These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Conditioning of Waste LiCl Salt from Pyrochemical Process Using Zeolite A  

Microsoft Academic Search

The electrolytic (LiCl-LiO) reduction process (Advanced spent fuel Conditioning Process; ACP) and the electrorefining process, which are being developed by the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as a LiCl salt and a LiCl-KCl eutectic salt, respectively. These waste salts must meet certain criteria for a disposal. A conditioning process

J. G. Kim; J. H. Lee; E. H. Kim; D. H. Ahn; J. H. Kim

2006-01-01

2

Conditioning of Waste LiCl Salt from Pyrochemical Process Using Zeolite A  

SciTech Connect

The electrolytic (LiCl-Li{sub 2}O) reduction process (Advanced spent fuel Conditioning Process; ACP) and the electrorefining process, which are being developed by the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as a LiCl salt and a LiCl-KCl eutectic salt, respectively. These waste salts must meet certain criteria for a disposal. A conditioning process composed of an immobilization and then a thermal treatment, for LiCl salt waste from the ACP has been developed using zeolite A. The immobilization of molten LiCl salt waste was conducted in a blender by mixing it with zeolite A at 923 K, producing a salt-loaded zeolite (SLZ). During the immobilization, the zeolite A was transformed to zeolite Li-A [Li{sub 2}Al{sub 2}Si{sub 2}O{sub 80}], with some minor phases such as a Li-type sodalite [Li{sub 8}Cl{sub 2}-Sod; Li{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2}] and Nepheline for some zeolite-rich condition. In order to obtain a final ceramic waste form with Na-type sodalite [Na{sub 8}Cl{sub 2}-Sod; Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2}], the very highly leach-resistant crystal phase, the SLZ with r (=LiCl/zeolite) < 0.3 should be treated in a high temperature furnace above 1173 K, which was independent from an addition of glass frit during a mixing. (authors)

Kim, J.G.; Lee, J.H.; Kim, E.H.; Ahn, D.H.; Kim, J.H. [Korea Atomic Energy Research Institute P.O. Box 105, Yuseong, Daejeon, 305-600 (Korea, Republic of)

2006-07-01

3

IMMOBILISATION OF MOLTEN LICL WASTE USING ZEOLITE A  

Microsoft Academic Search

The oxide fuel reduction process, based on an electrochemical method as well as the long-lived radioactive nuclides partitioning process based on pyroprocessing, which are being developed at the Korea Atomic Energy Research Institute (KAERI), are to generate molten salt wastes such as a LiCl salt and a LiCl-KCl eutectic salt, respectively. The treatment process of waste LiCl salt, consisting of

Jeong-Guk Kim; Jae-Hee Lee; Jae-Hyung Yoo; Joon-Hyung Kim

4

Concentrations of CsCl and SrCl2 from a Simulated LiCl Salt Waste Generated by Pyroprocessing by Using Czochralski Method  

Microsoft Academic Search

Separation of CsCl and SrCl2 from LiCl was carried out by using a separation technology, the Czochralski crystallization method. It was experimentally confirmed that Cs as well as Sr could be separated simultaneously from a LiCl molten salt by the suggested crystallization process without any additive or adsorption medium. The concentrations of Cs and Sr in LiCl decreased from 1.81

Han-Soo LEE; Gyu-Hwan OH; Yoon-Sang LEE; In-Tae KIM; Eung-Ho KIM; Jong-Hyeon LEE

2009-01-01

5

Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO 2 in LiCl salt bath  

Microsoft Academic Search

The electrolytic reduction process of actinide oxides in a LiCl salt bath at 923K has been developed for nuclear fuel reprocessing. Since some salt-soluble fission products, such as Cs, Sr and Ba, accumulate in the LiCl salt bath, their effect on UO2 reduction was investigated. In the experiments, UO2 specimens were reduced by potential- or current-controlled electrolysis in various LiCl

Yoshiharu Sakamura

2011-01-01

6

Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO 2 in LiCl salt bath  

NASA Astrophysics Data System (ADS)

The electrolytic reduction process of actinide oxides in a LiCl salt bath at 923 K has been developed for nuclear fuel reprocessing. Since some salt-soluble fission products, such as Cs, Sr and Ba, accumulate in the LiCl salt bath, their effect on UO 2 reduction was investigated. In the experiments, UO 2 specimens were reduced by potential- or current-controlled electrolysis in various LiCl salt baths containing up to 30 mol% of KCl, CsCl, SrCl 2 or BaCl 2. The rate of UO 2 reduction in a LiCl salt bath was considerably decreased by the addition of alkali metal chlorides (KCl and CsCl) and slightly decreased by BaCl 2 addition. SrCl 2 addition had no appreciable effect. It was suggested that the diffusion of O 2- ions from the inside of UO 2 specimens to the bulk salt determined the reduction rate during the electrolysis and that the effect of salt composition was related to the solubility of O 2- ions in the salt bath.

Sakamura, Yoshiharu

2011-05-01

7

Electrochemical reduction behavior of U 3O 8 powder in a LiCl molten salt  

Microsoft Academic Search

The reduction path of the U3O8 powder vol-oxidized at 1200°C has been determined by a series of electrochemical experiments in a 1wt.% Li2O\\/LiCl molten salt. Various reaction intermediates are observed by during electrolysis of U3O8. The formation of the metallic uranium is caused from two different reduction paths, a direct reduction of uranium oxide and an electro-lithiothermic reduction. As the

Sang Mun Jeong; Ho-Sup Shin; Sun-Seok Hong; Jin-Mok Hur; Jae Bum Do; Han Soo Lee

2010-01-01

8

High-performance LiCoO 2 by molten salt (LiNO 3:LiCl) synthesis for Li-ion batteries  

Microsoft Academic Search

In an effort to increase and sustain the reversible capacity of LiCoO2 on cycling, LiCoO2 is prepared by using the molten-salt of the eutectic LiNO3–LiCl at temperatures 650–850°C with or without KOH as an oxidizing flux. The compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), chemical analysis, surface area and density techniques. Cathodic behaviour was examined by

K. S. Tan; M. V. Reddy; G. V. Subba Rao; B. V. R. Chowdari

2005-01-01

9

Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process  

NASA Astrophysics Data System (ADS)

Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

2009-12-01

10

Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization  

SciTech Connect

Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal having 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)

Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il [Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of)

2013-07-01

11

Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container  

E-print Network

Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan Prepared. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan (Plan) for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant

Napp, Nils

12

Inclusion behavior of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization: Combined first-principles calculation and experimental study  

NASA Astrophysics Data System (ADS)

The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.

Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku

2013-05-01

13

Is it cerebral or renal salt wasting?  

Microsoft Academic Search

Cerebral salt-wasting (CSW), or renal salt-wasting (RSW), has evolved from a misrepresentation of the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) to acceptance as a distinct entity. Challenges still confront us as we attempt to differentiate RSW from SIADH, ascertain the prevalence of RSW, and address reports of RSW occurring without cerebral disease. RSW is redefined as ‘extracellular volume

John K Maesaka; Louis J Imbriano; Nicole M Ali; Ekambaram Ilamathi

2009-01-01

14

Recovery of minor actinides from spent molten salt waste and decontamination of molten salt waste  

Microsoft Academic Search

Recovery of minor actinides from spent molten salt is one of the important issues. Decontamination of spent molten salt waste is also the problem to be solved for establishment of pyrochemical reprocessing. The decontamination method of spent molten salt waste with recovery of minor actinides has been proposed. Our proposed process is based on the hydrometallurgical process. This process consists

Tatsuya Suzuki; Maiko Tanaka; Shin-ichi Koyama

2011-01-01

15

Molten Salt Oxidation of mixed wastes  

SciTech Connect

Molten Salt Oxidation (MSO) can be characterized as a simple noncombustion process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous) wastes including chemical warfare agents, combustible solids, halogenated solvents, polychlorinated biphenyls, plutonium-contaminated solids, uranium-contaminated solvents and fission product-contaminated oil. The MSO destruction efficiency of the hazardous organic constituents in the wastes exceeds 99.9999%. Radioactive species, such as actinides and rare earth fission products, are retained in the salt bath. These elements can be recovered from the spent salt using conventional chemical processes, such as ion exchange, to render the salt as nonradioactive and nonhazardous. This paper reviews the principles and capabilities of MSO, previous mixed waste studies, and a new US Department of Energy program to demonstrate the process for the treatment of mixed wastes.

Gay, R.L.; Navratil, J.D.; Newman, C. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

1993-12-31

16

Disposal of Savannah River Plant Waste Salt.  

National Technical Information Service (NTIS)

Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble w...

M. D. Dukes

1982-01-01

17

Disposal of NORM waste in salt caverns  

SciTech Connect

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01

18

Alternative Waste Forms for ElectroChemical Salt Waste  

Microsoft Academic Search

This study was undertaken to examine alternate crystalline (ceramic\\/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for

Jarrod V. Crum; S. K. Sundaram; Brian J. Riley; Josef Matyas; Shelly A. Arreguin; John D. Vienna

2009-01-01

19

Immobilization of IFR salt wastes in mortar  

SciTech Connect

Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered.

Fischer, D.F.; Johnson, T.R.

1988-01-01

20

Waste salt recovery, recycle, and destruction  

SciTech Connect

Starting in 1943 and continuing into the 1970s, radioactive wastes resulting from plutonium processing at Hanford were stored underground in 149 single shell tanks. Of these tanks, 66 are known or believedto be leaking, and over a period are believed to have leaked about 750,000 gal into the surrounding soil. The bulk of the aqueous solution has been removed and transferred to double shell tanks, none of which are leaking. The waste consists of 37 million gallons of salt cake and sludge. Most of the salt cake is sodium nitrate and other sodium salts. A substantial fraction of the sludge is sodium nitrate. Small amounts of the radionuclides are present in the sludge as oxides or hydroxides. In addition, some of the tanks contain organic compounds and ferrocyanide complexes, many of which have undergone radiolytic induced chemical changes during the years of storage. As part of the Hanford site remediation effort, the tank wastes must be removed, treated, and the residuals must be immobilized and disposed of in an environmentally acceptable manner. Removal methods of the waste from the tanks fall generally into three approaches: dry removal, slurry removal, and solution removed. The latter two methods are likely to result in some additional leakage to the surrounding soil, but that may be acceptable if the tank can be emptied and remediated before the leaked material permeates deeply into the soil. This effort includes three parts: salt splitting, acid separation, and destruction, with initial emphasis on salt splitting.

Hickman, R.G.

1992-12-01

21

Molecular Salt Effects in the Gas Phase: Tuning the Kinetic Basicity of [HCCLiCl](-) and [HCCMgCl2 ](-) by LiCl and MgCl2.  

PubMed

A combination of gas-phase ion-molecule reaction experiments and theoretical kinetic modeling is used to examine how a salt can influence the kinetic basicity of organometallates reacting with water. [HC?CLiCl](-) reacts with water more rapidly than [HC?CMgCl2 ](-) , consistent with the higher reactivity of organolithium versus organomagnesium reagents. Addition of LiCl to [HC?CLiCl](-) or [HC?CMgCl2 ](-) enhances their reactivity towards water by a factor of about 2, while addition of MgCl2 to [HC?CMgCl2 ](-) enhances its reactivity by a factor of about 4. Ab?initio calculations coupled with master equation/RRKM theory kinetic modeling show that these reactions proceed via a mechanism involving formation of a water adduct followed by rearrangement, proton transfer, and acetylene elimination as either discrete or concerted steps. Both the energy and entropy requirements for these elementary steps need to be considered in order to explain the observed kinetics. PMID:25079912

Khairallah, George N; da Silva, Gabriel; O'Hair, Richard A J

2014-10-01

22

Molten salt destruction of energetic waste materials  

DOEpatents

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

1995-07-18

23

Molten salt destruction of energetic waste materials  

DOEpatents

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01

24

Molten salt treatment to minimize and optimize waste  

Microsoft Academic Search

A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form,

U. Gat; S. M. Crosley; R. L. Gay

1993-01-01

25

Salt-occluded zeolites as an immobilization matrix for chloride waste salt  

SciTech Connect

The pyrometallurgical processing of spent fuel from the integral fast reactor (IFR), an advanced reactor under development at Argonne National Laboratory, will generate a chloride salt waste containing the alkali-metal, alkaline-earth, and some of the rare-earth fission products. Salt-occluded zeolite A, formed by equilibrating simulated molten waste salt and zeolite A, has been investigated as an immobilization matrix for this salt waste. In this concept, the chloride waste salt is loaded into the zeolite cavities, and cesium and strontium from the salt are preferentially sorbed by the zeolite. Experiments showed that the salt occluded zeolite powders are leach resistant and radiation stable. The conclusion is that the salt-occluded zeolite is a promising immobilization matrix for the IFR waste salt.

Lewis, M.A.; Fischer, D.F.; Smith, L.J. (Argonne National Lab., IL (United States). Chemical Technology Div.)

1993-11-01

26

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

SciTech Connect

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01

27

Is it cerebral or renal salt wasting?  

PubMed

Cerebral salt-wasting (CSW), or renal salt-wasting (RSW), has evolved from a misrepresentation of the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) to acceptance as a distinct entity. Challenges still confront us as we attempt to differentiate RSW from SIADH, ascertain the prevalence of RSW, and address reports of RSW occurring without cerebral disease. RSW is redefined as 'extracellular volume depletion due to a renal sodium transport abnormality with or without high urinary sodium concentration, presence of hyponatremia or cerebral disease with normal adrenal and thyroid function.' Our inability to differentiate RSW from SIADH lies in the clinical and laboratory similarities between the two syndromes and the difficulty of accurate assessment of extracellular volume. Radioisotopic determinations of extracellular volume in neurosurgical patients reveal renal that RSW is more common than SIADH. We review the persistence of hypouricemia and increased fractional excretion of urate in RSW as compared to correction of both in SIADH, the appropriateness of ADH secretion in RSW, and the importance of differentiating renal RSW from SIADH because of disparate treatment goals: fluid repletion in RSW and fluid restriction in SIADH. Patients with RSW are being incorrectly treated by fluid restriction, with clinical consequences. We conclude that RSW is common and occurs without cerebral disease, and propose changing CSW to RSW. PMID:19641485

Maesaka, John K; Imbriano, Louis J; Ali, Nicole M; Ilamathi, Ekambaram

2009-11-01

28

STATUS REPORT ON WASTE DISPOSAL IN NATURAL SALT FORMATIONS: II  

Microsoft Academic Search

Radioactive liquid wastes can be stored in cavities in natural salt ; formations if the structural properties of salt are not adversely affected by ; chemical interaction, pressure, temperature, and radiation. Analytical studies ; show that it is possible to store two-year-old waste in a 10-foot-diameter sphere ; without exceeding a temperature of 200 F. Laboratory tests show that the

F. L. Parker; W. J. Jr. Boegly; R. L. Bradshaw; J. Crowell; E. R. Eastwood; F. M. Empson; B. D. Gunter; L. Hemphill; O. H. Myers; E. G. Struxness

1959-01-01

29

Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report  

SciTech Connect

A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

Miller, C.M.; Loomis, G.G.; Prewett, S.W.

1997-11-01

30

Salt-occluded zeolites as an immobilization matrix for chloride waste salt  

Microsoft Academic Search

The pyrometallurgical processing of spent fuel from the integral fast reactor (IFR), an advanced reactor under development at Argonne National Laboratory, will generate a chloride salt waste containing the alkali-metal, alkaline-earth, and some of the rare-earth fission products. Salt-occluded zeolite A, formed by equilibrating simulated molten waste salt and zeolite A, has been investigated as an immobilization matrix for this

Michele A. Lewis; Donald F. Fischer; Londa J. Smith

1993-01-01

31

Molten salt processing of mixed wastes with offgas condensation  

Microsoft Academic Search

We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000°C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the

J. F. Cooper; W. Brummond; J. Celeste; J. Farmer; C. Hoenig; O. H. Krikorian; R. Upadhye; R. L. Gay; A. Stewart; S. Yosim

1991-01-01

32

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01

33

Modeling of Sulfate Double-salts in Nuclear Wastes  

Microsoft Academic Search

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial

B. Toghiani; J. S. Lindner; C. F. Weber; R. D. Hunt

2000-01-01

34

Disposition of salt-waste from pyrochemical nuclear fuel processing  

SciTech Connect

Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

Vance, E.R. [Institute of Materials Science and Engineering, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

2007-07-01

35

Molten salt processing of mixed wastes with offgas condensation  

SciTech Connect

We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. (Lawrence Livermore National Lab., CA (USA)); Gay, R.L.; Stewart, A.; Yosim, S. (Rockwell International Corp., Canoga Park, CA (USA). Energy Systems Group)

1991-05-13

36

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01

37

Containment of solidified liquid hazardous waste in domal salt  

SciTech Connect

In recent years, the solidification of hazardous liquid waste has become a viable option in waste management. The solidification process results in an increased volume but more stable waste form that must be disposed of or stored in a dry environment. An environment of choice in south central Texas is domal salt. The salt dome currently under investigation has a water content of 0.002 percent by weight and a permeability less than one nanodarcy. A question that must be addressed is whether a salt dome has a particular set of attributes that will prevent the release of contaminants to the environment. From a regulatory perspective, a no migration'' petition must be approved by the U.S.E.P.A. for the containment facility. By no migration'' it is implied that the waste must be contained for 10,000 years. A demonstration that this condition will be met will require model calculations and such models must be based on the physical and chemical characteristics of the waste form and the geologic environment. In particular, the models must address the rate of brine infiltration into the caverns, providing information on how fast an immobile solid waste form could convert to a more mobile liquid state. Additionally, the potential for migration by both diffusion and advection is of concern. Lastly, given a partially saturated cavern, the question of how far gaseous waste will be transported over the 10,000 year containment period must also be addressed. Results indicate that the containment capabilities of domal salt are exceptional. A nominal volume of brine will seep into the cavern and most voids between the injected solidified waste pellets will remain unsaturated. Very small quantities of hazardous constituents will be leached from the waste pellets.

Domenico, P.A. (Texas A and M Univ., College Station, TX (United States). Geology Dept.); Lerman, A. (Northwestern Univ., Evanston, IL (United States). Dept. Geological Sciences)

1992-01-01

38

Laboratory simulation of salt dissolution during waste removal  

SciTech Connect

Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended.

Wiersma, B.J.; Parish, W.R.

1997-01-01

39

Characteristics of solidified products containing radioactive molten salt waste.  

PubMed

The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method. PMID:18044538

Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

2007-11-01

40

Injector nozzle for molten salt destruction of energetic waste materials  

DOEpatents

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

Brummond, W.A.; Upadhye, R.S.

1996-02-13

41

Injector nozzle for molten salt destruction of energetic waste materials  

DOEpatents

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01

42

Salt-occluded zeolite waste forms: Crystal structures and transformability  

SciTech Connect

Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 {angstrom} diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms.

Richardson, J.W. Jr. [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source Div.

1996-12-31

43

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10

44

Salt-occluded zeolite waste forms: Crystal structures and transformability  

Microsoft Academic Search

Neutron diffraction studies of salt-occluded zeolite and zeolite\\/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 â« diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr,

J. W. Jr

1996-01-01

45

Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel  

Microsoft Academic Search

Sodalite\\/glass bodies prepared by hot isostatic pressing (HIPing) at ?850°C\\/100MPa are candidates for immobilising fission product-bearing waste KCl–LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare

E. R. Vance; J. Davis; K. Olufson; I. Chironi; I. Karatchevtseva; I. Farnan

46

Disposal of oil field wastes and NORM wastes into salt caverns.  

SciTech Connect

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J. A.

1999-01-27

47

Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts  

DOEpatents

The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

Wingfield, Jr., Robert C. (Southfield, MI); Braslaw, Jacob (Southfield, MI); Gealer, Roy L. (West Bloomfield, MI)

1985-01-01

48

Ceramic waste form for residues from molten salt oxidation of mixed wastes  

SciTech Connect

A ceramic waste form based on Synroc-D is under development for the incorporation of the mineral residues from molten salt oxidation treatment of mixed low-level wastes. Samples containing as many as 32 chemical elements have been fabricated, characterized, and leach-tested. Universal Treatment Standards have been satisfied for all regulated elements except and two (lead and vanadium). Efforts are underway to further improve chemical durability.

Van Konynenburg, R.A.; Hopper, R.W.; Rard, J.A. [and others

1995-11-01

49

Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel  

NASA Astrophysics Data System (ADS)

Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ˜850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl-LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800-1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching. Pure chlorapatite gives superior leach resistance to sodalite, and alkalis, alkaline and rare earth ions are generally known to enter chlorapatite, but attempts to incorporate simulated waste salt formulations into HIPed chlorapatite-based preparations or to substitute Cs alone into the structure of Ca-based chlorapatite were not successful on the basis of scanning electron microscopy. The materials exhibited severe water leachability, mainly in regard to Cs release. Attempts to substitute Cs into Ba- and Sr-based chlorapatites also did not look encouraging. Consequently the use of apatite alone to retain fission product-bearing waste pyroprocessing salts from electrolytic nuclear fuel reprocessing is problematical, but chlorapatite glass-ceramics may be feasible, albeit with reduced waste loadings. Spodiosite, Ca 2(PO 4)Cl, does not appear to be suitable for incorporation of Cl-bearing waste containing fission products.

Vance, E. R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I.

2012-01-01

50

Disposal of transuranic solid waste using Atomics International's molten salt combustion process. II  

Microsoft Academic Search

The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible transuranic waste by utilizing a molten salt medium to combust organic materials, to trap particulates and fissile material, and to react chemically with any acidic gases produced during combustion. The ''ash'' is retained by the molten salt. To control the amount of noncombustible substances in the

L. F. Grantham; D. E. McKenzie; R. D. Oldenkamp; W. L. Richards

1976-01-01

51

Predicted temperature\\/time histories resulting from the burial of nuclear waste canisters in bedded salt  

Microsoft Academic Search

This report provides computed thermal mappings for bedded salt surrounding canisters containing nuclear waste. This information can be used to study the possible migration of fluids within bedded salt under the influence of thermal gradients created by the heat-generating nuclear waste. The results presented were obtained from CINDA thermal models. Three different drift\\/canister configurations were modeled. The thermal conductivity of

O. L. Jr

1980-01-01

52

More on Renal Salt Wasting Without Cerebral Disease: Response to Saline Infusion  

Microsoft Academic Search

Background and objectives: The existence and prevalence of cerebral salt wasting (CSW) or the preferred term, renal salt wasting (RSW), and its differentiation from syndrome of inappropriate antidiuretic hormone (SIADH) have been controver- sial. This controversy stems from overlapping clinical and laboratory findings and an inability to assess the volume status of these patients. The authors report another case of

Solomon Bitew; Louis Imbriano; Nobuyuki Miyawaki; Steven Fishbane; John K. Maesaka

2009-01-01

53

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOEpatents

This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, T.

1992-01-01

54

Container materials for isolation of radioactive waste in salt  

SciTech Connect

The workshop reviewed the extensive data on the corrosion resistance of low-carbon steel in simulated salt repository environments, determined whether these data were sufficient to recommend low-carbon steel for fabrication of the container, and assessed the suitability of other materials under consideration in the SRP. The panelists determined the need for testing and research programs, recommended experimental approaches, and recommended materials based on existing technology. On the first day of the workshop, presentations were made on waste package requirements; the expected corrosion environment; degradation processes, including a review of data from corrosion tests on carbon steel; and rationales for container design and materials, modeling studies, and planned future work. The second day was devoted to a panel caucus, presentation of workshop findings, and open discussion. 76 refs., 2 figs., 3 tabs.

Streicher, M.A.; Andrews, A. (eds.)

1987-10-01

55

Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins  

SciTech Connect

Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

1997-07-07

56

Recovery of salt wastes in the production of propylene oxide  

SciTech Connect

In the production of propylene oxide as much as 40 t dilute calcium chloride solution forms per ton of product in the step of saponification of propylene chlorhydrine with milk of lime. To create a zero-waste technology for production of propylene oxide, there is practical interest in saponification of propylene chlorhydrine with electrolysis brines with recovery of the resultant solution of sodium chloride after purification to remove organic impurities. The possibility of using an electrochemical method to purify wastewater from production of propylene oxide in using the purified solution as starting material for production of electrolysis brines was investigated. Experimental testing of processes of purification and recovery of wastewaters in a regime of industrial electrolysis confirmed the possibility of using purified wastewater from production of propylene oxide as brine for electrolysis. Incorporation of the developed method into industry will permit zero-waste production of propylene oxide with a closed salt cycle. The cost of purification of 1 m/sup 3/ wastewater is 1-1.5 rubles.

Zyablitseva, M.P.; Tyurin, B.K.; Kudinov, V.I.; Bukbulatov, I.K.; Mazanko, A.F.

1983-02-01

57

Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns  

SciTech Connect

Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

1996-06-01

58

Ion Recognition Approach to Volume Reduction of Alkaline; Tank Waste by Separation of Sodium Salts  

Microsoft Academic Search

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste

Bruce A. Moyer; Peter V. Bonnesen; Radu Custelcean; Laetitia H. Delmau; Nancy L. Engle; Hyun-Ah Kang; Tamara J. Keever; Alan P. Marchand; Srinivas Gadthula; Vinayak K. Gore; Zilin Huang; Rasapalli Sivappa; Pavan K. Tirunahari; Tatiana G. Levitskaia; Gregg J. Lumetta

2005-01-01

59

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

Microsoft Academic Search

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste

Tatiana G. Levitskaia; Gregg J. Lumetta; Bruce A. Moyer; Peter V. Bonnesen

2006-01-01

60

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

Microsoft Academic Search

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste

Tatiana G. Levitskaia; Gregg J. Lumetta; Bruce A. Moyer; Peter V. Bonnesen

2005-01-01

61

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

SciTech Connect

This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

Wishau, R.; Ramsey, K.B.; Montoya, A.

1998-12-31

62

Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results  

SciTech Connect

In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol-gel process chemistry, and the amount of glass sintering aid added to the batch. As the firing temperature was increased from 850 C to 950 C, chloride volatility increased, the fraction of sodalite decreased, and the fractions nepheline and carnegieite increased. This indicates that the sodalite structure is not stable and begins to convert to nepheline and carnegieite under these conditions at 950 C. Density has opposite relationship with relation to firing temperature. The addition of a NBS-1, a glass sintering aid, had a positive effect on bulk density and increased the stability of the sodalite structure in a minimal way.

Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

2010-08-01

63

In situ analysis for spontaneous reduction of Eu 3+ in LiCl pyroprocessing media at 923 K  

Microsoft Academic Search

The spontaneous reduction of Eu3+ to Eu2+ was examined when EuCl3 was added into a pyroprocessing media of LiCl molten salt at 923 K. The amount of Eu2+ was calculated by measuring the total charge consumed to oxidize Eu2+ ions to Eu3+ ions. The concentration ratio of Eu2+ to Eu3+ was estimated to be about 0.40 in the media. In addition,

Tack-Jin Kim; Yong-Kwang Jeong; Jun-Gill Kang; Yongju Jung; Do-Hee Ahn; Han-Soo Lee

2010-01-01

64

Regio- and chemoselective magnesiation of protected uracils and thiouracils using TMPMgCl x LiCl and TMP(2)Mg x 2 LiCl.  

PubMed

Two successive regio- and chemoselective magnesiations using TMPMgCl x LiCl and TMP(2)Mg x 2 LiCl enable the full functionalization of protected uracils and thiouracils in good to excellent yields. PMID:18802627

Mosrin, Marc; Boudet, Nadège; Knochel, Paul

2008-09-21

65

Analyses of SRS waste glass buried in granite in Sweden and salt in the United States  

SciTech Connect

Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

Williams, J.P. [Tuskegee Inst., AL (United States); Wicks, G.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Clark, D.E. [Florida Univ., Gainesville, FL (United States); Lodding, A.R. [Chalmers Tekniska Hoegskola, Goeteborg (Sweden)

1991-12-31

66

Analyses of SRS waste glass buried in granite in Sweden and salt in the United States  

SciTech Connect

Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

Williams, J.P. (Tuskegee Inst., AL (United States)); Wicks, G.G. (Westinghouse Savannah River Co., Aiken, SC (United States)); Clark, D.E. (Florida Univ., Gainesville, FL (United States)); Lodding, A.R. (Chalmers Tekniska Hoegskola, Goeteborg (Sweden))

1991-01-01

67

Modeling of waste/near field interactions for a waste repository in bedded salt: the Dynamic Network (DNET) model  

SciTech Connect

The Fuel Cycle Risk Analysis Division of Sandia National Laboratories has been funded by the US Nuclear Regulatory Commission to develop a methodology for use in assessing the long-term risk from the disposal of radioactive wastes in deep geologic formations. As part of this program, the Dynamic Network (DNET) model was developed to investigate waste/near field interactions associated with the disposal of radioactive wastes in bedded salt formations. The model is a quasi-multi-dimensional network model with capabilities for simulating processes such as fluid flow, heat transport, salt dissolution, salt creep, and the effects of thermal expansion and subsedence on the rock units surrounding the repository. The use of DNET has been demonstrated in the analysis of a hypothetical disposal site containing a bedded salt formation as the host medium for the repository. An example of this demonstration analysis is discussed. Furthermore, the outcome of sensitivity analyses performed on the DNET model are presented.

Cranwell, R.M.

1983-01-01

68

Radioactive Waste Isolation in Salt: Peer review of documents dealing with geophysical investigations  

Microsoft Academic Search

The Salt Repository Project, a US Department of Energy program to develop a mined repository in salt for high-level radioactive waste, is governed by a complex and sometimes inconsistent array of laws, administrative regulations, guidelines, and position papers. In conducting multidisciplinary peer reviews of contractor documents in support of this project, Argonne National Laboratory has needed to inform its expert

L. D. McGinnis; R. H. Bowen

1987-01-01

69

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

SciTech Connect

Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

Wishau, R.

1998-05-01

70

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

SciTech Connect

Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-10

71

Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory  

SciTech Connect

The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E. [Oak Ridge National Lab., TN (United States); Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J. [Rockwell International Corp., Canoga Park, CA (United States)

1993-03-01

72

Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory  

SciTech Connect

The Molten Salt Oxidation (MSO) process has been under development by Rockwell International to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E. [Oak Ridge National Lab., TN (United States); Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J.

1993-12-31

73

Renal salt wasting as part of dysautonomia in Guillain-Barre syndrome.  

PubMed

Cerebral salt-wasting syndrome and the syndrome of inappropriate antidiuresis (SIAD) are the most important causes of non-iatrogenic hyponatraemia that can significantly complicate various brain diseases. Salt wasting without an underlying CNS disease may have been disregarded so far by clinicians and has been described as renal salt-wasting (RSW) in patients as drug side effect (eg, cisplatin), in older people with various common diseases (eg, hip fracture, pulmonary infections) and other sporadic conditions. In Guillain-Barré Syndrome (GBS), however, hyponatraemia has been described mainly as SIAD. However, symptoms of hyponatraemia rarely develop in GBS. Here, we report on a woman with GBS with dominant symptoms of dysautonomia and moderate severe hyponatraemia. We could identify RSW as part of the autonomic dysfunction that significantly contributed to disease worsening. PMID:20732865

Lenhard, T; Grimm, C; Ringleb, P A

2011-09-01

74

Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories  

SciTech Connect

The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

Not Available

1983-06-01

75

Reduction of salt cake waste by removing low value oxide fines  

SciTech Connect

With the ongoing pressure on the secondary aluminum business to limit the amount of waste generated from processing aluminum dross, it becomes very advantageous to preprocess the dross to reduce waste. The advantage of preprocessing is that it significantly reduces the oxides and salt cake generated when melted. Various products can be produced from the oxides for the steel industry. The paper will demonstrate that removal of oxide fines before melting will result in large volumes of material not being landfilled. The authors will show that the end result of this technology is to significantly reduce the amount of salt cake sent to a landfill while maximizing the recyclability of the aluminum dross.

Skoch, J.T.; Collins, R.L. [Rock Creek Aluminum, Inc., Elyria, OH (United States)

1995-12-31

76

Nitrogen Conservation in Simulated Food Waste Aerobic Composting Process with Different Mg and P Salt Mixtures  

Microsoft Academic Search

To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]\\/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]\\/MgSO4, KH2PO4\\/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste

Yu Li; Bensheng Su; Jianlin Liu; Xianyuan Du; Guohe Huang

2011-01-01

77

Dielectric and conductivity relaxation in mixtures of glycerol with LiCl  

E-print Network

We report a thorough dielectric characterization of the alpha relaxation of glass forming glycerol with varying additions of LiCl. Nine salt concentrations from 0.1 - 20 mol% are investigated in a frequency range of 20 Hz - 3 GHz and analyzed in the dielectric loss and modulus representation. Information on the dc conductivity, the dielectric relaxation time (from the loss) and the conductivity relaxation time (from the modulus) is provided. Overall, with increasing ion concentration, a transition from reorientationally to translationally dominated behavior is observed and the translational ion dynamics and the dipolar reorientational dynamics become successively coupled. This gives rise to the prospect that by adding ions to dipolar glass formers, dielectric spectroscopy may directly couple to the translational degrees of freedom determining the glass transition, even in frequency regimes where usually strong decoupling is observed.

M. Köhler; P. Lunkenheimer; A. Loidl

2008-04-15

78

Surface Displacements And Pillar Stresses Associated With Nuclear Waste Disposal In Salt  

Microsoft Academic Search

A numerical model for regional analysis of stresses and displacement, resulting from heat generating waste placement in underground salt excavations, is presented. The model, which is an extension of that described by McClain and Starfield (1971), is based upon the displacement discontinuity method of stress analysis. It incorporates an empirical characterization of creep behavior of material on the excavation horizon

M. P. Hardy; C. M. St. John

1977-01-01

79

Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns  

SciTech Connect

This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

1999-01-21

80

Mineralocorticoid replacement during infancy for salt wasting congenital adrenal hyperplasia due to 21-hydroxylase deficiency  

PubMed Central

OBJECTIVE: The protocols for glucocorticoid replacement in children with salt wasting 21-hydroxylase deficiency are well established; however, the current recommendation for mineralocorticoid replacement is general and suggests individualized dose adjustments. This study aims to retrospectively review the 9-?-fludrocortisone dose regimen in salt wasting 21-hydroxylase deficient children who have been adequately treated during infancy. METHODS: Twenty-three salt wasting 21-hydroxylase deficient patients with good anthropometric and hormonal control were followed in our center since diagnosis. The assessments of cortisone acetate and 9-?-fludrocortisone doses, anthropometric parameters, and biochemical and hormonal levels were rigorously evaluated in pre-determined intervals from diagnosis to two years of age. RESULTS: The 9-?-fludrocortisone doses decreased over time during the first and second years of life; the median fludrocortisone doses were 200 ?g at 0-6 months, 150 ?g at 7-18 months and 125 ?g at 19-24 months. The cortisone acetate dose per square meter was stable during follow-up (median?=?16.8 mg/m2/day). The serum sodium, potassium and plasma rennin activity levels during treatment were normal, except in the first month of life, when periodic 9-?-fludrocortisone dose adjustments were made. CONCLUSIONS: The mineralocorticoid needs of salt wasting 21-hydroxylase deficient patients are greater during early infancy and progressively decrease during the first two years of life, which confirms that a partial aldosterone resistance exists during this time. Our study proposes a safety regiment for mineralocorticoid replacement during this critical developmental period. PMID:23525308

Gomes, Larissa G.; Madureira, Guiomar; Mendonca, Berenice B.; Bachega, Tania A. S. S.

2013-01-01

81

Engineering study of the potential uses of salts from selective crystallization of Hanford tank wastes  

SciTech Connect

The Clean Salt Process (CSP) is the fractional crystallization of nitrate salts from tank waste stored on the Hanford Site. This study reviews disposition options for a CSP product made from Hanford Site tank waste. These options range from public release to onsite low-level waste disposal to no action. Process, production, safety, environment, cost, schedule, and the amount of CSP material which may be used are factors considered in each option. The preferred alternative is offsite release of clean salt. Savings all be generated by excluding the material from low-level waste stabilization. Income would be received from sales of salt products. Savings and income from this alternative amount to $1,027 million, excluding the cost of CSP operations. Unless public sale of CSP products is approved, the material should be calcined. The carbonate form of the CSP could then be used as ballast in tank closure and stabilization efforts. Not including the cost of CSP operations, savings of $632 million would be realized. These savings would result from excluding the material from low-level waste stabilization and reducing purchases of chemicals for caustic recycle and stabilization and closure. Dose considerations for either alternative are favorable. No other cost-effective alternatives that were considered had the capacity to handle significant quantities of the CSP products. If CSP occurs, full-scale tank-waste stabilization could be done without building additional treatment facilities after Phase 1 (DOE 1996). Savings in capital and operating cost from this reduction in waste stabilization would be in addition to the other gains described.

Hendrickson, D.W.

1996-04-30

82

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

SciTech Connect

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21

83

The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms  

SciTech Connect

A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., {le} 10{sup {minus}18}m{sup 2}) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs.

Butcher, B.M.; Novak, C.F. (Sandia National Labs., Albuquerque, NM (United States)); Jercinovic, M. (New Mexico Univ., Albuquerque, NM (United States))

1991-04-01

84

Electrochemistry and Spectroelectrochemistry of Europium(III) chloride in 3 LiCl – 2KCl from 643 to 1123 K  

SciTech Connect

The electrochemical and spectroelectrochemical behavior of Europium(III) chloride in a molten salt eutectic, 3 LiCl – 2 KCl, over a temperature range of 643 – 1123 K using differential pulse voltammetry, cyclic voltammetry, potential step chronoabsorptometry, and thin-layer spectroelectrochemistry is reported. The electrochemical reaction was determined to be the one electron reduction of Eu3+ to Eu2+ at all temperatures. The redox potential of Eu3+/2+ shifts to more positive potentials and the diffusion coefficient for Eu3+ increases as temperature increases. The results for the number of electrons transferred, redox potential and diffusion coefficient are in good agreement between the electrochemical and spectroelectrochemical techniques.

Schroll, Cynthia A.; Chatterjee, Sayandev; Levitskaia, Tatiana G.; Heineman, William R.; Bryan, Samuel A.

2013-09-09

85

Testing of low-temperature stabilization alternatives for salt containing mixed wastes -- Approach and results to date  

SciTech Connect

Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. These wastes were generated as sludge and solid effluents from various primary nuclear processes involving acids and metal finishing; and well over 10,000 cubic meters exist at 6 sites. In addition, future volumes of these problematic wastes will be produced as other mixed waste treatment methods such as incineration and melting are deployed. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The inefficiency results from having to use low waste loadings to ensure a durable and leach resistant final waste form. The following five alternatives were selected for MWFA development funding in FY97 and FY98: phosphate bonded ceramics; sol-gel process; polysiloxane; polyester resin; and enhanced concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates. Final waste form performance data such as compressive strength, waste loading, and leachability could then be equally compared. Selected preliminary test results are provided in this paper.

Maio, V.; Loomis, G. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Spence, R.D. [Oak Ridge National Lab., TN (United States); Smith, G. [Pacific Northwest National Lab., Richland, WA (United States); Biyani, R.K. [SGN Eurisys Services Corp., Richland, WA (United States); Wagh, A. [Argonne National Lab., IL (United States)

1998-05-01

86

Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity  

SciTech Connect

Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 {degrees}C) at {ge} 900{degrees}C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL`s studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO{sub x}, emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO{sub x}, emissions are relatively low ( < 5 ppm) at temperatures < 1000{degrees}C. However, most (85--100%) of the nitrogen in the feed as organic nitrate or amine was released as NO{sub x}, The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls.

Haas, P.A.; Rudolph, J.C.; Bell, J.T.

1994-06-01

87

Hanford tank wastes; salt splitting: FY92 activities  

SciTech Connect

For the first time, sodium nitrate was split into the nitric acid and sodium hydroxide from which it originated. Current-voltage characteristics were determined and found to be in the range normally judged to be economically feasible. Six different membranes were exposed to 1M NaOH or 1M HN0{sub 3}for 100 days without apparent deterioration. It is concluded that this technology holds significant promise for the processing of Hanford Tank Wastes.

Hickman, R.G.

1992-09-01

88

Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.  

PubMed

In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 ?m and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2)· day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt. PMID:21288037

Park, Hwan-Seo; Cho, In-Hak; Eun, Hee Chul; Kim, In-Tae; Cho, Yong Zun; Lee, Han-Soo

2011-03-01

89

Testing of low temperature stabilization alternatives for salt-containing mixed wastes -- approach and results to date  

SciTech Connect

Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The following five alternative salt waste stabilization technologies were selected for MWFA development funding in FY97 and FY98: (1) Phosphate Bonded Ceramics, (2) Sol-gel, (3) Polysiloxane, (4) Polyester Resin, and (5) Enhanced Concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates as specified by the MWFA. Final waste form performance data such as compressive strength, waste loading, and leachability can then be equally compared to the requirements originally specified. In addition to the selected test results provided in this paper, the performance of each alternative stabilization technology, will be documented in formal MWFA Innovative Technology Summary Reports (ITSRs).

Maio, V.; Loomis, G. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Biyani, R.K. [SGN Eurisys Services Corp., Richland, WA (United States)] [SGN Eurisys Services Corp., Richland, WA (United States); Smith, G. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Spence, R. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Wagh, A. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

1998-07-01

90

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

SciTech Connect

In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-05

91

Materials for high-level waste canister\\/overpacks in salt formations  

Microsoft Academic Search

Studies on the corrosion and mechanical behavior of TiCode-12 and other titanium alloys, for use as candidate canister or overpack barriers in a high-level waste repository or test facility in salt, are reported. The corrosion behavior of TiCode-12 was evaluated as a function of: brine composition, temperature, time, pH, oxygen concentration, and gamma radiolysis. Uniform corrosion rates are in the

M. A. Molecke; J. A. Ruppen; R. B. Diegle

1982-01-01

92

Risk analyses for disposing nonhazardous oil field wastes in salt caverns  

SciTech Connect

Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

1997-12-01

93

Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations  

NASA Astrophysics Data System (ADS)

Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

Nikitin, A. N.; Pocheptsova, O. A.; Matthies, S.

2010-05-01

94

TEM investigation of a ceramic waste form for immobilization of process salts generated during electrometallurgical treatment of spent nuclear fuel.  

SciTech Connect

Transmission electron microscopy (TEM) examination is presented of the microstructure of a ceramic waste form developed at Argonne National Lab - West for immobilization of actinides and fission products present in an electrorefiner salt. The material is produced by occluding the salt in zeolite granules, followed by hot isostatic pressing of the occluded zeolite in a mixture with a borosilicate glass. The paper presents results from a cold surrogate ceramic waste form, as well as {sup 239}Pu and {sup 238}Pu loaded samples.

Esh, D. W.; Frank, S. M.; Goff, K. M.; Johnson, S. G.; Moschetti, T. L.; O'Holleran, T. P.; Sinkler, W.

1999-05-06

95

Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass  

SciTech Connect

This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility of rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.

Riley, Brian J.; McCloy, John S.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Liu, Juan; Rodriguez, Carmen P.; Kim, Dong-Sang

2013-04-01

96

UK-Nuclear decommissioning authority and US Salt-stone waste management issues  

SciTech Connect

Available in abstract form only. Full text of publication follows: We update two case studies of stakeholder issues in the UK and US. Earlier versions were reported at Waste Management 2006 and 2007 and at ICEM 2005. UK: The UK nuclear industry has begun to consult stakeholders more widely in recent years. Historically, methods of engagement within the industry have varied, however, recent discussions have generally been carried out with the explicit understanding that engagement with stakeholders will be 'dialogue based' and will 'inform' the final decision made by the decision maker. Engagement is currently being carried out at several levels within the industry; at the national level (via the Nuclear Decommissioning Authority's (NDA) National Stakeholder Group (NSG)); at a local site level (via Site Stakeholder Groups) and at a project level (usually via the Best Practicable Environmental Option process (BPEO)). This paper updates earlier results by the co-author with findings from a second questionnaire issued to the NSG in Phase 2 of the engagement process. An assessment is made regarding the development of stakeholder perceptions since Phase 1 towards the NDA process. US: The US case study reviews the resolution of issues on salt-stone by Department of Energy's (DOE) Savannah River Site (SRS) Citizens Advisory Board (CAB), in Aiken, SC. Recently, SRS-CAB encouraged DOE and South Carolina's regulatory Department of Health and Environmental Control (SC-DHEC) to resolve a conflict preventing SC-DHEC from releasing a draft permit to allow SRS to restart salt-stone operations. It arose with a letter sent from DOE blaming the Governor of South Carolina for delay in restarting salt processing. In reply, the Governor blamed DOE for failing to assure that Salt Waste Processing Facility (SWPF) would be built. SWPF is designed to remove most of the radioactivity from HLW prior to vitrification, the remaining fraction destined for salt-stone. (authors)

Lawless, William [Paine College, 1235 Fifteenth Street, Augusta, GA 30901 (United States); Whitton, John [Nexia Solutions Ltd, The British Technology Centre, Sellafield, Seascale, CA20 1PG (United Kingdom)

2007-07-01

97

Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): Role of increased renal chloride reabsorption  

Microsoft Academic Search

Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): Role of increased renal chloride reabsorption. A rare syndrome has been described in which mineralocorticoid-resistant hyperkalemia of renal origin occurs in the absence of glomerular insufficiency and renal sodium wasting and in which hyperchloremic acidosis, hypertension, and hyporeninemia coexist. The primary abnormality has been postulated to be a defect of the

Morris Schambelan; Anthony Sebastian; Floyd C Rector

1981-01-01

98

Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt  

SciTech Connect

Crushed natural rock salt is a primary candidate for use as backfill and barrier material at the Waste Isolation Pilot Plant (WIPP) and therefore Sandia National Laboratories (SNL) has been pursuing a laboratory program designed to quantify its consolidation properties and permeability. Variables that influence consolidation rate that have been examined include stress state and moisture content. The experimental results presented in this report complement existing studies and work in progress conducted by SNL. The experiments described in this report were designed to (1) measure permeabilities of consolidated specimens of crushed salt, (2) determine the influence of brine saturation on consolidation under hydrostatic loads, and 3) measure the effects of small applied shear stresses on consolidation properties. The laboratory effort consisted of 18 individual tests: three permeability tests conducted on specimens that had been consolidated at Sandia, six hydrostatic consolidation and permeability tests conducted on specimens of brine-saturated crushed WIPP salt, and nine shear consolidation and permeability tests performed on crushed WIPP salt specimens containing 3 percent brine by weight. For hydrostatic consolidation tests, pressures ranged from 1.72 MPa to 6.90 MPa. For the shear consolidation tests, confining pressures were between 3.45 MPa and 6.90 MPa and applied axial stress differences were between 0.69 and 4.14 MPa. All tests were run under drained conditions at 25{degrees}C.

Brodsky, N.S. [RE/SPEC, Inc., Rapid City, SD (United States)

1994-03-01

99

Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles  

Microsoft Academic Search

Land use requirements for the disposal of light-water reactor radioactive wastes in a hypothetical bedded-salt formation are estimated. Five waste types from alternative fuel cycles were considered. The relative thermal response of each of five different site conditions to each waste type were determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and

R. C. Lincoln; D. W. Larson; C. E. Sisson

1978-01-01

100

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

2005-09-26

101

The source term and waste optimization of molten salt reactors with processing  

SciTech Connect

The source term of a molten salt reactor (MSR) with fuel processing is reduced by the ratio of processing time to refueling time as compared to solid fuel reactors. The reduction, which can be one to two orders of magnitude, is due to removal of the long-lived fission products. The waste from MSRs can be optimized with respect to its chemical composition, concentration, mixture, shape, and size. The actinides and long-lived isotopes can be separated out and returned to the reactor for transmutation. These features make MSRs more acceptable and simpler in operation and handling.

Gat, U. [Oak Ridge National Lab., TN (United States); Dodds, H.L. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

1993-07-01

102

DEGRADED TBP SOLVENT REGENERATION TECHNOLOGY USING BUTYLAMINE AS A SOLVENT WASHING TO REDUCE SOLID SALT WASTE  

SciTech Connect

Normal butylamine compounds are studied as salt-free wash reagents for degraded solvent used in PUREX process in spent fuel reprocessing. The solvent wash tests were carried out with two types of butylamine compounds, n-butylamine oxalate and n-butylamine bicarbonate, by counter-current mode using a small size mixer-settler composed of two 4-stage wash steps. Di-n-butyl phosphoric acid (HDBP), the main degradation product from TBP, was removed from real degraded solvent with decontamination factor of 2.5 {approx} 7.9. The study on electrolytic decomposition of butylamine compounds was also conducted for waste treatment.

Asakura, T.; Itoh, Y.; Hotoku, S.; Morita, Y.; Uchiyama, G.

2003-02-27

103

Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation  

SciTech Connect

This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

J. T. Case (DOE-ID); M. L. Renfro (INEEL)

1998-12-01

104

Waste  

SciTech Connect

A process for converting wastes in molten salts into usable fuels is described. The molten salt acts as a reaction medium and potential acidic pollutants are retained in the melt. The waste is converted to a fuel gas by reacting it with insufficient air for complete conversion to CO/sub 2/ and H/sub 2/O. The product gas is cleared of particles using a baghouse or venturi scrubber and it is then burned in a boiler to produce steam. The results for waste streams containing a high-sulfur oil refinery waste, rubber, wood, leather scraps, and waste x-ray film are presented in this article.

Gay, R.L.; Barclay, K.M.; Grantham, L.F.; Yosim, S.J.

1981-09-01

105

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect

In this project, now completing its third year of its second renewal period, a collaborative project involving Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and the University of North Texas has been addressing outstanding questions regarding the separation of the bulk sodium constituents of alkaline tank waste. The principal potential benefit of this research is a major reduction in the volume of radioactive tank waste, obviating the building of expensive new tanks and reducing the costs of vitrification. As a general approach, principles of ion recognition are being explored toward discovery and basic understanding of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium salts from waste-like matrices. Questions being addressed pertain to applicable extraction equilibria and how extraction properties relate to extractant structure. Progress has included the elucidation of the promising concept of pseudo hydroxide extraction (PHE), demonstration of crown-ether synergized PHE, demonstration of combined sodium hydroxide/sodium nitrate separation, and synthesis of novel ditopic receptors for ditopic PHE. In future efforts (pending renewal), a thermochemical study of PHE relating extractant acidity to extraction strength is proposed, and this study will be extended to systems containing crown ethers, including proton-ionizable ones. A series of crown ethers will be synthesized for this purpose and to investigate the extraction of bulk sodium salts (e.g., nitrate, nitrite, and sulfate), possibly in combination with sodium hydroxide. Simple proof-of-principle tests with real tank waste at PNNL will provide feedback toward solvent designs that have desirable properties. In view of the upcoming milestone of completion of the second renewal period, this report will, in addition to providing a summary of the past year's progress, summarize all of the work completed since the start of this project.

Moyer, Bruce A.; Marchand, Alan P.; Lumetta, Gregg J.

2004-06-30

106

Treatment of a waste salt delivered from an electrorefining process by an oxidative precipitation of the rare earth elements  

Microsoft Academic Search

For the reuse of a waste salt from an electrorefining process of a spent oxide fuel, a separation of rare earth elements by an oxidative precipitation in a LiCl-KCl molten salt was tested without using precipitate agents. From the results obtained from the thermochemical calculations by HSC Chemistry software, the most stable rare earth compounds in the oxygen-used rare earth

Yung-Zun Cho; Hee-Chul Yang; Gil-Ho Park; Han-Soo Lee; In-Tae Kim

2009-01-01

107

Expected environments in high-level nuclear waste and spent fuel repositories in salt  

SciTech Connect

The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

1980-08-01

108

Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan  

SciTech Connect

The following recommendations have been abstracted from the body of this report. The Office of Nuclear Waste Isolation's Socioeconomic Program Plan for the Establishment of Mined Geologic Repositories to Isolate Nuclear Waste should be modified to: (1) encourage active public participation in the decision-making processes leading to repository site selection; (2) clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process. In addition, the Office of Nuclear Waste Isolation should carefully review the overall role that these persons and groups, including local pressure groups organized in the face of potential repository development, will play in the siting process; (3) place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; (4) include additional approaches to solving socioeconomic problems. For example, a reluctance to acknowledge that solutions to socioeconomic problems need to be found jointly with interested parties is evident in the plan; (5) recognize that mitigation mechanisms other than compensation and incentives may be effective; (6) as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and (7) comply fully with the pertinent provisions of NWPA.

Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

1984-07-01

109

Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt  

SciTech Connect

This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985).

Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.; Stormont, J.C.; Neuman, S.P.; Russell, J.E.; Jacoby, C.H.; Hull, A.B.; Brady, B.H.G.; Ditmars, J.D.

1987-01-01

110

Dechlorination and stabilization of radioactive chloride salt waste in a molten state  

SciTech Connect

This study suggests a new method to stabilize the molten salt wastes generated from he pyro-processing of a LWR spent fuel. Using a conventional sol-gel process, an inorganic material (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, SAP) reactive to metal chlorides was prepared. In this paper, the reactivity of the SAP on the metal chlorides at 650-850 deg. C, the thermal stability of the reaction products and their leach-resistance under the PCT-A leach test were investigated. In the SAP, three different kinds of chains are available; Si-O-Si (main chain), Si-O-Al (side chain) and Al-O-P/P-O-P (reactive chain). Alkali metal chlorides were converted into metal aluminosilicate (Li{sub x}Al{sub x}Si{sub 1-x}O{sub 2-x}) and metal phosphate(Li{sub 3}PO{sub 4} and Cs{sub 2}AlP{sub 3}O{sub 10}) while the alkaline earth and rare earth chlorides were changed into only metal phosphates (Sr{sub 5}(PO{sub 4}){sub 3}Cl and CePO{sub 4}). The conversion rate was about 96% at a salt waste/SAP weight ratio of 0.5 and a weight loss up to 1100 deg. C measured by the thermo-gravimetric analysis was below 1 Wt%. The leach rates of Cs and Sr under the PCT-A leaching condition were about 10{sup -2} and 10{sup -4} g/m{sup 3}.day, respectively. From these results, it could be concluded that the SAP developed in this study can be considered as an effective stabilizer for metal chlorides and the method of using the SAP could provide a chance to minimize the final waste volume to be disposed off. (authors)

In-Tae Kim; Hwan-Seo Park; Yong-Jun Cho; Hwan-Young Kim; Seong-Won Park; Eung-Ho Kim [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon, 305-353 (Korea, Republic of)

2007-07-01

111

Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan  

SciTech Connect

The ONWI Socioeconomic Program Plan spells out DOE's approach to analyzing the socioeconomic impacts from siting, constructing, and operating radioactive waste repositories and discusses mitigation strategies. The peer review indicated the following modifications should be made to the Plan: encourage active public participation in the decision-making processes leading to repository site selection; clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process; place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; recognize that mitigation mechanisms other than compensation and incentives may be effective; as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and comply fully with the pertinent provisions of NWPA.

Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

1984-02-01

112

Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

Bell, J.T.; Haas, P.A.; Rudolph, J.C.

1993-12-01

113

Splicing mutation in CYP21 associated with delayed presentation of salt-wasting congenital adrenal hyperplasia  

SciTech Connect

Patients with salt-wasting congenital adrenal hyperplasia (SW-CAH) most commonly carry an A-G transition at nucleotide 656 (nt 656 A{r_arrow}G), causing abnormal splicing of exons 2 and 3 in CYP21, the gene encoding active steroid 21-hydroxylase. Affected infants are severely deficient in cortisol and aldosterone, and usually come to medical attention during the neonatal period. We report on 2 affected boys, homozygous for the nt 656 mutation, who thrived in early infancy, but suffered salt-wasting crises unusually late in infancy, at 3.5 and 5.5 months, respectively. Laboratory studies at presentation showed hyponatremia, hyperkalemia, dehydration, and acidosis; serum aldosterone was low in spite of markedly elevated plasma renin activity. Basal 17-hydroxyprogesterone levels were only moderately elevated, yet the stimulated levels were more typical of severe, classic CAH due to 21-hydroxylase deficiency. Genomic DNA from the patients was analyzed. Southern blot showed no major deletions or rearrangements. CYP21-specific amplification by polymerase chain reaction, coupled with allele-specific hybridization using wild-type and mutant probes at each of 9 sites for recognized disease-causing mutations, revealed a single, homozygous mutation in each patient: nt 656 A{r_arrow}G. These results were confirmed by sequence analysis. We conclude that the common nt 656 A{r_arrow}G mutation is sometimes associated with delayed phenotypic expression of SW-CAH. We speculate that variable splicing of the mutant CYP21 may modify the clinical manifestation of this disease. 22 refs., 1 fig., 1 tab.

Kohn, B.; Patel, S.V.; Pelczar, J.V. [North Shore Univ. Hospital, Manhasset, NY (United States)] [and others

1995-07-03

114

Evaluation of LiCl- LiBr- KBr electrolyte for Li- alloy/metal disulfide cells  

NASA Astrophysics Data System (ADS)

The physical properties of a new molten salt electrolyte for lithium-alloy/metal disulfide cells, 25 mol % LiCl-37 mol % LiBr-38 mol % KBr, were investigated. Cyclic voltammetry of FeS in the new molten salt at 375 to 425C indicated improved electrochemistry and stability of the reaction on the upper voltage plateau (1.75 V vs. LiAl). The new electrolyte provides an opportunity to operate an upper-plateau (UP) FeS electrode at a lower temperature, 400C, and with a higher activity of lithium ion in the electrolyte. The broad liquidus of this molten salt at 400C also supports operation at high current density. Testing of 24- to 48-Ah cells indicated greater than 50% improved energy and power density over the conventional two-plateau FeS cell with LiCl-KCl electrolyte. The conventional FeS cells would lose 50% of their upper-plateau capacity within 200 cycles. The elimination of this capacity decline problem was demonstrated by 400 cycles and 5400 h of stable operation with a dense UP FeS electrode cell, which maintained 89% utilization of theoretical capacity throughout the test.

Kaun, T. D.

115

Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium  

NASA Astrophysics Data System (ADS)

This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

Yamamoto, Hideki; Sumoge, Iwao

2011-03-01

116

Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt  

SciTech Connect

In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed.

Claiborne, H.C.

1982-09-01

117

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12

118

Development of Technology for Immobilization of Waste Salt from Electrorefining Spent Nuclear Fuel in Zeolite-A for Eventual Disposition in a Ceramic Waste Form  

SciTech Connect

The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

Michael F. Simpson; Prateek Sachdev

2008-04-01

119

Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment  

SciTech Connect

Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.

Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

1983-10-01

120

Accumulation of COGEMA-La Hague-derived reprocessing wastes in French salt marsh sediments.  

PubMed

Over the past five decades, authorized low-level discharges from coastal nuclear facilities have released significant quantities of artificial radionuclides into the marine environment. In northwest Europe, the majority of the total discharge has derived from nuclear reprocessing activities at Sellafield in the United Kingdom and COGEMA-La Hague in France. At the Sellafield site, a significant amount of the discharges has been trapped in offshore fine sediment deposits, and notably in local coastal and estuarine sediments, and much research has been focused on understanding the distribution, accumulation, and reworking of long-lived radionuclides in these deposits. In contrast, there are few high-resolution published data on the vertical distribution of radionuclides in fine-grained estuarine sediments near, and downstream of, COGEMA-La Hague. This paper therefore examines the vertical distribution of a range of anthropogenic radionuclides in dated salt marsh cores from two estuaries, one adjacent to, and the other downstream of, the COGEMA-La Hague discharge point (the Havre de Carteret at Barneville-Carteret and the Baie de Somme, respectively). The radionuclides examined show a vertical distribution which predominantly reflects variations in input from COGEMA-La Hague (albeit much more clearly at Barneville-Carteret than at the Baie de Somme site), and Pu isotopic ratios are consistent with a La Hague, rather than weapons' fallout, source. Because of sediment mixing, the marshes apparently retain an integrated record of the La Hague discharges, rather than an exact reproduction of the discharge history. Sorption of radionuclides increases in the order 90Sr < 137Cs < 60Co < 239,240Pu, which is consistent with Kd values reported in the literature. In general, the radionuclide activities observed at the sites studied are low (particularly in comparison with salt marsh sediments near the Sellafield facility), but are similar to those found in areas of fine sedimentation in the central Channel. These marshes are not major sinks for discharged reprocessing wastes. PMID:12523411

Cundy, Andrew B; Croudace, Ian W; Warwick, Phillip E; Oh, Jung-Suk; Haslett, Simon K

2002-12-01

121

Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods  

SciTech Connect

According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

Veil, J.A.

1997-09-01

122

Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds  

NASA Astrophysics Data System (ADS)

The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

2013-06-01

123

Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization  

SciTech Connect

At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report.

Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

1986-12-01

124

[Massive natriuresis and polyuria after triple craniocervical subarachnoid hemorrhage: cerebral salt wasting syndrome?].  

PubMed

A thirty-year-old male patient suffered subarachnoidal haemorrhage from an angioma positioned in the cranio-cervical transition. After rebleeding twice the patient developed a hydrocephalus internus malresorptivus and excessive natriuresis and polyuria, accompanied by depressed renin activity and extremely low aldosterone plasma levels. Neither fluid restriction and sodium substitution, nor administration of hydro-chlorothiazide/indomethacin affected natriuresis and polyuria. It was only after treatment with fludrocortisone-acetate/hydrocortisone that hyponatraemia and polyuria were resolved. At the same time a ventriculo-peritoneal shunt was applied. Differential diagnosis excluded the syndromes of inadequate antidiuretic hormone secretion, renal and cerebral diabetes insipidus, osmotic receptor hypofunction, chronic renal dysfunction and tubular necrosis. Natriuresis and polyuria developed under dexamethasone therapy. Since patient history, physical examination and laboratory criteria could not explain the electrolyte and fluid imbalance, this might be attributed to the hydrocephalus. Similar disturbances have been reported from other patients with intracranial disorders. Mechanical pressure exercised on the hypothalamus might cause the disturbance of fluid and sodium balance. Assuming a cerebral salt wasting syndrome, a putative natriuretic factor coming from the brain or an imbalance in the cerebral renin-angiotensin-system, as described in rats and dogs, must be discussed. PMID:1482743

Berendes, E; Scherer, R; Schuricht, G; Rol, R; Hengst, K

1992-11-01

125

Syndrome of inappropriate antidiuresis and cerebral salt wasting syndrome: are they different and does it matter?  

PubMed

The syndrome of inappropriate antidiudresis (SIAD) and cerebral salt wasting (CSW) are similar conditions with the main difference being the absence or presence of volume depletion. The two conditions may be indistinguishable at presentation, as volume status is difficult to assess, which can lead to under-diagnosis of CSW in patients with central nervous system (CNS) disease. Carefully conducted studies in patients with CNS disease have indicated that CSW may be more common than SIAD. CSW may be differentiated from SIAD based on the persistence of hypouricemia and increased fractional excretion of urate following the correction of hyponatremia. Hyponatremia should be prevented if possible and treated promptly when discovered in patients with CNS disease as even mild hyponatremia could lead to neurological deterioration. Fluid restriction should not be used for the prevention or treatment of hyponatremia in hospitalized patients with CNS disease as it could lead to volume depletion especially if CSW is present. 0.9% sodium chloride may not be sufficiently hypertonic for the prevention of hyponatremia in hospitalized patients with CNS disease and a more hypertonic fluid may be required. The preferred therapy for the treatment of hyponatremia in patients with CNS disease is 3% sodium chloride. PMID:22358189

Moritz, Michael L

2012-05-01

126

Studies of the suitability of salt domes in east Texas basin for geologic isolation of nuclear wastes  

Microsoft Academic Search

The suitability of salt domes in the east Texas basin (Tyler basin), Texas, for long-term isolation of nulear wastes is being evaluated. The major issues concern hydrogeologic and tectonic stability of the domes and potential natural resources in the basin. These issues are being approached by integration of dome-specific and regional hydrogeolgic, geologic, geomorphic, and remote-sensing investigations. Hydrogeologic studies are

Kreitler

1979-01-01

127

Kinetics of the reaction of KO 2 with LiCl  

Microsoft Academic Search

1.The authors have studied the kinetics of the reaction of KO2 with LiCl in mixtures of various compositions at 200–260°.2.In the kinetic range the main product is Li2O2. The apparent activation energy of the process E˜19 kcal\\/M.3.For the reaction period accompanied by a decrease in Li2O2, E˜43 kcal\\/M.4.An excess of LiCl in the initial mixture increases the rate of formation

A. B. Tsentsiper; Z. I. Kuznetsova

1967-01-01

128

Treatment of a waste salt delivered from an electrorefining process by an oxidative precipitation of the rare earth elements  

NASA Astrophysics Data System (ADS)

For the reuse of a waste salt from an electrorefining process of a spent oxide fuel, a separation of rare earth elements by an oxidative precipitation in a LiCl-KCl molten salt was tested without using precipitate agents. From the results obtained from the thermochemical calculations by HSC Chemistry software, the most stable rare earth compounds in the oxygen-used rare earth chlorides system were oxychlorides (EuOCl, NdOCl, PrOCl) and oxides (CeO 2, PrO 2), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides and oxides were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes: small cubic (oxide) and large plate-like (tetragonal) structures. The conversion efficiencies of the rare earth elements to their molten salt-insoluble precipitates were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of 650 °C of the molten salt temperature and 420 min of the sparging time, the final conversion efficiencies were over 99.9% for all the investigated rare earth chlorides.

Cho, Yung-Zun; Yang, Hee-Chul; Park, Gil-Ho; Lee, Han-Soo; Kim, In-Tae

2009-02-01

129

Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

2002-02-26

130

Demonstration of natriuretic activity in urine of neurosurgical patients with renal salt wasting  

PubMed Central

We have utilized the persistent elevation of fractional excretion (FE) of urate, > 10%, to differentiate cerebral/renal salt wasting (RSW) from the syndrome of inappropriate antidiuretic hormone secretion (SIADH), in which a normalization of FEurate occurs after correction of hyponatremia.  Previous studies suggest as well  that an elevated FEurate with normonatremia, without pre-existing hyponatremia, is also consistent with RSW, including studies demonstrating induction of RSW in rats infused with plasma from normonatremic neurosurgical and Alzheimer’s disease patients.  The present studies were designed to test whether precipitates from the urine of normonatremic neurosurgical patients, with either normal or elevated FEurate, and patients with SIADH, display natriuretic activity.   Methods: Ammonium sulfate precipitates from the urine of 6 RSW and 5 non-RSW Control patients were dialyzed (10 kDa cutoff) to remove the ammonium sulfate, lyophilized, and the reconstituted precipitate was tested for its effect on transcellular transport of 22Na across LLC-PK1 cells grown to confluency in transwells. Results: Precipitates from 5 of the 6 patients with elevated FEurate and normonatremia significantly inhibited the in vitro transcellular transport of 22Na above a concentration of 3 ?g protein/ml, by 10-25%, versus to vehicle alone, and by 15-40% at concentrations of 5-20 ?g/ml as compared to precipitates from 4 of the 5 non-RSW patients with either normal FEurate and normonatremia (2 patients) or with SIADH (2 patients). Conclusion: These studies provide further evidence that an elevated FEurate with normonatremia is highly consistent with RSW.  Evidence in the urine of natriuretic activity suggests significant renal excretion of the natriuretic factor. The potentially large source of the natriuretic factor that this could afford, coupled with small analytical sample sizes required by the in-vitro bioassay used here, should facilitate future experimental analysis and allow the natriuretic factor to be investigated as a potential biomarker for RSW. PMID:24358843

Youmans, Steven J; Maesaka, John K

2013-01-01

131

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOEpatents

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1994-11-22

132

Stabilization of 238Pu-contaminated combustible waste by molten salt oxidation  

NASA Astrophysics Data System (ADS)

Surrogate studies were conducted using the molten salt oxidation system at the Naval Surface Warfare Center-Indian Head Division. This system uses a rotary feed system and an alumina molten salt oxidation vessel. The combustible materials were tested individually and together in a homogenized mixture. A slurry containing pyrolyzed cheesecloth ash spiked with cerium oxide, which is used as a surrogate for plutonium, and ethylene glycol were also treated in the molten salt oxidation vessel.

Stimmel, Jay J.; Remerowski, Mary Lynn; Ramsey, Kevin B.; Heslop, J. Mark

2000-07-01

133

Emissions from energetic material waste during the Molten Salt Destruction process  

SciTech Connect

The Molten Salt Destruction (MSD) process is an alternative to open burn/open detonation for destroying energetic materials; MSD has inherently low gaseous emissions, and the salt bath can scrub both acidic gases and particulates. It was demonstrated that high explosives and a liquid propellant can be safely and completely destroyed using MSD. Gaseous emissions of NOx and CO are very low. Nitrate builds up in the salt bath when nitrate-rich materials are destroyed, but addition fuel reduces the nitrate to NO. A program has been begun to add catalytic materials to the bed to further reduce emissions; a small molten salt bath has been constructed for chemical kinetic studies.

Watkins, B.E.; Upadhye, R.S.; Pruneda, C.O.; Brummond, W.A.

1994-07-05

134

Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository  

SciTech Connect

Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

Martell, M.A.; Hansen, F.; Weiner, R.

1998-10-01

135

Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons  

DOEpatents

An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

Wingfield, Jr., Robert C. (Southfield, MI); Braslaw, Jacob (Southfield, MI); Gealer, Roy L. (West Bloomfield, MI)

1984-01-01

136

The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals  

NASA Astrophysics Data System (ADS)

The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.

Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H.

2011-06-01

137

Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663  

SciTech Connect

The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01

138

Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report  

USGS Publications Warehouse

Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

Hosman, R. L.

1978-01-01

139

Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation  

SciTech Connect

This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Simpson, Mike [Idaho National Lab., (United States)

2012-11-30

140

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

SciTech Connect

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01

141

Solution properties of poly(amic acid)–NMP containing LiCl and their effects on membrane morphologies  

Microsoft Academic Search

Physical properties of poly(amic acid) (PAA) casting solutions in N-methyl-2-pyrrolidone (NMP) containing lithium chloride (LiCl) were characterized by viscometry and dynamic light scattering (DLS) and were related to the morphological properties of asymmetric membranes prepared from these solutions. At a fixed polymer concentration, the increase in viscosity of the PAA solutions with increasing LiCl content is mainly determined by the

Hyuck Jai Lee; Jongok Won; Hoosung Lee; Yong Soo Kang

2002-01-01

142

Zeolitization of mineral wastes by molten-salt method: NaOH–KNO 3 system  

Microsoft Academic Search

Salt-thermal method exhibits several features such as high production yield, large-scale conversion, low elemental loss, and\\u000a environmentally benign nature. This study has investigated the optimization of the NaOH–KNO3 system for the zeolitization of fly ash and elucidated the characteristics of the resulting zeolitic materials. The following\\u000a are the optimal reaction conditions for zeolitization of fly ash in NaOH–KNO3 system: a

Choong Lyeal Choi; Man Park; Dong Hoon Lee; Sridhar Komarneni; Young Hun Kim; Woo Taik Lim

2007-01-01

143

Review of information on the radiation chemistry of materials around waste canisters in salt and assessment of the need for additional experimental information  

SciTech Connect

The brines, vapors, and salts precipitated from the brines will be exposed to gamma rays and to elevated temperatures in the regions close to a waste package in the salt. Accordingly, they will be subject to changes in composition brought about by reactions induced by the radiations and heat. This report reviews the status of information on the radiation chemistry of brines, gases, and solids which might be present around a waste package in salt and to assess the need for additional laboratory investigations on the radiation chemistry of these materials. The basic aspects of the radiation chemistry of water and aqueous solutions, including concentrated salt solutions, were reviewed briefly and found to be substantially unchanged from those presented in Jenks's 1972 review of radiolysis and hydrolysis in salt-mine brines. Some additional information pertaining to the radiolytic yields and reactions in brine solutions has become available since the previous review, and this information will be useful in the eventual, complete elucidation of the radiation chemistry of the salt-mine brines. 53 references.

Jenks, G.H.; Baes, C.F. Jr.

1980-03-01

144

Hyponatremia in a child with tuberculous meningitis in PICU: Cerebral salt wasting syndrome Çocuk yo ?un bakõm ünitesinde tüberküloz menenjitli çocukta hiponatremi: Serebral tuz kaybõ sendromu  

Microsoft Academic Search

Cerebral salt wasting syndrome (CSW) has been reported in cases with subarachnoid haemorrhage, infections, head injury, brain tumours, trans- sphenoidal pituitary surgery, and neurosurgery. It is characterized by extracellular fluid depletion and hyponatraemia caused by progressive natriuresis with concomitant diuresis. The relationship between tuberculous menengitis and CSW in children has been desciribed rarely. We describe a case of CSW in

Mehmet Bonak; Hakkõ Özdo; Servet Yel; Vuslat Bonak; Kenan Haspolat

145

Radioactive waste isolation in salt: rationale and methodology for Argonne-conducted reviews of site characterization programs  

SciTech Connect

Both regulatory and technical concerns must be addressed in Argonne-conducted peer reviews of site characterization programs for individual sites for a high-level radioactive waste repository in salt. This report describes the regulatory framework within which reviews must be conducted and presents background information on the structure and purpose of site characterization programs as found in US Nuclear Regulatory Commission (NRC) Regulatory Guide 4.17 and Title 10, Part 60, of the Code of Federal Regulations. It also presents a methodology to assist reviewers in addressing technical concerns relating to their respective areas of expertise. The methodology concentrates on elements of prime importance to the US Department of Energy's advocacy of a given salt repository system during the NRC licensing process. Instructions are given for reviewing 12 site characterization program elements, starting with performance objectives, performance issues, and levels of performance of repository subsystem components; progressing through performance assessment; and ending with plans for data acquisition and evaluation. The success of a site characterization program in resolving repository performance issues will be determined by judging the likelihood that the proposed data acquisition activities will reduce uncertainties in the performance predictions. 8 refs., 3 figs., 5 tabs.

Harrison, W.; Ditmars, J.D.; Tisue, M.W.; Hambley, D.F.; Fenster, D.F.; Rote, D.M.

1985-07-01

146

Permeability and hydraulic diffusivity of Waste Isolation Pilot Plant repository salt inferred from small-scale brine inflow experiments  

SciTech Connect

Brine seepage to 17 boreholes in salt at the Waste Isolation Pilot Plant (WIPP) facility horizon has been monitored for several years. A simple model for one-dimensional, radial, darcy flow due to relaxation of ambient pore-water pressure is applied to analyze the field data. Fits of the model response to the data yield estimates of two parameters that characterize the magnitude of the flow and the time scale over which it evolves. With further assumptions, these parameters are related to the permeability and the hydraulic diffusivity of the salt. For those data that are consistent with the model prediction, estimated permeabilities are typically 10{sup {minus}22} to 10{sup {minus}21} m{sup 2}. The relatively small range of inferred permeabilities reflects the observation that the measured seepage fluxes are fairly consistent from hole to hole, of the order of 10{sup {minus}10} m/s. Estimated diffusivities are typically 10{sup {minus}10} to 10{sup {minus}8} m{sup 2}/s. The greater scatter in inferred hydraulic diffusivities is due to the difficulty of matching the idealized model history to the observed evolution of the flows. The data obtained from several of the monitored holes are not consistent with the simple model adopted here; material properties could not be inferred in these cases.

McTigue, D.F.

1993-06-01

147

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

Microsoft Academic Search

In this project, now completing its third year of its second renewal period, a collaborative project involving Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and the University of North Texas has been addressing outstanding questions regarding the separation of the bulk sodium constituents of alkaline tank waste. The principal potential benefit of this research is a major reduction in

Bruce A. Moyer; Alan P. Marchand; Gregg J. Lumetta

2004-01-01

148

Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts  

Microsoft Academic Search

Chemical recycling of poly(ethylene terephthalate) (PET) has been the subject of increased interest as a valuable feedstock for different chemical processes. In this work, glycolysis of PET waste granules was carried out using excess ethylene glycol in the presence of different simple chemicals acting as catalysts, namely zinc acetate, sodium carbonate, sodium bicarbonate, sodium sulphate and potassium sulphate. Comparable high

R. López-Fonseca; I. Duque-Ingunza; B. de Rivas; S. Arnaiz; J. I. Gutiérrez-Ortiz

2010-01-01

149

Transport of contaminants in geologic media: Radioactive waste in salt, corrosion of copper, and colloid migration  

Microsoft Academic Search

Analytical and numerical models on mass transfer of radionuclides from a waste package to surrounding rock are analyzed. Based on developed models corresponding computer programs are developed. These models would be used to evaluate possible hazardous radionuclide release rates into the surrounding rock\\/biosphere. Specifically the following fields are studied. (1) Analysis on the possible copper canister pitting corrosion by sulfide

Yong Soo Hwang

2006-01-01

150

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's Geochemical Program Plan  

SciTech Connect

Describe the management program for coordinating subcontractors and their work, and integrating research results. Appropriate flowcharts should be included. Provide more information on the overall scope of the program. For each subcontractor, provide specific workscopes that indicate whether analytical activities are developmental or routine, approximate number of analyses to be made, and something of the adequacy of the analyses to meet program goals. Indicate interfaces with other earth-science disciplines like hydrology and with other groups doing relevant geochemical research and engineering design. Address the priorities for each activity or group of activities. High priority should be given to early development of a geochemical statement of what constitutes suitable salt for a repository. Reference standard procedures for sampling, sample preservation, and sample analysis wherever appropriate or, if not appropriate, indicate that any deviations from standard procedures will be documented. Ensure that appropriate quality assurance procedures will be followed for the procedures listed above. Include specific procedures for the choice, verification, validation, and documentation of computer codes related to the geochemical aspects of repository performance assessment. Include activities addressing regional hydrochemistry and make clear that each principal hydrogeologic unit at each site will be studied geochemically. Indicate that proposed plans for obtaining hydrogeochemical data will be included in each site characterization plan. Describe how site geochemical stability will be handled, especially with respect to dissolution, postemplacement geochemistry, human influences, and climatic variations. Minor recommendations and suggested improvements in the text of the plan are given in Sec. 5.

Harrison, W.; Seitz, M.; Fenster, D.; Lerman, A.; Brookins, D.; Tisue, M.

1984-02-01

151

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on multifactor life testing of waste package materials  

SciTech Connect

Two documents that provide the approaches in designing a test program to investigate uniform corrosion of low-carbon cash steel in a salt repository environment were reviewed. Recommendations are made by the Peer Review Panel for improving the two reports.

McPheeters, C.C.; Harrison, W.; Ditmars, J.D.; Lerman, A.; Rote, D.M.; Edgar, D.E.; Hambley, D.F.

1984-09-01

152

Properties of salt-saturated concrete and grout after six years in situ at the Waste Isolation Pilot Plant  

SciTech Connect

Samples of concrete and grout were recovered from short boreholes in the repository floor at the Waste Isolation Pilot Plant more than six years after the concrete and grout were placed. Plugs from the Plug Test Matrix of the Plugging and Sealing Program of Sandia National Laboratories were overcored to include a shell of host rock. The cores were analyzed at the Waterways Experiment Station to assess their condition after six years of service, having potentially been exposed to those aspects of their service environment (salt, brine, fracturing, anhydrite, etc.) that could cause deterioration. Measured values of compressive strength and pulse velocity of both the grout and the concrete equaled or exceeded values from tests performed on laboratory-tested samples of the same mixtures at ages of one month to one year after casting. The phase assemblages had changed very little. Materials performed as intended and showed virtually no chemical or physical evidence of deterioration. The lowest values for strength and pulse velocity were measured for samples taken from the Disturbed Rock Zone, indicating the influence of cracking in this zone on the properties of enclosed seal materials. There was evidence of movement of brine in the system. Crystalline phases containing magnesium, potassium, sulfate, and other ions had been deposited on free surfaces in fractures and pilot holes. There was a reaction rim in the anhydrite immediately surrounding each recovered borehole plug, suggesting interaction between grout or concrete and host rock. However, the chemical changes apparent in this reaction rim were not reflected in the chemical composition of the adjacent concrete or grout. The grout and concrete studied here showed no signs of the deterioration found to have occurred in some parts of the concrete liner of the Waste Isolation Pilot Plant waste handling shaft.

Wakeley, L.D.; Harrington, P.T.; Weiss, C.A. Jr. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Structures Lab.

1993-06-01

153

Effects of resource activities upon repository siting and waste containment with reference to bedded salt  

SciTech Connect

The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

Ashby, J.; Rowe, J.

1980-02-01

154

Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite  

SciTech Connect

Release consequence methology developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) program has now been applied to four hypothetical repository sites. This paper summarizes the results of these four studies in order to demonstrate that the far-field methodology developed under the AEGIS program offers a practical approach to the post-closure safety assessment of nuclear waste repositories sited in deep continental geologic formations. The four studies are briefly described and compared according to the following general categories: physical description of the repository (size, inventory, emplacement depth); geologic and hydrologic description of the site and the conceptual hydrologic model for the site; description of release scenario; hydrologic model implementation and results; engineered barriers and leach rate modeling; transport model implementation and results; and dose model implementation and results. These studies indicate the following: numerical modeling is a practical approach to post-closure safety assessment analysis for nuclear waste repositories; near-field modeling capability needs improvement to permit assessment of the consequences of human intrusion and pumping well scenarios; engineered barrier systems can be useful in mitigating consequences for postulated release scenarios that short-circuit the geohydrologic system; geohydrologic systems separating a repository from the natural biosphere discharge sites act to mitigate the consequences of postulated breaches in containment; and engineered barriers of types other than the containment or absorptive type may be useful.

Cole, C.R.; Bond, F.W.

1980-12-01

155

Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt  

SciTech Connect

This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

1987-09-01

156

Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1  

SciTech Connect

This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

Not Available

1987-12-01

157

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's plan to decommission and reclaim exploratory shafts and related facilities  

SciTech Connect

The following recommendations are made for improving the Office of Nuclear Waste Isolation's plan for decommissioning and reclaiming exploratory shafts and other facilities associated with site characterization: (1) Discuss more comprehensively the technical aspects of activities related to decommissioning and reclamation. More detailed information will help convince the staff of the US Nuclear Regulatory Commission and others that the activities as outlined in the plan are properly structured and that the stated goals can be achieved. (2) Address in considerably greater detail how the proposed activities will satisfy specific federal, state, and local laws and regulations. (3) State clearly the precise purpose of the plan, preferably at the beginning and under an appropriate heading. (4) Also under an appropriate heading and immediately after the section on purpose, describe the scope of the plan. The tasks covered by this plan and closely related tasks covered by other appropriate plans should be clearly differentiated. (5) Discuss the possible environmental effects of drilling the exploratory shaft, excavating drifts in salt, and drilling boreholes as part of site characterization. Mitigation activities should be designed to counter specific potential impacts. High priority should be given to minimizing groundwater contamination and restoring the surface to a condition consistent with the proposed land use following completion of characterization activities at sites not chosen for repository construction. (6) Define ambiguous technical terms, either in the text when first introduced or in an appended glossary.

Fenster, D.F.; Schubert, J.P.; Zellmer, S.D.; Harrison, W.; Simpson, D.G.; Busch, J.S.

1984-07-01

158

Electronic excitations of bulk LiCl from many-body perturbation theory  

SciTech Connect

We present the quasiparticle band structure and the optical excitation spectrum of bulk LiCl, using many-body perturbation theory. Density-functional theory is used to calculate the ground-state geometry of the system. The quasiparticle band structure is calculated within the GW approximation. Taking the electron-hole interaction into consideration, electron-hole pair states and optical excitations are obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function. The calculated band gap is 9.5 eV, which is in good agreement with the experimental result of 9.4 eV. And the calculated optical absorption spectrum, which contains an exciton peak at 8.8 eV and a resonant-exciton peak at 9.8 eV, is also in good agreement with experimental data.

Jiang, Yun-Feng; Wang, Neng-Ping, E-mail: wangnengping@nbu.edu.cn [Science Faculty, Ningbo University, Fenghua Road 818, 315211 Ningbo (China)] [Science Faculty, Ningbo University, Fenghua Road 818, 315211 Ningbo (China); Rohlfing, Michael [Institut für Festkörpertheorie, Universität Münster, 48149 Münster (Germany)] [Institut für Festkörpertheorie, Universität Münster, 48149 Münster (Germany)

2013-12-07

159

Electronic excitations of bulk LiCl from many-body perturbation theory.  

PubMed

We present the quasiparticle band structure and the optical excitation spectrum of bulk LiCl, using many-body perturbation theory. Density-functional theory is used to calculate the ground-state geometry of the system. The quasiparticle band structure is calculated within the GW approximation. Taking the electron-hole interaction into consideration, electron-hole pair states and optical excitations are obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function. The calculated band gap is 9.5 eV, which is in good agreement with the experimental result of 9.4 eV. And the calculated optical absorption spectrum, which contains an exciton peak at 8.8 eV and a resonant-exciton peak at 9.8 eV, is also in good agreement with experimental data. PMID:24320397

Jiang, Yun-Feng; Wang, Neng-Ping; Rohlfing, Michael

2013-12-01

160

Treatment of molten salt wastes by phosphate precipitation: removal of fission product elements after pyrochemical reprocessing of spent nuclear fuels in chloride melts  

Microsoft Academic Search

The removal of fission product elements from molten salt wastes arising from pyrochemical reprocessing of spent nuclear fuels has been investigated. The experiments were conducted in LiCl–KCl eutectic at 550 °C and NaCl–KCl equimolar mixture at 750 °C. The behavior of the following individual elements was investigated: Cs, Mg, Sr, Ba, lanthanides (La to Dy), Zr, Cr, Mo, Mn, Re

Vladimir A Volkovich; Trevor R Griffiths; Robert C Thied

2003-01-01

161

Laboratory creep and mechanical tests on salt data report (1975-1996): Waste Isolation Pilot Plant (WIPP) thermal/structural interactions program  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for safe handling and disposal of transuranic wastes produced by defense activities in the United States. In support of that demonstration, mechanical tests on salt were conducted in the laboratory to characterize material behavior at the stresses and temperatures expected for a nuclear waste repository. Many of those laboratory test programs have been carried out in the RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being authorized in 1975 followed by additional testing programs that continue to the present. All of the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented in this data report. A variety of test procedures were used in performance of the work including quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. Typically, the controlled test conditions applied to each specimen are presented in a plot followed by additional plots of the measured specimen response. Extensive tables are included to summarize the tests that were performed. Both the tables and the plots contain cross-references to the technical reports where the data were originally reported. Also included are general descriptions of laboratory facilities, equipment, and procedures used to perform the work.

Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1997-02-01

162

Polymer electrolyte based on poly(ethylene imine) and lithium salts  

NASA Astrophysics Data System (ADS)

The dissolution of lithium salts in linear poly(ethylene imine) has been investigated because of its possible role as a solid electrolyte in lithium batteries. Lithium salts included in the study are LiF, LiCl, LiBr, LiI, LiSCN, LiCl104 and LiBF4. When cast from solution in a common solvent, a uniform mixture is obtained (expect for the case of LiF). Interaction of the salt and polymer can be characterized by observing a loss in crystallinity of the polymer and an increase in the glass transition temperature. At concentrations of salt below 10 mole percent, the polymer can slowly recrystallize at room temperature, but at higher concentrations the mixture remains amorphous for an indefinite period of time. DC conductivity at room temperature is about .0000001 S/cm but increases to .001 S/cm at 150 C.

Chiang, C. K.; Davis, G. T.; Harding, C. A.; Takahashi, T.

1985-10-01

163

Protein refolding in predominantly organic media markedly enhanced by common salts  

SciTech Connect

The refolding/reoxidation of unfolded/reduced hen egg-white lysozyme was investigated in a variety of predominantly nonaqueous media consisting of protein-dissolving organic solvents and water. It was discovered that LiCl and other common salts dramatically increased the refolding yield of lysozyme in such nonaqueous systems, while reducing it in water. The mechanism of this surprising phenomenon appears to involve salt-induced suppression of nonspecific lysozyme aggregation during refolding due to an enhanced protein solubility.

Rariy, R.V.; Klibanov, A.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry] [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry

1999-03-20

164

Measurement and modeling of vapor–liquid equilibria at high salt concentrations  

Microsoft Academic Search

Isobaric vapor–liquid equilibrium data are reported for binary and ternary aqueous mixtures containing LiCl and ZnCl2 at total salt concentrations between 10 and 50wt.%. The measurements were carried out at 5.3, 9.3, 20, 40, and 101.3kPa in a computer-controlled glass apparatus. Particular care was taken to ensure proper equilibration of the high-density, high-viscosity salt mixtures. The equilibrium data spanning temperatures

P. Kolá?; H. Nakata; A. Tsuboi; P. Wang; A. Anderko

2005-01-01

165

Characterisation of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy  

Microsoft Academic Search

An asymmetric nanofiltration membrane (Hoechst, PES5) has been characterised by three different techniques: modelling of the rejection of simple salts, modelling of the rejection of uncharged solutes and atomic force microscopy. Interpretation of experimental data for the rejection of three salts having common co-ion (LiCl, NaCl, KCl) with model calculations allows a characterisation of the membrane in terms of three

W. Richard Bowen; A. Wahab Mohammad; Nidal Hilal

1997-01-01

166

Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant  

SciTech Connect

The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).

Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Jones, R.L. [Tech. Reps., Inc., Albuquerque, NM (United States)

1994-03-01

167

Stabilization of lithium superionic conduction phase and enhancement of conductivity of LiBH4 by LiCl addition  

NASA Astrophysics Data System (ADS)

LiBH4 exhibits lithium superionic conduction accompanied by structural transition at around 390 K. Addition of LiCl to LiBH4 drastically affects both the transition and electrical conductivity: Transition from low-temperature (LT) to high-temperature (HT) phases in LiBH4 is observed at 370 K upon heating and the HT phase can be retained at 350-330 K upon cooling. Further, the conductivity in the LT phase is more than one or two orders of magnitude higher than that of pure LiBH4. These properties could be attributed to the dissolution of LiCl into LiBH4, suggested by in situ x-ray diffraction measurement.

Matsuo, Motoaki; Takamura, Hitoshi; Maekawa, Hideki; Li, Hai-Wen; Orimo, Shin-ichi

2009-02-01

168

Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt  

SciTech Connect

This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

1982-01-01

169

Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal  

E-print Network

Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

Hunt, Andrew Robert

2007-01-01

170

Clean Salt integrated flowsheet  

SciTech Connect

The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford`s high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported.

Lunsford, T.R.

1994-09-27

171

Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility  

SciTech Connect

The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

2013-07-31

172

The role and stability of Li 2O 2 phase in supported LiCl catalyst in oxidative dehydrogenation of n-butane  

Microsoft Academic Search

This study was aimed at defining the role of active phases in supported LiCl and LiCl–DyCl3 catalysts in the catalytic oxidative dehydrogenation (ODH) of n-butane. LiCl supported on silica displayed the highest activity and selectivity in n-butane ODH compared with other alkali metal halides. Addition of DyCl3 increased the activity. TPO, XRD and Raman light scattering (RLS) data showed that

M. V Landau; A Gutman; M Herskowitz; R Shuker; Y Bitton; D Mogilyansky

2001-01-01

173

Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt - Leaching experiments and thermodynamic simulations  

NASA Astrophysics Data System (ADS)

Low- and intermediate-level radioactive wastes are frequently solidified in a cement matrix. In a potential repository for nuclear wastes, the cementitious matrix is altered upon contact with solution and the resulting secondary phases may provide for significant retention of the radionuclides incorporated in the wastes. In order to assess the secondary phases formed upon corrosion in chloride-rich solutions, which are relevant for nuclear waste disposal in rock salt, leaching experiments were performed. Conventional laboratory batch experiments using powdered hardened cement paste in MgCl2-rich solutions were left to equilibrate for up to three years and full-scale cemented waste products were exposed to NaCl-rich and MgCl2-rich solutions for more than twenty years, respectively. Solid phase analyses revealed that corrosion of hardened cement in MgCl2-rich solutions advanced faster than in NaCl-rich solutions due to the extensive exchange of Mg from solution against Ca from the cementitious solid. Thermodynamic equilibrium simulations compared well to results at the final stages of the respective experiments indicating that close to equilibrium conditions were reached. At high cement product to brine ratios (>0.65 g mL-1), the solution composition in the laboratory-scale experiments was close to that of the full-scale experiments (cement to brine ratio of 2.5 g mL-1) in the MgCl2 systems. The present study demonstrates the applicability of thermodynamic methods used in this approach to adequately describe full-scale long-term experiments with cemented waste simulates.

Bube, C.; Metz, V.; Bohnert, E.; Garbev, K.; Schild, D.; Kienzler, B.

174

Occlusion and ion exchange in the molten (lithium chloride+potassium chloride+alkaline-earth chloride) salt+zeolite 4A system with alkaline-earth chlorides of calcium and strontium and in the molten (lithium chloride+potassium chloride+actinide chloride) salt+zeolite 4A system with the actinide chloride of uranium  

Microsoft Academic Search

The interaction between molten salts of the type LiCl-KCl-MeCl\\u000a n\\u000a (Me=Ca, Sr, U; \\u000a $$x_{MeCl_n } $$\\u000a = to 0.45; and x\\u000a KCl\\/x\\u000a LiCl=0.69) and zeolite 4A have been studied at 823 K. The main interactions between these salts and zeolite are molten salt occlusion\\u000a to form salt-loaded zeolite and ion exchange between the molten salt and salt-loaded zeolite. An irreversible

Dusan Lexa

2003-01-01

175

Effect of salts and organic solvents on the activity of Halobacterium cutirubrum catalase.  

PubMed

Catalase in extracts of the extreme halophile Halobacterium cutirubrum exhibits up to threefold stimulation by 0.5 to 1.5 m monovalent salts and by 0.1 m divalent salts. Above these concentrations, inhibition of enzyme activity is observed. The inhibitory effect, and to some extent the stimulation, is salt-specific; the effectiveness of a salt in inhibiting enzyme activity depends on both cation and anion. Thus, the order of effectiveness is MgCl(2) > LiCl > NaCl > KCl > NH(4)Cl, and LiCl > LiNO(3) > Li(2)SO(4). The magnitude of enzyme inhibition for the salts tested is positively correlated with their molar vapor pressure depression in aqueous solution. Stimulation of enzyme activity was observed when one salt was added at its optimal concentration in the presence of inhibiting concentrations of another salt, indicating that the effect on the enzyme is not due to changing water activity but probably to enzyme-salt interaction. Aqueous solutions of ethylene glycol, glycerol, and dimethyl sulfoxide containing no ions influence enzyme activity in the same manner as do salts. PMID:5784214

Lanyi, J K; Stevenson, J

1969-05-01

176

Calculation of activities of ions in molten salts with potential application to the pyroprocessing of nuclear waste.  

PubMed

The ability to separate fission products by electrodeposition from molten salts depends, in part, on differences between the interactions of the different fission product cations with the ions present in the molten salt "solvent". These differences may be expressed as ratios of activity coefficients, which depend on the identity of the solvent and other factors. Here, we demonstrate the ability to calculate these activity coefficient ratios using molecular dynamics simulations with sufficient precision to guide the choice of suitable solvent systems in practical applications. We use polarizable ion interaction potentials which have previously been shown to give excellent agreement with structural, transport, and spectroscopic information of the molten salts, and the activity coefficients calculated in this work agree well with experimental data. The activity coefficients are shown to vary systematically with cation size for a set of trivalent cations. PMID:18177029

Salanne, Mathieu; Simon, Christian; Turq, Pierre; Madden, Paul A

2008-01-31

177

Oxygen sparging of residue salts  

SciTech Connect

Oxygen sparge is a process for treating salt residues at Los Alamos National Laboratory by sparging oxygen through molten salts. Oxygen reacts with the plutonium trichloride in these salts to form plutonium dioxide. There is further reaction of the plutonium dioxide with plutonium metal and the molten salt to form plutonium oxychloride. Both of the oxide plutonium species are insoluble in the salt and collect atthe bottom of the crucible. This results in a decrease of a factor of 2--3 in the amount of salt that must be treated, and the amount of waste generated by aqueous treatment methods.

Garcia, E.; Griego, W.J.; Owens, S.D.; Thorn, C.W.; Vigil, R.A.

1993-03-01

178

Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on a multifactor test design to investigate uniform corrosion of low-carbon steel  

SciTech Connect

This report documents Argonne National Laboratory's review of an internal technical memorandum prepared by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) entitled Multifactor Test Design to Investigate Uniform Corrosion of Low-Carbon Steel in a Nuclear Waste Salt Repository Environment. The several major areas of concern identified by peer review panelists are important to the credibility of the test design proposed in the memorandum and are to adequately addressed there. These areas of concern, along with specific recommendations to improve their treatment, are discussed in detail in Sec. 2 of this report. The twenty recommendations, which were abstracted from those discussions, are presented essentially in the order in which they are introduced in Sec. 2.

Paddock, R.A.; Lerman, A.; Ditmars, J.D.; Macdonald, D.D.; Peerenboom, J.P.; Was, G.S.; Harrison, W.

1987-01-01

179

Summary of computational support and general documentation for computer code (GENTREE) used in Office of Nuclear Waste Isolation Pilot Salt Site Selection Project  

SciTech Connect

A Decision Tree Computer Model was adapted for the purposes of a Pilot Salt Site Selection Project conducted by the Office of Nuclear Waste Isolation (ONWI). A deterministic computer model was developed to structure the site selection problem with submodels reflecting the five major outcome categories (Cost, Safety, Delay, Environment, Community Impact) to be evaluated in the decision process. Time-saving modifications were made in the tree code as part of the effort. In addition, format changes allowed retention of information items which are valuable in directing future research and in isolation of key variabilities in the Site Selection Decision Model. The deterministic code was linked to the modified tree code and the entire program was transferred to the ONWI-VAX computer for future use by the ONWI project.

Beatty, J.A.; Younker, J.L.; Rousseau, W.F.; Elayat, H.A.

1983-12-06

180

Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali metal chloride) salt + zeolite 4A system with alkali metal chlorides of sodium, rubidium, and cesium  

Microsoft Academic Search

Interaction between molten salts of the type LiCl-KCl-MeCl (Me = Na, Rb, Cs, x\\u000a MeCl = 0 to 0.5, x\\u000a KCl\\/x\\u000a LiCl = 0.69) and zeolite 4A have been studied at 823 K. The main interactions between these salts and zeolite are molten salt\\u000a occlusion to form salt-loaded zeolite and ion exchange between the molten salt and salt-loaded zeolite. No

Dusan Lexa; Irving Johnson

2001-01-01

181

Ion pair dissociation effects of aza-based anion receptors on lithium salts in polymer electrolytes  

Microsoft Academic Search

The addition of aza-based anion receptors greatly increases the conductivity of polymer electrolytes based on LiCl and KI complexes with poly(ethylene oxide) (PEO). In some cases the conductivity increase is more than two orders of magnitude. Also the addition of the anion acceptors imparts a rubber like consistency to the normally stiff PEO salt films. Ion-ion, ion-polymer and anion-complex interactions

X. Q. Yang; H. S. Lee; C. Xiang; J. McBreen; L. S. Choi; Y. Okamoto

1996-01-01

182

Interaction of water with LiCl, LiBr, and LiI in the deeply supercooled region  

NASA Astrophysics Data System (ADS)

The hydration mechanism of lithium halides was studied using time-of-flight secondary ion mass spectrometry as a function of temperature. The lithium halides embedded in thin films of amorphous solid water segregate to the surface at temperatures higher than 135-140K, with efficiency increasing in the order of LiCl, LiBr, and LiI. A monolayer of LiCl and LiI adsorbed on the surface of amorphous solid water tends to diffuse into the bulk at 160K. The infrared absorption band revealed that the aqueous lithium-halide solutions and crystals are formed simultaneously at 160K; these phenomena are explicable as a consequence of the evolution of supercooled liquid water. The strong surfactant effect is inferred to arise from hydration of a contact ion pair having hydrophilic (lithium) and hydrophobic (halide) moieties. Furthermore, bulk diffusion of lithium halides might result from the formation of a solvent-separated ion pair in supercooled liquid water. The presence of two liquid phases of water with different local structures is probably responsible for the formation of these two hydrates, consistent with the calculated result reported by Jungwirth and Tobias[J. Phys. Chem. B 106, 6361 (2002)].

Souda, Ryutaro

2007-12-01

183

Consolidation, permeability, and strength of crushed salt/bentonite mixtures with application to the WIPP (Waste Isolation Pilot Plant)  

SciTech Connect

Three tests were performed to measure the consolidation, permeability, and compressive strength of specimens prepared from bentonite/crushed salt mixtures. Each mixture comprised 30% bentonite and 70% crushed salt based on total dry weight. Brine was added to each mixture to adjust its water content to either 5 or 10% (nominal) of the total dry weight of the mixture. In the consolidation tests, each specimen was subjected to multiple stages of successively higher hydrostatic stress (pressure). During each stage, the pressure was maintained at a constant level and volumetric strain data were continuously logged. By using multiple stages, consolidation data were obtained at several pressures and the time required to consolidate the specimens to full saturation was reduced. Once full saturation was achieved, each specimen was subjected to a final test stage in which the hydrostatic stress was reduced and a permeability test performed. Permeability was measured using the steady flow of brine and was found to range between 1 {times} 10{sup {minus}17} and 5 {times} 10{sup {minus}17} m{sup 2}. After the final test stage, unconfined compressive strength was determined for each specimen and was found to range between 0.5 and 8.1 MPa. Two constitutive models were fitted to the consolidation data. One relatively simple model related volumetric strain to time while the other related instantaneous density to time, pressure, and initial density. 8 refs., 9 figs., 8 tabs.

Pfeifle, T.W. (RE/SPEC, Inc., Rapid City, SD (USA))

1991-01-01

184

Gutmann Acceptor Properties of LiCl, NaCl, and KCl Buffered Ambient-Temperature Chloroaluminate Ionic Liquids.  

PubMed

Gutmann acceptor numbers have been determined using (31)P nuclear magnetic resonance (NMR) for AlCl(3)/EMIC melts as well as LiCl, NaCl, and KCl neutral buffered melts. In AlCl(3)/EMIC melts, where EMIC is 1-ethyl-3-methylimidazolium chloride, the change in Gutmann acceptor number as a function of the AlCl(3):EMIC melt ratio is attributed to an equilibrium between a monoadduct of triethylphosphine oxide.AlCl(3) and a diadduct of triethylphosphine oxide.2AlCl(3). Observed acceptor numbers for the neutral buffered melts appear linear with respect to the melt's initial mole ratio of AlCl(3):EMIC prior to buffering. The lithium cation appears to be the most Lewis acidic alkali metal cation followed by the sodium and potassium cations. Possible reasons for the change in acceptor number as a function of changing alkali metal cation concentration are presented. PMID:11669690

Mantz, Robert A.; Trulove, Paul C.; Carlin, Richard T.; Theim, Terry L.; Osteryoung, Robert A.

1997-03-12

185

Recycling of aluminum salt cake  

SciTech Connect

The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

1991-12-01

186

Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl)  

NASA Astrophysics Data System (ADS)

Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free ?-S states, X1?+, A1?+, 3?+, 1?, and 3?, and then obtain PECs for 13 SO ? states, X0+, A0+, B0+, 0-(I), 0-(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the ?-S and ? state energies. Vibrational eigenstates for the obtained X1?+ and X0+ PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X1?+ and X0+ PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics.

Kurosaki, Yuzuru; Yokoyama, Keiichi

2012-08-01

187

Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl).  

PubMed

Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free ?-S states, X(1)?(+), A(1)?(+), (3)?(+), (1)?, and (3)?, and then obtain PECs for 13 SO ? states, X0(+), A0(+), B0(+), 0(-)(I), 0(-)(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the ?-S and ? state energies. Vibrational eigenstates for the obtained X(1)?(+) and X0(+) PECs are calculated by solving the time-independent Schro?dinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X(1)?(+) and X0(+) PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics. PMID:22897271

Kurosaki, Yuzuru; Yokoyama, Keiichi

2012-08-14

188

Insulin and LiCl Synergistically Rescue Myogenic Differentiation of FoxO1 Over-Expressed Myoblasts  

PubMed Central

Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available. PMID:24551104

Wu, Yi Ju; Fang, Yen Hsin; Chi, Hsiang Cheng; Chang, Li Chiung; Chung, Shih Ying; Huang, Wei Chieh; Wang, Xiao Wen; Lee, Kuan Wei; Chen, Shen Liang

2014-01-01

189

Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.  

PubMed

This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. PMID:21764209

Pastor, J; Hernández, A J

2012-03-01

190

Preliminary petrological and geochemical results from the Salton Sea Geothermal Field, California: A near-field natural analog of a radioactive waste repository in salt: Topical report No. 2  

SciTech Connect

High concentrations of radionuclides and high temperatures are not naturally encountered in salt beds. For this reason, the Salton Sea Geothermal Field (SSGF) may be the best available geologic analog of some of the processes expected to occur in high level nuclear waste repositories in salt. Subsurface temperatures and brine concentrations in the SSGF span most of the temperature range and fluid inclusion brine range expected in a salt repository, and the clay-rich sedimentary rocks are similar to those which host bedded or domal salts. As many of the chemical processes observed in the SSGF are similar to those expected to occur in or near a salt repository, data derived from it can be used in the validation of geochemical models of the near-field of a repository in salt. This report describes preliminary data on petrology and geochemistry, emphasizing the distribution of rare earth elements and U and Th, of cores and cuttings from several deep wells chosen to span a range of temperature gradients and salinities. Subsurface temperature logs have been augmented by fluid inclusion studies, to reveal the effects of brines of varying temperature and salinity. The presence of brines with different oxygen isotopic signatures also indicate lack of mixing. Whole rock major, minor and trace element analyses and data on brine compositions are being used to study chemical migration in these sediments. 65 refs., 20 figs., 3 tabs.

Elders, W.A.; Cohen, L.H.; Williams, A.E.; Neville, S.; Collier, P.; Oakes, C.

1986-03-01

191

Salt repository design approach  

SciTech Connect

This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

Matthews, S.C.

1983-01-01

192

The role of salt melts on the corrosion of steels and nickel-based alloys in waste incineration plants  

SciTech Connect

Laboratory experiments were carried out to study the corrosion behavior of steels and nickel-based alloys beneath heavy-metal-rich chloride and sulfate melts. Exposure tests on low- and high alloy steels in (Ca, K, Na, Pb, Zn)-sulfate mixtures in N{sub 2} - 5 vol.% O{sub 2} at 600 C have shown accelerated corrosion after addition of PbSO{sub 4} and ZnSO{sub 4}. The corrosion products were identified as (Fe, Ni)-oxide precipitates in contact with the gas phase and chromium-rich corrosion products close to the metal. Thermogravimetric investigations in He-5 vol.% O{sub 2} with the 2.25Cr-1Mo steel and also Alloy 625 have shown that severe corrosion occurred in the presence of a 50 wt.% ZnCl{sub 2}-50wt.% KCl salt mixture in the temperature range from 300 to 500 C. The corrosion products on 2.25Cr-1Mo were found to be Zn-rich iron-oxide precipitates in contact with the gas phase and a Fe{sub 2}O{sub 3} layer underneath. In contact with the metal, a mixture of iron-chlorides and Fe{sub 2}O{sub 3} was detected, together with variable amounts of K and Zn. A thick scale has formed on Alloy 625, consisting of nickel- and chromium-oxides with some dissolved Mo.

Spiegel, M. [Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany)

1999-11-01

193

[Bio-oil production from biomass pyrolysis in molten salt].  

PubMed

In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt. PMID:21650030

Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

2011-03-01

194

Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes  

Microsoft Academic Search

The electrochemistry of unbuffered and buffered neutral AlCl3-EMIC-MC1 (EMIC =1-ethyl-3-methylimidazolium chloride and MC1= LiCl, NaCl or KCl) room-temperature molten salts was studied at graphitic and nongraphitic electrodes. In the case of the unbuffered 1 : 1 AlCl3 : EMIC molten salt, the organic cation reductive intercalation at about -1.6 V and the AlCl4- anion oxidative intercalation at about +1.8 V

R. T. Carlin; J. Fuller; W. K. Kuhn; M. J. Lysaght; P. C. Trulove

1996-01-01

195

Nitrate salt immobilization process development and implementation  

SciTech Connect

The waste nitrate salts generated at the Rocky Flats Plant (RFP) were determined to be unacceptable in their present form for shipment to and storage at the Nevada Test Site, according to the recently implemented Waste Acceptance Criteria. A reduction in the dispersibility and oxidizing potential of the salt was necessary. Various methods of immobilization were investigated to determine the waste form with the highest possible waste loading and the most cost effective processing. Portland cement was selected as the most effective binder (in terms of cost and performance), with a 55 wt % waste loading and a 1.5 water-to-cement ratio. A nitrate salt immobilization process has been installed in the liquid waste processing building. The process uses dry nitrate salts from the existing spray dryer, spray dryer feed solution, and Portland cement. The resulting waste grout is packaged in a plastic lined, corrugated fiberboard tri-wall box, and shipped to the Nevada Test Site for burial.

Petersen, R.D.; Johnson, A.J.; Peter, K.G.

1986-11-20

196

Salt disposition alternatives filtration at SRTC  

Microsoft Academic Search

Several of the prospective salt disposition alternative technologies require a monosodium titanate (MST) contact to remove strontium and actinides from inorganic salt solution feedstock. This feedstock also contains sludge solids from waste removal operations and may contain defoamers added in the evaporator systems. Filtration is required to remove the sludge and MST solids before sending the salt solution for further

B. W. Walker; D. Hobbs

2000-01-01

197

Nitrate salt immobilization process development and implementation  

Microsoft Academic Search

The waste nitrate salts generated at the Rocky Flats Plant (RFP) were determined to be unacceptable in their present form for shipment to and storage at the Nevada Test Site, according to the recently implemented Waste Acceptance Criteria. A reduction in the dispersibility and oxidizing potential of the salt was necessary. Various methods of immobilization were investigated to determine the

R. D. Petersen; A. J. Johnson; K. G. Peter

1986-01-01

198

Increased Lifetime for Biomass and Waste to Energy Power Plant Boilers with HVOF Coatings: High Temperature Corrosion Testing Under Chlorine-Containing Molten Salt  

NASA Astrophysics Data System (ADS)

Heat exchanger surfaces of waste to energy and biomass power plant boilers experience often severe corrosion due to very aggressive components in the used fuels. High velocity oxy-fuel (HVOF) coatings offer excellent protection for boiler tubes against high temperature corrosion due to their high density and good adherence to the substrate material. Several thermal spray coatings with high chromium content were sprayed with HVOF technique. Their mechanical properties and high temperature corrosion resistance were tested and analyzed. The coating materials included NiCr, IN625, Ni-21Cr-10W-9Mo-4Cu, and iron-based partly amorphous alloy SHS9172 (Fe-25Cr-15W-12Nb-6Mo). High temperature corrosion testing was performed in NaCl-KCl-Na2SO4 salt with controlled H2O atmosphere at 575 and 625 °C. The corrosion test results of the coatings were compared to corrosion resistance of tube materials (X20, Alloy 263 and Sanicro 25).

Oksa, Maria; Tuurna, Satu; Varis, Tommi

2013-06-01

199

Treatment of molten salt wastes by phosphate precipitation: removal of fission product elements after pyrochemical reprocessing of spent nuclear fuels in chloride melts  

NASA Astrophysics Data System (ADS)

The removal of fission product elements from molten salt wastes arising from pyrochemical reprocessing of spent nuclear fuels has been investigated. The experiments were conducted in LiCl-KCl eutectic at 550 °C and NaCl-KCl equimolar mixture at 750 °C. The behavior of the following individual elements was investigated: Cs, Mg, Sr, Ba, lanthanides (La to Dy), Zr, Cr, Mo, Mn, Re (to simulate Tc), Fe, Ru, Ni, Cd, Bi and Te. Lithium and sodium phosphates were used as precipitants. The efficiency of the process and the composition of the solid phases formed depend on the melt composition. The distribution coefficients of these elements between chloride melts and precipitates were determined. Some volatile chlorides were produced and rhenium metal was formed by disproportionation. Lithium-free melts favor formation of double phosphates. Some experiments in melts containing several added fission product elements were also conducted to study possible co-precipitation reactions. Rare earth elements and zirconium can be removed from both the systems studied, but alkaline earth metal fission product elements (Sr and Ba) form precipitates only in NaCl-KCl based melts. Essentially the reverse behavior was found with magnesium. Some metals form oxide rather than phosphate precipitates and the behavior of certain elements is solvent dependent. Caesium cannot be removed completely from chloride melts by a phosphate precipitation technique.

Volkovich, Vladimir A.; Griffiths, Trevor R.; Thied, Robert C.

2003-11-01

200

Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol--a novel approach for enhanced biohydrogen production from the biodiesel industry waste.  

PubMed

Owing to its inhibitory effect on microbial growth, soap present in crude glycerol (CG) is a concern in biological valorization of the biodiesel manufacturing waste. By salting out strategy, up to 42% of the soap has been removed and the approach has beneficial effect on H2 production; however, removal of more than 7% of the soap was found to be inhibitory. Actually, soap is utilized as a co-substrate and due to removal; the carbon-nitrogen ratio of the medium might have decreased to reduce the production. Alternatively, without changing the carbon-nitrogen ratio of CG, MgSO4 treatment can convert the soap to its inactive form (scum). The approach was found to increase the H2 production rate (33.82%), cumulative H2 production (34.70%) as well as glycerol utilization (nearly 2.5-folds). Additionally, the treatment can increase the Mg (a nutrient) content of the medium from 0.57 ppm to 201.92 ppm. PMID:24189384

Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; Soccol, Carlos Ricardo

2014-01-01

201

Salts & Solubility  

NSDL National Science Digital Library

Add different salts to water, then watch them dissolve and achieve a dynamic equilibrium with solid precipitate. Compare the number of ions in solution for highly soluble NaCl to other slightly soluble salts. Relate the charges on ions to the number of ions in the formula of a salt. Calculate Ksp values.

Simulations, Phet I.; Adams, Wendy; Koch, Linda; Lemaster, Ron; Loeblein, Trish; Perkins, Kathy

2006-04-01

202

Characterisation and treatment of Australian salt cakes by aqueous leaching  

Microsoft Academic Search

Salt cakes are complex waste products derived from the melting of aluminium drosses to recover some of the metallic aluminium present. This paper reports the results of detailed characterisation studies on two different Australian salt cakes and proposes a flowsheet that could be used to render the salt cakes less toxic, reduce waste volumes for disposal, and, importantly, recover valuable

W. J. Bruckard; J. T. Woodcock

2007-01-01

203

The Combination Effects of LiCl and the Active Leflunomide Metabolite, A771726, on Viral-Induced Interleukin 6 Production and EV-A71 Replication  

PubMed Central

Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3? inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1?) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication. PMID:25412347

Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T.-A.

2014-01-01

204

Reaction of Li/Cl phosphinidenoid complexes with a phosphite substituted ketone: access to complexes with a novel mixed-valence polycyclic P,C-ligand system.  

PubMed

Reaction of Li/Cl phosphinidenoid pentacarbonyltungsten(0) complexes 2a,b (R = CH(SiMe3)2, Cp*) with bifunctional phosphite-substituted ketone 3 yielded tungsten complexes 4a,b having a novel mixed-valence polycyclic P,C-cage ligand with a P–P bond. DFT calculations provide insight into an unusual product formation pathway. PMID:23760069

Abdrakhmanova, Liliya; Espinosa, Arturo; Streubel, Rainer

2013-08-01

205

Salt Tolerance  

PubMed Central

Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are shading light on the molecular nature of salt tolerance effectors and regulatory pathways. PMID:22303210

Xiong, Liming; Zhu, Jian-Kang

2002-01-01

206

Mixing of zeolite powders and molten salt  

SciTech Connect

Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product.

Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

1996-05-01

207

Radioactive waste isolation in salt:  

SciTech Connect

The approach presumes that measurements are undertaken to support performance predictions. A quantitative performance objective like groundwater travel time is compared with performance predictions. The approach recognizes that such predictions are uncertain because the measurements upon which they are based are uncertain. The effectiveness of measurement activities is quantified by an index, ..beta.., that reflects the number of standard deviations separating the best estimate of performance from the performance objective. Measurements that reduce the uncertainty in predictions lead to increased values of ..beta... Evaluating ..beta.. for a particular measurement scheme requires identifying the measured quantities that significantly affect prediction uncertainty. Sources of uncertainty are spatial variation, noise, estimation error, and measurement bias. Changing the measurement scheme to increase ..beta.. increases the likelihood of a performance objective being achieved or exceeded. The application of the ..beta..-index method to the Richton dome site in Mississippi focuses on uncertainties in hydraulic conductivity data in relation to groundwater travel time predictions. The ..beta.. values for four different measurement schemes for hydraulic conductivity are determined. 44 refs., 14 figs., 15 tabs.

Ditmars, J.D.; Baecher, G.B.; Edgar, D.E.; Dowding, C.H.

1988-03-01

208

Clean salt process final report  

SciTech Connect

A process has been demonstrated in the laboratory for separating clean, virtually non-radioactive sodium nitrate from Hanford tank waste using fractional crystallization. The name of the process is the Clean Salt Process. Flowsheet modeling has shown that the process is capable of reducing the volume of vitrified low activity waste (LAW) by 80 to 90 %. Construction of the Clean Salt processing plant would cost less than $1 10 million, and would eliminate the need for building a $2.2 billion large scale vitrification plant planned for Privatization Phase 11. Disposal costs for the vitrified LAW would also be reduced by an estimated $240 million. This report provides a summary of five years of laboratory and engineering development activities, beginning in fiscal year 1992. Topics covered include laboratory testing of a variety of processing options; proof-of-principle demonstrations with actual waste samples from Hanford tanks 241-U-110 (U-110), 241-SY-101 (101-SY), and 241-AN-102 (102-AN); descriptions of the primary solubility phase diagrams that govem the process; a review of environmental regulations governing disposition of the reclaimed salt and an assessment of the potential beneficial uses of the reclaimed salt; preliminary plant design and construction cost estimates. A detailed description is given for the large scale laboratory demonstration of the process using waste from tank 241-AW-101 (101-AW), a candidate waste for 0044vitrification during Phase I Privatization.

Herting, D.L.

1996-09-30

209

Radiation-induced alkali formation and its effect on the corrosion of Grade12 titanium in rock salt nuclear waste repositories  

Microsoft Academic Search

Natural rock salt was gamma irradiated at a dose rate of 8 x 10⁶ rad\\/h for times up to 1338 h. Subsequent dissolution in water produced high pH solutions. The corrosion properties of ASTM Grade-12 titanium were evaluated in simulated alkaline rock salt brines. The uniform corrosion rates were enhanced compared to those for neutral solutions, but crevice corrosion rates

T. M. Ahn; S. V. Panno

1985-01-01

210

Studies of 6Li-NMR properties in different salt solutions in low magnetic fields  

Microsoft Academic Search

In this article we report the longitudinal relaxation times (T1) of various 6Li salts (6LiI, 6LiCl and 6LiNO3) in D2O and H2O, measured in low magnetic fields (B0=3.5mT). This investigation serves the purpose of clarifying the relaxation behavior of different 6Li solutions and different concentrations. The measurement were undertaken to establish a framework for future applications of hyperpolarized 6Li in

A. Gordji-Nejad; J. Colell; S. Glöggler; B. Blümich; S. Appelt

211

Molten salt destruction of rubber and chlorinated solvents.  

National Technical Information Service (NTIS)

Acceptable methods for the treatment of mixed wastes are not currently available. The authors have investigated Molten Salt Destruction (MSD) as an alternative to incineration of mixed wastes. MSD differs from incineration in several ways: there is no evi...

R. S. Upadhye, J. G. Wilder

1994-01-01

212

Modeling of anodic dissolution of U Pu Zr ternary alloy in the molten LiCl KCl electrolyte  

NASA Astrophysics Data System (ADS)

The metallic fuel anode in the molten salt electrorefining step for the pyrometallurgical reprocessing was modeled based on the findings from the anodic dissolution tests using a U Pu Zr ternary alloy. This anode model simulates selective dissolution of uranium and plutonium at lower anode potential, growth of a diffusion controlling layer consisting of a mixture of the molten salt electrolyte and the remaining zirconium metal, and simultaneous dissolution of all the constituents at higher anode potential. The calculation with this model reproduced well the actual anodic behavior of the U Pu Zr ternary alloy such as two-step rapid rise in the anode potential.

Iizuka, Masatoshi; Kinoshita, Kensuke; Koyama, Tadafumi

2005-02-01

213

Mixing of zeolite powders and molten salt  

Microsoft Academic Search

Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete

C. Pereira; V. N. Zyryanov; M. A. Lewis; J. P. Ackerman

1996-01-01

214

Geotechnical investigation methods for rock salt  

Microsoft Academic Search

Summary  The need for storage caverns (oil, gas.) and depositories (radioactive waste, toxic waste) is rising world-wide. Rock salt\\u000a (halite) formations are exceptionally suitable for the construction of such cavities. However, accurate dimensioning can only\\u000a be carried out if the mechanical behaviour of rock salt is known with sufficient accurary.\\u000a \\u000a A survey of some theoretical and experimental investigations of the mechanical

M. Langer

1982-01-01

215

Radioactive waste isolation in salt: peer review of the Texas Bureau of Economic Geology's report on the Petrographic, Stratigraphic, and Structural Evidence for Dissolution of Upper Permian Bedded Salt, Texas Panhandle  

SciTech Connect

The following recommendations for improving the Texas Bureau of Economic Geology (TBEG) report entitled Petrographic, Stratigraphic, and Structural Evidence for Dissolution of Upper Permian Bedded Salt, Texas Panhandle have been abstracted from the body of this review report. The TBEG report should be resided to conform to one of the following alternatives: (1) If the report is intended to be a review or summary of previous work, it should contain more raw data, be edited to give equal treatment to all types of data, and include summary tables and additional figures. (2) If the report is intended to be a description and interpretation of petrographic evidence for salt dissolution, supported by collateral stratigraphic and structural evidence, the relevant indirect and direct data should become the focal point of the report. The following recommendations apply to one or both of the options listed above. (1) The text should differentiate more carefully between the data and inferences based on those data. (2) The authors should retain the qualifiers present in cited works. Statements in the report that are based on earlier papers are sometimes stronger than those in the papers themselves. (3) The next revision should present more complete data. (4) The authors should achieve a more balanced presentation of alternative hypotheses and interpretations. They could then discuss the relative merits of the alternative interpretations. (5) More attention should be given to clear exposition.

Fenster, D.F.; Anderson, R.Y.; Gonzales, S.; Baker, V.R.; Edgar, D.E.; Harrison, W.

1984-08-01

216

AUSTRIA SHOWCASE WASTE-to-ENERGY  

E-print Network

(except of inorganic wastes encapsulated in closed salt formations) by July 2001 · Decree on landfills for recycling (e.g. paper, cardboard, glass, PET) · green waste · food and kitchen waste · materials

217

SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT  

SciTech Connect

Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

Griswold, G. B.

1981-02-01

218

Fission product removal from molten salt using zeolite  

Microsoft Academic Search

Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission

C. Pereira; B. D. Babcock

1996-01-01

219

Reduction of perchlorate and nitrate by salt tolerant bacteria  

Microsoft Academic Search

Spent regenerant brine from ion-exchange technology for the removal of perchlorate and nitrate produces a high salt waste stream, which requires remediation before disposal. Bioremediation is an attractive treatment option. In this study, we enriched for salt tolerant bacteria from sediments from Cargill salt evaporation facility (California, USA), the Salton Sea (California, USA), and a high density hydrocarbon oxidizing bacterial

Benedict C. Okeke; Tara Giblin; William T. Frankenberger Jr

2002-01-01

220

Properties of dynamically compacted WIPP salt  

SciTech Connect

Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material.

Brodsky, N.S.; Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States); Pfeifle, T.W. [RE/SPEC, Inc., Rapid City, SD (United States)

1996-07-01

221

Process to separate transuranic elements from nuclear waste  

DOEpatents

A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

Johnson, Terry R. (Wheaton, IL); Ackerman, John P. (Downers Grove, IL); Tomczuk, Zygmunt (Orland Park, IL); Fischer, Donald F. (Glen Ellyn, IL)

1989-01-01

222

Scaling-up experience of actinides partitioning from intermediate level high salted alkaline waste streams of Purex process using Versatic-10 extractant  

Microsoft Academic Search

Partitioning of minor alpha-emitting actinides, especially U, Pu and Am from medium active alkaline waste is possible from intermediate level liquid wastes (ILLW) produced during spent fuel reprocessing following Purex process. This paper deals with the efficient removal of alpha-activity from ILLW by solvent extraction process. Counter current batch extraction with O\\/A ratio 2:1 as well as multistage mixer settler

A. Kumar; J. V. Sonawane; N. S. Rathore; H. N. Kapur; A. K. Venugopalan; D. D. Bajpai

2002-01-01

223

I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels  

Microsoft Academic Search

An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the

S. Frank

2009-01-01

224

A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia  

SciTech Connect

We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)] [Univ. of Illinois, Chicago, IL (United States)

1996-01-01

225

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect

The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

Elder, H.H.

2001-07-11

226

Quality Assurance Program: Argonne peer review activities for the salt host-rock portion of the Civilian Radioactive Waste Management Program  

SciTech Connect

This Quality Assurance (QA) Program sets forth the methods, controls, and procedures used to ensure that the results of Argonne National Laboratory's peer review activities are consistently of the highest quality and responsive to Salt Repository Project Office's needs and directives. Implementation of the QA procedures described herein establishes an operational framework so that task activities are traceable and the activities and decisions that influence the overall quality of the peer review process and results are fully documented. 56 refs., 5 figs., 6 tabs.

Edgar, D.E.

1986-08-12

227

Selective Separation of Cs and Sr from LiCl-Based Salt for Electrochemical Processing of Oxide Spent Nuclear Fuel  

SciTech Connect

Electrochemical processing technology is currently being used for the treatment of metallic spent fuel from the Experimental Breeder Reactor-II at Idaho National Laboratory. The treatment of oxide-based spent nuclear fuel via electrochemical processing is possible provided there is a front-end oxide reduction step. During this reduction process, certain fission products, including Cs and Sr, partition into the salt phase and form chlorides. Both solid state and molten LiCl-zeolite-A ion exchange tests were conducted for selectively removing Cs and Sr from LiCl-based salt. The solid-state tests produced in excess of 99% removal of Cs and Sr. The molten state tests failed due to phase transformation of the zeolite structure when in contact with the molten LiCl salt.

P Sachdev

2008-07-01

228

Determination of uranium and rare-earth metals separation coefficients in LiCl KCl melt by electrochemical transient techniques  

NASA Astrophysics Data System (ADS)

The main step in the pyrometallurgical process of spent nuclear fuel recycling is a molten salt electrorefining. The knowledge of separation coefficients of actinides (U, Np, Pu and Am) and rare-earth metals (Y, La, Ce, Nd and Gd) is very important for this step. Usually the separation coefficients are evaluated from the formal standard potentials of metals in melts containing their own ions, values obtained by potentiometric method. Electrochemical experiments were carried out at 723-823 K in order to estimate separation coefficients in LiCl-KCl eutectic melt containing uranium and lanthanum trichlorides. It was shown that for the calculation of uranium and lanthanum separation coefficients it is necessary to determine the voltammetric peak potentials of U(III) and La(III), their concentration in the melt and the kinetic parameters relating to U(III) discharge such as transfer and diffusion coefficients, and standard rate constants of charge transfer.

Kuznetsov, S. A.; Hayashi, H.; Minato, K.; Gaune-Escard, M.

2005-09-01

229

Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum  

Microsoft Academic Search

The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive

D. E. Evenson; T. A. Prickett; P. A. Showalter

1979-01-01

230

Recovery of valuable materials from aluminium salt cakes  

Microsoft Academic Search

Salt cakes, which are nominally waste products derived from aluminium dross melting furnaces, are complex mixtures of some 20 different compounds made up of many different elements. Normally they are regarded as waste products and they are disposed of in toxic waste dumps. However, it is shown here that some components are readily recoverable as high-grade products for recycling or

W. J. Bruckard; J. T. Woodcock

2009-01-01

231

Low-salt diet  

MedlinePLUS

... you cook, replace salt with other seasonings. Pepper, garlic, herbs, and lemon are good choices. Avoid packaged spice blends. They often contain salt. Use garlic and onion powder, not garlic and onion salt. ...

232

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01

233

Removal behavior of Cs from molten salt by using zeolitic materials  

Microsoft Academic Search

Radioactive molten salt generated from a pyrochemical process to separate reusable U and TRU elements is one of problematic\\u000a wastes to manage for a final disposal. For the minimization of final waste, it is desirable to selectively remove radionuclides\\u000a from the waste salts. In this paper, structural change of some zeolites in a series of molten salt systems and its

Hwan-Seo Park; In-Tae Kim; Yong-Jun Cho; Mi-Sook Son; Hee-Chul Eun

2010-01-01

234

Crack closure and healing studies in WIPP (Waste Isolation Pilot Plant) salt using compressional wave velocity and attenuation measurements: Test methods and results  

SciTech Connect

Compressional wave ultrasonic data were used to qualitatively assess the extent of crack closure during hydrostatic compression of damaged specimens of WIPP salt. Cracks were introduced during constant strain-rate triaxial tests at low confining pressure (0.5 MPa) as specimens were taken to either 0.5, 1.0, or 1.5 percent axial strain. For three specimens taken to 1.0 percent axial strain, the pressure was increased to 5, 10 or 15 MPa. For the remaining specimens, pressure was raised to 15 MPa. Waveforms for compressional waves traveling both parallel and perpendicular to the direction of maximum principal stress were measured in the undamaged state, during constant strain-rate tests, and then monitored as functions of time while the specimens were held at pressure. Both wave velocities and amplitudes increased over time at pressure, indicating that cracks closed and perhaps healed. The recovery of ultrasonic wave characteristics depended upon both pressure and damage level. The higher the pressure, the greater the velocity recovery; however, amplitude recovery showed no clear correlation with pressure. For both amplitudes and velocities, recoveries were greatest in the specimens with the least damage. 13 refs., 15 figs., 1 tab.

Brodsky, N.S. (RE/SPEC, Inc., Rapid City, SD (USA))

1990-11-01

235

Separation of actinides from LWR spent fuel using morten-salt based electrochemical processes.  

SciTech Connect

Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650{sup o}C in the presence of molten LiCl, yielding the corresponding actinides and Li{sub 2}O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li{sub 2}O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.

Karell, E. J.; Gourishankar, K. V.; Smith, J. L.; Chow, L. S.; Redey, L. R.; Chemical Engineering

2001-12-01

236

Separation of Actinides from LWR Spent Fuel Using Molten-Salt-Based Electrochemical Processes  

SciTech Connect

Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650 deg. C in the presence of molten LiCl, yielding the corresponding actinides and Li{sub 2}O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li{sub 2}O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.

Karell, Eric J.; Gourishankar, Karthick V.; Smith, James L.; Chow, Lorac S.; Redey, Laszlo [Argonne National Laboratory (United States)

2001-12-15

237

Constitutive representation of damage development and healing in WIPP salt  

SciTech Connect

There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing.

Chan, K.S.; Bodner, S.R. [Southwest Research Inst., San Antonio, TX (United States); Fossum, A.F [RE/SPEC, Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31

238

Geochemistry and petrology of surface samples, six boreholes and brines from the Salton Sea geothermal field: A natural analog of a nuclear waste repository in salt: Report No. 3  

SciTech Connect

Cuttings from six wells in the Salton Sea geothermal field, and rocks at outcrop that are correlative in age with those encountered at depth in the wells were analyzed in detail. Mineralogy, petrography, x-ray diffraction, electron microprobe, instrumental neutron activation analysis, fission track radiography, oxygen and stable carbon isotopic, uranium-thorium series disequilibrium, and fluid inclusion analyses are reported. Where fluids were being produced from wells, brine chemistry as well as stable isotope and uranium-thorium series analyses are reported. Particular attention has been paid to defining zones of fluid-rock interaction in which analyses of coexisting geothermal reservoir brine and hydrothermally altered sediments could be acquired. A wide span of temperatures, from surficial to greater than 300/degree/C, and salinities ranging from relatively dilute ground waters up to brines of 25 wt% total dissolved solids, span a range of environments that might be encountered in a waste repository in salt. Progressive hydrothermal alteration, mineral formation and element mobility are documented in the data presented. 52 refs., 25 figs., 49 tabs.

Not Available

1987-05-01

239

Electrolyte salts for power sources  

DOEpatents

Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

Doddapaneni, Narayan (10516 Royal Birkdale, NE., Albuquerque, NM 87111); Ingersoll, David (5824 Mimosa Pl., NE., Albuquerque, NM 87111)

1995-01-01

240

Synthesis of hollandite-type Li x MnO 2 by Li + ion-exchange in molten salt and lithium insertion characteristics  

Microsoft Academic Search

The Li+ ion-exchange reaction of K+-type ?-K0.14MnO1.93·nH2O containing different amounts of water molecules (n=0–0.15) with a large (2×2) tunnel structure has been investigated in a LiNO3–LiCl molten salt at 300°C. The Li+ ion-exchanged products were examined by chemical analysis, X-ray diffraction, and transmission electron microscopy measurements. The K+ ions and the hydrogens of the water molecules in the (2×2) tunnels

Yoshihiro Kadoma; Satoru Oshitari; Koichi Ui; Naoaki Kumagai

2007-01-01

241

Molten salt technology  

Microsoft Academic Search

In this volume, the historical background, scope, problems, economics, and future applications of molten salt technologies are discussed. Topics presented include molten salts in primary production of aluminum, general principles and handling and safety of the alkali metals, first-row transition metals, group VIII metals and B-group elements, solution electrochemistry, transport phenomena, corrosion in different molten salts, cells with molten salt

Lovering

1982-01-01

242

Decontaminated Salt Disposal as Saltcrete in a Landfill. Technical Data Summary.  

National Technical Information Service (NTIS)

This technical data summary presents a reference process for immobilizing decontaminated salt solution from the 200-Area waste storage tanks with cement, and disposing of the final waste material (called saltcrete) by burial in trenches. The saltcrete wil...

1982-01-01

243

Molten-salt method for the synthesis of zeolitic materials  

Microsoft Academic Search

The molten-salt method has been applied for the zeolitization of fly ash and other mineral wastes. Fly ash was converted into zeolitic materials by a simple thermal treatment at molten states of some salt mixtures without any addition of water. Various combinations of salt mixtures were employed for the zeolitization of fly ash, using NaOH, KOH, or NH4F as mineralizer,

Man Park; Choong Lyeal Choi; Woo Taik Lim; Myung Chul Kim; Jyung Choi; Nam Ho Heo

2000-01-01

244

Thorium Molten Salt Reactor : from high breeding to simplified reprocessing  

E-print Network

Thorium Molten Salt Reactor : from high breeding to simplified reprocessing L. Mathieu, D. Heuer, A of a great part of the uranium ressources and production of high quantities of nuclear wastes are hardly ac- ceptable. The Thorium Molten Salt Reactor (TMSR) may contribute to solve these problems. The thorium cycle

Paris-Sud XI, Université de

245

Technical review of Molten Salt Oxidation  

SciTech Connect

The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

Not Available

1993-12-01

246

Fracture and Healing of Rock Salt Related to Salt Caverns  

SciTech Connect

In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

Chan, K.S.; Fossum, A.F.; Munson, D.E.

1999-03-01

247

Production of sodalite waste forms by addition of glass  

Microsoft Academic Search

Spent nuclear fuel can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. Sodalite is one of the mineral waste forms under study. Fission products in the molten salt are ion-exchanged into zeolite A, which is converted to sodalite and consolidated. Sodalite can be formed directly from mixtures of salt and

1995-01-01

248

Evaluation of ammonium and soluble salts on grass sod production in compost. I. Addition of ammonium or nitrate salts  

Microsoft Academic Search

Inhibitions in seed germination and in plant growth in some composts have been associated with high concentrations of ammonium or soluble salts in the media. This experiment was conducted to determine changes in ammonium and soluble salts in fertilizer?amended compost with time and their impacts on plant growth. Turfgrass (Lolium perenne L.) was seeded into an ammonium?depleted municipal solid waste

Tara A. OBrien; Allen V. Barker

1996-01-01

249

Salt repository project closeout status report  

SciTech Connect

This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

NONE

1988-06-01

250

Removal of uranium from spent salt from the moltensalt oxidation process  

SciTech Connect

Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of secondary waste. These materials can then be encapsulated for final disposal.

Summers, L., Hsu, P.C., Holtz, E.V., Hipple, D., Wang, F., Adamson, M.

1997-03-01

251

Absolute thermodynamic properties of molten salts using the two-phase thermodynamic (2PT) superpositioning method.  

PubMed

We show that the absolute thermodynamic properties of molten salts (mixtures of KCl and LiCl) can be accurately determined from the two-phase thermodynamic (2PT) method that is based on superpositioning of solid-like and gas-like (hard-sphere) vibrational density of states (DoS). The 2PT predictions are in excellent accordance with those from the thermodynamic integration method; the melting point of KCl evaluated from the free energy and the absolute entropy shows close conformity with the experimental/NIST data. The DoS partitioning shows that the Li(+) ions in the eutectic LiCl-KCl molten mixture are largely solid-like, unlike the K(+) and Cl(-) ions, which have a significant gas-like contribution, for temperatures ranging from 773 K to 1300 K. The solid-like states of the Li(+) ions may have practical implications when employed for chemical and nuclear reprocessing applications. PMID:24398710

Wang, Jin; Chakraborty, Brahmananda; Eapen, Jacob

2014-02-21

252

Salt tectonics on Venus  

SciTech Connect

The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

Wood, C.A.; Amsbury, D.

1986-05-01

253

What Are Bath Salts?  

MedlinePLUS

... caused by other drugs such as MDMA or LSD. These drugs raise levels of the neurotransmitter serotonin . ... spot117-bath-salts-2013.pdf [560 KB] . Can You Get Addicted to Bath Salts? Yes. Research shows ...

254

Utah: Salt Lake City  

... Snow-Covered Peaks of the Wasatch and Uinta Mountains     View Larger Image ... Winter Olympics, to be held in Salt Lake City, Utah. The mountains surrounding Salt Lake City are renowned for the dry, powdery snow ...

2014-05-15

255

Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan  

SciTech Connect

The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

SIMMONS, F.M.

2000-12-01

256

Integrated Salt Basin Evaluation  

NASA Astrophysics Data System (ADS)

Salt tectonics plays a major role in the development of many sedimentary basins. Basins containing salt thus frequently display a complex geodynamic evolution characterized by several phases of halokinesis and associated sedimentation. One classic area of salt tectonics is the Central European Basin System (CEBS). Here, the mobile Permian Zechstein salt formed a large number of salt structures such as anticlines, diapirs, pillows, sheets, stocks, and walls during an extended period of salt tectonic activity in Mesozoic and Cenozoic times. Major changes in sedimentation patterns and structural regimes are associated and common in this setting. Increasingly complex subsurface evaluation therefore requires an approach to study salt basins including analogue and numerical models, field studies and laboratory studies which combine seismic, structural and sedimentary studies with analysis of rheological properties, and geomechanic modelling. This concept can be demonstrated using case studies from Permian Salt Basins in Europe and the Late Neoproterozoic to Early Cambrian South Oman Salt Basin. There salt-influenced sedimentary responses to renewed phases of tectonism can be clearly discerned from detailed sequence analysis based on seismic and log data combined with retrodeformation modelling studies. High quality 3-D seismic data integrated with structural modelling improves the definition of the internal dynamics of salt structures and associated sediment architecture in salt-controlled sequences. Paleo-caprocks inside the diapirs point to long phases of dissolution. Salt wedges formed by extrusion and lateral flow of salt glaciers during periods of diapir emergence and reduced sediment accumulation can be accurately modelled. Although salt is widely regarded as a perfect seal, it can become permeable for one- or two-phase fluids under certain conditions of fluid pressure, temperature and deviatoric stress. The fluid pathways can be either along zones of diffuse grain boundary dilatancy, or along open fractures, depending on the fluid overpressure and deviatoric stress.

Kukla, P. A.

2012-04-01

257

The salts of Mars  

NASA Astrophysics Data System (ADS)

Salt compounds are apparently an important component of the fine-grained regolith on Mars. Salt enrichment may be explained either as a secondary concentration of chemical weathering products or as direct incorporation of planetary released volatiles. Geochemical measurements and chemical relationships constrain the salt species and resultant physicochemical consequences. A likely assemblage is dominated by (Mg,Na)SO4, NaCl, and (Mg,Ca)CO3. Formation of brine in equilibrium with such a salt mixture is unlikely under the temperature and water-vapor restrictions prevalent over most, if not all, of the Martian surface. Acidic conditions, accompanying salt formation, favor the preferential destruction of susceptible igneous minerals.

Clark, B. C.; van Hart, D. C.

1981-02-01

258

Separation of actinides from rare earth elements by means of molten salt electrorefining with anodic dissolution of U Pu Zr alloy fuel  

NASA Astrophysics Data System (ADS)

Electrorefining is the main process for pyro-reprocessing of the fuel of a metallic fuel FBR. To obtain a basic knowledge of electrorefining technology, a series of experiments was carried out with unirradiated fuel alloy. The alloy, 71U 19Pu 10Zr (wt.%), was dissolved anodically into a molten LiCl KCl bath at 753 K. Simultaneously, Pu and U were recovered into the Cd cathode with small amounts of minor actinides, Zr and rare earth elements (REs). The separation factors of U, Np, Am, Cm and Ce against Pu, derived from the composition of recovered deposits and of the salt bath, were about 2.04, 0.949, 0.597, 0.534 and 0.0393, respectively, which are similar to the equilibrium values observed in a distribution experiment in a LiCl KCl/Cd system. This demonstrates that electrorefining achieves the separation of actinides from REs. The anodic dissolution of the alloy was found to progress from the outside, leaving a dense layer containing salt and Zr metal around the alloy surface. It was found that more than 99.9% of both U and Pu could be dissolved from the alloy and about 55% of Zr remained in this layer.

Kinoshita, Kensuke; Koyama, Tadafumi; Inoue, Tadashi; Ougier, Michel; Glatz, Jean-Paul

2005-02-01

259

Radial transport of salt and water in roots of the common reed (Phragmites australis?Trin. ex Steudel).  

PubMed

To understand the root function in salt tolerance, radial salt and water transport were studied using reed plants growing in brackish habitat water with an osmotic pressure (?M ) of 0.63?MPa. Roots bathed in this medium exuded a xylem sap with NaCl as the major osmolyte and did so even at higher salt concentration (?M up to 1.3?MPa). Exudation was stopped after a small increase of ?M (0.26?MPa) using polyethylene glycol 600 as osmolyte. The endodermis of fine lateral roots was found to be the main barrier to radial solute diffusion on an apoplastic path. Apoplastic salt transfer was proven by rapid replacement of stelar Na(+) by Li(+) in an isomolar LiCl medium. Water fluxes did not exert a true solvent drag on NaCl. Xylem sap concentrations of NaCl in basal internodes of transpiring culms were more than five times higher than in medial and upper ones. It was concluded that the radial NaCl flux was mainly diffusion through the apoplast, and radial water transport, because of the resistance of the cell wall matrix to convective mass flow, was confined to the symplast. Radial salt permeation in roots reduced the water stress exerted by the brackish medium. PMID:23488547

Fritz, Michael; Ehwald, Rudolf

2013-10-01

260

Large-scale dynamic compaction of natural salt  

SciTech Connect

A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m{sup 3} of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10{sup -14}m{sup 2}. This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant.

Hansen, F.D.; Ahrens, E.H.

1996-05-01

261

Development of a sampling method for qualification of a ceramic high-level waste form..  

National Technical Information Service (NTIS)

A ceramic waste form has been developed to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The ceramic waste form was originally prepared in a hot isostatic press (HIP). Small HIP capsules called witness tubes w...

T. P. O'Holleran

2002-01-01

262

Salt-thermal zeolitization of fly ash.  

PubMed

The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste. PMID:11452614

Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

2001-07-01

263

Preconceptual design of a salt splitting process using ceramic membranes  

SciTech Connect

Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

1997-01-01

264

Brine flow in heated geologic salt.  

SciTech Connect

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01

265

Dosimetry using silver salts  

DOEpatents

The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

Warner, Benjamin P. (Los Alamos, NM)

2003-06-24

266

Concept for Underground Disposal of Nuclear Waste  

NASA Technical Reports Server (NTRS)

Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

Bowyer, J. M.

1987-01-01

267

Laboratory investigation of crushed salt consolidation and fracture healing  

SciTech Connect

A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

Not Available

1987-01-01

268

Salt Weathering on Mars  

NASA Astrophysics Data System (ADS)

Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974). However, irrespectively of the climatic environment a liquid brine is a necessity for salt induced fragmentation of rocks.M. C. Malin (1974) JGR Vol 79,26 p 3888-3894

Jagoutz, E.

2006-12-01

269

Reference repository design concept for bedded salt  

SciTech Connect

A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

Carpenter, D.W.; Martin, R.W.

1980-10-08

270

DNET: a model for incorporating feedback effects in salt dissolution processes  

SciTech Connect

For nuclear waste isolation in deep, geologic formations, transport in groundwater appears to be one of the more likely means for radioactive waste to migrate from the depository to the biosphere. With respect to a depository in bedded salt, transport in groundwater would, for most breachment scenarios, have to be preceded by dissolution of all or portions of the salt layers surrounding the depository. The Dynamic Network (DNET) model provides a capability for investigating the rate of salt dissolution associated with a variety of disruptive events and processes and also provides a capability for investigating the effects of feedback mechanisms such as thermal expansion, subsidence, fracture formation and salt creep.

Cranwell, R.M.; Campbell, J.E.

1981-01-01

271

Summary of geologic review group meeting, November 17--18, 1977. [Gulf Coast Salt Dome project  

SciTech Connect

Objectives of the Geologic Review Group are to study the long-term stability of rock units for commercial radioactive waste disposal, and to review all plans of the National Wastes Terminal Storage program. At this meeting in New Orleans, the Gulf coast Salt dome project and the impending reorganization of the office of Waste Isolation are discussed. (DLC)

Frye, J.C.; Crawford, J.H.; Davis, S.N.; Donath, F.A.; Gloyna, E.F.; Krauskopf, K.B.

1978-01-06

272

Salt tolerance in soybean.  

PubMed

Soybean is an important cash crop and its productivity is significantly hampered by salt stress. High salt imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (i) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to describe its salt stress responses at the molecular level. PMID:19017107

Phang, Tsui-Hung; Shao, Guihua; Lam, Hon-Ming

2008-10-01

273

Fission product removal from molten salt using zeolite  

SciTech Connect

Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed.

Pereira, C.; Babcock, B.D.

1996-10-01

274

Molten salt/metal extractions for recovery of transuranic elements  

SciTech Connect

The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

1992-09-01

275

Molten salt/metal extractions for recovery of transuranic elements  

SciTech Connect

The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

1992-01-01

276

Salt weathering on Mars  

NASA Astrophysics Data System (ADS)

Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974). However, irrespectively of the climatic environment a liquid brine is a necessity for salt induced fragmentation of rocks. If salt weathering is responsible for the fragmented rocks on the Martian surface it implies a temporary present of liquid H_2O. However, due to the present dry atmosphere on Mars brines can only be present in restricted places without being in equilibrium with the atmosphere (Clark and van Hart 1980). M. C. Malin (1974) JGR Vol 79,26 p 3888-3894 B. C. Clark and D. C. vanHart (1980) ICARUS 45, 370-378

Jagoutz, E.

277

21 CFR 100.155 - Salt and iodized salt.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155...DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...Rulings and Decisions § 100.155 Salt and iodized salt. (a)...

2011-04-01

278

21 CFR 100.155 - Salt and iodized salt.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155...DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...Rulings and Decisions § 100.155 Salt and iodized salt. (a)...

2010-04-01

279

Diastereoselective synthesis of nitroso acetals from (S,E)-?-aminated nitroalkenes via multicomponent [4 + 2]/[3 + 2] cycloadditions promoted by LiCl or LiClO4  

PubMed Central

Summary Chiral nonracemic aminated nitroso acetals were synthesized via diastereoselective multicomponent [4 + 2]/[3 + 2] cycloadditions employing new (S,E)-?-nitrogenated nitroalkenes 5a–c as heterodienes, ethyl vinyl ether (EVE) as a dienophile, and selected electron-deficient alkenes as 1,3-dipolarophiles. The employment of different organic solutions of LiClO4 or LiCl as promoter systems provided the respective nitroso acetals with yields from 34–72% and good levels of diastereoselectivity. In addition, the nitroso acetal 9c was transformed to the pyrrolizidin-3-one derivative 14c, proving the usefulness of the route in the synthesis of an interesting chiral compound. The elucidation of the stereostructures was based on 2D COSY, NOESY and HSQC NMR experiments as well as an X-ray diffraction experiment. PMID:23766798

de Carvalho, Leandro Lara; Burrow, Robert Alan

2013-01-01

280

Amine salts of nitroazoles  

DOEpatents

Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

Kienyin Lee; Stinecipher, M.M.

1993-10-26

281

Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review  

SciTech Connect

This paper provides a critical review of the research work conducted so far on the suppressive effects of lithium compounds on expansion due to alkali-silica reaction (ASR) in concrete and on the mechanism or mechanisms by which lithium inhibits the expansion. After a thorough examination of the existing literature regarding lithium salts in controlling ASR expansion, a summary of research findings is provided. It shows that all the lithium salts studied, including LiF, LiCl, LiBr, LiOH, LiOH.H{sub 2}O, LiNO{sub 3}, LiNO{sub 2}, Li{sub 2}CO{sub 3}, Li{sub 2}SO{sub 4}, Li{sub 2}HPO{sub 4}, and Li{sub 2}SiO{sub 3}, are effective in suppressing ASR expansion in new concrete, provided they are used at the appropriate dosages. Among these compounds, LiNO{sub 3} appears to be the most promising one. Although the mechanism(s) for the suppressive effects of lithium are not well understood, several mechanisms have been proposed. A detailed discussion about these existing mechanisms is provided in the paper. Finally, some recommendations for future studies are identified.

Feng, X. [Department of Civil Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB E3B 5A3 (Canada)]. E-mail: k488i@unb.ca; Thomas, M.D.A. [Department of Civil Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB E3B 5A3 (Canada); Bremner, T.W. [Department of Civil Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB E3B 5A3 (Canada); Balcom, B.J. [MRI Center, University of New Brunswick, PO Box 4400, Fredericton, NB E3B 5A3 (Canada); Folliard, K.J. [Department of Civil Engineering, University of Texas, Austin, TX 78712 (United States)

2005-09-01

282

Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization  

PubMed Central

Summary The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP) method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) with 5 to 10 wt % of lithium salts (LiCl or LiBr), and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose) and in the presence of lithium salts (LiBr or LiCl) in DMF or DMA. Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion. Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of cellulose and cellulose derivatives by NMP. PMID:23946859

Moreira, Guillaume; Charles, Laurence; Major, Mohamed; Vacandio, Florence; Guillaneuf, Yohann

2013-01-01

283

Studies of ?Li-NMR properties in different salt solutions in low magnetic fields.  

PubMed

In this article we report the longitudinal relaxation times (T(1)) of various (6)Li salts ((6)LiI, (6)LiCl and (6)LiNO(3)) in D(2)O and H(2)O, measured in low magnetic fields (B(0)=3.5mT). This investigation serves the purpose of clarifying the relaxation behavior of different (6)Li solutions and different concentrations. The measurement were undertaken to establish a framework for future applications of hyperpolarized (6)Li in medical imaging, biological studies and investigations of lithium ion batteries. Time will pass during the transport of hyperpolarized lithium ions to the sample, which leads to a polarization loss. In order to store polarization as long as possible, it is necessary to examine which (6)Li salt solution has the longest relaxation time T(1). Longitudinal relaxation times of (6)Li salts in D(2)O and H(2)O were investigated as a function of concentration and the most extended T(1) was found for (6)LiI in D(2)O and H(2)O. In agreement with the theory the relaxation time T(1) of all (6)Li salts increase with decreasing concentration. In the case of (6)LiI in H(2)O an inverse behavior was observed. We assume that the prolonged T(1) times occur due to formation of (6)LiOH upon the solution of (6)LiI in H(2)O, which settles as a precipitate. By diluting the solution, the precipitate continuously dissolves and approaches T(1) of (6)LiOH (T(1)?28s), leading to a shorter T(1) relaxation time. PMID:22055979

Gordji-Nejad, A; Colell, J; Glöggler, S; Blümich, B; Appelt, S

2012-01-01

284

Studies of 6Li-NMR properties in different salt solutions in low magnetic fields  

NASA Astrophysics Data System (ADS)

In this article we report the longitudinal relaxation times ( T1) of various 6Li salts ( 6LiI, 6LiCl and 6LiNO 3) in D 2O and H 2O, measured in low magnetic fields ( B0 = 3.5 mT). This investigation serves the purpose of clarifying the relaxation behavior of different 6Li solutions and different concentrations. The measurement were undertaken to establish a framework for future applications of hyperpolarized 6Li in medical imaging, biological studies and investigations of lithium ion batteries. Time will pass during the transport of hyperpolarized lithium ions to the sample, which leads to a polarization loss. In order to store polarization as long as possible, it is necessary to examine which 6Li salt solution has the longest relaxation time T1. Longitudinal relaxation times of 6Li salts in D 2O and H 2O were investigated as a function of concentration and the most extended T1 was found for 6LiI in D 2O and H 2O. In agreement with the theory the relaxation time T1 of all 6Li salts increase with decreasing concentration. In the case of 6LiI in H 2O an inverse behavior was observed. We assume that the prolonged T1 times occur due to formation of 6LiOH upon the solution of 6LiI in H 2O, which settles as a precipitate. By diluting the solution, the precipitate continuously dissolves and approaches T1 of 6LiOH ( T1 ˜ 28 s), leading to a shorter T1 relaxation time.

Gordji-Nejad, A.; Colell, J.; Glöggler, S.; Blümich, B.; Appelt, S.

2012-01-01

285

Modeling of a zeolite column for the removal of fission products from molten salt  

Microsoft Academic Search

During electrorefining of spent nuclear fuels, fission products, and actinides accumulate in the LiCl-KCl electrolyte salt. From the standpoint of high-level waste minimization, it is advantageous to remove these from the salt rather than discarding the salt after these have built up to certain concentrations. Laboratory experiments have shown that zeolite A has the desirable properties for selective removal of

R. K. Ahluwalia; H. K. Geyer; C. Pereira; J. P. Ackerman

1998-01-01

286

Creep behaviour of natural rock salt and its description with the composite model  

Microsoft Academic Search

Natural rock salt in deep underground structures is planned to act as the host material for the permanent storage of radioactive and toxic wastes. Dimensioning and safety analysis of such repositories require a model which allows to predict the creep behaviour of rock salt on the basis of the microstructure and the physical mechanisms of deformation. Already before testing natural

P. Weidinger; A. Hampel; W. Blum; U. Hunsche

1997-01-01

287

Results of water quality sampling near Richton, Cypress Creek and Lampton Salt Domes, Mississippi  

USGS Publications Warehouse

In the Mississippi salt basin in southern Mississippi, chemical quality studies of surface water and ground water have been made to determine present water-quality conditions near three salt domes being studied by the Department of Energy as potential repositories for radioactive wastes. Chloride concentrations in excess of 60 milligrams per liter in surface water and ground water in Perry County indicate that contamination could be occurring from industrial wastes, oil test wells, or dissolution of Richton or Cypress Creek domes. (USGS)

Gandl, L. A.; Spiers, C. A.

1980-01-01

288

Crushed-salt constitutive model update  

SciTech Connect

Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

Callahan, G.D.; Loken, M.C.; Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-01-01

289

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR  

E-print Network

with low radiotoxicity waste. Moreover, the transition to Thorium could be done through the incinerationTHORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR VERSUS A FAST SPECTRUM SOLID FUEL is to compare two main options dedicated to long-term energy production with Thorium: solid fuel with fast

Paris-Sud XI, Université de

290

[Salt intake in children].  

PubMed

Very early in life, sodium intake correlates with blood pressure level. This warrants limiting the consumption of sodium by children. However, evidence regarding exact sodium requirements in that age range is lacking. This article focuses on the desirable sodium intake according to age as suggested by various groups of experts, on the levels of sodium intake recorded in consumption surveys, and on the public health strategies implemented to reduce salt consumption in the pediatric population. Practical recommendations are given by the Committee on nutrition of the French Society of Pediatrics in order to limit salt intake in children. PMID:24686038

Girardet, J-P; Rieu, D; Bocquet, A; Bresson, J-L; Briend, A; Chouraqui, J-P; Darmaun, D; Dupont, C; Frelut, M-L; Hankard, R; Goulet, O; Simeoni, U; Turck, D; Vidailhet, M

2014-05-01

291

The Nature of Salt  

NSDL National Science Digital Library

This is a hands-on lab activity about the composition of salt. Learners will explain the general relationship between an element's Periodic Table Group Number and its tendency to gain or lose electron(s), and explain the difference between molecular compounds and ionic compounds. They will then use household materials to build a model to demonstrate sodium chloride's cubic form and describe the nature of the electrostatic attraction that holds the structure of salt together. Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities.

292

Dynamic compaction of salt: Initial demonstration and performance testing  

SciTech Connect

Reconsolidated crushed salt is proposed as the sole long-term shaft seal between the Waste Isolation Pilot Plant (WIPP) and the biosphere. The concept for a long-term shaft seal for the WIPP repository is to place crushed salt in the four shafts and to develop an effective seal as the surrounding salt creeps into the shafts, reconsolidating the salt. Permeability of the salt components is calculated to achieve performance objectives at some acceptable time in the future, an expectation which is a key to performance assessment calculations for the WIPP. Such a seal has never been constructed, and until now no performance measurements have been made on an appropriately large scale. A full understanding of construction methods, achievable initial density and permeability and time-wise performance of reconsolidating salt is required. This paper discusses nearly full-scale dynamic compaction of mine-run WIPP salt, preliminary measurements of density and permeability, and their variability within a relatively large volume of compacted material

Hansen, F.D.; Ahrens, E.H.; Tidwell, V.C.; Tillerson, J.R [Sandia National Labs., Albuquerque, NM (United States); Brodsky, N.S. [RE/SPEC, Inc., Rapid City, SD (United States)

1994-12-31

293

Permeability of WIPP Salt During Damage Evolution and Healing  

SciTech Connect

The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

1999-12-03

294

Molten salt thermal energy storage systems: Salt selection  

Microsoft Academic Search

A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000 F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. It is concluded that because alkali carbonate mixtures show

H. C. Maru; H. F. Dullea; V. S. Huang

1976-01-01

295

SALT and Spelling Achievement.  

ERIC Educational Resources Information Center

A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

Nelson, Joan

296

Molten Salt Lithium Cells.  

National Technical Information Service (NTIS)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in th...

I. D. Raistrick, J. Poris, R. A. Huggins

1980-01-01

297

Mixed salt crystallisation fouling  

Microsoft Academic Search

The main purpose of this investigation was to study the mechanisms of mixed salt crystallisation fouling on heat transfer surfaces during convective heat transfer and sub-cooled flow boiling. To date, no investigations on the effects of operating parameters on the deposition of mixtures of calcium sulphate and calcium carbonate, which are the most common constituents of scales formed on heat

A Helalizadeh; H Müller-Steinhagen; M Jamialahmadi

2000-01-01

298

Corrosion effects between molten salts and thermal storage material for concentrated solar power plants  

Microsoft Academic Search

► Thermal energy storage combining sensible heat and phase change materials (PCMs). ► Asbestos-containing wastes valorisation in concentrated solar power plants. ► Interactions between inertized asbestos-containing waste and molten salts. ► High temperature NMR characterization of corrosion.

Abdessamad Faik; Aydar Rakhmatullin; Julien Lambert; Emmanuel Veron; Patrick Echegut; Catherine Bessada; Nicolas Calvet; Xavier Py

2012-01-01

299

Sandia HLW canister\\/overpack studies applicable for a salt repository  

Microsoft Academic Search

An experimental program to develop candidate materials for use as high-level waste (HLW) overpacks or canisters in a salt repository has been in progress at Sandia National Laboratories since 1976. The main objective of this program has been to provide a waste package barrier having a long lifetime in the chemical and physical environment of a repository. This paper summarizes

M. A. Molecke; D. W. Schaefer; R. S. Glass; J. A. Ruppen

1981-01-01

300

Treatment for hydrazine-containing waste water solution  

NASA Technical Reports Server (NTRS)

The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

Yade, N.

1986-01-01

301

RESEARCH RELATIVE TO LAND APPLICATION OF DIESEL INVERT DRILLING WASTES  

Microsoft Academic Search

Diesel invert wastes are one of the more difficult types of drilling mud wastes to dispose of due to the presence of hydrocarbons and salts. In 1989 a joint research program funded by the Alberta Research Council (ARC) and the Alberta Land Conservation and Reclamation Council was initiated to develop environmentally acceptable land application rates of diesel invert wastes for

T. M. Macyk; Dave Martin

302

Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations  

Microsoft Academic Search

MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)2-based engineered barrier (bulk, pure Mg(OH)2 corresponding to brucite) is to be employed in the Asse repository in Germany. Both the WIPP and the Asse are

Y. Xiong; H. Deng; M. B. Nemer; S. Johnsen

2009-01-01

303

APPLICATIONS OF SALT IN ELECTROFISHING  

E-print Network

APPLICATIONS OF SALT IN ELECTROFISHING iNlarine Biological Laboratory LIB55.A.K.Y WOODS HOLE, MASS OF SALT IN ELECTROFISHING By Robert E . Lennon and Phillip S . Parker Fishery Research Biologists Leetown. Electric fisliliiK. 2. Salt. i. Farker, Phillip Slieridaii, 192t>- .joiut author, ii. Title. ( Series : IT

304

Tank waste chemistry: A new understanding of waste aging  

SciTech Connect

There is concern about the risk of uncontrolled exothermic reactions(s) in Hanford Site waste tanks containing NO{sub 3{sup minus}}/NO{sub 2{sup minus}} based salts and/or metal hydroxide sludges in combination with organics or ferrocyanides. However, gradual oxidation of the waste in the tanks to less reactive species appears to have reduced the risk. In addition, wastes sampled to date contain sufficiently large quantities of water so that propagation reactions are highly unlikely. This report details an investigation into the risk of an uncontrolled exothermic reaction in Hanford Site high-activity water tanks.

Babad, H. [Westinghouse Hanford Co., Richland, WA (United States); Camaioni, D.M.; Lilga, M.A.; Samuels, W.D.; Strachan, D.M. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01

305

Engineered waste-package-system design specification  

SciTech Connect

This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

Not Available

1983-05-01

306

Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin  

USGS Publications Warehouse

The U.S. Department of Energy is considering the feasibility of using salt domes in the northeast Texas salt-dome basin as repositories for radioactive wastes that may require complete confinement for as much as 250,000 years. Four of fourteen known shallow piercement salt domes within the basin--Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes--have been selected as candidate domes for further study and possible selection as storage sites. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Cap rock, which is generally accepted to be an indication of salt dissolution, is present in varying amounts over all four domes. Saline water has been reported at the surface at all candidate domes except Oakwood, but only two water wells near the domes yield water containing possible anomalous concentrations of dissolved chloride--one at Keechi and one at Oakwood. Possible subsurface plumes of saline water, which are indications of instability, exist at all four domes. Additional problems concerning the hydrologic stability of Oakwood and Palestine salt domes have resulted from the disposal of oil-field saline water in the cap rock at the Oakwood dome and previous solution mining of salt at the Palestine dome. Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include (1) more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of groundwater flow at the domes. (USGS)

Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.

1980-01-01

307

Brine Inclusions Migration in Intact Salt Crystals under Thermal Gradient  

NASA Astrophysics Data System (ADS)

The behavior of water contained in rock salt under the influence of thermal gradients is critical to the performance of salt as a medium for the disposal of nuclear waste. Water contained in salt can be present as discrete inclusions within intact salt crystals, at the interface between salt crystals and aggregates, and also as hydration water and structural water present in accessory minerals present in salt. Water content in pure halite salt usually rages from 0.1 to 0.5 wt. % but is significantly higher in clay rich salt, for which water content can be up to several wt. %. Under the influence of thermal gradients brine inclusions and water associated to the accessory mineral is mobilized. Previous investigations have shown brine inclusions tend to move towards the heat source through a mechanism that involves the dissolution of salt at the hot face of the brine inclusion and its precipitation at the colder side of the inclusion. Uncertainties remain on the exact parameters that define the rate of brine migration and whether it truly migrates to towards the heat source. We performed studies under controlled thermal gradients to examine the behavior of brine inclusions in single salt crystals obtained from the underground salt mine at the Waste Isolation Power Plant (WIPP). We found that the behavior of the brine inclusions under thermal gradients is dependent on the thermal gradient magnitude and the nature of the inclusion. Full inclusions (liquid only) migrate predominantly towards the heat source, but when the inclusions are large and close to the surface they fracture the salt and release water near the surface. Inclusions that migrate towards the heat source migrate through a mechanism that involves the dissolution of salt at the hot side of the inclusion and its deposition along the migration path. SEM analysis of the migration pathways shows that brine migrates through the creation of a network of square shaped hollow channels of about 10 micron diameter. The behavior of two phase inclusions (liquid and gas) in a temperature gradient is distinctly different from that of full inclusions. The brine in the two phase inclusions still migrates towards the heat source; however, the vapor phase moves away from the heat source through narrow square shaped channels. The resulting salt crystals are much more fractured and have a distinct appearance compared to salt crystals with full inclusion. The composition of the salt deposited along the migration channels changes along migration pathway. At the start of the inclusion migration pathway the deposited salt is composed of a mixture of NaCl, MgCl2, and CaCl2, with minor other elements. However, as the brine migrates towards the heat source its composition changes and it gets enriched in NaCl. SEM images and migration channels

Caporuscio, F.; Boukhalfa, H.

2013-12-01

308

A Trail of Salts  

NASA Technical Reports Server (NTRS)

This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

2004-01-01

309

Performance of a zeolite column system in removing fission products from molten salt  

SciTech Connect

Spent nuclear fuel is dissolved in molten chloride salt and treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. Non-TRU fission products in the molten salt are removed by ion-exchange in a continuous process using a zeolite column system. The salt-loaded zeolite is subsequently mixed with glass and consolidated. The zeolite was effective at removing fission products from the molten salt. Cesium was removed relatively rapidly; alkaline earths and rare earths were more strongly held by the zeolite, but the rate of exchange was much slower. Four parameters were varied during these tests: type of zeolite used, temperature, flow rate, and composition of the salt. The effects of these parameters on the effluent composition and on the distribution of fission products along the length of the column are presented and discussed. Results are used to test a computer model of the system.

Babcock, B.; Pereira, C.; Hutter, J. [Argonne National Lab., IL (United States)

1996-10-01

310

Reduction of perchlorate and nitrate by salt tolerant bacteria.  

PubMed

Spent regenerant brine from ion-exchange technology for the removal of perchlorate and nitrate produces a high salt waste stream, which requires remediation before disposal. Bioremediation is an attractive treatment option. In this study, we enriched for salt tolerant bacteria from sediments from Cargill salt evaporation facility (California, USA), the Salton Sea (California, USA), and a high density hydrocarbon oxidizing bacterial cocktail. The bacterial cocktail enrichment culture reduced ClO4- from 500 to 260 mg 1 in 4 weeks. Salt tolerant bacterial isolates from the enrichment cultures and two denitrifying salt tolerant bacteria, Haloferax denitrificans and Parococcus halodenitricans, substantially reduced perchlorate. The highest rate of perchlorate removal was recorded with the isolate, Citrobacter sp.: 32% reduction in 1 week. This bacterium substantially reduced perchlorate in 0-5% NaCl solutions and maximally at 30 degrees C and at an initial pH 7.5. In simulated brines containing 7.5% total solids, the Citrobacter sp. significantly reduced both perchlorate and nitrate with 34.9 and 15.6% reduction, respectively, in 1 week. Coculture of a potent perchlorate reducing, non-salt tolerant (non-saline) bacterium, perclace and the Citrobacter sp. proved most effective for perchlorate removal in the brine (46.4% in 1 week). This study demonstrates that both anions can be reduced in treatment of brines from ion exchange systems. PMID:12009133

Okeke, Benedict C; Giblin, Tara; Frankenberger, William T

2002-01-01

311

Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances.  

PubMed

We previously showed that the hypertonicity of taste stimulating solutions modified tonic responses, the quasi-steady state component following the transient (phasic) component of each integrated taste nerve response. Here we show that the hypertonicity opens tight junctions surrounding taste receptor cells in a time-dependent manner and modifies whole taste nerve responses in bullfrogs. We increased the tonicity of stimulating solutions with non-taste substances such as urea or ethylene glycol. The hypertonicity enhanced phasic responses to NaCl>0.2M, and suppressed those to NaCl<0.1M, 1mM CaCl2, and 1mM bitter substances (quinine, denatonium and strychnine). The hypertonicity also enhanced the phasic responses to a variety of 0.5M salts such as LiCl and KCl. The enhancing effect was increased by increasing the difference between the ionic mobilities of the cations and anions in the salt. A preincubation time >20s in the presence of 1M non-taste substances was needed to elicit both the enhancing and suppressing effects. Lucifer Yellow CH, a paracellular marker dye, diffused into bullfrog taste receptor organs in 30s in the presence of hypertonicity. These results agreed with our proposed mechanism of hypertonic effects that considered the diffusion potential across open tight junctions. PMID:24513402

Mashiyama, Kazunori; Nozawa, Yuhei; Ohtubo, Yoshitaka; Kumazawa, Takashi; Yoshii, Kiyonori

2014-03-27

312

MODELING SOLIDIFICATION-INDUCED STRESSES IN CERAMIC WASTE FORMS CONTAINING NUCLEAR WASTES  

Microsoft Academic Search

The goal of this work is to produce a ceramic waste form (CWF) that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state 915 C to form a sodalite glass matrix, and solidifying for long-term storage. Less long term leaching is expected if the solidifying cooling rate

Charles W. Solbrig; Kenneth J. Bateman

2010-01-01

313

Salt disposition alternatives filtration at SRTC  

SciTech Connect

Several of the prospective salt disposition alternative technologies require a monosodium titanate (MST) contact to remove strontium and actinides from inorganic salt solution feedstock. This feedstock also contains sludge solids from waste removal operations and may contain defoamers added in the evaporator systems. Filtration is required to remove the sludge and MST solids before sending the salt solution for further processing. This report describes testing performed using the Parallel Theological Experimental Filter (PREF). The PREF contains two single tube Mott sintered metal crossflow filters. For this test one filter was isolated so that the maximum velocities could be achieved. Previous studies showed slurries of MST and sludge in the presence of sodium tetraphenylborate (NaTPB) were filterable since the NaTPB slurry formed a filter cake which aided in removing the smaller MST and sludge particles. Some of the salt disposition alternative technologies do not use NaTPB raising the question of how effective crossflow filtration is with a feed stream containing only sludge and MST. Variables investigated included axial velocity, transmembrane pressure, defoamer effects, and solids concentration (MST and sludge). Details of the tests are outlined in the technical report WSRC-RP-98-O0691. Key conclusions from this study are: (1) Severe fouling of the Mott sintered metal filter did not occur with any of the solutions filtered. (2) The highest fluxes, in the range of .46 to 1.02 gpm/f{sup 2}, were obtained when salt solution decanted from settled solids was fed to the filter. These fluxes would achieve 92 to 204 gpm filtrate production for the current ITP filters. The filtrate fluxes were close to the flux of 0.42 gpm/f{sup 2} reported for In Tank Precipitation Salt Solution by Morrisey. (3) For the range of solids loading studied, the filter flux ranged from .04 to .17 gpm/f{sup 2} which would result in a filtrate production rate of 9 to 31 gpm for the current HP filter. (4) Filtrate flux for slurries containing solids and defoamers was between the range of .04 to .13 gpm/f{sup 2} which is better than the average flux of 0.024 gpm/f{sup 2} reported for Late Wash. (5) Filtrate flux is weakly dependent on the variables of insoluble solids concentration, defoamer concentration, transmembrane pressure, axial velocity, and filtration time.

Walker, B. W.; Hobbs, D.

2000-01-27

314

Ion pair dissociation effects of aza-based anion receptors on lithium salts in polymer electrolytes  

SciTech Connect

The addition of aza-based anion receptors greatly increases the conductivity of polymer electrolytes based on LiCl and KI complexes with poly(ethylene oxide) (PEO). In some cases the conductivity increase is more than two orders of magnitude. Also the addition of the anion acceptors imparts a rubber like consistency to the normally stiff PEO salt films. Ion-ion, ion-polymer and anion-complex interactions were studied using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the K and Cl K edges and at the I L{sub I} edge. The NEXAFS results show that Cl{sup {minus}} and I{sup {minus}} anions are complexed with the nitrogen groups of the anion receptors. The degree of complexation is related the chain length of the complexing agent and the number of R{double_bond}CF{sub 3}SO{sub 2} groups that are used to substitute for the amine hydrogen atoms in these aza-ether compounds. NEXAFS spectra at potassium K edge provide supplemental evidence for the ion pair dissociation effects of the anion receptors. The results show that dissociated K{sup +} cations are complexed with oxygen atoms of the PEO chains.

Yang, X.Q.; Lee, H.S.; Xiang, C.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Choi, L.S. [Naval Research Lab., Washington, DC (United States); Okamoto, Y. [Polytechnic Univ., Brooklyn, NY (United States)

1996-12-31

315

Salt anions promote the conversion of HypF-N into amyloid-like oligomers and modulate the structure of the oligomers and the monomeric precursor state.  

PubMed

An understanding of the solution factors contributing to the rate of aggregation of a protein into amyloid oligomers, to the modulation of the conformational state populated prior to aggregation and to the structure/morphology of the resulting oligomers is one of the goals of present research in this field. We have studied the influence of six different salts on the conversion of the N-terminal domain of Escherichiacoli HypF (HypF-N) into amyloid-like oligomers under conditions of acidic pH. Our results show that salts having different anions (NaCl, NaClO(4), NaI, Na(2)SO(4)) accelerate oligomerization with an efficacy that follows the electroselectivity series of the anions (SO(4)(2-)? ClO(4)(-)>I(-)>Cl(-)). By contrast, salts with different cations (NaCl, LiCl, KCl) have similar effects. We also investigated the effect of salts on the structure of the final and initial states of HypF-N aggregation. The electroselectivity series does not apply to the effect of anions on the structure of the oligomers. By contrast, it applies to their effect on the content of secondary structure and on the exposure of hydrophobic clusters of the monomeric precursor state. The results therefore indicate that the binding of anions to the positively charged residues of HypF-N at low pH is the mechanism by which salts modulate the rate of oligomerization and the structure of the monomeric precursor state but not the structure of the resulting oligomers. Overall, the data contribute to rationalize the effect of salts on amyloid-like oligomer formation and to explain the role of charged biological macromolecules in protein aggregation processes. PMID:23041425

Campioni, Silvia; Mannini, Benedetta; López-Alonso, Jorge P; Shalova, Irina N; Penco, Amanda; Mulvihill, Estefania; Laurents, Douglas V; Relini, Annalisa; Chiti, Fabrizio

2012-12-01

316

Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses.  

PubMed

In rodents, at least two transduction mechanisms are involved in salt taste: 1) the sodium-selective epithelial sodium channel, blocked by topical amiloride administration, and 2) one or more amiloride-insensitive cation-nonselective pathways. Whereas electrophysiological evidence from the chorda tympani nerve (CT) has implicated the transient receptor potential vanilloid-1 (TRPV1) channel as a major component of amiloride-insensitive salt taste transduction, behavioral results have provided only equivocal support. Using a brief-access taste test, we examined generalization profiles of water-deprived C57BL/6J (WT) and TRPV1 knockout (KO) mice conditioned (via LiCl injection) to avoid 100 ?M amiloride-prepared 0.25 M NaCl and tested with 0.25 M NaCl, sodium gluconate, KCl, NH(4)Cl, 6.625 mM citric acid, 0.15 mM quinine, and 0.5 M sucrose. Both LiCl-injected WT and TRPV1 KO groups learned to avoid NaCl+amiloride relative to controls, but their generalization profiles did not differ; LiCl-injected mice avoided the nonsodium salts and quinine suggesting that a TRPV1-independent pathway contributes to the taste quality of the amiloride-insensitive portion of the NaCl signal. Repeating the experiment but doubling all stimulus concentrations revealed a difference in generalization profiles between genotypes. While both LiCl-injected groups avoided the nonsodium salts and quinine, only WT mice avoided the sodium salts and citric acid. CT responses to these stimuli and a concentration series of NaCl and KCl with and without amiloride did not differ between genotypes. Thus, in our study, TRPV1 did not appear to contribute to sodium salt perception based on gustatory signals, at least in the CT, but may have contributed to the oral somatosensory features of sodium. PMID:23054171

Smith, Kimberly R; Treesukosol, Yada; Paedae, A Brennan; Contreras, Robert J; Spector, Alan C

2012-12-01

317

Two-site equilibrium model for ion exchange between monovalent cations and zeolite-a in a molten salt  

Microsoft Academic Search

A two-site model has been derived and tested against experimental data for monovalent species ion exchange in molten chloride salt\\/zeolite A. This system is of interest for the application of spent nuclear fuel treatment. Fission products and transuranics that accumulate in a molten salt electrorefining process can be preferentially removed and eventually stabilized in a waste form, using zeolite A.

Michael F. Simpson; Mary Lou D. Gougar

2003-01-01

318

The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Tidal wetlands such as salt, brackish, and freshwater  

E-print Network

wetlands such as salt, brackish, and freshwater marshes provide essential ecosystem services to soci- ety to provide ecosystem ser- vices associated with waste treatment, biological produc- tivity, and disturbance migration, as salt marshes transgress landward and replace tidal freshwater and brackish marshes (Park et al

Craft, Christopher B.

319

Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel  

Microsoft Academic Search

Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged

C. Pereira; M. A. Lewis; J. P. Ackerman

1996-01-01

320

Incorporation of radionuclides from the electrometallurgical treatment of spent fuel into a ceramic waste form  

Microsoft Academic Search

An electrometallurgical process is being developed at Argonne National Laboratory to treat spent metallic nuclear fuel. In this process, the spent nuclear fuel is electrorefined in a molten salt to separate uranium from the other constituents of the fuel. The treatment process generates a contaminated chloride salt that is incorporated into a ceramic waste form. The ceramic waste form, a

1998-01-01

321

Molten salt lithium cells  

DOEpatents

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09

322

Molten salt lithium cells  

DOEpatents

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01

323

A Dash of Salt  

E-print Network

and soils,? he said. Most reclaimed water in California, Arizona and New Mexico has salinity well below 1,000 ppm, but salinities of reclaimed waters in West Texas and some areas of southern New Mexico and central Arizona usually exceed 1,000 ppm... (Morus alba), pictured at left, and Arizona Cypress (Cupressus arizonica). tx H2O | pg. 20 The second most frequent problem is soil saliniza- tion, or too much salt accumulation in the soil. This usually occurs in clayey (silty clay loam, clay loam...

Supercinski, Danielle

2006-01-01

324

Molten salt lithium cells  

DOEpatents

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18

325

Geology of the north end of the Salt Valley Anticline, Grand County, Utah  

USGS Publications Warehouse

This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after Miocene regional uplift had caused downcutting streams to breach the salt core resulting in further collapse. The axis of the anticline is a narrow generally flat-floored valley containing a few hills composed of downdropped Mesozoic rocks foundered, in the caprock. The caprock, which underlies thin alluvium in the valley, is composed of contorted gypsum, shale, sandstone, and limestone--the insoluble residue of the Paradox salt.

Gard, Leonard Meade

1976-01-01

326

Schematic designs for penetration seals for a reference repository in bedded salt  

SciTech Connect

The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation.

Kelsall, P.C.; Case, J.B.; Meyer, D.; Coons, W.E.

1982-11-01

327

TOTAL RECYCLE SYSTEMS FOR PETROCHEMICAL WASTE BRINES CONTAINING REFRACTORY CONTAMINANTS  

EPA Science Inventory

Petrochemical wastewaters containing relatively high concentrations of salt and refractory organics were selected to study their feasibility for total recycle. A combination of reverse osmosis and electrodialysis was operated as a hybrid system using the pretreated wastes to prod...

328

Batteries using molten salt electrolyte  

DOEpatents

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08

329

Electrochromic salts, solutions, and devices  

DOEpatents

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

2006-06-20

330

Electrochromic Salts, Solutions, and Devices  

DOEpatents

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-10-14

331

Electrochromic Salts, Solutions, and Devices  

DOEpatents

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-11-11

332

Update on cavern disposal of NORM-contaminated oil field wastes.  

SciTech Connect

Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J. A.

1998-09-22

333

Leveraging Radioactive Waste Disposal at WIPP for Science  

Microsoft Academic Search

Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments.

N. T. Rempe

2008-01-01

334

21 CFR 100.155 - Salt and iodized salt.  

Code of Federal Regulations, 2013 CFR

...be in letters which are not less in height than those required for the declaration... (b) Salt or table salt for human food use to which iodide has not been added...be in letters which are not less in height than those required for the...

2013-04-01

335

21 CFR 100.155 - Salt and iodized salt.  

...be in letters which are not less in height than those required for the declaration... (b) Salt or table salt for human food use to which iodide has not been added...be in letters which are not less in height than those required for the...

2014-04-01

336

21 CFR 100.155 - Salt and iodized salt.  

Code of Federal Regulations, 2012 CFR

...be in letters which are not less in height than those required for the declaration... (b) Salt or table salt for human food use to which iodide has not been added...be in letters which are not less in height than those required for the...

2012-04-01

337

Temporal contrast of salt delivery in mouth increases salt perception  

Microsoft Academic Search

The impact of salt delivery in mouth on salt perception was investigated. It was hypothesized that fast concentration changes in the delivery to the receptor can reduce sensory adaptation, leading to an increased taste perception. Saltiness ratings were scored by a panel over time during various stimulation conditions involving relative changes in NaCl concentration of 20% and 38%. Changes in

J. L. H. C. Busch; C. Tournier; J. E. Knoop; G. Kooyman; G. Smit

2009-01-01

338

Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding.  

PubMed

The preferential interactions of proteins with solvent components were studied in concentrated aqueous solutions of the sulfate, acetate, and chloride salts of Mg2+, Ba2+, Ca2+, Mn2+ and Ni2+ [except for CaSO4, BaSO4, Mn-(OAc)2, and Ni(OAc)2], and results were compared with those of the Na+ salts. It was found that, for all the salts, the preferential hydration increased in the order of Cl- less than CH3-COO- less than SO42- regardless of the cationic species used, in agreement with the anionic lyotropic series, and that the same parameter exhibited a tendency to increase in the order of Mn2+, Ni2+ less than Ca2+, Ba2+ less than Mg2+ less than Na+. The salting-out and stabilizing or salting-in and destabilizing effectiveness of the salts were interpreted in terms of the observed preferential interactions. The surface tension increment of salts, which is a major factor responsible for the preferential interactions of the Na+ salts, had no correlation with those of the divalent cation salts. It was shown that the binding of divalent cations to the proteins overcomes the salt exclusion due to the surface tension increase, leading to a decrease in the preferential hydration. In conformity with this mechanism, the preferential interaction of MgCl2 was strongly pH dependent, because of the protein charge-dependent affinity of Mg2+ for proteins, while NaCl showed no pH dependence of the preferential interaction. The proposed mechanism was supported by a strong correlation between the preferential interaction results and the interaction of these salts with the model peptide compound acetyltetraglycine ethyl ester, described by Robinson and Jencks. PMID:6525340

Arakawa, T; Timasheff, S N

1984-12-01

339

Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results  

SciTech Connect

Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

Ahrens, E.H.; Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Nuclear Waste Technology Repository Isolation Systems

1995-10-01

340

Resistivity of Rock-Salt in Asse (germany) and Petrophysical ASPECTS1  

Microsoft Academic Search

This paper reports that in the Asses salt-mine (Germany), where extensive research is carried out on various aspects of nuclear waste disposal in rock-salt formations, the resistivity of a future construction site for a test seal at a depth of 945 m has been investigated. Measurements have been conducted, using various types of the four-point electrode configuration, on a network

U. Yaramanci; D. Flach

1992-01-01

341

Study of thermal-gradient-induced migration of brine inclusions in salt. Final report  

SciTech Connect

Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

Olander, D.R.

1984-08-01

342

SALT-ASSISTED MICROWAVE DEMULSIFICATION  

Microsoft Academic Search

Experimental data are presented to show the influence of a very small amount of inorganic salt on the demulsification of water-in-oil emulsions. It was found that some inorganic salts could effectively enhance the demulsification efficiency and increase the light transmittance of the water separated from the emulsions. The demulsification efficiency may reach 100% in a very short time under microwave

LI-XIN XIA; SHI-WEI LU; GUO-YING CAO

2004-01-01

343

Solar molten salt electric experiment  

Microsoft Academic Search

Second generation solar power tower technology, based on using a molten nitrate salt as the solar receiver and thermal storage heat transfer fluid, is now in the final phase of preoperational testing at the Central Receiver Test Facility (CRTF) near Albuquerque, New Mexico. The Molten Salt Electric Experiment (MSEE) is a joint government, electric utility, and industry funded program that

1983-01-01

344

SALT prime focus payload development  

Microsoft Academic Search

The Southern African Large Telescope (SALT), currently being erected in Sutherland, South Africa, will be the largest single optical telescope in the southern hemisphere, and the 4th largest telescope in the world, when it is completed in late 2004. The SALT design is based on the Hobby-Eberly Telescope. The prime focus payload design presented structural and layout challenges, since four

Schalk W. P. Esterhuyse; Janus D. Brink; Cornelius J. A. Nel; Arek Swat

2004-01-01

345

Salt-gradient solar ponds  

NASA Astrophysics Data System (ADS)

A description of salt-gradient solar ponds is presented. Guidelines concerning the construction and maintenance of the pond are discussed. A computer model was used to study layer migration in laboratory tanks and in an outdoor pond. The status of solar ponds is briefly discussed. An equation relating heat flux and salt flux at a boundary is included.

Neeper, D. A.

346

Salt taste preference in baboons.  

PubMed

Dietary salt (NaCl) has been implicated in the etiology of hypertension and atherosclerosis, although its role remains controversial. The human preference for salted foods is well-known and many investigators believe the taste for salt is acquired. An experiment we conducted suggests that the baboon does not have an acquired taste for salt. A sample of 36 baboons from a population of 70 baboons of known sire, sex, and dietary history was used; each had been raised since birth on a diet of fixed salt content in a study of dietary salt and blood pressure. Given this unique group of animals, we decided to test whether baboons raised on one dietary salt level (low, medium, or high) would prefer a different level. After baseline consumption was measured for 9 days, we offered each animal equal amounts of all 3 diets simultaneously in a counterbalanced randomized sequence for 9 days, controlling for tray position preference and color preference. We measured consumption of each diet by weighing the amount of food remaining. Our statistical analyses indicated an overwhelming preference for the lowest dietary salt level, regardless of which diet the animal had been fed since birth (p less than 0.0001). PMID:3737739

Barnwell, G M; Dollahite, J; Mitchell, D S

1986-01-01

347

Synthesis of hollandite-type Li y Mn 1? x Co x O 2 ( x = 0–0.15) by Li + ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes  

Microsoft Academic Search

The Li+ ion-exchange reaction of K+-type ?-K0.14MnO1.93·0.18H2O and its Co-doped ?-K0.14(Mn0.85Co0.15)O1.96·0.21H2O with a large (2×2) tunnel structure has been investigated in a LiNO3\\/LiCl molten salt at 300°C. The Li+ ion-exchanged products were examined by chemical analysis, X-ray diffraction, and scanning and transmission electron microscopic measurements. Almost all the K+ ions and the hydrogens of water molecules in the (2×2) tunnel

Naoaki Kumagai; Satoru Oshitari; Shinichi Komaba; Yoshihiro Kadoma

2007-01-01

348

Aluminium salt slag characterization and utilization--a review.  

PubMed

Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue. PMID:22480708

Tsakiridis, P E

2012-05-30

349

Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana  

PubMed Central

Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095 nucleotides with an open reading frame of 1629 nucleotides encoding a predicted protein of 542 amino acids with a deduced molecular mass of 59.6 kDa. The consensus amiloride binding motif (84LFFIYLLPPI93) was observed in the third putative transmembrane domain of VrNHX1. Bioinformatic and phylogenetic analysis clearly suggested that VrNHX1 had high similarity to those of orthologs belonging to Class-I clade of plant NHX exchangers in leguminous crops. VrNHX1 could be strongly induced by salt stress in mungbean as the expression in roots significantly increased in presence of 200 mM NaCl with concomitant accumulation of total [Na+]. Induction of VrNHX1 was also observed under cold and dehydration stress, indicating a possible cross talk between various abiotic stresses. Heterologous expression in salt sensitive yeast mutant AXT3 complemented for the loss of yeast vacuolar NHX1 under NaCl, KCl and LiCl stress indicating that VrNHX1 was the orthologue of ScNHX1. Further, AXT3 cells expressing VrNHX1 survived under low pH environment and displayed vacuolar alkalinization analyzed using pH sensitive fluorescent dye BCECF-AM. The constitutive and stress inducible expression of VrNHX1 resulted in enhanced salt tolerance in transgenic Arabidopsis thaliana lines. Our work suggested that VrNHX1 was a salt tolerance determinant in mungbean. PMID:25350285

Mishra, Sagarika; Alavilli, Hemasundar; Lee, Byeong-ha; Panda, Sanjib Kumar; Sahoo, Lingaraj

2014-01-01

350

Characterization of composite ceramic high level waste forms.  

SciTech Connect

Argonne National Laboratory has developed a composite ceramic waste form for the disposition of high level radioactive waste produced during electrometallurgical conditioning of spent nuclear fuel. The electrorefiner LiCl/KCl eutectic salt, containing fission products and transuranics in the chloride form, is contacted with a zeolite material which removes the fission products from the salt. After salt contact, the zeolite is mixed with a glass binder. The zeolite/glass mixture is then hot isostatic pressed (HIPed) to produce the composite ceramic waste form. The ceramic waste form provides a durable medium that is well suited to incorporate fission products and transuranics in the chloride form. Presented are preliminary results of the process qualification and characterization studies, which include chemical and physical measurements and product durability testing, of the ceramic waste form.

Frank, S. M.; Bateman, K. J.; DiSanto, T.; Johnson, S. G.; Moschetti, T. L.; Noy, M. H.; O'Holleran, T. P.

1997-12-05

351

Geologic appraisal of Paradox basin salt deposits for water emplacement  

USGS Publications Warehouse

Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin. The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits. Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines. The central or salt-bearing cores of tthe anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable. The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow process and that any waste-storage or disposal sites in these structures should remain dry for hundreds of thousands of years. Trace to commercial quantities of oil and gas are found in all of the black shale-dolomite-anhydrite interbeds of the Paradox Member. These hydrocarbons constitute a definite hazard in the construction and operation of underground waste-storage or disposal facilities. However, many individual halite beds are of. sufficient thickness that a protective seal of halite can be left between the openings and the gassy beds. A total of 12 different, localities were considered to be potential waste-storage or disposal sites in the Paradox basin. Two Sharer dome and Salt Valley anticline, were considered to have the most favorable characteristics.

Hite, R. J.; Lohman, Stanley William

1973-01-01

352

Experiences with treatment of mixed waste  

SciTech Connect

During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

1996-04-10

353

DESCRIPTIVE ANALYSIS OF DIVALENT SALTS.  

PubMed

Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

Yang, Heidi Hai-Ling; Lawless, Harry T

2005-04-01

354

DESCRIPTIVE ANALYSIS OF DIVALENT SALTS  

PubMed Central

Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

YANG, HEIDI HAI-LING; LAWLESS, HARRY T.

2005-01-01

355

Laboratory Characterization of Mechanical and Permeability Properties of Dynamically Compacted Crushed Salt  

SciTech Connect

The U. S. Department of Energy plans to dispose of transuranic wastes at the Waste Isolation Pilot Plant (WIPP), a geologic repository located at a depth of about 655 meters. The WIPP underground facility is located in the bedded salt of the Salado Formation. Access to the facility is provided through vertical shafts, which will be sealed after decommissioning to limit the release of hazardous waste from the repository and to limit flow into the facility. Because limited data are available to characterize the properties of dynamically compacted crushed salt, Sandia National Laboratories authorized RE/SPEC to perform additional tests on specimens of dynamically compacted crushed salt. These included shear consolidation creep, permeability, and constant strain-rate triaxial compression tests. A limited number of samples obtained from the large compacted mass were available for use in the testing program. Thus, additional tests were performed on samples that were prepared on a smaller scale device in the RE/SPEC laboratory using a dynamic-compaction procedure based on the full-scale construction technique. The laboratory results were expected to (1) illuminate the phenomenology of crushed-salt deformation behavior and (2) add test results to a small preexisting database for purposes of estimating parameters in a crushed-salt constitutive model. The candidate constitutive model for dynamically compacted crushed salt was refined in parallel with this laboratory testing.

Hansen, F.D.; Mellegard, K.D.; Pfeifle, T.W.

1999-02-01

356

40 CFR 721.7655 - Alkylsulfonium salt.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Alkylsulfonium salt. 721.7655 Section 721...721.7655 Alkylsulfonium salt. (a) Chemical substance...generically as alkylsulfonium salt (PMN P-93-1166) is...uses are: (i) Release to water. Requirements as...

2011-07-01

357

40 CFR 721.6085 - Phosphonocarboxylate salts.  

Code of Federal Regulations, 2013 CFR

...false Phosphonocarboxylate salts. 721.6085 Section 721...6085 Phosphonocarboxylate salts. (a) Chemical substances...generically as phosphonocarboxylate salts (PMNs P-93-722, P-93-723...uses are: (i) Release to water. Requirements as...

2013-07-01

358

40 CFR 721.7655 - Alkylsulfonium salt.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Alkylsulfonium salt. 721.7655 Section 721...721.7655 Alkylsulfonium salt. (a) Chemical substance...generically as alkylsulfonium salt (PMN P-93-1166) is...uses are: (i) Release to water. Requirements as...

2012-07-01

359

40 CFR 721.6085 - Phosphonocarboxylate salts.  

Code of Federal Regulations, 2012 CFR

...false Phosphonocarboxylate salts. 721.6085 Section 721...6085 Phosphonocarboxylate salts. (a) Chemical substances...generically as phosphonocarboxylate salts (PMNs P-93-722, P-93-723...uses are: (i) Release to water. Requirements as...

2012-07-01

360

40 CFR 721.7655 - Alkylsulfonium salt.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Alkylsulfonium salt. 721.7655 Section 721...721.7655 Alkylsulfonium salt. (a) Chemical substance...generically as alkylsulfonium salt (PMN P-93-1166) is...uses are: (i) Release to water. Requirements as...

2010-07-01

361

40 CFR 721.6085 - Phosphonocarboxylate salts.  

Code of Federal Regulations, 2010 CFR

...false Phosphonocarboxylate salts. 721.6085 Section 721...6085 Phosphonocarboxylate salts. (a) Chemical substances...generically as phosphonocarboxylate salts (PMNs P-93-722, P-93-723...uses are: (i) Release to water. Requirements as...

2010-07-01

362

Preliminary analyses of scenarios for potential human interference for repositories in three salt formations  

SciTech Connect

Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

Not Available

1985-10-01

363

Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt  

SciTech Connect

A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought.

Brynestad, J.; Williams, D.F.

1999-05-01

364

Densification of salt-occluded zeolite a powders to a leach-resistant monolith  

SciTech Connect

Pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR) yields a salt waste of LiCl-KCl that contains approximately 6 wt% fission products, primarily as CsCl and SrCl{sub 2}. Past work has shown that zeolite A will preferentially sorb cesium and strontium and will encapsulate the salt waste in a leach-resistant, radiation-resistant aluminosilicate matrix. However, a method is sill needed to convert the salt-occluded zeolite powders into a form suitable for geologic disposal. We are thus investigating a method that forms bonded zeolite by hot pressing a mixture of glass frit and salt-occluded zeolite powders at 990 K (717{degree}C) and 28 MPa. The leach resistance of the bonded zeolite was measured in static leach tests run for 28 days in 363 K (90{degree}C) deionized water. Normalized release rates of all elements in the bonded zeolite were low, <1 g/m{sup 2} d. Thus, the bonded zeolite may be a suitable waste form for IFR salt waste.

Lewis, M.A.; Fischer, D.F.; Murhpy, C.D.

1993-10-01

365

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01

366

Waste management, waste resource facilities and waste conversion processes  

Microsoft Academic Search

In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole

Ayhan Demirbas

2011-01-01

367

Solidification of DOE problem wastes  

SciTech Connect

Sodium nitrate waste has been successfully solidified in two types of polymeric materials: polyethylene, a thermoplastic material, and polyester styrene (PES), a thermosetting material. Waste form property evaluation tests such as ANS 16.1 leaching test and compressive strength measurements were performed on the waste forms containing various amounts of sodium nitrate. A single-screw extruder was employed for incorporating dry waste into polyethylene at its melt temperature of 120/sup 0/C to produce a homogenous mixture. Results of the leaching test for polyethylene waste forms containing 30, 50, 60 and 70 wt% sodium nitrate are presented as cumulative fraction leached and leaching indices ranging from 11 to 7.8. Two PES systems are discussed. The first is for solidification of dry salt wastes and the second is a water extendible system that is compatible with wet waste streams. Leaching data for PES and water extendible PES waste forms containing 30 wt% sodium nitrate are presented as cumulative fraction leached and leaching indices of approximately 9. Results from compressive strength measurements are also included.

Franz, E.M.; Heiser, J.H. III; Colombo, P.

1986-01-01

368

Salt Lake City, Utah  

NASA Technical Reports Server (NTRS)

The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000

2001-01-01

369

Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel  

SciTech Connect

Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m{sup 2}day) for all elements.

Pereira, C.; Lewis, M.A.; Ackerman, J.P.

1996-05-01

370

Waste Separations and Pretreatment Workshop report  

SciTech Connect

This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities.

Cruse, J.M. [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States); Harrington, R.A. [Kaiser Engineers Hanford Co., Richland, WA (United States)] [Kaiser Engineers Hanford Co., Richland, WA (United States); Quadrel, M.J. [Battelle Pacific Northwest Lab., Richland, WA (United States)] [Battelle Pacific Northwest Lab., Richland, WA (United States)

1994-01-01

371

Seismic-refraction survey to the top of salt in the north end of the Salt Valley Anticline, Grand County, Utah  

USGS Publications Warehouse

A seismic-refraction survey, consisting of three lines about 2700, 2760, and 5460 meters long, was made at the north end of the Salt Valley anticline of the Paradox Basin in eastern Utah. The target was the crest of a diapiric salt mass and the overlying, deformed caprock. The interpretations reveal an undulating salt surface with as much as 80 meters of relief. The minimum depth of about 165 meters is near the location of three holes drilled by the U.S. Department of Energy for the purpose of evaluating the Salt Valley anticline as a potential site for radioactive waste storages Caprock properties were difficult to estimate because the contorted nature of these beds invalidated a geologic interpretation in terms of velocity layers. However, laterally varying velocities of the critically refracted rays throughout the area suggest differences in the gross physical properties of the caprock.

Ackermann, Hans D.

1979-01-01

372

Sodium aluminate from alumina-bearing intermediates and wastes  

NASA Astrophysics Data System (ADS)

It has been ascertained from theoretical premises and commercial practice that sodium aluminate may be produced using alumina-bearing industrial intermediates and wastes, including spent potliner and salt cake resulting from aluminum-dross recycling. The utilization of these unused waste materials can provide a supply for the world’s demand for sodium aluminate and improve environmental conditions.

Rayzman, Victor; Filipovich, Igor; Nisse, Leonid; Vlasenko, Yuri

1998-11-01

373

Modified sulfur cement solidification of low-level wastes  

SciTech Connect

This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

Not Available

1985-10-01

374

Wastes Treat Wastes  

Microsoft Academic Search

The project aims to solve sanitation problems and environmental pollution due to the improper disposal of sewage using a low cost system, which consists of septic tanks, anaerobic reactor, aerobic reactor and algal pond. The project promotes and uses wastes materials as components of the wastewater treatment system. Septic tanks made from recycled plastics are examples. The septic tank effluent

Wilfredo I. Jose

375

Synthesis of Quaternary Heterocyclic Salts  

PubMed Central

The microwave synthesis of twenty quaternary ammonium salts is described. The syntheses feature comparable yields to conventional synthetic methods reported in the current literature with reduced reaction times and the absence of solvent or minimal solvent. PMID:24256924

Winstead, Angela J.; Nyambura, Grace; Matthews, Rachael; Toney, Deveine; Oyaghire, Stanley

2014-01-01

376

Actinide Speciation and Solubility in a Salt Repository (Invited)  

NASA Astrophysics Data System (ADS)

The use of bedded salt deposits for the permanent disposal of nuclear waste continues to receive much attention in the United States and internationally. This is largely based on the highly successful Waste Isolation Pilot Plant (WIPP) transuranic waste repository that was opened in 1999 in Southeastern New Mexico. A bedded salt formation, such as the one in which the WIPP is located, has many advantages that make it an ideal geology for permanent disposal of nuclear waste. This includes well established mining techniques, self-sealing that lead to a naturally-induced geologic isolation, a relatively dry environment, and a favorable chemistry. Herein we report on recent progress in our investigations, as part of ongoing recertification effort for the operating WIPP repository, to establish the redox distribution and overall solubility of actinides in brine. The overall ranking of actinides, from the perspective of potential contribution to release from the WIPP, is: Pu ~ Am >>U > Th >> Np, Cm. Our recent research emphasis has centered on the redox chemistry of multivalent actinides (e.g., U, Pu and Np) with the use of oxidation-state-invariant analogs (Th and Nd) to establish the solubilities. Under a wide range of conditions investigated, the predominant oxidation states established are Pu(III) and Pu(IV) for plutonium, U(IV) and U(VI) for uranium, and Am (III) for americium. Reduction pathways for plutonium include reaction with organics, reaction with reduced iron, and bioreduction by halophiles under anaerobic conditions. Uranium(VI) can also be reduced to U(IV) by reduced iron and microbial processes. Solubility data for neodymium (+3 analog), Uranium (+6 analog) and thorium (+4 analog) in brine are also reported. These data extend our past understanding of WIPP-specific actinide chemistry and show the WIPP, and salt-based repositories in general, to be a robust repository design from the perspective of actinide containment and immobilization.

Reed, D.; Borkowski, M.; Richmann, M.; Lucchini, J.; Khaing, H.; Swanson, J.

2009-12-01

377

DETECTION OF ALUMINUM WASTE REACTIONS AND WASTE FIRES Jeffrey W. Martin, M.S., P.G., R.S.  

E-print Network

combustion of the surrounding solid waste. The landfill liner and explosive gas extraction and leachate, landfill, leachate, leachate recirculation, salt cake, slope stability, smoldering, solid waste, Subtitle D in Subtitle D regulated landfills may react exothermically and cause uncontrolled temperature increases, large

378

BYU Salt Lake Center Financial Aid Program  

E-print Network

BYU Salt Lake Center Financial Aid Program 2014 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

Hart, Gus

379

BYU Salt Lake Center Financial Aid Program  

E-print Network

BYU Salt Lake Center Financial Aid Program 2012 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

Hart, Gus

380

Economic feasibility and performance study of a solar-powered absorption cycle using some aqueous salt solutions  

SciTech Connect

Economic analyses of solar collectors, for optimizing generator temperatures in the absorption cycle using aqueous solutions of LiBr, LiBr-ZnBr{sub 2}, LiBr-ZnBr{sub 2}-LiCl, and LiBr-ZnCl{sub 2}-CaBr{sub 2} salts, have been carried out for a wide range of the operating conditions. Ordinary collectors with two glass covers and evacuated-tubular collectors have been selected as the sources of energy for providing hot liquid in the generator of the absorption cycle. Of the four solutions, as the working fluids in the absorption cycles, those having better coefficients of performance are the LiBr/H{sub 2}O at the low evaporator temperatures, and the (LiBr-ZnBr{sub 2}-LiCl)/H{sub 2}O as well as the (LiBr-ZnCl{sub 2}-CaBr{sub 2})/H{sub 2}O at the high evaporator temperatures. Similarly, costs of the solar collectors are low, at low evaporation temperatures for the LiBr/H{sub 2}O and at high temperatures for the other two solutions: the (LiBr-ZnBr{sub 2})/H{sub 2}O, on the other hand, have relatively low COP and high operating costs.

Malik, I.H.; Siddiqui, M.A. [Aligarh Muslim Univ. (India). Dept. of Mechanical Engineering

1997-02-01

381

FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND AND RESIDUE  

E-print Network

1638, Kodiak, AK 99615. 2Tenney, R. D. 1972. COD for Industrial Waste Water, Tech. Rep. 97, 5 p.; 1972 of screened waste effluents from November 1973 to September 1974: shrimp using fresh or salt water processing. Chemical Oxygen Demand, Tech. Rep. 101, 12 p.; 1973. Shrimp Waste Streams and COD, Tech. Rep. 104, 3 p

382

IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES  

Microsoft Academic Search

This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The

K. Fox; T. Edwards

2012-01-01

383

Pyrochemical Processing for Low-Level Waste Production in PEACER  

SciTech Connect

A pyrochemical partitioning process has been conceptually designed so that the transmutation of spent LWR fuels in PEACER can produce mainly low-level waste (Class C waste) for near-surface burial. Chloride salt technology developed for IFR has been employed as the baseline. Electrorefining, reductive extraction and salt recycling steps are used to construct overall flowsheet in order to support PEACER operation. The decontamination factor for transuranic elements was estimated based on both thermodynamic models and reported experimental data. It is expected that overall decontamination factor can be as high as 10{sup 5} for transuranic elements. Final wastes from pyrochemical processing for PEACER are noble metals, alkaline earth metal, and lanthanides. The final wastes are stabilized by mixing with zeolite and glass-frits such that concentration limit for class C waste can be met. The volume of Class C waste is estimated to be small enough to make PEACER concept valuable for densely populated countries. (authors)

Byung Gi Park; Il Soon Hwang [Nuclear Materials Laboratory, Seoul National University, 56-1 Shinlim-dong Gwanak-gu Seoul 151-742 (Korea, Republic of)

2002-07-01

384

Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali metal chloride) salt + zeolite 4A system with alkali metal chlorides of sodium, rubidium, and cesium.  

SciTech Connect

Interaction between molten salts of the type LiCl-KCl-MeCl (Me = Na, Rb, Cs, x{sub MeCl} = 0 to 0.5, x{sub KCl}/x{sub LiCl} = 0.69) and zeolite 4A have been studied at 823 K. The main interactions between these salts and zeolite are molten salt occlusion to form salt-loaded zeolite and ion exchange between the molten salt and salt-loaded zeolite. No chemical reaction has been observed. The extent of occlusion is a function of the concentration of MeCl in the zeolite and is equal to 11{+-}1 Cl{sup -} per zeolite unit cell, (AlSiO{sub 4}){sub 12}, at infinite MeCl dilution. The ion-exchange mole fraction equilibrium constants (separation factors) with respect to Li are decreasing functions of concentration of MeCl in the zeolite. At infinite MeCl dilution, they are equal to 0.84, 0.87, and 2.31 for NaCl, RbCl, and CsCl, respectively, and increase in the order Na

Lexa, D.; Johnson, I.; Chemical Engineering

2001-06-01

385

NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington  

E-print Network

NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington Federal funds $0 PROJECT DESCRIPTION: The Salt Creek Estuary Reconnection project will significantly enhance tidal and fluvial hydrology to 22.5 acres of salt marsh, which will return the salt marsh to its

US Army Corps of Engineers

386

High level waste characterization in support of low level waste certification. I. HLW supernate radionuclide characterization  

SciTech Connect

High Level Waste Programs has radioactive waste storage, treatment and processing facilities that are located in the F and H Areas at the Savannah River Site. These facilities include the Effluent Treatment Facility (ETF), F and H Area Tank Farms, Extended Sludge Processing (ESP), and In-Tank Precipitation (ITP). Job wastes are generated from operation, maintenance, and construction activities inside radiological areas. These items may have been contaminated with radioactive supernate, salt, and sludge material. Most of these wastes will be disposed of in the E-area Vaults. Therefore, an isotopic and hazardous characterization must be performed. The characterization of HLW supernate radionuclides is discussed in Chapter I. The characterization for salt and sludge phases, which can also contaminate LLW, will be included in other Chapters.

Jamison, M.E.; d`Entremont, P.D.; Clemmons, J.S.; Bess, C.E.; Brown, D.F.

1994-07-08

387

DuoliteTM GT-73 Resin Testing in Support of the Salt Disposition Alternatives  

SciTech Connect

This study evaluated DuoliteTM GT-73 performance for removing mercury ions from several high level waste streams under consideration by the Salt Disposition Systems Engineering Team as a technical risk. Experiments conducted over an eight week period address the technical uncertainties for GT-73 performance

Wilmarth, W.R.

1998-12-07

388

Textile Wastes.  

ERIC Educational Resources Information Center

Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

Talbot, R. S.

1978-01-01

389

Separation of actinides from lanthanides utilizing molten salt electrorefining  

SciTech Connect

TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Div.; Krueger, C.L.; Storvick, T.S. [Univ. of Missouri, Columbia, MO (United States). Research Reactor Facility; Inoue, T.; Hijikata, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan). Komae Research Lab.; Takahashi, N. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan). Nuclear Systems Div.

1996-10-01

390

U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters  

NASA Technical Reports Server (NTRS)

The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

Winters, Brian A.

1990-01-01

391

Preparation techniques for ceramic waste form powder  

SciTech Connect

The electrometallurgical treatment of spent nuclear fuels result in a chloride waste salt requiring geologic disposal. Argonne National Laboratory (ANL) is developing ceramic waste forms which can incorporate this waste. Currently, zeolite- or sodalite-glass composites are produced by hot isostatic pressing (HIP) techniques. Powder preparations include dehydration of the raw zeolite powders, hot blending of these zeolite powders and secondary additives. Various approaches are being pursued to achieve adequate mixing, and the resulting powders have been HIPed and characterized for leach resistance, phase equilibria, and physical integrity.

Hash, M.C.; Pereira, C.; Lewis, M.A. [and others

1997-08-01

392

Antioxidative defense under salt stress.  

PubMed

Salt tolerance is a complex trait involving the coordinated action of many gene families that perform a variety of functions such as control of water loss through stomata, ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defense. In spite of the large number of publications on the role of antioxidative defense under salt stress, the relative importance of this process to overall plant salt tolerance is still a matter of controversy. In this article, the generation and scavenging of reactive oxygen species (ROS) under normal and salt stress conditions in relation to the type of photosynthesis is discussed. The CO(2) concentrating mechanism in C4 and CAM plants is expected to contribute to decreasing ROS generation. However, the available data supports this hypothesis in CAM but not in C4 plants. We discuss the specific roles of enzymatic and non enzymatic antioxidants in relation to the oxidative load in the context of whole plant salt tolerance. The possible preventive antioxidative mechanisms are also discussed. PMID:20118663

Abogadallah, Gaber M

2010-04-01

393

[Arterial hypertension and salt intake].  

PubMed

More than 25% of adult population worldwide and according to the EHUH study 37% of the adult population of Croatia have hypertension. In the last decades, a dramatic increase has been recorded in the prevalence of hypertension, and it is predicted that this trend will lead to an even higher prevalence in the near future. This could primarily be explained by strong influence of environmental factors. Many epidemiological and interventional studies have proved that high salt intake is one of the most important risk factors. High salt intake increases total peripheral vascular resistance, induces oxidative stress and inflammation, thus accelerating the atherosclerotic process. Independently of the effects on blood pressure, salt intake promotes left ventricular hypertrophy and microalbuminuria and increases the risk of stroke. Interventional studies have shown that salt intake reduction is associated with lower blood pressure and lower cardiovascular morbidity and mortality. Reducing salt intake in daily meals should be the main measure in primary prevention of cardiovascular and renal diseases, and it should be repeatedly emphasized not only to hypertensive patients, but also to the population at large. PMID:20649075

Jelakovi?, Bojan; Vukovi?, Ivana; Reiner, Zeljko

2010-05-01

394

I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING  

Microsoft Academic Search

Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form,

S. M. Frank

2011-01-01

395

Radioactive Waste.  

ERIC Educational Resources Information Center

Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

Blaylock, B. G.

1978-01-01

396

Results from simulated remote-handled transuranic waste experiments at the Waste Isolation Pilot Plant (WIPP)  

Microsoft Academic Search

Multi-year, simulated remote-handled transuranic waste (RH TRU, nonradioactive) experiments are being conducted underground in the Waste Isolation Pilot-Plant (WIPP) facility. These experiments involve the near-reference (thermal and geometrical) testing of eight full size RH TRU test containers emplaced into horizontal, unlined rock salt boreholes. Half of the test emplacements are partially filled with bentonite\\/silica-sand backfill material. All test containers were

Molecke

1992-01-01

397

Defining a metal-based waste form for IFR pyroprocessing wastes  

Microsoft Academic Search

Pyrochemical electrorefining to recover actinides from metal nuclear fuel is a key element of the Integral Fast Reactor (IFR) fuel cycle. The process separates the radioactive fission products from the long-lived actinides in a molten LiCl-KCl salt, and it generates a lower waste volume with significantly less long-term toxicity as compared to spent nuclear fuel. The process waste forms include

S. M. McDeavitt; J. Y. Park; J. P. Ackerman

1994-01-01

398

Microstructure and Leaching Behavior of Polymer Composites for Encapsulating Toxic Solid Wastes  

SciTech Connect

This work presents a water-based process for the manufacture of a polymeric waste form for the encapsulation of soluble toxic salts. The process is based on the elaboration of an aqueous emulsion in which polymeric precursors are mixed with the waste. Upon drying and curing, the emulsion inverts to form a waste form with mechanical integrity that stabilizes the toxic salt. The final polymer matrix is a mixture of an epoxy resin and poly(styrene butadiene) (PSB). Sodium nitrate was used as a model salt waste. The microstructure and composition of the samples were examined using scanning electron microscopy, osmium tetroxide staining, and salt extraction. The results show that the epoxy resin is dispersed in a continuous PSB phase, and the encapsulated salt is distributed throughout the matrix. Leaching tests were carried out by exposing sections of the waste forms to large volumes of well-stirred water. The measured time dependence of the leaching process is described quantitatively by a model based on the diffusion of the salt through the waste form. Effective diffusivities of the salt in the polymeric matrix ranged between 10{sup -8} and 10{sup -7} cm{sup 2}/s. The results suggest that diffusion occurs through limited but significant continuous porosity.

Rengifo, Felipe; Saez, Avelino E.; Ela, Wendell P.; Quach, Anh P.; Garbo, Bryce; Franks, Carrie J.; Zelinski, Brian J.; Birnie, Dunbar P.; Smith, Harry D.; Smith, Gary Lynn L.

2004-11-10

399

COMPLEX EVOLUTION OF BILE SALTS IN BIRDS  

PubMed Central

Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

2010-01-01

400

Disposal criticality analysis for the ceramic waste form from the ANL electrometallurgical treatment process - Internal configurations  

SciTech Connect

Criticality safety issues for disposal of the ANL ceramic waste were examined for configurations within the waste package. Co-disposal of ceramic waste and DOE spent fuel is discussed briefly; co-disposal of ANL ceramic and metal wastes is examined in detail. Calculations indicate that no significant potential for criticality exists until essentially all of the important neutron absorbers are flushed from the degraded ceramic waste. Even if all of the neutron absorbers are removed from the ceramic waste rubble, the package remains far subcritical if the blended salts used in ceramic waste production have an initial U-235 enrichment below 40%.

Lell, R. M.; Agrawal, R.; Morris, E. E.

2000-03-20

401

Reshaping the folding energy landscape by chloride salt: impact on molten-globule formation and aggregation behavior of carbonic anhydrase.  

PubMed

During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme. PMID:15147875

Borén, Kristina; Grankvist, Hannah; Hammarström, Per; Carlsson, Uno

2004-05-21

402

A salt-free treatment of aluminum dross using plasma heating  

NASA Astrophysics Data System (ADS)

The plasma dross treatment process is similar in operation and equipment to the conventional RSF process, but its elimination of salt fluxes solves the problem of corrosive gas evolution, and also results in salt-free by-products (NMP), which are recyclable and are a marketable raw material for other industries. Labor and equipment demands are about the same for both processes, but the new process dispenses with the costs of salt purchase and landfilling or recycling of salt cake. The new process is the first industrial application of plasma heating technology in the aluminum industry, and greatly reduces environmental risks, while providing a closed-loop, pollution-and waste-free dross treatment method.

Lavoie, S.; Dubé, G.

1991-02-01

403

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-print Network

, collected by EH&S at building collection locations OR Locked waste dumpster (if autoclaved) Gray plastic can2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

404

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-print Network

waste dumpster (if autoclaved) Pour treated liquids down laboratory sink* Red plastic can with biohazardBiohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Tsien, Roger Y.

405

I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing  

Microsoft Academic Search

The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of

S. Frank

2010-01-01

406

Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.  

PubMed

To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers. PMID:22486327

Sadeghi, Rahmat; Jahani, Farahnaz

2012-05-01

407

Handling observation proposals for SALT  

NASA Astrophysics Data System (ADS)

SALT uses the Principal Investigator Proposal Tool (PIPT) for generating, checking, submitting and editing proposals. The PIPT maps XML into Java classes with immediate error and consistency checking, and thus prevents non-feasible observation requests. Various tools allow the user to simulate SALT observations. These include standard source spectra (e.g. black body, power law, Kurucz model atmospheres), and allow users to add their own library spectra. The PIPT is complemented by the Web Manager for administering submitted proposals. It is discussed how the code of these tools can easily be extended for future instruments and used for other projects.

Hettlage, Christian; Buckley, David A. H.; Charles, Anne C.; Cordiner, Martin; Harbeck, Daniel R.; Husser, Tim-Oliver; Nordsieck, Kenneth H.; Percival, Jeffrey W.; Romero Colmenero, Encarni; Still, Martin D.

2010-07-01

408

Molten fluoride fuel salt chemistry  

SciTech Connect

The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed.

Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

1995-02-01

409

Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste  

SciTech Connect

The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

Bollinger, James

2006-01-12

410

Progress in mechanism of salt excretion in recretohalopytes  

Microsoft Academic Search

The recretohalophyte with specialized salt-secreting structures including salt glands and salt bladders can secrete salt from\\u000a their bodies and easily adapt themselves to many kinds of salt habitats. Salt glands and salt bladders, arose from dermatogen\\u000a cells, are excretory organs specially adapted for dealing with ionic homeostasis in the cells of recretohalophytes. The main\\u000a function of salt glands or salt

Feng Ding; Jian-Chao Yang; Fang Yuan; Bao-Shan Wang

2010-01-01

411

The Effect of Salt Water on Rice.  

E-print Network

producetl 62-0.15 per cent salt ........................ .7.9 gm. grain ]~roducerl 61-0.3 per cent salt .......................... .7,2 gm. grain 1)rodncecl In this experiment, 0.3 per ceilt salt usetl ziter thz plants were two weeks old wai... producetl 62-0.15 per cent salt ........................ .7.9 gm. grain ]~roducerl 61-0.3 per cent salt .......................... .7,2 gm. grain 1)rodncecl In this experiment, 0.3 per ceilt salt usetl ziter thz plants were two weeks old wai...

Fraps, G. S. (George Stronach)

1909-01-01

412

Method of preparing sodalite from chloride salt occluded zeolite A  

SciTech Connect

A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistance sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1,000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

Lewis, M.A.; Pereira, C.

1995-12-31

413

Method of preparing sodalite from chloride salt occluded zeolite  

DOEpatents

A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

Lewis, M.A.; Pereira, C.

1997-03-18

414

Ceramic composite waste forms from electrometallurgical treatment of spent nuclear fuel.  

SciTech Connect

Argonne National Laboratory is developing a method to treat spent nuclear fuel in a molten-salt electrorefiner. Glass-bonded zeolite and sodalite are both being developed as ceramic waste forms. The ceramic waste form will contain the fission product (e.g., rare earth, alkali and alkaline-earth metals, halogens, and chalcogens) and transuranic radionuclides that accumulate in the electrorefiner salt. Zeolite A can fully incorporate both the salt and the radionuclides into its crystal structure. Salt-loaded zeolite A is mixed with glass frit; the blend undergoes hot isostatic pressing to produce a monolithic leach-resistant waste form. Alternatively, the salt-loaded zeolite may be converted to sodalite simply by heat treating first, then adding the glass and hot pressing.

Pereira, C.; Hash, M.; Lewis, M.; Richmann, M.; Chemical Engineering

1997-01-01

415

Salt tectonics off northern Israel  

Microsoft Academic Search

The Messinian evaporites in the Eastern Mediterranean represent a world class site to study thin-skinned salt tectonic processes like gravity gliding or gravity spreading. In contrast to the Mesozoic evaporites in the Atlantic the related structures are just slightly overprinted by additional tectonic events. New high-resolution reflection seismic data image for the first time the entire lateral succession of gravity

Sofie Gradmann; Christian Hübscher; Zvi Ben-Avraham; Dirk Gajewski; Gesa Netzeband

2005-01-01

416

High temperature molten salt storage  

Microsoft Academic Search

The design of a high-temperature molten salt thermal energy storage (TES) concept, including some materials testing, was developed by Rockwell International's Rocketdyne Division (RD), under contract to SERI, and is described in this document. The main features of the concept are a conical hot tank with a liner and internal insulation that allows unrestricted relative thermal expansion and the use

J. Ives; J. C. Newcomb; A. G. Pard

1985-01-01

417

CATION EXCHANGE WITH MOLTEN SALTS  

Microsoft Academic Search

The applicability of cation exchange between synthetic zeolites, such as ; Linde Molecular Sieve 4A, and molten salts, such as monovalent nitrates, was ; studied. It was found that sodium and silver nitrate were occluded in the ; cavities of the zeolite framework, wfth approximately nine to ten molecules ; occuluded per unit cell of the zeolite. No occlusion was

M. Liquornik; Y. Marcus

1963-01-01

418

From Salt Ponds to Wetlands  

NSDL National Science Digital Library

Biologists are working to restore the San Francisco Bay Area salt ponds to healthy wetlands for wildlife in one of the largest restoration projects on the West Coast. In this video from QUEST produced by KQED, students learn why wetlands are important to wildlife.

Kqed

2012-08-08

419

Infrared Spectrometry of Inorganic Salts  

ERIC Educational Resources Information Center

Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

Ackermann, Martin N.

1970-01-01

420

Salt disposal effects found small  

Microsoft Academic Search

Brine discharges into the Gulf of Mexico averaging more than 600,000 barrels per day for the past year have had `few significant effects` on the marine environment off the Texas coast, according to a preliminary analysis by scientists and engineers at the Texas A&M University. The brine, 8 times saltier than the surrounding seawater, is produced when salt from underground

Barbara T. Richman

1981-01-01

421

The case for the thorium molten salt reactor  

NASA Astrophysics Data System (ADS)

Shortcomings of current PWR and BWR, solid uranium-fuel, nuclear power reactors are summarized. It is shown how the Molten Salt Reactor (MSR) created and operated at Oak Ridge National Laboratory (ORNL), USA (1960s-1970s) and developed as FUJI reactor by Furukawa and collaborators (1980s-1990s), addresses all of these shortcomings. Relevant properties of the MSR regarding to simplicity, its impact on capital and operating costs, safety, waste product production, waste reprocessing, power efficiency and non proliferation properties are reviewed. The Thorium MSR within the THORIMS-NES fuel cycle system is described concluding that the superior properties of the MSR make this the technology of choice to provide the required future energy in the South American region.

Greaves, E. D.; Furukawa, K.; Sajo-Bohus, L.; Barros, H.

2012-02-01

422

Retrieval of Hanford Single Shell Nuclear Waste Tanks using Technologies Foreign and Domestic  

SciTech Connect

The Hanford Site is accelerating its SST retrieval mission. One aspect of this acceleration is the identification of new baseline retrieval technologies that can be applied to all tank conditions for salt & sludge wastes in both sound & leaking tanks.

EACKER, J.A.; GIBBONS, P.W.

2003-01-01

423

Preliminalry Results from Plutonium/Americium Solubility Studies Using Simulated Savannah River Site Waste Solutions.  

National Technical Information Service (NTIS)

To address the accelerated disposition of the supernate and salt portions of Savannah River Site, SRS, high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium, Pu and americium , Am, solubility. Preli...

T. S. Rudisill, D. T. Hobbs, T. B. Edwards

2004-01-01

424

Effect of low salt diet on insulin resistance in salt-sensitive versus salt-resistant hypertension.  

PubMed

Accumulating evidence shows an increase in insulin resistance on salt restriction. We compared the effect of low salt diet on insulin resistance in salt-sensitive versus salt-resistant hypertensive subjects. We also evaluated the relationship between salt sensitivity of blood pressure and salt sensitivity of insulin resistance in a multivariate regression model. Studies were conducted after 1 week of high salt (200 mmol per day sodium) and 1 week of low salt (10 mmol per day sodium) diet. Salt sensitivity was defined as the fall in systolic blood pressure >15 mm Hg on low salt diet. The study includes 389 subjects (44% women; 16% blacks; body mass index, 28.5±4.2 kg/m(2)). As expected, blood pressure was lower on low salt (129±16/78±9 mm Hg) as compared with high salt diet (145±18/86±10 mm Hg). Fasting plasma glucose, insulin, and homeostasis model assessment were higher on low salt diet (95.4±19.4 mg/dL; 10.8±7.3 mIU/L; 2.6±1.9) as compared with high salt diet (90.6±10.8 mg/dL; 9.4±5.8 mIU/L; 2.1±1.4; P<0.0001 for all). There was no difference in homeostasis model assessment between salt-sensitive (n=193) versus salt-resistant (n=196) subjects on either diet. Increase in homeostasis model assessment on low salt diet was 0.5±1.4 in salt-sensitive and 0.4±1.5 in salt-resistant subjects (P=NS). On multivariate regression analysis, change in systolic blood pressure was not associated with change in homeostasis model assessment after including age, body mass index, sex, change in serum and urine aldosterone, and cortisol into the model. We conclude that the increase in insulin resistance on low salt diet is not affected by salt sensitivity of blood pressure. PMID:25185125

Garg, Rajesh; Sun, Bei; Williams, Jonathan

2014-12-01

425

Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant  

SciTech Connect

We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at {approximately}40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations.

Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

1993-12-31

426

Deliquescence Measurements of Potassium Salts  

NASA Astrophysics Data System (ADS)

Potassium compounds such as KCl, K2SO4, and KNO3 are salts resulting from biomass burning. With time the number of aerosol particles containing KCl decreases, and the number of particles containing KNO3 and K2SO4 increases. The transformation of KCl to K2SO4 and KNO3 with aging of the smoke could lead to changes in the hygroscopic properties of the smoke particles and thus their cloud-nucleating potential. Similar reaction mechanisms are likely to be involved in the conversion of KCl in smoke particles as occur for NaCl in sea salt. Little experimental work has been published on the hygroscopic properties of potassium salts because of their high DRH values. Instruments that are commonly used to measure hygroscopic properties such as differential mobility analyzers or electrodynamic balances do not operate accurately at RH > 90%. Here we present data describing the hygroscopic properties of several fresh potassium salts, as well as laboratory generated mixed salts, using transmission and scanning electron microscopes (TEM and SEM). Both microscopes have environmental chambers that enable study of the interaction of water with single particles. DRH values for KCl, KNO3 and K2SO4 were found to be 86%, 92%, and 97%, respectively. KNO3 particles formed by atomization appear rounded and undergo continuous hygroscopic growth without a distinct deliquescence point. Similar results have been published for NaNO3. In contrast, when KNO3 powder is ground in a mortar and pestle and placed in the SEM, the grains appear euhedral and have a DRH at 92%, in agreement with literature values. It appears that KNO3 particles formed by atomization will readily take up water at RH values below their DRH. Our results indicate that the hygroscopic properties of KNO3 particles are influenced by their histories. Water associated with aged or mixed particles at RH's less than their DRH will affect how these particles uptake and react with gases.

Freney, E. J.; Martin, S. T.; Buseck, P. R.

2007-12-01

427

Recent advances in the molten salt destruction of energetic materials  

SciTech Connect

We have demonstrated the use of the Molten Salt Destruction (MSD) Process for destroying explosives, liquid gun propellant, and explosives-contaminated materials on a 1.5 kg of explosive/hr bench- scale unit (1, 2, 3, 4, 5). In our recently constructed 5 kg/hr pilot- scale unit we have also demonstrated the destruction of a liquid gun propellant and simulated wastes containing HMX (octogen). MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen, and water. Any inorganic constituents of the waste, such as metallic particles, are retained in the molten salt. The destruction of energetic materials waste is accomplished by introducing it, together with air, into a vessel containing molten salt (a eutectic mixture of sodium, potassium, and lithium carbonates). The following pure explosives have been destroyed in our bench-scale experimental unit located at Lawrence Livermore National Laboratory`s (LLNL) High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K- 6 (keto-RDX), NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following compositions were also destroyed: Comp B, LX- IO, LX- 1 6, LX- 17, PBX-9404, and XM46 (liquid gun propellant). In this 1.5 kg/hr bench-scale unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NO{sub x} were found to be well below 1%. In addition to destroying explosive powders and compositions we have also destroyed materials that are typical of residues which result from explosives operations. These include shavings from machined pressed parts of plastic-bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the process data obtained on the bench-scale unit we designed and constructed a next-generation 5 kg/hr pilot-scale unit, incorporating LLNL`s advanced chimney design. The pilot unit has completed process implementation operations and explosives safety reviews. To date, in this pilot unit we have successfully destroyed liquid gun propellant and dimethylsulfoxide containing HMX in continuous, long-duration runs.

Pruneda, C. O., LLNL

1996-09-01

428

PROCESSING OF MOLTEN SALT POWER REACTOR FUEL  

Microsoft Academic Search

ABS> Fuel reprocessing methods are being investigated for molten salt ; nuclear reactors which use LiF--BeFâ salt as a solvent for UFâ and ; ThFâ. A liquid HF dissolution procedure coupled with fluorination has been ; developed for recovery of the uranium and LiF- BeFâ solvent salt which is ; highly enriched in Li⁷. The recovered salt is decontaminated in

D. O. Campbell; G. I. Cathers

1959-01-01

429

Boosting Salt Resistance of Short Antimicrobial Peptides  

PubMed Central

The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid ?-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its ?-naphthylalanine end-tagged variants were less affected. PMID:23716061

Chu, Hung-Lun; Yu, Hui-Yuan; Yip, Bak-Sau; Chih, Ya-Han; Liang, Chong-Wen; Cheng, Hsi-Tsung

2013-01-01

430

Preference for High Salt Concentrations Among Children  

Microsoft Academic Search

Preference for salt (NaCl) in young children was examined in 2 experiments. In Experiment 1, 2 groups of 14 Black children were given paired-comparison tests with salted soups ranging between 0 and 1.8-M NaCl. Children tended to prefer higher salt concentrations than is typical for adults, but the range of salt concentrations used in testing influenced the distribution of children's

Gary K. Beauchamp; Beverly J. Cowart

1990-01-01

431