperature and patterns of synoptic-scale circulation using a multidecadal meteorological record from the Argentine station Matienzo, located between the Larsen A and B embayments. This record was further augmented with a network of six weather stations installed under the U.S. NSF LARsen Ice Shelf System, Antarctica, project. Significant warming was observed in all seasons at Matienzo, with the largest seasonal increase occurring in austral winter (+3.71°C between 1962-1972 and 1999-2010). Frequency and duration of foehn events were found to strongly influence regional temperature variability over hourly to seasonal time scales. Surface temperature and foehn winds were also sensitive to climate variability, with both variables exhibiting strong, positive correlations with the SAM index. Concomitant positive trends in foehn frequency, temperature, and SAM are present during austral summer, with sustained foehn events consistently associated with surface melting across the ice sheet and ice shelves. These observations support the notion that increased foehn frequency played a critical role in precipitating the collapse of the Larsen B ice shelf.

  12. Cold climates demand more intertemporal self-control than warm climates.

    PubMed

    Ainslie, George

    2013-10-01

    A climate that is too cold to grow crops for part of the year demands foresight and self-control skills. To the extent that a culture has developed intertemporal bargaining, its members will have more autonomy, but pay the cost of being more compulsive, than members of societies that have not. Monetary resources will be a consequence but will also be fed back as a cause. PMID:23985327

  13. Decreased frequency of North Atlantic polar lows associated with future climate warming.

    PubMed

    Zahn, Matthias; von Storch, Hans

    2010-09-16

    Every winter, the high-latitude oceans are struck by severe storms that are considerably smaller than the weather-dominating synoptic depressions. Accompanied by strong winds and heavy precipitation, these often explosively developing mesoscale cyclones-termed polar lows-constitute a threat to offshore activities such as shipping or oil and gas exploitation. Yet owing to their small scale, polar lows are poorly represented in the observational and global reanalysis data often used for climatological investigations of atmospheric features and cannot be assessed in coarse-resolution global simulations of possible future climates. Here we show that in a future anthropogenically warmed climate, the frequency of polar lows is projected to decline. We used a series of regional climate model simulations to downscale a set of global climate change scenarios from the Intergovernmental Panel of Climate Change. In this process, we first simulated the formation of polar low systems in the North Atlantic and then counted the individual cases. A previous study using NCEP/NCAR re-analysis data revealed that polar low frequency from 1948 to 2005 did not systematically change. Now, in projections for the end of the twenty-first century, we found a significantly lower number of polar lows and a northward shift of their mean genesis region in response to elevated atmospheric greenhouse gas concentration. This change can be related to changes in the North Atlantic sea surface temperature and mid-troposphere temperature; the latter is found to rise faster than the former so that the resulting stability is increased, hindering the formation or intensification of polar lows. Our results provide a rare example of a climate change effect in which a type of extreme weather is likely to decrease, rather than increase. PMID:20844533

  14. Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback.

    PubMed

    Harte, John; Saleska, Scott R; Levy, Charlotte

    2015-06-01

    Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long-term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales. PMID:25504893

  15. BVOCs emission in a semi-arid grassland under climate warming and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Xia, J. Y.; Mu, Y. J.; Nie, L.; Han, X. G.; Wan, S. Q.

    2012-04-01

    Biogenic volatile organic compounds (BVOCs) profoundly affect atmospheric chemistry and ecosystem functioning. BVOCs emission and their responses to global change are still unclear in grasslands, which cover one quarter of the Earth's land surface and are currently undergoing the largest changes. Over two growing seasons, we conducted a field experiment in a semi-arid grassland (Inner Mongolia, China) to examine the emission and the responses of BVOCs emissions to warming and nitrogen deposition. The natural emission rate (NER) of monoterpene (dominant BVOCs here) is 107 ± 16 μg m-2 h-1 in drought 2007, and 266 ± 53 μg m-2 h-1 in wet 2008, respectively. Warming decreased the standard emission factor (SEF) by 24% in 2007, while it increased by 43% in 2008. The exacerbated soil moisture loss caused by warming in dry season might be responsible for the decrease of SEF in 2007. A possible threshold of soil moisture (8.2% (v/v)), which controls the direction of warming effects on monoterpene emission, existed in the semiarid grassland. Nitrogen deposition decreased the coverage of Artemisia frigida and hence reduced the NER by 24% across the two growing seasons. These results suggest that the grasslands dominated by the extended Artemisia frigida are an important source for BVOCs, while the responses of their emissions to global changes are more uncertain since they depend on multifactorial in-situ conditions.

  16. BVOCs emission in a semi-arid grassland under climate warming and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Xia, J. Y.; Mu, Y. J.; Nie, L.; Han, X. G.; Wan, S. Q.

    2012-01-01

    Biogenic volatile organic compounds (BVOCs) profoundly affect atmospheric chemistry and ecosystem functioning. BVOCs emission and their responses to global change are still unclear in grasslands, which cover one quarter of the Earth's land surface and are currently undergoing the largest changes. Over two growing seasons, we conducted a field experiment in a semi-arid grassland (Inner Mongolia, China) to examine the emission and the responses of BVOCs emissions to warming and nitrogen deposition. The natural emission rate (NER) of monoterpene (dominant BVOCs here) is 107 ± 16 μg m-2 h-1 in drought 2007, and 266 ± 53 μg m-2 h-1 in wet 2008, respectively. Warming decreased the standard emission factor (SEF) by 24% in 2007, while increased it by 43% in 2008. The exacerbated soil moisture loss caused by warming in dry season might be responsible for the decrease of SEF in 2007. A possible threshold of soil moisture (8.2% (v/v)), which controls the direction of warming effects on monoterpene emission, existed in the semiarid grassland. Nitrogen deposition decreased the coverage of Artemisia frigida and hence reduced the NER by 24% across the two growing seasons. These results suggest that the grasslands dominated by the extended Artemisia frigida are an important source for BVOCs, while the responses of their emissions to global changes are more uncertain since they depend on multifactorial/in-situ/conditions.

  17. Changes in Large Spatiotemporal Climatic Extreme Events Beyond the Mean Warming Signal

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Mahecha, M. D.; Otto, F. E. L.

    2014-12-01

    Weather and climate extremes impose substantial impacts on human societies and ecosystems. In particular, events that are large in space (areal extent), time (duration) or both are likely to be associated with highly significant consequences. Hence, a better detection, characterization and understanding of such anomalous events is crucial. There is widespread consensus on a global and continental-scale warming trend, which leads to increases in the number, magnitude and frequency of temperature extremes (Hansen et al., 2012). It is less clear, however, if this warming also coincides with a broadening of temperature distributions (Huntingford et al., 2013). Moreover, the question whether other climate variables, such as large-scale precipitation deficits, likewise change, remains largely unanswered (Sheffield et al., 2012; Seneviratne 2012). In this study, we address this issue by investigating the characteristics of large extremes, using an algorithm that detects the n largest spatiotemporally connected climate extremes for any time period. The deployed algorithm detects, depending on the chosen time step and variable, major heat waves, cold spells or droughts. We find a robust increase in the magnitude of large hot temperature extremes on a global and European scale in observations and reanalysis products, whereas the duration and affected area of those extremes does not show any pronounced changes. These results reveal that there is a detectable signal in temperature distributions beyond the mean warming trend, which might imply a structural change in the making of large extreme events. Furthermore, we use the CMIP5 ensemble of models and an ensemble of 100+ members of a regional climate model for Europe (HadRM3P within the weather@home framework[1]) in order to conduct a global and continental-scale analysis of large extreme events in temperature and precipitation. The employment of those model ensembles allows to sample more reliably the tails of the distribution, which will result in a better characterization of the magnitude, frequency as well as spatiotemporal structure of these events. [1] http://www.climateprediction.net/weatherathome/

  18. Icing Conditions Over Northern Eurasia in Changing Climate

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Arzhanova, N.; Groisman, P. Y.

    2013-12-01

    A general increase in atmospheric humidity is expected with global warming, projected with GCMs, reported with remote sensing and in situ observations (Trenberth et al. 2005; Dessler, and Davis 2010; IPCC 2007, Zhang et al. 2012.) In the Arctic this increase has been and will be especially prominent triggered by the dramatic retreat of the sea ice. In the warm season this retreat provides an abundant water vapor supply to the dry Arctic atmosphere. The contemporary sea ice changes are especially visible in the Eastern Hemisphere and after the two extremely anomalous low-ice years (2007 and 2012) it is right time to look for the impact of these changes in the high latitudinal hydrological cycle: first of all in the atmospheric humidity and precipitation changes. Usually, humidity (unless extremely high or low) does not critically affect the human activities and life style. However, in the high latitudes this characteristic has an additional facet: higher humidity causes higher ice condensation from the air (icing and hoar frost) on the infrastructure and transports in the absence of precipitation. The hoar frost and icing (in Russian: gololed) are measured at the Russian meteorological network and reports of icing of the wires are quantitative measurements. While hoar frost can be considered as a minor annoyance, icing may have important societal repercussions. In the Arctic icing occurs mostly during relatively warm months when atmosphere holds maximum amount of water vapor (and is projected to have more). Freezing rain and drizzle contribute to gololed formation and thus this variable (being above some thresholds) presents an important characteristic that can affect the infrastructure (communication lines elevated at the telegraph poles, antennas, etc.), became a Socially-Important climatic Variable (SIV). The former USSR observational program includes gololed among the documented weather phenomena and this allowed RIHMI to create Electronic Reference Book on Climate of the Russian Federation for the national territory. This Reference Book addresses the current state of these weather phenomena. However, the ongoing and projected humidity changes in the high latitudes will strongly affect the circum-polar area (land and ocean) and impact the frequency and intensity of these potentially dangerous weather phenomena across the entire extratropical land area. Therefore the goal of the present study is to quantify icing conditions over the northern Eurasia. Our analysis includes data of 958 Russian stations from 1977 to 2012. Regional analysis of gololed characteristics was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, from 1977 to 2012). Anomalies were arithmetically averaged first within 1N x 2E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions. This approach provides a more uniform spatial field for averaging.

  19. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography 27, PA3214. Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J., Schmittner, A., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 13415-13419

  20. Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude

    PubMed Central

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003–2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world. PMID:24416144

  1. Climate warming may facilitate invasion of the exotic shrub Lantana camara.

    PubMed

    Zhang, Qiaoying; Zhang, Yunchun; Peng, Shaolin; Zobel, Kristjan

    2014-01-01

    Plant species show different responses to the elevated temperatures that are resulting from global climate change, depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between the latitudes of 35 °N and 35 °S. According to current and future climate scenarios predicted by the CLIMEX model, climatically suitable areas for L. camara are projected to contract globally, despite expansions in some areas. The objective of this study was to test those predictions, using a pot experiment in which branch cuttings were grown at three different temperatures (22 °C, 26 °C and 30 °C). We hypothesized that warming would facilitate the invasiveness of L. camara. In response to rising temperatures, the total biomass of L. camara did increase. Plants allocated more biomass to stems and enlarged their leaves more at 26 °C and 30 °C, which promoted light capture and assimilation. They did not appear to be stressed by higher temperatures, in fact photosynthesis and assimilation were enhanced. Using lettuce (Lactuca sativa) as a receptor plant in a bioassay experiment, we also tested the phytotoxicity of L. camara leachate at different temperatures. All aqueous extracts from fresh leaves significantly inhibited the germination and seedling growth of lettuce, and the allelopathic effects became stronger with increasing temperature. Our results provide key evidence that elevated temperature led to significant increases in growth along with physiological and allelopathic effects, which together indicate that global warming facilitates the invasion of L. camara. PMID:25184224

  2. Climate Warming May Facilitate Invasion of the Exotic Shrub Lantana camara

    PubMed Central

    Zhang, Qiaoying; Zhang, Yunchun; Peng, Shaolin; Zobel, Kristjan

    2014-01-01

    Plant species show different responses to the elevated temperatures that are resulting from global climate change, depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between the latitudes of 35°N and 35°S. According to current and future climate scenarios predicted by the CLIMEX model, climatically suitable areas for L. camara are projected to contract globally, despite expansions in some areas. The objective of this study was to test those predictions, using a pot experiment in which branch cuttings were grown at three different temperatures (22°C, 26°C and 30°C). We hypothesized that warming would facilitate the invasiveness of L. camara. In response to rising temperatures, the total biomass of L. camara did increase. Plants allocated more biomass to stems and enlarged their leaves more at 26°C and 30°C, which promoted light capture and assimilation. They did not appear to be stressed by higher temperatures, in fact photosynthesis and assimilation were enhanced. Using lettuce (Lactuca sativa) as a receptor plant in a bioassay experiment, we also tested the phytotoxicity of L. camara leachate at different temperatures. All aqueous extracts from fresh leaves significantly inhibited the germination and seedling growth of lettuce, and the allelopathic effects became stronger with increasing temperature. Our results provide key evidence that elevated temperature led to significant increases in growth along with physiological and allelopathic effects, which together indicate that global warming facilitates the invasion of L. camara. PMID:25184224

  3. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach using Conditional Subsetting

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Naud, C. M.; Del Genio, A. D.

    2013-12-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies General Circulation Model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, CALIPSO and AMSR-E and the NASA-MERRA reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on: (1, 2) the transect clouds and vertical motion, (3) the strength of the temperature gradient along the warm front, as well as the storm-local (4) wind speed and (5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper co-variability of low-altitude vertical motion and cloud at the warm front, and a joint dependence of cloudiness on wind and PW.

  4. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  5. Dependence of warm and cold climate depiction on climate model resolution

    NASA Technical Reports Server (NTRS)

    Rind, David

    1988-01-01

    Climate change simulations run with two different resolutions (8 deg by 10 deg and 4 deg by 5 deg) of the NASA Goddard Institute for Space Studies model are used to investigate radiative, dynamical, and regional sensitivities to model grid size. The results show that model resolution affected two key processes in the control runs, moist convection and the nonlinear transfer of kinetic energy into the zonal mean flow. It was found that the finer resolution model has more penetrative convection but less convection overall, with the results that its temperature and wind structure were altered with respect to the coarser grid model.

  6. High Resolution Coral Record of Indo-Pacific Warm Pool Climate During the Penultimate Deglaciation, Sumba, Indonesia

    NASA Astrophysics Data System (ADS)

    Qu, D.; Gagan, M. K.; Dunbar, G. B.; Hantoro, W. S.; Suwargadi, B. W.; Mortimer, G. E.; McCulloch, M. T.

    2005-12-01

    Ocean-atmosphere interactions in the tropical Indo-Pacific Warm Pool are fundamental drivers of the global meridional Hadley and zonal Walker circulations. Recent research indicates that changes in sea surface temperatures and atmospheric convection in this region play important roles in modulating global climate on interannual, decadal, millennial, and even glacial-interglacial time-scales. Knowing the natural bounds of past ocean-atmosphere variability in the Warm Pool region will enhance our ability to predict the climate in the future. Massive, long-lived corals are one of the only paleoclimate archives capable of providing high resolution records (weekly to monthly) for periods when climate boundary conditions were different from those of the present day. Here we report a 35-year-long high resolution 18O/16O record for a sea-level highstand during the penultimate deglaciation reconstructed from a massive Porites coral from the Mondu raised reefs, located southwest of Cape Laundi on the island of Sumba, eastern Indonesia. Topographic surveys and stratigraphic analysis of the Mondu raised reefs indicate that the highstand reef developed between MIS 6e and 5e, when the sea level was about 15 meters lower than it is today. U/Th dating shows that the well preserved massive Porites coral we analyzed grew 136 1.5 thousand years ago. Based on this age, and previous studies, it is likely that the coral grew during a highstand period of the penultimate deglaciation when the sea level peaked at this height for only a short period of time before it dropped 60 to 80 meters at about 130 thousand years ago and finally rose again up to a few meters higher than its present level at the Last Interglacial Maximum. The average 18O/16O for the fossil coral is -4.4, which is 0.6 higher than the average value for mid-late Holocene corals on the Mondu reefs. Taking into account the ice volume effect, and assuming constant surface salinity, the shift in 18O indicates that the SST during this period of the penultimate deglaciation at 130 1.5 ka was 2C cooler than that in mid-late Holocene and today. The high resolution coral 18O/16O record shows excellent preservation of annual cycles and, in some years, a double peak indicating the seasonal development of the wet/warm summer monsoon. The double peak reflects the cross-equatorial movement of the Inter-Tropical Convergence Zone, presumably during years when monsoon rainfall is strong. The record also shows that the frequency of cooler/drier years, indicative of El Nino events, was lower than today.

  7. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    PubMed

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. PMID:25902893

  8. A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the southern Rocky Mountains, USA

    SciTech Connect

    Petersen, K.L.

    1992-05-01

    In the next century, increases in atmospheric trace gas concentration could warm the global average temperature beyond what it has ranged during the past century. Examination of larger-than-historic climatic changes that have occurred in the past in specific regions provides realistic context for evaluating such potential future changes. This paper has contrasted the climatic manifestation of the Little Climatic Optimum or Medieval Warm Period (AD 900--1300) with that of the Little Ice Age (AD 1300--1850) in the northern Colorado Plateau region of the southwestern USA. The zenith of the Anasazi occupation coincides with the former and their demise coincides with the latter, when conditions became too cold and especially dry (in the summer) to support upland dry farming. During the height of the Little Climatic Optimum the region was characterized by a relatively long growing season and greater winter and summer precipitation than that of today. This resulted in a relatively rapid development of a potential dry-farming belt that was twice as wide as the present and areas that cannot be dry farmed today were routinely farmed by the Anasazi. Such conditions would be beneficial to dry farmers in the Four Corners region if those conditions were repeated in the near future.

  9. Middle Pliocene vegetation: Reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling

    USGS Publications Warehouse

    Thompson, R.S.; Fleming, R.F.

    1996-01-01

    The general characteristics of global vegetation during the middle Pliocene warm period can be reconstructed from fossil pollen and plant megafossil data. The largest differences between Pliocene vegetation and that of today occurred at high latitudes in both hemispheres, where warming was pronounced relative to today. In the Northern Hemisphere coniferous forests lived in the modern tundra and polar desert regions, whereas in the Southern Hemisphere southern beech apparently grew in coastal areas of Antarctica. Pliocene middle latitude vegetation differed less, although moister-than-modern conditions supported forest and woodland growth in some regions now covered by steppe or grassland. Pliocene tropical vegetation reflects essentially modern conditions in some regions and slightly cooler-than-or warmer-than- modern climates in other areas. Changes in topography induced by tectonics may be responsible for many of the climatic changes since the Pliocene in both middle and lower latitudes. However, the overall latitudinal progression of climatic conditions on land parallels that seen in the reconstruction of middle Pliocene sea-surface temperatures. Pliocene paleovegetational data was employed to construct a 2????2?? global grid of estimated mid-Pliocene vegetational cover for use as boundary conditions for numerical General Circulation Model simulations of middle Pliocene climates. Continental outlines and topography were first modified to represent the Pliocene landscape on the 2????2?? grid. A modern 1????1?? vegetation grid was simplified and mapped on this Pliocene grid, and then modified following general geographic trends evident in the Pliocene paleovegetation data set.

  10. Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type.

    PubMed

    Hu, B; Simon, J; Kuster, T M; Arend, M; Siegwolf, R; Rennenberg, H

    2013-01-01

    Climate-tolerant tree species and/or provenances have to be selected to ensure the high productivity of managed forests in Central Europe under the prognosticated climate changes. For this purpose, we studied the responses of saplings from three oak species (i.e. Quercus robur, Q. petraea and Q. pubescens) and provenances of different climatic origin (i.e. low or high rainfall, low or high temperature habitats) with regard to leaf nitrogen (N) composition as a measure of N nutrition. Saplings were grown in model ecosystems on either calcareous or acidic soil and subjected to one of four treatments (control, drought, air warming or a combination of drought and air warming). Across species, oak N metabolism responded to the influence of drought and/or air warming with an increase in leaf amino acid N concentration at the expense of structural N. Moreover, provenances or species from drier habitats were more tolerant to the climate conditions applied, as indicated by an increase in amino acid N (comparing species) or soluble protein N (comparing provenances within a species). Furthermore, amino acid N concentrations of oak leaves were significantly higher on calcareous compared to acidic soil. From these results, it can be concluded that seeds from provenances or species originating from drier habitats and - if available - from calcareous soil types may provide a superior seed source for future forest establishment. PMID:22934888

  11. The palaeoclimatic significance of Eurasian Giant Salamanders (Cryptobranchidae: Zaissanurus, Andrias) - indications for elevated humidity in Central Asia during global warm periods (Eocene, late Oligocene warming, Miocene Climate Optimum)

    NASA Astrophysics Data System (ADS)

    Vasilyan, Davit; Böhme, Madelaine; Winklhofer, Michael

    2010-05-01

    Cryptobranchids represent a group of large sized (up to 1.8 m) tailed amphibians known since the Middle Jurassic (Gao & Shubin 2003). Two species are living today in eastern Eurasia: Andrias davidianus (China) and A. japonicus (Japan). Cenozoic Eurasian fossil giant salamanders are known with two genera and two or three species from over 30 localities, ranging from the Late Eocene to the Early Pliocene (Böhme & Ilg 2003). The Late Eocene species Zaissanurus beliajevae is restricted to the Central Asian Zaissan Basin (SE-Kazakhstan, 50°N, 85°E), whereas the Late Oligocene to Early Pliocene species Andrias scheuchzeri is distributed from Central Europe to the Zaissan Basin. In the latter basin the species occur during two periods; the latest Oligocene and the late Early to early Middle Miocene (Chkhikvadse 1982). Andrias scheuchzeri is osteological indistinguishable from both recent species, indicating a similar ecology (Westfahl 1958). To investigate the palaeoclimatic significance of giant salamanders we analyzed the climate within the present-day distribution area and at selected fossil localities with independent palaeoclimate record. Our results indicate that fossil and recent Andrias species occur in humid areas where the mean annual precipitation reach over 900 mm (900 - 1.300 mm). As a working hypothesis (assuming a similar ecology of Andrias and Zaissanurus) we interpret occurrences of both fossil Eurasian giant salamanders as indicative for humid palaeoclimatic conditions. Based on this assumption the Late Eocene, the latest Oligocene (late Oligocene warming) and the late Early to early Middle Miocene (Miocene Climatic Optimum) of Central Asia (Zaissan Basin) are periods of elevated humidity, suggesting a direct (positive) relationship between global climate and Central Asian humidity evolution. Böhme M., Ilg A. 2003: fosFARbase, www.wahre-staerke.com/ Chkhikvadze V.M. 1982. On the finding of fossil Cryptobranchidae in the USSR and Mongolia. Vertebrata Hungarica, 21: 63-67. Gao K.-Q., Shubin N.H. 2003. Earliest known crown-group Salamanders. Nature, 422: 424-428. Westphal F. 1958. Die Tertiären und rezenten Eurasiatischen Riesensalamander. Palaeontolographica Abt. A, 110: 20-92.

  12. Climate Warming in Antarctica is Triggering Changes in Biodiversity and Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Wall, D. H.

    2007-12-01

    Antarctica climate changes relating to ice and ocean currents have global impacts, but changes on terrestrial ecosystems in the Antarctic are less well known. This is partially due to the small area of exposed land, the apparent isolation, and lack of permanent residents. However, low diversity ecosystems, such as Antarctic polar deserts, are expected to be more vulnerable to global changes and are located in regions that are likely to see some of the greatest climate changes. Evidence is accumulating that terrestrial regions of Antarctica are experiencing substantial but variable responses to climate change and human disturbance. In the McMurdo Dry Valleys and in the rapidly warming Antarctic Peninsula region, temperature changes have a rippling effect that control habitat dynamics, species, carbon cycling, especially since these ecosystems are situated on a threshold between frozen and liquid water. Direct anthropogenic effects, including tourism and invasive species are also changing terrestrial communities but the magnitude and duration is dependent on numerous interacting factors. Global change scenarios incorporating species abundance, species traits, community change and monitoring of changes in biogeography will be important for determining alterations to ecosystem processes such as nutrient cycling.

  13. Impacts of global warming on climate change over East Asia as simulated by 15 GCMs

    SciTech Connect

    Zong-ci Zhao; Xiaodong Li

    1997-12-31

    About 15 GCMs (GFDL1, GISS, LLNL, MPI, OSU, UKMOL, UKMOH, GCMs90-92, GFDL2, NCAR, OPYC, LSG, HADL, GCMs95) obtained from the IPCC WG 1 1990, 1992 and 1995 reports have been chosen to examine the impacts of global warming, on the climate chance over East Asia. Although the models scenarios of the human activities were different for the different GCMs, the climate change over East Asia (70E-140E, 15N-60N) for tile doubled CO{sub 2} as simulated by about 15 GCMs have been analysed. The Simulations shown that the temperature might increased by about 0.5 - 1.5 C over East Asia, especially in winter and northwestern parts of East Asia. The precipitation might increase in northwestern and northeastern parts of East Asia and decrease in the central part of East Asia. The evaluations and assessments of the GCMs over East Asia have indicated that the GCMs have the abilities to simulate the climate change over East Asia, especially for the temperature and the winter season. There are some uncertainties for the simulations to compare with the observations, especially for tile precipitation and tile summer season.

  14. Aerosol contribution to the rapid warming of near-term climate under RCP 2.6

    NASA Astrophysics Data System (ADS)

    Chalmers, N.; Highwood, E. J.; Hawkins, E.; Sutton, R.; Wilcox, L. J.

    2012-09-01

    The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10 Wm-2 develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.

  15. Forest Dynamics and Their Phenological Response to Climate Warming in the Khingan Mountains, Northeastern China

    PubMed Central

    Cai, Hongyan; Zhang, Shuwen; Yang, Xiaohuan

    2012-01-01

    The Khingan Mountain region, the most important and typical natural foci of tick-borne encephalitis (TBE) in China, is the largest and northernmost forest area and the one more sensitive to climate change. Taking this region as the study area, we investigated the spatio-temporal dynamics of deciduous broadleaf forest (DBF) and its phenology changes in relation to climate change and elevation. Based on MODIS Enhanced Vegetation Index (EVI) time series over the period of 2001 to 2009, the start-of-season (SOS), length-of-season (LOS) and another two vegetation variables (seasonal amplitude (SA) and integrated EVI (SI)) were derived. Over the past decade, the DBF in Khingan Mountains has generally degraded and over 65% of DBF has experienced negative SA and SI trends. Earlier trends in SOS and longer trends in LOS for DBF were observed, and these trends were mainly caused by climate warming. In addition, results from our analysis also indicated that the effects of temperature on DBF phenology were elevation dependent. The magnitude of advancement in SOS and extension in LOS with temperature increase significantly increased along a raising elevation gradient. PMID:23202825

  16. Thermokarst processes in west-European loess series: new evidences for rapid climatic warming events during the Last Glacial

    NASA Astrophysics Data System (ADS)

    Antoine, Pierre; Moine, Olivier; Didier Rousseau, Denis; Hatté, Christine

    2013-04-01

    For a long time, the imprint of millennial climatic cycles (D/O cycles) in the Last Glacial loess sequences has been related to the alternation of loess layers and arctic brown soil horizons, especially between about 60 and 30 ka BP (± MIS 3). Nevertheless, owing to erosion gaps and strong reductions in the sedimentation rate, there are always less individual soil horizons than D/O cycles during the same period, which makes correlations very difficult. The discovery in the Nussloch loess sequence (Germany) of a thermokarst structure including well preserved vegetal remains, mollusc shells, and relicts of former ice wedge casts, provides new evidences for a rapid climatic warming at the origin of a major erosion event during the Middle Pleniglacial (±MIS 3). This elongated thermokarst erosion gully incised the underlying deposits. The presence of deformed ice-wedge relicts along its very sharp and irregular lower boundary indicates a formation by thermal erosion linked to a rapid melting of the permafrost ice. The analysis of the biological data (vegetal remains and mollusc shells) allows to evidence interstadial conditions strongly contrasting with the over- and underlying loess environments. Radiocarbon dates from wood remains (average 32.26 14C / ± 37.7 cal. BP) allow the correlation of the main thermokarst formation and infilling with GIS-8 from the GRIP ice core, following H4 event. Similar structures have been evidenced in other west-European loess sequences, most of them at the base of the Middle Pleniglacial formations. On the basis of a comparison with present day analogues from Alaska and Siberia permafrost areas, past "thermokarst events" are related to thermal erosion processes and proposed as markers for rapid warming periods in Last Glacial European loess sequences.

  17. Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions

    NASA Astrophysics Data System (ADS)

    Kim, Ja-Myung; Lee, Kitack; Shin, Kyungsoon; Yang, Eun Jin; Engel, Anja; Karl, David M.; Kim, Hyun-Cheol

    2011-04-01

    Photosynthesis by phytoplankton in sunlit surface waters transforms inorganic carbon and nutrients into organic matter, a portion of which is subsequently transported vertically through the water column by the process known as the biological carbon pump (BCP). The BCP sustains the steep vertical gradient in total dissolved carbon, thereby contributing to net carbon sequestration. Any changes in the vertical transportation of the organic matter as a result of future climate variations will directly affect surface ocean carbon dioxide (CO2) concentrations, and subsequently influence oceanic uptake of atmospheric CO2 and climate. Here we present results of experiments designed to investigate the potential effects of ocean acidification and warming on the BCP. These perturbation experiments were carried out in enclosures (3,000 L volume) in a controlled mesocosm facility that mimicked future pCO2 (˜900 ppmv) and temperature (3°C higher than ambient) conditions. The elevated CO2 and temperature treatments disproportionately enhanced the ratio of dissolved organic carbon (DOC) production to particulate organic carbon (POC) production, whereas the total organic carbon (TOC) production remained relatively constant under all conditions tested. A greater partitioning of organic carbon into the DOC pool indicated a shift in the organic carbon flow from the particulate to dissolved forms, which may affect the major pathways involved in organic carbon export and sequestration under future ocean conditions.

  18. Overland flow connectivity under different climate conditions

    NASA Astrophysics Data System (ADS)

    Hanoch, Lavee

    2015-04-01

    The effect of climate conditions on overland flow connectivity was investigated in arid (mean annual rainfall 120 mm), semi-arid (mean annual rainfall 280 mm) and sub-humid (mean annual rainfall 620 mm) regions. In each of these regions a hillslope reference plot was established, in which soil properties and hydrological variables were measured. The results show that at the regional scale soil organic matter content and aggregate stability decreased with increasing aridity. Infiltration rate also decreased with aridity but overland flow increased. At the hillslope scale, at each of the regions overland flow decreased with increasing hillslope length which means that overland flow is not continuous and water losses increases with hillslope length. In order to understand the controlling factors of overland flow continuity the spatial distribution of soil properties, vegetation cover and overland flow generation mechanisms were measured along hillslopes. The results show that water contributing (source) patches and water collecting (sink) patches exist along the hillslopes, in accordance with the spatial distribution of shrubs. The conclusion is that overland flow connectivity at the hillslope scale is affected mainly by the size, the density and by the spatial distribution of shrubs. An application for preventing soil erosion in urban areas (parks), along roads and in cultivated areas is that planting vegetation in patches or strips is more efficient than all over the hillslopes.

  19. Impact of global warming on the geobotanic zones: an experiment with a statistical-dynamical climate model

    NASA Astrophysics Data System (ADS)

    Franchito, Sergio H.; Brahmananda Rao, V.; Moraes, E. C.

    2011-11-01

    In this study, a zonally-averaged statistical climate model (SDM) is used to investigate the impact of global warming on the distribution of the geobotanic zones over the globe. The model includes a parameterization of the biogeophysical feedback mechanism that links the state of surface to the atmosphere (a bidirectional interaction between vegetation and climate). In the control experiment (simulation of the present-day climate) the geobotanic state is well simulated by the model, so that the distribution of the geobotanic zones over the globe shows a very good agreement with the observed ones. The impact of global warming on the distribution of the geobotanic zones is investigated considering the increase of CO2 concentration for the B1, A2 and A1FI scenarios. The results showed that the geobotanic zones over the entire earth can be modified in future due to global warming. Expansion of subtropical desert and semi-desert zones in the Northern and Southern Hemispheres, retreat of glaciers and sea-ice, with the Arctic region being particularly affected and a reduction of the tropical rainforest and boreal forest can occur due to the increase of the greenhouse gases concentration. The effects were more pronounced in the A1FI and A2 scenarios compared with the B1 scenario. The SDM results confirm IPCC AR4 projections of future climate and are consistent with simulations of more complex GCMs, reinforcing the necessity of the mitigation of climate change associated to global warming.

  20. 3D Numerical Simulation of the Geothermal Field of Permafrost at Salluit in Nunavik, Québec, in Response to Climate Warming. Research in Progress.

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Allard, M.; Gagnon, O.

    2002-12-01

    The village of Salluit is located in the continuous permafrost zone in Nunavik, Québec. This Inuit community of about 1100 people is characterized by a fast population growth. The village lies in the bottom of a restricted valley flanked by steep rock walls. Most village infrastructures are built on frozen saline and ice-rich marine silts creating problematic ground conditions for infrastructures construction. For satisfying the fast population growth, a housing program is in progress but the available terrain with proper ground conditions for stable foundation is scarce and little is known on the permafrost conditions in the valley. During the construction of the airport of Salluit, a thermistor cable has been permanently buried in a rock outcrop. Regular temperature measurements have been carried out from 1987 and 1994, and from 2001 until now. During the first measurement interval, the permafrost temperature decreased steadily from -8 to -8.5 °C at a depth of 8 m. According to Environment Canada, the climate in that region of Canada was slowly cooling. However, this trend was reversed around 1997-1998 and some important warming recently occurred. In August 2001, the temperature measurements showed an increase of about 1.9 °C at the same depth. Moreover, a major active layer detachment failure occurred in the valley uphill in 1998 forcing the moving of twenty houses recently built. This landslide was probably triggered by the climate warming. Proper assessment of available terrain for the village expansion is therefore a major concern for the Inuit community of Salluit. Following the request of the provincial government, a thorough study for mapping the permafrost conditions and assessing the impacts of climate warming on permafrost conditions has been undertaken in 2002. The surveys carried out included deep sampling of permafrost, seismic reflection and ground penetrating radar profiling, and surface mapping supported by a detailed photo interpretation. The survey aims at providing information on the geological and geotechnical characteristics of permafrost. Thermistor cables in deep boreholes, meteorological stations, dataloggers for the measurement of surface temperature, and thermal probes have been also installed in the valley. Air photographs will be used to produce a digital terrain model of the valley. This integrated multi-technique approach is essential for properly assessing the permafrost conditions in the valley. The study will provide the data needed for the development of a 3D model of permafrost conditions in the valley. A 3D numerical simulation of the geothermal field of permafrost in the valley will be then undertaken. This simulation is a major challenge giving the size of the thermal field and the variability in permafrost conditions. The impacts of climate warming on the thermal field of permafrost will be simulated and predicted by forcing the surface temperature to increase following different scenarios of climate warming. It is planned to combine the geotechnical properties and the simulation of the geothermal field of permafrost in order to define threshold values of permafrost strength and slope instability and set a pre-warning scheme of permafrost temperature in case of further warming in the coming years. The monitoring of permafrost temperature will be continued in the future. If the scheme is reached, actions can be then undertaken to mitigate the impacts of climate warming on the infrastructures and protect the population of Salluit.

  1. Marine Ecosystem Response to Rapid Climate Warming on the West Antarctic Peninsula (Invited)

    NASA Astrophysics Data System (ADS)

    Ducklow, H.; Baker, K. S.; Doney, S. C.; Fraser, B.; Martinson, D. G.; Meredith, M. P.; Montes-Hugo, M. A.; Sailley, S.; Schofield, O.; Sherrell, R. M.; Stammerjohn, S. E.; Steinberg, D. K.

    2010-12-01

    The Palmer, Antarctica LTER builds on meteorological, ocean color and seabird observations since the late 1970s. It occupies annually in summer a regional-scale grid extending 700 km northward from Charcot Island to Anvers Island, and 200 km cross-shelf from the coast to the shelfbreak. In addition to routine CTD profiles and zooplankton tows throughout the grid, the observing system also includes Slocum Glider surveys and thermistor moorings. Geophysical changes include +6C atmospheric warming in winter since 1950, a 20% increase in heat content over the continental shelf since 1990, a surface ocean warming of +1C since 1950, an 83-day reduction in sea ice duration (advance 48 days later, retreat 35 days earlier) over the greater southern Bellingshausen Sea region from 1979-2007, intensification of westerly winds and differential changes in cloudiness. In response to these large changes in the regional climate, the marine ecosystem of the western Peninsula is changing at all trophic levels from diatoms to penguins. Ocean color indicates differential changes in phytoplankton stocks in response to regional decreases in sea ice cover. Surface chlorophyll has declined 89% in the north and increased 67% in the south. Antarctic krill and salps have declined and increased in our study area, respectively. Penguin diet sampling suggests changes in populations or distributions of the Antarctic Silverfish in the Anvers Island vicinity, possibly in response to ocean warming. Adélie penguins have declined 75% from 15000 to <3000 pairs at since 1975 in response to changes in food availability and increased late spring snow accumulation. Changes in pygoscelid penguin breeding populations in the Anvers Island vicinity of the West Antarctic Peninsula

  2. International potential of IGCC technology for use in reducing global warming and climate change emissions

    SciTech Connect

    Lau, F.S.

    1996-12-31

    High efficiency advanced coal-based technologies such as Integrated Gasification Combined Cycle (IGCC) that can assist in reducing CO{sub 2} emissions which contribute to Global Warming and Climate Change are becoming commercially available. U-GAS is an advanced gasification technology that can be used in many applications to convert coal in a high efficiency manner that will reduce the total amount of CO{sub 2} produced by requiring less coal-based fuel per unit of energy output. This paper will focus on the status of the installation and performance of the IGT U-GAS gasifiers which were installed at the Shanghai Cooking and Chemical Plant General located in Shanghai, China. Its use in future IGCC project for the production of power and the benefits of IGCC in reducing CO{sub 2} emissions through its high efficiency operation will be discussed.

  3. Biotic Response in Aquatic Reptiles (Testudines) during Earliest Eocene Climatic Warming

    NASA Astrophysics Data System (ADS)

    Holroyd, P. A.; Hutchison, J. H.

    2010-12-01

    The earliest Eocene is marked by significant events of global warming: the Paleocene-Eocene Thermal Maximum (PETM) at ~55.8 Ma and two short-lived events (ETM2 or Elmo and H2) approximately 2 Ma later. These environmental changes induced strong responses in the continental biota. Noteworthy changes in North American mid-latitude faunas and floras that are temporally correlated with earliest Eocene warming events include: increased diversity; turnover; and significant range changes, comprising both northward shifts in ranges of North American taxa as well as intercontinental dispersal across Holarctica. Evidence for these biotic changes comes directly from the fossil record and indirectly from phylogeographic analyses of molecular phylogenies of extant biota. To date, the stratigraphic record of biotic change has only been examined for the flora and terrestrial mammals. Data on reptiles and for continental aquatic systems are particularly lacking. In order to assess the impact of climate-mediated faunal change in aquatic systems during early Paleogene warming, we have focused on developing a detailed record of fossil turtles (Testudines) from the Bighorn Basin of Wyoming, where these records can be directly compared to similarly studied mammalian and floral data and to isotopic studies that provide independent proxies of climate change. Using genus-level occurrence data from more than 450 stratigraphically-constrained localities spanning ~2.5 Ma, we calculated first and last appearances, taxonomic richness, and relative abundance as measured by presence-absence (site occupancy). Among turtles, taxonomic richness increased episodically through the earliest Eocene with two new taxa appearing at the PETM, two immediately following it, and two at Biohorizon B, an interval associated with the younger hyperthermals. These new, immigrant taxa eventually comprised 40% of known generic richness. Phylogenetically, the inferred biogeographic source regions are southern North America and Asia, with an equal number of taxa originating in each area. Although immigrant taxa comprised less than half of the known earliest Eocene diversity, their relative dominance in these assemblages varied markedly. Within the PETM interval, immigrant taxa comprise nearly 70% of occurrences. Post-PETM, as temperatures cooled, immigrant taxa and taxa persisting from the Paleocene showed greater evenness, but immigrant taxa again became dominant with renewed warming. Among immigrant taxa, intercontinental dispersers are much more common than those that that dispersed from southern North America. These data are consistent with and stratigraphically correlative with significant changes in the mammalian fauna and flora of the Bighorn Basin and underline the importance of climatic change as a driver in these events. However, the magnitude and relative importance of intra- vs. intercontinental dispersal has not yet been fully examined in other taxonomic groups. The asymmetry of response following immigration that we observe in turtles may be taxon-specific, unique to aquatic systems, or may illustrate a more general pattern of how biotas respond to significant climate change.

  4. Effects of climatic warming on Lakes of the central boreal forest

    SciTech Connect

    Schindler, D.W.; Beaty, K.G.; Fee, E.J.; Cruikshank, D.R.; DeBruyn, E.R.; Findlay, D.L.; Linsey, G.A.; Shearer, J.A.; Stainton, M.P.; Turner, M.A. )

    1990-11-16

    Twenty years of climatic, hydrologic, and ecological records for the Experimental Lakes Area of northwestern Ontario show that air and lake temperatures have increased by 2{degree}C and the length of the ice-free season has increased by 3 weeks. Higher than normal evaporation and lower than average precipitation have decreased rates of water renewal in lakes. Concentrations of most chemicals have increased in both lakes and streams because of decreased water renewal and forest fires in the catchments. In Lake 239, populations and diversity of phytoplankton also increased, but primary production showed no consistent trend. Increased wind velocities, increased transparency, and increased exposure to wind of lakes in burned catchments caused thermoclines to deepen. As a result, summer habitats for cold stenothermic organisms like lake trout and opossum shrimp decreased. Our observations may provide a preview of the effects of increased greenhouse warming on boreal lakes. 27 refs., 1 fig.

  5. Effects of environmental temperature change on mercury absorpt