These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Plasma gasification of biomedical waste  

SciTech Connect

Resorption Canada Limited (RCL) has operated a plasma gasification installation near Ottawa, Ontario, Canada for over ten years; therefore, the salient capabilities and advantages of plasma gasification over other state-of-the-art technologies for environmentally cleaner disposal of a number of waste materials became increasingly clearer as more and more experience was gained. Plasma gasification is a non-incineration thermal process which uses extremely high temperatures to completely decompose input waste material into very simple molecules. The capability to generate such high heat without using oxygen, unlike a combustion flame, and the temperature profile of the hot plasma gases being between 3,000 C and 8,000 C was ideal for the disposal of waste materials through gasification. RCL conducted two major plasma gasification projects with Municipal Solid Waste (MSW) which were highly successful, indicating very clearly that the basic technology for plasma gasification was a very viable alternative to conventional incineration techniques with resultant environmental benefits related to gaseous emission levels and slag properties. The experimentation ended with two tests which included full environmental analyses for each. These results provided the initiative for similar testing with biomedical waste. The work on the plasma gasification of biomedical waste is summarized. The work on MSW is presented in a separate paper.

Carter, G.W.; Tsangaris, A.V.

1995-12-31

2

Updraft gasification of salmon processing waste.  

PubMed

The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable. PMID:19799663

Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

2009-10-01

3

A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste  

Microsoft Academic Search

Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation.The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to

D. R. McIlveen-Wright; F. Pinto; L. Armesto; M. A. Caballero; M. P. Aznar; A. Cabanillas; Y. Huang; C. Franco; I. Gulyurtlu; J. T. McMullan

2006-01-01

4

Plasma gasification of municipal solid waste  

SciTech Connect

Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSW was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.

Carter, G.W.; Tsangaris, A.V. [Resorption Canada Ltd., Ottawa, Ontario (Canada)

1995-12-31

5

Waste Gasification by Thermal Plasma: A Review Frdric Fabry*, Christophe Rehmet, Vandad Rohani, Laurent Fulcheri  

E-print Network

12 Waste Gasification by Thermal Plasma: A Review Frédéric Fabry*, Christophe Rehmet, Vandad Rohani proposes an overview of waste-to-energy conversion by gasification processes based on thermal plasma, of various waste gasification processes based on thermal plasma (DC or AC plasma torches) at lab scale versus

Paris-Sud XI, Université de

6

Treatment of Mixed Wastes via Fixed Bed Gasification  

SciTech Connect

This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

None

1998-10-28

7

Design of a process for steam gasification of PVC waste  

Microsoft Academic Search

One possibility for recycling of PVC waste is steam gasification in a bubbling fluidized bed reactor. The main products are syngas, employable for energy recovery and HCl that can be reused for PVC production in an oxychlorination plant. In this study the technical and economical feasibility of this process is investigated based on experimental data and the implementation of proven

M. J. P Slapak; J. M. N van Kasteren; A. A. H Drinkenburg

2000-01-01

8

Assessment of plasma gasification of high caloric waste streams.  

PubMed

Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run. PMID:17134888

Lemmens, Bert; Elslander, Helmut; Vanderreydt, Ive; Peys, Kurt; Diels, Ludo; Oosterlinck, Michel; Joos, Marc

2007-01-01

9

Characterization of cellulosic wastes and gasification products from chicken farms  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

Joseph, Paul, E-mail: p.joseph@ulster.ac.uk [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom); Tretsiakova-McNally, Svetlana; McKenna, Siobhan [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom)

2012-04-15

10

Characteristics of oxygen-blown gasification for combustible waste in a fixed-bed gasifier  

Microsoft Academic Search

With increasing environmental considerations and stricter regulations, gasification of waste is considered to be a more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste mixed with plastic and cellulosic materials was performed in a fixed-bed gasifier to investigate the gasification behaviour with the operating conditions. Waste pelletized to a diameter

Jae Ik Na; So Jin Park; Yong Koo Kim; Jae Goo Lee; Jae Ho Kim

2003-01-01

11

Simulation of municipal solid waste gasification for syngas production in fixed bed reactors  

Microsoft Academic Search

This study proposes a model of syngas production from municipal solid waste (MSW) gasification with air in fixed bed reactors.\\u000a The model (using Aspen plus simulator) is used to predict the results of MSW gasification and to provide some process fundamentals\\u000a concerning syngas production from MSW gasification. The effects of gasification temperature, air equivalence ratio and moisture\\u000a concentration on the

Chong Chen; Yu-qi Jin; Jian-hua Yan; Yong Chi

2010-01-01

12

Fixed Bed Gasification of Steam Treated Food Waste (FW) and Municipal Solid Waste (MSW)  

Microsoft Academic Search

Gasification of biomass is becoming popular for production of energy to meet the challenges of time. The rapid depletion of fossil fuel reserve, environmental regulation, cost effective technologies allowing the use of low-grade natural resource for potential gains have led to use the waste material as a resource. The potential of energy recovery using Food waste (FW) and Municipal Solid

A. Malik; S. Naveed; M. Akram; N. Ramzan

13

Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.  

PubMed

A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants. PMID:22285961

Consonni, Stefano; Vigan, Federico

2012-04-01

14

Effect of operating conditions on tar and gas composition in high temperature air\\/steam gasification (HTAG) of plastic containing waste  

Microsoft Academic Search

In this work, the high temperature air\\/steam gasification (HTAG) technique has been tested for a fuel in pellet form made from waste material of woody and plastic origin. The feedstock was gasified in an updraft fixed bed reactor by mixtures of air and steam (102 Nm3\\/h, 4% to 82% steam) preheated to 1400 C, a temperature well above the fluid

Anna Ponzio; Sylwester Kalisz; Wlodzimierz Blasiak

2006-01-01

15

Fluidized bed gasification of waste-derived fuels  

SciTech Connect

Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

Arena, Umberto, E-mail: umberto.arena@unina2.i [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy); Zaccariello, Lucio [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); Mastellone, Maria Laura [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy)

2010-07-15

16

Fluidized bed gasification of waste-derived fuels.  

PubMed

Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning. PMID:20172708

Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

2010-07-01

17

Solar gasification of coal, activated carbon, coke and coal and biomass mixtures  

Microsoft Academic Search

The gasification of subbituminous coal, activated carbon, coke and a mixture of coal and biomass by direct solar irradiation in a solar furnace is investigated. Sunlight concentrated by a 23-kW solar furnace was focused directly on the fuel being gasified in a gravity-fed gasifier through a window in the reactor, and steam or CO2 was passed through the bed to

D. W. Gregg; R. W. Taylor; J. H. Campbell; J. R. Taylor; A. Cotton

1980-01-01

18

Application of Plasma Gasification Technology in Waste to EnergyChallenges and Opportunities  

Microsoft Academic Search

Utilization of plasma gasification in waste to energy (WTE) is one of the novel applications of a technology that was introduced several decades ago. In this application, plasma arc gasifies the carbon-based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc., and generates a synthetic gas which can be used to produce energy through reciprocating engine

Masoud Pourali

2010-01-01

19

Simulation of municipal solid waste gasification in two different types of fixed bed reactors  

Microsoft Academic Search

Simulation of municipal solid waste (MSW) gasification with air in two different types of fixed bed reactors has been carried out by using Aspen plus. One type of the fixed bed reactors is an updraft fixed bed reactor which can be divided into four sections (drying, pyrolysis, gasification, and combustion), and the other type is different in the last two

Chong Chen; Yu-Qi Jin; Jian-Hua Yan; Yong Chi

20

Modeling and comparative assessment of municipal solid waste gasification for energy production.  

PubMed

Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H(2)) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify()) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration. PMID:23726119

Arafat, Hassan A; Jijakli, Kenan

2013-08-01

21

Technology Status Review of Waste\\/Biomass Co-Gasification with Coal  

Microsoft Academic Search

Coal might be co-gasified with waste or biomass for environmental, technical or commercial reasons. It allows larger, more efficient plants than those sized for the biomass grown or waste arisings within a reasonable transport distance; specific operating costs are likely to be lower; and, fuel supply security is assured. This review paper assesses the current status of co-gasification technologies and

Brian Ricketts; Richard Hotchkiss; Bill Livingston; Martin Hall

22

High-temperature, air-blown gasification of dairy-farm wastes for energy production  

Microsoft Academic Search

A study was carried out to investigate the feasibility of integrating an advanced gasifier into the operation of a dairy farm for converting biomass wastes into fuel gas that can be used for power production. The disposal\\/utilization of excess animal wastes is a serious problem facing the dairy industry. Implementation of a gasification system on the dairy farm may provide

Lincoln Young; Carlson C. P. Pian

2003-01-01

23

Air gasification of polypropylene plastic waste in fluidized bed gasifier  

Microsoft Academic Search

An experimental study on air gasification of polypropylene was conducted in a fluidized bed gasifier with an insider diameter (i.d.) of 100mm and a height of 4.2m. The effect of the equivalence ratio, bed height and fluidization velocity on various gasification results, including the product yield distribution, gas composition, gas heating value and gas yield were studied. The equivalence ratio

Rui Xiao; Baosheng Jin; Hongcang Zhou; Zhaoping Zhong; Mingyao Zhang

2007-01-01

24

Co-gasification of wet sewage sludge and forestry waste in situ steam agent.  

PubMed

The co-gasification of wet sewage sludge (80 wt.% moisture, WSS) and forestry waste (FW) blends was studied. The thermogravimetric analysis showed that weight loss and the maximum weight loss rate of the sample increased with the increase in FW content. The co-gasification process was performed in a lab-scale fixed bed gasifier to investigate the effects of WSS content and reactor temperature on product yields, gas composition and gasification performance. The results indicated that steam generated from the moisture content in WSS took part in the gasification with char. The gas yield decreased with the increasing WSS content. And the concentrations of H(2) and CO reached the maximum when the WSS content was 50%. The LHV of fuel gas ranged from 11.89 MJ/Nm(3) to 12.72 MJ/Nm(3) when the reactor temperature increased from 700 C to 900 C. PMID:22503423

Peng, Lixin; Wang, Yongxiu; Lei, Zhihong; Cheng, Gong

2012-06-01

25

Utilization of solid wastes from the gasification of coal-water slurries  

SciTech Connect

It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

M.Y. Shpirt; N.P. Goryunova [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-07-01

26

Lethality and hepatotoxicity of complex waste mixtures  

SciTech Connect

Male F344 rats were exposed by gavage to samples of complex mixtures and evaluated 24 hr later. Seven of the 10 samples caused death at doses ranging from 1 to 5 ml/kg body wt. Eight of the 10 samples were hepatotoxic based on histopathologic evaluation; 6 were centrilobular and 2 were periportal hepatotoxicants. The waste samples exerted toxicity through different mechanisms, as indicated by differences in the severity and lobular location of the tissue damage. Nine of the 10 samples caused an increase in the ratio of liver weight to body weight (relative liver weight). With histopathological evaluation as the criterion, relative liver weight was the single best indicator of hepatotoxicity. Exposure to several of the waste samples increased serum total bilirubin and serum enzyme activities of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, alkaline phosphatase, and ornithine carbamyl transferase. As a battery, but not individually, the serum indicators separated the 8 hepatotoxic samples from the 2 nonhepatotoxic samples. In general, the hepatotoxicity of the waste samples did not appear to be readily predicted from (partial) chemical characterization data. An approach that includes both chemical characterization and biological testing should provide valuable information regarding the hazardous nature of complex wastes.

Simmons, J.E.; DeMarini, D.M.; Berman, E.

1988-06-01

27

CO-GASIFICATION OF DENSIFIED SLUDGE AND SOLID WASTE IN A DOWNDRAFT GASIFIER  

EPA Science Inventory

Thermal gasification, the subject of this report, is a new process for the co-disposal of densified sewage sludge and solid waste in a co-current flow, fixed bed reactor (also called a downdraft gasifier). The advantages of this technology include lower costs than other sewage sl...

28

Combustion and gasification kinetics of pyrolysis chars from waste and biomass  

Microsoft Academic Search

The combustion and gasification of chars from medium temperature pyrolysis of municipal waste, electronic scrap, wood and straw has been investigated in view to potential technical applications. Reaction rate measurements with oxygen and carbon dioxide have been carried out at lower temperatures in the chemical regime, using a thermobalance, a differential flow reactor and a fluidised bed of sand. These

E Henrich; S Brkle; Z. I Meza-Renken; S Rumpel

1999-01-01

29

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: SOLID WASTES AND BY-PRODUCT TARS  

EPA Science Inventory

The report, one of several data summary reports on the environmental aspects and pollutants specific to coal gasification, addresses characteristics of solid wastes (ash and cyclone dust) and by-product tars and oils analyzed in nine EPA source tests and evaluation studies and li...

30

Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine  

NASA Astrophysics Data System (ADS)

The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

Talebi Anaraki, Saber

31

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 3. Technical and economic feasibility of bulk utilization and metal recovery for ashes from an integrated coal-gasification facility. Final report, April 1983-June 1986  

SciTech Connect

Coal-gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization or metals extraction. This project was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant gasifier ash and the Antelope Valley Power Plant combustion explored: mineral wool; sulfur concrete; high-flexural-strength ceramics; ceramic glazed wall tile and vitrified floor tile; dual concrete replacement; road stabilization; blended cement; and recovery of aluminum. Mineral wool of similar physical character to commercial wool and at lower potential cost was produced using the ashes from the GPGA complex. Sulfur concrete utilizing 80% ash and 20% modified sulfur developed flexural and compressive strengths in excess of 2250 and 6000 psi, respectively. A vitrified ceramic product with flexural strength above 7800 psi was produced from a mixture of 50% AVS scrubber ash 45% sand, and 5% clay. By using a total ash mixture of 26% gasifier ash and 74% combustion ash, a very satisfactory, economical, and durable road-base material was developed. The replacement of up to 50% of the cement in concrete with AVS scrubber ash produces higher strength. A modified lime-soda sinter process for aluminum recovery was developed, but is not economical.

Manz, O.E.; Hassett, D.J.; Laudal, D.L.; Ellman, R.C.

1986-06-01

32

Gasification characteristics of combustible wastes in a 5 ton\\/day fixed bed gasifier  

Microsoft Academic Search

The gasification characteristics of combustible wastes were determined in a 5 ton\\/day fixed bed gasifier (1.2 m I.D. and 2.8m\\u000a high). The fixed bed gasifier consisted of air compressor, oxygen tank, MFC, fixed bed gasifier, cyclone, heat exchanger,\\u000a solid\\/gas separator, water fluidized bed reactor and blower. To capture soot or unburned carbon from the gasification reaction,\\u000a solid\\/gas separator and water

See Hoon Lee; Kyong Bin Choi; Jae Goo Lee; Jae Ho Kim

2006-01-01

33

Analysis of energy recovery potential using innovative technologies of waste gasification.  

PubMed

In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. PMID:21889326

Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

2012-04-01

34

Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste materials in supercritical water  

SciTech Connect

Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions is via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.

Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1996-10-01

35

Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis  

SciTech Connect

In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

Galvagno, S. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Portici, via Vecchio Macello loc. Granatello, 80055 Portici (Italy)], E-mail: sergio.galvagno@portici.enea.it; Casciaro, G. [Department of Physical Technologies and New Materials, C.R. ENEA Brindisi, SS. 7 Appia-km 706, 72100 Brindisi (Italy); Casu, S. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Bologna, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Martino, M. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Trisaia, SS 106 Jonica km 419-500, 75026 Rotondella (Italy); Mingazzini, C. [Department of Physical Technologies and New Materials, C.R. ENEA Faenza, via Ravegnana 186, 48018 Faenza (Italy); Russo, A. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Trisaia, SS 106 Jonica km 419-500, 75026 Rotondella (Italy); Portofino, S. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Portici, via Vecchio Macello loc. Granatello, 80055 Portici (Italy)

2009-02-15

36

Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.  

PubMed

In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products. PMID:18657408

Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

2009-02-01

37

Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.  

PubMed

Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500C but the polycyclic aromatic hydrocarbons became the major compounds at 900C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500C) and syngas recovery by steam gasification at higher temperature (900C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500C) might be one of viable options. Steam gasification at 900C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. PMID:24246576

Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

2014-02-01

38

Gasification of waste?contaminated soil by the chem char process  

Microsoft Academic Search

Reverse?burn gasification (RBG, the ChemChar Process) has been applied to the treatment of soil contaminated with hydrocarbons, poly?chlorinated biphenyls (PCBs) and thorium. Overall destruction of the PCBs in excess of 99.9999% (six nines) was achieved. No undesirable dibenzo dioxins or furans were produced, and metals and acid gases are retained in the char residue matrix. An overall hazardous waste treatment

Laura L. Kinner; Stanley E. Manahan; David W. Larsen

1993-01-01

39

Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste material in supercritical water  

SciTech Connect

Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of the activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.

Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1996-12-31

40

Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant  

Microsoft Academic Search

Treatment of plastic waste by gasification in fluidized bed with air using dolomite as tar cracking catalyst has been studied. The gasifier has a 1 m high bed zone (diameter of 9.2 cm) followed by a 1 m high freeboard (diameter of 15.4 cm). The feedstock is composed of blends of plastic waste with pine wood sawdust and coal at

Mara P. Aznar; Miguel A. Caballero; Jess A. Sancho; E. Francs

2006-01-01

41

Use of waste plastic in concrete mixture as aggregate replacement.  

PubMed

Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics. PMID:17931848

Ismail, Zainab Z; Al-Hashmi, Enas A

2008-11-01

42

Production of high quality syngas from argon/water plasma gasification of biomass and waste.  

PubMed

Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100-110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma--composition, very high temperature and low mass flow rate. PMID:24148259

Hlina, M; Hrabovsky, M; Kavka, T; Konrad, M

2014-01-01

43

Gasification of Low Ash Partially Composted Dairy Biomass with Enriched Air Mixture  

E-print Network

Biomass is one of the renewable and non-conventional energy sources and it includes municipal solid wastes and animal wastes in addition to agricultural residue. Concentrated animal feeding operations produce large quantities of cattle biomass which...

Thanapal, Siva Sankar

2012-02-14

44

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels  

E-print Network

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam temperatures: above 500o C for the herbaceous and non-wood samples and above 650o C for the wood biomass fuels

45

Organic waste disposal system  

SciTech Connect

Organic waste material is pneumatically transported within air and mixed therewith by swirling flow through an annular ejector passage of varying radial width into a reaction flow passage of an eductor nozzle section receiving the output plume of a plasma torch for initiating therein thermal gasification of the waste mixture. The plasma torch plume projects from the eductor section into a diffuser section within which thermal gasification is continued before discharge of gasified waste.

Nolting, E.E.; Colfield, J.; Richard, R.; Peterson, S.

1997-12-31

46

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

SciTech Connect

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01

47

Computer-assisted gas chromatography in the analysis of waste compounds resulting from coal gasification  

SciTech Connect

Newly developed modifications of the coal gasification processes produce greater quantities of unidentified waste compounds. Analysis of these compounds was easier if identification was a matching process. A standard solution of five polynuclear aromatic hydrocarbons was made and each was assigned retention indices values. Known compounds in the six different classes that had been detected by older gas chromatographic methods were analyzed and assigned retention indices values by interpolation from the standards. Unknown samples were then analyzed and the components were also given retention indices values by the same method. Values assigned to unknown compounds were matched with those of known chemicals thereby identifying the unknown substance. Samples containing hundreds of different compounds could now be quickly and accurately identified by a combination of gas chromatography and computer analysis.

Raye, J.

1988-01-01

48

Element partitioning in combustion- and gasification-based waste-to-energy units.  

PubMed

A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal. PMID:23465309

Arena, Umberto; Di Gregorio, Fabrizio

2013-05-01

49

Lethality and hepatotoxicity of complex waste mixtures (journal version)  

SciTech Connect

Male F344 rats were exposed by gavage to samples of complex mixtures and evaluated 24 hours later. Seven of the 10 samples caused death at doses ranging from 1 to 5 ml/kg body wt. Eight of the 10 samples were hepatotoxic based on histopathologic evaluation; 6 were centrilobular and 2 were periportal hepatotoxicants. The waste samples exerted toxicity through different mechanisms, as indicated by differences in the severity and lobular location of the tissue damage. With histopathological evaluation as the criterion, relative liver weight was the single best indicator of hepatotoxicity. Exposure to several of the waste samples increased serum total bilirubin and serum enzyme activities of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, alkaline phosphatase, and ornithine carbamyl transferase. As a battery, but not individually, the serum indicators separated the 8 hepatotoxic samples from the 2 nonhepatotoxic samples. In general, the hepatotoxicity of the waste samples did not appear to be readily predicted from (partial) chemical characterization data.

Simmons, J.E.; DeMarini, D.M.; Berman, E.

1988-01-01

50

Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium.  

PubMed

The uses of a thermally reductive gasification process in conjunction with vitrification and cementation for the long-term disposal of low level radioactive materials have been investigated. gamma-ray spectroscopy was used for analysis of carrier-free protactinium-233 and neptunium-239 and a stoichiometric amount of cerium (observed cerium-141) subsequent to gasification and leaching, up to 48 days. High resolution ICP-MS was used to analyze the cerium, thorium, and uranium from 46 to 438 days of leaching. Leaching procedures followed the guidance of ASTM Procedure C 1220-92, Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste. The combination of the thermally reductive pretreatment, vitrification and cementation produced a highly non-leachable form suitable for long-term disposal of cerium, thorium, protactinium, uranium, and neptunium. PMID:14637345

Marrero, T W; Morris, J S; Manahan, S E

2004-02-01

51

SynGas Production from Catalytic Steam Gasification of Municipal Solid Wastes in a Combined Fixed Bed Reactor  

Microsoft Academic Search

The catalytic steam gasification of municipal solid wastes (MSW) for syn-gas production was experimentally investigated in a combined fixed bed reactor using the newly developed tri-metallic catalyst. A series of experiments have been performed to explore the effects of catalyst presence, catalytic temperature, catalyst to MSW weight ratio (C\\/M) and steam to MSW ratio (S\\/M) on the composition and yield

Jianfen Li; Jianjun Liu; Shiyan Liao; Xiaorong Zhou; Rong Yan

2010-01-01

52

Rotary drum composting of different organic waste mixtures.  

PubMed

The effects of three different mixtures of organic waste on composting in a rotary drum were examined by measuring changes in physico-chemical and biological parameters. It was observed that the time courses of the three mixtures: run A (grass cuttings, vegetable waste and food waste), run B (cattle manure, vegetable waste and sawdust) and run C (cattle manure, food waste, vegetable waste, paper waste and sawdust) were quite diverse. Run B, with initial C/N ratio 22 and containing a large proportion of cattle manure produced high quality and mature compost within 20 days. It showed a final total nitrogen (2.1%), final total phosphorus 3.52 g kg(-1), final total organic carbon (TOC) (24.8%) and final moisture content (44%). At the end of 20 days, higher degradation led to final chemical oxygen demand (COD) (454 mg L(- 1)), biochemical oxygen demand (BOD) (107 mg L(- 1)), fecal coliform (1.2 x 10(2) bacteria g(- 1)), fecal streptococci (85 bacteria g(-1)) and low electrical conductivity (1.658 dS m(-1)), respectively. Furthermore, run C with initial C/N ratio of 30 and containing a larger amount of food and vegetable waste produced good quality compost and resulted in 4.34% total nitrogen and 2.42% total phosphorus after 20 days, but, it had higher final fecal coliform 2.5 x 10(4) bacteria g( -1), fecal streptococci 2.1 x 10(4) bacteria g(-1), high TOC and NH(4)-N and a BOD/COD ratio of 0.63, which rendered it hygienically unsafe and immature. Finally, run A with initial C/N ratio of 15 showed a higher amount of EC (4.84 dS m(-1)), NH(4)-N, BOD/COD ratio of 0.4 with 15% nitrogen loss, which indicated an unstable product even after 20 days of composting. Therefore, it was found that rotary drum composting of a combination of cattle manure, vegetable waste and sawdust resulted in a primary stabilized compost within 20 days of composting. PMID:19244412

Kalamdhad, Ajay S; Kazmi, Absar A

2009-03-01

53

The gasification of coal  

Microsoft Academic Search

Coal gasification entails the treatment of coal with air, oxygen, steam, or CO2, or mixtures of these gases, to yield a combustible gaseous product. The product of primary gasification is usually a mixture of H2, CO, CO2, CH4, inerts (such as nitrogen), and minor amounts of hydrocarbons and impurities. Low Btu gas is produced if an air-steam mixture is used

L. K. Mudge; G. F. Schiefelbein; C. T. Li; R. H. Moore

1974-01-01

54

Microgravity and Hypogravity Compatible Methods for the Destruction of Solid Wastes by Magnetically Assisted Gasification  

NASA Technical Reports Server (NTRS)

This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.

Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana

2003-01-01

55

Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.  

PubMed

Pyrolysis and gasification processes were utilized to study the feasibility of producing fuels from landfilled plastic wastes. These wastes were converted in a gasifier at 700-900 degrees C. The equivalence ratio (ER) was varied from 0.4-0.6 with or without addition ofa Ni-Mg-La/Al2O3 catalyst. The pyrolysis and gasification of plastic wastes without catalyst resulted in relatively low H2, CO and other fuel gas products with methane as the major gaseous species. The highest lower heating value (LHV) was obtained at 800 degrees C and for an ER of 0.4, while the maximum cold gas efficiency occurred at 700 degrees C and for an ER of 0.4. The presence of the Ni-Mg-La/Al2O3 catalyst significantly enhanced H2 and CO production as well as increasing the gas energy content to 15.76-19.26 MJ/m3, which is suitable for further usage as quality fuel gas. A higher temperature resulted in more H2 and CO and other product gas yields, while char and liquid (tars) decreased. The maximum gas yield, gas calorific value and cold gas efficiency were achieved when the Ni-Mg-La/Al2O3 catalyst was used at 900 degrees C. In general, addition of prepared catalyst resulted in greater H2, CO and other light hydrocarbon yields from superior conversion of wastes to these gases. Thus, thermochemical treatment of these problematic wastes using pyrolysis and gasification processes is a very attractive alternative for sustainable waste management. PMID:23437645

Kaewpengkrow, Prangtip; Atong, Duangduen; Sricharoenchaikul, Viboon

2012-12-01

56

Hydrothermal gasification of waste biomass: process design and life cycle asessment.  

PubMed

A process evaluation methodology is presented that incorporates flowsheet mass and energy balance modeling, heat and power integration, and life cycle assessment Environmental impacts are determined by characterizing and weighting (using CO2 equivalents, Eco-indicator 99, and Eco-scarcity) the flowsheet and inventory modeling results. The methodology is applied to a waste biomass to synthetic natural gas (SNG) conversion process involving a catalytic hydrothermal gasification step. Several scenarios are constructed for different Swiss biomass feedstocks and different scales depending on logistical choices: large-scale (155 MW(SNG)) and small-scale (5.2 MW(SNG)) scenarios for a manure feedstock and one scenario (35.6 MW(SNG))for a wood feedstock. Process modeling shows that 62% of the manure's lower heating value (LHV) is converted to SNG and 71% of wood's LHV is converted to SNG. Life cycle modeling shows that, for all processes, about 10% of fossil energy use is imbedded in the produced renewable SNG. Converting manure and replacing it, as a fertilizer, with the process mineral byproduct leads to reduced N20 emissions and an improved environmental performance such as global warming potential: -0.6 kg(CO2eq)/MJ(SNG) vs. -0.02 kg(CO2eq)/MJ(SNG) for wood scenarios. PMID:19350938

Luterbacher, Jeremy S; Frling, Morgan; Vogel, Frederic; Marchal, Franois; Tester, Jefferson W

2009-03-01

57

Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.  

PubMed

Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. PMID:24176239

Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

2014-01-01

58

Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization.  

PubMed

Steam gasification of waste biomass has been studied in a two-stage fluidized bed reactor, which has the primary pyrolysis fluidized bed using silica sand as bed material and the secondary reforming fixed bed with catalyst. The main objectives are parametric investigation and performance improvement especially at low temperature of around 600 C using the wood chip and the pig manure compost as feedstock. Main operating variables studied are pyrolysis temperature, catalytic temperature, steam/biomass-C ratio, space velocity and different catalyst. Reaction temperatures and steam/C ratio have important role on the gasification process. About 60 vol.% H2 (dry and N2 free) and about 2.0 Nm3/kg biomass (dry and ash free basis) can be obtained under good conditions. Compared to Ni/Al2O3, Ni/BCC (Ni-loaded brown coal char) has a better ability and a hopeful prospect for the stability with coking resistance. PMID:20889337

Xiao, Xianbin; Meng, Xianliang; Le, Duc Dung; Takarada, Takayuki

2011-01-01

59

Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. Tars and nitrogen compounds abatement  

Microsoft Academic Search

The aim of this work is to analyse the possibility of using co-gasification technology to process coal mixed with wastes to take profit of its energy content and at the same time to minimize the environmental impact associated with the use of wastes and to diminish the costs of flue gas treatment. The addition to coal of different types of

Filomena Pinto; Helena Lopes; Rui Neto Andr; I. Gulyurtlu; I. Cabrita

2007-01-01

60

Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm{sup 3}), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 Degree-Sign C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.

Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav; Popelka, Jan [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Svoboda, Karel, E-mail: svoboda@icpf.cas.cz [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Smetana, Jiri; Vacek, Jiri [D.S.K. Ltd., Ujezdecek - Dukla 264, 415 01 Teplice I (Czech Republic); Skoblja, Siarhei; Buryan, Petr [Dept. of Gas, Coke and Air protection, Institute of Chemical Technol., Technicka 5, 166 28 Prague 6 (Czech Republic)

2012-04-15

61

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-print Network

............................................................................................................ 17 Biomass Gasifier Used in the Study ..................................................................... 17 Instrumentation for Measurement and Control of the Gasification System ......... 19 Installation of the Control Devices... Methodology .......................................................................................................... 111 Composition and Characteristics of the Biomass and Ash ................................ 111 Slagging and Fouling Indices Calculations...

Maglinao, Amado Latayan

2013-04-11

62

Composting dynamics and optimum mixture ratio of chicken manure and vineyard wastes.  

PubMed

Vineyard waste and chicken manure mixtures are useful materials for composting but when these wastes are composted alone, many environmental problems occur because of their chemical characteristics. Whereas chicken manure is a very rich source of nitrogen, vineyard waste has a very high carbon content. In the present study experiments to determine an optimum mixture ratio of chicken manure and vineyard waste for composting were performed. The results showed that the optimum mixture ratio for composting these materials was 50% chicken manure and 50% vineyard waste on a dry basis. PMID:15864951

Kulcu, Recep; Yaldiz, Osman

2005-04-01

63

Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures  

Microsoft Academic Search

Waste plastics in the form of two examples of real world municipal solid waste plastics and a simulated mixture of municipal waste plastics were pyrolysed and liquefied under moderate temperature and pressure in a batch autoclave reactor. In addition, the five main polymers which constitute the majority of plastics occurring in European municipal solid waste comprising, polyethylene, polypropylene, polystyrene, polyethylene

Paul T. Williams; Edward Slaney

2007-01-01

64

Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures  

DOEpatents

A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).

Stoner, Daphne L. (Idaho Falls, ID); Tien, Albert J. (Zurich, CH)

1995-01-01

65

Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures  

DOEpatents

A method and process are disclosed for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate). 6 figs.

Stoner, D.L.; Tien, A.J.

1995-09-26

66

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 1. Characterization of coal gasification solid wastes. Final report, May 1983-June 1986  

SciTech Connect

Coal gasification, such as that underway at Beulah, ND, results in large quantities of by-product ash that must be either utilized commercially or disposed in landfills. Detailed ash characterization is necessary for either option. Chemical composition (by AAS, ICP and XRF), mineralogy (by XRD and SEM) and thermal analysis (by TGA) were determined for nine fixed-bed low-rank coal (lignite) ash samples prepared over a five-year period in three gasifiers representing a range of operating conditions. The ashes are coarsely granular and show considerable grain-to-grain heterogeneity. They have higher concentrations of Na/sub 2/O, CaO, and MgO and lower concentrations of Al/sub 2/O/sub 3/ and SiO/sub 2/ than bituminous coal ash. Their trace-element concentrations are typical of lignite combustion ashes. Unlike the combustion ashes, the gasification ashes are dominantly crystalline with an assemblage of mineral-like silicates (melilite, merwinite, dicalcium silicates, nepheline, carnegieite, sodalite, feldspars), oxides (periclase, ferrite spinel, quartz) and calcite. Glass phases are rich in sodium aluminosilicate.

McCarthy, G.J.; Stevenson, R.J.; Hassett, D.J.

1988-03-01

67

Waste to Energy (WTE): Conventional and Plasma-assisted Gasification - Experimental and Modeling Studies.  

E-print Network

??Ever-increasing amounts of industrial and residential wastes and their environmental footprint dictates the need for effective Waste Management practices. Thermal waste processing technologies play an (more)

Lavaee, Mohammad Saleh

2013-01-01

68

Equilibrium moisture content of waste mixtures from post-consumer carton packaging  

Microsoft Academic Search

The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C

M. S. Bacelos; J. T. Freire

2012-01-01

69

TREATMENT OF AQUEOUS WASTE STREAMS FROM KRW ENERGY SYSTEMS COAL GASIFICATION TECHNOLOGY  

EPA Science Inventory

The paper gives results of a bench-scale evaluation to determine the extent to which process wastewaters from the KRW Energy Systems coal gasification process are treatable using commercially proven wastewater treatment technology. (NOTE: The process--formerly called the Westingh...

70

Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes  

Microsoft Academic Search

This paper presents the results of an experimental study concerning the incorporation of polyurethane (PUR) foam wastes into cementitious mixtures in order to produce lightweight concrete. A semi-empirical method is first proposed to predict the density of fresh PUR foam-based concrete mixtures. Seven concrete mixtures containing various PUR foam volume fractions (from 13.1% to 33.7%), and two reference concrete mixtures

P. Mounanga; W. Gbongbon; P. Poullain; P. Turcry

2008-01-01

71

HIGH EFFICIENCY ELECTRICITY AND PRODUCTS FROM BIOMASS AND WASTE; EXPERIMENTAL RESULTS OF PROOF OF PRINCIPLE OF STAGED GASIFICATION AND FUEL CELLS  

Microsoft Academic Search

The use of biomass and waste for energy production contributes substantially in reduction of CO2 emissions. System studies showed that gasification in combination with Solid Oxide Fuel Cell (SOFC) could achieve an overall efficiency of 50%. This is substantially higher than by means of modern IGCC application. In the framework of the NOVEM program \\

Andr B. J. Oudhuis; Lex Bos; Jan Pieter Ouweltjes; Bert Rietveld; A. B. van der Giesen

72

Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions.  

PubMed

Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H(2)S) - Na and K based species in particular. Work is underway to further investigate and validate this. PMID:21982278

Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

2012-04-01

73

Life cycle assessment of a pyrolysis\\/gasification plant for hazardous paint waste  

Microsoft Academic Search

Goal, Scope and BackgroundLife Cycle Assessment (LCA) remains an important tool in Dutch waste management policies. In 2002 the new National Waste Management\\u000a Plan 20022012 (NWMP) became effective. It was supported by some 150 LCA studies for more than 20 different waste streams.\\u000a The LCA results provided a benchmark level for new waste management technologies. Although not new, operational techniques

Robert Jan Saft

2007-01-01

74

Cyprodinil retention on mixtures of soil and solid wastes from wineries. Effects of waste dose and ageing.  

PubMed

In spite of its wide-world economic relevance, wine production generates a huge amount of waste that threatens the environment. A batch experiment was designed to assess the effect of the amendment of an agricultural soil with two winery wastes (perlite and bentonite wastes) in the immobilization of cyprodinil. Waste addition (0, 10, 20, 40, and 80 Mg ha(-1)) and different times of incubation of soil-waste mixtures (1, 30, and 120 days) were tested. The addition of wastes improved the soil's ability to immobilize cyprodinil, which was significantly correlated to total C content in soil-waste mixtures. Longer incubation times decreased the cyprodinil sorption possibly due to the mineralization of organic matter but also as a consequence of the high pH values reached after bentonite waste addition (up to 10.0). Cyprodinil desorption increased as the amount of waste added to soil, and the incubation time increased. The use of these winery wastes contributes to a more sustainable agriculture preventing fungicide mobilization to groundwater. PMID:24809493

Rodrguez-Salgado, Isabel; Paradelo-Prez, Marcos; Prez-Rodrguez, Paula; Cutillas-Barreiro, Laura; Fernndez-Calvio, David; Nvoa-Muoz, Juan Carlos; Arias-Estvez, Manuel

2014-08-01

75

Thermal reactivity of mixtures of VDDT lubricant and simulated Hanford Tank 241-SY-101 waste  

SciTech Connect

To predict whether the Polywater G lubricant residue remaining in the velocity, density, and temperature tree (VDTT) and the waste in Tank 241-SY-101 (101SY) will be chemically compatible with wastes in 101SY when two VDTTs are removed from 101SY, the Pacific Northwest National Laboratory measured the thermal reaction sensitivity of the lubricant residue. This residue is a simulated 101SY waste containing the organic surrogate trisodium hydroxyethyl-ethylenediaminetriacetate (Na{sub 3}HEDTA) and two simulated potential waste and lubricant residue mixtures containing 10 and 90 percent lubricant residue. These studies using accelerating rate calorimetry found that the residue did not react at a rate exceeding 0.1 J/min/g mixture up to 190 degrees C with simulated 101SY waste containing Na{sub 3}HEDTA as the organic surrogate. Also, the dried lubricant residue did not decompose exothermically at a rate exceeding 0.1 J/min/g. Using guidelines used by the chemical industry, these results indicate that the lubricant residue should not react as a significant rate with the waste in 101SY when added to the waste at 60 degrees C or when the mixture cools to the waste`s temperature of 48 degrees C.

Scheele, R.D.; Panisko, F.E.; Sell, R.L.

1996-09-01

76

LETHALITY AND HEPATOTOXICITY OF COMPLEX WASTE MIXTURES (JOURNAL VERSION)  

EPA Science Inventory

Male F344 rats were exposed by gavage to samples of complex mixtures and evaluated 24 hours later. Seven of the 10 samples caused death at doses ranging from 1 to 5 ml/kg body wt. Eight of the 10 samples were hepatotoxic based on histopathologic evaluation; 6 were centrilobular a...

77

ANALYTICAL METHODS FOR HAZARDOUS ORGANICS IN LIQUID WASTES FROM COAL GASIFICATION AND LIQUEFACTION PROCESSES  

EPA Science Inventory

This study was conducted by the University of Southern California group to provide methods for the analysis of coal liquefaction wastes from coal conversion processing plants. Several methods of preliminary fractionation prior to analysis were considered. The most satisfactory me...

78

Mixtures  

NSDL National Science Digital Library

Mixtures allows exploration of percents through two piles of colored and uncolored chips. The user must decide how many chips to color to create the desired percentage of colored chips compared to the total pile. Mixtures is one of the Interactivate assessment explorers.

79

Nitrogen Conservation in Simulated Food Waste Aerobic Composting Process with Different Mg and P Salt Mixtures  

Microsoft Academic Search

To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]\\/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]\\/MgSO4, KH2PO4\\/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste

Yu Li; Bensheng Su; Jianlin Liu; Xianyuan Du; Guohe Huang

2011-01-01

80

Waste E-glass particles used in cementitious mixtures  

SciTech Connect

The properties of concretes containing various waste E-glass particle contents were investigated in this study. Waste E-glass particles were obtained from electronic grade glass yarn scrap by grinding to small particle size. The size distribution of cylindrical glass particle was from 38 to 300 {mu}m and about 40% of E-glass particle was less than 150 {mu}m. The E-glass mainly consists of SiO{sub 2}, Al{sub 2}O{sub 3}, Ca O and MgO, and is indicated as amorphous by X-ray diffraction (XRD) technique. Compressive strength and resistance of sulfate attack and chloride ion penetration were significantly improved by utilizing proper amount of waste E-glass in concrete. The compressive strength of specimen with 40 wt.% E-glass content was 17%, 27% and 43% higher than that of control specimen at age of 28, 91 and 365 days, respectively. E-glass can be used in concrete as cementitious material as well as inert filler, which depending upon the particle size, and the dividing size appears to be 75 {mu}m. The workability decreased as the glass content increased due to reduction of fineness modulus, and the addition of high-range water reducers was needed to obtain a uniform mix. Little difference was observed in ASR testing results between control and E-glass specimens. Based on the properties of hardened concrete, optimum E-glass content was found to be 40-50 wt.%.

Chen, C.H. [Institute of Materials Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, Taiwan 20248 (China); Huang, R. [Institute of Materials Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, Taiwan 20248 (China)]. E-mail: ranhuang@mail.ntou.edu.tw; Wu, J.K. [Institute of Materials Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, Taiwan 20248 (China); Yang, C.C. [Institute of Materials Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, Taiwan 20248 (China)

2006-03-15

81

Equilibrium moisture content of waste mixtures from post-consumer carton packaging.  

PubMed

The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound. PMID:22720401

Bacelos, M S; Freire, J T

2012-01-01

82

EVALUATION ON ENVIRONMENTAL IMPACTS OF ASPHALT MIXTURES CONTAINING MUNICIPAL SOLID WASTE INCINERATOR BOTTOM ASH  

Microsoft Academic Search

Previous research works show the possibility of using municipal solid waste incinerator bottom ash (IBA) as part of aggregate for asphalt mixtures. A few demonstration projects were implemented for assessing durability. Most of these previous researches were focused on the engineering properties of the alternative mixes; a few studies were done on the environmental properties, dealing mainly with particular metal

Chui-Te Chiu; Tseng-Hsing Hsu; Wan-Fa Yang

83

Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: Pavement performance and environmental impact  

Microsoft Academic Search

The objective of this study is to the use of municipal solid waste incinerator (MSWI) fly ash as a partial replacement of fine aggregate or mineral filler in stone matrix asphalt (SMA) mixture. For saving natural rock and reusing solid waste, basic oxygen furnace slag (BOF slag) was used as part of coarse aggregate. And this makes SMA mixtures contain

Yongjie Xue; Haobo Hou; Shujing Zhu; Jin Zha

2009-01-01

84

High temperature steam gasification of wastewater sludge  

Microsoft Academic Search

High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current

Nimit Nipattummakul; Islam Ahmed; Somrat Kerdsuwan; Ashwani K. Gupta

2010-01-01

85

Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium  

Microsoft Academic Search

The uses of a thermally reductive gasification process in conjunction with vitrification and cementation for the long-term disposal of low level radioactive materials have been investigated. ?-ray spectroscopy was used for analysis of carrier-free protactinium-233 and neptunium-239 and a stoichiometric amount of cerium (observed cerium-141) subsequent to gasification and leaching, up to 48 days. High resolution ICP-MS was used to

T. W. Marrero; J. S. Morris; S. E. Manahan

2004-01-01

86

A method and system including a double rotary kiln pyrolysis or gasification of waste material  

SciTech Connect

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, M.J.; Arzoumanidis, G.G.

1995-12-31

87

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOEpatents

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

McIntosh, M.J.; Arzoumanidis, G.G.

1997-09-02

88

Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures.  

PubMed

Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. PMID:24997095

Unuofin, F O; Mnkeni, P N S

2014-11-01

89

Combustion gas and NO emission characteristics of hazardous waste mixture particles in a fixed bed  

Microsoft Academic Search

Experiments with fixed-bed incinerators were carried out to model the combustion characteristics and gas emission characteristics\\u000a of hazardous waste mixture particles in a grate furnace. The results indicate that combustion can be divided into three stages:\\u000a ignition, main combustion and combustion completion stage. According to the various concentrations of O2, CO2 and CO, the main combustion stage can be subdivided

Ling Tao; Guangbo Zhao; Rui Sun

2011-01-01

90

Identification and differentiation of individual beta emitters in waste mixtures by liquid scintillation spectrometry  

E-print Network

as to style and content by: 'lton E. McLain (Chairman) ohn W. Poston, S . (Member) Gerald A. h apper (Member) Dan Hi tower (Member) Kenneth L. Peddicord (Head of Department) May 1988 ABSTRACT Identification and Differentiation of Individual Beta.... and differentiation of various beta emitting isotopes within waste mixtures. A state-of-the-art liquid scintillation spectrometer and incorporated multichannel analyzer was used to identify and evaluate techniques suitable for unknown liquid sample identification...

Siskel, Robin Lynn

2012-06-07

91

Thermogravimetric analysis and pyrolysis of waste mixtures of paint and tar slag  

Microsoft Academic Search

We describe thermogravimetric analyses and pyrolysis kinetic studies carried out on hazardous waste mixtures of tar slag,\\u000a paint slag, paper, sodium sulfate and calcium oxide. Both thermogravimetric (TG) and differential thermogravimetric (DTG)\\u000a profiles were measured by a thermogravimetric analyzer at different final temperatures, particle sizes and heating rates.\\u000a Pyrolysis kinetic parameters were calculated by the Coats-Redfern method. Influences of particle

Ling Tao; Guang-Bo Zhao; Juan Qian; Yu-Kun Qin

2009-01-01

92

Recycled tire rubber and other waste materials in asphalt mixtures. Transportation research record  

SciTech Connect

The papers in this volume, dealing with various facets of recycled tire rubber and other waste materials in asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. In the first papers, Rebala and Estakhri, Malpass and Khosla, and Baker and Connolly describe research related to crumb rubber modified mixtures that was done for the Texas, North Carolina, and New Jersey State Departments of Transportation. Ali et al. report on their research in Canada to determine the feasibility of sing reclaimed roofing materials in hot mix asphalt pavement. Emery discusses the evaluation of 11 Ontario rubber modified demonstration projects in terms of pavement performance, environmental impacts, and recyclability. In the last paper, Fwa and Aziz report on their work in Singapore related to the use of incinerator residue in asphalt mixtures.

NONE

1995-12-31

93

Life cycle impact assessment of various waste conversion technologies  

Microsoft Academic Search

Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysisgasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes;

Hsien H. Khoo

2009-01-01

94

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 2. Leaching behavior of fixed-bed gasification ash derived from northern great plains lignite. Final report, May 1983-June 1986  

SciTech Connect

The leaching behavior of eight specimens of fixed-bed lignite-gasification ash, including ash from the Great Plains (GPGA) plant in Beulah, North Dakota, was studied. Four batch leaching tests were used: (1) EPA-EP; (2) a test with synthetic ND groundwater; (3) ASTM D3987-81; (4) long-term (120 day). One GPGA ash was leached according to the draft TCLP protocol. The EPA-EP test leachates from all of the ashes had metal concentrations a factor of ten or more below the values that define a hazardous waste according to the RCRA criteria. The ash specimens were highly alkaline and produced pH's in the range 10-13 during tests 2-4. Leachates from the EPA-EP test had RCRA metal concentrations comparable to, or less than, those derived from combustion ash derived from the same coal. The metal concentrations in leachates from tests 2 and 3 were also well below the RCRA limits. The long-term test used liquid-to-solid ratios of 2:1 and 20:1 and deionized water. During the 120 days, at least 5% of the Na, K, Al, S (as SO4), As, Mo, Se, B, and V in the ash was extracted.

McCarthy, G.J.; Hassett, D.J.; Henke, K.R.; Stevenson, R.J.; Groenewold, G.H.

1986-10-01

95

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01

96

Cation segregation in simulated radioactive-waste zeolite-A mixtures  

SciTech Connect

Segregation of cations based on size is observed in samples of zeolite-A loaded with simulated radioactive-waste ({approximately}5 wt.% Li, K, Cs and Ba, 1 wt.% Sr and Y, <1 wt.% Na) prepared from chloride salts. In contrast to traditional Na zeolite-A, for which all 8-ring access super ({alpha}) cages are identical and situated on a simple face-centered-cubic lattice, these simulated rad-waste mixtures contain two types of {alpha}-cages situated on a NaCl-like lattice. The long range ordering of extra-framework ions is propagated by severe distortion of frame work oxygens due to strong coordination with Li.

Richardson, J.W. Jr.; Lewis, M.A. [Argonne National Lab., IL (United States); McCart, B.R. [Augustana Coll., Rock Island, IL (United States). Dept. of Physics

1994-01-01

97

Influence of operation conditions and additives on the development of producer gas and tar reduction in air gasification of construction woody wastes using a two-stage gasifier.  

PubMed

Air gasification was conducted with fractions of construction woody wastes in a two-stage gasifier, consisting of a fluidized bed zone and a tar cracking zone. The aim of this work is to investigate the influence of reaction conditions and additives on the composition of producer gas and tar content in producer gas. A producer gas obtained with activated carbon of 540 g at an ER of 0.26 was mainly composed of H(2) (25 vol.%), CO (22 vol.%) and CH(4) (5 vol.%). Regarding tar removal efficiency, activated carbon was better than olivine. The tar removal rate with virgin activated carbon reached up to 80%. The reuse of spent activated carbon caused an efficiency loss in tar removal to some extent. Overall, it seems that the strong need for intensive downstream tar removal measurements can be removed with the use of a two-stage gasifier and the application of activated carbon. PMID:21565495

Mun, Tae-Young; Kim, Jin-O; Kim, Jin-Won; Kim, Joo-Sik

2011-07-01

98

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01

99

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

Unknown

2001-12-01

100

Influence of alkali catalysts on the production of hydrogen-rich gas from the hydrothermal gasification of food processing waste  

Microsoft Academic Search

Sub-critical water gasification by partial oxidation of glucose was carried out in the presence of various alkali catalysts; NaOH, KOH, Ca(OH)2, Na2CO3, K2CO3 and NaHCO3. Experiments were carried out in a closed batch reactor under sub-critical water conditions of 330C temperature and 13.5MPa pressure. Hydrogen gas yield in relation to the alkali catalyst was in the following order; NaOH>KOH>Ca(OH)2>K2CO3>Na2CO3>NaHCO3. The

Rattana Muangrat; Jude A. Onwudili; Paul T. Williams

2010-01-01

101

Partitioning of actinides from high-level waste streams of Purex process using mixtures of CMPO and TBP in dodecane  

Microsoft Academic Search

The extraction of actinides from high active aqueous raffinate waste (HAW) as well as high-level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and stripping of actinides, lanthanides, and other fission products are discussed. Optimum conditions are proposed

J. N. Mathur; M. S. Murali; P. R. Natarajan; L. P. Badheka; A. Banerji; A. Ramanujam; P. S. Dhami; V. Gopalakrishnan; R. K. Dhumwad; M. K. Rao

1993-01-01

102

Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production.  

PubMed

Growth of selected microorganisms of industrial interest (Saccharomyces cerevisiae, Kluyveromyces marxianus and kefir) by solid state fermentation (SSF) of various food industry waste mixtures was studied. The fermented products were analysed for protein, and nutrient minerals content, as well as for aroma volatile compounds by GC/MS. The substrate fermented by K. marxianus contained the highest sum of fat and protein concentration (59.2% w/w dm) and therefore it could be considered for utilisation of its fat content and for livestock feed enrichment. Regarding volatiles, the formation of high amounts of ?-pinene was observed only in the SSF product of kefir at a yield estimated to be 4 kg/tn of SSF product. A preliminary design of a biorefinery-type process flow sheet and its economic analysis, indicated potential production of products (enriched livestock feed, fat and ?-pinene) of significant added value. PMID:24128535

Aggelopoulos, Theodoros; Katsieris, Konstantinos; Bekatorou, Argyro; Pandey, Ashok; Banat, Ibrahim M; Koutinas, Athanasios A

2014-02-15

103

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30

104

Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand.  

PubMed

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10?UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709

Ahmad, Shamsad; Hakeem, Ibrahim; Maslehuddin, Mohammed

2014-01-01

105

Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand  

PubMed Central

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10?UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709

2014-01-01

106

U.S. EPA'S EVALUATION OF A TEXACO GASIFICATION TECHNOLOGY  

EPA Science Inventory

Gasification technologies are designed to produce, from carbonaceous organic materials (e.g., coal, oil), a useable mixture of carbon monoxide and hydrogen called synthesis gas, or syngas. yngas could be used to produce power or chemicals. he Texaco Gasification Process (TGP) emp...

107

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's fourth quarterly technical progress report. It covers the period performance from January 1, 2002 through March 31, 2002.

Unknown

2002-06-01

108

Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures.  

PubMed

The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents' precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63-81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64-86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59-22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon. PMID:22520075

Bernardo, M; Lapa, N; Gonalves, M; Mendes, B; Pinto, F; Fonseca, I; Lopes, H

2012-06-15

109

Potential use of densified polymer-pastefill mixture as waste containment barrier materials  

Microsoft Academic Search

Mining activities generate a large amount of solid waste, such as waste rock and tailings. The surface disposal of such waste can create several environmental and geotechnical problems. Public perception and strict government regulations with regards to the disposal of such waste compel the mining industry to develop new strategies which are environmentally sound and cost effective. In this scenario,

M. Fall; J. Clestin; H. F. Sen

2010-01-01

110

Characterisation and fingerprinting of PCBs in flue gas and ash from waste incineration and in technical mixtures  

Microsoft Academic Search

Congener patterns of mono- to deca-chlorinated biphenyls (PC110B) were evaluated in (a) waste incineration flue gases collected in the post-combustion zone of a laboratory-scale fluidized-bed reactor, (b) ashes from two different MSW incineration plants, and (c) published data of eight Aroclor formulations.The congener patterns of the flue gases, ashes, and Aroclor mixtures clearly differed from each other, likely reflecting differences

Stina Jansson; Lisa Lundin; Roman Grabic

2011-01-01

111

Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes.  

PubMed

Backfilling of open pit with sulfidic waste rock followed by inundation is a common method for reducing sulfide oxidation after mine closure. This approach can be complemented by mixing the waste rock with alkaline materials from pulp and steel mills to increase the system's neutralization potential. Leachates from 1 m3 tanks containing sulfide-rich (ca.30 wt %) waste rock formed under dry and water saturated conditions under laboratory conditions were characterized and compared to those formed from mixtures. The waste rock leachate produced an acidic leachate (pH<2) with high concentrations of As (65 mg/L), Cu (6 mg/L), and Zn (150 mg/L) after 258 days. The leachate from water-saturated waste rock had lower concentrations of As and Cu (<2 ?g/L), Pb and Zn (20 ?g/L and 5 mg/L), respectively, and its pH was around 6. Crushed (<6 mm) waste rock mixed with different fractions (1-5 wt %) of green liquid dregs, fly ash, mesa lime, and argon oxygen decarburization (AOD) slag was leached on a small scale for 65 day, and showed near-neutral pH values, except for mixtures of waste rock with AOD slag and fly ash (5% w/w) which were more basic (pH>9). The decrease of elemental concentration in the leachate was most pronounced for Pb and Zn, while Al and S were relatively high. Overall, the results obtained were promising and suggest that alkaline by-products could be useful additives for minimizing ARD formation. PMID:23740301

Alakangas, Lena; Andersson, Elin; Mueller, Seth

2013-11-01

112

Integrated Gasification Combined Cycle A Review of IGCC Technology  

Microsoft Academic Search

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which

MEDHA M. JOSHI; SUNGGYU LEE

1996-01-01

113

Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes.  

PubMed

The biobed systems were designed to retain and to degrade pesticides through the properties of a biomixture composed of straw (ST), topsoil and peat (PT) 2:1:1 v/v. The ST is the main substrate in the biomixture, as it allows the proliferation of fungi that promotes pesticide degradation. The use of readily available components in the biomixture is an important aspect to build a biobed. Therefore, potential use of readily available wastes as barley husk (BH), sawdust (SW) and oat husk (OH), as total or partial substitutes of ST were tested in pesticide degradation studies. Metabolite formation and the biological activities were also evaluated. Biomixture composed of OH was highly efficient in pesticide degradation, with t values of 28.6, 58.9 and 26.8 d for atrazine (ATZ), chlorpyrifos (CHL) and isoproturon (ISP). On the other hand, comparable for degrading capacities with the ST based biomixture were obtained with SW and BH, but only as partial replacement. Contrarily, high t values (more than 100 d) were obtained in biomixtures with total substitution of ST by SW or BH. Metabolite formation was observed in all biomixtures tested, but without clear formation patterns. Moreover, high and stable biological activity was observed in the biomixtures composed of OH. Therefore, our results demonstrated that ST can be partial or totally replaced by OH in the biomixture allowing an efficient degradation of pesticide mixture. However, it is recommended that ST can be only partially replaced by BH and SW in the biomixture to allow efficient pesticide degradation. PMID:23746365

Urrutia, C; Rubilar, O; Tortella, G R; Diez, M C

2013-08-01

114

2010 Worldwide Gasification Database  

DOE Data Explorer

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

115

Coal gasification: Kellogg's coal gasification process  

Microsoft Academic Search

Gasification of coal in a bath of molten sodium carbonate through which ; steam is passed is the basis of the Kellogg Coal Gasification process. The bath ; of moiten salt strongly catalyzes the basic steam- coal reaction permi tting ; essentially complete gasificntion of coal at reduced temperature. The molten ; salt can be used to supply heat to

W. C. Schreiner; G. T. Skaperdas

1973-01-01

116

Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994  

SciTech Connect

The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

Darmody, R.G. [Illinois Univ., Urbana, IL (United States); Dunker, R.E. [Illinois Univ., Urbana, IL (United States). Dept. of Agronomy; Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

1994-06-01

117

Biothermal gasification of biomass  

SciTech Connect

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01

118

Properties of Waste from Coal Gasification in Entrained Flow Reactors in the Aspect of Their Use in Mining Technology / W?a?ciwo?ci odpadw ze zgazowania w?gla w reaktorach dyspersyjnych w aspekcie ich wykorzystania w technologiach grniczych  

NASA Astrophysics Data System (ADS)

Most of the coal gasification plants based of one of the three main types of reactors: fixed bed, fluidized bed or entrained flow. In recent years, the last ones, which works as "slagging" reactors (due to the form of generated waste), are very popular among commercial installations. The article discusses the characteristics of the waste from coal gasification in entrained flow reactors, obtained from three foreign installations. The studies was conducted in terms of the possibilities of use these wastes in mining technologies, characteristic for Polish underground coal mines. The results were compared with the requirements of Polish Standards for the materials used in hydraulic backfill as well as suspension technology: solidification backfill and mixtures for gob caulking. Wi?kszo?? przemys?owych instalacji zgazowania w?gla pracuje w oparciu o jeden z trzech g?wnych typw reaktorw: ze z?o?em sta?ym, dyspersyjny lub fluidalny. W zale?no?ci od rodzaju reaktora oraz szczeg?owych rozwi?za? instalacji, powstaj?ce uboczne produkty zgazowania mog? mie? r?n? posta?. Zale?y ona w du?ej mierze od stosunku temperatury pracy reaktora do temperatury topnienia cz??ci mineralnych zawartych w paliwie, czyli do temperatury mi?knienia i topnienia popio?u. W ostatnich latach bardzo du?? popularno?? w?rd instalacji komercyjnych zdobywaj? reaktory dyspersyjne "?u?luj?ce". W takich instalacjach ?u?el jest wychwytywany i studzony po wyp?yni?ciu z reaktora. W niektrych przypadkach oprcz ?u?la powstaje jeszcze popi? lotny, wychwytywany w systemach odprowadzania spalin. Mo?e by? on pozyskiwany oddzielnie lub te? zawracany do komory reaktora, gdzie ulega stopieniu. Wszystkie z analizowanych odpadw - trzy ?u?le oraz popi? pochodz? w?a?nie z tego typu instalacji. Tylko z jednej z nich pozyskano zarwno ?u?el jak i popi?, z pozosta?ych dwch jedynie ?u?el. Odpady te powsta?y, jako uboczny produkt zgazowania w?gla lub w?gla z dodatkami: bitumin (?u?el S1), czy biomasy (popi? A2, ?u?el S2). W polskim grnictwie podziemnym wyr?ni? mo?na kilka technologii podsadzkowych, w ktrych do transportu materia?u wykorzystywana jest woda. Tradycyjnie oraz ze wzgl?dw historycznych, terminem "podsadzka hydrauliczna" okre?la si? t?, ktra spe?nia wymagania normy PN-93/G-11010. Do najwa?niejszych cech takiej podsadzki hydraulicznej zaliczy? nale?y wype?nienia uprzednio wydzielonej pustki poeksploatacyjnej, materia?em o jak najmniejszej ?ci?liwo?ci oraz o jak najwi?kszej wodoprzepuszczalno?ci. Materia? taki, po odprowadzeniu wody ma stanowi? mechaniczna podpor? stropu, a proces podsadzania jest ?ci?le powi?zany z procesem eksploatacji, jako sposb likwidacji zrobw. Najcz??ciej stosowanymi materia?ami s? piasek podsadzkowy oraz odpady grnicze lub hutnicze (Lisowski, 1997). Od ponad dwudziestu lat, w polskim grnictwie w?gla kamiennego obecna jest rwnie? inna technologia podsadzkowa, w ktrej do transportu materia?w wykorzystywana jest woda. W tym przypadku cz??ci sta?e to materia?y drobnoziarniste, najcz??ciej popio?y r?nych typw, ktre po wymieszaniu z wod? tworz? zawiesin? (st?d termin "zawiesiny popio?owo-wodne"). Polska norma PN-G-11011:1998 wyr?nia dwie odmiany takich zawiesin i definiuje je, jako "podsadzk? zestalan?" oraz "mieszanin? do doszczelniania zrobw". Podstawow? ide? przy?wiecaj?c? stosowaniu zawiesin drobnoziarnistych w technologiach grniczych by?a pocz?tkowo troska o zagospodarowaniu odpadw energetycznych, a nast?pnie grniczych (Mazurkiewicz i in., 1998; Piotrowski i in., 2006; Piotrowski, 2010; Plewa i Mys?ek, 2000; Plewa i Sobota, 2002). Obecnie technologia zawiesinowa na sta?e zago?ci?a w kopalniach w?gla kamiennego staj?c si? m.in. nieodzownym ?rodkiem profilaktyki po?arowej i metanowej (Dziurzy?ski i Pomyka?a, 2006; Palarski, 2004; Pomyka?a, 2006). W artykule przedstawiono analiz? mo?liwo?ci wy

Pomyka?a, Rados?aw

2013-06-01

119

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01

120

Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed  

Microsoft Academic Search

Hazardous waste disposal is vitally important as industrial production increases. Grate furnaces are a common means to incinerate hazardous waste. In this present work, a fixed bed assembly is used to experimentally model combustion within grate furnaces. Combustion characteristics are examined and the effects of primary air rate, moisture, bed height and particle size on burning rate, ignition-front speed and

Ling Tao; Guangbo Zhao; Rui Sun; Qiang Wang

2010-01-01

121

Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG)  

Microsoft Academic Search

In the present study the energetic valorization of electric cable shredder residues (mixed plastics) has been investigated. Thermochemical conversion by means of High-Temperature Steam Gasification (HTSG) and High-Temperature Pyrolysis (HTP) was studied. The effects of temperature and reaction time process parameters were investigated. Comparison of the results showed that HTSG seems a more suitable process in terms of

E. Kantarelis; P. Donaj; W. Yang; A. Zabaniotou

2009-01-01

122

Ultrapyrolytic upgrading of plastic wastes and plastics\\/heavy oil mixtures to valuable light gas products  

Microsoft Academic Search

Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste

Scott Lovett; Franco Berruti; Leo A. Behie

1997-01-01

123

Two stage coprocessing of coal with model and commingled waste plastics mixtures  

Microsoft Academic Search

Coprocessing of coal with waste plastics in two separate stages was investigated in order to tailor the reaction conditions and catalysts used in each stage for the materials present. In the first stage reaction, waste plastics were liquefied at 440C (713 K) for 1 h with an initial H2 pressure of 2.8 MPa and a catalyst, either the zeolite HZSM-5

Mingsheng Luo; Christine W. Curtis

1999-01-01

124

Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers  

EPA Science Inventory

Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

125

Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA  

EPA Science Inventory

Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

126

Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers  

EPA Science Inventory

Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

127

Removal of mixtures of acetaldehyde and propionaldehyde from waste gas in packed column with immobilized activated sludge gel beads.  

PubMed

The removal of mixed acetaldehyde and propionaldehyde as a model of the binary contaminants in waste gas was studied in the packed column containing the immobilized activated sludge gel beads together with the hollow plastic balls developed for the removal of a single aldehyde in the previous work. The rate of each aldehyde biodegradation by the gel beads in the aldehydes mixture was expressed by the Michaelis-Menten type rate equation with an inhibitory term due to the other coexistent aldehyde. The kinetic parameters involved were found to be the same as those determined previously for biodegradation of a single aldehyde. A model for prediction of removal of each aldehyde in the packed column was developed assuming that each aldehyde dissolved in the aqueous phase within the gel bead was biodegraded according to the above rate equation with no mass transfer effect. The packed column was stable and efficient for removal of the binary aldehydes mixture with a very low pressure drop for gas flow due to a reduced gel beads bed compaction by the hollow plastic balls. Removal of each aldehyde decreased with increasing the inlet aldehyde concentrations since each biodegradation rate itself approached asymptotically the maximum one with increase in each aldehyde concentration. The observed removals for each aldehyde in the aldehydes mixture agreed well with those calculated from the design equations developed. The contact efficiency of gel beads with the waste gas stream was estimated to be the same value of 0.24 as in the previous work, supporting that the efficiency was specific to the geometrical and physical properties of the packed column used. PMID:11356366

Ibrahim, M A.; Mizuno, H; Yasuda, Y; Fukunaga, K; Nakao, K

2001-07-01

128

Start-up method for coal gasification plant  

SciTech Connect

A method is disclosed for initiating operation of a coal gasification plant which includes a gasification reactor and gas cleansing apparatus fabricated in part from materials susceptible to chloride induced stress corrosion cracking the presence of oxygen. The reactor is preheated by combusting a stoichiometric mixture of air and fuel to produce an exhaust gas which is then diluted with steam to produce product gas which contains essentially no free oxygen. The product gas heats the reactor to a temperature profile necessary to maintain autothermic operation of the gasification process while maintaining air oxygen-free environment within the plant apparatus while chlorine is liberated from coal being gasified.

Farnia, K.; Petit, P.J.

1983-04-05

129

Evaluation of Reactive Mixtures for Treatment of Mine Drainage From a Waste Rock Storage Area in Northern Saskatchewan, Canada  

NASA Astrophysics Data System (ADS)

A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.

Jeen, S.; Bain, J. G.; Blowes, D. W.

2007-12-01

130

Gasification: A Cornerstone Technology  

ScienceCinema

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08

131

Pulverized coal plasma gasification  

Microsoft Academic Search

A number of experiments on the plasma-vapor gasification of brown coals of three types have been carried out using an experimental plant with an electric-arc reactor of the combined type. On the basis of the material and heat balances, process parameters have been obtained: the degree of carbon gasification (?c), the level of sulfur conversion into the gas phase (?s),

R. A. Kalinenko; A. P. Kuznetsov; A. A. Levitsky; V. E. Messerle; Yu. A. Mirokhin; L. S. Polak; Z. B. Sakipov; A. B. Ustimenko

1993-01-01

132

Plasma gasification of coals  

SciTech Connect

To avoid problems of transporting coal from Siberia to the European part of the Soviet Union, plasma gasification could be used to give methane and liquid methyl fuel which could be transported by pipeline. Plasma-assisted gasification is particularly effective in the case of brown coals. (11 refs.)

Kruzhilin, G.I.; Khudyakov, G.N.; Tselishchev, P.A.

1981-01-01

133

Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities  

Microsoft Academic Search

This study investigates the feasibility of using bentonite-paste tailings (BPT) as a barrier (liner, cover) material for mine waste containment facilities. Improvements of the hydraulic properties are realized by using compaction to densify the paste tailings in the first stage and mixing an additive-like natural bentonite to paste tailings to further reduce the voids that control hydraulic conductivity in the

M. Fall; J. C. Clestin; F. S. Han

2009-01-01

134

Coal gasification and the power production market  

SciTech Connect

The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance.

Howington, K.; Flandermeyer, G. [Burns and McDonnell Engineering Co., Kansas City, MO (United States)

1995-09-01

135

Life cycle impact assessment of various waste conversion technologies.  

PubMed

Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis-gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres. Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis-gasification of MSW. A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable - highest environmental impact as well as highest costs - are the thermal cracking gasification of granulated MSW and the gasification of tyres. PMID:19157835

Khoo, Hsien H

2009-06-01

136

Potential use of densified polymer-pastefill mixture as waste containment barrier materials.  

PubMed

Mining activities generate a large amount of solid waste, such as waste rock and tailings. The surface disposal of such waste can create several environmental and geotechnical problems. Public perception and strict government regulations with regards to the disposal of such waste compel the mining industry to develop new strategies which are environmentally sound and cost effective. In this scenario, recycling of such waste into mining or civil engineering construction materials have become a great challenge for the mining and civil engineering community. Hence, in this study, taking advantage of the inherent low hydraulic conductivity of paste tailings (pastefill), small amounts (0.05, 0.1, 0.2, 0.5%) of a super absorbent polymer (SAP) are added to the latter after moisturizing the tailings. The resulting densified polymer-pastefill (PP) materials are compacted and submitted to permeability tests at room temperature and performance tests under cyclic freeze-thaw and wet-dry conditions to evaluate their suitability as a barrier for waste containment facilities. Valuable results are obtained. It is found that the hydraulic conductivity of the proposed barrier material (PP) decreases as the amount of SAP increases. Hydraulic conductivity values as low as 1 10(-7) and 6 10(-9)cm/s are obtained for PPs which contain 0.1-0.5% SAP, respectively. The PP material also shows relatively good resistance to cyclic freeze-thaw and wet-dry stresses. The results show that negligible to acceptable changes in hydraulic conductivity occur after five freeze-thaw and six wet-dry cycles. None of the changes reach one order of magnitude. As a final step, a cost analysis is undertaken to evaluate the economical benefits that could be drawn from such a proposed barrier material. When compared to a conventional compacted sand-bentonite barrier with 12% bentonite concentration, it is found that the benefit realized could be estimated to 98, 96 and 90% when using PP material that contains 0.10, 0.20 and 0.5% of SAP. From this study, it can be concluded that PP materials show encouraging performance properties for barrier design. PMID:20822894

Fall, M; Clestin, J; Sen, H F

2010-12-01

137

Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed.  

PubMed

Hazardous waste disposal is vitally important as industrial production increases. Grate furnaces are a common means to incinerate hazardous waste. In this present work, a fixed bed assembly is used to experimentally model combustion within grate furnaces. Combustion characteristics are examined and the effects of primary air rate, moisture, bed height and particle size on burning rate, ignition-front speed and temperatures in the bed are also investigated. The results indicate that a rising temperature front descends through the bed while weight loss remains constant during the main combustion stage. Primary air rates and moisture content are shown to have significant effects on burning rates and average ignition-front speeds. Bed height has no effect on burning rates but does have an effect on average ignition-front speeds. Particle size is found to have slight effects on burning rates while having no effect on average ignition-front speeds. PMID:20570042

Tao, Ling; Zhao, Guangbo; Sun, Rui; Wang, Qiang

2010-09-15

138

Nonthermal plasma alternative to the incineration of hazardous organic wastes. [Mixtures containing oil and trichloroethylene, carbon tetrachloride and trichloroethane  

SciTech Connect

We are developing silent discharge plasma (SDP) oxidation technology as an alternative to incineration and as a post-incinerator treatment process for hazardous organic wastes. As an alternative to incineration, SDP apparatus has been coupled to a high-temperature packed-bed reactor, the plasma apparatus serving as a second stage for treating gaseous effluent from the packed bed. As a post- incinerator treatment process, SDP apparatus has been evaluated using a prepared gaseous feed containing hazardous organic compounds which are expected to be found in the machining fluids (trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), and trichloroethane (TCA)). In typical tests with the packed-bed reactor alone, we have treated mixtures containing oil and several per cent TCE, TCA, or CCl{sub 4} removing the chlorocarbons to levels of ppm-order for TCA and to order {approximately}100 ppb for TCE and CCl{sub 4}, as measured in the gaseous effluent. In representative stand-alone tests with the SDP reactor, we have removed TCE in the gaseous influent from 1,000 ppm concentrations to around 100 ppb in the gaseous effluent (CCl{sub 4} appears to be more treatment-resistant). The measured figures of merit for the SDP reactor (electrical energy per mass of removed chemical) are 10's of kW-hr/kg for >>99% removal of TCE and 100's of kW-hr/kg for 90% removal of CCl{sub 4}, both being non-optimized cases in terms of waste concentration, carrier gas composition, water content, flow rate, and electrical power. Using combined packed- bed/SDP reactors on chlorocarbon/oil mixtures, several per cent chlorocarbon concentrations have been removed to well below the 100-ppb level overall. We envision eventual reductions to levels of {approximately}10 ppb or less.

Rosocha, L.A.; McCulla, W.H.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

1992-01-01

139

Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge  

PubMed Central

Ethanol production from the steam-exploded mixture of 75% cotton gin waste and 25% recycled paper sludge in various conditions was investigated by semi-simultaneous saccharification and fermentation (SSSF) consisting of a pre-hydrolysis and a simultaneous saccharification and fermentation (SSF). Four cases were studied: 24-h pre-hydrolysis+48-h SSF (SSSF 24), 12-h pre-hydrolysis+60-h SSF (SSSF 12), 72-h SSF, and 48-h hydrolysis+24-h fermentation (SHF). The ethanol concentration, yield, and productivity of SSSF 24 were higher than those of the other operations. A model of SSF was used to simulate the data for four components in SSF. The analysis of the reaction rates of cellobiose, glucose, cell, and ethanol using the model and the parameters from the experiments showed that there was a transition point of the rate-controlling step at which the cell growth control in the initial 2h was changed to the cellobiose reaction control in later period during ethanol production of SSF from the mixture. PMID:20559849

Agblevor, Foster A.

2010-01-01

140

Evaluation of zeolite-sand mixtures as reactive materials protecting groundwater at waste disposal sites.  

PubMed

To recognize properties of a mixture of Vistula sand (medium sand acc. to USCS) with Slovak zeolite as reactive materials suitable for permeable reactive barriers proposed for protection of groundwater environment in vicinity of old landfills comprehensive laboratory investigations were performed. The present study investigates the removal of contaminants specific for landfill leachates onto zeolite-sand mixtures containing 20%, 50% and 80% of zeolite (ZS20, ZS50 and ZS80). Taking into account the results of batch tests it was concluded that the Langmuir isotherm best fitted the data. It was observed that the presence of ammonium, calcium and magnesium decreases the removal efficiency of copper by 32%. Column tests of contaminant migration through the attenuation zone of the reactive materials were interpreted using the software package CXTFIT, which solves a one-dimensional advection-dispersion equation. Column test results also indicate the strong influence of the presence of interfering substances on copper immobilisation; dynamic sorption capacities decrees twofold. Throughout the landfill leachate flow through ZS80 sample, a constant reduction of NH4+ (at 100%), K+ (at 93%) and Fe(total) (at an average of 86%) were observed. There was no reduction in chemical oxygen demand and biochemical oxygen demand. PMID:24520718

Joanna, Fronczyk; Kazimierz, Garbulewski

2013-09-01

141

Effects of Nutrient Additives and Sodium Hydroxide on Ensiling Characteristics and In Vitro Fiber Digestion Kinetics of Dairy Cattle Waste-Energy Feedstuff Mixtures  

Microsoft Academic Search

Dairy waste fiber was mixed in ratio 1:1 (dry matter basis) with ground alfalfa hay, chopped cornstalks, chopped whole corn plant, or ground corn. Prior to ensiling, mixtures received either no additive, dry cane molasses at 5% of dry matter, urea at 1% of dry matter, dry cane molasses at 5% plus urea at 1% of dry matter, sodium hydroxide

C. R. Staples; R. L. Fernando; G. C. Fahey Jr.; L. L. Berger; E. H. Jaster

1985-01-01

142

Integrated bioenergy conversion concepts for small scale gasification power systems  

NASA Astrophysics Data System (ADS)

Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the microorganisms used to deal with tars are selected and pre-conditioned to the tar environment. Overall, the results provided a basis for operational and design strategy for a combined gasification system but further study is recommended such as determination of the impacts in terms of emissions, power, efficiency and costs associated with the use of producer gas-enriched biogas taking advantage of hydrogen enrichment to reduce NOx and other pollutants in reciprocating engines and other energy conversion systems.

Aldas, Rizaldo Elauria

143

Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste  

SciTech Connect

As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

1995-08-01

144

Energy recovery via mild gasification  

SciTech Connect

A mild gasification research process unit capable of processing up to one ton of coal per day has been constructed at UCC Research Corporation, Bristol, Virginia. The unit is very flexible utilizing coal preparation waste, bituminous, and subbituminous coal as feedstocks. The results, to date, have been encouraging, in that a high quality condensable hydrocarbon has been produced and a char produced which would be a desirable feed for a number of applications. The condensable hydrocarbons have applications as an additive for diesel and gasoline fuels, and either a boiler or turbine fuel. The char has a number of applications, such as in pulverized and/or fluidized-bed industrial and utility boilers, blast furnaces and foundary coke blending systems, and smokeless fuel systems. The facility became operational in November, 1985. The process description and data obtained, to date are described in this paper.

Wolfe, R.A.; Im, C.J.; Gillespie, B.L.; Ghate, M.R.

1986-09-01

145

Thermal expansion of slag and fly ash from coal gasification in IGCC power plant  

Microsoft Academic Search

Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and

M. Aineto; A. Acosta; J. Ma. Rincn; M. Romero

2006-01-01

146

Coal Gasification and Coal Hydrogenation.  

National Technical Information Service (NTIS)

The present state of the development works on the coal gasification and coal hydrogenation processes carried out by the coal producing and engineering companies is presented. The coal gasification projects are the following: Texaco suspended dust gasifica...

1980-01-01

147

Characterisation and fingerprinting of PCBs in flue gas and ash from waste incineration and in technical mixtures.  

PubMed

Congener patterns of mono- to deca-chlorinated biphenyls (PC1-10B) were evaluated in (a) waste incineration flue gases collected in the post-combustion zone of a laboratory-scale fluidized-bed reactor, (b) ashes from two different MSW incineration plants, and (c) published data of eight Aroclor formulations. The congener patterns of the flue gases, ashes, and Aroclor mixtures clearly differed from each other, likely reflecting differences in formation pathways. The flue gas congener patterns were largely dominated by the least chlorinated congeners, whereas the ashes displayed more evenly distributed patterns. The most abundant congeners indicated a preference for 3,3',4,4'-oriented substitution, which may be related to de novo-type formation involving perylene. Principal component analysis confirmed that congener patterns differed among the three matrices and also distinguished flue gases collected at 200 C from those collected at 300 C and 450 C. This distinction could be partly explained by the degree of chlorination, although the substitution status of the ortho-position, and substitution in the 3,3',4,4'-positions also seemed to be influential. Injecting biphenyl into the post-combustion zone of the reactor did not alter the patterns, indicating that availability of the backbone structure is not a limiting factor for PCB formation. PMID:21885088

Jansson, Stina; Lundin, Lisa; Grabic, Roman

2011-10-01

148

Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility  

SciTech Connect

The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

2013-07-31

149

Gasification of various coals in molten salts  

SciTech Connect

The utilization of the US coal reserves in a manner which does not add to the existing pollution problem is of utmost importance in the interest of conservation of more valuable natural resources in the national economy. Gasification of coal and generation of clean fuel gas offers one of the most promising approaches to the utilization of coal. It has been assigned a high priority in the US Energy Development Program. Several of the coal gasification processes presently under development are now at the initial pilot plant operation stage. One of these processes is the Rockwell International Molten Salt Coal Gasification Process (Rockgas Process). In this process, the coal is gasified at a temperature of about 1800/sup 0/F and at pressures up to 30 atm by reaction with air in a highly turbulent mixture of molten sodium carbonate containing sodium sulfide, ash, and unreacted carbonaceous material. The sulfur and ash of the coal are retained in the melt, a small stream of which is continuously circulated through a process system for regeneration of the sodium carbonate, removal of the ash, and recovery of elemental sulfur. A molten salt coal gasification process development unit capable of converting 1 ton of coal per hour into low-Btu fuel gas at pressures up to 20 atm is currently undergoing testing under contract to the Department of Energy. Preliminary to the PDU, a considerable amount of laboratory testing took place. These tests were conducted in a bench-scale, 6-in.-dia gasifier in which coals of different rank were continuously gasified in the melt. The tests resulted in a better understanding of the gasification process. The purpose of this paper is to describe these laboratory tests and to discuss some of the chemistry taking place in the gasifier. Emphasis is placed on the effect of coal rank on the chemistry.

Yosim, S.J.; Barclay, K.M.

1980-01-01

150

Gasification of bagasse in the presence of a pilot flame in a modified fluidized bed  

SciTech Connect

Solid waste can be efficiently gasified in the presence of a pilot flame in a modified fluidized bed. About 95% of the feed solids were gasified at a moderate temperature by this gasification process. The data of the degree of gasification were obtained and the factors that affected the formation and characteristics of the solid particles of products during gasification are described. The air-to-solid feed ratio was a major operating variable in this process. The reaction mechanisms of solid gasification in the presence of a pilot flame are also discussed.

Chou, T.C.; Chang, K.T.

1981-01-01

151

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

John W. Rich

2003-12-01

152

Characterization of Pricetown I underground gasification knockout pot condensates  

Microsoft Academic Search

The light oil collected in the knockout pot during the underground coal gasification (UCG) experiment at Pricetown, West Virginia, was characterized. Boiling range, elution chromatography, gas chromatography, mass spectrometry, nuclear magnetic resonance, infrared spectroscopy, elemental analysis, and physical tests were used to characterize the oil. The oil can be characterized as a light, highly aromatic mixture with significant amounts of

S. M. Craven; B. D. Craft; V. M. Franchetti; C. Kinard; E. B. Nunn; E. M. Pitre; R. L. Ryan

1980-01-01

153

Influence of mixture ratio and pH to solidification/stabilization process of hospital solid waste incineration ash in Portland cement.  

PubMed

Solidification/stabilization (S/S) is an established utilization technology to treat hazardous wastes. This research explored the influence of pH (3-12) on the immobilization of heavy metals present in five mixtures of hospital solid waste incinerator ash and Portland cement, following two different processes of waste solidification/stabilization (cement hydration and granulation). In general, cement hydration process resulted in more stable products than granulation process. A high ash content in the mixture with Portland cement (60wt%) resulted in the highest immobilization of Pb(2+) and Cu(2+), while a low ash content in the mixture (10wt%) resulted in the lowest leachability of Zn(2+). When ash and Portland cement was mixed in equal proportions (50wt%) the highest encapsulation was observed for Ni(2+), Cd(2+) and Cr(3+). Neutral and weak alkaline pH values within the range pH=7-8 resulted in the lowest leachability of the monitored heavy metals. PMID:24997895

Sobiecka, Elzbieta; Obraniak, Andrzej; Antizar-Ladislao, Blanca

2014-09-01

154

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho. [Waste mixtures of hazardous materials and low-level radioactive wastes or transuranic wastes  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

Not Available

1993-04-01

155

The ENCOAL Mild Gasification Demonstration Project  

SciTech Connect

The DOE plans to enter into a Cooperative Agreement with ENCOAL Corporation, a wholly owned subsidiary of Shell Mining Company, for the cost-shared design, construction and operation of a mild gasification facility based on Liquids-from-Coal (LFC) technology. The facility is planned to be located at the Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The mild gasification process to be demonstrated will produce two new, low-sulfur fuel forms (a solid and a liquid) from subbituminous coal. The new fuel forms would be suitable for combustion in commercial, industrial, and utility boilers. This environmental assessment has been prepared by the DOE to comply with the requirements of the NEPA. Pollutant emissions, land use, water, and waste management are briefly discussed. 3 figs., 5 tabs.

Not Available

1990-07-01

156

Hydrogen production from municipal solid waste  

SciTech Connect

We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

1996-06-28

157

Catalyzed gasification of biomass  

Microsoft Academic Search

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is

L. J. Jr. Sealock; R. J. Robertus; L. K. Mudge; D. H. Mitchell; J. L. Cox

1978-01-01

158

Hybrid solar coal gasification  

Microsoft Academic Search

The University of New Hampshire is engaged in the research and development of a Gas Recirculation Two Stage Fluidized-Bed Hybrid Coal Gasification System where the heat required for the endothermic reactions of coal, lignite, or biomass with steam for the production of synthesis gas (CO + H) is supplied by solar energy. This paper describes the experimental set-up and discusses

V. K. Mathur; S. Canguly; S. Chaudhary

1983-01-01

159

Advanced hybrid gasification facility  

SciTech Connect

The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

1993-08-01

160

Potential of producing hydrogen and high Btu gas from steam gasification of lignins  

SciTech Connect

Generally, lignins are considered as a waste product from the pulp and paper industry. In this work, the authors have attempted to convert a number of lignins to hydrogen and high Btu gas by gasifying them with steam. Steam gasification of three lignins, namely, Kraft-1, Kraft-2 and Alcell was carried out in a fixed bed reactor in the temperature range 600--800 C. The steam flow rate was 10 g/h/g of lignin. As expected, lignin conversion was highest at 800 C and followed the order Kraft-1 {gt} Kraft-2 {gt} Alcell. The product gas consisted of H{sub 2}, CO, CO{sub 2}, and CH{sub 4}, C{sub 2} and C{sub 3+} hydrocarbons. The Btu value of the product gas ranged between 450--850 Btu/scf. It was interesting to observe that the H{sub 2} content was fairly high and ranged between 30--50 mol% of the product gas mixture. In addition, the effect of steam flow rate (5--15 g/h/g of lignin) was also studied at a fixed temperature of 800 C. It was interesting to observe that at high steam flow rates, the lignin conversion increased and the process resulted in high selectivity for CH{sub 4}. All these three lignins have been thoroughly characterized. A comparison of these results with results obtained from steam gasification of biomass-derived chars will also be presented.

Iqbal, M.; Dalai, A.K.; Bakhshi, N.N.; Thring, R.W.

1998-07-01

161

Modeling of catalytic char gasification  

SciTech Connect

A mathematical model is presented for catalytic char gasification where naturally occurring mineral impurities catalyse the gasification reactors. The model is based on a probabilistic description of the evolution of the catalytically active mineral surface during the gasification of a single char particle. An expression is obtained for the decay of the active surface area with carbon conversion which, in conjunction with an available pore structure model provides an excellent representation of experimental data. The model is also applied to the gasification of char particles impregnated with catalytically active salts, and model predictions again show good agreement with experimental data.

Reyes, S.; Jensen, K.F.

1984-05-01

162

Coal gasification: Technology status report  

SciTech Connect

The US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) is currently sponsoring research and development (R and D) activities in surface coal gasification. The activities are primarily aimed at exploring and developing flexibility of the coal gasification technology. A wide range of technical needs could then be met for systems that are based on coal gasification. The systems include (1) integrated gasification combined cycle (IGCC) for electric power production, (2) production of synthesis gas, (3) production of value-added coproducts, and (4) production of industrial fuel gas. The R and D projects that are included in the Surface Coal Gasification Program cover a wide spectrum of technology development stages. These projects range from laboratory-scale investigations of a fundamental nature to the engineering-scale process development units (PDU's). In the area of laboratory-scale projects, fundamentals of gasification, gas purification, and gas separation are investigated to understand certain key parameters that will lead to gasification-based systems as the most desired energy alternatives. For the engineering-scale PDU's, novel process concepts are evaluated to obtain critical engineering and process data to translate the concepts into sound engineering designs. In addition, activities in the area of mathematical interpretation of coal gasification and associated gas separation and gas purification technologies are pursued to develop predictive capabilities and to conduct preliminary evaluations of various systems. This report provides comprehensive summaries of major accomplishments of the various projects in the Surface Coal Gasification Program. 5 refs., 18 figs., 4 tabs.

Not Available

1986-12-01

163

Catalytic gasification of biomass  

NASA Astrophysics Data System (ADS)

Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

1981-12-01

164

The thermochemical analysis of the effectiveness of various gasification technologies  

NASA Astrophysics Data System (ADS)

The authors studied the process of gasification of solid fuels and wastes by means of modified model accounting the absence of equilibrium in the Boudouard reaction. A comparison was made between auto- and allothermal gasification, and it was demonstrated that the former method is more advantageous with respect to (as an indicator) thermochemical efficiency. The feasibility of producing highly calorific synthesis gas using an oxygen blast is discussed. A thermodynamic model of the facility for producing such synthesis gas has been developed that involves the gas turbine used for driving an oxygen plant of the adsorption type.

Ivanov, P. P.; Kovbasyuk, V. I.; Medvedev, Yu. V.

2013-05-01

165

Plasma Treatments and Biomass Gasification  

NASA Astrophysics Data System (ADS)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Ld, J.

2012-02-01

166

The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding  

NASA Astrophysics Data System (ADS)

In this paper, we numerically solve the Saha equations to drive the number densities of electrons and ions, the degrees of ionization of the plasma as well as the refractive indices and the inverse Bremsstrahlung absorption coefficients as a function of temperature for a variety of volume ratios of the (He+Ar) mixtures. Furthermore, the heat transfer equation was solved to determine the plasma temperature. The effect of shielding gas volume ratios on the power waste parameters was estimated during long pulse Nd:YAG and CW CO2 laser welding accompanying the experimental verification.

Hosseini Motlagh, N. S.; Parvin, P.; Jandaghi, M.; Torkamany, M. J.

2013-12-01

167

Kosova coal gasification plant health effects study: Volume 1, Summary  

SciTech Connect

This is the summary volume of a three-volume report of the Kosova coal gasification plant health effects study. The plant is of the Lurgi type and began commercial operation in 1971. The study was conducted under the auspices of the U.S.-Yugoslav Joint Board for Scientific and Technological Cooperation. It had five overall purposes: (1) Identify potential health risks in the gasification plant and provide information on possible control measures. (2) Use the experience in Kosova as a basis of judging potential health risks and avoiding potential problems at future commercial scale gasification plants in the United States and Yuogoslavia. (3) Acquire information on industrial hygiene practices at an operating commercial scale coal gasification plant. (4) Use the experience in Kosova to contribute to understanding dose-response relationships of exposure to complex organic mixtures. (5) Increase the scientific capabilities of scientists in Kosova in the areas of epidemiology and industrial hygiene. This report introduced the Kosova gasification plant and the study design and summarizes the preliminary studies of 1981 to 1983, the detailed characterization campaign of 1984, the retrospective epidemiology study, ongoing clinical studies, and the successful technology transfer. It presents conclusions and recommendations from the industrial hygiene and epidemiology studies. 18 refs.

Morris, S.C.; Jackson, J.O.; Haxhiu, M.A.

1987-03-01

168

Catalysis in biomass gasification  

SciTech Connect

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01

169

RESEARCH INTO EMERGING WASTE ISSUES  

EPA Science Inventory

The purpose of this project is to investigate emerging waste issues. In particular, 2 issues have been raised in the last year that have major implications for the waste disposal industry: 1) waste gasification; and 2) proliferation of electronics waste. APPCD loaned a h...

170

Laboratory determination of migration of Eu(III) in compacted bentonite-sand mixtures as buffer/backfill material for high-level waste disposal.  

PubMed

For the safety assessment of geological disposal of high-level radioactive waste (HLW), the migration of Eu(III) through compacted bentonite-sand mixtures was measured under expected repository conditions. Under the evaluated conditions, advection and dispersion is the dominant migration mechanism. The role of sorption on the retardation of migration was also evaluated. The hydraulic conductivities of compacted bentonite-sand mixtures were K=2.0710(-10)-5.2310(-10)cm/s, The sorption and diffusion of Eu(III) were examined using a flexible wall permeameter for a solute concentration of 2.010(-5)mol/l. The effective diffusion coefficients and apparent diffusion coefficients of Eu(III) in compacted bentonite-sand mixtures were in the range of 1.6210(-12)-4.8710(-12)m(2)/s, 1.4410(-14)-9.4110(-14)m(2)/s, respectively, which has a very important significance to forecast the relationship between migration length of Eu(III) in buffer/backfill material and time and provide a reference for the design of buffer/backfill material for HLW disposal in China. PMID:23994739

Zhou, Lang; Zhang, Huyuan; Yan, Ming; Chen, Hang; Zhang, Ming

2013-12-01

171

Production of hydrogen-rich syngas from steam gasification of blend of biosolids and wood using a dual fluidised bed gasifier  

Microsoft Academic Search

A study was undertaken on steam gasification of mixtures of wood pellets and biosolids (dried sewage sludge). The gasification experiments were conducted in a fast circulating dual fluidised bed gasifier. In the experiments, the gasification temperature was set at 720C and the fuel feeding rate to the gasifier was 15.5kg\\/h (as received). The biosolids was blended with wood pellets, with

Woei Saw; Hamish McKinnon; Ian Gilmour; Shusheng Pang

172

Consolidation, permeability, and strength of crushed salt/bentonite mixtures with application to the WIPP (Waste Isolation Pilot Plant)  

SciTech Connect

Three tests were performed to measure the consolidation, permeability, and compressive strength of specimens prepared from bentonite/crushed salt mixtures. Each mixture comprised 30% bentonite and 70% crushed salt based on total dry weight. Brine was added to each mixture to adjust its water content to either 5 or 10% (nominal) of the total dry weight of the mixture. In the consolidation tests, each specimen was subjected to multiple stages of successively higher hydrostatic stress (pressure). During each stage, the pressure was maintained at a constant level and volumetric strain data were continuously logged. By using multiple stages, consolidation data were obtained at several pressures and the time required to consolidate the specimens to full saturation was reduced. Once full saturation was achieved, each specimen was subjected to a final test stage in which the hydrostatic stress was reduced and a permeability test performed. Permeability was measured using the steady flow of brine and was found to range between 1 {times} 10{sup {minus}17} and 5 {times} 10{sup {minus}17} m{sup 2}. After the final test stage, unconfined compressive strength was determined for each specimen and was found to range between 0.5 and 8.1 MPa. Two constitutive models were fitted to the consolidation data. One relatively simple model related volumetric strain to time while the other related instantaneous density to time, pressure, and initial density. 8 refs., 9 figs., 8 tabs.

Pfeifle, T.W. (RE/SPEC, Inc., Rapid City, SD (USA))

1991-01-01

173

Melt crystallization for refinement of triolein and palmitic acid mixture as a model waste oil for biodiesel fuel production  

NASA Astrophysics Data System (ADS)

Melt crystallization using an annular vessel with two circular cylinders was applied to produce high-quality vegetable oil from waste oil. The inner cylinder was cooled at a constant rate and rotated, and the outer cylinder was heated at a constant temperature. The melt was solidified on the inner cylinder surface. The binary system of triolein and palmitic acid was used as the model waste oil. We measured the distribution coefficient of triolein. Suitable operation conditions were proposed to attain a high yield and a high purity of triolein from waste oil. The distribution coefficient correlated well with the theoretical equation derived on the basis of the "local lever rule" at the interface of the crystal layer and melt [1].

Fukui, Keisuke; Maeda, Kouji; Kuramochi, Hidetoshi

2013-06-01

174

The destruction of chemical warfare surrogates and subsequent phosphorus distribution during gasification  

Microsoft Academic Search

The ChemChar process enables gasification of a wide variety of liquid and sludge wastes on a readily handled macroporous granular char. The process produces combustible gas products, largely retains metals and halides on the char matrix, and effectively destroys organohalides without producing SOX, NOX, chlorinated dibenzodioxins or chlorinated dibenzoflirans (which can occur with incineration). To study chemical warfare agent wastes

R. Scott Martin; Stanley E. Manahan; J. Steven Morris; David W. Larsen

1999-01-01

175

Occupational Exposure Evaluation of Complex Vapor Mixtures at the Hanford Nuclear Waste Site, Washington Work-site Vapor Characterization  

SciTech Connect

Extensive sampling and analysis has been done over the years to characterize the radioactive and chemical properties of hazardous waste stored in 177 underground tanks at the Hanford site in eastern Washington State. The purpose of these analyses was to evaluate safety and environmental concerns related to tank stability. More recently, characterization studies have broadened to evaluate potential health hazards of chemical vapors at the ground surface, where workers perform maintenance and waste transfer activities. Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. The extensive sampling done during this campaign evaluated vapor concentrations of more than 100 different chemical at 70 sites in and around one section of the tank farms. Sampling identified only four vapors (ammonia, nitrous oxide, nitrosodimethylamine, and nitrosomethylethylamine) that were present above occupational exposure limits. These elevated concentrations were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors were measured above 10% of their OELs more than five feet from the source. This suggests that vapor controls can be focused on limited hazard zones around sources. (authors)

Anderson, T. J. [CH2M HILL Hanford Group, Inc. / Environmental Health, P.O. Box 1000, S7-70, Richland, WA 99352 (United States)

2006-07-01

176

In Situ Causticizing for Black Liquor Gasification  

SciTech Connect

Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

Scott Alan Sinquefield

2005-10-01

177

Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.  

PubMed

Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows. PMID:24871934

Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

2014-07-01

178

Coal gasification vessel  

DOEpatents

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01

179

Mild gasification of coal  

SciTech Connect

The objective of this initial year's mission-oriented multi-year program is to develop a process chemistry data base for the mild gasification of coal with emphasis on eastern bituminous coal. One important objective of this program was to obtain the trends in product formation from different coals as a function of several process variables which included temperature, pressure, coal particle residence time, coal flow rate, type of additives such as lime, limestone, silica flour and ash in a short period of time. This was achieved by a careful development of a test matrix using a fractional factorial statistical design. The equipment used was the Brookhaven National Laboratory (BNL) combination stirred moving-bed, entrained-tubular reactor which is capable of processing 2 to 3 pounds of coal per hour. A Wellmore Kentucky No. 8 bituminous coal, a Pittsburgh No. 8 bituminous coal and a Mississippi lignite with particles having a size of 150 {mu}m or less were selected for this study. The mild gasification experiments were conducted at temperatures from 550{degree} to 650{degree}C at nitrogen sweep gas pressures of 15 to 50 psi and residence times of 0.1 to 2 min. The coal flow rate was 0. 4 to 1.0 lb/hr and the concentration of the lime additives was 0 to 10% by weight of the dry coal feed. All variables were tested at two different levels, low and high, corresponding to the above ranges of the variables. A rapid calculation of the main effects and interactions was made using Yate's algorithm and the significance of the effects was determined from the normal probability plots. 10 refs., 26 figs., 11 tabs.

Sundaram, M.S.; Fallon, P.T.; Steinberg, M.

1989-01-01

180

Extraction of ?-3 fatty acids and astaxanthin from Brazilian redspotted shrimp waste using supercritical CO 2 + ethanol mixtures  

Microsoft Academic Search

In this study, the effect of ethanol addition to supercritical carbon dioxide (scCO2) on the extraction of astaxanthin and ?-3 fatty acid (EPA+DHA, mainly) from redspotted shrimp waste (Farfantepenaeus paulensis) was investigated. The co-solvent was used in the ratios of 5, 10 and 15%wt. and the conditions of temperature and pressure (300bar and 50C) were adopted according to results achieved

Andrea P. Snchez-Camargo; M. ngela A. Meireles; Ana L. K. Ferreira; Erika Saito; Fernando A. Cabral

181

Power generation potential of biomass gasification systems  

SciTech Connect

Biomass has the potential to contribute a significant portion of the electricity consumed in industrialized nations and a major share of the power mix in developing countries. In addition to providing an alternative to fossil-fuel-based energy and creating new markets for agriculture, a renewable resource like biomass used in a sustainable fashion facilitates closure of the carbon cycle. To realize these benefits, particularly in the shadow of uncertainties cast by deregulation and recent changes in federal energy and agricultural policies, biomass power systems must be competitive with incumbent power-generation technologies in terms of generation efficiency and overall cost. Anticipated performance and cost of biomass-based integrated gasification, combined-cycle power systems are discussed. The electric power that can be generated worldwide using existing biomass resources (primarily crop residues and wastes) and the potential amount that could be generated from crops grown specifically for electricity generation are projected. Technical and economic obstacles that must be overcome before advanced biomass-power systems based on aeroderivative turbines or fuel cells can become fully commercial are identified. Research, development, and demonstration efforts under way or being planned to overcome those obstacles are described; developments in a major biomass gasification demonstration project taking place in Hawaii under the auspices of the US Department of Energy and the State of Hawaii are detailed.

Kinoshita, C.M.; Turn, S.Q. [Univ. of Hawaii, Honolulu, HI (United States); Overend, R.P.; Bain, R.L. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-01

182

Hydrogen Production from Biomass via Supercritical Water Gasification  

Microsoft Academic Search

Comparison with other biomass thermochemical gasification, such as air gasification or steam gasification, the supercritical water gasification can directly deal with the wet biomass without drying, and has high gasification efficiency in lower temperatures. The cost of hydrogen production from supercritical water gasification of wet biomass was several times higher than the current price of hydrogen from steam methane reforming.

A. Demirbas

2010-01-01

183

A life cycle evaluation of wood pellet gasification for district heating in British Columbia.  

PubMed

The replacement of natural gas combustion for district heating by wood waste and wood pellets gasification systems with or without emission control has been investigated by a streamlined LCA. While stack emissions from controlled gasification systems are lower than the applicable regulations, compared to the current base case, 12% and 133% increases are expected in the overall human health impacts for wood pellets and wood waste, respectively. With controlled gasification, external costs and GHG emission can be reduced by 35% and 82% on average, respectively. Between wood pellets and wood waste, wood pellets appear to be the better choice as it requires less primary energy and has a much lower impact on the local air quality. PMID:21377867

Pa, Ann; Bi, Xiaotao T; Sokhansanj, Shahab

2011-05-01

184

Challenges using a {sup 252}Cf shuffler instrument in a plant environment to measure mixtures of uranium and plutonium transuranic waste  

SciTech Connect

An active-passive {sup 252}Cf shuffler instrument, installed and certified several years ago at Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU) waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here.

Hurd, J.R.

1999-08-29

185

Technology Assessment Report: Aqueous Sludge Gasification Technologies  

EPA Science Inventory

The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

186

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31

187

Costs and technical characteristics of environmental control processes for low-Btu coal gasification plants  

SciTech Connect

Technical characteristics and costs of 25 individual environmental control processes that can be used for treating low-Btu coal gas are given. These processes are chosen from a much larger array of potential environmental control processes because of their likely applicability to low-Btu coal gasification operations and because of the limited scope of this study. The selected processes cover gas treating, by-product recovery, wastewater treating, and particulate recovery operations that are expected to be encountered in coal gasification operations. Although the existence of the Resource Conservtion and Recovery Act of 1976 is recognized, no treatment schemes for solid wastes are evaluated because of the paucity of information in this area. The potential costs of emission controls (by using eight integrated combinations of these 25 environmental control processes) in conceptual low-Btu coal gasification plants are given in an adjunct report titled Evaluation of Eight Environmental Control Systems for Low-Btu Coal Gasification Plants, ORNL-5481.

Singh, S.P.N.; Salmon, R.; Fisher, J.F.; Peterson, G.R.

1980-06-01

188

Coal gasification: A multiple talent  

SciTech Connect

Coal Gasification is on a pressurized route to commercial application. Ground breaking was performed by the Cool Water, Tennessee Eastman and UBE plants. Now several technical and commercial demonstrations are underway not only to show the readiness of the technology for commercial application. Another goal is further developed to reduce costs and to rise efficiency. The main feature of coal gasification is that it transforms a difficult-to-handle fuel into an easy-to-handle one. Through a high efficient gas-turbine cycle-power production becomes easy, efficient and clean. Between gasification and power production several more or less difficult hurdles have to be taken. In the past several studies and R and D work have been performed by Novem as by others to get insight in these steps. Goals were to develop easier, more efficient and less costly performance of the total combination for power production. This paper will give an overview of these studies and developments to be expected. Subjects will be fuel diversification, gas treating and the combination of Integrated Coal Gasification Combined Cycle with several cycle and production of chemical products. As a conclusion a guide will be given on the way to a clean, efficient and commercial acceptable application of coal gasification. A relation to other emerging technologies for power production with coal will be presented.

Schreurs, H.

1996-12-31

189

Waste  

SciTech Connect

A process for converting wastes in molten salts into usable fuels is described. The molten salt acts as a reaction medium and potential acidic pollutants are retained in the melt. The waste is converted to a fuel gas by reacting it with insufficient air for complete conversion to CO/sub 2/ and H/sub 2/O. The product gas is cleared of particles using a baghouse or venturi scrubber and it is then burned in a boiler to produce steam. The results for waste streams containing a high-sulfur oil refinery waste, rubber, wood, leather scraps, and waste x-ray film are presented in this article.

Gay, R.L.; Barclay, K.M.; Grantham, L.F.; Yosim, S.J.

1981-09-01

190

On the Propagation of a Reaction Front Through a Porous Fuel in the Presence of an Opposed Forced Flow: Application to Mixtures Characteristic of Municipal Waste  

Microsoft Academic Search

An expression for the propagation velocity of a reaction front in a porous solid material is obtained by using a one-dimensional energy conservation equation. The reaction is divided in two distinct fronts.an ignition front where gasification of large part of the fuel occursand a flamingfront where gas phase oxidation takes place. Forced flow and reaction move in opposite directions, so,

X. ZHOU; J. L. TORERO; J. C. GOUDEAU; B. BREGEON

1995-01-01

191

Interaction of subsurface waters with the combustion site during underground coal gasification  

Microsoft Academic Search

and important problem determining the expediency of using UCG when mining coal deposits. The main sources of subsurface water pollution during UCG are the combustion site in the coal bed and gasification products, representing a mixture of steam and gas products of complete and incomplete combustion of coal and its thermal decomposition, which can enter substtrface waters and be dissolved

E. V. Dvornikova; E. V. Kreinin

1993-01-01

192

Carbon-catalyzed gasification of organic feedstocks in supercritical water  

SciTech Connect

Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.] [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-08-01

193

Technical and economic feasibility of utilizing coal conversion solid wastes  

SciTech Connect

Coal gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization. A Gas Research Institute project (1) was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant Gasifier Ash (GPGA) and the Antelope Valley Power Plant combustion ash (AVS) with existing practiacl economic possibilities. This paper summarizes three years of bulk utilization research on the GPGA gasifier ash and the AVS scrubber and bottom ash. The following options were explored: mineral wool, sulfur concrete, high-flexural-strength ceramics, dual concrete replacement, and road stabilization. Where possible, standard ASTM procedures were followed. For most of the options investigated, considerable time was saved by drawing on previous experience in the UND testing laboratory. Efforts were concentrated towards utilization of the ashes in products that would be economical on a full-scale basis. Mineral wool was formed by blowing air on molten ash generated with an outdoor pilot plant cupola, as well as an electric arc rocking laboratory furnace. Modified sulfur and ash mixtures were heated, mixed, and formed into suitable specimens for flexure and compression testing.

Manz, O.E.; Laudal, D.L.; Gorenewold, G.H.; Beaver, F.W. (Univ. of North Dakota, Grand Forks, ND (US))

1987-01-01

194

Integrated gasification combined cycle -- A review of IGCC technology  

SciTech Connect

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which made this system environmentally preferable. Commercial-scale demonstration of a cool water plant and other studies have shown that the greenhouse gas and particulates emission from an IGCC plant is drastically lower than the recommended federal New Source Performance Standard levels. IGCC also offers a phased construction and repowering option, which allows multiple-fuel flexibility and the necessary economic viability. IGCC technology advances continue to improve efficiency and further reduce the emissions, making it the technology of the 21st century.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1996-07-01

195

Coal gasification 2006: roadmap to commercialization  

SciTech Connect

Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

NONE

2006-05-15

196

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

NONE

1997-07-01

197

Plasma gasification of organic containing substances as a promising way of development of alternative renewable power engineering  

NASA Astrophysics Data System (ADS)

The paper deals with perspectives of large-scale implementation of the plasma gasification process of solid organic-containing substances as a source of renewable energy. First of all, such substances as wood waste, agriculture waste, solid household waste are considered. Thanks to the process of the plasma high-temperature gasification the energy of their combustion can be completely converted into the energy of the synthesis gas combustion, which use as a fuel for the combined cycle allows electricity generation with efficiency of ~60 %. Thus, if the psychogenesis production wastes are considered, this technology enables avoiding additional emission of carbon dioxide into biosphere as for production of biomass from biosphere it is extracted the same amount of carbon dioxide as is emitted at its combustion. The report represents the realized and developing designs of plasma gasification, their advantages and deficiencies.

Rutberg, Ph G.; Bratsev, A. N.; Kuznetsov, V. A.; Kumkova, I. I.; Popov, V. E.; Surov, A. V.

2012-12-01

198

BIMOMASS GASIFICATION PILOT PLANT STUDY  

EPA Science Inventory

The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

199

Mixture Experiments  

SciTech Connect

A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

Piepel, Gregory F.

2007-12-01

200

THERMAL TREATMENT REVIEW . WTE I THERMAL TREATMENT Since the beginning of this century, global waste-to-energy capacity  

E-print Network

waste-to-energy capacity has increased steadily at the rate of about four million tonnes of MSW per year of new waste-to gasification process at an industrial scale The Waste-To-Energy Research and Technology

Columbia University

201

The technical and economic feasibility of biomass gasification for power generation  

Microsoft Academic Search

This paper reviews the costs and technologies involved in an integrated system for the production of electricity from biomass in general and wood in particular. It first examines the economics of gasification, showing that the potential for this form of renewable energy lies in either processing low-cost wastes or relying on some sort of fiscal incentive, even at relatively large

A. V. Bridgwater

1995-01-01

202

[Toxicity studies of mild gasification products]. [Quarterly report, October 1, 1992--December 31, 1992  

SciTech Connect

Mild gasification of coal is a technology being developed by the United States Department of Energy and private industry with the hope that a cleaner method of coal use can help meet future energy needs. As the technology develops and its commercial use becomes a more viable possibility, efforts are being made to study the safety or possible toxicity of the mild gasification products. DOE and the National Institute for occupational Safety and Health (NIOSH) are cooperating through an interagency agreement to examine some of these products for their genotoxic potential. NIOSH has studied the mutagenicity of several mild gasification product samples using the Ames Salmonella/microsomal assay. As reported earlier PSIS{number_sign}830331 failed to demonstrate genotoxic activity in the Ames assay under all conditions tested. Since the mild gasification products are complex mixtures, interactions between various components are likely to occur. Such interactions between various components of complex mixtures may increase or decrease genotoxic activity in short-term assays like the Ames test. Although all synergistic interactions may not be detailed, the separate analysis of those components in several classes provides a more accurate view of the genotoxicity of each component and better allows for chemical characterization of the possible mutagens in the mixture. NIOSH has performed mutagenicity studies on the subfractions of PSIS{number_sign}830331. The results of those studies are detailed in this report.

Not Available

1992-12-31

203

USE OF A MIXTURE OF TRPO AND TBP FOR THE PARTITIONING OF ACTINIDES FROM HIGH-LEVEL WASTE SOLUTIONS OF PUREX ORIGIN AND ITS COMPARISON WITH CMPO AND OTHER PHOSPHORUS-BASED EXTRACTANTS  

Microsoft Academic Search

The partitioning of long-lived alpha-emitting actinides, present in high-level radioactive waste (HLW) solutions from PUREX reprocessing of spent nuclear fuels, has been carried out using a commercially available, reasonably inexpensive, trialkylphosphine oxide (TRPO), Cyanex-923 alone or its mixture with tri-n-butylphosphate (TBP) in dodecane. The studies have been carried out from nitric acid as well as from three types of synthetic

M. S. Murali; J. N. Mathur

2001-01-01

204

Pyrolysis and gasification-melting of automobile shredder residue.  

PubMed

Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations. PMID:24282966

Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil

2013-10-01

205

Separation of products from mild coal gasification processes  

SciTech Connect

The primary mild coal gasification product mixture containing noncondensible gas, high-boiling hydrocarbon vapors and entrained fines is difficult to process into the desired pure products: gas, liquids, and dry solids. This challenge for mild coal gasification process development has been studied by surveying the technical literature for suitable separations processes and for similar issues in related processes. The choice for a first-stage solids separation step is standard cyclones, arranged in parallel trains for large-volume applications in order to take advantage of the higher separation efficiency of smaller cyclones. However, mild gasification pilot-plant data show entrainment of ultrafine particles for which standard cyclones have poor separation efficiency. A hot secondary solids separation step is needed for the ultrafine entrainment in order to protect the liquid product from excessive amounts of contaminating solids. The secondary solids separation step is similar to many high-temperature flue-gas applications with an important complicating condition: Mild gasifier vapors form coke on surfaces in contact with the vapors. Plugging of the filter medium by coke deposition is concluded to be the main product separation problem for mild gasification. Three approaches to solution of this problem are discussed in the order of preference: (1) a barrier filter medium made of a perforated foil that is easy to regenerate, (2) a high-efficiency cyclone coupled with recycle of a solids-containing tar fraction for coking/cracking in the gasifier, and (3) a granular moving bed filter with regeneration of the bed material. The condensation of oil vapors diluted by noncondensible gas is analyzed thermodynamically, and the conclusion is that existing commercial oil fractionator designs are adequate as long as the vapor stream does not contain excessive amounts of solids. 34 refs., 4 figs.

Wallman, P.H.

1991-09-11

206

Utilization of char from biomass gasification in catalytic applications  

E-print Network

Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Submitted Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Utilization biomass is via gasification, which enables the production of electricity, heat, chemicals, or fuels

207

October 2005 Gasification-Based Fuels and Electricity Production from  

E-print Network

October 2005 Gasification-Based Fuels and Electricity Production from Biomass, without......................................................................... 9 3.1.1 Biomass Gasification, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer

208

An investigation of MSW gasification in a spout-fluid bed reactor  

Microsoft Academic Search

This paper presents the experimental results of MSW gasification in a spout-fluid bed reactor. Municipal solid waste (MSW) modeled based on compositions of Bangkok waste transfer station On-nuch was used as the fuel. Three scenarios were investigated in this study. In the base case scenario, only primary air of equivalence ratios (ER) 0.35, 0.3, 0.25, 0.2, and 0.15 were used.

Maitri Thamavithya; Animesh Dutta

2008-01-01

209

EMERY BIOMASS GASIFICATION POWER SYSTEM  

SciTech Connect

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27

210

Trace metal transformations in gasification  

SciTech Connect

The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

Benson, S.; Erickson, T.A.; Zygarlicke, C.J. [and others

1995-12-01

211

Trace metal transformation in gasification  

SciTech Connect

The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to 1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, 2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and 3) identify methods to control trace element emissions.

Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.; Katrinak, K.A.; Allen, S.E.; Hassett, D.J.; Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center; Holcombe, N.T. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-12-31

212

Trace metal transformations in gasification  

SciTech Connect

The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior.

Benson, S.A.; Erickson, T.A.; O`Keefe, C.A.; Katrinak, K.; Allan, S.E.; Hassett, D.J.; Hauserman, W.B.; Zygarlicke, C.J.

1995-11-01

213

TOPICAL REVIEW: Thermal plasma waste treatment  

Microsoft Academic Search

Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification

Joachim Heberlein; Anthony B. Murphy

2008-01-01

214

Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.  

PubMed

The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

Mnguez, Mara; Jimnez, Angel; Rodrguez, Javier; Gonzlez, Celina; Lpez, Ignacio; Nieto, Rafael

2013-04-01

215

Separating Mixtures  

NSDL National Science Digital Library

Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

216

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS  

EPA Science Inventory

The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

217

Improved catalysts for carbon and coal gasification  

DOEpatents

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25

218

TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT  

EPA Science Inventory

This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

219

Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.  

PubMed

This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio ? = 0.12 to 0.27 and the temperature of air preheating t = 50 C to 250 C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. PMID:24938298

Werle, Sebastian

2014-10-01

220

Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-11-01

221

Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-01-01

222

Photolysis and radiant flash pyrolysis of coal-derived wastes  

Microsoft Academic Search

It is attractive to think that coal-derived wastes could be converted to useful fuels by irradiation with solar energy. This would eliminate energy-intensive steps in the processing of coal gasification condensate water as well as provide an inexpensive alternate source of energy. Environmental concerns for the distribution of contaminants from biosludge would be minimized. This paper demonstrates that coal gasification

J. J. Worman; S. B. Hawthorne; R. E. Sears

1986-01-01

223

Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and\\/or nitrite mixtures and a simulated organic waste  

Microsoft Academic Search

As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur.

R. D. Scheele; R. L. Sell; J. L. Sobolik; L. L. Burger

1995-01-01

224

COAL CHAR GASIFICATION KINETICS IN A JET-FLUIDIZED BED (COMBUSTION, REACTION, RATE PHENOMENA)  

Microsoft Academic Search

The kinetics of gasification of -10 + 65 mesh coke and coal char with O(,2) and O(,2)-CO(,2) mixtures was studied in a continuous, bench scale, jet-fluidized reactor over a wide range of temperatures (900(DEGREES)C to > 1400(DEGREES)C) and bed depths under atmospheric pressure. The measured specific reaction rates of carbon ranged from 0.01 to 0.1 gram carbon reacting per gram

MING-YUAN KAO

1984-01-01

225

Reversibility of filamentous carbon growth and gasification  

SciTech Connect

Controlled atmosphere electron microscopy observations of the nickel-catalyzed growth and gasification of carbon filaments have shown that these processes can be reversed. This supports the view that growth and gasification in either hydrogen or steam occur by similar mechanisms, where one of the steps involves the diffusion of carbon through the metal. It was observed that the small catalyst particles are the most active in filament formation and steam gasification, while the large particles are the most active for the hydrogenation reaction. This is explained in terms of different rate-controlling steps.

Figueiredo, J.L.; Bernardo, C.A.; Chludzinski, J.J. Jr.; Baker, R.T.K.

1988-03-01

226

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

227

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28

228

Underground Coal Gasification at Tennessee Colony  

E-print Network

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01

229

The Role of Oxygen in Coal Gasification  

E-print Network

gasification combined-cycle (IGCC) power generation and methanol synthesis. The potential impact of a non-cryogenic air separation process currently under development is examined based on integration with a high temperature processes....

Klosek, J.; Smith, A. R.; Solomon, J.

230

Treatment of Radioactive Reactive Mixed Waste  

SciTech Connect

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01

231

Modeling of the Coal Gasification Processes in a Hybrid Plasma Torch  

Microsoft Academic Search

The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of

Igor B. Matveev; Serhiy I. Serbin

2007-01-01

232

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09

233

Demonstration plant for pressurized gasification of biomass feedstocks  

SciTech Connect

A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

Trenka, A.R. (Pacific International Center for High Technology Research, Honolulu, HI (United States)); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. (Hawaii Natural Energy Inst., Honolulu, HI (United States)); Caldwell, C. (Parsons (Ralph M.) Co., Pasadena, CA (United States)); Kwok, R. (Hawaiian Commercial and Sugar Co., HI (United States)); Onischak, M.; Babu, S.P. (Institute of Gas Technology

1991-01-01

234

The renewable energy contribution from waste across Europe.  

E-print Network

from waste is a much cheaper source of RE than from most other RE sources (solar, wind, biomass Biomass Energy Plants incineration,gasification Collected & sorted waste wood BEP Steam -> Electr. & Heat (LFG) For dedicated Biomass Energy Plants (BEP) (waste wood) For WtE thermally treating MSW

235

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

SciTech Connect

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01

236

Uses found for gasification slag  

SciTech Connect

A study carried out for the Electric Power Research Institute by Praxis Engineers, Inc. has examined possible uses for the gasifier slag produced during coal gasification. After describing some of the problems foreseen to market development, seven categories of uses are listed and briefly discussed. The possible uses for slag identified are: (1) Agriculture (soil conditioner, lime substitute, low analysis fertilizer, carrier for insecticides); (2) Industrial material (abrasive grit, catalyst and adsorbent, roofing granules, industrial filler, mineral wool production, filter media); (3) Cement and Concrete (concrete aggregate, mortar/grouting material, pozzolanic admixture, raw materials for Portland cement production, masonary unit production); (4) Road Construction and Maintenance (de-icing grit, fine aggregate for bituminous pavement, base aggregate, sub-base aggregate, seal-cost aggregate); (5) Synthetic Aggregate (lightweight construction aggregate, landscaping material, sand substitute); (6) Land Fill and Soil Stabilization (soil conditioner for improving stability, structural fill, embankment material); (7) Resource Recovery (source of carbon, magnetite, iron, aluminium, and other metals). 2 tables.

Not Available

1986-12-01

237

Dual Fluidized Bed Biomass Gasification  

SciTech Connect

The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

None

2005-09-30

238

Pressure coal gasification experience in Czechoslovakia  

SciTech Connect

Czechoslovakia's large deposits of brown coal supply the country's three operating pressure gasification plants. The gas produced is suitable for further treatment to provide fuel for household and industrial consumers. Coal gasification is not new to the energy planners in Czechoslovakia. Since 1948, 56 gasifiers have been installed in the three pressure gasification plants currently in operation. The newest and biggest of these plants is at Vresova. The plant processes 5,000 tons of brown coal per day. The locally mined coal used for feed at the Vresova plant has a calorific value of 12 to 14 megajoules per kilogram (52 to 60 Btu's per pound). The gasifiers produce up to 13,000 cubic meters (459,000 cubic feet) per hour of crude gas per gasifier. Gasification technology has been under development in Czechoslovakia since 1945. The country has virtually no oil or natural gas reserves, a fact that emphasizes the importance of coal-based energy. Production of gas from coal in Czechoslovak gasifiers is based on gasification in the fixed bed of a gasifier.

Not Available

1981-03-01

239

Arc gasification of biomass: Example of wood residue  

Microsoft Academic Search

Experimental data on arc gasification of wood residue has been presented. The potential in the use of wood residue as an energy\\u000a source and the environmental aspect of wood residue application have been considered. Allothermal gasification and autothermal\\u000a gasification have been compared. The effect of the initial moisture content on the composition of the products of arc gasification\\u000a of wood

A. N. Brattsev; V. A. Kuznetsov; V. E. Popov; A. A. Ufimtsev

2011-01-01

240

Biomethanation of a mixture of salty cheese whey and poultry waste or cattle dung - a study of effect of temperature and retention time  

SciTech Connect

This paper describes the results of a study aimed at improving the efficiency of anaerobic digestion of salty cheese whey in combination with poultry waste or cattle dung. Best results were obtained when salty cheese whey was mixed with poultry waste in the ratio of 7:3, or cattle dung in the ratio of 1:1, both on dry weight basis giving maximum gas production of 1.2 L/L of digester/d with enriched methane content of 64% and 1.3 L/L of digester/d having methane content of 63% respectively. Various conditions such as temperature and retention time have been optimized for maximum process performance. 16 refs., 3 figs.

Patel, C.; Madamwar, D. [Sardar Patel Univ., Gujarat (India)

1996-08-01

241

Gasification characteristics of woody biomass in the packed bed reactor  

Microsoft Academic Search

Gasification technology is recognized as one of the possibilities for utilizing biomass effectively. This study focused on woody biomass gasification fundamentals, using a bench-scale packed-bed reactor. In this experiment, pellets of black pine were gasified, using air as the oxidizing agent. Gasification tests were carried out under both updraft and downdraft conditions. Temperature distributions and compositions of syngas inside the

Yasuaki Ueki; Takashi Torigoe; Hirofumi Ono; Ryo Yoshiie; Joseph H. Kihedu; Ichiro Naruse

2011-01-01

242

A Review of Fixed Bed Gasification Systems for Biomass  

Microsoft Academic Search

The gasification of biomass into useful fuel enhances its potential as a renewable energy resource. The fixed bed gasification systems are classified as updraft, Imbert downdraft, throatless downdraft, crossdraft and two stage gasifiers. Updraft gasifiers are suitable for gasification of biomass containing high ash (up to 15 %) and high moisture content (up to 50 %) and generate producer gas

Sangeeta Chopra; Anil Kr Jain

243

Biomass gasification integrated with pyrolysis in a circulating fluidised bed  

Microsoft Academic Search

The use of biomass for energy generation is getting increasing attention. At present, gasification of biomass is taken as a popular technical route to produce fuel gas for application in boilers, engine, gas turbine or fuel cell. Up to now, most of researchers have focused their attentions only on fixed-bed gasification and fluidised bed gasification under air-blown conditions. In that

G Chen; J Andries; H Spliethoff; M Fang; P. J van de Enden

2004-01-01

244

Energy Optimization of Bioethanol Production via Gasification of Switchgrass  

E-print Network

1 Energy Optimization of Bioethanol Production via Gasification of Switchgrass Mariano Martín gasification. A superstructure is postulated for optimizing energy use that embeds direct or indirect gasification, followed by steam reforming or partial oxidation. Next, the gas composition is adjusted

Grossmann, Ignacio E.

245

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-print Network

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

246

The Public Perceptions of Underground Coal Gasification (UCG)  

E-print Network

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

247

Chemical activation of gasification carbon residue for phosphate removal  

NASA Astrophysics Data System (ADS)

Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

2012-05-01

248

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEs bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30

249

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energy??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30

250

Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier  

Microsoft Academic Search

A process of conversion of solid carbonaceous fuel into combustible gas by partial combustion is known as gasification. The resulting gas, known as producer gas, is more versatile in its use than the original solid biomass. In the present study, a downdraft biomass gasifier is used to carry out the gasification experiments with the waste generated while making furniture in

Pratik N. Sheth; B. V. Babu

2009-01-01

251

ADVANCED GASIFICATION BY-PRODUCT UTILIZATION  

SciTech Connect

The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

2005-04-01

252

Assessment of advanced coal gasification processes  

SciTech Connect

A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process single stage high mass flux (HMF) process (CS/R) hydrogasification process and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

1981-06-01

253

Biomass Gasification Technology Assessment: Consolidated Report  

SciTech Connect

Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

Worley, M.; Yale, J.

2012-11-01

254

Lurgi's MPG gasification plus Rectisol{reg_sign} gas purification - advanced process combination for reliable syngas production  

SciTech Connect

Lurgi's Multi Purpose Gasification Process (MPG) is the reliable partial oxidation process to convert hydrocarbon liquids, slurries and natural gas into valuable syngas. The MPG burner has once again proven its capabilities in an ammonia plant based on asphalt gasification. Lurgi is operating the HP-POX demonstration plant together with the University of Freiberg, Germany. Gasification tests at pressures of up to 100 bar have shown that syngas for high pressure synthesis such as methanol and ammonia can be produced more economically. The Rectisol{reg_sign} gas purification process yields ultra clean synthesis gas which is required to avoid problems in the downstream synthesis. Pure carbon dioxide is produced as a separate stream and is readily available for sequestration, enhanced oil recovery or other uses. The reliability of the Rectisol{reg_sign} process and the confidence of plant operators in this process are acknowledged by the fact that more than 75% of the syngas produced world wide by coal, oil and waste gasification is purified in Rectisol{reg_sign} units. Virtually all coal gasification plants currently under construction rely on Rectisol{reg_sign}. The new, large GTL plants and hydrogen production facilities require effective CO{sub 2} removal. New developments make Rectisol{reg_sign} attractive for this task. 10 figs., 3 tabs., 2 photos.

NONE

2005-07-01

255

Evaluation of cyclone gasifier performance for gasification of sugar cane residuePart 2: gasification of cane trash  

Microsoft Academic Search

In Part 1 of this two-part paper, results from gasification of bagasse in a cyclone gasifier have been reported. In this paper results from gasification of cane trash in the same cyclone gasifier are presented. The cane trash powder is injected into the cyclone with air as transport medium. The gasification tests were made with two feeding rates, 39 and

Mohamed Gabra; Esbjrn Pettersson; Rainer Backman; Bjrn Kjellstrm

2001-01-01

256

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01

257

Production of Hydrogen from Underground Coal Gasification  

DOEpatents

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07

258

Continuous Removal of Coal-Gasification Residue  

NASA Technical Reports Server (NTRS)

Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

1986-01-01

259

Fixed-bed gasification research using US coals. Volume 5. Gasification of Stahlman Stoker bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fifth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Stahlman Stoker bituminous coal from Clarion County, PA. The period of the gasification test was April 30 to May 4, 1983. 4 refs., 16 figs., 10 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

260

Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the sixth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of delayed petroleum coke from Pine Bend, MN. The period of the gasification test was June 1-17, 1983. 2 refs., 15 figs., 22 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

261

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

262

Analysis of the product gas from biomass gasification by means of laser spectroscopy  

NASA Astrophysics Data System (ADS)

The use of biomass and waste for decentralised combined heat and power production (CHP) requires highly efficient gasification processes. In the Technische Universitt Mnchen (TUM), an innovative gasification technology has been developed. This allothermal gasifier is producing a hydrogen- rich, high-calorific gas, that can be further used in a microturbine or a fuel cell producing energy. For the operation of such a system, the online analysis of the composition of the product gas is of high importance, since the efficient working of the machines is linked with the gas quality. For this purpose an optical measurement system based on laser spectroscopy has been applied. This system can measure not only the basic components of the product gas (H 2, CH 4, CO, CO 2, H 2O), but it also gives information concerning the content of high hydrocarbons, the so-called tars, in the product gas.

Karellas, S.; Karl, J.

2007-09-01

263

Tank Farm Waste Transfer Compatibility Program  

SciTech Connect

The compatibility program described in this document formalizes the process for determining waste compatibility. Goal is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations, could possibly result in an unreviewed safety question. Waste transfer decision rules are presented as a process for assessing compatibility of wastes or waste mixtures. The process involves characterizing the waste comparing waste characteristics with the criteria, resolving potential incompatibilities, and documenting the process.

Fowler, K.D.

1995-04-24

264

BIOMASS GASIFICATION PILOT STUDY PLANT STUDY  

EPA Science Inventory

The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

265

Optimum Design of Coal Gasification Plants  

E-print Network

with economizers is recommended for Coal Gasification Combined Cycle to maximize energy efficiency. A water quench mode is suggested for hydrogen production because of the need to adjust the H2O/CO ratio for shift conversion. A partial heat-recovery mode...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01

266

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: ORGANICS  

EPA Science Inventory

The report summarizes the organics data from environmental assessments of several low- and medium-Btu coal gasification processes conducted between 1977 and 1981 under the sponsorship of the U.S. EPA. The data summary focuses on the concentration, composition, and mass flow of or...

267

Coal gasification - flexibility for an uncertain future  

SciTech Connect

During the past decade, the electric utility industry has experienced an unprecedented period of dramatic change and uncertainty that has changed the industry and its needs. There is now a need for small, low-cost, fuel-flexible, clean, and reliable plants for both new capacity and emissions retrofit situations. Coal gasification has demonstrated its flexibility to meet this challenge. Reduced economies of scale make smaller new units more feasible, and inherent design features enable lower emissions than for conventional coal-fired units. This emissions-reduction capability also makes gasification a candidate for retrofit applications, requiring the highest levels of emission control. The retrofit capabilities of gasification have been proven at the Cool Water plant and also at the KILnGAS demonstration project. Both projects retrofitted existing, corner-fired boilers for firing coal-derived fuel gas. The Cool Water plant successfully tested the normally natural gas-fired boiler at full load on 100% fuel gas with no boiler derating. The work at KILnGAS was equally successful and showed stable operation as low as 15 to 25% of rated load. Experience at the Cool Water plant provides an excellent example of the low emissions that are possible with gasification.

Schmoe, L.A.; Pietruszkiewicz, J.

1987-01-01

268

Biomass Gasification at The Evergreen State College  

E-print Network

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

269

Novel gas turbine cycles with coal gasification  

Microsoft Academic Search

This paper summarizes the results of a study to devise efficient gas turbine cycles without steam bottoming for use with coal gasification. Substitution of other forms of heat recovery in place of steam bottoming offers a potential cost saving. A novel form of the intercooled-reheat-regenerative cycle was devised with thermal efficiency nearly as high as that of combined cycles. As

S. J. Lehman

1979-01-01

270

Solar coal gasification: plant design and economics  

Microsoft Academic Search

The present paper is one further step in developing the concept of Solar Coal Gasification. A plant was layed out and analyzed with the aid of a code that calculates process flows and plant economics. This plant is the simplest, most straight-forward plant and thus the most appropriate for initial analysis. Solar Energy is focused directly on the reacting coal.

W. R. Aiman; C. B. Thorsness; D. W. Gregg

1980-01-01

271

Single-stage fluidized-bed gasification  

NASA Astrophysics Data System (ADS)

The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

1982-04-01

272

DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.  

EPA Science Inventory

The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

273

Process for treating fission waste  

DOEpatents

A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

Rohrmann, Charles A. (Kennewick, WA); Wick, Oswald J. (Richland, WA)

1983-01-01

274

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions.

Unknown

2002-03-29

275

Hand-held gas chromatography-ion mobility spectrometry for on-site analysis of complex organic mixtures in air or vapors over waste sites  

SciTech Connect

The strengths of Ion mobility spectrometry (IMS) are low detection limits, a wide range of application, and simplicity of design and operation. The gentle ionization processes used in IMS impart a measure of selectivity to its response. However, atmospheric pressure chemical ionization with compounds of comparable proton affinities leads to mobility spectra for which interpretive and predictive models do not exist. An alternative approach for the analysis of complex mixtures with IMS is the use of a separation device such as a gas chromatograph (GC) as an inlet. Results suggest that an IMS cell temperature of ca. 150{degrees} to 175{degrees}C provided mobility spectra with suitable spectral detail without the complications of ion-molecule clusters or fragmentation. Significant fluctuation in peak heights were observed over a 30 day test period. Neural network pattern identification techniques were applied to data obtained at room temperature and at 150{degrees}. Results showed that spectral variables within compound classes as insufficient to distinguish related compounds when mobility data was obtained using the commercial room temperature IMS cell. Similar but less severe difficulty was encountered using the 150{degrees} data. 5 refs., 3 figs., 2 tabs.

Bell, S.C. (Los Alamos National Lab., NM (USA)); Eiceman, G.A. (New Mexico State Univ., Las Cruces, NM (USA). Dept. of Chemistry)

1991-01-01

276

Coal gasification by CO 2 gas bubbling in molten salt for solar\\/fossil energy hybridization  

Microsoft Academic Search

Coal gasification with CO2 (the Boudouard reaction: C+CO2=2CO, ?rH=169.2 kJ\\/mol at 1150 K), which can be applied to a solar thermochemical process to convert concentrated solar heat into chemical energy, was conducted in the molten salt medium (eutectic mixture of Na2CO3 and K2CO3, weight ratio=1\\/1) to provide thermal storage. When CO2 gas was bubbled through the molten salt, higher reaction

Jun Matsunami; Shinya Yoshida; Yoshinori Oku; Osamu Yokota; Yutaka Tamaura; Mitsunobu Kitamura

2000-01-01

277

Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas.  

PubMed

Volatile arsenic and selenium compounds present in coals may cause environmental problems during coal combustion and gasification. A possible way to avoid such problems may be the use of solid sorbents capable of retaining these elements from flue gases in gas cleaning systems. Lime and limestone are materials that are extensively employed for the capture of sulfur during coal processing. Moreover, they have also proven to have good retention characteristics for arsenic and selenium during combustion. The aim of this work was to ascertain whether this sorbent is also useful for retaining arsenic and selenium species in gases produced in coal gasification. The study was carried out in a laboratory-scale reactor in which the sorbent was employed as a fixed bed, using synthetic gas mixtures. In these conditions, retention capacities for arsenic may reach 17 mg g(-1) in a gasification atmosphere free of H2S, whereas the presence of H2S implies a significant decrease in arsenic retention. In the case of selenium, H2S does not influence retention which may reach 65 mg g(-1). Post-retention sorbent characterization, thermal stability, and water solubility tests have shown that chemical reaction is one of the mechanisms responsible for the capture of arsenic and selenium, with Ca(AsO2)2 and CaSe being the main compounds formed. PMID:14968880

Diaz-Somoano, Mercedes; Martinez-Tarazona, M Rosa

2004-02-01

278

Diffusion velocity correlation for nuclear graphite gasification at high temperature and low Reynolds numbers  

SciTech Connect

The safety analysis of High-Temperature and Very High Temperature gas-cooled Reactors requires reliable estimates of nuclear graphite gasification as a function of temperature, among other parameters, in the unlikely event of an air ingress accident. Although the rates of the prevailing chemical reactions increase exponentially with temperature, graphite gasification at high temperatures is limited by the oxygen diffusion through the boundary layer. The effective diffusion velocity depends on the total flow rate and pressure of the bulk air-gas mixture. This paper develops a semi-empirical Sherwood number correlation for calculating the oxygen diffusion velocity. The correlation is based on a compiled database of the results of convective heat transfer experiments with wires and cylinders of different diameters in air, water and paraffin oil at 0.006 {<=} Re {<=} 1,604 and 0.068 {<=} Sc {<=} 35.2, and of mass transfer experiments at 4.8 {<=} Re {<=} 77 and 1,300 {<=} Sc {<=} 2,000. The developed correlation is within {+-} 8% of the compiled database of 567 data points and consistent with reported gasification rate measurements at higher temperatures in experiments using different size specimens of nuclear graphite grades of NBG-18 and NB-25, IG-11, IG-110 and IG-430 in atmospheric air at 0.08 {<=} Re {<=} 30. Unlike the Graetz solution that gives a constant Sh of 3.66 at Re {<=} 1.0, the present correlation shows Sh decreases monotonically to much lower values with decreasing Re. (authors)

El-Genk, M. S. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); Tournier, J. M. P. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States)

2012-07-01

279

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOEpatents

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02

280

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOEpatents

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10

281

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOEpatents

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18

282

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.  

PubMed

For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. PMID:24290971

Samolada, M C; Zabaniotou, A A

2014-02-01

283

Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance.  

PubMed

Plasma gasification/vitrification is an innovative and environmentally friendly method of waste treatment. A demonstration plasma gasification/vitrification unit was developed and installed in Viotia region in order to examine the efficiency of this innovative technology in dealing with hazardous waste. The preliminary results from the trial runs of the plasma unit, as well as the study of the influence of certain parameters in the system performance are presented and analyzed in this paper, contributing to the improvement of the operation performance. Finally, data on the final air emissions and the vitrified ash toxicity characteristic leaching procedure (TCLP) results are provided in order to assess the environmental performance of the system. The produced slag was found to be characterized by extremely low leaching properties and can be utilized as construction material, while the values of the polluting parameters of the air emissions were satisfactory. PMID:17624665

Moustakas, K; Xydis, G; Malamis, S; Haralambous, K-J; Loizidou, M

2008-03-01

284

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTIs Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOEs Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeusers New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

285

Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.  

PubMed

Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850C and 900C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. PMID:24736208

Narobe, M; Golob, J; Klinar, D; Franceti?, V; Likozar, B

2014-06-01

286

Biomass thermochemical gasification: Experimental studies and modeling  

NASA Astrophysics Data System (ADS)

The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For corn stover, the selling price of electricity was 0.1351/kWh. For DDGS, the selling price of electricity was 0.1287/kWh.

Kumar, Ajay

287

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Microsoft Academic Search

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra

John W. Rich

2003-01-01

288

Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks  

Microsoft Academic Search

Steam-gasification of coal, biomass, and carbonaceous waste feedstocks for syngas production is performed using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a SiC-coated graphite plate, with the upper one serving as the radiative absorber and the lower one containing the reacting packed bed that shrinks as the reaction

Nicolas Piatkowski; Christian Wieckert; Aldo Steinfeld

2009-01-01

289

Na/Ca catalyzation of Illinois coals for gasification. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

Gasification for power generation via IGCC processes is expected to become an important market for high sulfur Illinois Basin coals. Fluid-bed gasifiers have significant advantages over entrained flow processes. These advantages include ease of control, large turndown capacity, high thermal efficiency, and moderate oxygen and steam requirements. Three of the most pressing technical problems in fluid-bed gasification of Illinois coals are the caking tendency, high sulfur content, and low carbon conversion and consequent large char recycle required in most systems. This program explores the use of gasification catalysts to attack these three problems. The catalysts are sodium/calcium mixtures. Another advantage of using catalysts is that gasification temperature might be lowered, leading to less expensive materials of construction and a reduction in alkali vaporization. The results of this study indicate that these catalysts can reduce or eliminate the caking of Illinois coals. Loadings below 1 weight % were effective if the catalyst was added by impregnation at low pH (below about 5). An Na/Ca molar ratio of greater than 1 also leads to lower catalyst requirement.

Jha, M.C.; McCormick, R.L. [AMAX Research and Development Center, Golden, CO (United States)

1993-12-31

290

77 FR 59166 - South Mississippi Electric Cooperative: Plant Ratcliffe, Kemper County Integrated Gasification...  

Federal Register 2010, 2011, 2012, 2013

...Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural...Integrated Gasification Combined-Cycle Facility located in Kemper County...Integrated Gasification Combined-Cycle (IGCC) technology for commercial...capture approximately 67% of the carbon dioxide (CO 2 )...

2012-09-26

291

Surface Gasification Materials Program. Semiannual Progress Report for the Period Ending September 30, 1982.  

National Technical Information Service (NTIS)

The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. The Program is divided into two subprograms: (1) the Gasification Systems F...

1982-01-01

292

Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.  

PubMed

Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. PMID:23673951

Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

2013-01-01

293

Reduction of radioactive secondary waste with steam reforming in treatment of waste TBP/dodecane  

SciTech Connect

Waste tributyl phosphate (TBP) and normal dodecane generated from R and D activities on recycle of nuclear fuel has been stored in Japan Atomic Energy Agency (JAEA). If it is incinerated, a large quantity of contaminated phosphorous compounds will be generated as radioactive secondary wastes. The objective of this study is to reduce the generation of the radioactive secondary wastes by the treatment of the waste TBP/dodecane using steam reforming system. We constructed the demonstration scale steam reforming system which consists of a gasification chamber for vaporization of wastes, a metal mesh filter for removal of radioactive nuclides from gasified wastes, a combustion chamber, and scrubbers for removal of phosphorous oxides. We conducted process demonstration tests using waste TBP/dodecane with 0.07 g/L of uranium. We studied the temperature dependence of the gasification ratio of inorganic phosphorus compounds formed by pyrolysis of TBP in the gasification chamber and removal of uranium by the filter. As the results, more than 90% of phosphorus compounds were gasified from the gasification chamber at temperature of 600 deg. C or more, and the uranium concentration in the waste water generated from the off-gas treatment system is under the detection limits. The waste water containing the separated phosphorus compounds can be discharged into the river or the sea as the liquid wastes in which uranium concentration is under the regulatory level. These results show the steam reforming system is effective in the reduction of radioactive secondary waste in the treatment of TBP/dodecane. (authors)

Sone, Tomoyuki; Sasaki, Toshiki; Yamaguchi, Hiromi [Japan Atomic Energy Agency (Japan)

2007-07-01

294

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15

295

Catalytic gasification: Isotopic labeling and transient reaction  

SciTech Connect

Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

Saber, J.M.; Falconer, J.L.; Brown, L.F.

1985-01-01

296

Fluidized bed gasification of extracted coal  

DOEpatents

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06

297

Prospects for the Gasification of Refuse-Derived Fuel (RDF)  

E-print Network

PROSPECTS FOR THE GASIFICATION OF REFUSE-DERIVED FUEL (RDF) Kenneth L. Woodruff Banyan Technology Corporation Dallas, Texas Robin F.W. Guard Omnifuel Gasification Systems, Ltd. Toronto, Ontario ABSTRACT Fluidized-bed gasification... from the primary disc screen under size fraction. The remaining shredded, non-magnetic fraction, consisting primarily of combustible mate rials is presently landfilled, but will be further processed to produce RDF acceptable for use in the Omnifuel...

Woodruff, K. L.; Guard, R. F. W.

1983-01-01

298

Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass.  

PubMed

The effect of steam gasification conditions on products properties was investigated in a bubbling fluidized bed reactor, using larch wood as the starting material. For bed material effect, calcined limestone and calcined waste concrete gave high content of H(2) and CO(2), while silica sand provided the high content of CO. At 650 degrees C, calcined limestone proved to be most effective for tar adsorption and showed high ability to adsorb CO(2) in bed. At 750 degrees C it could not capture CO(2) but still gave the highest cold gas efficiency (% LHV) of 79.61%. Steam gasification gave higher amount of gas product and higher H(2)/CO ratio than those obtained with N(2) pyrolysis. The combined use of calcined limestone and calcined waste concrete with equal proportion contributed relatively the same gas composition, gas yield and cold gas efficiency as those of calcined limestone, but showed less attrition, sintering, and agglomeration propensities similar to the use of calcined waste concrete alone. PMID:18793834

Weerachanchai, Piyarat; Horio, Masayuki; Tangsathitkulchai, Chaiyot

2009-02-01

299

GASIFICATION BASED BIOMASS CO-FIRING  

SciTech Connect

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01

300

Black liquor gasification. Phase 2 final report  

SciTech Connect

The experimental work included 23 bench-scale tests in a 6-in.-diameter gasifier and two extended runs in a 33-in.-ID pilot-scale unit. The two pilot-scale runs included 26 test periods, each evaluated separately. The engineering analysis work consisted primarily of the correlation of test results and the development of a computer model describing the gasification process. 4 refs., 13 figs., 23 tabs.

Kohl, A.L.; Barclay, K.M.; Stewart, A.E.; Estes, G.R.

1984-11-28

301

Tar removal during the fluidized bed gasification of plastic waste  

Microsoft Academic Search

A recycled polyethylene was fed in a pilot plant bubbling fluidized bed gasifier, having an internal diameter of 0.381m and a maximum feeding capacity of 90kg\\/h. The experimental runs were carried out under various operating conditions: the bed temperature was kept at about 850C, the equivalence ratio varied between 0.2 and 0.35, the amount of bed material was between 131

Umberto Arena; Lucio Zaccariello; Maria Laura Mastellone

2009-01-01

302

Tar removal during the fluidized bed gasification of plastic waste.  

PubMed

A recycled polyethylene was fed in a pilot plant bubbling fluidized bed gasifier, having an internal diameter of 0.381 m and a maximum feeding capacity of 90 kg/h. The experimental runs were carried out under various operating conditions: the bed temperature was kept at about 850 degrees C, the equivalence ratio varied between 0.2 and 0.35, the amount of bed material was between 131 and 215 kg, the fluidizing velocity was between 0.5 and 0.7 m/s, quartz sand and olivine were used as bed material, and air and steam were used as fluidizing reactants. The results confirm that the tar removal treatments applied inside the gasifier (primary methods) can eliminate or strongly reduce the need for a further downstream cleanup of the syngas. In particular, the utilization of a natural olivine as an in situ tar reduction agent remarkably improves the quality of the product gas, in terms of both high hydrogen volumetric fraction and larger syngas yield. PMID:18693006

Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

2009-02-01

303

Issues Impacting Refractory Service Life in Biomass/Waste Gasification  

SciTech Connect

Different carbon sources are used, or are being considered, as feedstock for gasifiers; including natural gas, coal, petroleum coke, and biomass. Biomass has been used with limited success because of issues such as ash impurity interactions with the refractory liner, which will be discussed in this paper.

Bennett, J.P.; Kwong, K.-S.; Powell, C.A.

2007-03-01

304

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

Microsoft Academic Search

Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of

Stephen Burnley; Rhiannon Phillips; Terry Coleman; Terence Rampling

2011-01-01

305

Modeling and Numerical Investigation of the Process of Vapor-Oxygen Gasification of Solid Fuels in a Vertical Flow Reactor Under Pressure  

NASA Astrophysics Data System (ADS)

With the use of the developed model, detailed information has been obtained on the working process in a flow reactor with single- and two-stage schemes of vapor-oxygen gasification of coals under a pressure of 3 MPa. The dependence of the ratios of mass flow rates O2/coal and H2O/coal on the type of fuel has been established and their optimal values for the "Shell" process have been found. At a given consumption ratio of gas coal and brown coal of brand B1, the optimum diameters of particles providing minimum combustible loss of the carbon mixture have been determined. It has been found that the content of methane in the syngas in the case of two-stage gasification is much higher than in the case of single-stage gasification.

Rokhman, B. B.

2014-09-01

306

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

307

SYNTHETIC FUEL PRODUCTION FROM SOLID WASTES  

EPA Science Inventory

The work described in this report has two objectives: first, to evaluate potential catalysts for the commercial practice of the gasification of chars produced by the pyrolysis of municipal or industrial wastes; second, to determine the potential for synthetic fuel production from...

308

Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant  

Microsoft Academic Search

Oxy-gasification, or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. Moreover, oxy-co-gasification with biomass implies the use of a renewable resource and additional CO2 reduction. Proper gasifier operation is a key issue in both techniques. A model of an entrained flow gasifier, validated with nearby 3000 actual steady-state operation data

Antonio Valero; Sergio Usn

2006-01-01

309

Treatment of mercury containing waste  

DOEpatents

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01

310

Why energy from waste incineration is an essential component of environmentally responsible waste management  

SciTech Connect

This paper outlines the key factors involved in adopting energy from waste incineration (EfWI) as part of a waste management strategy. Incineration means all forms of controlled direct combustion of waste. 'Emerging' technologies, such as gasification, are, in the author's view, 5 to 10 years from proven commercial application. The strict combustion regimen employed and the emissions therefrom are detailed. It is shown that EfWI merits consideration as an integral part of an environmentally responsible and sustainable waste management strategy, where suitable quantities of waste are available.

Porteous, A. [Department of Environmental and Mechanical Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)]. E-mail: s.j.lumbers@open.ac.uk

2005-07-01

311

Site-specific consultation for a chemical mixture.  

PubMed

The Agency for Toxic Substances and Disease Registry (ATSDR) uses the weight of evidence methodology to evaluate interactions of chemical mixtures. In the process, toxicity, toxicokinetics, and toxicodynamics of chemical components of the mixture are carefully examined. Based on the evaluation, predictions are made that can be used in real-life situations at hazardous waste sites. In this paper, health outcomes were evaluated for a mixture of eight compounds that were found at a specific site. These eight chemicals were identified and possibly associated with human exposure. The health assessors could consider similar thought processes when evaluating chemical mixtures at hazardous waste sites. PMID:10487358

Pohl, H R; Roney, N; Fay, M; Chou, C H; Wilbur, S; Holler, J

1999-08-01

312

Study on properties of recycled tire rubber modified asphalt mixtures using dry process  

Microsoft Academic Search

To minimize waste tires pollution and improve properties of asphalt mixtures, properties of recycled tire rubber modified asphalt mixtures using dry process are studied in laboratory. Tests of three types asphalt mixtures containing different rubber content (1%, 2% and 3% by weight of total mix) and a control mixture without rubber were conducted. Based on results of rutting tests (60C),

Weidong Cao

2007-01-01

313

Effect of pulsation on black liquor gasification. Final report  

SciTech Connect

Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be used to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

Zinn, B.T.; Jagoda, J.; Jeong, H.; Kushari, A.; Rosen, L.J.

1998-12-01

314

BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS  

EPA Science Inventory

A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

315

Gasification of Irsha-Borodin coal coke by carbon dioxide  

Microsoft Academic Search

Fuel gasification by water vapor, the basis of the technological gasification process, is a complex process accompanied by several secondary reactions. At the present time there is only scanty and contradictory information available on the overall constant of the basic reaction C + H20 ~ CO + H2, while the characteristics of the secondary processes CO + H20 CO s

E. S. Golovina; V. M. Kochan; O. S. Yusim

1989-01-01

316

Shell coal gasification plant (SCGP-1) environmental performance results  

Microsoft Academic Search

Environmental studies in slip-stream process development units at SCGP-1, Shell's advanced coal gasification demonstration plant, located near Houston, Texas, have demonstrated that the gas and water effluents from the Shell Coal Gasification Process (SCGP) are environmentally benign on a broad slate of coals. This report presents the results of those environmental studies. It contains two major subjects, which describe, respectively,

W. V. Bush; D. C. Baker; P. J. A. Tijm

1991-01-01

317

EXPERIMENTAL INVESTIGATION OF BIOMASS GASIFICATION IN A FIXED BED GASIFIER  

Microsoft Academic Search

In this paper there are presented results of experimental investigation of biomass gasification process in a fixed bed gasifier. Gasification was carried out with atmospheric pressure and air was used as oxidizer. Parameters taken into consideration were the air flow rate, amounts of biomass supplied into a gasifier, parameters of raw biomass- elemental composition and initial moisture content. Two kinds

R. K. WILK; P. PLIS

318

Coal gasification. Quarterly report, July-September 1979  

SciTech Connect

The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

None

1980-07-01

319

FUGITIVE EMISSION TESTING AT THE KOSOVO COAL GASIFICATION PLANT  

EPA Science Inventory

The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasif...

320

Improved system integration for integrated gasification combined cycle (IGCC) systems  

Microsoft Academic Search

Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility

H. Christopher Frey; Yunhua Zhu

2006-01-01

321

Hydrogen Production by CMC Gasification in Supercritical Water  

Microsoft Academic Search

Hydrogen production by biomass supercritical water gasification is about to develop in the future because the process is closed and clean with high gasification efficiency in addition. Low concentration sodium carboxymethylcellulose (CMC) (2-3% mass fraction) can be mixed with particulate biomass and water to form a uniform and stable viscous paste which can be pumped to the continuous high-pressure reactor.

Xiaohong Hao; Liejin Guo; Ximin Zhang

2010-01-01

322

Hydrogen from Mosses and Algae via Pyrolysis and Steam Gasification  

Microsoft Academic Search

In this study, the effect of temperature on the yield of hydrogen from two mosses (Polytrichum commune and Thuidium tamarascinum) and two algae (Cladophora fracta and Chlorella protothecoid) by pyrolysis and steam gasification were investigated. In each run, the main components of the gas phase were CO2, CO, H2, and CH4. The yields of hydrogen by pyrolysis and steam gasification

A. Demirbas

2009-01-01

323

Solar coal gasification reactor with pyrolysis gas recycle  

Microsoft Academic Search

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the

William R. Aiman; David W. Gregg

1983-01-01

324

Solar coal gasification reactor with pyrolysis gas recycle  

Microsoft Academic Search

Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor.

W. R. Aiman; D. W. Gregg

1983-01-01

325

Experimental analysis of biomass gasification with steam and oxygen  

Microsoft Academic Search

Parametric tests are performed on an indirectly heated, fluidized bed biomass gasifier. The test system allows feedstock, oxygen, nitrogen, and steam flow rates, and temperature to be controlled independently. Gas residence time, temperature, equivalence ratio, and steam:biomass ratio are varied, and product gas composition and select gasification parameters are evaluated and compared with theoretical predictions. Methanol, produced via biomass gasification,

Y. Wang; C. M. Kinoshita

1992-01-01

326

Passage of trace metal contaminants through hot gas paths of gas turbines burning biomass and waste-fuels  

Microsoft Academic Search

Integrated gasification combined-cycles (IGCC) are the basis for high efficiency power generation units. IGCC systems lend themselves to gasification of biomass and waste-fuels in place of, or when co-fired with, fossil fuels to contribute to low greenhouse gas emissions. However, the use of biomass and waste-fuels to produce fuel gases for gas turbines introduces the concern that trace elements they

A. Bradshaw; N. J. Simms; J. R. Nicholls

2008-01-01

327

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07

328

Advanced Gasification By-Product Utilization  

SciTech Connect

With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

2006-02-01

329

Catalytic coal gasification for SNG manufacture  

NASA Astrophysics Data System (ADS)

The predevelopment phase of research on the Exxon catalytic coal gasification (CCG) process was completed in early 1978 and included bench-scale research on catalyst recovery and kinetics, the operation of a 6 in. diameter times 30 ft long fluid bed gasifier, and supporting engineering studies. As part of the engineering program, a conceptual design has been developed for a pioneer commercial CCG plant producing SNG from Illinois No. 6 bituminous coal. This paper reviews the status of research and development on the CCG program and describes the conceptual design and economics for the commercial scale CCG plant.

Gallagher, J. E., Jr.; Euker, C. A., Jr.

1980-06-01

330

Energy recovery from sewage sludge by means of fluidised bed gasification  

SciTech Connect

Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes.

Gross, Bodo [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany); Eder, Christian [CET, Christian Eder Technology, Eduard-Didion Strasse, D-66539 Neunkirchen (Germany); Grziwa, Peter [BISANZ Anlagenbau GmbH, Scheidter Strasse 2, D-66123 Saarbruecken (Germany); Horst, Juri [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)], E-mail: horst@izes.de; Kimmerle, Klaus [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)

2008-07-01

331

FRACTIONATION OF COMPLEX MIXTURES USING AND ION-EXCHANGE METHODOLOGY  

EPA Science Inventory

Fractionation of particle emission extracts captured from complex combustion mixtures gas performed upon environmental samples using an ion-exchange technique. aptured emissions from hazardous waste, municipal and medical/pathological incinerators along with urban air imputed by ...

332

Biogas Potential of Manure and Straw Mixtures  

Microsoft Academic Search

Wheat straw or manure or both were converted to a methane-rich gas mixture. Anaerobic biomethane production is an effective process for conversion of a broad variety of lignocellulosic materials to methane to substitute natural gas and medium calorific value gases. Methane generating bacteria (methanogens) and other microbes help digest dying plants in anaerobic (without oxygen) conditions. Wheat straw wastes represent

Ayhan Demirbas

2006-01-01

333

LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994  

SciTech Connect

The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-09-01

334

TSA waste stream and final waste form composition  

SciTech Connect

A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ``average`` transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ``average`` transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties.

Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

1993-01-01

335

ENCOAL mild coal gasification project. Annual report  

SciTech Connect

This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

Not Available

1993-10-01

336

Combustion, pyrolysis, gasification, and liquefaction of biomass  

SciTech Connect

All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T.B.

1980-09-01

337

Combustion, pyrolysis, gasification, and liquefaction of biomas  

NASA Astrophysics Data System (ADS)

The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T. B.

1980-09-01

338

Modeling of Waste-to-Energy Combustion with Continuous Variation of the Solid Waste Fuel  

Microsoft Academic Search

A mathematical model of a mass-burn, waste-to-energy combustion chamber has been developed that includes stochastic representation of the variability of the fuel (municipal solid waste, MSW). The drying, pyrolysis, gasification and combustion processes on the moving grate are governed by several factors such as proximate and ultimate analysis, particle size, moisture, heating value, and bulk density, all of which change

MASATO NAKAMURA; HANWEI ZHANG; KARSTEN MILLRATH; NICKOLAS J. THEMELIS

339

Solar gasification of biomass: design and characterization of a molten salt gasification reactor  

NASA Astrophysics Data System (ADS)

The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.

Hathaway, Brandon Jay

340

Production of gaseous fuel from refuse plastic fuel via co-pyrolysis using low-quality coal and catalytic steam gasification  

Microsoft Academic Search

In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal\\u000a catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more

Ho-Jun Song; Jaehoon Lee; Ankur Gaur; Jong-Jin Park; Jin-Won Park

2010-01-01

341

Modeling biomass gasification in circulating fluidized beds  

NASA Astrophysics Data System (ADS)

In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results showed that the ER has the most effect on the product gas composition and LHV. The simulation

Miao, Qi

342

Noncatalytic gasification of isooctane in supercritical water: A Strategy for high-yield hydrogen production  

Microsoft Academic Search

Continuous supercritical water gasification of isooctane, a model gasoline compound, is investigated using an updraft gasification system. A new reactor material, Haynes 230 alloy, is employed to run gasification reactions at high temperature and pressure (7632C; 25MPa). A large-volume reactor is used (170mL) to enable the gasification to be run at a long residence time, up to 120s. Various gasification

Ratna F. Susanti; Agung Nugroho; Jihye Lee; Yunje Kim; Jaehoon Kim

2011-01-01

343

EVALUATION OF THE NEPHROTOXICITY OF COMPLEX MIXTURES CONTAINING ORGANICS AND METALS: ADVANTAGES AND DISADVANTAGES OF THE USE OF REAL-WORLD COMPLEX MIXTURES  

EPA Science Inventory

The nephrotoxicity of complex industrial waste mixtures and a chemically-characterized synthetic chemical mixture are described and reviewed, respectively. dult, male F-344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. of the...

344

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

NONE

1995-07-01

345

Supercritical gasification for the treatment of o-cresol wastewater.  

PubMed

The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater. PMID:17078539

Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

2006-01-01

346

Element, Mixture, Compound  

NSDL National Science Digital Library

Students gain a better understanding of the different types of materials as pure substances and mixtures and learn to distinguish between homogeneous and heterogeneous mixtures by discussing an assortment of example materials they use and encounter in their daily lives.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

347

The Mixtures Lab  

NSDL National Science Digital Library

The representation illustrates the separation of mixtures using physical properties. The interactive simulation allows "lab attendants" to separate mixtures using virtual tools. Separation mechanisms are chosen based upon substances' physical properties, and findings are recorded in a chart.

348

MODEL OF ADDITIVE EFFECTS OF MIXTURES OF NARCOTIC CHEMICALS  

EPA Science Inventory

Biological effects data with single chemicals are far more abundant than with mixtures. et, environmental exposures to chemical mixtures, for example near hazardous waste sites or nonpoint sources, are very common and using test data from single chemicals to approximate effects o...

349

Learning Mixtures of Gaussians  

Microsoft Academic Search

Mixtures of Gaussians are among the most fundamental and widely used statistical models. Current techniques for learning such mixtures from data are local search heuris- tics withweak performance guarantees. We present the first provably correct algorithm for learning a mixture of Gaus- sians. This algorithm is very simple and returns the true centers of the Gaussians to withinthe precision specified

Sanjoy Dasgupta

1999-01-01

350

Techniques for Mercury Control and Measurement in Gasification Systems  

SciTech Connect

A major concern for power systems that use coal as an energy source is the air emissions from the plant. Although certain air emissions are currently regulated, the emergence of new regulations for other pollutants are on the horizon. Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. The Department of Energy envisions increased use of gasification in the United States during the next twenty years. As such, the DOE Gasification Technologies Program will strive to approach a near-zero emissions goal with respect to pollutants. The mercury research detailed in this proposal addresses the Gas Cleaning and Conditioning program technology area.

Granite, E.J.; King, W.P.; Pennline, H.W.

2002-09-20

351

Uncertainty propagation in a model for the estimation of the1 ground level concentration of dioxin/furans emitted from a waste2  

E-print Network

Uncertainty propagation in a model for the estimation of the1 ground level concentration of dioxin/furans concentration of dioxin/furans emitted from a waste gasification plant. Under the17 condition of insufficient

Paris-Sud XI, Université de

352

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

2001-11-01

353

Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog  

NASA Technical Reports Server (NTRS)

The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

1980-01-01

354

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

355

Fixed-bed gasification research using US coals. Volume 14. Gasification of Kemmerer subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

356

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

357

Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

358

Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

359

Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

360

Fixed-bed gasification research using US coals. Volume 5. Gasification of Stahlman Stoker bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

361

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

362

Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

363

Raw materials and energy from coal gasification - The Ruhrchemie\\/Ruhrkohle Texaco coal gasification demonstration facility  

Microsoft Academic Search

Starting with January 1978 the Texaco coal gasification system has produced 52 million cu m synthetic gas, of the composition 54% CO, 34% H, 11% CO2, 0.3% H2S\\/COS, 0.6% N2, and less than 0.1% CH4, from 30,000 tons of coal. The principle and specifications of the Texaco second-generation method, involving high temperatures, high pressures, and the use of powdered coal

B. Cornils; J. Hibbel; P. Ruprecht; J. Langhoff; R. Duerrfeld

1980-01-01

364

Waste disposal method using microwaves  

SciTech Connect

Waste such as sludge containing poisonous substances is processed into a safe article by removing water in a usual manner , drying the waste to substantial dryness by microwave heating, mixing the dry waste powder with a thermoplastic resin, irradiating the mixture with microwaves to encapsulate the waste particles with the resin and to heat polymerize the resin, and molding the resin encapsulated particles into an article.

Sato, G.

1980-12-30

365

Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

366

Solar heated fluidized bed gasification system  

SciTech Connect

This solar-heated gasification system avoids the problems inherent in other solar processes (such as blackened solar-input windows and overheated zones on the reactor walls) by heating the fluidizing gas and steam in a solar-heat absorption zone before they enter the reactor. Energy to heat the gas and steam concentrates in high-heat-capacity refractory honeycomb that surrounds the fluidized-bed reactor zone. Solar concentrators focus the solar energy on the honeycomb through a solar window. The reaction zone is also heated directly and uniformly by thermal contact of the ceramic honeycomb with the walls of the reactor. The reactor handles such solids as coal and biomass.

Frosch, R.A.; Qader, S.A.

1981-09-22

367

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31

368

Plasma chemical gasification of sewage sludge.  

PubMed

The possibility for plasma gasification of sewage sludge is investigated. Water steam is used as the plasma generating gas and as a chemical reagent. The experiments are carried out at a sludge to water steam ratio of 1 to 1.5 by weight, and at a plasma torch temperature of up to 2600 degrees C. The calculated average temperature in the reactor after mixing with the sludge particles is up to 1700 degrees C. Proximate and ultimate analyses of the sludge are given. The resulting gases are analysed by gas chromatography. High calorific gas containing mainly carbon monoxide (48% volume) and hydrogen (46% volume), as well as glass-like slag, is obtained. No water-soluble substances are detected within it. The amount of carbon dioxide produced is under 4% mass. No hydrocarbons are observed within the gas. The investigated process is environmentally safe, compact and shows a high rate of conversion. PMID:12667017

Balgaranova, Janetta

2003-02-01

369

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature of the vapor phase components of the conveyed sample gas. In addition, to minimize adsorption or chemical changes in the syngas components prior to analysis, the temperature of the transported stream is maintained as hot as is practical, while still being cooled only as much necessary prior to entering the analyzer(s). The successful transport of the sample gas stream to the analyzer(s) is accomplished through the managed combination of four basic gas conditioning methods that are applied as specifically called for by the process conditions, the gas constituent concentrations, the analyzer requirements, and the objectives of the syngas analyses: 1) removing entrained particulate matter from the sample stream; 2) maintaining the temperature of the sample gas stream; 3) lowering the pressure of the sample gas stream to decrease the vapor pressures of all the component vapor species in the sample stream; and 4) diluting the gas stream with a metered, inert gas, such as nitrogen. Proof-of-concept field demonstrations of the sampling approach were conducted for gasification process streams from a black liquor gasifier, and from the gasification of biomass and coal feedstocks at GTIs Flex-Fuel Test Facility. In addition to the descriptions and data included in this Final Report, GTI produced a Special Topical Report, Design and Protocol for Monitoring Gaseous Species in Thermochemical Processes, that explains and describes in detail the objectives, principles, design, hardware, installation, operation and representative data produced during this successful developmental effort. Although the specific analyzers used under Cooperative Agreement DE-FC36-02GO12024 were referenced in the Topical Report and this Final Report, the sampling interface design they present is generic enough to adapt to other analyzers that may be more appropriate to alternate process streams or facilities.

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

370

Pilot gasification and hot gas cleanup operations  

SciTech Connect

The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

1995-12-31

371

Catalytic gasification of wet biomass in supercritical water  

SciTech Connect

A pressurized catalytic gasification process, operated at 600{degrees}C, 34.5 MPa, efficiently produces a hydrogen rich synthesis gas from high-moisture content biomass. Glucose was selected as a model compound for catalytic biomass gasification. A proprietary heterogeneous catalyst X was extremely effective for the gasification of both the model compound and whole biomass feeds. The effect of temperature, pressure, reactant concentration on the gasification of glucose with catalyst X were investigated. Complete conversion of glucose (22% by weight in water) to gas was obtained at a weight hourly space velocity of 22.2 (g/h)/g in supercritical water at 600{degrees}C, 34.5 MPa. Complete conversion of whole biomass feeds including water hyacinth, depithed bagasse liquid extract, sewage sludge, and paper sludge was also achieved at the same temperature and pressure. The propriety catalyst X is inexpensive and extremely effective.

Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

1995-12-01

372

Gasification of woody biomass Tessa Jansen (s0140600)  

E-print Network

limitations, but other causes cannot be eliminated. The char gasification process contained two weight loss heating rate is more reactive than lower heating rate char. #12;4 Introduction Producing fuels from of supply of fossil fu

Luding, Stefan

373

The suitability of coal gasification in India's energy sector  

E-print Network

Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

Simpson, Lori Allison

2006-01-01

374

GASIFICATION BASED BIOMASS CO-FIRING - PHASE I  

SciTech Connect

Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

Babul Patel; Kevin McQuigg; Robert F. Toerne

2001-12-01

375

Gasification and combustion modeling for porous char particles  

E-print Network

Gasification and combustion of porous char particles occurs in many industrial applications. Reactor-scale outputs of importance depend critically on processes that occur at the particle-scale. Because char particles often ...

Singer, Simcha Lev

2012-01-01

376

Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification  

E-print Network

Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facilitys residue handling challenges and input demands. A number of feedstock, technology, oxidizer...

Georgeson, Adam

2012-02-14

377

Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal  

E-print Network

with water. Before generating mixed waste (i.e., mixtures of biohazardous and chemical or radioactive wasteBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardous

Wikswo, John

378

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

Unknown

2000-04-24

379

A Decision Support Tool for Regional Biomass Waste Management and its Application in Regional Australia  

Microsoft Academic Search

Biomass waste from organic municipal solid waste and food manufacturing can be used as a source of renewable energy via incineration, gasification or anaerobic digestion. Alternatively, after composting type processing it can be returned to improve the nutrient and drainage structure of agricultural soils, thereby reducing the demand for phosphate rock based fertilizers and their associated highly toxic contaminants particularly

Napat Jakrawatana; Australia Iain MacGill; Australia Stephen Moore; Stephen Moore

380

Description, applications and numerical modelling of bubbling fluidized bed combustion in waste-to-energy plants  

Microsoft Academic Search

The use of the fluidized bed combustor (FBC) has increased. It began in the 20th century as coal combustion and gasification, which then developed into catalytic reactions. Only recently, the application field has been extended to the incineration of biomass and pre-treated waste, for either power generation or waste disposal. The success of fluidized bed combustion is due to high

S. Ravelli; A. Perdichizzi; G. Barigozzi

2008-01-01

381

Catalytic steam gasification of biomass for methanol and methane production  

Microsoft Academic Search

The technical and economic feasibility of producing specific gas products by the catalytic gasification of biomass is presented in this paper. Active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt% Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from

L. K. Mudge; E. G. Baker; M. D. Brown; D. H. Mitchell

1985-01-01

382

Investigation of a technique for sulfur reduction of mild gasification char. Technical report, March 1--May 31, 1992  

SciTech Connect

The object of this program is to investigate the desulfurization of mild gasification char using H{sub 2}:CH{sub 4} mixtures at the laboratory scale. Mild gasification is a coal conversion technique which produces solid, liquid, and gaseous co-products at 1100{degrees}--1500{degrees}F and near-ambient pressure. Char comprises about 60 to 70% of the dry coal yield. Form coke for steelmaking and foundries presents potential high-value markets for chars from eastern bituminous coals. Conventional metallurgical cokes generally contain less than 1 wt% sulfur, and mild gasification char from high-sulfur Illinois coals must be upgraded to meet these criteria. One method to accomplish this is desulfurization with reducing gases derived from the co-product gases. Because form coke has a market value up to $200/ton, it can accommodate desulfurization costs and still be economically attractive. In the first year of the two-year program, granular char is being treated with H{sub 2}:CH{sub 4} blends at temperatures of 1100{degrees}--1600{degrees}F and pressures of 50--200 psig. The effects of temperature, pressure, residence time, gas velocity, and gas composition on sulfur removal and carbon gasification are being determined. During the third quarter, 10 tests were performed with four chars. Fluidized-bed tests were conducted at 1400--1600{degrees}F, 50--200 psig, and 120--240 min residence time. Future tests will focus on determining the key properties that determine the susceptibility of char to hydrodesulfurization with minimal carbon conversion.

Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States)

1992-10-01

383

Investigation of a sulfur reduction technique for mild gasification char. [Quarterly] technical report, March 1--May 31, 1993  

SciTech Connect

The objective of this program is to investigate the desulfurization of mild gasification char using H{sub 2}:CH{sub 4} mixtures. Mild gasification of coal produces char, liquids, and gases at 1000{degrees}--1500{degrees}F and near-ambient pressure. Char, comprising 60--70% of the product, can be used to make high-value form coke for steel making and foundries. However, a sulfur content below 1 wt% is desirable, and char from high-sulfur Illinois coals must be upgraded to meet this criterion. Illinois No. 6 chars were treated in a batch fluidized bed with H{sub 2}:CH{sub 4} blends containing 9--24 vol% CH{sub 4} at 1100{degrees}--1600{degrees}F and 50--200 psig. Sulfur removal up to 92.5 wt% were obtainer, and the char desulfurization susceptibility was related to porosity, density, and crystallite size. The relationships among mild gasification parameters, char properties, and char desulfurization susceptibility are being studied. Acid washing of coal to remove Ca and Fe is being explored for its effect on subsequent sulfur removal, and secondary desulfurization of form coke produced from the desulfurized chars is also being studied. Desulfurization tests of entrained and fluidized-bed reactor chars from IBC-105 coal (4.1--4.3 wt% sulfur) were completed. Desulfurization conditions were 1400{degrees}F, 100--200 psig and reactant gas compositions of 15-49 vol% CH{sub 4} in H{sub 2}. Sulfur removal ranged from 28 to 95%, with carbon losses from 5 to 29%. Acid-washing of the coal prior to mild gasification or the char prior to desulfurization increased its susceptibility to desulfurization, with sulfur content reduced to as low as 0.10 wt% dry char. Fluidized-bed chars were easier to desulfurize than entrained chars, and were less affected by acid-washing.

Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States)

1993-09-01

384

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

2003-02-01

385

Wood Gasification Facility : Quality Assurance Project Plan : Facility Located at North Powder, Oregon.  

SciTech Connect

The US Department of Energy, Pacific Northwest and Alaska Regional Biomass Energy Program, managed by the Bonneville Power Administration (BPA), proposes to develop appropriate methodologies and conduct a testing program of a commercial-scale biomass gasifier to establish: (1) the validity of the test procedures; and (2) the performance of the gasification facility. It is proposed to conduct the testing at the wood gasification plant located at North Powder, Oregon, now operated by Idaho Timber Products of Boise, Idaho. The North Powder wood gasifier is an air-oxidized unit producing about 100 million Btu's per hour in the form of high temperature low-Btu gas (LBG). The gasifier utilizes a fluidized bed to partially combust and gasify mill wastes. Such units hold promise for making the energy of solid biomass available to a broader range of end uses, since the fuel gas created can be readily used by a wide variety of combustion devices or other process equipment. 5 refs., 28 figs., 7 tabs.

Freeburn, Scott A.; Houck, James E.

1989-05-05

386

Gasification of dried sewage sludge: status of the demonstration and the pilot plant.  

PubMed

The disposal of sewage sludge from municipal waste water treatment plants is suffering from raising costs. The gasification is an alternative way of treatment, which can reduce the amount of solid residues that must be disposed from a water treatment plant. The produced gas can be used very flexible to produce electrical energy, to burn it very cleanly or to use it for upgrading. The gasification in the fluidised bed and the gas cleaning with the granular bed filter has shown successful operation. A demonstration plant in Balingen was set up in 2002 and rebuilt to a larger throughput in 2010. As a next step a demonstration plant was built in Mannheim and is now at the end of the commissioning phase. Nowadays the product gas is blended with biogas from sludge fermentation and utilized in a gas engine or combustion chamber to produce heat. In the future the process control for a maximized efficiency and the removal of organic and inorganic impurities in the gas will be further improved. PMID:22284442

Judex, Johannes W; Gaiffi, Michael; Burgbacher, H Christian

2012-04-01

387

Scale-up of mild gasification to a process development unit  

SciTech Connect

The work performed during the second quarterly reporting period (February 21 through May 20, 1992) on the research program, Scale-Up of Mild Gasification to a Process Development Unit'' is presented in this report. The overall objective of this project is to develop the IGT Mild-Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program are to: (1) design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scaleup. (2) obtain large batches of coal-derived co-products for industrial evaluation. (3) prepare a detailed design of a demonstration unit. (4) develop technical and economic plans for commercialization of the MILDGAS process. The MILDGAS process is a continuous closed system for producing liquid and solid (char) co-products at mild operating conditions up to 50 psig and 1300[degrees]F. It is capable of processing a wide range of both eastern caking and western noncaking coals. The PDU to be constructed is comprised of a 2.5-ft ID adiabatic gasifier for the production of char, coal liquids, and gases; a thermal cracker for upgrading of the coal liquids; and a hot briquetting unit for the production of form coke and smokeless fuel briquettes. The facility will also incorporate support equipment for environmentally acceptable disposal of process waste.

Campbell, J.A.L.; Carty, R.H.; Saladin, N.; Foster, H.

1992-06-01

388

Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report  

SciTech Connect

The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

NONE

1997-12-01

389

Computerized composting of municipal wastes  

SciTech Connect

Windrow composting of organic wastes generally requires the addition of an organic drying-bulking agent to reduce the moisture content of the mixture and to increase the porosity of the organic raw material. Moisture contents of the wastes above 60% were generally associated with easily detectable septic odors. A computer program called ''compost'' was developed for the AGNET system to determine the optimum moisture content for composting mixtures under different climatic conditions using a hydraulic auger-type feed mixing wagon.

Chesnin, L.

1982-01-01

390

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01

391

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01

392

Raw materials and energy from coal gasification - The Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration facility  

NASA Astrophysics Data System (ADS)

Starting with January 1978 the Texaco coal gasification system has produced 52 million cu m synthetic gas, of the composition 54% CO, 34% H, 11% CO2, 0.3% H2S/COS, 0.6% N2, and less than 0.1% CH4, from 30,000 tons of coal. The principle and specifications of the Texaco second-generation method, involving high temperatures, high pressures, and the use of powdered coal of any quality in the form of a suspension, are examined in the present paper.

Cornils, B.; Hibbel, J.; Ruprecht, P.; Langhoff, J.; Duerrfeld, R.

1980-10-01

393

Possibility of unlimited shear displacement due to sliding-surface-liquefaction of MH gasification and long runout submarine landslides  

NASA Astrophysics Data System (ADS)

Recent studies on the mechanism of occurrence of large scale submarine landslides focuses mostly on the generation of excess pore pressure due to rapid sedimentation rate in certain environment, rather than gasification of methane hydrates (MH), although MH gasification could contribute to the landslides in the transgresssion period. However, at the 1896 Meiji Sanriku-oki Earthquake which caused serious tsunami disaster in the Tohoku region of Japan, there are witnesses of large-scale flame which were of possibly ejected dissolved methane hydrates (MH) from sea floor. We employed the stress-controlled undrained ring shear apparatuses have been developed at Disaster Prevention Research Institute, Kyoto University to reproduce shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Tested sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the methane hydrates in laboratories because no explosion protection facility is required. Through three series of tests, we obtained following results. (1) Rate Effect: The samples were tested under stepped shear speed ranging from 0.02 cm/s to 10 cm/s. The obtained excess pore-pressure ratio relationship, which is defined as the ratio of excess pore air pressure to initial effective stress, These results clearly shows positive speed dependency, especially for 1 cm/s and 10 cm/s. This phenomenon could be explained by the "sliding surface liquefaction." (2) Difference between internal and external friction: Based on the published observation of the sliding surface and the BSR, the sliding surface can be generated in the boundary of the MH layer. Tests to compare the internal friction and external friction between sand layers reveals that the behaviour of the both conditions have no significant difference. (3) Shear behaviour under cyclic loading condition: Above-mentioned sliding-surface-liquefaction in the sand - dry ice mixture supports the possibility of similar accelerating and unlimited displacement in the sand-MH mixture or boundaries between MH and sand layer induced by certain strong ground motion under sea floor. To simulate the earthquake-induced submarine landslides due to gasification of MH, authors applied the simple sine-curve cyclic loading to the sand-dry ice sample. After certain number of cyclic loading, sliding surface liquefaction appeared. When the mobilized shear resistance reduced by such excess pore pressure becomes smaller than the shear stress, accelerating behavior and unlimited shear displacement could be expected. Thus, MH still has high possibility to cause gigantic submarine landslides under certain strong earthquake condition.

Tsukui, A.; Fukuoka, H.; Yamasaki, S.

2012-04-01

394

Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project  

SciTech Connect

The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

1998-09-30

395

Identifiability of Finite Mixtures  

Microsoft Academic Search

In general, the class of mixtures of the family of normal distributions or of Gamma (Type III) distributions or binomial distributions is not identifiable (see [3], [4] or Section 2 below for the meaning of this statement). In [4] it was shown that the class of all mixtures of a one-parameter additively-closed family of distributions is identifiable. Here, attention will

Henry Teicher

1963-01-01

396

Symmetric normal mixtures  

NASA Technical Reports Server (NTRS)

We consider mixture density estimation under the symmetry constraint x = Az for an orthogonal matrix A. This distributional constraint implies a corresponding constraint on the mixture parameters. Focusing on the gaussian case, we derive an expectation-maximization (EM) algorithm to enforce the constraint and show results for modeling of image feature vectors.

Turmon, Michael

2004-01-01

397

Messin' with Mixtures  

NSDL National Science Digital Library

In this activity, students investigate the properties of a heterogeneous mixture, trail mix, as if it were a contaminated soil sample near a construction site. This activity shows students that heterogeneous mixtures can be separated by physical means, and that when separated, all the parts will equal the whole.

Integrated Teaching And Learning Program

398

77 FR 36996 - South Mississippi Electric Cooperative: Plant Ratcliff, Kemper County Integrated Gasification...  

Federal Register 2010, 2011, 2012, 2013

...Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural...Integrated Gasification Combined-Cycle (IGCC) Project currently under...greater efficiencies and reduced carbon dioxide (CO 2 ), sulfur...into account demand growth, carbon emissions, construction...

2012-06-20

399

Pulsed combustion process for black liquor gasification  

SciTech Connect

The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

1991-02-01

400

Fluidized bed gasification of select granular biomaterials.  

PubMed

Biomaterials can be converted into solid, liquid and gaseous fuels through thermochemical or biochemical conversion processes. Thermochemical conversion of granular biomaterials is difficult because of its physical nature and one of the suitable processes is fluidized bed gasification. In this study, coir pith, rice husk and saw dust were selected and synthetic gas was generated using a fluidized bed gasifier. Gas compositions of product gas were analyzed and the percentage of carbon monoxide and carbon dioxide was in the range of 8.24-19.55 and 10.21-17.14, respectively. The effect of equivalence ratio (0.3, 0.4 and 0.5) and reaction time (at 10 min interval) on gas constituents was studied. The gas yield for coir pith, rice husk and sawdust were found to be in the range of 1.98-3.24, 1.79-2.81 and 2.18-3.70 Nm3 kg(-1), respectively. Models were developed to study the influence of biomaterial properties and operating conditions on molar concentration of gas constituents and energy output. PMID:20817445

Subramanian, P; Sampathrajan, A; Venkatachalam, P

2011-01-01

401

Gasification research on wood grow project  

SciTech Connect

The GROW (Gasification Research on Wood) project consists of a research project on thermochemical degradation of wood particles (sawdust or hammermilled wood) on a pilot plant scale and utilizes a 100 cm (40 in.) diameter fluidized sand bed reactor at capacities of up to 1000 Kg/Hr (2200 lb/hr). Supplementary facilities include wood preparation and air conveying, a wood feed bin, feed and transfer screws, an air compressor with storage and filter tanks, an electrical preheater, a propane-fired preheater, a cyclone separator removing solids from product gas, a water scrubber to cool and clean product gas, a scrubber wate settling tank, a scrubber water cooler, a knockout drum, a demister to be installed in the future, a recycle compressor for recirculation, a recycle gas storage tank, a flare and stack with air blower to dispose of the gas, 2 CO/sub 2/ stripper columns to be installed in the future to remove CO/sub 2/ by caustic adsorption, caustic tanks, and the necessary piping, pumps, sampling, and measurement facilities. A brief report of progress on the project is given, followed by the safety implementation plan and operating, maintenance, and safety procedures. (MHR)

Flanigan, V J

1981-01-09

402

Commercialization of the Dow gasification process  

SciTech Connect

In 1979 the Dow Chemical Company authorized $450 million of the capital to be spent on the Gulf Coast Power Conversion Project, the largest single power project Dow had ever built. This capital was to be spent phasing out less efficient gas-fired boilers at the Texas and Louisiana Divisions and integrating 910 MW of new gas turbine generation capacity into these manufacturing locations. Fuel cost savings were projected to be $200 million per year. Future plans involved utilization of Dow's extensive lignite holdings and then-developing gasification technology to provide our Gulf Coast manufacturing locations with low-cost energy on a long-term basis. Dow completed the installation of the gas turbine facilities in 1982. Now, after Dow's largest single research and development project ever, a price guarantee from the Synthetic Fuels Corporation has provided the incentive to build our first commercial gasifier in Plaquemine, Louisiana, the Dow Syngas Project. Western coal will be transported by rail to the plant site and the product, medium Btu syngas, will be used to fuel existing gas turbines. The output of this facility will be equivalent to 155 MW of net power production.

Bornemann, G.A.; Sundstrom, D.G.

1986-04-01

403

Wood gasification for gas and power generation  

SciTech Connect

A wood-chip gasifier supplying 4.05 million Btu (4.27 GJ)/hr of low-Btu fuel gas to a diesel-engine power generator has demonstrated its suitability as an efficient energy alternative for isolated communities in Canada's heavily wooded northern areas. Preliminary tests with wet spruce chips (58% water) yielded a clean 112-130 Btu/CF (4.4-5.07 MJ/m/sup 3/) gas that is easily combusted in a naturally aspirated diesel engine requiring diesel fuel only or ignition purposes. Although designed as a fluidized-bed system, the gasifier operated essentially in a fixed updraft-flow mode; the wet spruce chips tended to lock together, thus preventing fluidization. A study of the social and environmental consequences of power generation via wood gasification in typical northern communities revealed adequate wood supplies, social benefits related to permanent local employment and a reliable fuel supply, and a minimal negative impact on the environment.

Verma, A.; Weisgerber, G.A.

1980-01-01

404

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasfication process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and landfill. We determined that it would be extremely difficult for ``as-generated`` slag to find acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that would meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by heating it to between 1600 and 1900{degree}F in a kiln, which indicated the potential for using such materials as substitutes for lightweight aggregates. Between 1987 and 1993, the technologies to produce these materials from slag were developed by Praxis with funding from the Electric Power Research Institute, Illinois Clean Coal Institute, and internal resources.

NONE

1994-12-01

405

Release of fuel-bound nitrogen during biomass gasification  

SciTech Connect

Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

2000-03-01

406

Survey of biomass gasification. Volume III. Current technology and research  

SciTech Connect

This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

None

1980-04-01

407

Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier  

PubMed Central

Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.955.5%, 43.772.4%, and 42.550.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

2014-01-01

408

Fuels from biomass and wastes  

NASA Astrophysics Data System (ADS)

The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

Klass, D. L.; Emert, G. H.

409

Plasma vitrification of waste materials  

Microsoft Academic Search

This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a

David F. McLaughlin; Shyam V. Dighe; William R. Gass

1997-01-01

410

Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass  

Microsoft Academic Search

In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth

Miki Taniguchi; Kenichi Sasauchi; Chulju Ahn; Yusuke Ito; Toshiaki Hayashi; Fumiteru Akamatsu

2010-01-01

411

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-print Network

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification. #12;Biomass gasification using solar thermal energy Munzinger Figure 1 Pyrolysis pathways (Milne et al

412

Mechanisms of Thermochemical Biomass Conversion Processes. Part 2: Reactions of Gasification  

Microsoft Academic Search

Gasification as a thermochemical process is defined and limited to combustion and pyrolysis. The gasification of biomass is a thermal treatment which results in a high proportion of gaseous products and small quantities of char (solid product) and ash. Biomass gasification technologies have historically been based upon partial oxidation or partial combustion principles, resulting in the production of a hot,

M. Balat

2008-01-01

413

Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system  

E-print Network

791 Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system-bed slagging gasification systems is attributed to evolution of structural damage in the refractory walls. Early detection of such damage is necessary to avert unscheduled shutdown of a gasification plant

Ray, Asok

414

Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON DIOXIDE1*2  

E-print Network

Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON commercial carbons and their gasification rates with carbon dioxide at a series of temperatures between 900. No general correlation between these properties and the carbon gasification rates was found. Introduction

415

10January 1998 Small-Scale Gasification-Based Biomass Power Generation  

E-print Network

10January 1998 I Small-Scale Gasification-Based Biomass Power Generation Eric D. Larson Centerfor are the technologies of choice today for gasification-based power generationfrom biomass(Fig. I). Fuel cells and micro during gasification of raw biomass. Condensationof tars on downstream equipment causessystem operating

416

MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT Lars Andersen, Brian Elmegaard, Bjrn Qvale, Ulrik Henriksen  

E-print Network

MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT Lars Andersen, Brian Elmegaard, Bjørn Qvale, Ulrik-tar, high-efficient biomass gasification concept for medium- to large-scale power plants has been designed pyrolysis and gasification units. The volatile gases from the pyrolysis (containing tar) are partially

417

Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using  

E-print Network

1 Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle Carolina State University ABSTRACT Gasification is a globally emerging technology in commercial markets of the most developed and versatile gasification technologies is based upon entrained-flow reactors, which

Frey, H. Christopher

418

Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass  

E-print Network

Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass Francis S. Lau, Robert, followed by gasification or pyrolysis, a reforming section to reduce heavy hydrocarbons in the gas, a shift hand experience in the design and operation of biomass gasification and hydrogen production facilities

419

Formation of CO precursors during char gasification with O2, CO2 and H2O  

E-print Network

Formation of CO precursors during char gasification with O2, CO2 and H2O Alejandro Montoya a are presented to get insight into an unified mechanism of uncatalyzed carbon gasification. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Gasification; Chemisorption; Molecular simulation; Surface

Truong, Thanh N.

420

The fate of heavy metals during combustion and gasification of contaminated biomass-a brief review.  

PubMed

The literature on the presence of heavy metals in contaminated wastes is reviewed. Various categories of materials produced from domestic and industrial activities are included, but municipal solid waste, which is a more complex material, is excluded. This review considers among the most abundant the following materials - wood waste including demolition wood, phytoremediation scavengers and chromated copper arsenate (CCA) timber, sludges including de-inking sludge and sewage sludge, chicken litter and spent pot liner. The partitioning of the metals in the ashes after combustion or gasification follows conventional behaviour, with most metals retained, and higher concentrations in the finer sizes due to vaporisation and recondensation. The alkali metals have been shown to catalyse the biomass conversion, particularly lithium and potassium, although other metals are active to a lesser extent. The most prevalent in biomass is potassium, which is not only inherently active, but volatilises to become finely distributed throughout the char mass. Because the metals are predominantly found in the ash, the effectiveness of their removal depends on the efficiency of the collection of particulates. The potential for disposal into soil depends on the initial concentration in the feed material. PMID:23669791

Nzihou, Ange; Stanmore, Brian

2013-07-15

421

Development program to support industrial coal gasification. Quarterly report 1  

SciTech Connect

The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

None

1982-01-15

422

Coal gasification systems engineering and analysis. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

1980-01-01

423

The PSI Energy Wabash River Coal Gasification Repowering Project  

SciTech Connect

This paper discusses the Wabash River Coal Gasification Repowering Project which will develop, design, construct, own, and operate a coal gasification combined cycle (CGCC) power plant. Coal gasification technology will be used to repower one of six units at PSI's Wabash River Generating Station in West Terre Haute, Indiana. The CGCC power plant will produce a nominal 270 net MW of clean, energy efficient, capacity for PSI's customers. In the repowered configuration, PSI and its customers may additionally benefit because of the role this Project could play in PSI's compliance pan under the CAAA regulations. The Project will use locally mined, high sulfur coal. Upon completion, the Project will not only represent the largest CGCC power plant (in operation in the United States), but will also emit lower emissions than most other high sulfur coal-fired power plants.

Bott, J.U. (PSI Energy, Inc., Plainfield, IN (US)); Sundstrom, D.G. (Destec Energy, Inc., Houston, TX (US))

1992-01-01

424

Hydroliquefaction of green wastes to produce fuels  

Microsoft Academic Search

The direct liquefaction of a biomass composed of a mixture of wastes (straw, wood and grass) was studied using Nickel Raney as catalyst and tetralin as a solvent. Tetralin allows to solubilize green waste from 330C at relatively low hydrogen pressure, and avoids the recondensation of the intermediate products. The green waste deoxygenation results mainly from a decarboxylation reaction. The

R. Beauchet; L. Pinard; D. Kpogbemabou; J. Laduranty; L. Lemee; J. L. Lemberton; F. Bataille; P. Magnoux; A. Ambles; J. Barbier

2011-01-01

425

Combustion front propagation in underground coal gasification  

SciTech Connect

Reverse Combustion (RC) enhances coal seam permeability prior to Underground Coal Gasification. Understanding RC is necessary to improve its reliability and economics. A curved RC front propagation model is developed, then solved by high activation energy asymptotics. It explicitly incorporates extinction (stoichiometric and thermal) and tangential heat transport (THT) (convection and conduction). THT arises from variation in combustion front temperature caused by tangential variation in the oxidant gas flux to the channel surface. Front temperature depends only weakly on THT; front velocity is strongly affected, with heat loss slowing propagation. The front propagation speed displays a maximum with respect to gas flux. Combustion promoters speed front propagation; inhibitors slow front propagation. The propagation model is incorporated into 2-D simulations of RC channel evolution utilizing the boundary element method with cubic hermetian elements to solve the flow from gas injection wells through the coal to the convoluted, temporally evolving, channel surface, and through the channel to a gas production well. RC channel propagation is studied using 17 cm diameter subbituminous horizontally drilled coal cores. Sixteen experiments at pressures between 2000 and 3600 kPa, injected gas oxygen contents between 21% and 75%, and flows between 1 and 4 standard liters per minute are described. Similarity analysis led to scaling-down of large RC ({approx}1 m) to laboratory scale ({approx}5 cm). Propagation velocity shows a strong synergistic increase at high levels of oxygen, pressure, and gas flow. Char combustion is observed, leaving ash-filled, irregularly shaped channels. Cracks are observed to penetrate the char zone surrounding the channel cores. 69 refs., 54 figs., 4 tabs.

Dobbs, R.L. II; Krantz, W.B.

1990-10-01

426

Kinematic separation of mixtures  

SciTech Connect

A phenomenon of spontaneous separation of components in an initially uniform fluid mixture is found experimentally. A qualitative explanation of the effect is proposed in terms of nonparallel streamlines in the medium.

Goldshtik, M.; Husain, H.S.; Hussain, F. (Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4792 (United States))

1992-06-15

427

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

None

1999-12-30

428

Separating a Mixture  

NSDL National Science Digital Library

This activity was designed for blind learners, but all types of learners can explore means of physically separating a mixture using dissolving, filtration, and evaporation. Separating a sand/salt mixture is a common experiment in physical science class that requires almost no adaptation for learners with visual impairments. This activity also provides experience in popular laboratory techniques of dissolving, filtration, and evaporation. In this activity, the learner will use filters and funnels to separate sand and salt.

Blind, Perkins S.

2012-07-12

429

Catalytic steam gasification of bagasse for the production of methanol  

SciTech Connect

Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

Baker, E.G.; Brown, M.D.

1983-12-01

430

Shell coal gasification plant (SCGP-1) environmental performance results  

SciTech Connect

Environmental studies in slip-stream process development units at SCGP-1, Shell's advanced coal gasification demonstration plant, located near Houston, Texas, have demonstrated that the gas and water effluents from the Shell Coal Gasification Process (SCGP) are environmentally benign on a broad slate of coals. This report presents the results of those environmental studies. It contains two major subjects, which describe, respectively, the experiments on gas treating and the experiments on water treating. Gas treatment focused on the performance of aqueous methyldiethanolamine (MDEA) and sulfinol-M. 8 refs., 24 figs., 13 tabs.

Bush, W.V.; Baker, D.C.; Tijm, P.J.A. (Shell Development Co., Houston, TX (United States))

1991-07-01

431

Effect of steam-to-feed ratio on biomass gasification  

SciTech Connect

Whole tree chips from young Siberian elm (Ulmus pumila L.) were gasified with steam in a 10.16 cm I.D. bench-scale fluidized bed reactor over a temperature range of 850 K to 1160 K. The steam-to-feed mass ratio was varied between 4 and 11 to investigate its effect on gasification characteristics such as, the product gas composition, yield and heating value, the carbon conversion, and the energy recovery. Statistical analyses of the experimental data confirmed that this ratio (over the range covered), is an important parameter influencing the biomass gasification process.

Walawender, W.P.; Eriksson, M.A.; Neogi, D.; Singh, S.K.; Fan, L.T.; Geyer, W.A.

1985-01-01

432

Gasification Evaluation of Gas Turbine Combustion  

SciTech Connect

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30

433

An experimental study of hydrogen production by gasification of biomass in the presence of a CO 2 sorbent  

Microsoft Academic Search

The paper presents a novel technique that enhances the hydrogen yield of conventional biomass steam gasification. This is done by integrating the gasification and absorption reactions. The method involves steam gasification of a carbonaceous fuel (biomass) in presence of a CO2 sorbent. Experiments were conducted by gasifying pine bark in presence of calcium oxide. The gasification was carried out at

Madhukar R. Mahishi; D. Y. Goswami

2007-01-01

434

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry  

E-print Network

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas: Coal gasification Carbon gasification Detailed chemistry Heterogeneous surface reactions Radiation Multi-physics numerical modeling a b s t r a c t Fuel synthesis through coal and biomass gasification

Qiao, Li

435

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-12-01

436

Fixed-bed gasification research using US coals. Volume 3. Gasification of Rosebud sub-bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the third volume in a series of documents prepared by Black, Sivalls and Bryson, Incorporated and describes the gasification of Rosebud subbituminous coal during the time period November 2-20, 1982. Test results and data are presented for the gasification of the coal and the operation of a slipstream tar scrubber to cool the gas and remove condensed tar. 5 refs., 29 figs., 18 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

437

Analysis of a hypothetical criticality accident in a waste supercompactor  

Microsoft Academic Search

A hypothetical nuclear criticality accident in a waste supercompactor is evaluated. The waste consists of a homogenous mixture of plutonium 49, beryllium, and air contained in a 35 gallon carbon steel drum. Possible consequences are investigated.

M. J. Plaster; B. Basoglu; C. L. Bentley; M. E. Dunn; A. E. Ruggles; A. Wilkinson; T. Yamamoto; H. L. Dodds

1994-01-01

438

COLEACHING MECHANISM OF BAGHOUSE ASH\\/SCRUBBER RESIDUE BINARY MIXTURES  

Microsoft Academic Search

Leaching behavior of lead in the binary mixture of semi-dry scrubber residues (PR) and baghouse ashes (FA) collected from municipal solid waste incineration (MSWI) plants has been previously studied. In this study the leaching mechanisms were investigated to better understand how the chemical compositions affect the leaching concentration of lead from such binary mixtures. FT-IR and X-ray diffraction spectrometries of

Wu-Jang Huang; Chung-Chien Li

439

Effect of the chemical heat treatment in a semianthracite char on the textural properties and the gasification in air  

SciTech Connect

The effects of the chemical heat treatments of a semianthracite char (AC) on the textural properties and the gasification in air are investigated. Sample AC first was treated with the LiCl/KCl mixture or the mixture formed by LiCl/IKCl and a metallic oxide, M{sub n=1,2}O (MgO, CaO, FeO, CoO, NiO, Cu{sub 2}O or ZnO) at 743, 873 or 1173 K and products obtained they were then washed carefully with water distilled. The information on the textural modifications was deduced of isotherms of CO{sub 2} adsorption to 273 K. The reactivity tests were taken to the temperature 808, 823 and 838 K. As resulting from the AC treatments, on developed the microporosity and on increase the air reactivity, in particular, the first effect is greater when the used mixture went LiCl/KCl/CoO at 1173 K and the second effect are greater when the used mixture went LiCl/KCl/Cu{sub 2}O at 1173 K.

Dominguez, M.A. [University of Extremadura, Badajoz (Spain)

2009-08-15

440

Progress in studies on catalyzed gasification of biomass  

SciTech Connect

The Pacific Northwest Laboratory (PNL) is conducting an ongoing project, sponsored by the Biomass Energy Technology Division of the U.S. Department of Energy, on the gasification of biomass in the presence of catalysts. The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products throught the catalytic gasification of biomass. This report presents the results of research conducted since the 15th Biomass Thermoconversion Contractors's Meeting and current project status. Laboratory studies have determined the mechanism of carbon deposition on secondary catalysts. Types of catalysts that minimize carbon deposition have been identified. These studies have also provided a fundamental understanding of the effects of both primary and secondary catalysts. This included a review of the state of the art of catalysis as it applies to biomass gasification. The process development unit (PDU) was successfully operated using bagasse from Australia as a feedstock. Both primary and secondary catalysts were used. The economics of producing methanol from bagasse were evaluated and the economics of a wood-to-methanol plant were updated from 1980 to 1983. A bench-scale gasification system (1 to 3 kg/h) is being built to provide the capabilities of the PDU gasifier system at a lower cost. The primary goal of the bench-scale studies to to demonstrate that carbon deposition on catalysts and catalyst attrition can be controlled at acceptable rates in a fluidized bed. 32 references, 3 figures, 8 tables.

Baker, E.G.; Mudge, L.K.; Brown, M.D.

1984-05-01

441

SORBENT SELECTION FOR THE CAFB RESIDUAL OIL GASIFICATION DEMONSTRATION PLANT  

EPA Science Inventory

The report gives results of evaluations of limestones from Texas and Mexico as candidate sulfur sorbents for the chemically active fluid-bed (CAFB) gasification demonstration plant at San Benito, Texas. Preliminary laboratory tests show that three limestones quarried in Texas and...

442

Power Systems Development Facility Gasification Test Campaign TC16  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

Southern Company Services

2004-08-24

443

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: SULFUR AND NITROGEN SPECIES  

EPA Science Inventory

The report summarizes data on sulfur and nitrogen species from the source test and environmental assessment studies of low- and medium-Btu gasification processes which were sponsored by the EPA between 1977 and 1981. The data are focused on the composition and distribution of the...

444

Prospects for high-temperature gasification of coal and sludge  

NASA Astrophysics Data System (ADS)

Results from an experimental research work aimed at studying gasification of carbonized coal and sludge in high-temperature steam are reported. The component composition of the obtained gaseous phase and the results from calculation of carbon conversion rate are given.

Bogomolov, A. R.; Shevyrev, S. A.; Alekseev, M. V.

2013-02-01