Sample records for warm climatic conditions

  1. Why were Past North Atlantic Warming Conditions Associated with Drier Climate in the Western United States?

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; Potter, G. L.; Montanez, I. P.; Otto-Bliesner, B. L.; Behling, P.; Oster, J. L.

    2014-12-01

    Investigating climate dynamics governing rainfall over the western US during past warmings and coolings of the last glacial and deglaciation is pertinent to understanding how precipitation patterns might change with future global warming, especially as the processes driving the global hydrological reorganization affecting this drought-prone region during these rapid temperature changes remain unresolved. We present model climates of the Bølling warm event (14,500 years ago) and Younger Dryas cool event (12,200 years ago) that i) uniquely enable the assessment of dueling hypothesis about the atmospheric teleconnections responsible for abrupt temperature shifts in the North Atlantic region to variations in moisture conditions across the western US, and ii) show that existing hypotheses about these teleconnections are unsupported. Modeling results show no evidence for a north-south shift of the Pacific winter storm track, and we argue that a tropical moisture source with evolving trajectory cannot explain alternation between wet/dry conditions, which have been reconstructed from the proxy record. Alternatively, model results support a new hypothesis that variations in the intensity of the winter storm track, corresponding to its expansion/contraction, can account for regional moisture differences between warm and cool intervals of the last deglaciation. Furthermore, we demonstrate that the mechanism forcing the teleconnection between the North Atlantic and western US is the same across different boundary conditions. In our simulation, during the last deglaciation, and in simulations of future warming, perturbation of the Rossby wave structure reconfigures the atmospheric state. This reconfiguration affects the Aleutian Low and high-pressure ridge over and off of the northern North American coastline driving variability in the storm track. Similarity between the processes governing the climate response during these distinct time intervals illustrates the robust nature

  2. Abrupt climate warming in East Antarctica during the early Holocene

    NASA Astrophysics Data System (ADS)

    Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike

    2007-08-01

    We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.

  3. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S; Shen, Bo

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are consideredmore » as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system

  4. Warming trumps CO2: future climate conditions suppress carbon fluxes in two dominant boreal tree species

    NASA Astrophysics Data System (ADS)

    Way, D.; Dusenge, M. E.; Madhavji, S.

    2017-12-01

    Increases in CO2 are expected to raise air temperatures in northern latitudes by up to 8 °C by the end of the century. Boreal forests in these regions play a large role in the global carbon cycle, and the responses of boreal tree species to climate drivers will thus have considerable impacts on the trajectory of future CO2 increases. We grew two dominant North American boreal tree species at a range of future climate conditions to assess how carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana) and tamarack (Larix laricina) were grown from seed under either ambient (400 ppm) or elevated CO2 concentrations (750 ppm) and either ambient temperatures, moderate warming (ambient +4 °C), or extreme warming (ambient +8 °C) for six months. We measured temperature responses of net photosynthesis, maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax) and dark respiration to determine acclimation to the climate treatments. Overall, growth temperature had a strong effect on carbon fluxes, while there were no significant effects of growth CO2. In both species, the photosynthetic thermal optimum increased and maximum photosynthetic rates were reduced in warm-grown seedlings, but the strength of these changes varied between species. Vcmax and Jmax were also reduced in warm-grown seedlings, and this correlated with reductions in leaf N concentrations. Warming increased the activation energy for Vcmax and the thermal optimum for Jmax in both species. Respiration acclimated to elevated growth temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10 °C increase in leaf temperature). Our results show that climate warming is likely to reduce carbon fluxes in these boreal conifers, and that photosynthetic parameters used to model photosynthesis in dynamic global vegetation models acclimate to increased temperatures, but show little response to elevated CO2.

  5. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  6. Research on trend of warm-humid climate in Central Asia

    NASA Astrophysics Data System (ADS)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  7. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  8. The long-term fate of permafrost peatlands under rapid climate warming

    PubMed Central

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  9. Climate warming drives local extinction: Evidence from observation and experimentation

    PubMed Central

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  10. Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada

    PubMed Central

    Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.

    2010-01-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984

  11. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    PubMed

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  12. State-dependent climate sensitivity in past warm climates and its implications for future climate projections.

    PubMed

    Caballero, Rodrigo; Huber, Matthew

    2013-08-27

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.

  13. Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.

    2017-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.

  14. Effects of warm and cold climate conditions on capelin (Mallotus villosus) and Pacific herring (Clupea pallasii) in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Andrews, Alexander G.; Strasburger, Wesley W.; Farley, Edward V.; Murphy, James M.; Coyle, Kenneth O.

    2016-12-01

    Climate warming has impacted the southern extent of sea ice in the eastern Bering Sea (EBS) ecosystem, leading to many changes in ocean conditions and food webs there. We explore how these changes have affected two key forage fish species, capelin (Mallotus villosus) and Pacific herring (Clupea pallasii), examining the effects of climate change on this commercially important ecosystem in the EBS. Catch per unit effort (CPUE) data from surface trawls, size, and diet of capelin and Pacific herring were collected during a series of warm and cold years by fisheries oceanographic surveys conducted from mid-August to early October 2003 through 2011. Overall, mean CPUE for both species was higher in the northeastern Bering Sea [NEBS; capelin=1.2 kg/km2 (warm) and 40.0 kg/km2 (cold); herring=141.1 kg/km2 (warm) and 132.4 kg/km2 (cold)] relative to the southeastern Bering Sea [SEBS; capelin=0.2 kg/km2 (warm) and 5.8 kg/km2 (cold); herring=15.8 kg/km2 (warm) and 24.5 kg/km2 (cold)], irrespective of temperature conditions. Capelin mean CPUE was significantly lower during warm years than during cold years [p<0.001; 0.6 kg/km2 (warm), 19.0 kg/km2 (cold)]. Pacific herring mean CPUE was less variable between warm and cold years [p<0.001; 63.8 kg/km2 (warm), 66.2 kg/km2 (cold)], but was still significantly less during warm years than cold. Capelin and herring lengths remained relatively constant between climate periods. Capelin lengths were similar among oceanographic domains [104 mm (South Inner domain), 112 mm (South Middle domain), 107 mm (North Inner domain), and 104 mm (North Middle domain)], while herring were larger in domains further offshore [123 mm (South Inner domain), 232 mm (South Middle domain), 260 mm (South Outer domain), 129 mm (North Inner domain), and 198 mm (North Middle domain)]. Diets for both species were significantly different between climate periods. Large crustacean prey comprised a higher proportion of the diets in most regions during cold years. Age-0

  15. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  16. Experimental evaluation of reproductive response to climate warming in an oviparous skink.

    PubMed

    Lu, Hongliang; Wang, Yong; Tang, Wenqi; DU, Weiguo

    2013-06-01

    The impact of climate warming on organisms is increasingly being recognized. The experimental evaluation of phenotypically plastic responses to warming is a critical step in understanding the biological effects and adaptive capacity of organisms to future climate warming. Oviparous Scincella modesta live in deeply-shaded habitats and they require low optimal temperatures during embryonic development, which makes them suitable subjects for testing the effects of warming on reproduction. We raised adult females and incubated their eggs under different thermal conditions that mimicked potential climate warming. Female reproduction, embryonic development and hatchling traits were monitored to evaluate the reproductive response to warming. Experimental warming induced females to lay eggs earlier, but it did not affect the developmental stage of embryos at oviposition or the reproductive output. The high temperatures experienced by gravid females during warming treatments reduced the incubation period and increased embryonic mortality. The locomotor performance of hatchlings was not affected by the maternal thermal environment, but it was affected by the warming treatment during embryonic development. Our results suggest that climate warming might have a profound effect on fitness-relevant traits both at embryonic and post-embryonic stages in oviparous lizards. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  17. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  18. Climate warming and Bergmann's rule through time: is there any evidence?

    PubMed Central

    Teplitsky, Celine; Millien, Virginie

    2014-01-01

    Climate change is expected to induce many ecological and evolutionary changes. Among these is the hypothesis that climate warming will cause a reduction in body size. This hypothesis stems from Bergmann's rule, a trend whereby species exhibit a smaller body size in warmer climates, and larger body size under colder conditions in endotherms. The mechanisms behind this rule are still debated, and it is not clear whether Bergmann's rule can be extended to predict the effects of climate change through time. We reviewed the primary literature for evidence (i) of a decrease in body size in response to climate warming, (ii) that changing body size is an adaptive response and (iii) that these responses are evolutionary or plastic. We found weak evidence for changes in body size through time as predicted by Bergmann's rule. Only three studies investigated the adaptive nature of these size decreases. Of these, none reported evidence of selection for smaller size or of a genetic basis for the size change, suggesting that size decreases could be due to nonadaptive plasticity in response to changing environmental conditions. More studies are needed before firm conclusions can be drawn about the underlying causes of these changes in body size in response to a warming climate. PMID:24454554

  19. Impact of climate warming on upper layer of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Delworth, Thomas L.; Rosati, Anthony; Zhang, Rong; Anderson, Whit G.; Zeng, Fanrong; Stock, Charles A.; Gnanadesikan, Anand; Dixon, Keith W.; Griffies, Stephen M.

    2013-01-01

    The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.

  20. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  1. The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions

    NASA Astrophysics Data System (ADS)

    Werth, D.; Avissar, R.

    2006-12-01

    Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.

  2. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  3. Climatic warming destabilizes forest ant communities.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  4. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  5. Climate impacts on human livelihoods at 1.5° and 2° of warming

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea

    2017-04-01

    The measurement of impacts of climate change on socio-economic systems remains challenging and especially multi-dimensional outcome measures remain scarce. Climate impacts can directly affect many dimensions of human livelihoods, which cannot be addressed by monetary assessments alone. Multi-dimensional measures are essential in order to understand the full range of consequences of climate change and to understand the costs that higher levels of warming may have, not only in economic terms, but also in terms of non-market impacts on human livelihood. The AHEAD framework aims at measuring "Adequate Human livelihood conditions for wEll-being And Development" in a multi-dimensional framework, allowing to focus on resources and conditions which are a requirement to attain well-being. In this contribution we build on previous implementations of AHEAD and focus on differences in climate impacts at 1.5° and 2° of warming in order to improve our understanding of the societal consequences of these different warming levels.

  6. Impacts on regional climate of an afforestation scenario under a +2°C global warming climate

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Noblet-Ducoudré Nathalie, de; Marc, Stéfanon

    2017-04-01

    Through surface-atmosphere interactions (SAI), land-use and land-cover changes (LULCCs) alter atmospheric conditions with effects on climate at different scales, from local/regional (a few ten kilometres) (Pielke et al., 2011) to global scales (a few hundred kilometres) (Mahmood et al., 2014). Focusing on the regional scale, in the context of climate change, LULCCs may either enhance or dampen climate impacts via changes in SAI they may initiate. Those LULCC-driven atmospheric impacts could in turn influence e.g. the functioning of terrestrial ecosystems, with consequences on mitigation and adaptation strategies. Despite LULCC impacts on regional climate are largely discussed in the literature, in Europe information is missing on LULCC impacts under future climate conditions on a country scale (Galos et al., 2015). The latest COPs have urged the scientific community to explore the impacts of reduced global warming (1.5°C to a +2°C) on the Earth system. LULCCs will be one major tool to achieve such targets. In this framework, we investigate impacts on regional climate of a modified landscape under a +2°C climatic scenario. To this purpose, we performed sensitivity studies over western Europe with a fully coupled land-atmosphere regional climate model, WRF-ORCHIDEE (Drobinski et al., 2012, Stefanon et al., 2014). A +2°C scenario was selected among those proposed by the "Impact2C" project (Vautard et al., 2014), and the afforested land-cover scenario proposed in the RCP4.5 is prescribed. We have chosen the maximum extent of forest RCP4.5 simulates for Europe at the end of the 21st century. WRF-ORCHIDEE is fed with boundary atmospheric conditions from the global climate model LMDZ for PD (1971-2000) and the +2°C warming period for the LMDZ model (2028-2057). Preliminary results over the target domain show that, under a +2°C global warming scenario, afforestation contributes by 2% to the total warming due to both climate change and LULCCs. During summer, the

  7. Lagging adaptation to warming climate in Arabidopsis thaliana.

    PubMed

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-03

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.

  8. Lagging adaptation to warming climate in Arabidopsis thaliana

    PubMed Central

    Wilczek, Amity M.; Cooper, Martha D.; Korves, Tonia M.; Schmitt, Johanna

    2014-01-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species’ native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species’ native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  9. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  10. Analysing regional climate change in Africa in a 1.5 °C global warming world

    NASA Astrophysics Data System (ADS)

    Weber, Torsten; Haensler, Andreas; Jacob, Daniela

    2017-04-01

    At the 21st session of the UNFCCC Conference of the Parties (COP21) in Paris, a reaffirmation to strengthen the effort to limit the global temperature increase to 1.5 °C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. Hence, providing a detailed analysis of the projected climate changes in a 1.5 °C global warming scenario will allow the African society to undertake measures for adaptation in order to mitigate potential negative consequences. In order to provide such climate change information, the existing CORDEX Africa ensemble for RCP2.6 scenario simulations has systematically been increased by conducting additional REMO simulations using data from various global circulation models (GCMs) as lateral boundary conditions. Based on this ensemble, which now consists of eleven CORDEX Africa RCP2.6 regional climate model simulations from three RCMs (forced with different GCMs), various temperature and precipitation indices such as number of cold/hot days and nights, duration of the rainy season, the amount of rainfall in the rainy seasons and the number of dry spells have been calculated for a 1.5 °C global warming scenario. The applied method to define the 1.5 °C global warming period has been already applied in the IMPACT2C project. In our presentation, we will discuss the analysis of the climate indices in a 1.5 °C global warming world for the CORDEX-Africa region. Amongst presenting the magnitude of projected changes, we will also address the question for selected indices if the changes projected in a 1.5 °C global warming scenario are already larger than the climate variability and we will also draw links to the changes projected under a more extreme scenario.

  11. Size, diet, and condition of age-0 Pacific cod (Gadus macrocephalus) during warm and cool climate states in the eastern Bering sea

    NASA Astrophysics Data System (ADS)

    Farley, Edward V.; Heintz, Ron A.; Andrews, Alex G.; Hurst, Thomas P.

    2016-12-01

    The revised Oscillating Control Hypothesis for the Bering Sea suggests that recruitment of groundfish is linked to climatic processes affecting seasonal sea ice that, in turn, drives the quality and quantity of prey available to young fish for growth and energy storage during their critical life history stages. We test this notion for age-0 (juvenile) Pacific cod (Gadus macrocephalus) by examining the variability in size, diet, and energetic condition during warm (2003-2005), average (2006), and cool (2007-2011) climate states in the eastern Bering Sea. Juvenile cod stomachs contained high proportions of age-0 walleye pollock (by wet weight) during years with warm sea temperatures with a shift to euphausiids and large copepods during years with cool sea temperatures. Juvenile cod were largest during years with warm sea temperatures and smallest during years with cool sea temperatures. However, energetic status (condition) of juvenile cod was highest during years with cool sea temperatures. This result is likely linked to the shift to high quality, lipid-rich prey found in greater abundance on the shelf and in the stomach contents of juvenile cod during cool years. Our examination of juvenile cod size, diet, and energetic status provided results that are similar to those from studies on juvenile pollock, suggesting that the common mechanisms regulating gadid recruitment on the eastern Bering Sea shelf are climate state, prey quality and quantity, and caloric density of gadids prior to winter.

  12. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  13. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  14. Dominance of climate warming effects on recent drying trends over wet monsoon regions

    NASA Astrophysics Data System (ADS)

    Park, Chang-Eui; Jeong, Su-Jong; Ho, Chang-Hoi; Park, Hoonyoung; Piao, Shilong; Kim, Jinwon; Feng, Song

    2017-09-01

    Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961-2010. Before the early 1980s (1961-1983), change in precipitation is a primary condition for determining aridity trends. In the later period (1984-2010), the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.

  15. Farmland-atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions.

    PubMed

    Gao, Xiang; Ouyang, Wei; Hao, Zengchao; Shi, Yandan; Wei, Peng; Hao, Fanghua

    2017-02-01

    Although climate warming and agricultural land use changes are two of the primary instigators of increased diffuse pollution, they are usually considered separately or additively. This likely lead to poor decisions regarding climate adaptation. Climate warming and farmland responses have synergistic consequences for diffuse nitrogen pollution, which are hypothesized to present different spatio-temporal patterns. In this study, we propose a modeling framework to simulate the synergistic impacts of climate warming and warming-induced farmland shifts on diffuse pollution. Active accumulated temperature response for latitudinal and altitudinal directions was predicted based on a simple agro-climate model under different temperature increments (△T 0 is from 0.8°C to 1.4°C at an interval of 0.2°C). Spatial distributions of dryland shift to paddy land were determined by considering accumulated temperature. Different temperature increments and crop distributions were inserted into Soil and Water Assessment Tool model, which quantified the spatio-temporal changes of nitrogen. Warming led to a decrease of the annual total nitrogen loading (2.6%-14.2%) in the low latitudes compared with baseline, which was larger than the decrease (0.8%-6.2%) in the high latitudes. The synergistic impacts amplified the decrease of the loading in the low and high latitudes at the sub-basin scale. Warming led to a decrease of the loading at a rate of 0.35kg/ha/°C, which was lower than the synergistic impacts (3.67kg/ha/°C) at the watershed level. However, warming led to the slight increase of the annual averaged NO3 (LAT) (0.16kg/ha/°C), which was amplified by the synergistic impacts (0.22kg/ha/°C). Expansion of paddy fields led to a decrease in the monthly total nitrogen loading throughout the year, but amplified an increase in the loading in August and September. The decreased response in spatio-temporal nitrogen patterns is substantially amplified by farmland-atmosphere feedbacks

  16. Modelling middle pliocene warm climates of the USA

    USGS Publications Warehouse

    Haywood, A.M.; Valdes, P.J.; Sellwood, B.W.; Kaplan, J.O.; Dowsett, H.J.

    2001-01-01

    The middle Pliocene warm period represents a unique time slice in which to model and understand climatic processes operating under a warm climatic regime. Palaeoclimatic model simulations, focussed on the United States of America (USA), for the middle Pliocene (ca 3 Ma) were generated using the USGS PRISM2 2?? ?? 2?? data set of boundary conditions and the UK Meteorological Office's HadAMS General Circulation Model (GCM). Model results suggest that conditions in the USA during the middle Pliocene can be characterised as annually warmer (by 2?? to 4??C), less seasonal, wetter (by a maximum of 4 to 8 mm/day) and with an absence of freezing winters over the central and southern Great Plains. A sensitivity experiment suggests that the main forcing mechanisms for surface temperature changes in near coastal areas are the imposed Pliocene sea surface temperatures (SST's). In interior regions, reduced Northern Hemisphere terrestrial ice, combined with less snow cover and a reduction in the elevation of the western cordillera of North America, generate atmospheric circulation changes and positive albedo feedbacks that raise surface temperatures. A complex set of climatic feedback mechanisms cause an enhancement of the hydrological cycle magnifying the moisture bearing westerly wind belt during the winter season (Dec., Jan., Feb.). Predictions produced by the model are in broad agreement with available geological evidence. However, the GCM appears to underestimate precipitation levels in the interior and central regions of the southern USA. Copyright: Palaeontological Association, 22 June 2001.

  17. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  18. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  19. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  20. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.

    PubMed

    Lyons, J; Stewart, J S; Mitro, M

    2010-11-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  1. Ocean Drilling Program Records of the Last Five Million Years: A View of the Ocean and Climate System During a Warm Period and a Major Climate Transition

    NASA Astrophysics Data System (ADS)

    Ravelo, A. C.

    2003-12-01

    The warm Pliocene (4.7 to 3.0 Ma), the most recent period in Earth's history when global equilibrium climate was warmer than today, provides the opportunity to understand what role the components of the climate system that have a long timescale of response (cryosphere and ocean) play in determining globally warm conditions, and in forcing the major global climate cooling after 3.0 Ma. Because sediments of this age are well preserved in many locations in the world's oceans, we can potentially study this warm period in detail. One major accomplishment of the Ocean Drilling Program is the recovery of long continuous sediment sequences from all ocean basins that span the last 5.0 Ma. Dozens of paleoceanographers have generated climate records from these sediments. I will present a synthesis of these data to provide a global picture of the Pliocene warm period, the transition to the cold Pleistocene period, and changes in climate sensitivity related to this transition. In the Pliocene warm period, tropical sea surface temperature (SST) and global climate patterns suggest average conditions that resemble modern El Ni¤os, and deep ocean reconstructions indicate enhanced thermohaline overturning and reduced density and nutrient stratification. The data indicate that the warm conditions were not related to tectonic changes in ocean basin shape compared to today, rather they reflect the long term adjustment of the climate system to stronger than modern radiative forcing. The warm Pliocene to cold Pleistocene transition provides an opportunity to study the feedbacks of various components of the climate system. The marked onset of significant Northern hemisphere glaciation (NHG) at 2.75 Ma occurred in concert with a reduction in deep ocean ventilation, but cooling in subtropical and tropical regions was more gradual until Walker circulation was established in a major step at 2.0 Ma. Thus, regional high latitude ice albedo feedbacks, rather than low latitude processes, must

  2. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas

    NASA Astrophysics Data System (ADS)

    López-Moreno, J. I.; Gascoin, S.; Herrero, J.; Sproles, E. A.; Pons, M.; Alonso-González, E.; Hanich, L.; Boudhar, A.; Musselman, K. N.; Molotch, N. P.; Sickman, J.; Pomeroy, J.

    2017-07-01

    In this study we quantified the sensitivity of snow to climate warming in selected mountain sites having a Mediterranean climate, including the Pyrenees in Spain and Andorra, the Sierra Nevada in Spain and California (USA), the Atlas in Morocco, and the Andes in Chile. Meteorological observations from high elevations were used to simulate the snow energy and mass balance (SEMB) and calculate its sensitivity to climate. Very different climate sensitivities were evident amongst the various sites. For example, reductions of 9%-19% and 6-28 days in the mean snow water equivalent (SWE) and snow duration, respectively, were found per °C increase. Simulated changes in precipitation (±20%) did not affect the sensitivities. The Andes and Atlas Mountains have a shallow and cold snowpack, and net radiation dominates the SEMB; and explains their relatively low sensitivity to climate warming. The Pyrenees and USA Sierra Nevada have a deeper and warmer snowpack, and sensible heat flux is more important in the SEMB; this explains the much greater sensitivities of these regions. Differences in sensitivity help explain why, in regions where climate models project relatively greater temperature increases and drier conditions by 2050 (such as the Spanish Sierra Nevada and the Moroccan Atlas Mountains), the decline in snow accumulation and duration is similar to other sites (such as the Pyrenees and the USA Sierra Nevada), where models project stable precipitation and more attenuated warming. The snowpack in the Andes (Chile) exhibited the lowest sensitivity to warming, and is expected to undergo only moderate change (a decrease of <12% in mean SWE, and a reduction of < 7 days in snow duration under RCP 4.5). Snow accumulation and duration in the other regions are projected to decrease substantially (a minimum of 40% in mean SWE and 15 days in snow duration) by 2050.

  3. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.

    PubMed

    Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2015-01-01

    As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. © 2014 John Wiley & Sons Ltd.

  4. Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Castro, C. L.

    2009-12-01

    The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the

  5. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  6. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  7. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  8. Non-linear responses of glaciated prairie wetlands to climate warming

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.

    2016-01-01

    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies.

  9. Results from the BRACE 1.5 study: Climate change impacts of 1.5 C and 2 C warming

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Anderson, B.; Monaghan, A. J.; Ren, X.; Sanderson, B.; Tebaldi, C.

    2017-12-01

    In 2015, 195 countries negotiated the Paris Agreement on climate change, which set long-term goals of limiting global mean warming to well below 2 C and possibly 1.5 C. This event stimulated substantial scientific interest in climate outcomes and impacts on society associated with those levels of warming. Recently, the first set of global climate model simulations explicitly designed to meet those targets were undertaken with the Community Earth System Model (CESM) for use by the research community (Sanderson et al, accepted). The BRACE 1.5 project models societal impacts from these climate outcomes, combined with assumptions about future socioeconomic conditions according to the Shared Socioeconomic Pathways. These analyses build on a recently completed study of the Benefits of Reduced Anthropogenic Climate changE (BRACE), published as a set of 20 papers in Climatic Change, which examined the difference in impacts between two higher scenarios resulting in about 2.5 C and 3.7 C warming by late this century. BRACE 1.5 consists of a set of six papers to be submitted to a special collection in Environmental Research Letters that takes a similar approach but focuses on impacts at 1.5 and 2 C warming. We ask whether impacts differ substantially between the two climate scenarios, accounting for uncertainty in climate outcomes through the use of initial condition ensembles of CESM simulations, and in societal conditions by using alternative SSP-based development pathways. Impact assessment focuses on the health and agricultural sectors; modeling approaches include the use of a global mutli-region CGE model for economic analysis, both a process-based and an empirical crop model, a model of spatial population change, a model of climatic suitability for the aedes aegypti mosquito, and an epidemiological model of heat-related mortality. A methodological analysis also evaluates the use of climate model emulation techniques for providing climate information sufficient to

  10. Low Elevation Riparian Environments: Warm-Climate Refugia for Conifers in the Great Basin, USA?

    NASA Astrophysics Data System (ADS)

    Millar, C.; Charlet, D. A.; Westfall, R. D.; Delany, D.

    2015-12-01

    The Great Basin, USA, contains hundreds of small to large mountain ranges. Many reach alpine elevations, which are separated from each other by low-elevation basins currently inhospitable to conifer growth. Many of these ranges support montane and subalpine conifer species that have affinities to the Sierra Nevada or Rocky Mountains, and from which these conifers migrated during cool periods of the Pleistocene. Under Holocene climates, the Great Basin geography became a terrestrial island-archipelago, wherein conifer populations are isolated among ranges, and inter-range migration is highly limited. During warm intervals of the Holocene, conifers would be expected to have migrated upslope following favorable conditions, and extirpation would be assumed to result from continued warming. Independent patterns, repeating across multiple species' distributions, however, suggest that refugia were present in these ranges during warm periods, and that low elevation environments below the current main distributions acted as climatic refugia. We hypothesize that cool, narrow, and north-aspect ravines, which during cool climates support persistent or seasonal creeks and deciduous riparian communities, become available as conifer habitat when warming climates desiccate creeks and deplete riparian species. We further speculate that cold-air drainage, reduced solar insolation, lower wind exposure, and higher water tables in these topographic positions support populations of montane and subalpine conifers even during warm climate intervals when high elevations are unfavorable for conifer persistence. On return to cool climates, low elevation refugia become sources for recolonizing higher slopes, and/or continue to persist as relictual populations. We present several lines of evidence supporting this hypothesis, and speculate that low-elevation, extramarginal riparian environments might act as climate refugia for Great Basin conifers in the future as well.

  11. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    NASA Astrophysics Data System (ADS)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  12. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  13. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  14. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  15. Climatic warming and the future of bison as grazers

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-11-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  16. The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata.

    PubMed

    Güizado-Rodríguez, Martha Anahí; Ballesteros-Barrera, Claudia; Casas-Andreu, Gustavo; Barradas-Miranda, Victor Luis; Téllez-Valdés, Oswaldo; Salgado-Ugarte, Isaías Hazarmabeth

    2012-12-01

    The ectothermic nature of reptiles makes them especially sensitive to global warming. Although climate change and its implications are a frequent topic of detailed studies, most of these studies are carried out without making a distinction between populations. Here we present the first study of an Aspidoscelis species that evaluates the effects of global warming on its distribution using ecological niche modeling. The aims of our study were (1) to understand whether predicted warmer climatic conditions affect the geographic potential distribution of different climatic groups of Aspidoscelis costata costata and (2) to identify potential altitudinal changes of these groups under global warming. We used the maximum entropy species distribution model (MaxEnt) to project the potential distributions expected for the years 2020, 2050, and 2080 under a single simulated climatic scenario. Our analysis suggests that some climatic groups of Aspidoscelis costata costata will exhibit reductions and in others expansions in their distribution, with potential upward shifts toward higher elevation in response to climate warming. Different climatic groups were revealed in our analysis that subsequently showed heterogeneous responses to climatic change illustrating the complex nature of species geographic responses to environmental change and the importance of modeling climatic or geographic groups and/or populations instead of the entire species' range treated as a homogeneous entity.

  17. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.

    PubMed

    Bjorkman, Anne D; Vellend, Mark; Frei, Esther R; Henry, Gregory H R

    2017-04-01

    Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species. © 2016 John Wiley & Sons Ltd.

  18. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  19. Climate and tourism in the Black Forest during the warm season.

    PubMed

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  20. Why tropical forest lizards are vulnerable to climate warming.

    PubMed

    Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore

    2009-06-07

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.

  1. Why tropical forest lizards are vulnerable to climate warming

    PubMed Central

    Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore

    2009-01-01

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762

  2. Changes in ENSO amplitude under climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  3. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  4. NorTropical Warm Pool variability and its effects on the climate of Colombia

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodriguez, Deisy; Coca-Domínguez, Oswaldo

    2015-04-01

    Much has been said about the effects of El Niño Southern Oscillation (ENSO) on oceanographic and climatic conditions in Colombia, but little is known about the influence of the Atlantic Warm Pool (AWP), which includes the gulf of Mexico, the Caribbean and the western tropical North Atlantic. The AWP has been identified by some authors as an area that influences the Earth's climate, associated with anomalous summer rainfall and hurricane activity in the Atlantic. The aim of this study was to understand the variation in the AWP and its effects on the climate of Colombia. An annual average of sea surface temperature (SST) was obtained from the composition of monthly images of the Spectroradiometer Moderate Resolution Imaging Spectroradiometer (MODIS), with resolution of 4 km, for one area that comprises the marine territory of Colombia, Panama, Costa Rica both the Pacific and the Caribbean, and parts of the Caribbean coast of Nicaragua, for the period between 2007 and 2013. The results suggest that warm pool is not restricted to the Caribbean, but it also covers a strip Pacific bordering Central America and the northern part of the Colombian coast, so it should be called the Nor-Tropical Warm pool (NTWP). Within the NTWP higher SST correspond to a marine area extending about 1 degree north and south of Central and out of the Colombian Caribbean coast. The NTWP also showed large interannual variability, with the years 2008 and 2009 with lower SST in average, while 2010, 2011 and 2013 years with warmer conditions, matching with greater precipitation. It was also noted that during warmer conditions (high amplitude NTWP) the cold tongue from the south Pacific has less penetration on Colombian coast. Finally, the results suggest a strong influence of NTWP in climatic conditions in Colombia.

  5. Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming.

    PubMed

    Maclean, Ilya M D; Suggitt, Andrew J; Wilson, Robert J; Duffy, James P; Bennie, Jonathan J

    2017-01-01

    The existence of fine-grain climate heterogeneity has prompted suggestions that species may be able to survive future climate change in pockets of suitable microclimate, termed 'microrefugia'. However, evidence for microrefugia is hindered by lack of understanding of how rates of warming vary across a landscape. Here, we present a model that is applied to provide fine-grained, multidecadal estimates of temperature change based on the underlying physical processes that influence microclimate. Weather station and remotely derived environmental data were used to construct physical variables that capture the effects of terrain, sea surface temperatures, altitude and surface albedo on local temperatures, which were then calibrated statistically to derive gridded estimates of temperature. We apply the model to the Lizard Peninsula, United Kingdom, to provide accurate (mean error = 1.21 °C; RMS error = 1.63 °C) hourly estimates of temperature at a resolution of 100 m for the period 1977-2014. We show that rates of warming vary across a landscape primarily due to long-term trends in weather conditions. Total warming varied from 0.87 to 1.16 °C, with the slowest rates of warming evident on north-east-facing slopes. This variation contributed to substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in the length of the frost-free season varied from +11 to -54 days and the increase in annual growing degree-days from 51 to 267 °C days. Spatial variation in warming was caused primarily by a decrease in daytime cloud cover with a resulting increase in received solar radiation, and secondarily by a decrease in the strength of westerly winds, which has amplified the effects on temperature of solar radiation on west-facing slopes. We emphasize the importance of multidecadal trends in weather conditions in determining spatial variation in rates of warming, suggesting that locations experiencing least warming may not remain

  6. Indian Ocean warming modulates Pacific climate change.

    PubMed

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  7. Phenological sequences reveal aggregate life history response to climatic warming.

    PubMed

    Post, Eric S; Pedersen, Christian; Wilmers, Christopher C; Forchhammer, Mads C

    2008-02-01

    Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.

  8. Detecting urban warming signals in climate records

    NASA Astrophysics Data System (ADS)

    He, Yuting; Jia, Gensuo; Hu, Yonghong; Zhou, Zijiang

    2013-07-01

    Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13°C rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30°C (10 yr)-1 in the last three decades.

  9. Response of ocean ecosystems to climate warming

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give

  10. Allocation trade-off under climate warming in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Camargo, Arley

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  11. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  12. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  13. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  14. Global warming precipitation accumulation increases above the current-climate cutoff scale

    PubMed Central

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  15. Global warming precipitation accumulation increases above the current-climate cutoff scale

    NASA Astrophysics Data System (ADS)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-02-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  16. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  17. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    PubMed

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  18. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE PAGES

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; ...

    2017-01-23

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  19. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia

    PubMed Central

    Camarero, J. Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q.; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin

    2017-01-01

    Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950–2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells. PMID:29109266

  20. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia.

    PubMed

    Sánchez-Salguero, Raúl; Camarero, J Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin; Carreira, José A; Linares, Juan C

    2017-11-21

    Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.

  1. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Lyons, J.; Stewart, J.S.; Mitro, M.

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.

  2. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Stewart, Jana S.; Lyons, John D.; Matt Mitro,

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.

  3. Climate warming and agricultural stressors interact to determine stream periphyton community composition.

    PubMed

    Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of

  4. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2007-12-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  5. Future Warming Patterns Linked to Today's Climate Variability.

    PubMed

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  6. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  7. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  8. How much would five trillion tonnes of carbon warm the climate?

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.

    2016-04-01

    While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5Eg

  9. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  10. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  11. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  12. Evaluating the accuracy of climate change pattern emulation for low warming targets

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; Knutti, Reto

    2018-05-01

    Global climate policy is increasingly debating the value of very low warming targets, yet not many experiments conducted with global climate models in their fully coupled versions are currently available to help inform studies of the corresponding impacts. This raises the question whether a map of warming or precipitation change in a world 1.5 °C warmer than preindustrial can be emulated from existing simulations that reach higher warming targets, or whether entirely new simulations are required. Here we show that also for this type of low warming in strong mitigation scenarios, climate change signals are quite linear as a function of global temperature. Therefore, emulation techniques amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern scaling) provide a viable way forward. The errors introduced are small relative to the spread in the forced response to a given scenario that we can assess from a multi-model ensemble. They are also small relative to the noise introduced into the estimates of the forced response by internal variability within a single model, which we can assess from either control simulations or initial condition ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses the internal variability, both important sources of uncertainty for impact assessment, or when the scenarios have very different characteristics in the composition of the forcings. Taking advantage of an available suite of coupled model simulations under low-warming and intermediate scenarios, we evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a substantial contribution to the total uncertainty.

  13. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  14. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  15. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination

  16. Sustained climate warming drives declining marine biological productivity

    NASA Astrophysics Data System (ADS)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  17. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change.

    PubMed

    Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W

    2018-01-01

    The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.

  19. Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils.

    PubMed

    De Frenne, Pieter; Coomes, David A; De Schrijver, An; Staelens, Jeroen; Alexander, Jake M; Bernhardt-Römermann, Markus; Brunet, Jörg; Chabrerie, Olivier; Chiarucci, Alessandro; den Ouden, Jan; Eckstein, R Lutz; Graae, Bente J; Gruwez, Robert; Hédl, Radim; Hermy, Martin; Kolb, Annette; Mårell, Anders; Mullender, Samantha M; Olsen, Siri L; Orczewska, Anna; Peterken, George; Petřík, Petr; Plue, Jan; Simonson, William D; Tomescu, Cezar V; Vangansbeke, Pieter; Verstraeten, Gorik; Vesterdal, Lars; Wulf, Monika; Verheyen, Kris

    2014-04-01

    Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Sustained climate warming drives declining marine biological productivity

    DOE PAGES

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; ...

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less

  1. Sustained climate warming drives declining marine biological productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less

  2. Global mean temperature indicators linked to warming levels avoiding climate risks

    NASA Astrophysics Data System (ADS)

    Pfleiderer, Peter; Schleussner, Carl-Friedrich; Mengel, Matthias; Rogelj, Joeri

    2018-06-01

    International climate policy uses global mean temperature rise limits as proxies for societally acceptable levels of climate change. These limits are informed by risk assessments which draw upon projections of climate impacts under various levels of warming. Here we illustrate that indicators used to define limits of warming and those used to track the evolution of the Earth System under climate change are not directly comparable. Depending on the methodological approach, differences can be time-variant and up to 0.2 °C for a warming of 1.5 °C above pre-industrial levels. This might lead to carbon budget overestimates of about 10 years of continued year-2015 emissions, and about a 10% increase in estimated 2100 sea-level rise. Awareness of this definitional mismatch is needed for a more effective communication between scientists and decision makers, as well as between the impact and physical climate science communities.

  3. Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.

  4. Climate warming enhances snow avalanche risk in the Western Himalayas

    PubMed Central

    Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.

    2018-01-01

    Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224

  5. Mechanistic Lake Modeling to Understand and Predict Heterogeneous Responses to Climate Warming

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L. A.; Rose, K. C.; Hansen, G. J.

    2016-12-01

    Substantial warming has been documented for of hundreds globally distributed lakes, with likely impacts on ecosystem processes. Despite a clear pattern of widespread warming, thermal responses of individual lakes to climate change are often heterogeneous, with the warming rates of neighboring lakes varying across depths and among seasons. We aggregated temperature observations and parameterized mechanistic models for 9,000 lakes in the U.S. states of Minnesota, Wisconsin, and Michigan to examine broad-scale lake warming trends and among-lake diversity. Daily lake temperature profiles and ice-cover dynamics were simulated using the General Lake Model for the contemporary period (1979-2015) using drivers from the North American Land Data Assimilation System (NLDAS-2) and for contemporary and future periods (1980-2100) using downscaled data from six global circulation models driven by the Representative Climate Pathway 8.5 scenario. For the contemporary period, modeled vs observed summer mean surface temperatures had a root mean squared error of 0.98°C with modeled warming trends similar to observed trends. Future simulations under the extreme 8.5 scenario predicted a median lake summer surface warming rate of 0.57°C/decade until mid-century, with slower rates in the later half of the 21st century (0.35°C/decade). Modeling scenarios and analysis of field data suggest that the lake-specific properties of size, water clarity, and depth are strong controls on the sensitivity of lakes to climate change. For example, a simulated 1% annual decline in water clarity was sufficient to override the effects of climate warming on whole lake water temperatures in some - but not all - study lakes. Understanding heterogeneous lake responses to climate variability can help identify lake-specific features that influence resilience to climate change.

  6. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges.

    PubMed

    Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina

    2017-07-01

    Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling

  7. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  8. Energetic contribution potential of building-integrated photovoltaics on airports in warm climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruether, Ricardo; LABSOLAR - Laboratorio de Energia Solar, UFSC - Universidade Federal de Santa Catarina, Caixa Postal 476, Florianopolis, SC 88040-900; Braun, Priscila

    2009-10-15

    Especially in warm climates, a considerable fraction of the electricity demand in commercial buildings is due to the intensive use of air-conditioning systems. Airport buildings in sunny and warm regions present a perfect match between energy demand and solar resource availability. Airport buildings are also typically large and horizontal, isolated and free of shading, and have a great potential for the integration of solar photovoltaic (PV) systems. In this work, we assess the potential impact in energy demand reduction at the Florianopolis International Airport in Brazil (27 S, 48 W) with the use of building-integrated photovoltaic (BIPV) systems. We analysemore » the building's hourly energy consumption and solar irradiation data, to assess the match between energy demand and potential generation, and we estimate the PV power necessary to supply both the total amount and fractions of the annual energy demand. Our results show that the integration of PV systems on airport buildings in warm climates can supply the entire electric power consumption of an airport complex, in line with the general concept of a zero-energy building (ZEB). (author)« less

  9. Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.

    2015-12-01

    ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.

  10. Future warming patterns linked to today’s climate variability

    DOE PAGES

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  11. Future warming patterns linked to today’s climate variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Aiguo

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  12. Assessing Lebanon's wildfire potential in association with current and future climatic conditions

    Treesearch

    George H. Mitri; Mireille G. Jazi; David McWethy

    2015-01-01

    The increasing occurrence and extent of large-scale wildfires in the Mediterranean have been linked to extended periods of warm and dry weather. We set out to assess Lebanon's wildfire potential in association with current and future climatic conditions. The Keetch-Byram Drought Index (KBDI) was the primary climate variable used in our evaluation of climate/fire...

  13. Nonlinear climate sensitivity and its implications for future greenhouse warming.

    PubMed

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-11-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.

  14. Nonlinear climate sensitivity and its implications for future greenhouse warming

    PubMed Central

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  15. Response of the North American corn belt to climate warming, CO2

    NASA Astrophysics Data System (ADS)

    1983-08-01

    The climate of the North American corn belt was characterized to estimate the effects of climatic change on that agricultural region. Heat and moisture characteristics of the current corn belt were identified and mapped based on a simulated climate for a doubling of atmospheric CO2 concentrations. The result was a map of the projected corn belt corresponding to the simulated climatic change. Such projections were made with and without an allowance for earlier planting dates that could occur under a CO2-induced climatic warming. Because the direct effects of CO2 increases on plants, improvements in farm technology, and plant breeding are not considered, the resulting projections represent an extreme or worst case. The results indicate that even for such a worst case, climatic conditions favoring corn production would not extend very far into Canada. Climatic buffering effects of the Great Lakes would apparently retard northeastward shifts in corn-belt location.

  16. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  17. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

    Treesearch

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Björk; Anne D. Bjorkman; Terry V. Callaghan; [and others] NO-VALUE; William Gould; Joel Mercado

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty...

  18. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-06

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  19. Deacclimation may be crucial for winter survival of cereals under warming climate.

    PubMed

    Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika

    2017-03-01

    Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipmentmore » (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.« less

  1. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  2. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  3. Disparity in elevational shifts of European trees in response to recent climate warming.

    PubMed

    Rabasa, Sonia G; Granda, Elena; Benavides, Raquel; Kunstler, Georges; Espelta, Josep M; Ogaya, Romá; Peñuelas, Josep; Scherer-Lorenzen, Michael; Gil, Wojciech; Grodzki, Wojciech; Ambrozy, Slawomir; Bergh, Johan; Hódar, José A; Zamora, Regino; Valladares, Fernando

    2013-08-01

    Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography. © 2013 John Wiley & Sons Ltd.

  4. Australian climate extremes at 1.5 °C and 2 °C of global warming

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Karoly, David J.; Henley, Benjamin J.

    2017-06-01

    To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.

  5. Analyzing Regional Climate Change in Africa in a 1.5, 2, and 3°C Global Warming World

    NASA Astrophysics Data System (ADS)

    Weber, T.; Haensler, A.; Rechid, D.; Pfeifer, S.; Eggert, B.; Jacob, D.

    2018-04-01

    At the 21st session of the United Nations Framework Convention on Climate Change Conference of the Parties (COP21) in Paris, an agreement to strengthen the effort to limit the global temperature increase well below 2°C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. In the paper we will discuss the analysis of indices assigned to the sectors health, agriculture, and infrastructure in a 1.5, 2, and 3°C global warming world for the African continent. For this analysis an ensemble of 10 different general circulation model-regional climate model simulations conducted in the framework of the COordinated Downscaling EXperiment for Africa was investigated. The results show that the African continent, in particular the regions between 15°S and 15°N, has to expect an increase in hot nights and longer and more frequent heat waves even if the global temperature will be kept below 2°C. These effects intensify if the global mean temperature will exceed the 2°C threshold. Moreover, the daily rainfall intensity is expected to increase toward higher global warming scenarios and will affect especially the African Sub-Saharan coastal regions.

  6. The hydroclimatological response to global warming based on the dynamically downscaled climate change scenario

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Felippo

    2010-05-01

    Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and increase in the low and high rainfall extremes can severely influence the water balance of river basin, with serious consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, in particular for water resources. As an attempt accurately assess the impact of climate change over Korea, we performed a downscaling of the ECAHM5-MPI/OM global projection under the A1B emission scenario for the period 1971-2100 using the RegCM3 one-way double-nested system. Physically based long-term (130 years) fine-scale (20 km) climate information is appropriate for analyzing the detailed structure of the hydroclimatological response to climate change. Changes in temperature and precipitation are translated to the hydrological condition in a direct or indirect way. The change in precipitation shows a distinct seasonal variations and a complicated spatial pattern. While changes in total precipitation do not show any relevant trend, the change patterns in daily precipitation clearly show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the future climate. Precipitation, snow, and runoff changes show the relevant topographical modulation under global warming. This study clearly demonstrates the importance of a refined topography for improving the accuracy of the local climatology. Improved accuracy of regional climate projection could lead to an enhanced reliability of the

  7. Modeling aspen responses to climatic warming and insect defoliation in western Canada

    Treesearch

    E. H. Ted Hogg

    2001-01-01

    Effects of climate change at three aspen sites in Saskatchewan were explored using a climate-driven model that includes insect defoliation. A simulated warming of 4-5 °C caused complete mortality due to drought at all three sites. A simulated warming of 2-2.5 °C caused complete mortality of aspen at the parkland site, while aspen growth at two boreal sites showed...

  8. Large Impacts of Climatic Warming on Growth of Boreal Forests since 1960

    PubMed Central

    Kauppi, Pekka E.; Posch, Maximilian; Pirinen, Pentti

    2014-01-01

    Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome – more than ten million km2– important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo. PMID:25383552

  9. Large impacts of climatic warming on growth of boreal forests since 1960.

    PubMed

    Kauppi, Pekka E; Posch, Maximilian; Pirinen, Pentti

    2014-01-01

    Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome - more than ten million km2- important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo.

  10. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    NASA Astrophysics Data System (ADS)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  11. Change of ocean circulation in the East Asian Marginal Seas under different climate conditions

    NASA Astrophysics Data System (ADS)

    Min, Hong Sik; Kim, Cheol-Ho; Kim, Young Ho

    2010-05-01

    Global climate models do not properly resolve an ocean environment in the East Asian Marginal Seas (EAMS), which is mainly due to a poor representation of the topography in continental shelf region and a coarse spatial resolution. To examine a possible change of ocean environment under global warming in the EAMS, therefore we used North Pacific Regional Ocean Model. The regional model was forced by atmospheric conditions extracted from the simulation results of the global climate models for the 21st century projected by the IPCC SRES A1B scenario as well as the 20th century. The North Pacific Regional Ocean model simulated a detailed pattern of temperature change in the EAMS showing locally different rising or falling trend under the future climate condition, while the global climate models simulated a simple pattern like an overall increase. Changes of circulation pattern in the EAMS such as an intrusion of warm water into the Yellow Sea as well as the Kuroshio were also well resolved. Annual variations in volume transports through the Taiwan Strait and the Korea Strait under the future condition were simulated to be different from those under present condition. Relative ratio of volume transport through the Soya Strait to the Tsugaru Strait also responded to the climate condition.

  12. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  13. Environmental Progression: The Psychological Justification for Reframing Climate Change and Global Warming

    NASA Astrophysics Data System (ADS)

    Veldey, S. H.

    2016-12-01

    On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.

  14. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  15. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; hide

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  16. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    NASA Astrophysics Data System (ADS)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  17. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  18. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    PubMed

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.

  19. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  20. The rogue nature of hiatuses in a global warming climate

    NASA Astrophysics Data System (ADS)

    Sévellec, F.; Sinha, B.; Skliris, N.

    2016-08-01

    The nature of rogue events is their unlikelihood and the recent unpredicted decade-long slowdown in surface warming, the so-called hiatus, may be such an event. However, given decadal variability in climate, global surface temperatures were never expected to increase monotonically with increasing radiative forcing. Here surface air temperature from 20 climate models is analyzed to estimate the historical and future likelihood of hiatuses and "surges" (faster than expected warming), showing that the global hiatus of the early 21st century was extremely unlikely. A novel analysis of future climate scenarios suggests that hiatuses will almost vanish and surges will strongly intensify by 2100 under a "business as usual" scenario. For "CO2 stabilisation" scenarios, hiatus, and surge characteristics revert to typical 1940s values. These results suggest to study the hiatus of the early 21st century and future reoccurrences as rogue events, at the limit of the variability of current climate modelling capability.

  1. Implications of climate change (global warming) for the healthcare system.

    PubMed

    Raffa, R B; Eltoukhy, N S; Raffa, K F

    2012-10-01

    Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.

  2. Species selection under long-term experimental warming and drought explained by climatic distributions.

    PubMed

    Liu, Daijun; Peñuelas, Josep; Ogaya, Romà; Estiarte, Marc; Tielbörger, Katja; Slowik, Fabian; Yang, Xiaohong; Bilton, Mark C

    2018-03-01

    Global warming and reduced precipitation may trigger large-scale species losses and vegetation shifts in ecosystems around the world. However, currently lacking are practical ways to quantify the sensitivity of species and community composition to these often-confounded climatic forces. Here we conducted long-term (16 yr) nocturnal-warming (+0.6°C) and reduced precipitation (-20% soil moisture) experiments in a Mediterranean shrubland. Climatic niche groups (CNGs) - species ranked or classified by similar temperature or precipitation distributions - informatively described community responses under experimental manipulations. Under warming, CNGs revealed that only those species distributed in cooler regions decreased. Correspondingly, under reduced precipitation, a U-shaped treatment effect observed in the total community was the result of an abrupt decrease in wet-distributed species, followed by a delayed increase in dry-distributed species. Notably, while partially correlated, CNG explanations of community response were stronger for their respective climate parameter, suggesting some species possess specific adaptations to either warming or drought that may lead to independent selection to the two climatic variables. Our findings indicate that when climatic distributions are combined with experiments, the resulting incorporation of local plant evolutionary strategies and their changing dynamics over time leads to predictable and informative shifts in community structure under independent climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.

    PubMed

    Kubisch, Erika Leticia; Fernández, Jimena Beatriz; Ibargüengoytía, Nora Ruth

    2016-02-01

    The vulnerability of populations and species to global warming depends not only on the environmental temperatures, but also on the behavioral and physiological abilities to respond to these changes. In this sense, the knowledge of an organism's sensitivity to temperature variation is essential to predict potential responses to climate warming. In particular, it is interesting to know how close species are to their thermal limits in nature and whether physiological plasticity is a potential short-term response to warming climates. We exposed Liolaemus pictus lizards, from northern Patagonia, to either 21 or 31 °C for 30 days to compare the effects of these treatments on thermal sensitivity in 1 and 0.2 m runs, preferred body temperature (T pref), panting threshold (T pant), and critical minimum temperature (CTMin). Furthermore, we measured the availability of thermal microenvironments (operative temperatures; T e) to measure how close L. pictus is, in nature, to its optimal locomotor performance (T o) and thermal limits. L. pictus showed limited physiological plasticity, since the acclimation temperature (21 and 31 °C) did not affect the locomotor performance nor did it affect T pref, the T pant, or the CTMin. The mean T e was close to T o and was 17 °C lower than the CTMax. The results suggest that L. pictus, in a climate change scenario, could be vulnerable to the predicted temperature increment, as this species currently lives in an environment with temperatures close to their highest locomotor temperature threshold, and because they showed limited acclimation capacity to adjust to new thermal conditions by physiological plasticity. Nevertheless, L. pictus can run at 80 % or faster of its maximum speed across a wide range of temperatures near T o, an ability which would attenuate the impact of global warming.

  4. Permafrost carbon-climate feedbacks accelerate global warming

    PubMed Central

    Koven, Charles D.; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-01-01

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent. PMID:21852573

  5. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the

  6. Large extents of intensive land use limit community reorganization during climate warming.

    PubMed

    Oliver, Tom H; Gillings, Simon; Pearce-Higgins, James W; Brereton, Tom; Crick, Humphrey Q P; Duffield, Simon J; Morecroft, Michael D; Roy, David B

    2017-06-01

    Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation. © 2017 John Wiley & Sons Ltd.

  7. Extreme Warming Challenges Sentinel Status of Kelp Forests as Indicators of Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, R. J.; Reed, D.; Washburn, L.; Rassweiler, A.; Bell, T. W.; Harrer, S.

    2016-12-01

    The ecological effects of global warming are expected to be large, but are proving difficult and costly to measure. This has led to a growing interest in using sentinel species as early warning indicators of impending climate change effects on entire ecosystems, raising awareness of the importance of verifying that such conservation shortcuts have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and considered sensitive to warming. Here we show that giant kelp did not presage ecosystem effects of extreme warming off southern California despite its expected vulnerability. Fluctuations in the biomass of giant kelp, understory algae, invertebrates and fish remained within historical ranges despite 34 months of above average temperatures and below average nutrients. Sea stars and sea urchins were exceptions, plummeting due to disease outbreaks linked to the warming. Our results challenge the IPCC predictions about the vulnerability of kelp-dominated systems to extreme warming events and question their use as early indicators of climate change. The resilience of giant kelp to unprecedented warming not only questions our understanding of kelp ecology, but exposes the risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  8. Projection of Summer Climate on Tokyo Metropolitan Area using Pseudo Global Warming Method

    NASA Astrophysics Data System (ADS)

    Adachi, S. A.; Kimura, F.; Kusaka, H.; Hara, M.

    2010-12-01

    Recent surface air temperature observations in most of urban areas show the remarkable increasing trend affected by the global warming and the heat island effects. There are many populous areas in Japan. In such areas, the effects of land-use change and urbanization on the local climate are not negligible (Fujibe, 2010). The heat stress for citizen there is concerned to swell moreover in the future. Therefore, spatially detailed climate projection is required for making adaptation and mitigation plans. This study focuses on the Tokyo metropolitan area (TMA) in summer and aims to estimate the local climate change over the TMA in 2070s using a regional climate model. The Regional Atmospheric Modeling System (RAMS) was used for downscaling. A single layer urban canopy model (Kusaka et al., 2001) is built into RAMS as a parameterization expressing the features of urban surface. We performed two experiments for estimating present and future climate. In the present climate simulation, the initial and boundary conditions for RAMS are provided from the JRA-25/JCDAS. On the other hand, the Pseudo Global Warming (PGW) method (Sato et al., 2007) is applied to estimate the future climate, instead of the conventional dynamical downscaling method. The PGW method is expected to reduce the model biases in the future projection estimated by Atmosphere-Ocean General Circulation Models (AOGCM). The boundary conditions used in the PGW method is given by the PGW data, which are obtained by adding the climate monthly difference between 1990s and 2070s estimated by AOGCMs to the 6-hourly reanalysis data. In addition, the uncertainty in the regional climate projection depending on the AOGCM projections is estimated from additional downscaling experiments using the different PGW data obtained from five AOGCMs. Acknowledgment: This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan. References: 1. Fujibe, F., Int. J. Climatol., doi

  9. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  10. New use of global warming potentials to compare cumulative and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.

    2016-08-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

  11. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    PubMed Central

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-01-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate

  12. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. © 2011 Blackwell Publishing Ltd/CNRS.

  13. Tuning the climate sensitivity of a global model to match 20th Century warming

    NASA Astrophysics Data System (ADS)

    Mauritsen, T.; Roeckner, E.

    2015-12-01

    A climate models ability to reproduce observed historical warming is sometimes viewed as a measure of quality. Yet, for practical reasons historical warming cannot be considered a purely empirical result of the modelling efforts because the desired result is known in advance and so is a potential target of tuning. Here we explain how the latest edition of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) atmospheric model (ECHAM6.3) had its climate sensitivity systematically tuned to about 3 K; the MPI model to be used during CMIP6. This was deliberately done in order to improve the match to observed 20th Century warming over the previous model generation (MPI-ESM, ECHAM6.1) which warmed too much and had a sensitivity of 3.5 K. In the process we identified several controls on model cloud feedback that confirm recently proposed hypotheses concerning trade-wind cumulus and high-latitude mixed-phase clouds. We then evaluate the model fidelity with centennial global warming and discuss the relative importance of climate sensitivity, forcing and ocean heat uptake efficiency in determining the response as well as possible systematic biases. The activity of targeting historical warming during model development is polarizing the modeling community with 35 percent of modelers stating that 20th Century warming was rated very important to decisive, whereas 30 percent would not consider it at all. Likewise, opinions diverge as to which measures are legitimate means for improving the model match to observed warming. These results are from a survey conducted in conjunction with the first WCRP Workshop on Model Tuning in fall 2014 answered by 23 modelers. We argue that tuning or constructing models to match observed warming to some extent is practically unavoidable, and as such, in many cases might as well be done explicitly. For modeling groups that have the capability to tune both their aerosol forcing and climate sensitivity there is now a unique

  14. [Treatment of patients with neuromuscular disease in a warm climate].

    PubMed

    Dahl, Arve; Skjeldal, Ola H; Simensen, Andreas; Dalen, Håkon E; Bråthen, Tone; Ahlvin, Petra; Svendsby, Ellen Kathrine; Sveinall, Anne; Fredriksen, Per Morten

    2004-07-01

    Several patient groups request treatment in a warm climate, in spite of the fact that the effects of such treatment are undocumented. 47 children and 40 adults with neuromuscular diseases were recruited, stratified according to sex, use or non-use of electric wheelchair, primary myopathy or hereditary neuropathy, and randomised into two adult and two children groups. The patients were treated in a rehabilitation centre, either on Lanzarote or in Norway. All patients were monitored with physical tests and questionnaires at the start of the study, at the end of the treatment period, after three months (all groups) and after six months (adults only). No significant differences in effect between the groups were found. In the warm climate, the adult patient group showed a statistically significant improvement regarding pain, quality of life, depression, and results of physical tests at the end of treatment. After three months, the improvement in physical tests was still present. Among adult patients treated in Norway, improvement in physical tests was statistically significant after three months, but not at the end of the treatment period. This study did not show a statistically significant difference between patients with various neuromuscular diseases treated in a warm climate compared to similar patients treated in Norway.

  15. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  16. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  17. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  18. Ocean climate and seal condition.

    PubMed

    Le Boeuf, Burney J; Crocker, Daniel E

    2005-03-28

    The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  19. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China.

    PubMed

    Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi

    2016-10-07

    Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide.

  20. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China

    PubMed Central

    Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi

    2016-01-01

    Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide. PMID:27713530

  1. Research Spotlight: Corals expanding poleward due to warming climate

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-04-01

    Corals are important organisms for ecosystems and are sensitive indicators of the effects of climate warming. While corals are bleaching and dying in tropical areas due to climate warming, a new study shows that in temperate areas they are expanding their range poleward as water temperatures increase. Yamano et al. used 80 years of records to study the range of corals around Japan. Sea surface temperatures have risen in these temperate areas during that time. They found that four of the nine species of coral they studied expanded their range northward since the 1930s, while none had its range shrink southward. The corals expanded northward as quickly as 14 kilometers per year. The study suggests that rapid modifications of temperate coastal ecosystems could be taking place. (Geophysical Research Letters, doi:10.1029/2010GL046474, 2011)

  2. Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il

    2017-04-01

    Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.

  3. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    NASA Astrophysics Data System (ADS)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  4. Increased frequency of ENSO-related hydroclimate extremes in a warming climate

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Miao, C.; AghaKouchak, A.

    2017-12-01

    Global warming will likely alter surface warming in tropical Pacific regions, leading to changes in the characteristics of the El Niño Southern Oscillation (ENSO) characteristics and an incresed frequency of extreme ENSO events. The ENSO-related climatic variation and associated impacts will likely be modified in a warmer climatic state. However, little is known about the effect of changes in ENSO teleconnections with regard to future dry and wet conditions over land around the globe, especially outside tropical regions. We used the model simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for different twenty-first-century emission scenarios (RCP 4.5 and RCP 8.5) to investigate the changes in the ENSO' teleconnection on dry/wet condition over global land. Our results show that 64.64% and 38.12% of 181 river basins studied are expected to experience an increase in the frequency of unusually wet/dry events forced by both ENSO phases under the RCP 4.5 and 8.5, respectively. The anomalous precipitation variability forced by ENSO events will be intensified through a "wet-get-wetter, dry-get-drier" mechanism over west North America, South America, central Asia, and west Asia. More than 850 million people are at risk of exposure to unusually dry/wet events. There is a potential increased risk of high-intensity dry/wet events, with an increase/decrease in the 50-year return level of SPI value for drying/wetting regions. These results have important implications for disaster evaluation and related policies and for appropriate engineering design.

  5. Susceptibility of Permafrost Soil Organic Carbon under Warming Climate

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wullschleger, S. D.; Liang, L.; Graham, D. E.; Gu, B.

    2015-12-01

    Degradation of soil organic carbon (SOC) that has been stored in permafrost is a key concern under warming climate because it could provide a positive feedback. Studies and conceptual models suggest that SOC degradation is largely controlled by the decomposability of SOC, but it is unclear exactly what portions of SOC are susceptible to rapid breakdown and what mechanisms may be involved in SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including sugars, alcohols, and small molecular weight organic acids in incubation experiments (up to 240 days at either -2 or 8 °C) with a tundra soil under anoxic conditions, where SOC respiration and iron(III) reduction were monitored. We observe that sugars and alcohols are main components in SOC accounting for initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important roles as an electron acceptor in tundra SOC respiration. These observations corroborate strongly with the glucose addition during incubation, in which rapid CO2 and CH4 production is observed concurrently with rapid production and consumption of organics such as acetate. Thus, the biogeochemical processes we document here are pertinent to understanding the accelerated SOC decomposition with temperature and could provide basis for model predicting feedbacks to climate warming in the Arctic.

  6. Middle Pliocene vegetation: Reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling

    USGS Publications Warehouse

    Thompson, R.S.; Fleming, R.F.

    1996-01-01

    The general characteristics of global vegetation during the middle Pliocene warm period can be reconstructed from fossil pollen and plant megafossil data. The largest differences between Pliocene vegetation and that of today occurred at high latitudes in both hemispheres, where warming was pronounced relative to today. In the Northern Hemisphere coniferous forests lived in the modern tundra and polar desert regions, whereas in the Southern Hemisphere southern beech apparently grew in coastal areas of Antarctica. Pliocene middle latitude vegetation differed less, although moister-than-modern conditions supported forest and woodland growth in some regions now covered by steppe or grassland. Pliocene tropical vegetation reflects essentially modern conditions in some regions and slightly cooler-than-or warmer-than- modern climates in other areas. Changes in topography induced by tectonics may be responsible for many of the climatic changes since the Pliocene in both middle and lower latitudes. However, the overall latitudinal progression of climatic conditions on land parallels that seen in the reconstruction of middle Pliocene sea-surface temperatures. Pliocene paleovegetational data was employed to construct a 2????2?? global grid of estimated mid-Pliocene vegetational cover for use as boundary conditions for numerical General Circulation Model simulations of middle Pliocene climates. Continental outlines and topography were first modified to represent the Pliocene landscape on the 2????2?? grid. A modern 1????1?? vegetation grid was simplified and mapped on this Pliocene grid, and then modified following general geographic trends evident in the Pliocene paleovegetation data set.

  7. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David Emmanuel

    Hydropower systems and other river regulation often harm instream ecosystems, partly by altering the natural flow and temperature regimes that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower and ecosystems are increasingly valued globally due to growing values for clean energy and native species as well as and new threats from climate warming, it is important to understand how climate warming might affect these systems, to identify tradeoffs between different water uses for different climate conditions, and to identify promising water management solutions. This research uses traditional simulation and optimization to explore these issues in California's upper west slope Sierra Nevada mountains. The Sierra Nevada provides most of the water for California's vast water supply system, supporting high-elevation hydropower generation, ecosystems, recreation, and some local municipal and agricultural water supply along the way. However, regional climate warming is expected to reduce snowmelt and shift runoff to earlier in the year, affecting all water uses. This dissertation begins by reviewing important literature related to the broader motivations of this study, including river regulation, freshwater conservation, and climate change. It then describes three substantial studies. First, a weekly time step water resources management model spanning the Feather River watershed in the north to the Kern River watershed in the south is developed. The model, which uses the Water Evaluation And Planning System (WEAP), includes reservoirs, run-of-river hydropower, variable head hydropower, water supply demand, and instream flow requirements. The model is applied with a runoff dataset that considers regional air temperature increases of 0, 2, 4 and 6 °C to represent historical, near-term, mid-term and far-term (end-of-century) warming. Most major hydropower turbine flows are simulated well. Reservoir storage is also

  8. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages

    PubMed Central

    Hansen, Gretchen J. A.; Bethke, Bethany J.; Cross, Timothy K.

    2017-01-01

    Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896–1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981–2010). Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future. PMID:28777816

  9. Thermal State Of Permafrost In Urban Environment Under Changing Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V. I.; Kerimov, A. G.; Kurchatova, A.; Andruschenko, F.; Gubanov, A.

    2015-12-01

    Risks and damage, caused by deformation of building and constructions in cryolithozone, are growing for decades. Worsening of cryo-ecological situation and loss of engineering-geocryological safety are induced by both technogenic influences on frozen basement and climate change. In such towns on permafrost as Vorkuta, Dixon more than 60% of objects are deformed, in Yakutsk, Igarka- nearly 40%, in Norilsk, Talnakh, Mirnij 35%, in old indigenous villages - approximately 100%; more than 80% ground dams with frozen cores are in poor condition. This situation is accompanied by activation of dangerous cryogenic processes. For example in growing seasonally-thaw layer is strengthening frost heave of pipeline foundation: only on Yamburg gas condensate field (Taz Peninsula) are damaged by frost heave and cut or completely replaced 3000 - 5000 foundations of gas pipelines. Intensity of negative effects strongly depends on regional geocryology, technogenic loads and climatic trends, and in Arctic we see a temperature rise - warming, which cause permafrost temperature rise and thaw). In built areas heat loads are more diverse: cold foundations (under the buildings with ventilated cellars or near termosyphons) are close to warm areas with technogenic beddings (mainly sandy), that accumulate heat, close to underground collectors for communications, growing thaw zones around, close to storages of snows, etc. Note that towns create specific microclimate with higher air temperature. So towns are powerful technogenic (basically, thermal) presses, placed on permafrost; in cooperation with climate changes (air temperature rise, increase of precipitation) they cause permafrost degradation. The analysis of dozens of urban thermal fields, formed in variable cryological and soil conditions, showed, that nearly 70% have warming trend, 20% - cooling and in 10% of cases the situation after construction is stable. Triggered by warming of climate changes of vegetation, depth and temperature of

  10. Warming and Cooling: The Medieval Climate Anomaly in Africa and Arabia

    NASA Astrophysics Data System (ADS)

    Lüning, Sebastian; Gałka, Mariusz; Vahrenholt, Fritz

    2017-11-01

    The Medieval Climate Anomaly (MCA) is a well-recognized climate perturbation in many parts of the world, with a core period of 1000-1200 Common Era. Here we present a palaeotemperature synthesis for the MCA in Africa and Arabia, based on 44 published localities. The data sets have been thoroughly correlated and the MCA trends palaeoclimatologically mapped. The vast majority of available Afro-Arabian onshore sites suggest a warm MCA, with the exception of the southern Levant where the MCA appears to have been cold. MCA cooling has also been documented in many segments of the circum-Africa-Arabian upwelling systems, as a result of changes in the wind systems which were leading to an intensification of cold water upwelling. Offshore cores from outside upwelling systems mostly show warm MCA conditions. The most likely key drivers of the observed medieval climate change are solar forcing and ocean cycles. Conspicuous cold spikes during the earliest and latest MCA may help to discriminate between solar (Oort Minimum) and ocean cycle (Atlantic Multidecadal Oscillation, AMO) influence. Compared to its large share of nearly one quarter of the world's landmass, data from Africa and Arabia are significantly underrepresented in global temperature reconstructions of the past 2,000 years. Onshore data are still absent for most regions in Africa and Arabia, except for regional data clusters in Morocco, South Africa, the East African Rift, and the Levant coast. In order to reconstruct land palaeotemperatures more robustly over Africa and Arabia, a systematic research program is needed.

  11. The influence of climatic conditions on the heat balance of the human body

    NASA Astrophysics Data System (ADS)

    Blażejeczyk, Krzysztof; Krawczyk, Barbara

    1991-06-01

    The structure of heat exchange between the human body and its surroundings has been studied according to M.I. Budyko's model. Comparative measurements were carried out in the Polish Lakeland (maritime, temperate warm climate), in Central Mongolia (continental, temperate cool climate), and in the Kara Kum desert (dry subtropical climate). The results deal with the summer and early autumn seasons. The calculations indicate that the quantitative apportionment of various forms of heat exchange depend on specific weather conditions, which are typical for the distinguished climatic zones.

  12. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe.

    PubMed

    Zhang, Ximei; Johnston, Eric R; Li, Linghao; Konstantinidis, Konstantinos T; Han, Xingguo

    2017-04-01

    Identifying soil microbial feedbacks to increasing temperatures and moisture alterations is critical for predicting how terrestrial ecosystems will respond to climate change. We performed a 5-year field experiment manipulating warming, watering and their combination in a semiarid temperate steppe in northern China. Warming stimulated the abundance of genes responsible for degrading recalcitrant soil organic matter (SOM) and reduced SOM content by 13%. Watering, and warming plus watering also increased the abundance of recalcitrant SOM catabolism pathways, but concurrently promoted plant growth and increased labile SOM content, which somewhat offset SOM loss. The treatments also increased microbial biomass, community complexity and metabolic potential for nitrogen and sulfur assimilation. Both microbial and plant community composition shifted with the treatment conditions, and the sample-to-sample compositional variations of the two communities (pairwise β-diversity distances) were significantly correlated. In particular, microbial community composition was substantially correlated with the dominant plant species (~0.54 Spearman correlation coefficient), much more than with measured soil indices, affirming a tight coupling between both biological communities. Collectively, our study revealed the direction and underlying mechanisms of microbial feedbacks to warming and suggested that semiarid regions of northern steppes could act as a net carbon source under increased temperatures, unless precipitation increases concurrently.

  13. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Qianlai; Schlosser, Courtney; Melillo, Jerry

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments thatmore » encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.« less

  14. Mechanisms of elevation-dependent warming over complex terrain in high-resolution simulations of regional climate change

    NASA Astrophysics Data System (ADS)

    Minder, J. R.; Letcher, T.; Liu, C.

    2016-12-01

    Numerous observational and modeling studies have suggested that over mountainous terrain certain elevations can experience systematically enhanced rates of near-surface climate warming relative to the surrounding region, a phenomenon referred to as elevation-dependent warming (EDW). In many of these studies high-elevation locations were found to experience the fastest warming rates. A variety of physical mechanisms for EDW have been proposed but there is no consensus as to the dominant cause. We examine EDW in regional climate model (RCM) simulations with very high horizontal resolution (4-km horizontal grid). The simulation domain centers on the Rocky Mountains and intermountain west of the United States. Climate change simulations are conducted using the "pseudo global warming" framework to focus on the regional response to large-scale thermodynamic and radiative climate changes representative of mid-century anthropogenic global climate change. Substantial EDW is found in these simulations. Warming varies with elevation by up to 1°C depending on the season considered. The structure of EDW is only weakly sensitive to variations in horizontal grid spacing ranging from 4 to 36 km. The snow-albedo feedback (SAF) plays a major role in causing the simulated EDW. The elevation band of maximum warming varies seasonally, mostly following the margin of the seasonal snowpack where snow cover and albedo reductions are maximized under climate warming. Additional simulations where the SAF is artificially suppressed demonstrate that EDW variations of up to 0.6°C can be attributed to the SAF. Simulations with a suppressed SAF still exhibit EDW variations up to 0.8°C that must be explained by other mechanisms. This remaining EDW shows a near linear increase in warming with elevation in most months and does not appear to be inherited from the profile of large-scale free-tropospheric warming. Simple theoretical calculations suggest that the non-linear dependence of surface

  15. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  16. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  17. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient.

    PubMed

    Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.

  18. Changes in South Pacific rainfall bands in a warming climate

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.

    2012-12-01

    The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).

  19. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    PubMed

    Magris, Rafael A; Heron, Scott F; Pressey, Robert L

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.

  20. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances

    PubMed Central

    Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  1. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    PubMed

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  2. Climate warming could increase recruitment success in glacier foreland plants.

    PubMed

    Mondoni, Andrea; Pedrini, Simone; Bernareggi, Giulietta; Rossi, Graziano; Abeli, Thomas; Probert, Robin J; Ghitti, Michele; Bonomi, Costantino; Orsenigo, Simone

    2015-11-01

    Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13-35 % higher) in all species except two. Survival and establishment was possible for 60-75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the

  3. Free boundary models for mosquito range movement driven by climate warming.

    PubMed

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  4. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    PubMed

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-09-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate

  5. Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources

    NASA Astrophysics Data System (ADS)

    Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis

    This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.

  6. Elevation-dependent warming in global climate model simulations at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Palazzi, Elisa; Mortarini, Luca; Terzago, Silvia; von Hardenberg, Jost

    2018-06-01

    The enhancement of warming rates with elevation, so-called elevation-dependent warming (EDW), is one of the regional, still not completely understood, expressions of global warming. Sentinels of climate and environmental changes, mountains have experienced more rapid and intense warming trends in the recent decades, leading to serious impacts on mountain ecosystems and downstream. In this paper we use a state-of-the-art Global Climate Model (EC-Earth) to investigate the impact of model spatial resolution on the representation of this phenomenon and to highlight possible differences in EDW and its causes in different mountain regions of the Northern Hemisphere. To this end we use EC-Earth climate simulations at five different spatial resolutions, from ˜ 125 to ˜ 16 km, to explore the existence and the driving mechanisms of EDW in the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau-Himalayas. Our results show that the more frequent EDW drivers in all regions and seasons are the changes in albedo and in downward thermal radiation and this is reflected in both daytime and nighttime warming. In the Tibetan Plateau-Himalayas and in the Greater Alpine Region, an additional driver is the change in specific humidity. We also find that, while generally the model shows no clear resolution dependence in its ability to simulate the existence of EDW in the different regions, specific EDW characteristics such as its intensity and the relative role of different driving mechanisms may be different in simulations performed at different spatial resolutions. Moreover, we find that the role of internal climate variability can be significant in modulating the EDW signal, as suggested by the spread found in the multi-member ensemble of the EC-Earth experiments which we use.

  7. Effects of climate warming on polar bears: a review of the evidence.

    PubMed

    Stirling, Ian; Derocher, Andrew E

    2012-09-01

    Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate-driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid-century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long-term viability, with a much reduced global population size in a remnant of their former range, is uncertain. © 2012 Blackwell Publishing Ltd.

  8. Recent climate extremes associated with the West Pacific Warming Mode

    USGS Publications Warehouse

    Funk, Chris; Hoell, Andrew

    2017-01-01

    Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.

  9. Responses of alpine grassland on Qinghai-Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

    NASA Astrophysics Data System (ADS)

    Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Xiang, Bo; Ding, Yongjian

    2014-07-01

    Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost.

  10. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.

    PubMed

    Sunday, Jennifer M; Pecl, Gretta T; Frusher, Stewart; Hobday, Alistair J; Hill, Nicole; Holbrook, Neil J; Edgar, Graham J; Stuart-Smith, Rick; Barrett, Neville; Wernberg, Thomas; Watson, Reg A; Smale, Dan A; Fulton, Elizabeth A; Slawinski, Dirk; Feng, Ming; Radford, Ben T; Thompson, Peter A; Bates, Amanda E

    2015-09-01

    Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances. © 2015 John Wiley & Sons Ltd/CNRS.

  11. Winter Season Mortality: Will Climate Warming Bring Benefits?

    PubMed

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  12. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  13. Links between plant species’ spatial and temporal responses to a warming climate

    PubMed Central

    Amano, Tatsuya; Freckleton, Robert P.; Queenborough, Simon A.; Doxford, Simon W.; Smithers, Richard J.; Sparks, Tim H.; Sutherland, William J.

    2014-01-01

    To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology. PMID:24478304

  14. Soil microbial responses to climate warming in Northern Andean alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Gallery, R. E.; Lasso, E.

    2017-12-01

    The historically cooler temperatures and waterlogged soils of tropical alpine grasslands (páramo) have resulted in low decomposition rates and a large buildup of organic matter, making páramo one of the most important carbon sinks in tropical biomes. The climatic factors that favored the carbon accumulation are changing, and as a result páramo could play a disproportionate role in driving climate feedbacks through increased carbon released from these large soil carbon stores. Open top chamber warming experiments were established in the Colombian Andes in 2016 to quantify the magnitude of climate change on carbon balance and identify microbial and plant traits that regulate these impacts. Two focal sites differ in mean annual temperature, precipitation, and plant community richness. Heterotrophic respiration (RH,) was measured from soil cores incubated at temperatures representing current and projected warming. The warming effect on RH was sensitive to soil moisture, which could reflect shifts in microbial community composition and/or extracellular enzyme production or efficiency as soils dry. Bacterial, archaeal, and fungal communities in ambient and warmed plots were measured through high-throughput amplicon sequencing of the 16S rRNA and ITS1 rRNA gene regions. Communities showed strong spatial structuring both within and among páramo, reflecting the topographic heterogeneity of these ecosystems. Significant differences in relative abundance of dominant microbial taxa between páramo could be largely explained by soil bulk density, water holding capacity, and non-vascular plant cover. Phototrophs common to anoxic soils (e.g., Rhodospirillaceae, Hyphomicrobiaceae) were abundant. Taxa within Euryarchaeota were recovered, suggesting methanogenesis potential. Exploration of the magnitude and temperature sensitivity of methane flux is needed in these seasonally anoxic soils whose dynamics could have significant implications for the global climate system.

  15. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  16. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  17. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming.

    PubMed

    Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J

    2018-01-01

    Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population

  18. Quantifying the influence of global warming on unprecedented extreme climate events

    PubMed Central

    Singh, Deepti; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent. PMID:28439005

  19. Quantifying the influence of global warming on unprecedented extreme climate events.

    PubMed

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  20. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events

    NASA Technical Reports Server (NTRS)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; hide

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  1. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. © 2013 John Wiley & Sons Ltd.

  2. Extreme warming challenges sentinel status of kelp forests as indicators of climate change.

    PubMed

    Reed, Daniel; Washburn, Libe; Rassweiler, Andrew; Miller, Robert; Bell, Tom; Harrer, Shannon

    2016-12-13

    The desire to use sentinel species as early warning indicators of impending climate change effects on entire ecosystems is attractive, but we need to verify that such approaches have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and is considered sensitive to warming. Here, we show that giant kelp and the majority of species that associate with it did not presage ecosystem effects of extreme warming off southern California despite giant kelp's expected vulnerability. Our results challenge the general perception that kelp-dominated systems are highly vulnerable to extreme warming events and expose the more general risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  3. Are treelines advancing? A global meta-analysis of treeline response to climate warming.

    PubMed

    Harsch, Melanie A; Hulme, Philip E; McGlone, Matt S; Duncan, Richard P

    2009-10-01

    Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.

  4. Extreme warming challenges sentinel status of kelp forests as indicators of climate change

    NASA Astrophysics Data System (ADS)

    Reed, Daniel; Washburn, Libe; Rassweiler, Andrew; Miller, Robert; Bell, Tom; Harrer, Shannon

    2016-12-01

    The desire to use sentinel species as early warning indicators of impending climate change effects on entire ecosystems is attractive, but we need to verify that such approaches have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and is considered sensitive to warming. Here, we show that giant kelp and the majority of species that associate with it did not presage ecosystem effects of extreme warming off southern California despite giant kelp's expected vulnerability. Our results challenge the general perception that kelp-dominated systems are highly vulnerable to extreme warming events and expose the more general risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  5. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    NASA Astrophysics Data System (ADS)

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-11-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  6. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.

    PubMed

    Jassey, Vincent E J; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; Mills, Robert T E; Mitchell, Edward A D; Payne, Richard J; Robroek, Bjorn J M

    2015-11-25

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  7. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    PubMed Central

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  8. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  9. A warm or a cold early Earth? New insights from a 3-D climate-carbon model

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.

    2017-09-01

    Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.

  10. [Effects of climate warming and drying on millet yield in Gansu Province and related countermeasures].

    PubMed

    Cao, Ling; Wang, Qiang; Deng, Zhen-yong; Guo, Xiao-qin; Ma, Xing-xiang; Ning, Hui-fang

    2010-11-01

    Based on the data of air temperature, precipitation, and millet yield from Ganzhou, Anding, and Xifeng, the representative stations in Hexi moderate arid oasis irrigation area, moderate sub-arid dry area in middle Gansu, and moderate sub-humid dry area in eastern Gansu, respectively, this paper calculated the regional active accumulated temperature of > or = 0 degrees C, > or =5 degrees C, > or =10 degrees C, > or =15 degrees C, and > or =20 degrees C in millet growth period, and the average temperature and precipitation in millet key growth stages. The millet climatic yield was isolated by orthogonal polynomial, and the change characteristics of climate and millet climatic yield as well as the effects of climate change on millet yield were analyzed by statistical methods of linear tendency, cumulative anomaly, and Mann-Kendall. The results showed that warming and drying were the main regional features in the modern climatic change of Gansu. The regional temperature had a significant upward trend since the early 1990s, while the precipitation was significantly reduced from the late 1980s. There were significant correlations between millet yield and climatic factors. The millet yield in dry areas increased with the increasing temperature and precipitation in millet key growth stages, and that in Hexi Corridor area increased with increasing temperature. Warming and drying affected millet yield prominently. The weather fluctuation index of regional millet yield in Xifeng, Anding, and Ganzhou accounted for 73%, 72%, and 54% of real output coefficient variation, respectively, and the percentages increased significantly after warming. Warming was conducive to the increase of millet production, and the annual increment of millet climatic yield in Xifeng, Anding, and Ganzhou after warming was 30.6, 43.1, and 121.1 kg x hm(-2), respectively. Aiming at the warming and drying trend in Gansu Province in the future, the millet planting area in the Province should be further

  11. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  12. Trophic level responses differ as climate warms in Ireland.

    PubMed

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant (P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature (P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly (P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  13. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions.

  14. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    USGS Publications Warehouse

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  15. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  16. Causes of model dry and warm bias over central U.S. and impact on climate projections.

    PubMed

    Lin, Yanluan; Dong, Wenhao; Zhang, Minghua; Xie, Yuanyu; Xue, Wei; Huang, Jianbin; Luo, Yong

    2017-10-12

    Climate models show a conspicuous summer warm and dry bias over the central United States. Using results from 19 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the precipitation deficit leading the warm bias over this region. The precipitation deficit is associated with the widespread failure of models in capturing strong rainfall events in summer over the central U.S. A robust linear relationship between the projected warming and the present-day warm bias enables us to empirically correct future temperature projections. By the end of the 21st century under the RCP8.5 scenario, the corrections substantially narrow the intermodel spread of the projections and reduce the projected temperature by 2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after this correction the projected precipitation is nearly neutral for all scenarios.Climate models repeatedly show a warm and dry bias over the central United States, but the origin of this bias remains unclear. Here the authors associate this bias to precipitation deficits in models and after applying a correction, projected precipitation in this region shows no significant changes.

  17. Innovative empirical approaches for inferring climate-warming impacts on plants in remote areas.

    PubMed

    De Frenne, Pieter

    2015-02-01

    The prediction of the effects of climate warming on plant communities across the globe has become a major focus of ecology, evolution and biodiversity conservation. However, many of the frequently used empirical approaches for inferring how warming affects vegetation have been criticized for decades. In addition, methods that require no electricity may be preferred because of constraints of active warming, e.g. in remote areas. Efforts to overcome the limitations of earlier methods are currently under development, but these approaches have yet to be systematically evaluated side by side. Here, an overview of the benefits and limitations of a selection of innovative empirical techniques to study temperature effects on plants is presented, with a focus on practicality in relatively remote areas without an electric power supply. I focus on methods for: ecosystem aboveground and belowground warming; a fuller exploitation of spatial temperature variation; and long-term monitoring of plant ecological and microevolutionary changes in response to warming. An evaluation of the described methodological set-ups in a synthetic framework along six axes (associated with the consistency of temperature differences, disturbance, costs, confounding factors, spatial scale and versatility) highlights their potential usefulness and power. Hence, further developments of new approaches to empirically assess warming effects on plants can critically stimulate progress in climate-change biology.

  18. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  19. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  20. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    NASA Astrophysics Data System (ADS)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  1. The Inequality of Climate Change From 1.5 to 2°C of Global Warming

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Harrington, Luke J.

    2018-05-01

    The Paris Agreement aims to keep global warming well below 2°C above preindustrial levels with a preferred ambitious 1.5°C target. Developing countries, especially small island nations, pressed for the 1.5°C target to be adopted, but who will suffer the largest changes in climate if we miss this target? Here we show that exceeding the 1.5°C global warming target would lead to the poorest experiencing the greatest local climate changes. Under these circumstances greater support for climate adaptation to prevent poverty growth would be required.

  2. ``Global Warming/Climate Change'': A Critical Look

    NASA Astrophysics Data System (ADS)

    Gould, Laurence I.

    2011-11-01

    There continues to be an increasing number of scientists from around the world who are challenging the dominant claim that has been bolstered by so-called ``consensus'' scientific views -- that dangerous ``global warming/climate change'' is caused primarily by human-produced carbon dioxide. This poster will show scientific evidence contradicting that claim. It will also explain some of the errors that have been introduced from a corruption of the scientific method. (Further information can be found at http://uhaweb.hartford.edu/lgould/)

  3. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  4. Tropical cyclogenesis in warm climates simulated by a cloud-system resolving model

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Muir, Les; Boos, William R.; Studholme, Joshua

    2018-03-01

    Here we investigate tropical cyclogenesis in warm climates, focusing on the effect of reduced equator-to-pole temperature gradient relevant to past equable climates and, potentially, to future climate change. Using a cloud-system resolving model that explicitly represents moist convection, we conduct idealized experiments on a zonally periodic equatorial β-plane stretching from nearly pole-to-pole and covering roughly one-fifth of Earth's circumference. To improve the representation of tropical cyclogenesis and mean climate at a horizontal resolution that would otherwise be too coarse for a cloud-system resolving model (15 km), we use the hypohydrostatic rescaling of the equations of motion, also called reduced acceleration in the vertical. The simulations simultaneously represent the Hadley circulation and the intertropical convergence zone, baroclinic waves in mid-latitudes, and a realistic distribution of tropical cyclones (TCs), all without use of a convective parameterization. Using this model, we study the dependence of TCs on the meridional sea surface temperature gradient. When this gradient is significantly reduced, we find a substantial increase in the number of TCs, including a several-fold increase in the strongest storms of Saffir-Simpson categories 4 and 5. This increase occurs as the mid-latitudes become a new active region of TC formation and growth. When the climate warms we also see convergence between the physical properties and genesis locations of tropical and warm-core extra-tropical cyclones. While end-members of these types of storms remain very distinct, a large distribution of cyclones forming in the subtropics and mid-latitudes share properties of the two.

  5. Geoengineering the Climate: Approaches to Counterbalancing Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, M. C.

    2005-12-01

    For the past two hundred years, the inadvertent release of carbon dioxide and other radiatively active gases and aerosols, particularly as a result of combustion of fossil fuels and changes in land cover, have been contributing to global climate change. Global warming to date is approaching 1°C, and this is being accompanied by reduced sea ice, rising sea level, shifting ecosystems and more. Rather than sharply curtailing use of fossil fuels in order to reduce CO2 emissions and eventually eliminate the net human influence on global climate, a number of approaches have been suggested that are intended to advertently modify the climate in a manner to counter-balance the warming influence of greenhouse gas emissions. One general type of approach is carbon sequestration, which focuses on capturing the CO2 and then sequestering it underground or in the ocean. This can be done at the source of emission, by pulling the CO2 out of the atmosphere through some chemical process, or by enhancing the natural processes that remove CO2 from the atmosphere, for example by fertilizing the oceans with iron. A second general approach to geoengineering the climate is to lower the warming influence of the incoming solar radiation by an amount equivalent to the energy captured by the CO2-induced enhancement of the greenhouse effect. Proposals have been made to do this by locating a deflector at the Earth-Sun Lagrange point, lofting many thousands of near-Earth mirrors, injecting aerosols into the stratosphere, or by increasing the surface albedo. A third general approach is to alter natural Earth system processes in ways that would counterbalance the effects of the warming. Among suggested approaches are constructing dams to block various ocean passages, oceanic films to limit evaporation and water vapor feedback, and even, at small scale, to insulate mountain glaciers to prevent melting. Each of these approaches has its advantages, ranging from simplicity to reversibility, and

  6. Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y

    USGS Publications Warehouse

    Ortiz, J.D.; O'Connell, S. B.; DelViscio, J.; Dean, W.; Carriquiry, J.D.; Marchitto, T.; Zheng, Yen; VanGeen, A.

    2004-01-01

    Studies of the Santa Barbara Basin off the coast of California have linked changes in its bottom-water oxygen content to millennial-scale climate changes as recorded by the oxygen isotope composition of Greenland ice. Through the use of detailed records from a sediment core collected off the Magdalena Margin of Baja California, Mexico, we demonstrate that this teleconnection predominantly arose from changes in marine productivity, rather than changes in ventilation of the North Pacific, as was originally proposed. One possible interpretation is that the modern balance of El Nin??o-La Nin??a conditions that favors a shallow nutricline and high productivity today and during warm climate intervals of the past 52 k.y. was altered toward more frequent, deep nutricline, low productivity, El Nin??o-like conditions during cool climate intervals. ?? 2004 Geological Society of America.

  7. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Cheng, Guodong

    2018-02-01

    Air temperature increases thermally degrade permafrost, which has widespread impacts on engineering design, resource development, and environmental protection in cold regions. This study evaluates the potential thermal degradation of permafrost over the Qinghai-Tibet Plateau (QTP) from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating remote-sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow cover values, and decadal mean MAAT date from 152 weather stations with a geographically weighted regression (GWR). The results reflect a continuous rise of approximately 0.04 °C a-1 in the decadal mean MAAT values over the past half century. A thermal-condition classification matrix is used to convert modelled MAATs to permafrost thermal type. Results show that the climate warming has led to a thermal degradation of permafrost in the past half century. The total area of thermally degraded permafrost is approximately 153.76 × 104 km2, which corresponds to 88 % of the permafrost area in the 1960s. The thermal condition of 75.2 % of the very cold permafrost, 89.6 % of the cold permafrost, 90.3 % of the cool permafrost, 92.3 % of the warm permafrost, and 32.8 % of the very warm permafrost has been degraded to lower levels of thermal condition. Approximately 49.4 % of the very warm permafrost and 96 % of the likely thawing permafrost has degraded to seasonally frozen ground. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88, 97, 155, 185, 161, and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This degradation may lead to increased risks to infrastructure, reductions in ecosystem resilience, increased flood risks, and positive climate feedback effects

  8. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.

    PubMed

    Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-19

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.

  9. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming

    PubMed Central

    Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-01

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860

  10. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less

  11. "Global warming, continental drying? Interpreting projected aridity changes over land under climate change"

    NASA Astrophysics Data System (ADS)

    Berg, Alexis

    2017-04-01

    In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.

  12. A warmer and wetter solution for early Mars and the challenges with transient warming

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.

    2017-11-01

    The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.

  13. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada.

    PubMed

    Westwood, A R; Blair, D

    2010-08-01

    We examined the effect of regional climate warming on the phenology of butterfly species in boreal forest ecosystems in Manitoba, Canada. For the period 1971-2004, the mean monthly temperatures in January, September, and December increased significantly, as did the mean temperatures for several concurrent monthly periods. The mean annual temperature increased ≈ 0.05°C/yr over the study period. The annual number of frost-free days and degree-day accumulations increased as well. We measured the response of 19 common butterfly species to these temperature changes with the date of first appearance, week of peak abundance, and the length of flight period over the 33-yr period of 1972-2004. Although adult butterfly response was variable for spring and summer months, 13 of 19 species showed a significant (P < 0.05) increase in flight period extending longer into the autumn. Flight period extensions increased by 31.5 ± 13.9 (SD) d over the study period for 13 butterfly species significantly affected by the warming trend. The early autumn and winter months warmed significantly, and butterflies seem to be responding to this warming trend with a change in the length of certain life stages. Two species, Junonia coenia and Euphydryas phaeton, increased their northerly ranges by ≈ 150 and 70 km, respectively. Warmer autumns and winters may be providing opportunities for range extensions of more southerly butterfly species held at bay by past climatic conditions.

  14. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  15. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  16. Different ecophysiological responses of freshwater fish to warming and acidification.

    PubMed

    Jesus, Tiago F; Rosa, Inês C; Repolho, Tiago; Lopes, Ana R; Pimentel, Marta S; Almeida-Val, Vera M F; Coelho, Maria M; Rosa, Rui

    2018-02-01

    Future climate change scenarios predict threatening outcomes to biodiversity. Available empirical data concerning biological response of freshwater fish to climate change remains scarce. In this study, we investigated the physiological and biochemical responses of two Iberian freshwater fish species (Squalius carolitertii and the endangered S. torgalensis), inhabiting different climatic conditions, to projected future scenarios of warming (+3°C) and acidification (ΔpH=-0.4). Herein, metabolic enzyme activities of glycolytic (citrate synthase - CS, lactate dehydrogenase - LDH) and antioxidant (glutathione S-transferase, catalase and superoxide dismutase) pathways, as well as the heat shock response (HSR) and lipid peroxidation were determined. Our results show that, under current water pH, warming causes differential interspecific changes on LDH activity, increasing and decreasing its activity in S. carolitertii and in S. torgalensis, respectively. Furthermore, the synergistic effect of warming and acidification caused an increase in LDH activity of S. torgalensis, comparing with the warming condition. As for CS activity, acidification significantly decreased its activity in S. carolitertii whereas in S. torgalensis no significant effect was observed. These results suggest that S. carolitertii is more vulnerable to climate change, possibly as the result of its evolutionary acclimatization to milder climatic condition, while S. torgalensis evolved in the warmer Mediterranean climate. However, significant changes in HSR were observed under the combined warming and acidification (S. carolitertii) or under acidification (S. torgalensis). Our results underlie the importance of conducting experimental studies and address species endpoint responses under projected climate change scenarios to improve conservation strategies, and to safeguard endangered freshwater fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  18. Climate warming: a loss of variation in populations can accompany reproductive shifts.

    PubMed

    Massot, Manuel; Legendre, Stéphane; Fédérici, Pierre; Clobert, Jean

    2017-09-01

    The most documented response of organisms to climate warming is a change in the average timing of seasonal activities (phenology). Although we know that these average changes can differ among species and populations, we do not know whether climate warming impacts within-population variation in phenology. Using data from five study sites collected during a 13-year survey, we found that the increase in spring temperatures is associated with a reproductive advance of 10 days in natural populations of common lizards (Zootoca vivipara). Interestingly, we show a correlated loss of variation in reproductive dates within populations. As illustrated by a model, this shortening of the reproductive period can have significant negative effects on population dynamics. Consequently, we encourage tests in other species to assess the generality of decreased variation in phenological responses to climate change. © 2017 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates.

    PubMed

    Loisel, Julie; Yu, Zicheng; Beilman, David W; Kaiser, Karl; Parnikoza, Ivan

    2017-09-27

    We discovered a 50-cm-thick peat deposit near Cape Rasmussen (65.2°S), in the maritime Antarctic. To our knowledge, while aerobic 'moss banks' have often been examined, waterlogged 'peatlands' have never been described in this region before. The waterlogged system is approximately 100 m 2 , with a shallow water table. Surface vegetation is dominated by Warnstorfia fontinaliopsis, a wet-adapted moss commonly found in the Antarctic Peninsula. Peat inception was dated at 2750 cal. BP and was followed by relatively rapid peat accumulation (~0.1 cm/year) until 2150 cal. BP. Our multi-proxy analysis then shows a 2000-year-long stratigraphic hiatus as well as the recent resurgence of peat accumulation, sometime after 1950 AD. The existence of a thriving peatland at 2700-2150 cal. BP implies regionally warm summer conditions extending beyond the mid-Holocene; this finding is corroborated by many regional records showing moss bank initiation and decreased sea ice extent during this time period. Recent peatland recovery at the study site (<50 years ago) might have been triggered by ongoing rapid warming, as the area is experiencing climatic conditions approaching those found on milder, peatland-rich sub-Antarctic islands (50-60°S). Assuming that colonization opportunities and stabilization mechanisms would allow peat to persist in Antarctica, our results suggest that longer and warmer growing seasons in the maritime Antarctic region may promote a more peatland-rich landscape in the future.

  20. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  1. Multisectoral climate impact hotspots in a warming world.

    PubMed

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A M; Clark, Douglas B; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D; Gosling, Simon N; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D; Tompkins, Adrian M; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-03-04

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  2. Multisectoral Climate Impact Hotspots in a Warming World

    NASA Technical Reports Server (NTRS)

    Piontek, Franziska; Mueller, Christoph; Pugh, Thomas A. M.; Clark, Douglas B.; Deryng, Delphine; Elliott, Joshua; deJesusColonGonzalez, Felipe; Floerke, Martina; Folberth, Christian; Franssen, Wietse; hide

    2014-01-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 degC above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 degC. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  3. California golden trout and climate change: Is their stream habitat vulnerable to climate warming?

    Treesearch

    Kathleen R. Matthews

    2010-01-01

    The California golden trout (CGT) Oncorhynchus mykiss aguabonita is one of the few native high-elevation fish in the Sierra Nevada. They are already in trouble because of exotic trout, genetic introgression, and degraded habitat, and now face further stress from climate warming. Their native habitat on the Kern Plateau meadows mostly in the Golden...

  4. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics.

    PubMed

    Gehman, Alyssa-Lois M; Hall, Richard J; Byers, James E

    2018-01-23

    Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.

  5. Effects of the "New Climate" warmed in North Africa and Western Mediterranean: the situation of recent meteorological droughts and floods

    NASA Astrophysics Data System (ADS)

    Karrouk, Mohammed-Said

    2017-04-01

    "New Climate" subjected to North Africa, Western Mediterranean and geoclimatic midlatitude space atmospheric effects of the new regime characterized by the supremacy of the meridian circulation (MAC: Meridian Atmospheric Circulation), by alternating cool conditions (humidity) heat (drought) along the year, and imposes situation of anxiety and perplexity vis-a-vis their socio-economic activities; shoved agricultural calendar, hesitant policymakers, uncertainty and waiting, ... etc. The recent example of the fall-winter 2015-2016 is indicative of the conditions that have left a deep psychological imprint on economic and social Moroccans. During this period, the summer heat has extended to the end of autumn and even winter. And precipitation contracted by more than 51% of accumulated rainfall autumn, compared with the same period a normal year. A slowdown in economic growth has been felt since last December and was extended until the rains return (and snow!) In mid February 2016. Weather conditions during this period were marked by the succession and persistence of very active planetary peaks, projected to the northern borders of Western Europe (Heat Christmas 2015!), Rejecting the negative waves to the east: Algeria, Tunisia, Italy, the Balkans, Anatolia, and even the Middle East. These conditions are the consequences of the "New Climate" warmed, strengthened by the strong El Niño event in 2015 decennial. The identification of hemispheric and regional climate mechanisms of these atmospheric regime systems based on energy balance and atmospheric circulation will be defined, with links of cause and effect, in view of integrating these characters to extreme events in the New Climate Warmed.

  6. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  7. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions

    PubMed Central

    Godbold, Jasmin A.; Solan, Martin

    2013-01-01

    Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing. PMID:23980249

  8. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem.

    PubMed

    Maphangwa, Khumbudzo Walter; Musil, Charles F; Raitt, Lincoln; Zedda, Luciana

    2012-05-01

    Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1-3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1-31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields ([Formula: see text]) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen [Formula: see text]. The decreases were more pronounced in lichens from the dry inland site (decline 34.1-46.1%) than in those from the humid coastal site (decline 11.3-13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality.

  9. Disruption of the European climate seasonal clock in a warming world

    NASA Astrophysics Data System (ADS)

    Cattiaux, J.; Cassou, C.

    2015-12-01

    Strength and inland penetration of the oceanic westerly flow over Europe control a large part of the temperature variability over most of the continent. Reduced westerlies, linked to high-pressure anomalies over Scandinavia, induce cold conditions in winter and warm conditions in summer. Here we propose to define the onset of these two seasons as the calendar day where the daily circulation/temperature relationship over Western Europe switches sign. According to this meteorologically-based metrics assessed from several observational datasets, we provide robust evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from model ensemble simulations dedicated to detection-attribution show that this calendar advance is incompatible with the sole internal climate variability and can be attributed to anthropogenic forcings. Late winter snow disappearance over Eastern Europe affects cold air intrusion to the West when easterlies blow, and is mainly responsible for the observed present-day and near-future summer advance. Our findings agree with phenological-based trends (earlier spring events) reported for many living species over Europe, for which they provide a novel dynamical interpretation beyond the traditionally evoked global warming effect. Based on business-as-usual scenario, a seasonal shift of ~25 days is expected by 2100 for summer onset, while no clear signal arises for winter onset.

  10. Indirect chemical effects of methane on climate warming

    NASA Astrophysics Data System (ADS)

    Lelieveld, Jos; Crutzen, Paul J.

    1992-01-01

    METHANE concentrations in the atmosphere have increased from about 0.75 to 1.7 p.p.m.v. since pre-industrial times1,2. The current annual rate of increase of about 0.8% yr-1 (ref. 2) is due to increases in industrial and agricultural emissions. This increase in atmospheric methane concentrations not only influences the climate directly, but also indirectly through chemical reactions. Here we show that the climate effects of methane's atmospheric chemistry have previously been overestimated, notably by the Inter-governmental Panel on Climate Change (IPCC)3, largely owing to neglect of the height dependence of certain atmospheric radiative processes. Using available estimates of fossil-fuel-related leaks of methane, our results show that switching from coal and oil to natural gas as an energy source would reduce climate warming. A significant fraction of methane emissions cannot, however, be accounted for by known sources; should leakages from gas production and distribution be underestimated for some countries, then it might be unwise to switch to using natural gas.

  11. Ecosystem resilience despite large-scale altered hydro climatic conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  12. "New Climate" Warmed, "New Atmospheric Circulation" and "Extreme" Meteorological Phenomena associated with El Niño 2015-2016

    NASA Astrophysics Data System (ADS)

    Karrouk, M. S.

    2016-12-01

    Cumulating ocean-atmospheric thermal energy caused by global warming has resulted in the reversal of the energy balance towards the poles. This situation is characterized by a new ocean-continental thermal distribution: over the ocean, the balance is more in excess than in the mainland, if not the opposite when the balance is negative inland.Thanks to satellite observation and daily monitoring of meteorological conditions for more than ten years, we have observed that the positive balance has shifted more towards the poles, mainly in the northern hemisphere. Subtropical anticyclones are strengthened and have extended to high latitudes, especially over the Atlantic and Pacific oceans. This situation creates global peaks strengthened in winter periods, and imposes on cosmic cold the deep advection toward the south under the form of planetary valleys "Polar Vortex".This situation imposes on the jet stream a pronounced ripple and installs a meridional atmospheric circulation in winter, which brings the warm tropical air masses to reach the Arctic Circle, and cold polar air masses to reach North Africa and Florida.This situation creates unusual atmospheric events, characterized by hydrothermal "extreme" conditions: excessive heat at high latitudes, accompanied by heavy rains and floods, as well as cold at low latitudes and the appearance of snow in the Sahara!The populations are profoundly influenced by the new phenomena. The socioeconomic infrastructures can no longer assume their basic functions and man when unprotected is weak and hence the advanced vulnerability of all the regions especially those belonging to poor and developing countriesRecent studies have shown that global and regional climate system is affected by extreme events of El Niño. Statistical and dynamic links have been confirmed in Northern Africa and Western Europe; hence the importance of the fall situation and winter 2015-2016.These conditions are the consequences of the "New Climate" warmed

  13. Responses of spring phenology to climate warming reduced over the past decades

    NASA Astrophysics Data System (ADS)

    Fu, Yongshuo. H.; Zhao, hongfang; piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Penuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan. A.

    2016-04-01

    The phenology of spring leaf unfolding is one of the key indicators of the climate change on ecosystems, and influences regional and hemispheric-scale carbon balances and plant-animal interactions. Changes in the phenology of spring leaf unfolding can also exert biophysical feedbacks on climate by modifying the surface albedo and energy budget. Recent studies have reported significant advances in spring phenology as a result of warming in most northern hemisphere regions. Climate warming is projected to further increase, but the future evolution of the phenology of spring leaf unfolding remains uncertain - in view of the imperfect understanding of how the underlying mechanisms respond to environmental stimuli. In addition, the relative contributions of each environmental stimulus, which together define the apparent temperature sensitivity of the phenology of spring leaf unfolding (advances in days per degree Celsius warming, ST), may also change over time. An improved characterization of the variation in phenological responses to spring temperature is thus valuable, provided that it addresses temporal and spatial scales relevant for regional projections. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, we show here that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance per ° C) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days ° C-1 during 1980-1994 to 2.3 ± 1.6 days ° C-1 during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24%-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also play a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates

  14. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  15. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.

    2018-02-01

    The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.

  16. Responses of community-level plant-insect interactions to climate warming in a meadow steppe.

    PubMed

    Zhu, Hui; Zou, Xuehui; Wang, Deli; Wan, Shiqiang; Wang, Ling; Guo, Jixun

    2015-12-21

    Climate warming may disrupt trophic interactions, consequently influencing ecosystem functioning. Most studies have concentrated on the temperature-effects on plant-insect interactions at individual and population levels, with a particular emphasis on changes in phenology and distribution. Nevertheless, the available evidence from the community level is limited. A 3-year field manipulative experiment was performed to test potential responses of plant and insect communities, and plant-insect interactions, to elevated temperature in a meadow steppe. Warming increased the biomass of plant community and forbs, and decreased grass biomass, indicating a shift from grass-dominant to grass-forb mixed plant community. Reduced abundance of the insect community under warming, particularly the herbivorous insects, was attributed to lower abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food availability and higher defensive herbivory. Lower herbivore abundance caused lower predator species richness because of reduced prey resources and contributed to an overall decrease in insect species richness. Interestingly, warming enhanced the positive relationship between insect and plant species richness, implying that the strength of the plant-insect interactions was altered by warming. Our results suggest that alterations to plant-insect interactions at a community level under climate warming in grasslands may be more important and complex than previously thought.

  17. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    PubMed

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.

  18. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments

    PubMed Central

    Thakur, Madhav P.; Tilman, David; Purschke, Oliver; Ciobanu, Marcel; Cowles, Jane; Isbell, Forest; Wragg, Peter D.; Eisenhauer, Nico

    2017-01-01

    Climate warming is predicted to alter species interactions, which could potentially lead to extinction events. However, there is an ongoing debate whether the effects of warming on biodiversity may be moderated by biodiversity itself. We tested warming effects on soil nematodes, one of the most diverse and abundant metazoans in terrestrial ecosystems, along a gradient of environmental complexity created by a gradient of plant species richness. Warming increased nematode species diversity in complex (16-species mixtures) plant communities (by ~36%) but decreased it in simple (monocultures) plant communities (by ~39%) compared to ambient temperature. Further, warming led to higher levels of taxonomic relatedness in nematode communities across all levels of plant species richness. Our results highlight both the need for maintaining species-rich plant communities to help offset detrimental warming effects and the inability of species-rich plant communities to maintain nematode taxonomic distinctness when warming occur. PMID:28740868

  19. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  20. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  1. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  2. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  3. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    PubMed

    Zięba, Grzegorz; Fox, Michael G; Copp, Gordon H

    2015-01-01

    Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts) appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime.

  4. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    PubMed Central

    Zięba, Grzegorz; Fox, Michael G.; Copp, Gordon H.

    2015-01-01

    Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts) appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime. PMID:26302021

  5. Recent climate warming drives ecological change in a remote high-Arctic lake.

    PubMed

    Woelders, Lineke; Lenaerts, Jan T M; Hagemans, Kimberley; Akkerman, Keechy; van Hoof, Thomas B; Hoek, Wim Z

    2018-05-01

    The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard). The proxy record approaches an annual to biennial resolution. Combining remote sensing and in-situ climate data, we show that this ecological change is concurrent with, and is likely driven by, the atmospheric warming and a sharp decrease in the length of the sea ice covered period in the region, and throughout the Arctic. Moreover, this research demonstrates the value of palaeoclimate records in pristine environments for supporting and extending instrumental records. Our results reinforce and extend observations from other sites that the high Arctic has already undergone rapid ecological changes in response to on-going climate change, and will continue to do so in the future.

  6. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    PubMed

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Statistical structure of intrinsic climate variability under global warming

    NASA Astrophysics Data System (ADS)

    Zhu, Xiuhua; Bye, John; Fraedrich, Klaus

    2017-04-01

    Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.

  8. Climate-induced warming imposes a threat to north European spring ecosystems.

    PubMed

    Jyväsjärvi, Jussi; Marttila, Hannu; Rossi, Pekka M; Ala-Aho, Pertti; Olofsson, Bo; Nisell, Jakob; Backman, Birgitta; Ilmonen, Jari; Virtanen, Risto; Paasivirta, Lauri; Britschgi, Ritva; Kløve, Bjørn; Muotka, Timo

    2015-12-01

    Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems. © 2015 John Wiley & Sons Ltd.

  9. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  10. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  11. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia

    PubMed Central

    Wan, Xinru

    2017-01-01

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal–spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. PMID:28330916

  12. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Technical Reports Server (NTRS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  13. Climatic influence on anthrax suitability in warming northern latitudes.

    PubMed

    Walsh, Michael G; de Smalen, Allard W; Mor, Siobhan M

    2018-06-18

    Climate change is impacting ecosystem structure and function, with potentially drastic downstream effects on human and animal health. Emerging zoonotic diseases are expected to be particularly vulnerable to climate and biodiversity disturbance. Anthrax is an archetypal zoonosis that manifests its most significant burden on vulnerable pastoralist communities. The current study sought to investigate the influence of temperature increases on geographic anthrax suitability in the temperate, boreal, and arctic North, where observed climate impact has been rapid. This study also explored the influence of climate relative to more traditional factors, such as livestock distribution, ungulate biodiversity, and soil-water balance, in demarcating risk. Machine learning was used to model anthrax suitability in northern latitudes. The model identified climate, livestock density and wild ungulate species richness as the most influential features in predicting suitability. These findings highlight the significance of warming temperatures for anthrax ecology in northern latitudes, and suggest potential mitigating effects of interventions targeting megafauna biodiversity conservation in grassland ecosystems, and animal health promotion among small to midsize livestock herds.

  14. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    PubMed

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  15. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Treesearch

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  16. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    USGS Publications Warehouse

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  17. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    PubMed

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  18. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Qianlai; Schlosser, C. Adam; Melillo, Jerry M.

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments thatmore » encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.« less

  19. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics.

    PubMed

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-05-01

    impacted by high sediment loads may be further degraded under a warming climate. However, the degree to which this will occur may also depend on in-stream nutrient conditions. © 2015 John Wiley & Sons Ltd.

  20. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  1. Warm-water coral reefs and climate change

    NASA Astrophysics Data System (ADS)

    Spalding, Mark D.; Brown, Barbara E.

    2015-11-01

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  2. Areas of potential suitability and survival of Dendroctonus valens in China under extreme climate warming scenario.

    PubMed

    He, S Y; Ge, X Z; Wang, T; Wen, J B; Zong, S X

    2015-08-01

    The areas in China with climates suitable for the potential distribution of the pest species red turpentine beetle (RTB) Dendroctonus valens LeConte (Coleoptera: Scolytidae) were predicted by CLIMEX based on historical climate data and future climate data with warming estimated. The model used a historical climate data set (1971-2000) and a simulated climate data set (2010-2039) provided by the Tyndall Centre for Climate Change (TYN SC 2.0). Based on the historical climate data, a wide area was available in China with a suitable climate for the beetle in which every province might contain suitable habitats for this pest, particularly all of the southern provinces. The northern limit of the distribution of the beetle was predicted to reach Yakeshi and Elunchun in Inner Mongolia, and the western boundary would reach to Keerkezi in Xinjiang Province. Based on a global-warming scenario, the area with a potential climate suited to RTB in the next 30 years (2010-2039) may extend further to the northeast. The northern limit of the distribution could reach most parts of south Heilongjiang Province, whereas the western limit would remain unchanged. Combined with the tendency for RTB to spread, the variation in suitable habitats within the scenario of extreme climate warming and the multiple geographical elements of China led us to assume that, within the next 30 years, RTB would spread towards the northeast, northwest, and central regions of China and could be a potentially serious problem for the forests of China.

  3. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological

  4. Projected changes in diverse ecosystems from climate warming and biophysical drivers in northwest Alaska

    Treesearch

    Mark Torre Jorgenson; Bruce G. Marcot; David K. Swanson; Janet C. Jorgenson; Anthony R. DeGange

    2015-01-01

    Climate warming affects arctic and boreal ecosystems by interacting with numerous biophysical factors across heterogeneous landscapes. To assess potential effects of warming on diverse local-scale ecosystems (ecotypes) across northwest Alaska, we compiled data on historical areal changes over the last 25–50 years. Based on historical rates of change relative to time...

  5. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    NASA Astrophysics Data System (ADS)

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.

  6. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Brijs, Jeroen; Sundström, L Fredrik; Odelström, Anne; Adill, Anders; Aho, Teija; Jutfelt, Fredrik

    2016-05-17

    Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5-10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate.

  7. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  8. Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project

    NASA Astrophysics Data System (ADS)

    Maibach, E.; Roser-Renouf, C.

    2011-12-01

    That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.

  9. Agro-climate Projections for a Warming Alaska

    NASA Astrophysics Data System (ADS)

    Lader, R.; Walsh, J. E.; Bhatt, U. S.; Bieniek, P.

    2017-12-01

    In the context of greenhouse warming, agro-meteorological indices suggest widespread disruption to current food supply chains during the coming decades. Much of the western United States is projected to have more dry days, and the southern states are likely to experience greater plant heat stress. Considering these difficulties, it could become necessary for more northerly locations, including Alaska, to increase agricultural production to support local communities and offset supply shortages. This study employs multiple dynamically downscaled regional climate model simulations from the CMIP5 to investigate projected changes to agro-climate conditions across Alaska. The metric used here, the start-of-field operations index (SFO), identifies the date during which the sum of daily average temperature, starting from January 1st and excluding negative values, exceeds 200 ˚C. Using the current trajectory of greenhouse radiative forcing, RCP 8.5, this study indicates a doubling to 71,960 km2 of Alaska land area that meets the required thermal accumulation for crop production when comparing a historical period (1981-2010) to the future (2071-2100). The SFO shows a correlation coefficient of 0.91 with the independently produced green-up index for Fairbanks from 1981-2010. Among the land areas that currently reach the necessary thermal accumulation, there is a projected increase in growing season length (63-82 days), earlier date of last spring frost (28-48 days), and later date of first autumn frost (24-47 days) across the five USDA Census of Agriculture areas for Alaska. Both an average statewide decrease of annual frost days (71 fewer), and an increase in days with extreme warmth (28 more) are also projected.

  10. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive.

    PubMed

    Tharayil, Nishanth; Suseela, Vidya; Triebwasser, Daniella J; Preston, Caroline M; Gerard, Patrick D; Dukes, Jeffrey S

    2011-07-01

    Climate change could increase the frequency with which plants experience abiotic stresses, leading to changes in their metabolic pathways. These stresses may induce the production of compounds that are structurally and biologically different from constitutive compounds. • We studied how warming and altered precipitation affected the composition, structure, and biological reactivity of leaf litter tannins in Acer rubrum at the Boston-Area Climate Experiment, in Massachusetts, USA. • Warmer and drier climatic conditions led to higher concentrations of protective compounds, including flavonoids and cutin. The abundance and structure of leaf tannins also responded consistently to climatic treatments. Drought and warming in combination doubled the concentration of total tannins, which reached 30% of leaf-litter DW. This treatment also produced condensed tannins with lower polymerization and a greater proportion of procyanidin units, which in turn reduced sequestration of tannins by litter fiber. Furthermore, because of the structural flexibility of these tannins, litter from this treatment exhibited five times more enzyme (β-glucosidase) complexation capacity on a per-weight basis. Warmer and wetter conditions decreased the amount of foliar condensed tannins. • Our finding that warming and drought result in the production of highly reactive tannins is novel, and highly relevant to climate change research as these tannins, by immobilizing microbial enzymes, could slow litter decomposition and thus carbon and nutrient cycling in a warmer, drier world. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  11. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia.

    PubMed

    Wan, Xinru; Zhang, Zhibin

    2017-03-29

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal-spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus ), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. © 2017 The Author(s).

  12. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?

    PubMed

    McKenzie, Donald; Littell, Jeremy S

    2017-01-01

    Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the full gradient of deficit in the western USA, from temperate rainforest to desert. In the middle of this gradient, conditional on vegetation (fuels), correlations are strong, but outside this range the equivalence hotter and drier equals more fire either breaks down or is contingent on other factors such as previous-year climate. This suggests that the regional drought-fire dynamic will not be stationary in future climate, nor will other more complex contingencies associated with the variation in fire extent. Predictions of future wildfire area therefore need to consider not only vegetation changes, as some dynamic vegetation models now do, but also potential changes in the drought-fire dynamic that will ensue in a warming climate. © 2016 by the Ecological Society of America.

  13. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?

    USGS Publications Warehouse

    McKenzie, Donald; Littell, Jeremy

    2017-01-01

    Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought–fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the full gradient of deficit in the western USA, from temperate rainforest to desert. In the middle of this gradient, conditional on vegetation (fuels), correlations are strong, but outside this range the equivalence hotter and drier equals more fire either breaks down or is contingent on other factors such as previous-year climate. This suggests that the regional drought–fire dynamic will not be stationary in future climate, nor will other more complex contingencies associated with the variation in fire extent. Predictions of future wildfire area therefore need to consider not only vegetation changes, as some dynamic vegetation models now do, but also potential changes in the drought–fire dynamic that will ensue in a warming climate.

  14. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  15. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and

  16. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    NASA Astrophysics Data System (ADS)

    Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S.

    2016-06-01

    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ∼7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, δ13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province).

  17. Prolonged California aridity linked to climate warming and Pacific sea surface temperature.

    PubMed

    MacDonald, Glen M; Moser, Katrina A; Bloom, Amy M; Potito, Aaron P; Porinchu, David F; Holmquist, James R; Hughes, Julia; Kremenetski, Konstantine V

    2016-09-15

    California has experienced a dry 21(st) century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1(o) to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result.

  18. Climate warming and the carbon cycle in the permafrost zone of the former Soviet Union

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolchugina, T.P.; Vinson, T.S.

    1993-01-01

    The continuous permafrost zone of the former Soviet Union occupies 5% of the land surface area of the earth and stores a significant amount of carbon. Climate warming could disrupt the balance between carbon (C) accumulation and decomposition processes within the permafrost zone. Increased temperatures may accelerate the rate of organic matter decomposition. At the same time, the productivity of vegetation may increase in response to warming. To assess the future carbon cycle within the permafrost zone under a climate-warming scenario, it is necessary to quantify present carbon pools and fluxes. The present carbon cycle was assessed on the basismore » of an ecosystem/ecoregion approach. Under the present climate, the phytomass carbon pool was estimated at 17.0 Giga tons. The mortmass (coarse woody debris) carbon pool was estimated at 16.1 Giga tons. The soil carbon pool, including peatlands, was 139.4 Giga tons. The present rate of carbon turnover was 1.6 Giga tons/yr. (Copyright (c) 1993 by John Wiley and Sons, Ltd.)« less

  19. Effects of the "New Climate" warmed in Northern Africa and Western Europe: the situation of meteorological drought and floods 2015-2016

    NASA Astrophysics Data System (ADS)

    Karrouk, M. S.

    2016-12-01

    "New Climate" subjected to North Africa, Western Europe and geoclimatic midlatitude space atmospheric effects of the new regime characterized by the supremacy of the Meridian Atmospheric Circulation (MAC), by alternating cool conditions (humidity) heat (drought) along the year, and imposes situation of anxiety and perplexity towards their socio-economic activities; shoved agricultural calendar, hesitant policymakers, uncertainty and waiting, ... etc.The recent example of the fall-winter 2015-2016 is indicative of the conditions that have left a deep psychological, economic and social footprint on the North African and West European people.During this period, the summer heat has extended to the end of autumn and even winter. And precipitation contracted by more than 51% of accumulated rainfall autumn in Morocco, compared with the same period a normal year. A slowdown in economic growth has been felt since last December and was extended until the rains return (and snow!) In mid February 2016.Weather conditions during this period were marked by the succession and persistence of very active planetary crests (Azores anticyclone), projected to the northern borders of Western Europe (Heat Christmas 2015!), rejecting the negative waves (polar Vortex) to the east: Algeria, Tunisia, Italy, the Balkans, Anatolia, and even the Middle East.These conditions are the consequences of the "New Climate" warmed, strengthened by the strong El Niño event in 2015.The identification of hemispheric and regional climate mechanisms of these atmospheric regime systems based on energy balance and atmospheric circulation will be defined, with links of cause and effect, in view of integrating these characters to extreme events in the New Climate Warmed.

  20. Elevated CO2 further lengthens growing season under warming conditions.

    PubMed

    Reyes-Fox, Melissa; Steltzer, Heidi; Trlica, M J; McMaster, Gregory S; Andales, Allan A; LeCain, Dan R; Morgan, Jack A

    2014-06-12

    Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

  1. Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type.

    PubMed

    Hu, B; Simon, J; Kuster, T M; Arend, M; Siegwolf, R; Rennenberg, H

    2013-01-01

    Climate-tolerant tree species and/or provenances have to be selected to ensure the high productivity of managed forests in Central Europe under the prognosticated climate changes. For this purpose, we studied the responses of saplings from three oak species (i.e. Quercus robur, Q. petraea and Q. pubescens) and provenances of different climatic origin (i.e. low or high rainfall, low or high temperature habitats) with regard to leaf nitrogen (N) composition as a measure of N nutrition. Saplings were grown in model ecosystems on either calcareous or acidic soil and subjected to one of four treatments (control, drought, air warming or a combination of drought and air warming). Across species, oak N metabolism responded to the influence of drought and/or air warming with an increase in leaf amino acid N concentration at the expense of structural N. Moreover, provenances or species from drier habitats were more tolerant to the climate conditions applied, as indicated by an increase in amino acid N (comparing species) or soluble protein N (comparing provenances within a species). Furthermore, amino acid N concentrations of oak leaves were significantly higher on calcareous compared to acidic soil. From these results, it can be concluded that seeds from provenances or species originating from drier habitats and - if available - from calcareous soil types may provide a superior seed source for future forest establishment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Possible climate warming effects on vegetation, forests, biotic (insect, pathogene) disturbances and agriculture in Central Siberia for 1960- 2050

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Soja, A. J.; Lysanova, G. I.; Baranchikov, Y. N.; Kuzmina, N. A.

    2012-04-01

    Regional Siberian studies have already registered climate warming over the last half a century (1960-2010). Our analysis showed that winters are already 2-3°C warmer in the north and 1-2°C warmer in the south by 2010. Summer temperatures increased by 1°C in the north and by 1-2°C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Our goal was to summarize results of research we have done for the last decade in the context of climate warming and its consequences for biosystems in Central Siberia. We modeled climate change effects on vegetation shifts, on forest composition and agriculture change, on the insect Siberian moth (Dendrolimus suprans sibiricus Tschetv) and pathogene (Lophodermium pinastri Chev) ranges in Central Siberia for a century (1960-2050) based on historical climate data and GCM-predicted data. Principal results are: In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over 50% of central Siberia due to the dryer climate by 2080. Permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats; At least half of central Siberia is predicted to be climatically suitable for agriculture at the end of the century although potential croplands would be limited by the availability of suitable soils agriculture in central Siberia would likely benefit from climate warming Crop production may twofold increase as climate warms during the century; traditional crops (grain, potato

  3. Paris Agreement climate proposals need a boost to keep warming well below 2 °C.

    PubMed

    Rogelj, Joeri; den Elzen, Michel; Höhne, Niklas; Fransen, Taryn; Fekete, Hanna; Winkler, Harald; Schaeffer, Roberto; Sha, Fu; Riahi, Keywan; Meinshausen, Malte

    2016-06-30

    The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.

  4. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record

    PubMed Central

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348

  5. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  6. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. Copyright © 2015, American Association for the Advancement of Science.

  7. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.

    PubMed

    Kearney, Michael; Shine, Richard; Porter, Warren P

    2009-03-10

    Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "cold-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.

  8. Climate Change of 4°C GlobalWarming above Pre-industrial Levels

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Jiang, Dabang; Lang, Xianmei

    2018-07-01

    Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4°C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4°C global warming will occur is 2084. Based on the median results of models that project a 4°C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-tonoise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5°C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the intermodel consistency is better for temperature than for precipitation.

  9. Microclimate moderates plant responses to macroclimate warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A; Kelly, Daniel L; Kirby, Keith J; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Peterken, George; Petrík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M; Walther, Gian-Reto; White, Peter S; Woods, Kerry D; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-11-12

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.

  10. Impact of climate warming-induced increase in drought stress on successional dynamic of a coniferous forest within a dry inner Alpine environment

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Zeisler, B.; Oberhuber, W.

    2012-04-01

    Climate sensitivity of tree growth will effect the development of forest ecosystems under a warmer and drier climate by changing species composition and inducing shifts in forest distribution. We applied dendroclimatological techniques to determine impact of climate warming on radial stem growth of three native and widespread coniferous tree species of the central Austrian Alps (Norway spruce, Picea abies; European larch, Larix decidua; Scots pine, Pinus sylvestris), which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). Time series of annual increments were developed from > 250 saplings and mature trees. Radial growth response to recent climate warming was explored by means of moving response functions (MRF) and evaluation of trends in basal area increment (BAI) for the period 1911 - 2009. Climate-growth relationships revealed significant differences among species in response to water availability. While precipitation in May - June favoured radial growth of spruce and larch, Scots pine growth mainly depended on April - May precipitation. Spruce growth was most sensitive to May - June temperature (inverse relationship). Although MRF coefficients indicated increasing drought sensitivity of all species, which is most likely related to intensified belowground competition for scarce water with increasing stand density and higher evapotranspiration rates due to climate warming, recent BAI trends strikingly differed among species. While BAI of larch was distinctly declining, spruce showed steadily increasing BAI and quite constant BAI was maintained in drought adapted Scots pine, although at lowest level of all species. Furthermore, more favourable growing conditions of spruce in recent decades are indicated by scattered natural regeneration and higher growth rates of younger trees during first decades of their lifespan. Because human interference and wildlife stock is negligible within the study area, results

  11. Changes in plant community composition lag behind climate warming in lowland forests.

    PubMed

    Bertrand, Romain; Lenoir, Jonathan; Piedallu, Christian; Riofrío-Dillon, Gabriela; de Ruffray, Patrice; Vidal, Claude; Pierrat, Jean-Claude; Gégout, Jean-Claude

    2011-10-19

    Climate change is driving latitudinal and altitudinal shifts in species distribution worldwide, leading to novel species assemblages. Lags between these biotic responses and contemporary climate changes have been reported for plants and animals. Theoretically, the magnitude of these lags should be greatest in lowland areas, where the velocity of climate change is expected to be much greater than that in highland areas. We compared temperature trends to temperatures reconstructed from plant assemblages (observed in 76,634 surveys) over a 44-year period in France (1965-2008). Here we report that forest plant communities had responded to 0.54 °C of the effective increase of 1.07 °C in highland areas (500-2,600 m above sea level), while they had responded to only 0.02 °C of the 1.11 °C warming trend in lowland areas. There was a larger temperature lag (by 3.1 times) between the climate and plant community composition in lowland forests than in highland forests. The explanation of such disparity lies in the following properties of lowland, as compared to highland, forests: the higher proportion of species with greater ability for local persistence as the climate warms, the reduced opportunity for short-distance escapes, and the greater habitat fragmentation. Although mountains are currently considered to be among the ecosystems most threatened by climate change (owing to mountaintop extinction), the current inertia of plant communities in lowland forests should also be noted, as it could lead to lowland biotic attrition. ©2011 Macmillan Publishers Limited. All rights reserved

  12. Nutritional requirements of sheep, goats and cattle in warm climates: a meta-analysis.

    PubMed

    Salah, N; Sauvant, D; Archimède, H

    2014-09-01

    The objective of the study was to update energy and protein requirements of growing sheep, goats and cattle in warm areas through a meta-analysis study of 590 publications. Requirements were expressed on metabolic live weight (MLW=LW0.75) and LW1 basis. The maintenance requirements for energy were 542.64 and 631.26 kJ ME/kg LW0.75 for small ruminants and cattle, respectively, and the difference was significant (P<0.01). The corresponding requirement for 1 g gain was 24.3 kJ ME without any significant effect of species. Relative to LW0.75, there was no difference among genotypes intra-species in terms of ME requirement for maintenance and gain. However, small ruminants of warm and tropical climate appeared to have higher ME requirements for maintenance relative to live weight (LW) compared with temperate climate ones and cattle. Maintenance requirements for protein were estimated via two approaches. For these two methods, the data in which retained nitrogen (RN) was used cover the same range of variability of observations. The regression of digestible CP intake (DCPI, g/kg LW0.75) against RN (g/kg LW0.75) indicated that DCP requirements are significantly higher in sheep (3.36 g/kg LW0.75) than in goats (2.38 g/kg LW0.75), with cattle intermediate (2.81 g/kg LW0.75), without any significant difference in the quantity of DCPI/g retained CP (RCP) (40.43). Regressing metabolisable protein (MP) or minimal digestible protein in the intestine (PDImin) against RCP showed that there was no difference between species and genotypes, neither for the intercept (maintenance=3.51 g/kg LW0.75 for sheep and goat v. 4.35 for cattle) nor for the slope (growth=0.60 g MP/g RCP). The regression of DCP against ADG showed that DCP requirements did not differ among species or genotypes. These new feeding standards are derived from a wider range of nutritional conditions compared with existing feeding standards as they are based on a larger database. The standards seem to be more appropriate

  13. Climate change lessons from a warm world

    USGS Publications Warehouse

    Dowsett, Harry J.

    2010-01-01

    In the early 1970’s to early 1980’s Soviet climatologists were making comparisons to past intervals of warmth in the geologic record and suggesting that these intervals could be possible analogs for 21st century “greenhouse” conditions. Some saw regional warming as a benefit to the Soviet Union and made comments along the lines of “Set fire to the coal mines!” These sentiments were alarming to some, and the United States Geological Survey (USGS) leadership thought they could provide a more quantitative analysis of the data the Soviets were using for the most recent of these warm intervals, the Early Pliocene.

  14. The Frustrating Lives of Climate Scientists - 45 Years of Warm, Cold, Wet and Dry

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Hartwick, V.; Urata, R. A.

    2016-12-01

    Mariner 9 arrived at Mars in November 1971, where it revealed giant volcanoes and dry river valleys some of which originated from rainfall or runoff. Some geologists think there were oceans, tidal waves, craters that filled to their rims and then overflowed or didn't overflow, and river deltas reaching into the ancient seas and lakes. Climate scientists have stumbled through a 45 year-long chain of failed explanations for these geologic data. CO2 in greater abundance than now is likely involved, but not sufficient. Adding CH4 , CO2 clouds, or SO2 have faltered on further study. Three ideas are still being kicked around, two of which are able to make Mars warm, but may have geologic issues. First, is the idea of adding H2 to the CO2, which warms sufficiently in climate models. However, the large quantities needed are a challenge to outgassing models. Second, is impacts, the largest of which would mobilize most of the water in the regolith. Geologists object that the water from impacts would not last long enough to carve rivers. However, no one has explored the concurrent generation of the regolith by these impacts, which would create a loose, easily erodible surface. Are the rivers all in ancient regolith? If some rivers are in bedrock it would be harder to explain by impacts. Finally, impacts may triggered water/cloud greenhouses. Such a climate state would be long lasting, requires only a modest background atmosphere of carbon dioxide, and would fade away when the carbon dioxide dropped below a few hundred mbar. However, not all climate models have been able to produce such water driven greenhouse warming. In this talk I will outline the history of these climate models, point to evidence that might discriminate between them, describe how the water greenhouse models work or don't work, and suggest some new projects that might be done to decide just how warm and wet Mars may have been.

  15. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  16. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.

    PubMed

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-20

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  17. Global Changes in Drought Conditions Under Different Levels of Warming

    NASA Astrophysics Data System (ADS)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  18. Regional climate models reduce biases of global models and project smaller European summer warming

    NASA Astrophysics Data System (ADS)

    Soerland, S.; Schar, C.; Lüthi, D.; Kjellstrom, E.

    2017-12-01

    The assessment of regional climate change and the associated planning of adaptation and response strategies are often based on complex model chains. Typically, these model chains employ global and regional climate models (GCMs and RCMs), as well as one or several impact models. It is a common belief that the errors in such model chains behave approximately additive, thus the uncertainty should increase with each modeling step. If this hypothesis were true, the application of RCMs would not lead to any intrinsic improvement (beyond higher-resolution detail) of the GCM results. Here, we investigate the bias patterns (offset during the historical period against observations) and climate change signals of two RCMs that have downscaled a comprehensive set of GCMs following the EURO-CORDEX framework. The two RCMs reduce the biases of the driving GCMs, reduce the spread and modify the amplitude of the GCM projected climate change signal. The GCM projected summer warming at the end of the century is substantially reduced by both RCMs. These results are important, as the projected summer warming and its likely impact on the water cycle are among the most serious concerns regarding European climate change.

  19. Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback.

    PubMed

    Harte, John; Saleska, Scott R; Levy, Charlotte

    2015-06-01

    Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long-term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales. © 2014 John Wiley & Sons Ltd.

  20. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-02-16

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.

  1. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or

  2. Estimating the potential for adaptation of corals to climate warming.

    PubMed

    Császár, Nikolaus B M; Ralph, Peter J; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J H

    2010-03-18

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  3. Estimating the Potential for Adaptation of Corals to Climate Warming

    PubMed Central

    Császár, Nikolaus B. M.; Ralph, Peter J.; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J. H.

    2010-01-01

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming. PMID:20305781

  4. Climate variability and dengue fever in warm and humid Mexico.

    PubMed

    Colón-González, Felipe J; Lake, Iain R; Bentham, Graham

    2011-05-01

    Multiple linear regression models were fitted to look for associations between changes in the incidence rate of dengue fever and climate variability in the warm and humid region of Mexico. Data were collected for 12 Mexican provinces over a 23-year period (January 1985 to December 2007). Our results show that the incidence rate or risk of infection is higher during El Niño events and in the warm and wet season. We provide evidence to show that dengue fever incidence was positively associated with the strength of El Niño and the minimum temperature, especially during the cool and dry season. Our study complements the understanding of dengue fever dynamics in the region and may be useful for the development of early warning systems.

  5. Assessing the effect of the relative atmospheric angular momentum (AAM) on length-of-day (LOD) variations under climate warming

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Hansen, F.; Ulbrich, U.; Nevir, P.; Leckebusch, G. C.

    2009-04-01

    relative AAM is observed with major contributions in the upper troposphere where increased jet streams cause large AAM anomalies. Due to increasing westerly winds, an eastward shift can be observed during strong El Niño events for the Pacific and North America centers of the PNA while its southeast center is less pronounced and shifts to the West. As a result, the PNA region during strong 21th century El Niño events is closely located to the PNA region of mean atmospheric conditions of present time. Further analyses on the climate warming scenario (A1B) determined a total of 28 strong El Niño events suggesting a steady increase in ENSO events, magnitude and duration during the last decades of the 21st century. Rising Niño 3.4 SSTs exceed global increases by 15%. Correspondingly to present times, the AAM-SST relation also indicates a range of explained variances from 8% to 82%. Ongoing analyses on 21st century climate warming relate zonal wind anomalies in the upper troposphere to SST patterns of individual strong El Niños to estimate a possible effect of the relative AAM on length-of-day variations.

  6. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  7. Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris.

    PubMed

    Orrù, Martino; Mattana, Efisio; Pritchard, Hugh W; Bacchetta, Gianluigi

    2012-12-01

    The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l). Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10-25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C). Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (T(b)) of 9·0-11·3 °C and a thermal time requirement for 50 % of germination (θ(50)) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations. The thermal thresholds for seed germination identified in this study (T(b) and θ(50)) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.

  8. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GOES GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  9. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  10. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    ERIC Educational Resources Information Center

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  11. Investigate the plant biomass response to climate warming in permafrost ecosystem using matrix-based data assimilation

    NASA Astrophysics Data System (ADS)

    Lu, X.; Du, Z.; Schuur, E.; Luo, Y.

    2017-12-01

    Permafrost is one of the most vulnerable regions on the earth with over 40% world soil C represented in this region. Future climate warming potentially has a great impact on this region. On one hand, rising temperature accelerates permafrost soil thaw and release more C from land. On the other hand, warming may also increase the plant growing season length and therefore negatively feedback to climate change by increasing annual land C uptake. However, whether permafrost vegetation biomass change in response to warming can sequester more C has not been well understood. Manipulated air warming experiments reported that air warming has very limited impacts on grass land productivity and biomass growth in permafrost region [Mauritz et al., 2017]. It is hard to reveal the mechanisms behind the limited air warming response directly from experiment data. We employ a vegetation C cycle matrix model based on Community land model 4.5 (CLM4.5) and data assimilation technique to investigate how much do phenology and physiology processes contribute to the response respectively. Our results indicate phenology contributes the most in response to warming. The shift of vegetation parameter distributions after 2012 indicate vegetation acclimation may explain the modest response in plant biomass to air warming. The results suggest future model development need to take vegetation acclimation more seriously. The novel matrix-based model allows data assimilation to be conducted more efficiently. It provides more functional understanding of the models as well as the mechanism behind experiment data.

  12. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  13. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    PubMed

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  14. Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude

    PubMed Central

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003–2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world. PMID:24416144

  15. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    PubMed Central

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-01-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445

  16. Responses of Biogeochemical Characteristics and Enzyme Activities in Sediment to Climate Warming under a Simulation Experiment in Geographically Isolated Wetlands of the Hulunbuir Grassland, China.

    PubMed

    Han, Liliang; Su, Derong; Lv, Shihai; Luo, Yan; Li, Xingfu; Jiao, Jian; Diao, Zhaoyan; Bu, He

    2017-08-27

    Climate warming generates a tremendous threat to the stability of geographically-isolated wetland (GIW) ecosystems and changes the type of evaporation and atmospheric precipitation in a region. The intrinsic balance of biogeochemical processes and enzyme activity in GIWs may be altered as well. In this paper, we sampled three types of GIWs exhibiting different kinds of flooding periods. With the participation of real-time temperature regulation measures, we assembled a computer-mediated wetland warming micro-system in June 2016 to simulate climate situation of ambient temperature (control group) and two experimental temperature differences (+2.5 °C and +5.0 °C) following a scientific climate change circumstance based on daily and monthly temperature monitoring at a two-minutes scale. Our results demonstrate that the contents of the total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in the warmed showed, roughly, a balance or a slight decrease than the control treatment. Warming obstructed the natural subsidence of sediment, but reinforced the character of the ecological source, and reduced the activity of urease (URE), but promoted the activity of alkaline phosphatase (AKP) and sucrase (SUC). Redundancy analysis showed that sucrase, urease, available phosphorus (AP), and pH were the major correlating factors under warming conditions in our research scope. Total organic carbon, total nitrogen, sucrase, catalase (CAT), and alkaline phosphatase were the principal reference factors to reflect the ambient temperature variations. Nutrient compositions and enzyme activities in GIW ecosystems could be reconstructed under the warming influence.

  17. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  18. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China

    PubMed Central

    Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209

  19. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China.

    PubMed

    Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.

  20. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  1. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  2. Impact of a global warming on biospheric sources of methane and its climatic consequences

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  3. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  4. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    PubMed Central

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-01-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves. PMID:26951654

  5. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    PubMed

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  6. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    PubMed

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with

  7. Climate Variability and Dengue Fever in Warm and Humid Mexico

    PubMed Central

    Colón-González, Felipe J.; Lake, Iain R.; Bentham, Graham

    2011-01-01

    Multiple linear regression models were fitted to look for associations between changes in the incidence rate of dengue fever and climate variability in the warm and humid region of Mexico. Data were collected for 12 Mexican provinces over a 23-year period (January 1985 to December 2007). Our results show that the incidence rate or risk of infection is higher during El Niño events and in the warm and wet season. We provide evidence to show that dengue fever incidence was positively associated with the strength of El Niño and the minimum temperature, especially during the cool and dry season. Our study complements the understanding of dengue fever dynamics in the region and may be useful for the development of early warning systems. PMID:21540386

  8. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  9. Alexander Polonsky Global warming hiatus, ocean variability and regional climate change

    NASA Astrophysics Data System (ADS)

    Polonsky, A.

    2016-02-01

    This presentation generalizes the results concerning ocean variability, large-scale interdecadal ocean-atmosphere interaction in the Atlantic and Pacific Oceans and their impact on global and regional climate change carried out by the author and his colleagues for about 20 years. It is demonstrated once more that Atlantic Multidecadal Oscillation (AMO, which was early referred by the author as "interdecadal mode of North Atlantic Oscillation") is the crucial natural interdecadal climatic signal for the Atlantic-European and Mediterranean regions. It is characterized by amplitude which is the same order as human-induced centennial climate change and exceeds trend-like anthropogenic change at the decadal scale. Fast increasing of the global and Northern Hemisphere air temperature in the last 30 yrs of XX century (especially pronounced in the North Atlantic region and surrounded areas) is due to coincidence of human-induced positive trend and transition from the negative to the positive phase of AMO. AMO accounts for about 50% (60%) of the global (Northern Hemisphere) temperature trend in that period. Recent global warming hiatus is mostly the result of switch off the AMO phase. Typical AMO temporal scale is dictated by meridional overturning variability in the Atlantic Ocean and associated magnitude of meridional heat transport. Pacific Decadal Oscillation (PDO) is the other natural interdecadal signal which significantly impacts the global and regional climate variability. The rate of the ocean warming for different periods assessed separately for the upper mixed layer and deeper layers using data of oceanic re-analysis since 1959 confirms the principal role of the natural interdecadal oceanic modes (AMO and PDO) in observing climate change. At the same time a lack of deep-ocean long-term observing system restricts the accuracy of assessment of the heat redistribution in the World Ocean. I thanks to Pavel Sukhonos for help in the presentation preparing.

  10. Effects of climate warming on net primary productivity in China during 1961-2010.

    PubMed

    Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Guo, Rui; Yan, Changrong

    2017-09-01

    The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

  11. Differentiation regional climate impact indicators at 1.5°C and 2°C warming above pre-industrial levels

    NASA Astrophysics Data System (ADS)

    Schleussner, C. F.

    2016-12-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. By establishing 1.5°C as the long term temperature limit for global average temperature increase and inviting a special report of the IPCC on the impacts of 1.5°C, the Paris Agreement has put such assessments high on the post-Paris science agenda. Here I will present recent findings of climate impacts at 1.5°C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. In particular, I will present findings from a recent study that attempts to differentiate between such impacts at warming levels of 1.5°¸C and 2°C above pre-industrial (Schleussner et al., 2016). By analyzing changes in indicators for 26 world regions as applicable, the study found regional dependent differences between a 1.5°C and 2°C warming. Regional hot-spots of change emerge with tropical regions bearing the brunt of the impacts of an additional 0.5°C warming. These findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. Building on that analysis, I will discuss limitations of existing approaches to differentiate between warming levels and outline opportunities for future work on refining our understanding of the difference between impacts at 1.5°C and 2°C warming. ReferencesSchleussner, C.-F. et al. Differential climate impacts for policy relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dyn. 7, 327-351 (2016).

  12. Microclimate moderates plant responses to macroclimate warming

    PubMed Central

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D.; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M.; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A.; Kelly, Daniel L.; Kirby, Keith J.; Mitchell, Fraser J. G.; Naaf, Tobias; Newman, Miles; Peterken, George; Petřík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M.; Walther, Gian-Reto; White, Peter S.; Woods, Kerry D.; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-01-01

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12–67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass—e.g., for bioenergy—may open forest canopies and accelerate thermophilization of temperate forest biodiversity. PMID:24167287

  13. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  14. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming

    PubMed Central

    Kearney, Michael; Shine, Richard; Porter, Warren P.

    2009-01-01

    Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most “cold-blooded” terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts. PMID:19234117

  15. Challenges in Quantifying Pliocene Terrestrial Warming Revealed by Data-Model Discord

    NASA Technical Reports Server (NTRS)

    Salzmann, Ulrich; Dolan, Aisling M.; Haywood, Alan M.; Chan, Wing-Le; Voss, Jochen; Hill, Daniel J.; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Bragg, Frances J.; Chandler, Mark A.; hide

    2013-01-01

    Comparing simulations of key warm periods in Earth history with contemporaneous geological proxy data is a useful approach for evaluating the ability of climate models to simulate warm, high-CO2 climates that are unprecedented in the more recent past. Here we use a global data set of confidence-assessed, proxy-based temperature estimates and biome reconstructions to assess the ability of eight models to simulate warm terrestrial climates of the Pliocene epoch. The Late Pliocene, 3.6-2.6 million years ago, is an accessible geological interval to understand climate processes of a warmer world4. We show that model-predicted surface air temperatures reveal a substantial cold bias in the Northern Hemisphere. Particularly strong data-model mismatches in mean annual temperatures (up to 18 C) exist in northern Russia. Our model sensitivity tests identify insufficient temporal constraints hampering the accurate configuration of model boundary conditions as an important factor impacting on data- model discrepancies. We conclude that to allow a more robust evaluation of the ability of present climate models to predict warm climates, future Pliocene data-model comparison studies should focus on orbitally defined time slices.

  16. Implications of global warming for the climate of African rainforests

    PubMed Central

    James, Rachel; Washington, Richard; Rowell, David P.

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  17. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  18. Half the story: Thermal effects on within-host infectious disease progression in a warming climate.

    PubMed

    Stewart, Alexander; Hablützel, Pascal I; Brown, Martha; Watson, Hayley V; Parker-Norman, Sophie; Tober, Anya V; Thomason, Anna G; Friberg, Ida M; Cable, Joanne; Jackson, Joseph A

    2018-01-01

    Immune defense is temperature dependent in cold-blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within-host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid-latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three-spined stickleback and three ecologically relevant parasite infections as a "wild" model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within-host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune-associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection-specific way. Combining laboratory-determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable

  19. Plant inputs, microbial carbon use in soil and decomposition under warming: effects of warming are depth dependent

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Dijkstra, F. A.

    2017-12-01

    Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of

  20. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  1. Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils

    NASA Astrophysics Data System (ADS)

    Donat, M.; Pitman, A.; Seneviratne, S. I.

    2017-12-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.

  2. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  3. Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2011-12-01

    The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the

  4. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua).

    PubMed

    Holt, Rebecca E; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life

  5. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua)

    PubMed Central

    Holt, Rebecca E.; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life

  6. The influence of climate change and the timing of stratospheric warmings on Arctic ozone depletion

    NASA Astrophysics Data System (ADS)

    Austin, John; Butchart, Neal

    1994-01-01

    Satellite data are presented showing the timing of sudden warmings in the lower stratosphere during the winters 1979-1992. A three-dimensional dynamical-radiative-photochemical model is used to establish how Arctic ozone depletion will respond to a doubling of CO2 according to the timing of the warmings. In a series of idealized experiments the timing of the warmings is varied by specifying different geopotential wave amplitudes at the 316-mbar model lower boundary. Results from a "transient climate change experiment" show that the chosen wave amplitudes are appropriate for both the current and the doubled CO2 atmosphere. For doubled CO2 the experiments show that any significant risk of an Arctic ozone hole will be confined to those years with only a late stratospheric warming. In all other years the results suggest that springtime total ozone over the Arctic is more likely to increase by a small amount due to a combination of slower homogeneous chemistry and changes in transport. The predictions obtained from the idealized studies are then tested by prescribing at the model lower boundary the observed geopotential wave amplitudes from two specific years with late winter warmings. Doubling CO2 amounts produced no significant increase in ozone depletion with the 1989 wave amplitudes, but with 1990 wave amplitudes, an Arctic ozone hole occurred with minimum column of 187 Dobson Units. This contrasting response is attributed to the large midwinter pulse in the 1989 wave amplitudes compared to the less dramatic and shorter timescale fluctuations in the 1990 wave amplitudes. It is concluded that under doubled CO2 conditions an Arctic ozone hole is likely to occur in years with late stratospheric warmings following winters in which there were no significant pulses in the upper tropospheric planetary wave amplitudes.

  7. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  8. Climatic variability in the Gulf of California associated with the Medieval Warm Period and the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Flores-Castillo, O. D. L. A.; Martínez-López, A.; Perez-Cruz, L. L.

    2017-12-01

    Marine ecosystems close to the coasts are highly susceptible to be affected both by the variability due to natural processes of the climate system as well as by anthropogenic activities. The Gulf of California, located near the tropical Pacific region, whose influence on the long-term global climate has already been demonstrated, represents a great opportunity to assess the regional response to these effects. This study reconstructs some of the oceanographic and climatic conditions that occurred simultaneously with the Medieval Warm Period (MWP) and the Little Ice Age (LIA) climatic periods in the southern region of the gulf. This reconstruction was based on the use of multiple indirect indicators or proxies of paleoproduction and geochemistry (determined by isotope-ratios mass spectrometer interfaced with an elemental analyzer and inductively coupled plasma mass spectrometry) preserved in a high-resolution laminated sedimentary sequence collected in the slope of southeastern coast of the Gulf of California (24.2822 ° N and 108.3037 ° W). The main effects of these periods were higher precipitation conditions that generated a greater fluvial contribution during the MWP besides a bigger oxygenation of the water mass near the bottom. These conditions were followed by an increase in exported production, decrease in the oxygen content of the water near the bottom and an increase in the denitrification during the transition to the LIA. The results confirm the existence of oceanographic and climatic variability on a secular scale in the Gulf of California associated with both global climatic periods.

  9. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  10. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  11. Chapter 3: Climate change and the relevance of historical forest conditions

    Treesearch

    H.D. Safford; M. North; M.D. Meyer

    2012-01-01

    Increasing human emissions of greenhouse gases are modifying the Earth's climate. According to the Intergovernmental Panel on Climate Change (IPCC), "Warming of the climate system is unequivocal, as is now evident from observation of increases in average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea...

  12. Eutrophication exacerbates the impact of climate warming on lake methane emission.

    PubMed

    Sepulveda-Jauregui, Armando; Hoyos-Santillan, Jorge; Martinez-Cruz, Karla; Walter Anthony, Katey M; Casper, Peter; Belmonte-Izquierdo, Yadira; Thalasso, Frédéric

    2018-04-27

    Net methane (CH 4 ) emission from lakes depends on two antagonistic processes: CH 4 production (methanogenesis) and CH 4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH 4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH 4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, Keith N.; Molotch, Noah P.; Margulis, Steven A.

    2017-12-01

    In a warmer climate, the fraction of annual meltwater produced at high melt rates in mountainous areas is projected to decline due to a contraction of the snow-cover season, causing melt to occur earlier and under lower energy conditions. How snowmelt rates, including extreme events relevant to flood risk, may respond to a range of warming over a mountain front is poorly known. We present a model sensitivity study of snowmelt response to warming across a 3600 m elevation gradient in the southern Sierra Nevada, USA. A snow model was run for three distinct years and verified against extensive ground observations. To simulate the impact of climate warming on meltwater production, measured meteorological conditions were modified by +1 to +6 °C. The total annual snow water volume exhibited linear reductions (-10 % °C-1) consistent with previous studies. However, the sensitivity of snowmelt rates to successive degrees of warming varied nonlinearly with elevation. Middle elevations and years with more snowfall were prone to the largest reductions in snowmelt rates, with lesser changes simulated at higher elevations. Importantly, simulated warming causes extreme daily snowmelt (99th percentiles) to increase in spatial extent and intensity, and shift from spring to winter. The results offer insight into the sensitivity of mountain snow water resources and how the rate and timing of water availability may change in a warmer climate. The identification of future climate conditions that may increase extreme melt events is needed to address the climate resilience of regional flood control systems.

  14. Amazon Basin climate under global warming: the role of the sea surface temperature.

    PubMed

    Harris, Phil P; Huntingford, Chris; Cox, Peter M

    2008-05-27

    The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming.

  15. Processes Controlling Baseflow and Climatic Warming Effects in Merced River, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liu, F.; Conklin, M. H.; Shaw, G.; Bales, R. C.; Conrad, M. E.; Rice, R.

    2006-12-01

    Sources of streamflow in Merced River were determined using stable isotopes and chemical tracers in order to improve our understanding of hydrologic controls on streamflow and their relationship with climatic warming in the region. Samples were collected from streamflow, groundwater, and natural springs from 2003 to 2006. Both stable isotopes and specific conductivity in streamflow showed a strong seasonality, with lower values from April to July during the snowmelt season, higher values from August to October during dry season, and intermediate values from November to March during winter rainfall and snowfall. Two components controlling baseflow (streamflow from August to October) in the Upper Merced River were identified: shallow subsurface runoff from snowmelt infiltration and groundwater from fractured bedrock. Conductivity in baseflow increased rapidly with discharge, following a power law (R2 > 0.96, p < 0.05), and peaked in October, indicating that the contribution of shallow subsurface runoff to baseflow was significant but decreased rapidly from August to October. Baseflow appears to be very sensitive to the snowmelt timing and regime. From 1976 to 2005, during a period of increasing temperature in the region, streamflow tended to decrease significantly during October (p < 0.05) and increase during March (p < 0.05). However, total annual precipitation did not change significantly, indicating that the shift in baseflow discharge is a result of the early onset of snowmelt due to climatic warming. If climatic warming continues in the region, baseflow in the Sierra Nevada may continue decreasing and water supply may suffer increased stress during the late summer, high water-demand period.

  16. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  17. Attributing Contributions of Climate Feedbacks to the Seasonal Cycle of Surface Warming due to CO2 Increase

    NASA Astrophysics Data System (ADS)

    Sejas, S.; Cai, M.

    2012-12-01

    Surfing warming due to CO2 doubling is a robust feature of coupled general circulation models (GCM), as noted in the IPCC AR4 assessment report. In this study, the contributions of different climate feedbacks to the magnitude, spatial distribution, and seasonality of the surface warming is examined using data from NCAR's CCSM4. In particular, a focus is placed on polar regions to see which feedbacks play a role in polar amplification and its seasonal pattern. A new climate feedback analysis method is used to isolate the surface warming or cooling contributions of both radiative and non-radiative (dynamical) climate feedbacks to the total (actual) surface temperature change given by the CCSM4. These contributions (or partial surface temperature changes) are additive and their total is approximately equal to the actual surface temperature change. What is found is that the effects of CO2 doubling alone warms the surface throughout with a maximum in polar regions, which indicates the CO2 forcing alone has a degree of polar warming amplification. Water vapor feedback is a positive feedback throughout but is most responsible for the surface warming found in the tropics. Polar warming amplification is found to be strongest away from summer (especially in NH), which is primarily caused by a positive feedback due to cloud feedbacks but with the surface temperature change due to the CO2 forcing alone and the ocean dynamics and storage feedback also playing an important role. Contrary to popular belief, surface albedo feedback (SAF) does not account for much of the polar amplification. SAF tries to amplify polar warming, but in summer. No major polar amplification is seen in summer for the actual surface temperature, so SAF is not the feedback responsible for polar amplification. This is actually a consequence of the ocean dynamics and storage feedback, which negates the effects of SAF to a large degree.

  18. Potential Impacts of Climate Warming on Water Supply Reliability in the Tuolumne and Merced River Basins, California

    PubMed Central

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario. PMID:24465455

  19. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  20. A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

    Treesearch

    M. Safeeq; G.E. Grant; S.L. Lewis; M.G. Kramer; B. Staab

    2014-01-01

    Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation...

  1. Climate Impacts in Europe Under +1.5°C Global Warming

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela; Kotova, Lola; Teichmann, Claas; Sobolowski, Stefan P.; Vautard, Robert; Donnelly, Chantal; Koutroulis, Aristeidis G.; Grillakis, Manolis G.; Tsanis, Ioannis K.; Damm, Andrea; Sakalli, Abdulla; van Vliet, Michelle T. H.

    2018-02-01

    The Paris Agreement of the United Nations Framework Convention on Climate Change aims not only at avoiding +2°C warming (and even limit the temperature increase further to +1.5°C), but also sets long-term goals to guide mitigation. Therefore, the best available science is required to inform policymakers on the importance of and the adaptation needs in a +1.5°C warmer world. Seven research institutes from Europe and Turkey integrated their competencies to provide a cross-sectoral assessment of the potential impacts at a pan-European scale. The initial findings of this initiative are presented and key messages communicated. The approach is to select periods based on global warming thresholds rather than the more typical approach of selecting time periods (e.g., end of century). The results indicate that the world is likely to pass the +1.5°C threshold in the coming decades. Cross-sectoral dimensions are taken into account to show the impacts of global warming that occur in parallel in more than one sector. Also, impacts differ across sectors and regions. Alongside the negative impacts for certain sectors and regions, some positive impacts are projected. Summer tourism in parts of Western Europe may be favored by climate change; electricity demand decreases outweigh increases over most of Europe and catchment yields in hydropower regions will increase. However, such positive findings should be interpreted carefully as we do not take into account exogenous factors that can and will influence Europe such as migration patterns, food production, and economic and political instability.

  2. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.

    PubMed

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-10-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.

  3. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change

    PubMed Central

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-01-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958

  4. Modeling Antarctic Ice Sheet retreat in warm climates: a historical perspective.

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Deconto, R. M.; Gasson, E.

    2016-12-01

    Early modeling of Antarctic Ice Sheet size vs. climate focused on asymmetry between retreat and growth, with much greater warming needed to cause retreat from full ice cover, due to Height Mass Balance Feedback and albedo feedback. This led to a long-standing model-data conflict, with models needing 1000 to2000 ppmv atmospheric CO2 to produce retreat from full size, vs. proxy data of large ice fluctuations despite much lower CO2 since the Miocene.Subsequent modeling with marine ice physics found that the West Antarctic Ice Sheet could undergo repeated warm-period collapses with realistic past forcing. However, that yields only 3 to 7 m equivalent sea-level rise above modern, compared to 10 to 20 m or more suggested by some geologic data. Large subglacial basins in East Antarctica could be vulnerable to the same processes,but did not retreat in most models due to narrower and shallower sills.After recent modifications, some ice sheet models were able to produce warm-period collapse of major East Antarctic basins, with sea-level rise of up to 15 m. The modifications are (i) hydrofracturing by surface melt, and structural failure of ice cliffs, or (ii) numerical treatment at the grounding line. In these models, large retreat occurs both for past warmintervals, and also for future business-as-usual scenarios.Some interpretations of data in the late Oligocene and Miocene suggest yet larger fluctuations, between 50 to 100% of modern Antarctic size. That would require surface-melt driven retreat of some terrestrial East Antarctic ice, despite the hysteresis issue raised above. A recent study using a coupled climate-ice sheet model found that with a finer climate gridand more frequent coupling exchange, substantial retreat of terrestrial Antarctica can occur with 500 to 840 ppmv CO2, much lower than in earlier models. This will allow meaningful interactions between modeling and deeper-time geologic interpretations since the late Oligocene.

  5. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. Copyright © 2014, American Association for the Advancement of Science.

  6. A wedge strategy for mitigation of urban warming in future climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  7. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-01

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  8. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia.

    PubMed

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-23

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  9. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.

  10. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  11. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  12. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin

    Treesearch

    Bruce E. Rieman; Daniel Isaak; Susan Adams; Dona Horan; David Nagel; Charles Luce; Deborah Myers

    2007-01-01

    A warming climate could profoundly affect the distribution and abundance of many fishes. Bull trout Salvelinus confluentus may be especially vulnerable to climate change given that spawning and early rearing are constrained by cold water temperatures creating a patchwork of natal headwater habitats across river networks. Because the size and...

  13. Vascular plants promote ancient peatland carbon loss with climate warming.

    PubMed

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.

  14. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China.

    PubMed

    Yin, Guoan; Niu, Fujun; Lin, Zhanju; Luo, Jing; Liu, Minghao

    2017-03-01

    Beiluhe basin is underlain by warm and ice-rich permafrost, and covered by vegetation and soils characteristic of the Qinghai-Tibet Plateau. A field monitoring network was established to investigate permafrost conditions and to assess potential impacts of local factors and climate change. This paper describes the spatial variations in permafrost conditions from instrumented boreholes, controlling environmental factors, and recent thermal evolution of permafrost in the basin. The study area was divided into 10 ecotypes using satellite imagery based classification. The field investigations and cluster analysis of ground temperatures indicated that permafrost underlies most of the ground in swamp meadow, undisturbed alpine meadow, degrading alpine meadow, and desert alpine grassland, but is absent in other cover types. Permafrost-ecotope relations examined over a 2-year (2014-2016) period indicated that: (i) ground surface temperatures varied largely among ecotopes; (ii) annual mean ground temperatures ranged from -1.5 to 0°C in permafrost, indicating sensitive permafrost conditions; (iii) active-layer thicknesses ranged from 1.4m to 3.4m; (iv) ground ice content at the top of permafrost is high, but the active-layer soil is relatively dry. Long-term climate warming has driven thermal changes to permafrost, but ground surface characteristics and soil moisture content strongly influence the ground thermal state. These factors control local-scale spatial variations in permafrost conditions. The warm permafrost in the basin is commonly in thermal disequilibrium, and is sensitive to future climate change. Active-layer thicknesses have increased by at least 42cm and the mean annual ground temperatures have increased by up to 0.2°C in the past 10years over the basin. A permafrost distribution map was produced based on ecotypes, suggesting that permafrost underlies 64% of the study region. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions

    NASA Astrophysics Data System (ADS)

    Cartapanis, O.; Tachikawa, K.; Romero, O. E.; Bard, E.

    2014-02-01

    The intensity and/or extent of the northeastern Pacific Oxygen Minimum Zone (OMZ) varied in-phase with the Northern Hemisphere high latitude climate on millennial timescales during the last glacial period, indicating the occurrence of atmospheric and oceanic connections under glacial conditions. While millennial variability was reported for both the Greenland and the northern Atlantic Ocean during the last interglacial period, the climatic connections with the northeastern Pacific OMZ has not yet been observed under warm interglacial conditions. Here we present a new geochemical dataset, spanning the past 120 ka, for major components (terrigenous fraction, marine organic matter, biogenic opal, and carbonates) generated by X-ray fluorescence scanning alongside with biological productivity and redox sensitive trace element content (Mo, Ni, Cd) of sediment core MD02-2508 at 23° N, retrieved from the northern limit of the modern OMZ. Based on elemental ratios Si / Ti (proxy for opal), Cd / Al and Ni / Al, we suggest that biological productivity was high during the last interglacial (MIS5). Highly resolved opal reconstruction presents millennial variability corresponding to all the Dansgaard-Oeschger interstadial events over the last interglacial, while the Mo / Al ratio indicates reduced oxygenation during these events. Extremely high opal content during warm interstadials suggests high diatom productivity. Despite the different climatic and oceanic background between glacial and interglacial periods, rapid variability in the northeastern Pacific OMZ seems to be tightly related to Northern Hemisphere high latitude climate via atmospheric and possibly oceanic processes.

  16. Polar bears in a warming climate.

    PubMed

    Derocher, Andrew E; Lunn, Nicholas J; Stirling, Ian

    2004-04-01

    Polar bears (Ursus maritimus) live throughout the ice-covered waters of the circumpolar Arctic, particularly in near shore annual ice over the continental shelf where biological productivity is highest. However, to a large degree under scenarios predicted by climate change models, these preferred sea ice habitats will be substantially altered. Spatial and temporal sea ice changes will lead to shifts in trophic interactions involving polar bears through reduced availability and abundance of their main prey: seals. In the short term, climatic warming may improve bear and seal habitats in higher latitudes over continental shelves if currently thick multiyear ice is replaced by annual ice with more leads, making it more suitable for seals. A cascade of impacts beginning with reduced sea ice will be manifested in reduced adipose stores leading to lowered reproductive rates because females will have less fat to invest in cubs during the winter fast. Non-pregnant bears may have to fast on land or offshore on the remaining multiyear ice through progressively longer periods of open water while they await freeze-up and a return to hunting seals. As sea ice thins, and becomes more fractured and labile, it is likely to move more in response to winds and currents so that polar bears will need to walk or swim more and thus use greater amounts of energy to maintain contact with the remaining preferred habitats. The effects of climate change are likely to show large geographic, temporal and even individual differences and be highly variable, making it difficult to develop adequate monitoring and research programs. All ursids show behavioural plasticity but given the rapid pace of ecological change in the Arctic, the long generation time, and the highly specialised nature of polar bears, it is unlikely that polar bears will survive as a species if the sea ice disappears completely as has been predicted by some.

  17. Effects of Atlantic warm pool variability over climate of South America tropical transition zone

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo

    2016-04-01

    Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO

  18. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada)

    PubMed Central

    MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N

    2015-01-01

    Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds (“WAP 12”, “WAP 20”, and “WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of 210Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring. PMID:25750718

  19. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada).

    PubMed

    MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N

    2015-02-01

    Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds ("WAP 12", "WAP 20", and "WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of (210)Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring.

  20. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-10-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  1. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    USGS Publications Warehouse

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  2. Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Wu, Bo

    2014-01-01

    The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST

  3. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures.

    PubMed

    Bernareggi, Giulietta; Carbognani, Michele; Mondoni, Andrea; Petraglia, Alessandro

    2016-09-01

    Climate warming has major impacts on seed germination of several alpine species, hence on their regeneration capacity. Most studies have investigated the effects of warming after seed dispersal, and little is known about the effects a warmer parental environment may have on germination and dormancy of the seed progeny. Nevertheless, temperatures during seed development and maturation could alter the state of dormancy, affecting the timing of emergence and seedling survival. Here, the interplay between pre- and post-dispersal temperatures driving seed dormancy release and germination requirements of alpine plants were investigated. Three plant species inhabiting alpine snowbeds were exposed to an artificial warming treatment (i.e. +1·5 K) and to natural conditions in the field. Seeds produced were exposed to six different periods of cold stratification (0, 2, 4, 8, 12 and 20 weeks at 0 °C), followed by four incubation temperatures (5, 10, 15 and 20 °C) for germination testing. A warmer parental environment produced either no or a significant increase in germination, depending on the duration of cold stratification, incubation temperatures and their interaction. In contrast, the speed of germination was less sensitive to changes in the parental environment. Moreover, the effects of warming appeared to be linked to the level of (physiological) seed dormancy, with deeper dormant species showing major changes in response to incubation temperatures and less dormant species in response to cold stratification periods. Plants developed under warmer climates will produce seeds with changed germination responses to temperature and/or cold stratification, but the extent of these changes across species could be driven by seed dormancy traits. Transgenerational plastic adjustments of seed germination and dormancy shown here may result from increased seed viability, reduced primary and secondary dormancy state, or both, and may play a crucial role in future plant adaptation

  4. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures

    PubMed Central

    Bernareggi, Giulietta; Carbognani, Michele; Mondoni, Andrea; Petraglia, Alessandro

    2016-01-01

    Background and Aims Climate warming has major impacts on seed germination of several alpine species, hence on their regeneration capacity. Most studies have investigated the effects of warming after seed dispersal, and little is known about the effects a warmer parental environment may have on germination and dormancy of the seed progeny. Nevertheless, temperatures during seed development and maturation could alter the state of dormancy, affecting the timing of emergence and seedling survival. Here, the interplay between pre- and post-dispersal temperatures driving seed dormancy release and germination requirements of alpine plants were investigated. Methods Three plant species inhabiting alpine snowbeds were exposed to an artificial warming treatment (i.e. +1·5 K) and to natural conditions in the field. Seeds produced were exposed to six different periods of cold stratification (0, 2, 4, 8, 12 and 20 weeks at 0 °C), followed by four incubation temperatures (5, 10, 15 and 20 °C) for germination testing. Key Results A warmer parental environment produced either no or a significant increase in germination, depending on the duration of cold stratification, incubation temperatures and their interaction. In contrast, the speed of germination was less sensitive to changes in the parental environment. Moreover, the effects of warming appeared to be linked to the level of (physiological) seed dormancy, with deeper dormant species showing major changes in response to incubation temperatures and less dormant species in response to cold stratification periods. Conclusions Plants developed under warmer climates will produce seeds with changed germination responses to temperature and/or cold stratification, but the extent of these changes across species could be driven by seed dormancy traits. Transgenerational plastic adjustments of seed germination and dormancy shown here may result from increased seed viability, reduced primary and secondary dormancy state, or both, and

  5. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  6. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  7. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  8. The relationship between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate

    NASA Astrophysics Data System (ADS)

    Liu, W.; Fedorov, A. V.

    2017-12-01

    A recent study (Sevellec, Fedorov, Liu 2017, Nature Climate Change) has suggested that Arctic sea ice decline can lead to a slow-down of the Atlantic meridional overturning circulation (AMOC). Here, we build on this previous work and explore the relationship between Arctic sea ice and the AMOC in climate models. We find that the current Arctic sea ice decline can contribute about 40% to the AMOC weakening over the next 60 years. This effect is related to the warming and freshening of the upper ocean in the Arctic, and the subsequent spread of generated buoyancy anomalies downstream where they affect the North Atlantic deep convection sites and hence the AMOC on multi-decadal timescales. The weakening of the AMOC and its poleward heat transport, in turn, sustains the "Warming Hole" - a region in the North Atlantic with anomalously weak (or even negative) warming trends. We discuss the key factors that control this robust AMOC response to changes in Arctic sea ice.

  9. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir.

    PubMed

    Ford, Kevin R; Harrington, Constance A; St Clair, J Bradley

    2017-08-01

    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on diameter-growth-cessation timing in coast Douglas-fir (an ecologically and economically vital tree) using high-frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas-fir to extend its growing season in response to climate

  10. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  11. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  12. Global warming's five Germanys: A typology of Germans' views on climate change and patterns of media use and information.

    PubMed

    Metag, Julia; Füchslin, Tobias; Schäfer, Mike S

    2017-05-01

    People's attitudes toward climate change differ, and these differences may correspond to distinct patterns of media use and information seeking. However, studies extending analyses of attitude types and their specific media diets to countries beyond the United States are lacking. We use a secondary analysis of survey data from Germany to identify attitudes toward climate change among the German public and specify those segments of the population based on their media use and information seeking. Similar to the Global Warming's Six Americas study, we find distinct attitudes (Global Warming's Five Germanys) that differ in climate change-related perceptions as well as in media use and communicative behavior. These findings can help tailor communication campaigns regarding climate change to specific audiences.

  13. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  14. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan

    2017-03-01

    Given climate change can potentially influence crop phenology and subsequent yield, an investigation of relevant adaptation measures could increase the understanding and mitigation of these responses in the future. In this study, field observations at 10 stations in the Huang-Huai-Hai Plain of China (HHHP) are used in combination with the Agricultural Production Systems Simulator (APSIM)-Wheat model to determine the effect of thermal time shift on the phenology and potential yield of wheat from 1981-2009. Warming climate speeds up winter wheat development and thereby decreases the duration of the wheat growth period. However, APSIM-Wheat model simulation suggests prolongation of the period from flowering to maturity (Gr) of winter wheat by 0.2-0.8 d•10yr-1 as the number of days by which maturity advances, which is less than that by which flowering advances. Based on computed thermal time of the two critical growth phases of wheat, total thermal time from floral initiation to flowering (TT_floral_initiation) increasesd in seven out of the 10 investigated stations. Alternatively, total thermal time from the start of grainfilling to maturity (TT_start_ grain_fill) increased in all investigated stations, except Laiyang. It is thus concluded that thermal time shift during the past three decades (1981-2009) prolongs Gr by 0.2-3.0 d•10yr-1 in the study area. This suggests that an increase in thermal time (TT) of the wheat growth period is critical for mitigating the effect of growth period reduction due to warming climatic condition. Furthermore, climate change reduces potential yield of winter wheat in 80% of the stations by 2.3-58.8 kg•yr-1. However, thermal time shift (TTS) increases potential yield of winter wheat in most of the stations by 3.0-51.0 kg•yr-1. It is concluded that wheat cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production in the study area.

  15. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models

    NASA Astrophysics Data System (ADS)

    Kjellström, Erik; Nikulin, Grigory; Strandberg, Gustav; Bøssing Christensen, Ole; Jacob, Daniela; Keuler, Klaus; Lenderink, Geert; van Meijgaard, Erik; Schär, Christoph; Somot, Samuel; Sørland, Silje Lund; Teichmann, Claas; Vautard, Robert

    2018-05-01

    We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to

  16. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates

    NASA Astrophysics Data System (ADS)

    Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.

    2016-09-01

    Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.

  17. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, David H.; Dau, Christian P.; Tibbitts, T. Lee; Sedinger, James S.; Anderson, Betty A.; Hines, James E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  18. Weather conditions conducive to Beijing severe haze more frequent under climate change

    NASA Astrophysics Data System (ADS)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  19. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    PubMed

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest

  20. Climate warming may facilitate invasion of the exotic shrub Lantana camara.

    PubMed

    Zhang, Qiaoying; Zhang, Yunchun; Peng, Shaolin; Zobel, Kristjan

    2014-01-01

    Plant species show different responses to the elevated temperatures that are resulting from global climate change, depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between the latitudes of 35 °N and 35 °S. According to current and future climate scenarios predicted by the CLIMEX model, climatically suitable areas for L. camara are projected to contract globally, despite expansions in some areas. The objective of this study was to test those predictions, using a pot experiment in which branch cuttings were grown at three different temperatures (22 °C, 26 °C and 30 °C). We hypothesized that warming would facilitate the invasiveness of L. camara. In response to rising temperatures, the total biomass of L. camara did increase. Plants allocated more biomass to stems and enlarged their leaves more at 26 °C and 30 °C, which promoted light capture and assimilation. They did not appear to be stressed by higher temperatures, in fact photosynthesis and assimilation were enhanced. Using lettuce (Lactuca sativa) as a receptor plant in a bioassay experiment, we also tested the phytotoxicity of L. camara leachate at different temperatures. All aqueous extracts from fresh leaves significantly inhibited the germination and seedling growth of lettuce, and the allelopathic effects became stronger with increasing temperature. Our results provide key evidence that elevated temperature led to significant increases in growth along with physiological and allelopathic effects, which together indicate that global warming facilitates the invasion of L. camara.

  1. Climate Warming May Facilitate Invasion of the Exotic Shrub Lantana camara

    PubMed Central

    Zhang, Qiaoying; Zhang, Yunchun; Peng, Shaolin; Zobel, Kristjan

    2014-01-01

    Plant species show different responses to the elevated temperatures that are resulting from global climate change, depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between the latitudes of 35°N and 35°S. According to current and future climate scenarios predicted by the CLIMEX model, climatically suitable areas for L. camara are projected to contract globally, despite expansions in some areas. The objective of this study was to test those predictions, using a pot experiment in which branch cuttings were grown at three different temperatures (22°C, 26°C and 30°C). We hypothesized that warming would facilitate the invasiveness of L. camara. In response to rising temperatures, the total biomass of L. camara did increase. Plants allocated more biomass to stems and enlarged their leaves more at 26°C and 30°C, which promoted light capture and assimilation. They did not appear to be stressed by higher temperatures, in fact photosynthesis and assimilation were enhanced. Using lettuce (Lactuca sativa) as a receptor plant in a bioassay experiment, we also tested the phytotoxicity of L. camara leachate at different temperatures. All aqueous extracts from fresh leaves significantly inhibited the germination and seedling growth of lettuce, and the allelopathic effects became stronger with increasing temperature. Our results provide key evidence that elevated temperature led to significant increases in growth along with physiological and allelopathic effects, which together indicate that global warming facilitates the invasion of L. camara. PMID:25184224

  2. Groundwater recharge simulation under the steady-state and transient climate conditions

    NASA Astrophysics Data System (ADS)

    Pozdniakov, S.; Lykhina, N.

    2010-03-01

    Groundwater recharge simulation under the steady-state and transient climate conditions Diffusive groundwater recharge is a vertical water flux through the water table, i.e. through the boundary between the unsaturated and saturated zones. This flux features temporal and spatial changes due to variations in the climatic conditions, landscape the state of vegetation, and the spatial variability of vadoze zone characteristics. In a changing climate the non-steady state series of climatic characteristics will affect on the groundwater recharge.. A well-tested approach to calculating water flux through the vadoze zone is the application of Richard’s equations for a heterogeneous one-domain porosity continuum with specially formulated atmospheric boundary conditions at the ground surface. In this approach the climatic parameters are reflected in upper boundary conditions, while the recharge series is the flux through the low boundary. In this work developed by authors code Surfbal that simulates water cycle at surface of topsoil to take into account the various condition of precipitation transformation at the surface in different seasons under different vegetation cover including snow accumulation in winter and melting in spring is used to generate upper boundary condition at surface of topsoil for world-wide known Hydrus-1D code (Simunek et al, 2008). To estimate the proposal climate change effect we performed Surfbal and Hydrus simulation using the steady state climatic condition and transient condition due to global warming on example of Moscow region, Russia. The following scenario of climate change in 21 century in Moscow region was selected: the annual temperature will increase on 4C during 100 year and annual precipitation will increase on 10% (Solomon et al, 2007). Within the year the maximum increasing of temperature and precipitation falls on winter time, while in middle of summer temperature will remain almost the same as observed now and monthly

  3. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm

  4. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  5. A latitudinal gradient in tree growth response to climate warming in the Siberian taiga

    Treesearch

    Andrea H. Lloyd; Andrew G. Bunn; Logan Berner

    2010-01-01

    We investigated the climate response of three Siberian taiga species, Larix cajanderi, Picea obovata, and Pinus sylvestris, across a latitudinal gradient in central Siberia. We hypothesized that warming is more frequently associated with increased growth for evergreen conifers (P. obovata and P....

  6. Understanding the tropical warm temperature bias simulated by climate models

    NASA Astrophysics Data System (ADS)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  7. Aridity changes in the Tibetan Plateau in a warming climate

    DOE PAGES

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; ...

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  8. Competitive and demographic leverage points of community shifts under climate warming

    PubMed Central

    Sorte, Cascade J. B.; White, J. Wilson

    2013-01-01

    Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199

  9. Warm climates of the past—a lesson for the future?

    PubMed Central

    Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.

    2013-01-01

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873

  10. Warm climates of the past--a lesson for the future?

    PubMed

    Lunt, D J; Elderfield, H; Pancost, R; Ridgwell, A; Foster, G L; Haywood, A; Kiehl, J; Sagoo, N; Shields, C; Stone, E J; Valdes, P

    2013-10-28

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.

  11. Global Warming and Geographically Scalar Climatic Objects Exist: An Ontologically Realist and Object-Oriented Analysis of the Daymet TMAX Climate Summaries for North America

    NASA Astrophysics Data System (ADS)

    Jackson, C. P.

    2017-12-01

    The scientific materialist worldview, what Peter Unger refers to as the Scientiphical worldview, or Scientiphicalism, has been utterly catastrophic for mesoscale objects in general, but, with its closely associated twentieth-century formal logic, this has been especially true for notoriously vague things like climate change, coastlines, mountains and dust storms. That is, any so-called representations or references ultimately suffer the same ontological demise as their referents, no matter how well-defined their boundaries may in fact be. Against this reductionist metaphysics, climatic objects are discretized within three separate ontologically realist systems, Graham Harman's object-oriented philosophy, or ontology (OOO), Markus Gabriel's ontology of fields of sense (OFS) and Tristan Garcia's two systems and new order of time, so as to make an ontological case for any geographically scalar object, beginning with pixels, as well as any notoriously vague thing they are said to represent. Four-month overlapping TMAX seasonals were first developed from the Oak Ridge National Laboratory (ORNL) Daymet climate temperature maximum (TMAX) monthly summaries (1980-2016) for North America and segmented within Trimble's eCognition Developer using the simple and widely familiar quadtree algorithm with a scale parameter of four, in this example. The regression coefficient was then calculated for the resulting 37-year climatic objects and an equally simple classification was applied. The same segmentation and classification was applied to the Daymet annual summaries, as well, for comparison. As was expected, the mean warming and cooling trends are lowest for the annual summary TMAX climatic objects. However, the Fall (SOND) season has the largest and smallest areas of warming and cooling, respectively, and the highest mean trend for warming objects. Conversely, Spring (MAMJ) has the largest and smallest areas undergoing cooling and warming, respectively. Finally, Summer (JJAS

  12. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with

  13. Boreal and temperate trees show strong acclimation of respiration to warming.

    PubMed

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  14. Impacts of peatland forestation on regional climate conditions in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Backman, Leif; Henttonen, Helena M.; Pietikäinen, Joni-Pekka; Laaksonen, Ari

    2014-05-01

    Climate response to anthropogenic land cover change happens more locally and occurs on a shorter time scale than the global warming due to increased GHGs. Over the second half of last Century, peatlands were vastly drained in Finland to stimulate forest growth for timber production. In this study, we investigate the biophysical effects of peatland forestation on near-surface climate conditions in Finland. For this, the regional climate model REMO, developed in Max Plank Institute (currently in Climate Service Center, Germany), provides an effective way. Two sets of 15-year climate simulations were done by REMO, using the historic (1920s; The 1st Finnish National Forest Inventory) and present-day (2000s; the 10th Finnish National Forest Inventory) land cover maps, respectively. The simulated surface air temperature and precipitation were then analyzed. In the most intensive peatland forestation area in Finland, the differences in monthly averaged daily mean surface air temperature show a warming effect around 0.2 to 0.3 K in February and March and reach to 0.5 K in April, whereas a slight cooling effect, less than 0.2 K, is found from May till October. Consequently, the selected snow clearance dates in model gridboxes over that area are advanced 0.5 to 4 days in the mean of 15 years. The monthly averaged precipitation only shows small differences, less than 10 mm/month, in a varied pattern in Finland from April to September. Furthermore, a more detailed analysis was conducted on the peatland forestation area with a 23% decrease in peatland and a 15% increase in forest types. 11 day running means of simulated temperature and energy balance terms, as well as snow depth were averaged over 15 years. Results show a positive feedback induced by peatland forestation between the surface air temperature and snow depth in snow melting period. This is because the warmer temperature caused by lower surface albedo due to more forest in snow cover period leads to a quicker and

  15. Are the impacts of land use on warming underestimated in climate policy?

    NASA Astrophysics Data System (ADS)

    Mahowald, Natalie M.; Ward, Daniel S.; Doney, Scott C.; Hess, Peter G.; Randerson, James T.

    2017-09-01

    While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.

  16. Global warming and tropical cyclone climate in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Young

    Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend

  17. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.

    PubMed

    Wang, Sheng; Qian, Xin; Han, Bo-Ping; Luo, Lian-Cong; Hamilton, David P

    2012-05-15

    Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality

  18. Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.

  19. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  20. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2011-09-01

    The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  1. The intrinsic growth rate as a predictor of population viability under climate warming.

    PubMed

    Amarasekare, Priyanga; Coutinho, Renato M

    2013-11-01

    1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to

  2. Foreword: The dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming

    USGS Publications Warehouse

    McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.

    2016-01-01

    Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”

  3. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  4. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  5. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    NASA Astrophysics Data System (ADS)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  6. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  7. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  8. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks - a potential climate feedback mechanism?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.

    2012-04-01

    Surface and deep sea temperatures from late Paleocene to early Eocene until the Early Eocene climatic Optimum increased by 5 - 10° C. This change was associated with a negative δ13C trend which implies major changes in global carbon cycling and enrichment of surface systems in isotopically light carbon. The degree of change in sedimentary δ13C requires emission of >10,000 gigatonnes of isotopically light carbon into the ocean. We reveal a relationship between global warming and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales that may explain the observed isotope shift. We use TEX86-based surface temperature data1 to predict how change in surface temperature influences the temperature evolution and resultant petroleum generation in four southwest Pacific sedimentary basins. Models predict an up to 50% increase in oil and gas expulsion rates in response to the increase in temperatures from late Paleocene to early Eocene in the region. Such an increase in petroleum generation would have significantly increased leakage of light hydrocarbons and oil degeneration products into surface systems. We propose that our modelling results are representative of a large number of sedimentary basins world-wide and that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have led to the release of an amount of CH4, CO2 and light petroleum components into surface systems compatible with the observed changes in δ13C. We further suggest that this is a significant feedback effect, enhancing early Eocene climate warming. 1Bijl, P. K., S. Schouten, A. Sluijs, G.-J. Reichart, J. C. Zachos, and H. Brinkhuis (2009), Early Palaeogene temperature

  9. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  10. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  11. Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish

    PubMed Central

    Stabeno, Phyllis J.; Siddon, Elizabeth C.; Andrews, Alex G.; Cooper, Daniel W.; Eisner, Lisa B.; Farley, Edward V.; Harpold, Colleen E.; Heintz, Ron A.; Kimmel, David G.; Sewall, Fletcher F.; Spear, Adam H.; Yasumishii, Ellen C.

    2017-01-01

    In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2–3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which

  12. Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish.

    PubMed

    Duffy-Anderson, Janet T; Stabeno, Phyllis J; Siddon, Elizabeth C; Andrews, Alex G; Cooper, Daniel W; Eisner, Lisa B; Farley, Edward V; Harpold, Colleen E; Heintz, Ron A; Kimmel, David G; Sewall, Fletcher F; Spear, Adam H; Yasumishii, Ellen C

    2017-01-01

    In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2-3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may

  13. The impact of boreal forest fire on climate warming

    USGS Publications Warehouse

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  14. The impact of boreal forest fire on climate warming.

    PubMed

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  15. Regional Warming from Aerosol Removal over the United States: Results from a Transient 2010-2050 Climate Simulation

    NASA Technical Reports Server (NTRS)

    Mickley, L. J.; Leibensperger, E. M.; Jacob, D. J.; Rind, D.

    2012-01-01

    We use a general circulation model (NASA Goddard Institute for Space Studies GCM 3) to investigate the regional climate response to removal of aerosols over the United States. We perform a pair of transient 2010e2050 climate simulations following a scenario of increasing greenhouse gas concentrations, with and without aerosols over the United States and with present-day aerosols elsewhere. We find that removing U.S. aerosol significantly enhances the warming from greenhouse gases in a spatial pattern that strongly correlates with that of the aerosol. Warming is nearly negligible outside the United States, but annual mean surface temperatures increase by 0.4e0.6 K in the eastern United States. Temperatures during summer heat waves in the Northeast rise by as much as 1e2 K due to aerosol removal, driven in part by positive feedbacks involving soil moisture and low cloud cover. Reducing U.S. aerosol sources to achieve air quality objectives could thus have significant unintended regional warming consequences.

  16. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    PubMed

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. The interplay between knowledge, perceived efficacy, and concern about global warming and climate change: a one-year longitudinal study.

    PubMed

    Milfont, Taciano L

    2012-06-01

    If the long-term goal of limiting warming to less than 2°C is to be achieved, rapid and sustained reductions of greenhouse gas emissions are required. These reductions will demand political leadership and widespread public support for action on global warming and climate change. Public knowledge, level of concern, and perceived personal efficacy, in positively affecting these issues are key variables in understanding public support for mitigation action. Previous research has documented some contradictory associations between knowledge, personal efficacy, and concern about global warming and climate change, but these cross-sectional findings limit inferences about temporal stability and direction of influence. This study examines the relationships between these three variables over a one-year period and three waves with national data from New Zealand. Results showed a positive association between the variables, and the pattern of findings was stable and consistent across the three data points. More importantly, results indicate that concern mediates the influence of knowledge on personal efficacy. Knowing more about global warming and climate change increases overall concern about the risks of these issues, and this increased concern leads to greater perceived efficacy and responsibility to help solving them. Implications for risk communication are discussed. © 2012 Society for Risk Analysis.

  18. The effect of abrupt climate changes and climate background conditions in Southern Europe during the last glacial

    NASA Astrophysics Data System (ADS)

    Knorr, Gregor; Martin-Puertas, Celia; Brauer, Achim; Lohmann, Gerrit

    2015-04-01

    The last glacial period is characterized by abrupt and large temperature shifts in Greenland and the North Atlantic realm. Pollen and sediment data from Lago Grande di Monticchio (MON) have demonstrated a clear imprint of these fluctuations operating at millennial time-scales. Interestingly, basic mean environmental condition changes with respect to temperature and precipitation occurred during MIS4, separating warm and dry conditions during MIS5 from relatively cold and humid conditions within MIS3. This general climate background shift is superposed by distinct millennial-scale variability at MON. Using a fully coupled atmosphere-ocean general circulation model applying boundary conditions at 32 ka BP and pre-industrial conditions as a surrogate for MIS3 and MIS5, we have simulated and analysed characteristic changes in Southern Europe during the last glacial. We find that changes in the mean state at MON are mainly related to a partial shift of the North Atlantic deep water (NADW) convection sites from the Nordic Seas to South of Iceland, the presence of the Fennoscandian ice sheet and lower greenhouse gas concentrations. These background characteristics provide the basis for enhanced zonal moisture transport from the eastern North Atlantic to Middle and Southern Europe. Furthermore, simulations of abrupt climate change scenarios show that a deactivation of the convection sites South of Iceland during MIS3 leads to cooler and dryer conditions at MON. Such temperature and precipitation changes are thought to provide a counter-acting effect on woody vegetation and associated pollen signals at MON. This is in contrast to the impact of abrupt climate perturbation scenarios during MIS5, where no significant precipitation changes are detected. Hence, the simulated changes and underlying mechanisms are largely consistent with the recorded proxy evidence with respect to both, mean state and millennial-scale changes.

  19. Impact of regional afforestation on climatic conditions in metropolitan areas: case study of Copenhagen

    NASA Astrophysics Data System (ADS)

    Stysiak, Aleksander Andrzej; Bergen Jensen, Marina; Mahura, Alexander

    2016-04-01

    Like most other places, European metropolitan areas will face a range of climate-related challenges over the next decades that may influence the nature of urban life across the continent. Under future urbanization and climate change scenarios the well-being and comfort of the urban population might become progressively compromised. In urban areas, the effects of the warming climate will be accelerated by combination of Urban Heat Island effect (UHI) and extreme heat waves. The land cover composition directly influences atmospheric variability, and can either escalate or downscale the projected changes. Vegetation, forest ecosystems in particular, are anticipated to play an important role in modulating local and regional climatic conditions, and to be vital factor in the process of adapting cities to warming climate. This study investigates the impact of forest and land-cover change on formation and development of temperature regimes in the Copenhagen Metropolitan Area (CPH-MA). Potential to modify the UHI effect in CPH-MA is estimated. Using 2009 meteorological data, and up-to-date 2012 high resolution land-cover data we employed the online integrated meteorology-chemistry/aerosols Enviro-HIRLAM (Environment - High Resolution Limited Area Model) modeling system to simulate air temperature (at 2 meter height) fields for a selected period in July 2009. Employing research tools (such as METGRAF meteorological software and Geographical Information Systems) we then estimated the influence of different afforestation and urbanization scenarios with new forests being located after the Danish national afforestation plan, after proximity to the city center, after dominating wind characteristics, and urbanization taking place as densification of the existing conurbation. This study showed the difference in temperature up to 3.25°C, and the decrease in the spatial extent of temperature fields up to 68%, depending on the selected scenario. Performed simulations demonstrated

  20. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    PubMed Central

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and

  1. White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate

    Treesearch

    C. Wirth; J.W. Lichstein; J. Dushoff; A. Chen; F.S.III. Chapin

    2008-01-01

    Local distributions of black spruce (Picea mariana) and white spruce (Picea glauca) are largely determined by edaphic and topographic factors in the interior of Alaska, with black spruce dominant on moist permafrost sites and white spruce dominant on drier upland sites. Given the recent evidence for climate warming and...

  2. Spatial observation and monitoring of the effects of the "New Climate" Warming on Morocco: Situation of the recent urban floods

    NASA Astrophysics Data System (ADS)

    Karrouk, M. S.

    2017-12-01

    conditions over the last 15 years, these types of alternating Heat / Cold conditions have become predictable, enabling decision-makers today to prepare adequately for the management of related risks to the "New Climate" warmed.

  3. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    PubMed

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  4. Potential vulnerability of southeast Alaskan wetland soil carbon stocks to climate warming

    NASA Astrophysics Data System (ADS)

    Fellman, J.; D'Amore, D. V.; Hood, E. W.

    2015-12-01

    Carbon cycling along the high latitude coastal margins of Alaska is poorly understood relative to boreal and arctic ecosystems. The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest carbon stocks (>300 Mg C ha-1) in the world but the fate of these stocks with continued warming will balance on the poorly constrained rates of carbon accumulation and loss. We quantified the rate of dissolved organic carbon (DOC) and carbon dioxide (CO2) production from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 ºC and 15 ºC for 37 weeks. This design allowed us to determine the potential vulnerability of wetland soil carbon stocks to climate warming and partition organic matter mineralization into DOC and CO2 fluxes and its controls (e.g., wetland type and temperature). Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil depth and temperature strongly influenced carbon loss in all four wetland types with the greatest CO2 fluxes observed in the rich fen and greatest DOC fluxes observed in the poor fen. Of the fluxes, CO2 was the most sensitive to incubation temperature but DOC showed more variation with wetland type. Fluxes of DOC and CO2 were positively correlated only during the last few months of the incubation suggesting strong biotic control of DOC production developed as soil organic matter decomposition progressed. Moreover, bioavailable DOC and protein-like fluorescence were greatest in the initial soil extractions but dramatically decreased over the length of the incubations. Our findings suggest that soil organic matter decomposition will increase as the PCTR continues to warm, but this response will also will vary with wetland type.

  5. Ecological constraints increase the climatic debt in forests

    PubMed Central

    Bertrand, Romain; Riofrío-Dillon, Gabriela; Lenoir, Jonathan; Drapier, Jacques; de Ruffray, Patrice; Gégout, Jean-Claude; Loreau, Michel

    2016-01-01

    Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 °C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities. PMID:27561410

  6. Ecological constraints increase the climatic debt in forests

    NASA Astrophysics Data System (ADS)

    Bertrand, Romain; Riofrío-Dillon, Gabriela; Lenoir, Jonathan; Drapier, Jacques; de Ruffray, Patrice; Gégout, Jean-Claude; Loreau, Michel

    2016-08-01

    Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 °C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities.

  7. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden.

    PubMed

    Kullman, L

    2001-03-01

    Climate warming by ca. 0.8 degree C between the late-19th and late-20th century, although with some fluctuations, has forced multispecies elevational tree-limit advance by > 100 m for the principal tree species in the Swedish part of the Scandinavian mountain range. Predominantly, these processes imply growth in height of old-established individuals and less frequently upslope migration of new individuals. After a slight retardation during some cooler decades after 1940, a new active phase of tree-limit advance has occurred with a series of exceptionally mild winters and some warm summers during the 1990s. The magnitude of total 20th century tree-limit rise varies with topoclimate and is mainly confined to wind-sheltered and snow-rich segments of the landscape. Thickening of birch tree stands in the "advance belt" has profoundly altered the general character of the subalpine/low alpine landscape and provides a positive feedback loop for further progressive change and resilience to short-term cooling episodes. All upslope tree-limit shifts and associated landscape transformations during the 20th century have occurred without appreciable time lags, which constitutes knowledge fundamental to the generation of realistic models concerning vegetation responses to potential future warming. The new and elevated pine tree-limit may be the highest during the past 4000 14C years. Thus, it is tentatively inferred that the 20th century climate is unusually warm in a late-Holocene perspective.

  8. Change in the magnitude and mechanisms of global temperature variability with warming

    PubMed Central

    Brown, Patrick T.; Ming, Yi; Li, Wenhong; Hill, Spencer A.

    2017-01-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future. PMID:29391875

  9. Change in the magnitude and mechanisms of global temperature variability with warming.

    PubMed

    Brown, Patrick T; Ming, Yi; Li, Wenhong; Hill, Spencer A

    2017-01-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  10. Change in the Magnitude and Mechanisms of Global Temperature Variability with Warming

    NASA Astrophysics Data System (ADS)

    Brown, P. T.; Ming, Y.; Li, W.; Hill, S. A.

    2017-12-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  11. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  12. Impact of global warming on viral diseases: what is the evidence?

    PubMed

    Zell, Roland; Krumbholz, Andi; Wutzler, Peter

    2008-12-01

    Global warming is believed to induce a gradual climate change. Hence, it was predicted that tropical insects might expand their habitats thereby transmitting pathogens to humans. Although this concept is a conclusive presumption, clear evidence is still lacking--at least for viral diseases. Epidemiological data indicate that seasonality of many diseases is further influenced by strong single weather events, interannual climate phenomena, and anthropogenic factors. So far, emergence of new diseases was unlinked to global warming. Re-emergence and dispersion of diseases was correlated with translocation of pathogen-infected vectors or hosts. Coupled ocean/atmosphere circulations and 'global change' that also includes shifting of demographic, social, and economical conditions are important drivers of viral disease variability whereas global warming at best contributes.

  13. Science blogging: RealClimate.org and the Global Warming debate

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.

    2006-12-01

    The media and public policy debate suffer from an extreme form of Attention Deficit Disorder. Compared to the daily news cycle, the progress of scientific debate within the peer-reviewed literature is extremely slow. This puts serious scientists who work in relatively politicised fields (global warming, evolution, stem cell research and the like) at a huge disadvantage when it comes to having their voices heard above the noise. Since Dec 2004, RealClimate.org has been operating as a group blog (a web-based journal) run by climate scientists for interested members of the public and the media. The aim has been to provide the context for climate-related news stories that is often missing in the mainstream media and to explain the basics of our field to the often confused, but curious, members of the public. In particular, it has provided rapid reaction to mis-uses and abuses of scientific results by policy advocates across the spectrum. Reactions to the blog have been overwhelmingly (but not uniformly) positive from both professionals in the media, the scientific community and the public. It has been described as the 'go-to site' for climate science in the New York Times, and received a Scientific American Science and Technology Web award in 2005. I will discuss what impacts RealClimate may have had and the pluses and minuses of trying to reach the public through this kind of outlet.

  14. Collaborative Research: Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melillo, Jerry

    Our overall goal in this research was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal was motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite ofmore » numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we tested the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming. In collaboration with our Purdue and MIT colleagues, we have attempted to quantify global climate warming effects on land-atmosphere interactions, land-river network interactions, permafrost degradation, vegetation shifts, and land use influence water, carbon, and nitrogen fluxes to and from terrestrial ecosystems in the pan-arctic along with their

  15. Climate warming and land-use changes drive broad-scale floristic changes in Southern Sweden.

    PubMed

    Tyler, Torbjörn; Herbertsson, Lina; Olsson, Pål Axel; Fröberg, Lars; Olsson, Kjell-Arne; Svensson, Åke; Olsson, Ola

    2018-06-01

    Land-use changes, pollution and climate warming during the 20th century have caused changes in biodiversity across the world. However, in many cases, the environmental drivers are poorly understood. To identify and rank the drivers currently causing broad-scale floristic changes in N Europe, we analysed data from two vascular plant surveys of 200 randomly selected 2.5 × 2.5 km grid-squares in Scania, southernmost Sweden, conducted 1989-2006 and 2008-2015, respectively, and related the change in frequency (performance) of the species to a wide range of species-specific plant traits. We chose traits representing all plausible drivers of recent floristic changes: climatic change (northern distribution limit, flowering time), land-use change (light requirement, response to grazing/mowing, response to soil disturbance), drainage (water requirement), acidification (pH optimum), nitrogen deposition and eutrophication (N requirement, N fixation ability, carnivory, parasitism, mycorrhizal associations), pollinator decline (mode of reproduction) and changes in CO 2 levels (photosynthetic pathway). Our results suggest that climate warming and changes in land-use were the main drivers of changes in the flora during the last decades. Climate warming appeared as the most influential driver, with northern distribution limit explaining 30%-60% of the variance in the GLMM models. However, the relative importance of the drivers differed among habitat types, with grassland species being affected the most by cessation of grazing/mowing and species of ruderal habitats by on-going concentration of both agriculture and human population to the most productive soils. For wetland species, only pH optimum was significantly related to species performance, possibly an effect of the increasing humification of acidic water bodies. An observed relative decline of mycorrhizal species may possibly be explained by decreasing nitrogen deposition resulting in less competition for phosphorus. We

  16. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    NASA Astrophysics Data System (ADS)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  17. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  18. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems

    USGS Publications Warehouse

    Cohen, Andrew S.; Gergurich, Elizabeth L.; Kraemer, Benjamin M.; McGlue, Michael M.; McIntyre, Peter B.; Russell, James M.; Simmons, Jack D.; Swarzenski, Peter W.

    2016-01-01

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services.

  19. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  20. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions.

    PubMed

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios.

  1. Three Smoking Guns Prove Falsity of Green house Warming

    NASA Astrophysics Data System (ADS)

    Fong, P.

    2001-12-01

    Three observed facts: 1, the cloud coverage increased 4.1% in 50 years; 2. the precipitation increased 7.8% in 100 years; 3. the two rates are the same. {Interpretation}. 1, By the increased albedo of the clouds heat dissipation is increased 3.98 W/m2 by 2XCO2 time, canceling out greenhouse warming of 4 W/m{2}. Thus no global warming. 2, The precipitation increase show the increased release of latent heat of vaporization, which turns out to be equal to that absorbed by ocean due to increased evaporation by the greenhouse forcing. This all greenhouse heat is used up in evaporation and the warming of the earth is zero. 3, The identity of the two rates double-checked the two independent proofs. Therefore experimentally no greenhouse warming is triply proved. A new branch of science Pleistocene Climatology is developed to study the theoretical origin of no greenhouse warming. Climatology, like mechanics of a large number of particles, is of course complex and unwieldy. If totally order-less then there is no hope. However, if some regularity appears, then a systematic treatment can be done to simplify the complexity. The rigid bodies are subjected to a special simplifying condition (the distances between all particles are constant) and only 6 degrees of freedom are significant, all others are sidetracked. To study the spinning top there is no need to study the dynamics of every particle of the top by Newton's laws through super-computer. It only needs to solve the Euler equations without computer. In climate study the use of super-computer to study all degrees of freedom of the climate is as untenable as the study of the spinning top by super-computer. Yet in spite of the complexity there is strict regularity as seen in the ice ages, which works as the simplifying conditions to establish a new science Pleistocene climatology. See my book Greenhouse Warming and Nuclear Hazards just published (www.PeterFongBook.com). This time the special condition is the presence of a

  2. Icing Conditions Over Northern Eurasia in Changing Climate

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Arzhanova, N.; Groisman, P. Y.

    2013-12-01

    A general increase in atmospheric humidity is expected with global warming, projected with GCMs, reported with remote sensing and in situ observations (Trenberth et al. 2005; Dessler, and Davis 2010; IPCC 2007, Zhang et al. 2012.) In the Arctic this increase has been and will be especially prominent triggered by the dramatic retreat of the sea ice. In the warm season this retreat provides an abundant water vapor supply to the dry Arctic atmosphere. The contemporary sea ice changes are especially visible in the Eastern Hemisphere and after the two extremely anomalous low-ice years (2007 and 2012) it is right time to look for the impact of these changes in the high latitudinal hydrological cycle: first of all in the atmospheric humidity and precipitation changes. Usually, humidity (unless extremely high or low) does not critically affect the human activities and life style. However, in the high latitudes this characteristic has an additional facet: higher humidity causes higher ice condensation from the air (icing and hoar frost) on the infrastructure and transports in the absence of precipitation. The hoar frost and icing (in Russian: gololed) are measured at the Russian meteorological network and reports of icing of the wires are quantitative measurements. While hoar frost can be considered as a minor annoyance, icing may have important societal repercussions. In the Arctic icing occurs mostly during relatively warm months when atmosphere holds maximum amount of water vapor (and is projected to have more). Freezing rain and drizzle contribute to gololed formation and thus this variable (being above some thresholds) presents an important characteristic that can affect the infrastructure (communication lines elevated at the telegraph poles, antennas, etc.), became a Socially-Important climatic Variable (SIV). The former USSR observational program includes gololed among the documented weather phenomena and this allowed RIHMI to create Electronic Reference Book on

  3. Social and economic impacts of climate.

    PubMed

    Carleton, Tamma A; Hsiang, Solomon M

    2016-09-09

    For centuries, thinkers have considered whether and how climatic conditions-such as temperature, rainfall, and violent storms-influence the nature of societies and the performance of economies. A multidisciplinary renaissance of quantitative empirical research is illuminating important linkages in the coupled climate-human system. We highlight key methodological innovations and results describing effects of climate on health, economics, conflict, migration, and demographics. Because of persistent "adaptation gaps," current climate conditions continue to play a substantial role in shaping modern society, and future climate changes will likely have additional impact. For example, we compute that temperature depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in Africa by ~11%, and future warming may slow global economic growth rates by ~0.28 percentage points per year. In general, we estimate that the economic and social burden of current climates tends to be comparable in magnitude to the additional projected impact caused by future anthropogenic climate changes. Overall, findings from this literature point to climate as an important influence on the historical evolution of the global economy, they should inform how we respond to modern climatic conditions, and they can guide how we predict the consequences of future climate changes. Copyright © 2016, American Association for the Advancement of Science.

  4. Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

    NASA Astrophysics Data System (ADS)

    Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.

    2017-10-01

    The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.

  5. Warming the nursing education climate for traditional-age learners who are male.

    PubMed

    Bell-Scriber, Marietta J

    2008-01-01

    For nurse educators to facilitate student learning and the achievement of desired cognitive, affective, and psychomotor outcomes, they need to be competent in recognizing the influence of gender, experience, and other factors on teaching and learning. A study was conducted in one academic institution to describe how traditional-age male learners' perceptions of the nursing education climate compare to perceptions of female learners. Interviews were conducted with a sample of four male and four female learners. Additional data from interviews with nurse educators, classroom observations, and a review of textbooks provided breadth and depth to their perceptions. Findings support a nursing education climate that is cooler to traditional-age male learners and warmer to traditional-age female learners. The main cooling factor for men was caused by nurse educators' characteristics and unsupportive behaviors. Additional factors inside and outside the education environment contributed to a cooler climate for the male learners. Based on these findings, strategies for nurse educators to warm the education climate for traditional-age male learners are presented.

  6. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus

    PubMed Central

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-01-01

    Background Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. Results Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. Conclusion Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared

  7. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir

    USGS Publications Warehouse

    Ford, Kevin R.; Harrington, Constance A.; Bansal, Sheel; Gould, Petter J.; St. Clair, Bradley

    2016-01-01

    Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (“forcing”) typically triggers growth initiation, but many trees also require exposure to cool temperatures (“chilling”) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height- and diameter-growth initiation in coast Douglas-fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field-based and controlled-environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, towards lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter-growth initiation than height-growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas-fir to climate change at the warm

  8. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  9. Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    PubMed Central

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors. PMID:22303485

  10. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    PubMed

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  11. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau.

    PubMed

    Wang, Guoyan; Baskin, Carol C; Baskin, Jerry M; Yang, Xuejun; Liu, Guofang; Ye, Xuehua; Zhang, Xinshi; Huang, Zhenying

    2018-06-21

    Much research has focused on plant responses to ongoing climate change, but there is relatively little information about how climate change will affect the early plant life history stages. Understanding how global warming and changes in winter snow pattern will affect seed germination and seedling establishment is crucial for predicting future alpine population and vegetation dynamics. In a 2-year study, we tested how warming and alteration in the snowmelt regime, both in isolation and combination, influence seedling emergence phenology, first-year growth, biomass allocation, and survival of four native alpine perennial herbs on the southeastern Tibetan Plateau. Warming promoted seedling emergence phenology of all four species and biomass per plant of two species but reduced seedling survival of three species. Prolonged snow cover partly mediated the affects of warming on Primula alpicola (survival and biomass), Pedicularis fletcheri (phenology, biomass, and root:shoot ratio) and Meconopsis integrifolia (survival). For the narrowly distributed species M. racemosa, seedling growth was additively decreased by warming and prolonged snow cover. Both warming and alteration of the snow cover regime can influence plant recruitment by affecting seedling phenology, growth, and survival, and the effects are largely species-specific. Thus, climate change is likely to affect population dynamics and community structure of the alpine ecosystem. This is the first experimental demonstration of the phenological advancement of seedling emergence in the field by simulated climate warming. © 2018 Botanical Society of America.

  12. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.

    PubMed

    Pendall, Elise; Heisler-White, Jana L; Williams, David G; Dijkstra, Feike A; Carrillo, Yolima; Morgan, Jack A; Lecain, Daniel R

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate - carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.

  13. Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide

    PubMed Central

    Pendall, Elise; Heisler-White, Jana L.; Williams, David G.; Dijkstra, Feike A.; Carrillo, Yolima; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil. PMID:23977180

  14. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    PubMed

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  15. Isolating the Effects of the Warming Trend from the General Climate Change in Water Resources: California Case

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yin, H.; Chung, F.

    2008-12-01

    While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is

  16. Simulated climate-warming increases Coleoptera activity-densities and reduces community diversity in a cereal crop

    USDA-ARS?s Scientific Manuscript database

    To assess one likely effect of global warming, we experimentally increased the temperature and precipitation of a coleopteran community (mainly Carabidae) of an agro-ecosystem. We simulated climate change on a field of spring wheat by experimentally increasing the temperature by 2°C using infrared h...

  17. Regional and global climate for the mid-Pliocene using CCSM4 with PlioMIP2 boundary conditions

    NASA Astrophysics Data System (ADS)

    Chandan, D.; Peltier, W. R.

    2016-12-01

    The mid-Pliocene ( 3 Mya) hothouse continues to intrigue the climate community regarding the nature of the feedback mechanisms that could have amplified the warming that is expected from a modest concentration of atmospheric carbon-dioxide ( 300-400 ppmv). The Pliocene Model Intercomparison Project (PlioMIP) was created to help understand the mid-Pliocene climate through intercomparison between different climate models. The results from the first phase of this program revealed substantial variations between participating models and the pervasive inability of the models to capture the SST anomalies over equatorial upwelling regions and at high-latitude sites in the North Atlantic. The second phase, PlioMIP2 (Haywood et al., 2016), which has only recently begun, considerably revises the boundary conditions that are to be used with coupled-climate models, especially in high-latitude regions. The set of PlioMIP2 experiments which have been proposed will facilitate the attribution of the total warming to that arising from changes in (i) atmospheric CO2, (ii) orography and (iii) sea-ice extent, using the factor analysis methodology of Lunt et al., 2012. We have performed several very long, high-quality climate simulations from the PlioMIP2 set using the fully-coupled CCSM4/CESM1 model. We present our analysis of the mid-Pliocene climate based upon the results of these simulations and draw special attention to the extent of polar-amplification, the temperature pattern in the equatorial pacific and the existence and character of ENSO. In order to assess the regional and global impact of the new boundary conditions, our results are compared to the CCSM4 climate obtained using boundary conditions from the first phase of PlioMIP (Rosenbloom et al., 2013), to the PRISM3 (Dowsett et al., 2010) estimates for mid-Pliocene SST (relevant for the time-interval of study in PlioMIP), and to our own compilation of SST estimates for the time interval which is the focus in PlioMIP2

  18. Insects Overshoot the Expected Upslope Shift Caused by Climate Warming

    PubMed Central

    Bässler, Claus; Hothorn, Torsten; Brandl, Roland; Müller, Jörg

    2013-01-01

    Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902–1904 and 2006–2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes. PMID:23762439

  19. Insects overshoot the expected upslope shift caused by climate warming.

    PubMed

    Bässler, Claus; Hothorn, Torsten; Brandl, Roland; Müller, Jörg

    2013-01-01

    Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902-1904 and 2006-2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes.

  20. Disentangling Aerosol Cooling and Greenhouse Warming to Reveal Earth's Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, Trude; Leirvik, Thomas; Phillips, Petter; Lohmann, Ulrike; Wild, Martin

    2015-04-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present a study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.