These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Energy from gasification of solid wastes  

Microsoft Academic Search

Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by “town gas” produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of

V. Belgiorno; G. De Feo; C. Della Rocca; R. M. A. Napoli

2003-01-01

2

High temperature steam gasification of solid wastes: Characteristics and kinetics  

NASA Astrophysics Data System (ADS)

Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash, geometric changes of pores inside char and diffusion limitations inside and outside the char particle.

Gomaa, Islam Ahmed

3

A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste  

Microsoft Academic Search

Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation.The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to

D. R. McIlveen-Wright; F. Pinto; L. Armesto; M. A. Caballero; M. P. Aznar; A. Cabanillas; Y. Huang; C. Franco; I. Gulyurtlu; J. T. McMullan

2006-01-01

4

Updraft gasification of salmon processing waste  

Technology Transfer Automated Retrieval System (TEKTRAN)

The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

5

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01

6

Catalytic Gasification of Coal using Eutectic Salt Mixtures  

SciTech Connect

The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary eutectic salt mixture consisting of Li- Na- and K- carbonates has the potential as gasification catalyst. To verify the literature reported, melting points for various compositions consisting of these three salts and the temperature range over which the mixture remained molten were determined in the lab. For mixtures with different concentrations of the three salts, the temperatures at which the mixtures were found to be in complete molten state were recorded. By increasing the amount of Li2CO3, the melting temperature range was reduced significantly. In the literature, the eutectic mixtures of Li- Na- and K-carbonates are claimed to have a lower activation energy than that of K2CO3 alone and they remain molten at a lower temperature than pure K2CO3. The slow increase in the gasification rates with eutectics reported in the literature is believed to be due to a gradual penetration of the coals and coal char particles by the molten and viscous catalyst phase. The even spreading of the salt phase seems to increase the overall carbon conversion rate. In the next reporting period, a number of eutectic salts and methods of their application on the coal will be identified and tested.

Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

1998-12-04

7

Catalytic Wet Gasification of Municipal and Animal Wastes  

SciTech Connect

Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

2007-02-21

8

Catalytic wet gasification of municipal and animal wastes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Currently, there is worldwide interest in deriving energy from bio-based materials via gasification. Our objective was to assess the feasibility of wet gasification for treatment/energy conversion of both animal and municipal wastes. Wet wastes such as swine manure and raw sewage sludge could be pro...

9

STUDY OF THE STEAM GASIFICATION OF ORGANIC WASTES  

EPA Science Inventory

Chemical kinetic data describing the pyrolysis/gasification characteristics of organic waste (biomass) materials is needed for the design of improved conversion reactors. Unfortunately, little data is available in the literature on the pyrolysis kinetics of waste materials, and e...

10

Thermochemical gasification of wet biomass and wastes  

SciTech Connect

Pacific Northwest Laboratory has been conducting laboratory research on the low-temperature (under 450{sup 0}C) gasification of biomass and biomass model compounds for several years. Work in this area has been carried out for both the Gas Research Institute and the U.S. Department of Energy (DOE) Division of Biofuels and Municipal Waste Technology. One of the main thrusts in this work has been to investigate the role of selected catalysts at high water-to-biomass ratios (typically in excess of 9:1 by weight). A 1-liter batch reactor has employed to obtain overall gas yield and composition data, along with limited information regarding the actual rate of gas production. These batch studies have clearly demonstrated the utility of the concept, in which high-moisture slurries up to 95 wt% moisture of various biomass feedstocks have been gasified at high carbon conversion to gas at temperatures as low as 380{sup 0}C.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Neuenschwander, G.G.

1988-01-01

11

Hydrogen production by gasification of municipal solid waste  

SciTech Connect

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20

12

Waste Gasification by Thermal Plasma: A Review Frdric Fabry*, Christophe Rehmet, Vandad Rohani, Laurent Fulcheri  

E-print Network

12 Waste Gasification by Thermal Plasma: A Review Frédéric Fabry*, Christophe Rehmet, Vandad Rohani proposes an overview of waste-to-energy conversion by gasification processes based on thermal plasma, of various waste gasification processes based on thermal plasma (DC or AC plasma torches) at lab scale versus

Paris-Sud XI, Université de

13

Gasification of Low Ash Partially Composted Dairy Biomass with Enriched Air Mixture  

E-print Network

GASIFICATION OF LOW ASH PARTIALLY COMPOSTED DAIRY BIOMASS WITH ENRICHED AIR MIXTURE A Thesis by SIVA SANKAR THANAPAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering Gasification of Low Ash Partially Composted Dairy Biomass with Enriched Air Mixture Copyright 2010 Siva...

Thanapal, Siva Sankar

2012-02-14

14

Characterization of cellulosic wastes and gasification products from chicken farms  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

Joseph, Paul, E-mail: p.joseph@ulster.ac.uk [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom); Tretsiakova-McNally, Svetlana; McKenna, Siobhan [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom)

2012-04-15

15

A steam dried municipal solid waste gasification and melting process  

Microsoft Academic Search

Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed,\\u000a the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed\\u000a drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from\\u000a 50% to 20% roughly

Gang Xiao; Baosheng Jin; Mingjiang Ni; Kefa Cen; Yong Chi; Zhongxin Tan

2011-01-01

16

Steam gasification of oil palm trunk waste for clean syngas production  

Microsoft Academic Search

Waste and agricultural residues offer significant potential for harvesting chemical energy with simultaneous reduction of environmental pollution, providing carbon neutral (or even carbon negative) sustained energy production, energy security and alleviating social concerns associated with the wastes. Steam gasification is now recognized as one of the most efficient approaches for waste to clean energy conversion. Syngas generated during the gasification

Nimit Nipattummakul; Islam I. Ahmed; Somrat Kerdsuwan; Ashwani K. Gupta

2012-01-01

17

From waste to energy -- Catalytic steam gasification of broiler litter  

SciTech Connect

In 1996, the production of broiler chickens in the US was approximately 7.60 billion head. The quantity of litter generated is enormous. In 1992, the Southeast region alone produced over five million tons of broiler litter. The litter removed from the broiler houses is rich in nutrients and often spread over land as a fertilizer. Without careful management, the associated agricultural runoff can cause severe environmental damage. With increasing broiler litter production, the implementation of alternative disposal technologies is essential to the sustainable development of the poultry industry. A process originally developed for the conversion of coals to clean gaseous fuel may provide an answer. Catalytic steam gasification utilities an alkali salt catalyst and steam to convert a carbonaceous feedstock to a gas mixture composed primarily of carbon monoxide, carbon dioxide, hydrogen, and methane. The low to medium energy content gas produced may be utilized as an energy source or chemical feedstock. Broiler litter is an attractive candidate for catalytic steam gasification due to its high potassium content. Experiments conducted in UTSI's bench-scale high-pressure fixed bed gasifier have provided data for technical and economic feasibility studies of the process. Experiments have also been performed to examine the effects of temperature, pressure, and additional catalysts on the gasification rate.

Jones, J.A.; Sheth, A.C.

1999-07-01

18

Fluidized bed gasification of waste-derived fuels  

SciTech Connect

Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

Arena, Umberto, E-mail: umberto.arena@unina2.i [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy); Zaccariello, Lucio [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); Mastellone, Maria Laura [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy)

2010-07-15

19

Fluidized bed gasification of waste-derived fuels.  

PubMed

Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning. PMID:20172708

Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

2010-07-01

20

Application of Plasma Gasification Technology in Waste to Energy—Challenges and Opportunities  

Microsoft Academic Search

Utilization of plasma gasification in waste to energy (WTE) is one of the novel applications of a technology that was introduced several decades ago. In this application, plasma arc gasifies the carbon-based part of waste materials such as municipal solid waste, sludge, agricultural waste, etc., and generates a synthetic gas which can be used to produce energy through reciprocating engine

Masoud Pourali

2010-01-01

21

Modeling and comparative assessment of municipal solid waste gasification for energy production.  

PubMed

Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H(2)) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify(®)) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration. PMID:23726119

Arafat, Hassan A; Jijakli, Kenan

2013-08-01

22

Low-temperature catalytic gasification of wet industrial wastes  

SciTech Connect

Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

1991-04-01

23

Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.  

PubMed

In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator. PMID:18083026

García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

2008-09-01

24

Analysis of energy recovery potential using innovative technologies of waste gasification  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

Lombardi, Lidia, E-mail: lidia.lombardi@unifit.it [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Carnevale, Ennio [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell'Informazione, University of Siena, via Roma 56, 56100 Siena (Italy)

2012-04-15

25

Presence of an Unusual Methanogenic Bacterium in Coal Gasification Waste  

PubMed Central

Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics d-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37°C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 ?m wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. Images PMID:16347791

Tomei, Francisco A.; Rouse, Dwight; Maki, James S.; Mitchell, Ralph

1988-01-01

26

The influence of additives on the steam gasification of PVC waste  

Microsoft Academic Search

This study is concerned with the influence of additives on the steam gasification of polyvinyl chloride (PVC) waste. Three\\u000a types of PVC waste, namely pipe waste, cable waste, and flooring, were tested. The presence of additives proved to have a\\u000a profound effect on the carbon-to-gas conversion. Plasticizers and other organic additives caused an increase in carbon-to-gas\\u000a conversion. Inorganic additives, especially

J. M. N. van Kasteren; M. J. P. Slapak

2001-01-01

27

Analysis of power generation system on gasification of coal and solid wastes using high temperature air  

SciTech Connect

A new concept of gasification power generation systems fueled by coal, RDF and various kinds of wastes using high temperature air is proposed. Cycle analyses of these IGCC and boiler systems are done. The calculation shows that calorific value of syngas almost doubles when one increases the gasification air temperature from 25 C to 1,000 C. More than 45% thermal efficiency is obtainable for both coal and RDF by employing the new high temperature air blown IGCC system. This IGCC system is applicable to various wastes including low grade wastes such as sludge.

Kobayashi, Hiromichi; Yoshikawa, Kunio; Shioda, Susumu

1999-07-01

28

High-temperature, air-blown gasification of dairy-farm wastes for energy production  

Microsoft Academic Search

A study was carried out to investigate the feasibility of integrating an advanced gasifier into the operation of a dairy farm for converting biomass wastes into fuel gas that can be used for power production. The disposal\\/utilization of excess animal wastes is a serious problem facing the dairy industry. Implementation of a gasification system on the dairy farm may provide

Lincoln Young; Carlson C. P. Pian

2003-01-01

29

Low-temperature catalytic gasification of food processing wastes. 1995 topical report  

SciTech Connect

The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previous interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.

Elliott, D.C.; Hart, T.R.

1996-08-01

30

CO-GASIFICATION OF DENSIFIED SLUDGE AND SOLID WASTE IN A DOWNDRAFT GASIFIER  

EPA Science Inventory

Thermal gasification, the subject of this report, is a new process for the co-disposal of densified sewage sludge and solid waste in a co-current flow, fixed bed reactor (also called a downdraft gasifier). The advantages of this technology include lower costs than other sewage sl...

31

Regulatory Requirements for Land Disposal of Coal Gasification Waste and Their Implications for Disposal Site Design  

Microsoft Academic Search

The regulatory requirements applicable to the land disposal of solid wastes from coal gasification plants are reviewed from the standpoint of disposal site design and design performance evaluation. After consideration of the design flexibility allowed under existing regulations, three approaches to disposal site design are analyzed, and the state-of-the-art approach is determined to be the preferred one. This approach utilizes

Masood Ghassemi; George Richard

1984-01-01

32

Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition  

Microsoft Academic Search

The catalytic steam gasification of waste polyethylene (PE) from municipal solid waste (MSW) to produce syngas (H2+CO) with NiO\\/?-Al2O3 as catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the reactor temperature on the gas yield, gas composition, steam decomposition, low heating value (LHV), cold gas efficiency and carbon conversion efficiency was investigated at the temperature

Maoyun He; Bo Xiao; Zhiquan Hu; Shiming Liu; Xianjun Guo; Siyi Luo

2009-01-01

33

Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine  

NASA Astrophysics Data System (ADS)

The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

Talebi Anaraki, Saber

34

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 3. Technical and economic feasibility of bulk utilization and metal recovery for ashes from an integrated coal-gasification facility. Final report, April 1983-June 1986  

SciTech Connect

Coal-gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization or metals extraction. This project was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant gasifier ash and the Antelope Valley Power Plant combustion explored: mineral wool; sulfur concrete; high-flexural-strength ceramics; ceramic glazed wall tile and vitrified floor tile; dual concrete replacement; road stabilization; blended cement; and recovery of aluminum. Mineral wool of similar physical character to commercial wool and at lower potential cost was produced using the ashes from the GPGA complex. Sulfur concrete utilizing 80% ash and 20% modified sulfur developed flexural and compressive strengths in excess of 2250 and 6000 psi, respectively. A vitrified ceramic product with flexural strength above 7800 psi was produced from a mixture of 50% AVS scrubber ash 45% sand, and 5% clay. By using a total ash mixture of 26% gasifier ash and 74% combustion ash, a very satisfactory, economical, and durable road-base material was developed. The replacement of up to 50% of the cement in concrete with AVS scrubber ash produces higher strength. A modified lime-soda sinter process for aluminum recovery was developed, but is not economical.

Manz, O.E.; Hassett, D.J.; Laudal, D.L.; Ellman, R.C.

1986-06-01

35

A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.  

PubMed

This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. PMID:25182227

Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

2015-03-01

36

Operating and environmental performances of commercial-scale waste gasification and melting technology.  

PubMed

Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling. PMID:24019383

Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

2013-11-01

37

Texaco coal gasification  

SciTech Connect

It is a pleasure to be with you today and to be speaking to you about a clean coal technology, the Texaco Coal Gasification Process. Texaco's gasification research began in the 1940s and in the 70s and 80s Texaco incorporated into its goals the production of energy from coal in an environmental clean and technological superior manner. Gasification technology can also be used to gasify other materials such as natural gas, waste refinery gas, oil, petroleum coke, and even organic waste, such as sludge, etc. This technology is also applicable to the manufacture of high purity hydrogen, which we will discuss in a few minutes. Texaco gasification is license in 100 plants throughout the world today. Texaco coal gasification technology begins with grinding the coal and slurrying it with water, pumping the slurry to a gasifier vessel through a burner where it is mixed with oxygen at approximately 2400{degrees} F and pressures of three to six hundred pounds. Here, inside a refractory lines vessel, the partial oxidation of the carbon occurs and produces hydrogen syngas, a mixture of carbon monoxide and hydrogen. The operating temperature (2400{degrees} F) is high enough to melt the mineral matte in the coal, so that it becomes slag and falls to the bottom of the vessel. It is an inert unleachable nonhazardous material. Sulfur within the coal is converted to hydrogen sulfide and is removed by one of several commercially proven technologies as elemental sulfur.

Siegart, W.R.

1992-01-01

38

Lethality and hepatotoxicity of complex waste mixtures  

SciTech Connect

Male F344 rats were exposed by gavage to samples of complex mixtures and evaluated 24 hr later. Seven of the 10 samples caused death at doses ranging from 1 to 5 ml/kg body wt. Eight of the 10 samples were hepatotoxic based on histopathologic evaluation; 6 were centrilobular and 2 were periportal hepatotoxicants. The waste samples exerted toxicity through different mechanisms, as indicated by differences in the severity and lobular location of the tissue damage. Nine of the 10 samples caused an increase in the ratio of liver weight to body weight (relative liver weight). With histopathological evaluation as the criterion, relative liver weight was the single best indicator of hepatotoxicity. Exposure to several of the waste samples increased serum total bilirubin and serum enzyme activities of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, alkaline phosphatase, and ornithine carbamyl transferase. As a battery, but not individually, the serum indicators separated the 8 hepatotoxic samples from the 2 nonhepatotoxic samples. In general, the hepatotoxicity of the waste samples did not appear to be readily predicted from (partial) chemical characterization data. An approach that includes both chemical characterization and biological testing should provide valuable information regarding the hazardous nature of complex wastes.

Simmons, J.E.; DeMarini, D.M.; Berman, E.

1988-06-01

39

Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.  

PubMed

Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. PMID:24246576

Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

2014-02-01

40

Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.  

PubMed

In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products. PMID:18657408

Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

2009-02-01

41

Process aspects in combustion and gasification Waste-to-Energy (WtE) units.  

PubMed

The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. PMID:24846797

Leckner, Bo

2015-03-01

42

Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species  

SciTech Connect

Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: richard.taylor@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)

2014-01-15

43

Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report  

SciTech Connect

A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

1993-07-01

44

Disposal of soluble salt waste from coal gasification  

SciTech Connect

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01

45

The effect of ash composition on gasification of poultry wastes in a fluidized bed reactor.  

PubMed

The effect of ash composition on the fluidized bed gasification behaviour of poultry wastes was investigated by operating a pre-pilot scale reactor with two batches of manure obtained from an industrial chicken farm. The experimental runs were carried out by keeping the fluidized bed velocity fixed (at 0.4m s(-1)) and by varying the equivalence ratio between 0.27 and 0.40, so obtaining bed temperature values between 700 and 800 °C. The performance of the gasification process was assessed by means of mass balances as well as material and feedstock energy analyses, and reported in terms of cold gas efficiency (CGE), specific energy production, low heating value of obtained syngas and yield of undesired by-products. The experimental results indicate the crucial role of ash amount and composition of the two poultry wastes. In particular, higher ash content (25.1% instead of 17.2%) and higher fractions of calcium, phosphorous and potassium (with an increase of 24, 30 and 28%, respectively) induce a dramatic reduction of all the process performance parameters: CGE reduces from 0.63 to 0.33 and the specific energy from 2.1 to 1.1 kWh kg(fuel)(-1). At the same time, the formation of alkali compounds and their behaviour inside the fluidized bed reactor determine an increase of feedstock energy losses, which is related to occurrence of sintering and bridging between bed particles. PMID:24638275

Di Gregorio, Fabrizio; Santoro, Donato; Arena, Umberto

2014-04-01

46

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels  

E-print Network

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass with Energy Dispersive X-Ray Analysis (SEM/EDX). The chemical composition of the various biomass fuels of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam

47

Continuous in-line gasification\\/vitrification process for thermal waste treatment: process technology and current status of projects  

Microsoft Academic Search

The Thermoselect High Temperature Recycling process has been developed in order to make available a thermal waste treatment technology avoiding major problems as known from traditional techniques like landfills or ashes, filter dust and emission producing processes. It combines slow degassing with fixed bed oxygen blown gasification and mineral and metal residue melting in a closed loop system. Municipal, industrial

Bernd Calaminus; R. Stahlberg

1998-01-01

48

Organic waste disposal system  

SciTech Connect

Organic waste material is pneumatically transported within air and mixed therewith by swirling flow through an annular ejector passage of varying radial width into a reaction flow passage of an eductor nozzle section receiving the output plume of a plasma torch for initiating therein thermal gasification of the waste mixture. The plasma torch plume projects from the eductor section into a diffuser section within which thermal gasification is continued before discharge of gasified waste.

Nolting, E.E.; Colfield, J.; Richard, R.; Peterson, S.

1997-12-31

49

Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2: Catalytic tar removal  

SciTech Connect

Eight different commercial catalysts, nickel based, for steam reforming of naphthas and of natural gas are tested in biomass gasification for hot gas cleanup and conditioning. They were manufactured by BASF AG, ICI-Katalco, UCI, and Haldor Topsoee a/s. The catalysts were tested in a slip flow after a biomass gasifier of fluidized bed type at small pilot-plant scale (10--20 kg of biomass/h). The gasifying agent used is steam-oxygen mixtures. A guard bed containing a calcined dolomite is used to decrease the tar content in the gas at the inlet of the catalytic bed. Main variables studied are catalyst type, bed temperature, H{sub 2}O + O{sub 2} to biomass feed ratio, and time-on-stream. All catalysts for reforming of naphthas show to be very active and useful for tar removal and gas conditioning (in biomass gasification). 98% tar removal is easily obtained with space velocities of 14,000 h{sup {minus}1} (n.c.). No catalysts deactivation is found in 48 h-on-stream tests when the catalyst temperature is relatively high (780--830 C). Using a simple first-order kinetic model for the overall tar removal reaction, apparent energies of activation (of around 58 kJ/mol) and preexponential factors are obtained for the most active catalysts.

Aznar, M.P.; Caballero, M.A.; Gil, J.; Martin, J.A. [Univ. of Saragossa (Spain). Chemical and Environmental Engineering Dept.] [Univ. of Saragossa (Spain). Chemical and Environmental Engineering Dept.; Corella, J. [Univ. Complutense of Madrid (Spain). Chemical Engineering Dept.] [Univ. Complutense of Madrid (Spain). Chemical Engineering Dept.

1998-07-01

50

Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment.  

PubMed

Thermal plasma treatment has been regarded as a viable alternative for the treatment of highly toxic wastes, such as incinerator residues, radioactive wastes, and medical wastes. Therefore, a gasification/vitrification unit for the direct treatment of municipal solid waste (MSW), with a capacity of 10 tons/day, was developed using an integrated furnace equipped with two nontransferred thermal plasma torches. The overall process, as well as the analysis of byproducts and energy balance, has been presented in this paper to assess the performance of this technology. It was successfully demonstrated that the thermal plasma process converted MSW into innocuous slag, with much lower levels of environmental air pollutant emissions and the syngas having a utility value as energy sources (287 Nm3/MSW-ton for H2 and 395 Nm3/MSW-ton for CO), using 1.14 MWh/MSW-ton of electricity (thermal plasma torch (0.817 MWh/MSW-ton)+utilities (0.322 MWh/MSW-ton)) and 7.37 Nm3/MSW-ton of liquefied petroleum gas. PMID:20677789

Byun, Youngchul; Namkung, Won; Cho, Moohyun; Chung, Jae Woo; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

2010-09-01

51

An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.  

PubMed

The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. PMID:24946772

Milani, M; Montorsi, L; Stefani, M

2014-06-19

52

Low-temperature catalytic gasification of wet industrial wastes. FY 1993--1994 interim report  

SciTech Connect

Process development research is continuing on a low-temperature, catalytic gasification system that has been demonstrated to convert organics in water (dilute or concentrated) to useful and environmentally safe gases. The system, licensed under the trade name Thermochemical Environmental Energy System (TEESO), treats a wide variety of feedstocks ranging from hazardous organics in water to waste sludges from food processing. The current research program is focused on the use of continuous-feed, tubular reactors systems for testing catalysts and feedstocks in the process. A range of catalysts have been tested, including nickel and other base metals, as well as ruthenium and other precious metals. Results of extensive testing show that feedstocks, ranging from 2% para-cresol in water to potato waste and spent grain, can be processed to > 99% reduction of chemical oxygen demand (COD). The product fuel gas contains from 40% up to 75% methane, depending on the feedstock. The balance of the gas is mostly carbon dioxide with < 5% hydrogen and usually < 1% ethane and higher hydrocarbons. The byproduct water stream carries residual organics from 10 to 1,000 mg/l COD, depending on the feedstock. The level of development of TEES has progressed to the initial phases of industrial process demonstration. Testing of industrial waste streams is under way at both the bench scale and engineering scale of development.

Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Deverman, G.S.; Werpy, T.A.; Phelps, M.R.; Baker, E.G.; Sealock, L.J. Jr.

1995-03-01

53

Element partitioning in combustion- and gasification-based waste-to-energy units.  

PubMed

A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal. PMID:23465309

Arena, Umberto; Di Gregorio, Fabrizio

2013-05-01

54

Element partitioning in combustion- and gasification-based waste-to-energy units  

SciTech Connect

Highlights: ? Element partitioning of waste-to-energy units by means of a substance flow analysis. ? A comparison between moving grate combustors and high temperature gasifiers. ? Classification of key elements according to their behavior during WtE processes. ? Slags and metals from waste gasifiers are completely and immediately recyclable. ? Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental, Pharmaceutical and Biological Sciences and Technologies – Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c.a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy); Di Gregorio, Fabrizio [Department of Environmental, Pharmaceutical and Biological Sciences and Technologies – Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy)

2013-05-15

55

Formulation of Environmentally Sound Waste Mixtures for Land Application  

Microsoft Academic Search

Major impediments to the land application of coal combustion byproducts (fly ash) for crop fertilization have been the presence of heavy metals and their relatively low and imbalanced essential nutrient concentration. Although nutrient deficiencies, in particular N, P, and K, may be readily augmented by adding organic wastes such as sewage sludge and animal manure, the indiscriminate application of mixtures

Arnold W. Schumann; Malcolm E. Sumner

2004-01-01

56

Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium.  

PubMed

The uses of a thermally reductive gasification process in conjunction with vitrification and cementation for the long-term disposal of low level radioactive materials have been investigated. gamma-ray spectroscopy was used for analysis of carrier-free protactinium-233 and neptunium-239 and a stoichiometric amount of cerium (observed cerium-141) subsequent to gasification and leaching, up to 48 days. High resolution ICP-MS was used to analyze the cerium, thorium, and uranium from 46 to 438 days of leaching. Leaching procedures followed the guidance of ASTM Procedure C 1220-92, Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste. The combination of the thermally reductive pretreatment, vitrification and cementation produced a highly non-leachable form suitable for long-term disposal of cerium, thorium, protactinium, uranium, and neptunium. PMID:14637345

Marrero, T W; Morris, J S; Manahan, S E

2004-02-01

57

Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.  

PubMed

A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. PMID:25576988

Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

2015-03-01

58

SynGas Production from Catalytic Steam Gasification of Municipal Solid Wastes in a Combined Fixed Bed Reactor  

Microsoft Academic Search

The catalytic steam gasification of municipal solid wastes (MSW) for syn-gas production was experimentally investigated in a combined fixed bed reactor using the newly developed tri-metallic catalyst. A series of experiments have been performed to explore the effects of catalyst presence, catalytic temperature, catalyst to MSW weight ratio (C\\/M) and steam to MSW ratio (S\\/M) on the composition and yield

Jianfen Li; Jianjun Liu; Shiyan Liao; Xiaorong Zhou; Rong Yan

2010-01-01

59

Microgravity and Hypogravity Compatible Methods for the Destruction of Solid Wastes by Magnetically Assisted Gasification  

NASA Technical Reports Server (NTRS)

This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.

Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana

2003-01-01

60

Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1: Hot gas upgrading by the catalytic reactor  

Microsoft Academic Search

Commercial steam reforming (nickel-based) catalysts are used for hot gas cleaning and upgrading in biomass gasification with steam-oxygen mixtures. The gasifier used was an atmospheric and bubbling fluidized bed with an internal diameter of 15 cm and a total height of 3.2 m and was continuously fed with 5--20 kg of biomass\\/h. Eight different catalysts from four different manufacturers (BASF

Miguel A. Caballero; María P. Aznar; Javier Gil; J. A. Martin; E. Frances; José Corella

1997-01-01

61

Gasification system  

DOEpatents

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01

62

Gasification system  

DOEpatents

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01

63

Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes  

SciTech Connect

Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

1990-04-01

64

Low-temperature, catalytic gasification of wastes for simultaneous disposal and energy recovery  

SciTech Connect

Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treatment of a wide variety of feedstocks ranging from dilute organics in wastewater to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. Test results show that solutions of 2% to 10% organics in water can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2.3 L/hr. The estimated residence time in the metallic catalyst bed is less than 10 min at 360{degrees}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 4.6 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas composition (depending on the feedstock) is 45% to 70% methane; 25% to 50% carbon dioxide; <5% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide; and small amounts of higher hydrocarbons. The by-product water stream carries residual organics from 40 to 500 ppM COD. 8 refs., 1 fig., 3 tabs.

Elliot, D.C.; Neuenschwander, G.G.; Baker, E.G.; Sealock, L.J. Jr.

1991-01-01

65

Steam gasification of waste tyre: influence of process temperature on yield and product composition.  

PubMed

An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature. PMID:22749720

Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

2013-03-01

66

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report  

SciTech Connect

The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

Holzman, M.I.

1995-08-01

67

Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.  

PubMed

Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. PMID:24176239

Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

2014-01-01

68

Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization.  

PubMed

Steam gasification of waste biomass has been studied in a two-stage fluidized bed reactor, which has the primary pyrolysis fluidized bed using silica sand as bed material and the secondary reforming fixed bed with catalyst. The main objectives are parametric investigation and performance improvement especially at low temperature of around 600 °C using the wood chip and the pig manure compost as feedstock. Main operating variables studied are pyrolysis temperature, catalytic temperature, steam/biomass-C ratio, space velocity and different catalyst. Reaction temperatures and steam/C ratio have important role on the gasification process. About 60 vol.% H2 (dry and N2 free) and about 2.0 Nm3/kg biomass (dry and ash free basis) can be obtained under good conditions. Compared to Ni/Al2O3, Ni/BCC (Ni-loaded brown coal char) has a better ability and a hopeful prospect for the stability with coking resistance. PMID:20889337

Xiao, Xianbin; Meng, Xianliang; Le, Duc Dung; Takarada, Takayuki

2011-01-01

69

Lethality and hepatotoxicity of complex waste mixtures (journal version)  

SciTech Connect

Male F344 rats were exposed by gavage to samples of complex mixtures and evaluated 24 hours later. Seven of the 10 samples caused death at doses ranging from 1 to 5 ml/kg body wt. Eight of the 10 samples were hepatotoxic based on histopathologic evaluation; 6 were centrilobular and 2 were periportal hepatotoxicants. The waste samples exerted toxicity through different mechanisms, as indicated by differences in the severity and lobular location of the tissue damage. With histopathological evaluation as the criterion, relative liver weight was the single best indicator of hepatotoxicity. Exposure to several of the waste samples increased serum total bilirubin and serum enzyme activities of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, alkaline phosphatase, and ornithine carbamyl transferase. As a battery, but not individually, the serum indicators separated the 8 hepatotoxic samples from the 2 nonhepatotoxic samples. In general, the hepatotoxicity of the waste samples did not appear to be readily predicted from (partial) chemical characterization data.

Simmons, J.E.; DeMarini, D.M.; Berman, E.

1988-01-01

70

Enhanced selective metal adsorption on optimised agroforestry waste mixtures.  

PubMed

The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. PMID:25681794

Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

2015-04-01

71

Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm{sup 3}), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 Degree-Sign C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.

Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav; Popelka, Jan [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Svoboda, Karel, E-mail: svoboda@icpf.cas.cz [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Smetana, Jiri; Vacek, Jiri [D.S.K. Ltd., Ujezdecek - Dukla 264, 415 01 Teplice I (Czech Republic); Skoblja, Siarhei; Buryan, Petr [Dept. of Gas, Coke and Air protection, Institute of Chemical Technol., Technicka 5, 166 28 Prague 6 (Czech Republic)

2012-04-15

72

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-print Network

the outputs of the processes (Nise, 2000). Usually, closing a conventional PID (Proportional-Integral-Derivative) controllers around feed actuators is utilized to provide automatic control in existing biomass gasification systems (Sagues et al., 2007...

Maglinao, Amado Latayan

2013-04-11

73

Organic waste disposal system  

Microsoft Academic Search

Organic waste material is pneumatically transported within air and mixed therewith by swirling flow through an annular ejector passage of varying radial width into a reaction flow passage of an eductor nozzle section receiving the output plume of a plasma torch for initiating therein thermal gasification of the waste mixture. The plasma torch plume projects from the eductor section into

E. E. Nolting; J. Colfield; R. Richard; S. Peterson

1997-01-01

74

Integrated carbon dioxide/sludge gasification using waste heat from hot slags: Syngas production and sulfur dioxide fixation.  

PubMed

The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950°C) but also an effective desulfurizer (800-900°C). The total gas yields increased from 0.022kg/kgsludge at 500°C to 0.422kg/kgsludge at 900°C; meanwhile, the SO2 concentration at 900°C remarkably reduced from 164ppm to 114ppm by blast furnace slags (BFS) and 93ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. PMID:25647028

Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

2015-04-01

75

Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?  

PubMed

A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream. PMID:21925858

Sulc, Jind?ich; Stojdl, Ji?í; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Ji?í; Vacek, Ji?í; Skoblja, Siarhei; Buryan, Petr

2012-04-01

76

Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures  

DOEpatents

A method and process are disclosed for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate). 6 figs.

Stoner, D.L.; Tien, A.J.

1995-09-26

77

Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures  

DOEpatents

A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).

Stoner, Daphne L. (Idaho Falls, ID); Tien, Albert J. (Zurich, CH)

1995-01-01

78

Simplex-centroid mixture formulation for optimised composting of kitchen waste.  

PubMed

Composting is a good recycling method to fully utilise all the organic wastes present in kitchen waste due to its high nutritious matter within the waste. In this present study, the optimised mixture proportions of kitchen waste containing vegetable scraps (V), fish processing waste (F) and newspaper (N) or onion peels (O) were determined by applying the simplex-centroid mixture design method to achieve the desired initial moisture content and carbon-to-nitrogen (CN) ratio for effective composting process. The best mixture was at 48.5% V, 17.7% F and 33.7% N for blends with newspaper while for blends with onion peels, the mixture proportion was 44.0% V, 19.7% F and 36.2% O. The predicted responses from these mixture proportions fall in the acceptable limits of moisture content of 50% to 65% and CN ratio of 20-40 and were also validated experimentally. PMID:20624604

Abdullah, N; Chin, N L

2010-11-01

79

Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2: Catalytic tar removal  

Microsoft Academic Search

Eight different commercial catalysts, nickel based, for steam reforming of naphthas and of natural gas are tested in biomass gasification for hot gas cleanup and conditioning. They were manufactured by BASF AG, ICI-Katalco, UCI, and Haldor Topsoee a\\/s. The catalysts were tested in a slip flow after a biomass gasifier of fluidized bed type at small pilot-plant scale (10--20 kg

María P. Aznar; Miguel A. Caballero; Javier Gil; J. A. Martin; José Corella

1998-01-01

80

From waste to electricity through integrated plasma gasification\\/fuel cell (IPGFC) system  

Microsoft Academic Search

The waste management is become a very crucial issue in many countries, due to the ever- increasing amount of waste material, both domiciliary and industrial, generated.The main strategies for the waste management are the increase of material recovery (MR), which can reduce the landfill disposal, the improvement of energy recovery (ER) from waste and the minimization of the environmental impact.These

G. Galeno; M. Minutillo; A. Perna

2011-01-01

81

Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1: Hot gas upgrading by the catalytic reactor  

SciTech Connect

Commercial steam reforming (nickel-based) catalysts are used for hot gas cleaning and upgrading in biomass gasification with steam-oxygen mixtures. The gasifier used was an atmospheric and bubbling fluidized bed with an internal diameter of 15 cm and a total height of 3.2 m and was continuously fed with 5--20 kg of biomass/h. Eight different catalysts from four different manufacturers (BASF AG, TOPSOE A/S, ICI, and UCI) have been tested. They were located in a downflow fixed-bed reactor of 4 cm i.d. placed in a slip flow after the gasifier. A guard bed with a calcined dolomite was also used before the catalytic bed to decrease the tar content in the raw gas below the limit of 2 g of tar/m{sup 3}{sub n}, thus avoiding the catalyst deactivation by coke formation. The main variables studied were the temperature of the catalytic bed and the gas composition in the bed. Effects concerning tar elimination will be reported in part 2 of this work. This paper is mainly devoted to characterization of catalysts and to upgrading of the flue gas. H{sub 2} and CO contents increased by 4--14 and 1--8 vol%, dry basis, respectively. CO{sub 2}, CH{sub 4}, and steam contents decreased by 0--14, 87--99, and 2--6 vol %, dry basis, respectively. Other parameters varied in the following ways: the lower heating value decreased by 0.3--1.7 MJ/m{sup 3}{sub n}, gas yield increased by 0.1--0.4 m{sup 3}{sub n}/kg of biomass daf, and apparent thermal efficiency increased by 1--20%. The results presented allow screening of the best catalysts to get an upgraded and useful gas in biomass gasification with steam-oxygen mixtures.

Caballero, M.A.; Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E. [Univ. of Saragossa (Spain). Chemical and Environmental Engineering Dept.] [Univ. of Saragossa (Spain). Chemical and Environmental Engineering Dept.; Corella, J. [Univ. of Complutense of Madrid (Spain). Chemical Engineering Dept.] [Univ. of Complutense of Madrid (Spain). Chemical Engineering Dept.

1997-12-01

82

Life cycle assessment of a pyrolysis\\/gasification plant for hazardous paint waste  

Microsoft Academic Search

Goal, Scope and Background  Life Cycle Assessment (LCA) remains an important tool in Dutch waste management policies. In 2002 the new National Waste Management\\u000a Plan 2002–2012 (NWMP) became effective. It was supported by some 150 LCA studies for more than 20 different waste streams.\\u000a The LCA results provided a benchmark level for new waste management technologies. Although not new, operational techniques

Robert Jan Saft

2007-01-01

83

Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs  

Microsoft Academic Search

This study was conducted to evaluate the effects of feeding aerobically processed and vacuum-dried food waste-broiler litter and bakery by-product mixture to finishing pigs on performance, carcass characteristics, meat quality and taste panel test. A corn-soy diet (Control) was replaced with food waste mixture (FWM) at dietary levels of 25% (25% FWM) and 50% (50% FWM) on a dry matter

W. S. Kwak; J. S. Kang

2006-01-01

84

Development of water-slurry gasification systems for high-moisture biomass. [Spent grain, potato waste, kelp, water hyacinth, napier grass, sorghum  

SciTech Connect

The development of a new biomass gasification system by Pacific Northwest Laboratory promises to allow the use of high-moisture biomass feedstocks. The reactor uses high pressure to allow the gasification of water-biomass slurries containing up to 95% moisture. Because the gasification takes place in an aqueous system, there is no need to dry or dewater the feedstocks prior to their use. Feedstocks under study include water hyacinths, kelp, napier grass, spent brewer's grain, and a waste stream obtained from the potato processing industry. Gasification products include hydrogen, CO/sub 2/ and methane. The effects of processing conditions including temperature, pressure, and catalyst are being studied in order to maximize both the rate of conversion and the yield of higher value products. The new reactor concept represents a significant opportunity for expanding the biomass resource base to include aquatic plants and other high-moisture feedstocks. Many of these feedstocks are uneconomical in conventional thermochemical and biological conversion schemes. By eliminating the need for energy intensive drying steps, the aqueous conversion route may also increase net energy yields from more conventional feedstocks. The work is being sponsored by the USDOE's Biomass Energy Technology Division, Thermochemical Conversion Program. 13 references, 4 figures, 4 tables.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.

1985-01-01

85

TOXICITY OF COMPLEX WASTE MIXTURES: A COMPARISON OF OBSERVED AND PREDICTED LETHALITY  

EPA Science Inventory

The ability to predict the biological effect of complex waste mixtures from chemical characterization data was examined by comparing observed mortality to that predicted by a mathematical additivity model with literature LD50 values for the chemicals identified in the mixtures. a...

86

ANALYTICAL METHODS FOR HAZARDOUS ORGANICS IN LIQUID WASTES FROM COAL GASIFICATION AND LIQUEFACTION PROCESSES  

EPA Science Inventory

This study was conducted by the University of Southern California group to provide methods for the analysis of coal liquefaction wastes from coal conversion processing plants. Several methods of preliminary fractionation prior to analysis were considered. The most satisfactory me...

87

Biomass gasification opportunities in a district heating system  

Microsoft Academic Search

This paper evaluates the economic effects and the potential for reduced CO2 emissions when biomass gasification applications are introduced in a Swedish district heating (DH) system. The gasification applications included in the study deliver heat to the DH network while producing renewable electricity or biofuels. Gasification applications included are: external superheater for steam from waste incineration (waste boost, WB), gas

Kristina Difs; Elisabeth Wetterlund; Louise Trygg; Mats Söderström

2010-01-01

88

High temperature steam gasification of wastewater sludge  

Microsoft Academic Search

High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current

Nimit Nipattummakul; Islam Ahmed; Somrat Kerdsuwan; Ashwani K. Gupta

2010-01-01

89

LETHALITY AND HEPATOTOXICITY OF COMPLEX WASTE MIXTURES (JOURNAL VERSION)  

EPA Science Inventory

Male F344 rats were exposed by gavage to samples of complex mixtures and evaluated 24 hours later. Seven of the 10 samples caused death at doses ranging from 1 to 5 ml/kg body wt. Eight of the 10 samples were hepatotoxic based on histopathologic evaluation; 6 were centrilobular a...

90

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOEpatents

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

McIntosh, M.J.; Arzoumanidis, G.G.

1997-09-02

91

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOEpatents

A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, Michael J. (Bolingbrook, IL); Arzoumanidis, Gregory G. (Naperville, IL)

1997-01-01

92

Identification and differentiation of individual beta emitters in waste mixtures by liquid scintillation spectrometry  

E-print Network

Waste), states specifically that (TDH86): (a) Any licensee may dispose of the following licensed material without regard to its radioactivity: (1) 0. 05 micmcuries or less of hydrogen-3, carbon-14, or iodine-125, per gram of medium, used for liquid... only carbon-14, tritium, and iodine-125 can be disposed of as non-radioactive wastes was proposed. The common radionuclides used in TAMU facilities and likely to be present in waste mixtures are phosphorus-32, calcium-45, sulfur-35, carbon-14, tritium...

Siskel, Robin Lynn

1988-01-01

93

EVALUATION ON ENVIRONMENTAL IMPACTS OF ASPHALT MIXTURES CONTAINING MUNICIPAL SOLID WASTE INCINERATOR BOTTOM ASH  

Microsoft Academic Search

Previous research works show the possibility of using municipal solid waste incinerator bottom ash (IBA) as part of aggregate for asphalt mixtures. A few demonstration projects were implemented for assessing durability. Most of these previous researches were focused on the engineering properties of the alternative mixes; a few studies were done on the environmental properties, dealing mainly with particular metal

Chui-Te Chiu; Tseng-Hsing Hsu; Wan-Fa Yang

94

Equilibrium moisture content of waste mixtures from post-consumer carton packaging.  

PubMed

The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound. PMID:22720401

Bacelos, M S; Freire, J T

2012-01-01

95

RESEARCH & DEVELOPMENT TO PREPARE AND CHARACTERIZE ROBUST COAL/BIOMASS MIXTURES FOR DIRECT CO-FEEDING INTO GASIFICATION SYSTEMS  

SciTech Connect

This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific/Technical Report discusses and documents the project work required to meet each of these objectives.

Felix, Larry; Farthing, William; Hoekman, S. Kent

2014-12-31

96

Texaco gasification process: Innovative technology evaluation report  

SciTech Connect

This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The TGP is a commercial gasification process which converts organic materials into syngas, a mixture of hydrogen and carbon monoxide. The feed reacts with a limited amount of oxygen (partial oxidaton) in a refractory-lined reactor at temperatures between 2,200 degrees and 2,650 degrees F and at pressures above 250 pounds per square inch gauge (psig). Texaco reports that the syngas can be processed into high-purity hydrogen, ammonia, methanol, and other chemicals, as well as clean fuel for electric power. The TGP was evaluated under the EPA SITE Program in January 1994 at Texaco`s Montebello Research Laboratory (MRL) in South El Monte, California, located in the greater Los Angeles area. The Demonstration used a soil feed mixture consisting of approximately 20 weight-percent waste soil from the Purity Oil Sales Superfund Site, Fresno, California and 80 weight-percent clean soil. The slurry included coal as a support fuel and was spiked with lead and barium compounds (inorganic heavy metals) and chlorobenzene (volatile organic compound) as the Principal Organic Hazardous Constituent (POHC).

NONE

1995-07-01

97

Mixture models versus free energy of hydration models for waste glass durability  

SciTech Connect

Two approaches for modeling high-level waste glass durability as a function of glass composition are compared. The mixture approach utilizes first-order mixture (FOM) or second-order mixture (SOM) polynomials in composition, whereas the free energy of hydration (FEH) approach assumes durability is linearly related to the FEH of glass. Both approaches fit their models to data using least squares regression. The mixture and FEH approaches are used to model glass durability as a function of glass composition for several simulated waste glass data sets. The resulting FEH and FOM model coefficients and goodness-of-fit statistics are compared, both within and across data sets. The goodness-of-fit statistics show that the FOM model fits/predicts durability in each data set better (sometimes much better) than the FEH model. Considerable differences also exist between some FEH and FOM model component coefficients for each of the data sets. These differences are due to the mixture approach having a greater flexibility to account for the effect of a glass component depending on the level and range of the component and on the levels of other glass components. The mixture approach can also account for higher-order (e.g., curvilinear or interactive) effects of components, whereas the FEH approach cannot. SOM models were developed for three of the data sets, and are shown to improve on the corresponding FOM models. Thus, the mixture approach has much more flexibility than the FEH approach for approximating the relationship between glass composition and durability for various glass composition regions.

Piepel, G.; Redgate, T.; Masuga, P.

1996-03-01

98

Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study  

Microsoft Academic Search

Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for

P. A. Caton; M. A. Carr; S. S. Kim; M. J. Beautyman

2010-01-01

99

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01

100

Combustion gas and NO emission characteristics of hazardous waste mixture particles in a fixed bed  

Microsoft Academic Search

Experiments with fixed-bed incinerators were carried out to model the combustion characteristics and gas emission characteristics\\u000a of hazardous waste mixture particles in a grate furnace. The results indicate that combustion can be divided into three stages:\\u000a ignition, main combustion and combustion completion stage. According to the various concentrations of O2, CO2 and CO, the main combustion stage can be subdivided

Ling Tao; Guangbo Zhao; Rui Sun

2011-01-01

101

Recycled tire rubber and other waste materials in asphalt mixtures. Transportation research record  

SciTech Connect

The papers in this volume, dealing with various facets of recycled tire rubber and other waste materials in asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. In the first papers, Rebala and Estakhri, Malpass and Khosla, and Baker and Connolly describe research related to crumb rubber modified mixtures that was done for the Texas, North Carolina, and New Jersey State Departments of Transportation. Ali et al. report on their research in Canada to determine the feasibility of sing reclaimed roofing materials in hot mix asphalt pavement. Emery discusses the evaluation of 11 Ontario rubber modified demonstration projects in terms of pavement performance, environmental impacts, and recyclability. In the last paper, Fwa and Aziz report on their work in Singapore related to the use of incinerator residue in asphalt mixtures.

NONE

1995-12-31

102

Influence of operation conditions and additives on the development of producer gas and tar reduction in air gasification of construction woody wastes using a two-stage gasifier.  

PubMed

Air gasification was conducted with fractions of construction woody wastes in a two-stage gasifier, consisting of a fluidized bed zone and a tar cracking zone. The aim of this work is to investigate the influence of reaction conditions and additives on the composition of producer gas and tar content in producer gas. A producer gas obtained with activated carbon of 540 g at an ER of 0.26 was mainly composed of H(2) (25 vol.%), CO (22 vol.%) and CH(4) (5 vol.%). Regarding tar removal efficiency, activated carbon was better than olivine. The tar removal rate with virgin activated carbon reached up to 80%. The reuse of spent activated carbon caused an efficiency loss in tar removal to some extent. Overall, it seems that the strong need for intensive downstream tar removal measurements can be removed with the use of a two-stage gasifier and the application of activated carbon. PMID:21565495

Mun, Tae-Young; Kim, Jin-O; Kim, Jin-Won; Kim, Joo-Sik

2011-07-01

103

ENVIRONMENTAL ASSESSMENT OF A COMMERCIAL BOILER FIRED WITH A COAL/WASTE PLASTIC MIXTURE. VOLUME 2. DATA SUPPLEMENT  

EPA Science Inventory

The report gives results of comprehensive emissions testing and laboratory analyses of a stoker-fired commercial boiler firing a coal/waste plastic mixture. In one test, the unit fired its typical coal fuel; in the other, shredded waste polyethylene terephthalate (PET) beverage b...

104

ENVIRONMENTAL ASSESSMENT OF A COMMERCIAL BOILER FIRED WITH A COAL/WASTE PLASTIC MIXTURE. VOLUME 1. TECHNICAL RESULTS  

EPA Science Inventory

The report gives results of comprehensive emissions testing and laboratory analyses of a stoker-fired commercial boiler firing a coal/waste plastic mixture. In one test, the unit fired its typical coal fuel; in the other, shredded waste polyethylene terephthalate (PET) beverage b...

105

Gaseous emissions from the combustion of a waste mixture containing a high concentration of N{sub 2}O  

SciTech Connect

This paper is focused on reducing the emissions from the combustion of a waste mixture containing a high concentration of N{sub 2}O. A rate model and an equilibrium model were used to predict gaseous emissions from the combustion of the mixture. The influences of temperature and methane were considered, and the experimental research was carried out in a tabular reactor and a pilot combustion furnace. The results showed that for the waste mixture, the combustion temperature should be in the range of 950-1100 deg. C and the gas residence time should be 2 s or higher to reduce emissions.

Dong Changqing [Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, Beijing Key Laboratory of Safe and Clean Energy Technology, North China Electric Power University, Beijing 102206 (China)], E-mail: dongcq@ncepu.edu.cn; Yang Yongping; Zhang Junjiao; Lu Xuefeng [Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, Beijing Key Laboratory of Safe and Clean Energy Technology, North China Electric Power University, Beijing 102206 (China)

2009-01-15

106

Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design.  

PubMed

The amount of municipal solid waste (MSW) generated is increasing rapidly in parallel with the increasing size of population. The use of sanitary landfills to dispose of biodegradable wastes is currently restricted by the European Landfill Directive. Moreover, incineration of MSW produces significant amounts of polluting flue gases and toxic solid residues, so that high investments for pollution control in MSW incineration plants are needed. Composting may be a safe and successful strategy for accelerating the decomposition and stabilization of the biodegradable components of biowaste from MSW, for sustainable complete recycling, thereby producing compost that can be used as soil conditioner and/or organic fertilizer. In the present study, municipal solid waste compost from Galicia (NW Spain), obtained on an industrial scale by anaerobic fermentation followed by aerobic stabilization, was characterized and compared with peat and composted pine bark as a component of plant growing media. Due to the high content of salts, the evaluated MSW compost was not appropriated to be used alone as a soil conditioner or organic fertilizer. Mixtures of MSW compost, peat and composted pine bark were evaluated statistically by applying mixture designs and triangular surface. The dependent variables (shoot dry weight of Lepidium sativum and Hordeum vulgare) were adjusted to linear equations, and good statistical parameters for correlation and significance were obtained, allowing accurate description of experimental data. The best results were obtained by mixing MSW compost with composted pine bark, rather than mixing MSW compost with peat. PMID:17157003

Moldes, A; Cendón, Y; Barral, M T

2007-11-01

107

Polychlorinated biphenyl concentration changes in sewage sludge and organic municipal waste mixtures during composting and anaerobic digestion.  

PubMed

We determined the changes in polychlorinated biphenyl (PCB) concentrations in a mixture of sewage sludge and the organic fraction of municipal waste during composting and during anaerobic digestion. The processes were carried out on a laboratory scale. The PCBs were analyzed in the waste samples using gas chromatography-mass spectrometry. We evaluated the rates at which the PCB concentrations decreased during composting and during anaerobic digestion and compared the PCB degradation kinetics during these processes. The most important conclusion of this work is that anaerobic digestion is much more effective than composting at removing PCBs from a mixture of sewage sludge and the organic fraction of municipal waste. PMID:25618191

Siebielska, Izabela; Side?ko, Robert

2015-05-01

108

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

2009-09-30

109

2007 gasification technologies conference papers  

SciTech Connect

Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

NONE

2007-07-01

110

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01

111

U.S. EPA'S EVALUATION OF A TEXACO GASIFICATION TECHNOLOGY  

EPA Science Inventory

Gasification technologies are designed to produce, from carbonaceous organic materials (e.g., coal, oil), a useable mixture of carbon monoxide and hydrogen called synthesis gas, or syngas. yngas could be used to produce power or chemicals. he Texaco Gasification Process (TGP) emp...

112

Digestibility, nitrogen utilization, and voluntary intake of ensiled crab waste-wheat straw mixtures fed to sheep.  

PubMed

Crab waste and wheat (Triticum aestivum L.) straw mixtures, ensiled with different additives, were evaluated in metabolism and palatability trials. Crab waste and straw were mixed in proportions of 1:1, wet basis, with 20% water and different additives, and ensiled in 210-L metal drums double-lined with polyethylene bags. Thirty crossbred wethers (40 kg initial BW) were fed a 1) basal diet consisting of 75% orchardgrass (Dactylis glomerata L.) hay and 25% concentrate, 2) ensiled crab waste-wheat straw, with 16% (vol/wt) added glacial acetic acid, 3) crab waste-wheat straw ensiled with 20% dry molasses, 4) crab waste-wheat straw ensiled with 20% dry molasses and a microbial inoculant, and 5) ensiled wheat straw supplemented with urea. Apparent digestibility of DM and CP was lower (P < .05) for acetic acid-treated silages than for silages containing molasses. Nitrogen retention was higher (P < .05) for molasses-inoculant-treated silage than for the molasses-treated silage (5.4 vs 3.9 g/d). Ruminal NH3 N and blood urea N were higher (P < .05) for lambs fed the molasses-treated silages than for those receiving the acetic acid-treated crab waste mixture. Among the wethers fed crab waste silages, intake was lower (P < .01) for wethers receiving the acetic acid-treated silage than for those fed the molasses-treated mixtures. Treatment of crab waste-straw mixtures with molasses produced a palatable silage that was efficiently utilized by wethers. PMID:8181970

Abazinge, M D; Fontenot, J P; Allen, V G

1994-03-01

113

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30

114

Effect of partially substituting concentrate feed mixture by either fresh or waste oil in sheep diets.  

PubMed

Seven digestibility trials were carried out on sheep to study the effect of replacing concentrate feed mixture (CFM) with varying amounts of fresh (raw) sunflower oil or heated oil from bean cake (Taamiah) frying, in almost isocalorific and isonitrogenous diets. Boiling altered the physical and chemical properties of oil but not significantly except for the peroxide value (P < or = 0.05). Substitution with fresh oil significantly increased the digestibility of nutrients, whereas the boiled lead to conflicting results where all the digestibilities tended to decrease. The feeding value was also affected by the addition of oil. The blood analyses of the animals reflected biochemical changes indicating some dysfunction of the internal organs, in particular the liver showed signs of hyperlipidaemia and hypercholesterolaemia. It was concluded that the loss of CFM energy could be partly substituted by fresh oil or by a small amount of waste oil. PMID:8215892

Abdelhamid, A M; Gabr, A A; el-Shinnawy, M M

1993-01-01

115

Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products  

SciTech Connect

Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95 wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.

Lovett, S.; Berruti, F.; Behie, L.A. [Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering] [Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering

1997-11-01

116

Integrated Gasification Combined Cycle— A Review of IGCC Technology  

Microsoft Academic Search

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which

MEDHA M. JOSHI; SUNGGYU LEE

1996-01-01

117

Hydrogen and syngas production from sewage sludge via steam gasification  

Microsoft Academic Search

High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for

Nimit Nipattummakul; Islam I. Ahmed; Somrat Kerdsuwan; Ashwani K. Gupta

2010-01-01

118

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

2011-09-30

119

2010 Worldwide Gasification Database  

DOE Data Explorer

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

120

Considerations on coal gasification  

NASA Technical Reports Server (NTRS)

Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

Franzen, J. E.

1978-01-01

121

Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures  

Microsoft Academic Search

The evolution of the different forms of nitrogen during the composting of several wastes was studied, as well as its relation to the pH, electrical conductivity and parameters of maturity of the composts obtained. Four mixtures were prepared from different organic materials: sewage sludge, municipal solid waste, brewery sludge, sorghum bagasse, cotton waste and pine bark. The evolution of the

M. A. Sánchez-Monedero; A. Roig; C. Paredes; M. P. Bernal

2001-01-01

122

Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand  

PubMed Central

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10?UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709

2014-01-01

123

Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand.  

PubMed

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10?UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709

Ahmad, Shamsad; Hakeem, Ibrahim; Maslehuddin, Mohammed

2014-01-01

124

Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.  

PubMed

Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge. PMID:25442095

Trulli, Ettore; Torretta, Vincenzo

2015-06-01

125

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01

126

Geochemistry of FBC waste-coal slurry solid mixtures. [Quarterly] technical report, March 1--May 31, 1993  

SciTech Connect

Three tasks are being conducted in this research project, all related to understanding the chemistry and mineralogy of the co-disposal of fluidized bed combustion (FBC) wastes with coal slurry solid (CSS) from a coal preparation plant. During coal cleaning, pyrite, other heavy minerals, and rock materials are rejected from the coal and discharged in an aqueous slurry to a slurry pond. After dewatering and abandonment of the pond, the pyrite may oxidize and produce acid that may migrate into the underlying groundwater system. If an alkaline product, such as FBC waste, is mixed with the CSS, then the acid will be effectively neutralized as it is produced. In Task 1, soluble components and acid-base reaction products from mixtures of FBC waste and CSS are being extracted for up to 180 days in a series of aqueous batch experiments. The final two sets of extractions, 90- and 180-days, were completed. The extracts and solids from these experiments were submitted for analysis of cations, anions, and mineralogy. In Task 2, 10 L of extracts from three mixtures of FBC waste and CSS were prepared for use in experiments to determine the adsorption/desorption reactions that occur between components of the extracts and three commonly occurring Illinois soils.

Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M. [Illinois State Geological Survey, Champaign, IL (United States)

1993-09-01

127

Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes.  

PubMed

The biobed systems were designed to retain and to degrade pesticides through the properties of a biomixture composed of straw (ST), topsoil and peat (PT) 2:1:1 v/v. The ST is the main substrate in the biomixture, as it allows the proliferation of fungi that promotes pesticide degradation. The use of readily available components in the biomixture is an important aspect to build a biobed. Therefore, potential use of readily available wastes as barley husk (BH), sawdust (SW) and oat husk (OH), as total or partial substitutes of ST were tested in pesticide degradation studies. Metabolite formation and the biological activities were also evaluated. Biomixture composed of OH was highly efficient in pesticide degradation, with t½ values of 28.6, 58.9 and 26.8 d for atrazine (ATZ), chlorpyrifos (CHL) and isoproturon (ISP). On the other hand, comparable for degrading capacities with the ST based biomixture were obtained with SW and BH, but only as partial replacement. Contrarily, high t½ values (more than 100 d) were obtained in biomixtures with total substitution of ST by SW or BH. Metabolite formation was observed in all biomixtures tested, but without clear formation patterns. Moreover, high and stable biological activity was observed in the biomixtures composed of OH. Therefore, our results demonstrated that ST can be partial or totally replaced by OH in the biomixture allowing an efficient degradation of pesticide mixture. However, it is recommended that ST can be only partially replaced by BH and SW in the biomixture to allow efficient pesticide degradation. PMID:23746365

Urrutia, C; Rubilar, O; Tortella, G R; Diez, M C

2013-08-01

128

Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA  

EPA Science Inventory

Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

129

Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers  

EPA Science Inventory

Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

130

Hydrogen and syngas yield from residual branches of oil palm tree using steam gasification  

Microsoft Academic Search

Wastes produced during oil palm production from agro-industries have great potential as a source of renewable energy in agriculturally rich countries, such as Thailand and Malaysia. Clean chemical energy recovery from oil palm residual branches via steam gasification is investigated here. A semi-batch reactor was used to investigate the gasification of palm trunk wastes at different reactor temperatures in the

Nimit Nipattummakul; Islam I. Ahmed; Ashwani K. Gupta; Somrat Kerdsuwan

2011-01-01

131

Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers  

EPA Science Inventory

Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

132

Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG)  

Microsoft Academic Search

In the present study the energetic valorization of electric cable shredder residues (mixed plastics) has been investigated. Thermochemical conversion by means of High-Temperature Steam Gasification (HTSG) and High-Temperature Pyrolysis (HTP) was studied. The effects of temperature and reaction time – process parameters – were investigated. Comparison of the results showed that HTSG seems a more suitable process in terms of

E. Kantarelis; P. Donaj; W. Yang; A. Zabaniotou

2009-01-01

133

Gasification. 2nd. ed.  

SciTech Connect

This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

Christopher Higman; Maarten van der Burgt [Lurgi Oel Gas Chemie (Germany)

2008-02-15

134

Life cycle impact assessment of various waste conversion technologies.  

PubMed

Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis-gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres. Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis-gasification of MSW. A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable - highest environmental impact as well as highest costs - are the thermal cracking gasification of granulated MSW and the gasification of tyres. PMID:19157835

Khoo, Hsien H

2009-06-01

135

Sequestration of CO2 in Mixtures of Bauxite and Saline Waste Water  

SciTech Connect

Batch and semi-batch experiments were conducted to assess feasibility of utilizing mixtures of caustic bauxite residue slurry and produced brine from the Oriskany sandstone formation to sequester CO2 • Bauxite residue/brine mixture of 90/10 by volume sequestered 9.5 g of CO2 per liter of mixture (100 psig of CO2 at 20 ºC) • Carbon trapping is accomplished primarily through solubilization • Solution of the product mixture was neutralized following carbonation • Flow-through carbonation at 25 ºC and 1 atm. demonstrates that carbonation rates are acceptable for proposed process applications

Dilmore, R.M.; Soong, Y.; Griffith, C.; Allen, D.E.; Hedges, S.W.; Frommell, E.A.; Fu, J.K.; Dobbs, C.L.; Zhu, C.

2007-05-01

136

Gasification of hybrid feedstock using animal manures and hays  

Technology Transfer Automated Retrieval System (TEKTRAN)

The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

137

Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994  

SciTech Connect

The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

Darmody, R.G. [Illinois Univ., Urbana, IL (United States); Dunker, R.E. [Illinois Univ., Urbana, IL (United States). Dept. of Agronomy; Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

1994-06-01

138

Start-up method for coal gasification plant  

SciTech Connect

A method is disclosed for initiating operation of a coal gasification plant which includes a gasification reactor and gas cleansing apparatus fabricated in part from materials susceptible to chloride induced stress corrosion cracking the presence of oxygen. The reactor is preheated by combusting a stoichiometric mixture of air and fuel to produce an exhaust gas which is then diluted with steam to produce product gas which contains essentially no free oxygen. The product gas heats the reactor to a temperature profile necessary to maintain autothermic operation of the gasification process while maintaining air oxygen-free environment within the plant apparatus while chlorine is liberated from coal being gasified.

Farnia, K.; Petit, P.J.

1983-04-05

139

Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes.  

PubMed

Zinc and copper removal from aqueous solutions using brine sediments (industrial residue), sawdust (agricultural residue) and the mixture of both materials has been researched through batch and column tests. Brine sediments were found to be mainly constituted by halite and calcite, while its main cations exchangeable were sodium, calcium, magnesium and potassium. In sawdust the main exchangeable cations detected were calcium, magnesium, sodium and potassium. FT-IR spectra of sawdust and brine sediment-sawdust mixture showed that brine sediments produced important changes in carboxylic, alcoholic and phenolic groups present in the sawdust. The maximum zinc adsorption capacity was found to be 4.85, 2.58 and 5.59 mg/g using an adsorbent/solution ratio of 1/40, for brine sediments, sawdust and the mixture, respectively. For copper, the maximum adsorption capacity was found to be 4.69, 2.31 and 4.33 mg/g, using adsorbent/solution ratios of 1/40, for brine sediments, sawdust and the mixture, respectively. Maximum copper adsorption capacity of the mixture, on the contrary to zinc adsorption, was lightly inferior to maximum adsorption capacity obtained in brine sediments. Adsorption isotherms data adjusted better to the Langmuir model. Additionally, columns reached the saturation point at 690 min for zinc and 360 min for copper. The main mechanism involved in the removal of both metals may be the ionic exchange between sodium and calcium ions present in brine sediments and H(+) present in functional groups of sawdust. The use of brine sediments, sawdust and their mixture, presents an interesting option both, for wastewater decontamination (as a possible non-conventional sorbent for the removal of heavy metals) and as a waste recycling option. PMID:19188023

Agouborde, Lina; Navia, Rodrigo

2009-08-15

140

Incentives boost coal gasification  

SciTech Connect

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16

141

GASIFICATION FOR DISTRIBUTED GENERATION  

Microsoft Academic Search

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-01-01

142

Gasification: A Cornerstone Technology  

ScienceCinema

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08

143

Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition  

Microsoft Academic Search

In the present study the catalytic steam gasification of MSW to produce hydrogen-rich gas or syngas (H2+CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 750–950°C, with a steam to MSW ratio of

Maoyun He; Zhiquan Hu; Bo Xiao; Jianfen Li; Xianjun Guo; Siyi Luo; Fan Yang; Yu Feng; Guangjun Yang; Shiming Liu

2009-01-01

144

2006 gasification technologies conference papers  

SciTech Connect

Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

NONE

2006-07-01

145

Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design  

Microsoft Academic Search

The amount of municipal solid waste (MSW) generated is increasing rapidly in parallel with the increasing size of population. The use of sanitary landfills to dispose of biodegradable wastes is currently restricted by the European Landfill Directive. Moreover, incineration of MSW produces significant amounts of polluting flue gases and toxic solid residues, so that high investments for pollution control in

A. Moldes; Y. Cendón; M. T. Barral

2007-01-01

146

Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed  

Microsoft Academic Search

Hazardous waste disposal is vitally important as industrial production increases. Grate furnaces are a common means to incinerate hazardous waste. In this present work, a fixed bed assembly is used to experimentally model combustion within grate furnaces. Combustion characteristics are examined and the effects of primary air rate, moisture, bed height and particle size on burning rate, ignition-front speed and

Ling Tao; Guangbo Zhao; Rui Sun; Qiang Wang

2010-01-01

147

Gasification Technologie: Opportunities & Challenges  

SciTech Connect

This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

Breault, R.

2012-01-01

148

Sequestration of CO2 in Mixtures of Caustic Byproduct and Saline Waste Water  

SciTech Connect

Ex-situ carbonation of mixtures of caustic byproduct materials and produced oil-field brine provides a niche opportunity to sequester anthropogenic CO2, while concomitantly reducing the basicity of the reactive slurry. A series of tests were conducted to investigate a novel reaction concept designed to achieve neutralization of mixtures of acidic oil field produced brine and caustic industrial byproducts while sequestering substantial quantities of anthropogenic carbon dioxide (C02) in a mixed-flow reactor. Experiments were conducted to determine the COrbearing capacity of reactive mixtures of brine from the Oriskany Sandstone Formation with three caustic industrial byproducts: flue gas desulfurization (FGO) spray dryer ash, Class C fly ash subbituminous coal combustion byproduct, and bauxite residue slurry from the alumina production process. Reactions were conducted in a closed, well-mixed (1,500 rpm) reactor with gas composed of 29.46% vol./vol. CO2 balanced by nitrogen gas (N2) fed at a rate of 300mL/min. Reactions were carried out at ambient conditions. Results show linear relationships between caustic byproduct addition and COrbearing capacity, with relatively small impact of brine addition as compared to deionized water addition. FGO spray dryer ash/brine mixtures exhibited higher CO2 reactivity than those using Class C fly ash (0.759 moles CO2, at 23.6% solids by weight and 0.036 moles CO2 at 23.3% solids by weight, respectively). Bauxite residue exhibited moderate capacities in mixtures with higher percent solids (0.335 moles CO2 in 40% solids bauxite residue slurry). Carbonation capacity of caustic byproduct/ acidic brine mixtures was shown to increase linearly with respect to percent caustic byproduct addition, but enhanced mineral carbonate precipitation resulting from synergistic reaction of brine cations with increased dissolved carbonate species was not observed in the short term.

Dilmore, R.M.; Howard, B.H.; Soong, Y.; Griffith, C.; Hedges,S.W.; DeGalbo, A.D.; Morreale, B.; Baltrus, J.P.; Allen, D.E.; Fu, J.K.

2009-01-01

149

Effect of partially substituting concentrate feed mixture by either fresh or waste oil in sheep diets  

Microsoft Academic Search

Seven digestibility trials were carried out on sheep to study the effect of replacing concentrate feed mixture (CFM) with varying amounts of fresh (raw) sunflower oil or heated oil from bean cake (Taamiah) frying, in almost isocalorific and isonitrogenous diets. Boiling altered the physical and chemical properties of oil but not significantly except for the peroxide value (P ? 0.05).

A. M. Abdelhamid; A. A. Gabr

1993-01-01

150

Sequestration of CO{sub 2} in Mixtures of Caustic Byproduct and Saline Waste Water  

SciTech Connect

A series of tests were conducted to investigate a novel reaction concept designed to achieve neutralization of mixtures of acidic oil field produced brine and caustic industrial byproducts while sequestering substantial quantities of anthropogenic carbon dioxide (CO{sub 2}) in a mixed-flow reactor. Experiments were conducted to determine the CO{sub 2}-bearing capacity of reactive mixtures of brine from the Oriskany Sandstone Formation with three caustic industrial byproducts: flue gas desulfurization (FGD) spray dryer ash, Class C fly ash subbituminous coal combustion byproduct, and bauxite residue slurry from the alumina production process. Reactions were conducted in a closed, well-mixed (1,500 rpm) reactor with gas composed of 29.46% vol./vol. CO{sub 2} balanced by nitrogen gas fed at a rate of 300 mL/min. Reactions were carried out at ambient conditions. Results show linear relationships between caustic byproduct addition and CO{sub 2}-bearing capacity, with relatively small impact of brine addition as compared to deionized water addition. FGD spray dryer ash/brine mixtures exhibited higher CO{sub 2} reactivity than those using Class C fly ash (0.759 moles CO{sub 2}, at 23.6% solids by weight and 0.036 moles CO{sub 2} at 23.3% solids by weight, respectively). Bauxite residue exhibited moderate capacities in mixtures with higher percent solids (0.335 moles CO{sub 2} in 40% solids bauxite residue slurry). Carbonation capacity of caustic byproduct/acidic brine mixtures was shown to increase linearly with respect to percent caustic byproduct addition, but enhanced mineral carbonate precipitation resulting from synergistic reaction of brine cations with increased dissolved carbonate species was not observed in the short term.

Dilmore, R.M.; Howard, B.H.; Soong, Y.; Griffith, C.; Hedges, S.W.; DeGalbo, A.D.; Morreale, B.; Baltrus, J.P.; Allen, D.E.; Fu, J.K. [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2009-08-15

151

Evaluation of Reactive Mixtures for Treatment of Mine Drainage From a Waste Rock Storage Area in Northern Saskatchewan, Canada  

NASA Astrophysics Data System (ADS)

A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.

Jeen, S.; Bain, J. G.; Blowes, D. W.

2007-12-01

152

Gasification characteristics of MSW and an ANN prediction model.  

PubMed

Gasification characteristics make up the important parts of municipal solid waste (MSW) gasification and melting technology. These characteristics are closely related to the composition of MSW, which alters with climates and seasons. It is important to find a practical way to predict gasification characteristics. In this paper, five typical kinds of organic components (wood, paper, kitchen garbage, plastic, and textile) and three representative types of simulated MSW are gasified in a fluidized-bed at 400-800 degrees C with the equivalence ratio (ER) in the range of 0.2-0.6. The lower heating value (LHV) of gas, gasification products, and gas yield are reported. The results indicate that gasification characteristics are different from sample to sample. Based on the experimental data, an artificial neural networks (ANN) model is developed to predict gasification characteristics. The training and validating relative errors are within +/-15% and +/-20%, respectively, and predicting relative errors of an industrial sample are below +/-25%. This indicates that it is acceptable to predict gasification characteristics via ANN model. PMID:18420400

Xiao, Gang; Ni, Ming-jiang; Chi, Yong; Jin, Bao-sheng; Xiao, Rui; Zhong, Zhao-ping; Huang, Ya-ji

2009-01-01

153

Thermal expansion of slag and fly ash from coal gasification in IGCC power plant  

Microsoft Academic Search

Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and

M. Aineto; A. Acosta; J. Ma. Rincón; M. Romero

2006-01-01

154

West Valley high-level nuclear waste glass development: a statistically designed mixture study  

SciTech Connect

The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

1984-10-01

155

Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.  

PubMed

Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. PMID:25263218

Saqib, Naeem; Bäckström, Mattias

2014-12-01

156

Potential use of densified polymer-pastefill mixture as waste containment barrier materials.  

PubMed

Mining activities generate a large amount of solid waste, such as waste rock and tailings. The surface disposal of such waste can create several environmental and geotechnical problems. Public perception and strict government regulations with regards to the disposal of such waste compel the mining industry to develop new strategies which are environmentally sound and cost effective. In this scenario, recycling of such waste into mining or civil engineering construction materials have become a great challenge for the mining and civil engineering community. Hence, in this study, taking advantage of the inherent low hydraulic conductivity of paste tailings (pastefill), small amounts (0.05, 0.1, 0.2, 0.5%) of a super absorbent polymer (SAP) are added to the latter after moisturizing the tailings. The resulting densified polymer-pastefill (PP) materials are compacted and submitted to permeability tests at room temperature and performance tests under cyclic freeze-thaw and wet-dry conditions to evaluate their suitability as a barrier for waste containment facilities. Valuable results are obtained. It is found that the hydraulic conductivity of the proposed barrier material (PP) decreases as the amount of SAP increases. Hydraulic conductivity values as low as 1 × 10(-7) and 6 × 10(-9)cm/s are obtained for PPs which contain 0.1-0.5% SAP, respectively. The PP material also shows relatively good resistance to cyclic freeze-thaw and wet-dry stresses. The results show that negligible to acceptable changes in hydraulic conductivity occur after five freeze-thaw and six wet-dry cycles. None of the changes reach one order of magnitude. As a final step, a cost analysis is undertaken to evaluate the economical benefits that could be drawn from such a proposed barrier material. When compared to a conventional compacted sand-bentonite barrier with 12% bentonite concentration, it is found that the benefit realized could be estimated to 98, 96 and 90% when using PP material that contains 0.10, 0.20 and 0.5% of SAP. From this study, it can be concluded that PP materials show encouraging performance properties for barrier design. PMID:20822894

Fall, M; Célestin, J; Sen, H F

2010-12-01

157

Nonthermal plasma alternative to the incineration of hazardous organic wastes. [Mixtures containing oil and trichloroethylene, carbon tetrachloride and trichloroethane  

SciTech Connect

We are developing silent discharge plasma (SDP) oxidation technology as an alternative to incineration and as a post-incinerator treatment process for hazardous organic wastes. As an alternative to incineration, SDP apparatus has been coupled to a high-temperature packed-bed reactor, the plasma apparatus serving as a second stage for treating gaseous effluent from the packed bed. As a post- incinerator treatment process, SDP apparatus has been evaluated using a prepared gaseous feed containing hazardous organic compounds which are expected to be found in the machining fluids (trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), and trichloroethane (TCA)). In typical tests with the packed-bed reactor alone, we have treated mixtures containing oil and several per cent TCE, TCA, or CCl{sub 4} removing the chlorocarbons to levels of ppm-order for TCA and to order {approximately}100 ppb for TCE and CCl{sub 4}, as measured in the gaseous effluent. In representative stand-alone tests with the SDP reactor, we have removed TCE in the gaseous influent from 1,000 ppm concentrations to around 100 ppb in the gaseous effluent (CCl{sub 4} appears to be more treatment-resistant). The measured figures of merit for the SDP reactor (electrical energy per mass of removed chemical) are 10's of kW-hr/kg for >>99% removal of TCE and 100's of kW-hr/kg for 90% removal of CCl{sub 4}, both being non-optimized cases in terms of waste concentration, carrier gas composition, water content, flow rate, and electrical power. Using combined packed- bed/SDP reactors on chlorocarbon/oil mixtures, several per cent chlorocarbon concentrations have been removed to well below the 100-ppb level overall. We envision eventual reductions to levels of {approximately}10 ppb or less.

Rosocha, L.A.; McCulla, W.H.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

1992-01-01

158

Sewage sludge gasification: First studies  

SciTech Connect

Wastewater treatment installations produce a large quantity of sewage sludge, the disposal and treatment of which causes several problems because of its volume, its toxic organic constituents and the heavy metals that it contains. Certain methods of treatment and disposal do exist, but they are not entirely satisfactory. Moreover, it is important to develop a technology for the adequate treatment of sewage sludge in order to reduce the environmental problem and the costs of treatment. It can be assumed that gasification is a suitable technology because it reduces the waste volume, destroys the toxic organic compounds and fixes the heavy metals in the resultant solid. In order to gain knowledge of the processes occurring in the gasifier, the results obtained in experiments on the thermal decomposition of sewage sludge at different heating rates are shown.

Garcia-Bacaicoa, P.; Bilbao, R.; Uson, C. [Zaragoza Univ. (Spain)

1995-11-01

159

Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed.  

PubMed

Hazardous waste disposal is vitally important as industrial production increases. Grate furnaces are a common means to incinerate hazardous waste. In this present work, a fixed bed assembly is used to experimentally model combustion within grate furnaces. Combustion characteristics are examined and the effects of primary air rate, moisture, bed height and particle size on burning rate, ignition-front speed and temperatures in the bed are also investigated. The results indicate that a rising temperature front descends through the bed while weight loss remains constant during the main combustion stage. Primary air rates and moisture content are shown to have significant effects on burning rates and average ignition-front speeds. Bed height has no effect on burning rates but does have an effect on average ignition-front speeds. Particle size is found to have slight effects on burning rates while having no effect on average ignition-front speeds. PMID:20570042

Tao, Ling; Zhao, Guangbo; Sun, Rui; Wang, Qiang

2010-09-15

160

Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge  

PubMed Central

Ethanol production from the steam-exploded mixture of 75% cotton gin waste and 25% recycled paper sludge in various conditions was investigated by semi-simultaneous saccharification and fermentation (SSSF) consisting of a pre-hydrolysis and a simultaneous saccharification and fermentation (SSF). Four cases were studied: 24-h pre-hydrolysis + 48-h SSF (SSSF 24), 12-h pre-hydrolysis + 60-h SSF (SSSF 12), 72-h SSF, and 48-h hydrolysis + 24-h fermentation (SHF). The ethanol concentration, yield, and productivity of SSSF 24 were higher than those of the other operations. A model of SSF was used to simulate the data for four components in SSF. The analysis of the reaction rates of cellobiose, glucose, cell, and ethanol using the model and the parameters from the experiments showed that there was a transition point of the rate-controlling step at which the cell growth control in the initial 2 h was changed to the cellobiose reaction control in later period during ethanol production of SSF from the mixture. PMID:20559849

Agblevor, Foster A.

2010-01-01

161

Effects of Nutrient Additives and Sodium Hydroxide on Ensiling Characteristics and In Vitro Fiber Digestion Kinetics of Dairy Cattle Waste-Energy Feedstuff Mixtures  

Microsoft Academic Search

Dairy waste fiber was mixed in ratio 1:1 (dry matter basis) with ground alfalfa hay, chopped cornstalks, chopped whole corn plant, or ground corn. Prior to ensiling, mixtures received either no additive, dry cane molasses at 5% of dry matter, urea at 1% of dry matter, dry cane molasses at 5% plus urea at 1% of dry matter, sodium hydroxide

C. R. Staples; R. L. Fernando; G. C. Fahey Jr.; L. L. Berger; E. H. Jaster

1985-01-01

162

Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste  

SciTech Connect

As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

1995-08-01

163

Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement.  

PubMed

One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy. PMID:16200982

Hassani, Abolfazl; Ganjidoust, Hossein; Maghanaki, Amir Abedin

2005-08-01

164

Automobile shredder residue gasification.  

PubMed

Automobile Shredder Residue (ASR) shows a broad chemical composition owing to the presence of different materials, and its high organic content makes it interesting as a source of energy. In this work, a bench scale two-stage reactor is used for gasifying ASR. The reactor shows an efficient ASR gasification, avoiding the formation of difficult to manage char and tar and allowing an easy recovery of energy. The results of the investigation were used to test a simple model based on mass and energy balances and chemical equilibrium, predicting syngas composition including the presence of problematic elements such as sulphur and chlorine. Gasification data calculated by the model agree in a satisfactory way with the experimental ones. Due to the large variation in ASR composition, the model predicts that ASR gasification is industrially feasible only if a blend of ASR and RDF is used as a reactor feed. PMID:14661893

De Filippis, Paolo; Pochetti, Fausto; Borgianni, Carlo; Paolucci, Martino

2003-10-01

165

Hydrogen production from municipal solid waste  

SciTech Connect

We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

1996-06-28

166

Evaluation and performance based mix design of rubber modified mixtures: Laboratory evaluation of asphalt concrete mixtures using waste tires. Final report  

SciTech Connect

New Jersey Department of Transportation has been investigating the use of rubber modified materials over the last few years with the design and use of dense and gap graded mixtures, and in some cases the incorporation of RAP materials, in selected projects. While the short term field performance of these materials is satisfactory, their long term performance is unknown. These mixtures were designed with the traditional Marshall mixture design method, and thus is was not considered design criteria related to mixture behavior and performance into mixture selection. The main objective of this study is the development of a mixture design methodology for rubber modified materials that considers mixture behavior and performance. In order to achieve this objective researchers conducted a laboratory investigation which was able to evaluate mixture properties that can be related to mixture performance, (in terms of rutting, low temperature cracking, and fatigue), and simulating the actual field loading conditions that the material is being exposed to. The possibility of coupling the traditional Marshall mix design method with parameters related to mixture behavior and performance was investigated since this technique has been used over the years by the agency, and the necessary testing apparatus is available to both the agency and material laboratories. The SHRP SUPERPAVE mix design methodology was reviewed and considered in this study for the development of an integrated performance based design procedure. However, its applicability and use on routine bases was not considered at this time since it requires specific equipment with ongoing evaluation for its repeatability and precision. Finally, for the conduct of this investigation materials and mixtures used by NJDOT in rubber modified paving projects were used.

Goulias, D.G.; Ali, A.H.M.

1997-02-01

167

Biofiltration of waste gases containing a mixture of formaldehyde and methanol.  

PubMed

Several biofilters and biotrickling filters were used for the treatment of a mixture of formaldehyde and methanol; and their efficiencies were compared. Results obtained with three different inert filter bed materials (lava rock, perlite, activated carbon) suggested that the packing material had only little influence on the performance. The best results were obtained in a biotrickling filter packed with lava rock and fed a nutrient solution that was renewed weekly. A maximum formaldehyde elimination capacity of 180 g m(-3) h(-1) was reached, while the methanol elimination capacity rose occasionally to more than 600 g m(-3) h(-1). Formaldehyde degradation was affected by the inlet methanol concentration. Several combinations of load vs empty bed residence time (EBRTs of 71.9, 46.5, 30.0, 20.7 s) were studied, reaching a formaldehyde elimination capacity of 112 g m(-3) h(-1) with about 80% removal efficiency at the lowest EBRT (20.7 s). PMID:15105973

Prado, Oscar J; Veiga, María C; Kennes, Christian

2004-08-01

168

The ENCOAL Mild Gasification Demonstration Project  

SciTech Connect

The DOE plans to enter into a Cooperative Agreement with ENCOAL Corporation, a wholly owned subsidiary of Shell Mining Company, for the cost-shared design, construction and operation of a mild gasification facility based on Liquids-from-Coal (LFC) technology. The facility is planned to be located at the Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The mild gasification process to be demonstrated will produce two new, low-sulfur fuel forms (a solid and a liquid) from subbituminous coal. The new fuel forms would be suitable for combustion in commercial, industrial, and utility boilers. This environmental assessment has been prepared by the DOE to comply with the requirements of the NEPA. Pollutant emissions, land use, water, and waste management are briefly discussed. 3 figs., 5 tabs.

Not Available

1990-07-01

169

Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.  

PubMed

Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. PMID:24184547

Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

2014-02-01

170

Gasification of black liquor  

DOEpatents

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

Kohl, Arthur L. (Woodland Hills, CA)

1987-07-28

171

Gasification of black liquor  

DOEpatents

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

Kohl, A.L.

1987-07-28

172

Liquefaction and dechlorination of hydrothermally treated waste mixture containing plastics with glass powder.  

PubMed

Additive effects of glass powder upon the product yields and chlorine distribution after liquefaction of hydrothermally pretreated mixed waste (HMW) are compared with liquefaction of HMW with any one of water, quartz sand, or glass powder plus water. As a result, addition of either water or quartz sand did not affect liquefaction and dechlorination of HMW. Further, water (5 g) addition did not enhance liquefaction and dechlorination of HMW with glass powder. On the other hand, after liquefaction of HMW with glass powder, the yields of chlorine in the gas and water insoluble constituents decreased and the chlorine yield in the water-soluble constituent increased significantly. Because sodium in glass powder dissolved in a small amount (0.5 g) of water resulted from dehydration of HMW during liquefaction. Further, hydrogen chloride derived from polyvinylchloride in HMW was neutralized by ion exchange between H(+) and Na(+) dissolved in a small amount of water forming NaCl in the Residue (water-soluble) constituent. Therefore, most of chlorine in HMW was removed easily by water extraction of the Residue constituent after liquefaction of HMW with glass powder. Further, upgrading of HMW into the oil constituent was enhanced due to inhibition of production of chlorine containing organic compounds. Accordingly, it was clarified that glass powder was the most effective additive for liquefaction and dechlorination of HMW. PMID:21344899

Sugano, Motoyuki; Shimizu, Takayuki; Komatsu, Akihiro; Kakuta, Yusuke; Hirano, Katsumi

2011-03-15

173

Autothermal gasification of low-grade fuels in fluidized bed  

NASA Astrophysics Data System (ADS)

Autothermal gasification of high-ash floatation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

Belyaev, A. A.

2009-01-01

174

Plasma gasification of sewage sludge: Process development and energy optimization  

Microsoft Academic Search

The plasma gasification process has been demonstrated in many of the most recent studies as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization. This method is applied here to the treatment of sewage sludge. Results are presented for a case study concerning the Athens’ Central Wastewater Treatment Plant, at Psittalia Island. An

A. Mountouris; E. Voutsas; D. Tassios

2008-01-01

175

Carbon-catalyzed gasification of organic feedstocks in supercritical water  

Microsoft Academic Search

Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The

Xiaodong Xu; Yukihiko Matsumura; Jonny Stenberg; Michael Jerry Antal

1996-01-01

176

Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility  

SciTech Connect

The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

2013-07-31

177

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho. [Waste mixtures of hazardous materials and low-level radioactive wastes or transuranic wastes  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

Not Available

1993-04-01

178

Gasification Plant Cost and Performance Optimization  

SciTech Connect

As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

2005-05-01

179

A summary report on combustion and gasification processes  

SciTech Connect

Six poster papers regarding combustion and gasification were reviewed. These six papers address various different technology subjects: (1) underground coal gasification modeling, (2) wood gasification kinetics, (3) heat transfer surface pretreatment by iron implantation, (4) coal water slurry stabilization technology, (5) coal log pipeline technology, and (6) nuclear reactor decontamination. Summaries and comments of the following papers are presented: Characterization of Flow and Chemical Processes in an Underground Gasifier at Great Depth; Model for Reaction Kinetics in Pyrolysis of Wood; Development of a Stainless Steel Heat Transfer Surface with Low Scaling Tendency; Storage and Transportation of Coal Water Mixtures; Coal Log Pipeline: Development Status of the First Commercial System; and Decontamination of Nuclear Systems at the Grand Gulf Nuclear Station.

Rath, L.K.; Lee, G.T.

1996-08-01

180

Influence of mixture ratio and pH to solidification/stabilization process of hospital solid waste incineration ash in Portland cement.  

PubMed

Solidification/stabilization (S/S) is an established utilization technology to treat hazardous wastes. This research explored the influence of pH (3-12) on the immobilization of heavy metals present in five mixtures of hospital solid waste incinerator ash and Portland cement, following two different processes of waste solidification/stabilization (cement hydration and granulation). In general, cement hydration process resulted in more stable products than granulation process. A high ash content in the mixture with Portland cement (60wt%) resulted in the highest immobilization of Pb(2+) and Cu(2+), while a low ash content in the mixture (10wt%) resulted in the lowest leachability of Zn(2+). When ash and Portland cement was mixed in equal proportions (50wt%) the highest encapsulation was observed for Ni(2+), Cd(2+) and Cr(3+). Neutral and weak alkaline pH values within the range pH=7-8 resulted in the lowest leachability of the monitored heavy metals. PMID:24997895

Sobiecka, Elzbieta; Obraniak, Andrzej; Antizar-Ladislao, Blanca

2014-09-01

181

Biomass Gasification Combined Cycle  

SciTech Connect

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01

182

RESEARCH INTO EMERGING WASTE ISSUES  

EPA Science Inventory

The purpose of this project is to investigate emerging waste issues. In particular, 2 issues have been raised in the last year that have major implications for the waste disposal industry: 1) waste gasification; and 2) proliferation of electronics waste. APPCD loaned a h...

183

Catalysis in biomass gasification  

SciTech Connect

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01

184

PNNL Coal Gasification Research  

SciTech Connect

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28

185

Converting moving-grate incineration from combustion to gasification – Numerical simulation of the burning characteristics  

Microsoft Academic Search

Waste incineration is a politically sensitive issue in the UK. The major current technology is based on direct combustion of wastes in a moving-grate furnace. However, general public opinion prefers non-direct burning technologies. Waste gasification is one of those nearest technologies available. By reducing the primary air-flow rate through the grate of a packed-bed system, operation of the existing solid-waste

Yao Bin Yang; Vida N. Sharifi; Jim Swithenbank

2007-01-01

186

The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding  

NASA Astrophysics Data System (ADS)

In this paper, we numerically solve the Saha equations to drive the number densities of electrons and ions, the degrees of ionization of the plasma as well as the refractive indices and the inverse Bremsstrahlung absorption coefficients as a function of temperature for a variety of volume ratios of the (He+Ar) mixtures. Furthermore, the heat transfer equation was solved to determine the plasma temperature. The effect of shielding gas volume ratios on the power waste parameters was estimated during long pulse Nd:YAG and CW CO2 laser welding accompanying the experimental verification.

Hosseini Motlagh, N. S.; Parvin, P.; Jandaghi, M.; Torkamany, M. J.

2013-12-01

187

The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

2012-04-15

188

Methods and apparatus for catalytic hydrothermal gasification of biomass  

DOEpatents

Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

2012-08-14

189

Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.  

PubMed

Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. PMID:25445262

Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y

2015-01-01

190

In Situ Causticizing for Black Liquor Gasification  

SciTech Connect

Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

Scott Alan Sinquefield

2005-10-01

191

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06

192

The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a bench-scale, two-phase anaerobic digestion system.  

PubMed

In this study, the anaerobic digestion of mixtures of food waste (FW) and horse manure was investigated using a bench-scale two-phase reactor system. Both phases were maintained at 35 degrees C for the duration of the 30-day study period. The first phase reactors were prepared with biomass mixtures in deionized water such that each mixture had an initial total solids (TS) concentration of 6 wt%. The second phase reactors were inoculated with cow manure in water two weeks prior to the study period at 3 wt% TS. The biogas from all second phase reactors contained greater than 60 vol% methane in the biogas before they were used in the study, thus indicating the presence of active methanogens. Filtrate (5 mL) from the first phase was used as feed to the second phase reactor. The chemical oxygen demand (COD), total organic carbon, and volatile solids (VS) of the feed from Phase 1 increased with FW content in the biomass mixture, and so the organic loading rates (OLRs) to the Phase 2 reactors also increased. Accordingly, the volume ofbiogas and methane generated from Phase 2 also increased with FW content. The low OLR (<0.2 g VS/L/day), the use of a two-phase system, and the use of filtrate from Phase las feed to Phase 2 allowed for high utilization of the feed; the observed specific methane yields (mL/g COD) were greater than 80% of the theoretical yields for all mixtures. The methane yields were statistically similar to within a 95% confidence interval. PMID:24645468

Smith, David B; Almquist, Catherine B

2014-01-01

193

Materials of Gasification  

SciTech Connect

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15

194

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30

195

Experimental study on MSW gasification and melting technology.  

PubMed

In order to develop municipal solid waste (MSW) gasification and melting technology, two preliminary experiments and a principle integrated experiment were fulfilled respectively. The gasification characteristics of MSW were studied at 500-750 degrees C when equivalence ratio (ER) was 0.2-0.5 using a fluidized-bed gasifier. When temperature was 550-700 degrees C and ER was 0.2-0.4, low heat value (LHV) of syngas reaches 4000-12000 kJ/Nm3. The melting characteristics of fly ash were investigated at 1100-1460 degrees C using a fixed-bed furnace. It was proved that over 99.9% of dioxins could be decomposed and most heavy-metals could be solidified when temperature was 1100-1300 degrees C. The principle integrated experiment was carried out in a fluidized-bed gasification and swirl-melting system. MSW was gasified efficiently at 550-650 degrees C, swirl-melting furnace maintains at 1200-1300 degrees C stably and over 95% of fly ash could be caught by the swirl-melting furnace. The results provided much practical experience and basic data to develop MSW gasification and melting technology. PMID:18232238

Xiao, Gang; Jin, Bao-sheng; Zhong, Zhao-ping; Chi, Yong; Ni, Ming-jiang; Cen, Ke-fa; Xiao, Rui; Huang, Ya-ji; Huang, He

2007-01-01

196

Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.  

PubMed

Waste incineration is a politically sensitive issue in the UK. The major current technology is based on direct combustion of wastes in a moving-grate furnace. However, general public opinion prefers non-direct burning technologies. Waste gasification is one of those nearest technologies available. By reducing the primary air-flow rate through the grate of a packed-bed system, operation of the existing solid-waste incineration equipment can be easily converted from combustion mode to gasification mode without major modification of the hardware. The potential advantages of this are lower dust carry-over in the flue gases, lower bed temperature (and therefore lower NO(x) formation in the bed), simplified gas-treatment procedures and lower running cost, among other benefits. The major disadvantages are, however, reduced throughput of the wastes and possibly higher carbon in the ash at exit. In this study, numerical simulation of both combustion and gasification of municipal solid wastes in a full-scale moving grate furnace is carried out employing advanced mathematical models. Burning characteristics, including burning rate, gas composition, temperature and burning efficiency as a function of operating parameters are investigated. Detailed comparisons between the combustion mode and gasification mode are made. The study helps to explore new incineration technology and optimise furnace operating conditions. PMID:16730435

Yang, Yao Bin; Sharifi, Vida N; Swithenbank, Jim

2007-01-01

197

Gasification of cyanobacterial in supercritical water.  

PubMed

Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG. PMID:25176482

Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

2014-01-01

198

Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes  

Microsoft Academic Search

Zinc and copper removal from aqueous solutions using brine sediments (industrial residue), sawdust (agricultural residue) and the mixture of both materials has been researched through batch and column tests. Brine sediments were found to be mainly constituted by halite and calcite, while its main cations exchangeable were sodium, calcium, magnesium and potassium. In sawdust the main exchangeable cations detected were

Lina Agouborde; Rodrigo Navia

2009-01-01

199

Thermochemical gasification of wet biomass and wastes  

SciTech Connect

Experiments conducted with a 1-liter batch reactor have demonstrated that biomass and other lignocellulosic materials can be efficiently and quickly converted to a high quality gas product by heating them as aqueous slurries to temperatures of 380/degree/C to 450/degree/C under a pressure of 30.9 to 39.9 MPa in the presence of alumina supported nickel catalyst. PNL is currently in the process of building a small scale (4 1/h or approximately 1 gal/h) continuous reactor system to perform a series of experiments designed to better characterize reaction kinetics and catalyst stability. 5 refs., 2 figs., 3 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Neuenschwander, G.G.

1988-03-01

200

Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution  

Microsoft Academic Search

The effect of the type of gasifying agent used in biomass gasification on product distribution (gas, char and tar yields) and gas quality (contents in H2, CO, CO2, CH4,…, tars) is analyzed. Gasifying agents taken into account are: air, pure steam, and steam–O2 mixtures. Process considered is biomass gasification in atmospheric and bubbling fluidized bed. Previous results got by Herguido

Javier Gil; José Corella; Mar??a P. Aznar; Miguel A. Caballero

1999-01-01

201

Melt crystallization for refinement of triolein and palmitic acid mixture as a model waste oil for biodiesel fuel production  

NASA Astrophysics Data System (ADS)

Melt crystallization using an annular vessel with two circular cylinders was applied to produce high-quality vegetable oil from waste oil. The inner cylinder was cooled at a constant rate and rotated, and the outer cylinder was heated at a constant temperature. The melt was solidified on the inner cylinder surface. The binary system of triolein and palmitic acid was used as the model waste oil. We measured the distribution coefficient of triolein. Suitable operation conditions were proposed to attain a high yield and a high purity of triolein from waste oil. The distribution coefficient correlated well with the theoretical equation derived on the basis of the "local lever rule" at the interface of the crystal layer and melt [1].

Fukui, Keisuke; Maeda, Kouji; Kuramochi, Hidetoshi

2013-06-01

202

Survey of biomass gasification. Volume II. Principles of gasification  

SciTech Connect

Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

Reed, T.B. (comp.)

1979-07-01

203

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31

204

Combustion of biodiesel fuel produced from hazelnut soapstock\\/waste sunflower oil mixture in a Diesel engine  

Microsoft Academic Search

Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible

N. Usta; E. Öztürk; Ö. Can; E. S. Conkur; S. Nas; A. H. Çon; A. Ç. Can; M. Topcu

2005-01-01

205

Olive orchard amended with two experimental olive mill wastes mixtures: Effects on soil organic carbon, plant growth and yield  

Microsoft Academic Search

Amendments of olive orchard soil with two different preparations of olive mill solid waste (OMWMs) at the rate of 9tonha?1 per year for five years in two different plots were compared with an industry standard soil amendment using urea. Both the OMWMs amendments showed significant increases in total organic carbon and humic substances in soil of approximately 40% and 58%,

Roberto Altieri; Alessandro Esposito

2008-01-01

206

Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the hazdat database  

Microsoft Academic Search

Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund) section 104 mandate, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 USC 9604 (i)(2), the Agency for Toxic Substances and Disease Registry (ATSDR) is to identify individual substances and combinations of substances that pose the greatest public health hazard at hazardous waste

R. M. Fay; M. M. Mumtaz

1996-01-01

207

Development of grout formulations for 106-AN waste: Mixture-experiment results and analysis. Volume 1, Narrative and recommendations  

SciTech Connect

Twenty potential ingredients were identified for use in developing a 106-AN grout formulation, and 18 were subsequently obtained and tested. Four ingredients-Type II-LA (moderate heat of hydration) Portland cement, Class F fly ash, attapulgite 150 drilling clay, and ground air-cooled blast-furnace slag (GABFS) were selected for developing the 106-AN grout formulations. A mixture experiment was designed and conducted around the following formulation: 2.5 lb of cement per gallon, 1.2 lb of fly ash per gallon, 0.8 lb of attapulgite per gallon, and 3.5 lb of GABFS per gallon. Reduced empirical models were generated from the results of the mixture experiment. These models were used to recommend several grout formulations for 106-AN. Westinghouse Hanford Company selected one of these formulations to be verified for use with 106-AN and a backup formulation in case problems arise with the first choice.

Spence, R.D.; McDaniel, E.W. [Oak Ridge National Lab., TN (United States); Anderson, C.M.; Lokken, R.O.; Piepel, G.F. [Pacific Northwest Lab., Richland, WA (United States)

1993-09-01

208

Central waste processing system  

NASA Technical Reports Server (NTRS)

A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

Kester, F. L.

1973-01-01

209

In situ formation of coal gasification catalysts from low cost alkali metal salts  

DOEpatents

A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

Wood, Bernard J. (Santa Clara, CA); Brittain, Robert D. (Cupertino, CA); Sancier, Kenneth M. (Menlo Park, CA)

1985-01-01

210

Integrated gasification combined cycle -- A review of IGCC technology  

SciTech Connect

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which made this system environmentally preferable. Commercial-scale demonstration of a cool water plant and other studies have shown that the greenhouse gas and particulates emission from an IGCC plant is drastically lower than the recommended federal New Source Performance Standard levels. IGCC also offers a phased construction and repowering option, which allows multiple-fuel flexibility and the necessary economic viability. IGCC technology advances continue to improve efficiency and further reduce the emissions, making it the technology of the 21st century.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1996-07-01

211

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30

212

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

NONE

1997-07-01

213

Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version  

SciTech Connect

A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

Raman, S.V.

1983-09-01

214

Nonthermal plasma alternative to the incineration of hazardous organic wastes. [Mixtures containing oil and trichloroethylene, carbon tetrachloride and trichloroethane  

Microsoft Academic Search

We are developing silent discharge plasma (SDP) oxidation technology as an alternative to incineration and as a post-incinerator treatment process for hazardous organic wastes. As an alternative to incineration, SDP apparatus has been coupled to a high-temperature packed-bed reactor, the plasma apparatus serving as a second stage for treating gaseous effluent from the packed bed. As a post- incinerator treatment

L. A. Rosocha; W. H. McCulla; G. K. Anderson; J. J. Coogan; M. Kang; R. A. Tennant; P. J. Wantuck

1992-01-01

215

Investigation of gasification of char from refuse derived fuel. 2: Influence of feedstock properties  

SciTech Connect

In a batch fixed bed gasifying reactor made of stainless steel, both carbonization and gasification behavior of refuse derived fuel (RDF) from Shanghai municipal solid waste (MSW) are investigated. The results show that the properties and components of RDF affect the gasification process. When the RDF is used as a kind of gasification feedstock, its reactivity is somewhat higher than that of the coal under the same condition of reaction temperature. Experiments show that the gas calorific value approaches 9.62--10.04 MJ/m{sup 3} at the stage of carbonization and 3.35--4.18 MJ/m{sup 3} at the stage of gasification. Ash, fixed carbon and volatile matter contents in RDF also influence the process of carbonization and gasification. By mixing the two stages, gas was obtained with a higher range of calorific value, 4.60--5.65 MJ/m{sup 3}, than can be obtained by gasification alone, but the gas yield seems to be less than 1.5 m{sup 3}/kg.

Wu Jiazheng; Wen Wang [Tongji Univ., Shanghai (China). Dept. of Thermal Engineering

1997-12-31

216

Fundamental mechanisms of coal gasification  

Microsoft Academic Search

The goal of this project was to obtain improved quantitative understanding of certain features of coal devolatilization of significant interest for coal gasification technology, for basic coal science, and for coal utilization in general. The work features systematic experimental and related mathematical modeling studies of reactions of newly formed coal pyrolysis tars within pyrolyzing coal particles and of how coal

T. P. Griffin; G. H. Ko; D. M. Sanchez; M. R. Hagaligol; J. S. Hsu; W. A. Peters; J. B. Howard

1989-01-01

217

BIMOMASS GASIFICATION PILOT PLANT STUDY  

EPA Science Inventory

The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

218

Clean catalytic combustion of low heat value fuels from gasification processes  

Microsoft Academic Search

The conversion of biomass, coal and some waste materials by gasification offers an opportunity to utilise such fuel sources cleanly. Many of the aggressive species inherent in the fuel precursors can be retained in process, but one exception is nitrogen, which appears in the derived fuel gas generally as ammonia. Amounts of ammonia can be large, up to 3–4000vppm from

J. J. Witton; E. Noordally; J. M. Przybylski

2003-01-01

219

The technical and economic feasibility of biomass gasification for power generation  

Microsoft Academic Search

This paper reviews the costs and technologies involved in an integrated system for the production of electricity from biomass in general and wood in particular. It first examines the economics of gasification, showing that the potential for this form of renewable energy lies in either processing low-cost wastes or relying on some sort of fiscal incentive, even at relatively large

A. V. Bridgwater

1995-01-01

220

ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT - WELLMAN-GALUSHA (GLEN GERY) LOW-BTU GASIFICATION  

EPA Science Inventory

The report gives results of a Source Test and Evaluation Program at a commercial coal gasification plant using a Wellman-Galusha gasifier to produce low-Btu fuel gas from anthracite coal. Major objective of the tests was to perform an environmental assessment of the plant's waste...

221

ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT--CHAPMAN LOW-BTU GASIFICATION  

EPA Science Inventory

The report gives results of a source test and evaluation of a commercial Chapman low-Btu gasification facility. Objectives were to: characterize the multimedia waste streams and potential fugitive emission and effluent streams from the facility, evaluate the applicability of Leve...

222

The O?-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.  

PubMed

The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery. PMID:21993077

Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

2012-04-01

223

[Toxicity studies of mild gasification products]. [Quarterly report, October 1, 1992--December 31, 1992  

SciTech Connect

Mild gasification of coal is a technology being developed by the United States Department of Energy and private industry with the hope that a cleaner method of coal use can help meet future energy needs. As the technology develops and its commercial use becomes a more viable possibility, efforts are being made to study the safety or possible toxicity of the mild gasification products. DOE and the National Institute for occupational Safety and Health (NIOSH) are cooperating through an interagency agreement to examine some of these products for their genotoxic potential. NIOSH has studied the mutagenicity of several mild gasification product samples using the Ames Salmonella/microsomal assay. As reported earlier PSIS{number_sign}830331 failed to demonstrate genotoxic activity in the Ames assay under all conditions tested. Since the mild gasification products are complex mixtures, interactions between various components are likely to occur. Such interactions between various components of complex mixtures may increase or decrease genotoxic activity in short-term assays like the Ames test. Although all synergistic interactions may not be detailed, the separate analysis of those components in several classes provides a more accurate view of the genotoxicity of each component and better allows for chemical characterization of the possible mutagens in the mixture. NIOSH has performed mutagenicity studies on the subfractions of PSIS{number_sign}830331. The results of those studies are detailed in this report.

Not Available

1992-12-31

224

Pyrolysis and gasification-melting of automobile shredder residue.  

PubMed

Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations. PMID:24282966

Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil

2013-10-01

225

Gasification coprocessing of Illinois Basin coal and RDF  

SciTech Connect

Gasification coprocessing of refuse-derived fuel (RDF) with coal was investigated with the objective of increasing the utilization of high-sulfur Illinois Basin coals and municipal solid waste (MSW) in an environmentally acceptable manner. MSW is a major recurring solid waste whose disposal entails tipping fees of $30--$40/ton, and poses long-term environmental problems. MSW is routinely processed to recover plastics, aluminum, and other metals as part of state-mandated recycling requirements. Following removal of noncombustibles, the remaining material, primarily paper and food wastes, is shredded to produce RDF fluff which has an as-received calorific value of {approximately} 6,000 Btu/lb. The research addressed the problems of size reduction of RDF fluff (an essential step in making a gasifier feed slurry) and production of a pumpable slurry using additives to maximize coal and RDF solids loading. Gasification evaluation of a 60% solids coal/RDF slurry was conducted in an entrained-flow, oxygen-blown, atmospheric pressure, 0.5 million Btu/h research gasifier. High carbon conversion was achieved, and the product gases contained no furans.

Choudhry, V.; Kwan, S. [Praxis Engineers, Inc., Milpitas, CA (United States); Pisupati, S.; Klima, M. [Pennsylvania State Univ., University Park, PA (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

1998-12-31

226

Health and environmental research on complex organic mixtures: Proceedings  

SciTech Connect

During the preceding decade, numerous studies involving chemists, biologists, environmental scientists, industrial hygienists and engineers were conducted to assess the potential harmful effects of various complex organic mixtures. As a result, a substantial health and environmental database had been developed on combustion products, coal conversion materials (liquefaction and gasification), shale oils, petroleum, solid wastes, dredging spoils, materials from biomass, and other organic materials. Selection of the symposium topic reflected a desire to evaluate results of studies on materials from energy-related and industrial activities that could cause potential occupational problems or enter the environment. The symposium was organized to review and summarize the chemical, biomedical, and environmental database on complex organic mixtures. The program also provided a forum to identify future health and environmental research needs, coordinate present and future health and environmental research with technology development, and identify ways to mitigate problems associated with the release of energy-related materials to the environment. Individual papers were processed separately for the data base.

Gray, R.H.; Chess, E.K.; Mellinger, P.J.; Riley, R.G.; Springer, D.L. (eds.)

1987-01-01

227

Development of mild gasification process  

SciTech Connect

Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

Chu, C.I.C.; Williams, S.W.

1989-01-01

228

Development of mild gasification process  

SciTech Connect

Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

Chu, C.I.C.; Gillespie, B.L.

1987-11-01

229

Development of mild gasification process  

SciTech Connect

Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

Chu, C.I.C.; Gillespie, B.L.

1988-02-01

230

Development of mild gasification process  

SciTech Connect

Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

Chu, C.I.C.; Derting, T.M.

1988-07-01

231

Influence of high carbon monoxide concentration on the carbon dioxide gasification of a selected coal char  

NASA Astrophysics Data System (ADS)

This study focuses on the effect of high CO concentration on CO2 gasification rates of chars of Illinois #6 coal, a bituminous coal that is industrially important because of its relatively high reactivity and low pollutant emissions. A pressurized thermogravimetric analyzer (PTGA) is used to obtain char gasification mass loss and surface area measurements. The mass loss profiles of Illinois #6 chars were measured at temperatures of 1200 and 1273K and pressures of 1.4, 10, and 25 atm in CO2-CO and CO2-N2 mixtures. CO concentrations between 10%--90% at 1.4 atm and 10%--85% at 25 atm were used. The surface areas of the chars are determined from room-temperature (298K) CO2 adsorption on chars after successive stages of partial gasification. A variable partial pressure gas adsorption technique was developed to effectively utilize the PTGA for CO2 surface area measurements. Using experimental mass loss and surface area data combined with structural and kinetics modeling, an overall gasification curve description of kinetically-limited char-CO2 gasification reactivity is formulated for the life span of the char. The model consists of an intrinsic char reactivity expression with a conversion-dependent surface area modifier. First the surface area modifier is developed based on a random pore model and particle mode of burning relations. It is used with the unified gasification curve concept to interpret the isothermal gasification profiles and extrapolate the data to obtain the reactivity at the onset of char conversion. These isothermal initial char reactivities determined at selected gasification conditions are then used to calculate rate coefficients in the kinetics component of the model. The proposed reaction mechanism contains paths for both gas phase and adsorbed CO to interfere with the gasification of Illinois #6 chars by CO 2. The main effect of adsorbed CO in the range of experimental conditions used in this study is to occupy carbon sites that could otherwise be attacked by CO2. This behavior persists even at 1273 K. The impact of CO inhibition, both gas phase and adsorbed CO, was found to decrease with temperature and increase with pressure. This model also reproduces reasonably well the overall rate variations measured in non-isothermal nonisothermal gasification environments.

Tsai, Nancy Ko-Chieh

2000-11-01

232

Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.  

PubMed

The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

2013-04-01

233

Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration  

NASA Technical Reports Server (NTRS)

A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

1981-01-01

234

Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.  

PubMed

This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio ? = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. PMID:24938298

Werle, Sebastian

2014-10-01

235

Gasification of RDF (refuse-derived fuel) in a pressurized fluidized bed  

SciTech Connect

The pressurized thermal gasification of refuse-derived fuel (RDF), provides an alternative option to the current available municipal solid waste (MSW) disposal methods. A pressurized fuel gas from RDF offers a flexible product in terms of distribution, use, and environmental control benefits and eventually, a combined-cycle power generation. RDF gasification process research began at IGT in a process development unit (PDU) with an exploratory test of pressurized, fluidized-bed gasification conducted at 300 psig and 1450/degree/F at a feed rate of about 800 lb/h. These test results under air-blown conditions are presented in detail: the gas yield composition and the condensible liquid yield and composition. Analysis of the initial pressurized gasification test and a thermobalance decomposition test of the RDF feedstock indicated that the RDF char carbon was not completely converted under the test conditions. Changes in the process operating conditions are suggested to achieve complete carbon conversion in the single-stage, fluidized-bed gasifier. In developing a broad and sound technology base on pressurized RDF gasification, a variety of RDF feedstocks need to be tested with process information gathered for gas cleanup, ash disposal, and process control in response to short-term feed variation. 3 refs., 5 figs., 3 tabs.

Onischak, M.; Knight, R.A.; Evans, R.J.; Babu, S.P.

1987-01-01

236

Digested sewage sludge gasification in supercritical water.  

PubMed

Digested sewage sludge gasification in supercritical water was studied. Influences of main reaction parameters, including temperature (623-698 K), pressure (25-35 Mpa), residence time (10-15 min) and dry matter content (5-25 wt%), were investigated to optimize the gasification process. The main gas products were methane, carbon monoxide, carbon dioxide and traces of ethene, etc. Results showed that 10 wt% dry matter content digested sewage sludge at a temperature of 698 K and residence time of 50 min, with a pressure of 25 MPa, were the most favorable conditions for the sewage sludge gasification and carbon gasification efficiencies. In addition, potassium carbonate (K2CO3) was also employed as the catalyst to make a comparison between gasification with and without catalyst. When 2.6 g K2CO3 was added, a gasification efficiency of 25.26% and a carbon gasification efficiency of 20.02% were achieved, which were almost four times as much as the efficiencies without catalyst. K2CO3 has been proved to be effective in sewage sludge gasification. PMID:23315366

Zhai, Yunbo; Wang, Chang; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

2013-04-01

237

TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT  

EPA Science Inventory

This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

238

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS  

EPA Science Inventory

The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

239

Improved catalysts for carbon and coal gasification  

DOEpatents

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25

240

Kinetics of woodchips char gasification with steam and carbon dioxide  

Microsoft Academic Search

Kinetics of woodchips char gasification has been examined. Steam and CO2 were used as the gasifying agents. Differences and similarities between kinetics of steam gasification and CO2 gasification have been discussed. Comparison was conducted in terms of gasification duration, evolution of reaction rate with time and\\/or conversion, and effect of partial pressure on reaction rate. Reactor temperature was maintained at

I. I. Ahmed; A. K. Gupta

2011-01-01

241

ENCOAL Mild Coal Gasification Project  

SciTech Connect

ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

Not Available

1992-02-01

242

Mixture Experiments  

SciTech Connect

A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

Piepel, Gregory F.

2007-12-01

243

COAL CHAR GASIFICATION KINETICS IN A JET-FLUIDIZED BED (COMBUSTION, REACTION, RATE PHENOMENA)  

Microsoft Academic Search

The kinetics of gasification of -10 + 65 mesh coke and coal char with O(,2) and O(,2)-CO(,2) mixtures was studied in a continuous, bench scale, jet-fluidized reactor over a wide range of temperatures (900(DEGREES)C to > 1400(DEGREES)C) and bed depths under atmospheric pressure. The measured specific reaction rates of carbon ranged from 0.01 to 0.1 gram carbon reacting per gram

MING-YUAN KAO

1984-01-01

244

Fundamental studies of catalytic gasification  

SciTech Connect

Studies of the catalytic steam gasification of carbon solids continued. A considerable number of important findings have been made. Recently limited experimentation has been carried out on the production of C{sub 2} hydrocarbons from methane in the presence of Ca/K/Ni oxide catalysts and of oxygen, carbon and water. The main finding thus far has been that C{sub 2} yields of 10--13% can be obtained at about 600{degrees}C or 150{degrees} lower temperature than described in the literature for similar yields. Yields of 7--10% C{sub 2} hydrocarbons at 99+% selectivity have been obtained. The presence of water and small amounts of oxygen is essential. Yields of this magnitude may be attractive since there is no loss of methane to valueless by-products, no purification of the recycle steam is required and no oxygen is used to burn methane. Further improvement in yields by catalyst and operating conditions modification will be investigated. It is also intended to clarify the chemistry which inhibits burning of methane to carbon oxides. Work is discussed on gasification of petroleum cokes and oxidative methane coupling. 8 figs., 2 tabs.

Heinemann, H.; Somorjai, G.A.

1991-03-01

245

Fluidized bed catalytic coal gasification process  

DOEpatents

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01

246

Study of the treatability of wastewater from a coal gasification plant. Supplementary report, July 15-December 31, 1980  

SciTech Connect

Three methods of treating coal gasification plant waste water have been studied experimentally: biological reaction kinetics of the activated sludge process; chemical precipitation with ferric chloride at the optimum pH value (alum and polymers were less effective); and adsorption in columns of granules of activated carbon. Detailed results of all three experiments are given. (LTN)

Iglar, A. F.

1980-01-01

247

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

248

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28

249

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

DOEpatents

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

Elliott, Douglas C; Oyler, James R

2014-11-04

250

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

DOEpatents

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

Elliott, Douglas C; Oyler, James

2013-12-17

251

10 things to know about coal gasification  

SciTech Connect

Eastman Gasification Services Company was the first company to commercialise a coal gasification facility in the United States in 1983. Based on many years experience, David Denton, its business development director, lists ten features he believes everyone should know about coal gasification. These include its usefulness as a technology for increasing the US's energy security, being the cleanest coal-based technology, using less water than other coal-based technology, being able to remove high levels of volatile mercury from its production gas, providing a low-cost approach for carbon dioxide capture, and having potential to produce many chemicals and hydrogen. Costs of electricity production from integrated gasification combined cycle technology are now approaching those of other coal-based technologies. 1 fig.

NONE

2005-07-01

252

Underground Coal Gasification at Tennessee Colony  

E-print Network

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01

253

The Role of Oxygen in Coal Gasification  

E-print Network

gasification combined-cycle (IGCC) power generation and methanol synthesis. The potential impact of a non-cryogenic air separation process currently under development is examined based on integration with a high temperature processes....

Klosek, J.; Smith, A. R.; Solomon, J.

254

Cool Water Coal Gasification Program: an update  

Microsoft Academic Search

Cool Water, cofunded by EPRI et al., is a nominal 120-MW integrated coal gasification and combined-cycle (IGCC) power plant that uses the Texaco coal gasification process. Construction of the IGCC facility at Daggett, California, was completed and operation began in mid 1984. The plant continues to operate successfully on its usual feedstock, a low-sulfur Utah coal, and on several test

1988-01-01

255

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09

256

Demonstration plant for pressurized gasification of biomass feedstocks  

SciTech Connect

A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

Trenka, A.R. (Pacific International Center for High Technology Research, Honolulu, HI (United States)); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. (Hawaii Natural Energy Inst., Honolulu, HI (United States)); Caldwell, C. (Parsons (Ralph M.) Co., Pasadena, CA (United States)); Kwok, R. (Hawaiian Commercial and Sugar Co., HI (United States)); Onischak, M.; Babu, S.P. (Institute of Gas Technology

1991-01-01

257

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

Archie Robertson

2003-10-29

258

Acute toxicity of chrome electroplating wastes to microorganisms: adsorption of chromate and chromium(VI) on a mixture of clay and sand  

Microsoft Academic Search

Chrome electroplating wastes were collected from two industrial sites and analyzed for color, turbidity, pH, alkalinity, sulfate, chloride, N-ammonia, N-nitrate, N-nitrite, acid hydrolyzable P, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, chromate and chromium(VI). The effect of these wastes on saprophytic and nitrifying bacteria was studied with varying concentrations of the waste using sucrose substrate as a source of

Mohammad Ajmal; Azhar Amin Nomani; Asim Ahmad

1984-01-01

259

Separating Mixtures  

NSDL National Science Digital Library

Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

260

Catalytic combustor for integrated gasification combined cycle power plant  

DOEpatents

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16

261

Gasification of refuse derived fuel in a fixed bed reactor for syngas production  

SciTech Connect

Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H{sub 2} and CO are found to be the major products, along with CO{sub 2} and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H{sub 2} and CO selectivities was studied, and the optimum temperature for better H{sub 2} and CO selectivity was determined to be 725 deg. C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H{sub 2} under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution.

Dalai, Ajay K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9 (Canada)], E-mail: ajay.dalai@usask.ca; Batta, Nishant [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9 (Canada); Eswaramoorthi, I. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9 (Canada); Schoenau, Greg J. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9 (Canada)

2009-01-15

262

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

SciTech Connect

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01

263

Chiral mixtures  

NASA Astrophysics Data System (ADS)

An index evaluating the amount of chirality of a mixture of colored random variables is defined. Properties are established. Extreme chiral mixtures are characterized and examples are given. Connections between chirality, Wasserstein distances, and least squares Procrustes methods are pointed out.

Petitjean, Michel

2002-08-01

264

ENVIRONMENTAL HAZARD RANKINGS OF POLLUTANTS GENERATED IN COAL GASIFICATION PROCESSES  

EPA Science Inventory

The report gives results of an evaluation and ranking of environmental hazards associated with coal gasification. Applied chemical analytical data were provided by (1) research with an experimental gasifier, and (2) sampling of four commercial gasification processes. Gas, liquid,...

265

Exxon catalytic coal gasification process development program. Quarterly technical progress report, January-March 1980  

SciTech Connect

This work is aimed at advancing the catalytic coal gasification technology through the development stage to make it ready for further scaleup in a large pilot plant. One of the major objectives of the program is to demonstrate the feasibility of the integrated process which includes gasification, gas separation, and catalyst recovery. This integrated system will be operated at commercial design conditions feeding bituminous Illinois No. 6 coal catalyzed with potassium hydroxide. This operation will demonstrate the feasibility of the catalytic coal gasification process in integrated operation and will ready the technology for scaleup to the larger pilot plant stage. Work was aimed at further defining the effect of temperature, gas composition, gas flow rate, and pressure on the gasification rate. With pure steam feed to the reactor, the apparent activation energy is about 31 kcal/g mole; however, with a feed mixture of H/sub 2/ and H/sub 2/O in equimolar amounts, the apparent activation energy is increased to about 46 kcal/mole. The gasification rate was found to be rather insensitive to pressure changes but highly sensitive to the ratio of H/sub 2/O to H/sub 2/ in the feed gas. Bench scale tests have verified that devolatilization pressure is the most important variable affecting char agglomeration. Initial results indicate that a mild oxidation at 350/sup 0/F followed by a heat treatment will improve agglomeration properties. Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques.

Not Available

1980-06-01

266

Apparatus for fixed bed coal gasification  

DOEpatents

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01

267

Evaluation of treatment technologies for water reuse in coal gasification  

Microsoft Academic Search

This investigation assessed significant issues and conducted bench scale experiments pertinent to management and reuse of coal coking and coal gasification process wastewaters. For the case of high-BTU coal gasification processes, the cooling tower is the most likely target for reuse of process wastewater. Treatment studies were performed with high BTU pilot coal gasification process quench waters to evaluate enhanced

R. G. Luthy; J. R. Campbell; L. McLaughlin; R. W. Walters

1980-01-01

268

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEâ??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30

269

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30

270

Inhalation Cancer Risk Associated with Exposure to Complex Polycyclic Aromatic Hydrocarbon Mixtures in an Electronic Waste and Urban Area in South China  

PubMed Central

Atmospheric particulate matter samples were collected from May 2010 to April 2011 in a rural e-waste area and in Guangzhou, South China, to estimate the lifetime inhalation cancer risk from exposure to parent polycyclic aromatic hydrocarbons (PAHs), high molecular weight PAHs (MW 302 PAHs), and halogenated PAHs (HPAHs). Seasonal variations in the PAH concentrations and profile within and between the e-waste and urban areas indicated different PAH sources in the two areas. Benzo[b]fluoranthene, BaP, dibenz[ah]anthracene, and dibenzo[al]pyrene made the most significant contribution to the inhalation cancer risk. MW 302 PAHs accounting for 18.0% of the total cancer risk in the e-waste area and 13.6% in the urban area, while HPAHs made a minor contribution (< 0.1%) in both the areas. The number of lifetime excess lung cancers due to exposure to parent PAHs, MW 302 PAHs, and HPAHs ranged from 15.1 to 1198 per million people in the e-waste area and from 9.3 to 737 per million people in Guangzhou. PAH exposure accounted for 0.02 to 1.94% of the total lung cancer cases in Guangzhou. On average, the inhalation cancer risk in the e-waste area was 1.6 times higher than in the urban area. The e-waste dismantling activities in South China led to higher inhalation cancer risk due to PAH exposure than the urban area. PMID:22913732

Wang, Jing; Chen, Shejun; Tian, Mi; Zheng, Xiaobo; Gonzales, Leah; Ohura, Takeshi; Mai, Bixian; Simonich, Staci L. Massey

2012-01-01

271

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01

272

Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

273

Fixed-bed gasification research using US coals. Volume 14. Gasification of Kemmerer subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fourteen volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Kemmerer subbituminous coal, from August 11, 1984 to August 15, 1984. 4 refs., 20 figs., 13 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

274

Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer  

E-print Network

parameters were investigated in the gasification studies with air-steam mixtures. One was the equivalence ratio ER (the ratio of stochiometric air to actual air) and the second was the steam to fuel ratio (S:F). Prior to the experimental studies, atom...

Gordillo Ariza, Gerardo

2010-10-12

275

Biomass Gasification Technology Assessment: Consolidated Report  

SciTech Connect

Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

Worley, M.; Yale, J.

2012-11-01

276

Process for fixed bed coal gasification  

DOEpatents

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01

277

Assessment of advanced coal gasification processes  

NASA Technical Reports Server (NTRS)

A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

1981-01-01

278

ADVANCED GASIFICATION BY-PRODUCT UTILIZATION  

SciTech Connect

The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

2005-04-01

279

Continuous Removal of Coal-Gasification Residue  

NASA Technical Reports Server (NTRS)

Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

1986-01-01

280

Production of Hydrogen from Underground Coal Gasification  

DOEpatents

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07

281

An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.  

PubMed

This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. PMID:23608748

Ongen, Atakan; Ozcan, H Kurtulus; Aray?c?, Semiha

2013-12-15

282

Effects of selected inorganic coal-gasification constituents on aquatic life: an annotated bibliography  

SciTech Connect

This review is concentrated on primary inorganic pollutants of concern which result in the aqueous discharges of high-pressure coal-gasification technologies. These pollutants include ammonia, cyanide (thiocyanates), sulfide, and boron. Ammonia toxicity was not reviewed since effective waste treatment technologies and discharge guidelines are available. The open literature concerning the effects of cyanide (thiocyanates), boron, and sulfide on aquatic life was reviewed using computer search techniques to obtain information from the Department of Energy RECON data base, the BIOSIS biological file in ORBIT data base, chemical abstracts, and the National Technical Information Service. It was concluded that there is a void in the literature concerning the toxicity of these parameters in high-pressure, coal-gasification wastewater matrices. The information abstracted is mainly concerned with laboratory studies with individual constitutents; however, some data provide insight to the effects of physical parameters such as temperature and physical stress.

Koch, L.M.; Young, R.C.

1983-03-01

283

Beluga coal gasification feasibility study  

SciTech Connect

The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

Robert Chaney; Lawrence Van Bibber [Research & Development Solutions (RDS), LLC (United States)

2006-07-15

284

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

285

Tank Farm Waste Transfer Compatibility Program  

SciTech Connect

The compatibility program described in this document formalizes the process for determining waste compatibility. Goal is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations, could possibly result in an unreviewed safety question. Waste transfer decision rules are presented as a process for assessing compatibility of wastes or waste mixtures. The process involves characterizing the waste comparing waste characteristics with the criteria, resolving potential incompatibilities, and documenting the process.

Fowler, K.D.

1995-04-24

286

Coal Gasification for Future Power Generation  

Microsoft Academic Search

ecause of deregulation, rapidly changing market demands, fluctuations in natural-gas prices, and increased environmental concerns, gasifica- tion will become the centerpiece of tomorrow's advanced power plants. Large improvements in the efficiency, reliability, and feed- stock flexibility of gasification sys- tems are necessary for the success blown, entrained-flow, coal slurry gasifier, a key component in the configuration, has been devel- oped.

Shaoping Shi; Mehrdad Shahnam; Madhava Syamlal

2004-01-01

287

Biological treatment of Hygas coal gasification wastewater  

Microsoft Academic Search

An experimental study was performed to assess biological treatability characteristics of Hygas coal gasification process pilot plant wastewater comprised of cyclone and quench condensates. The study evaluated treatability characteristics of ammonia stripped and unstripped wastewater at full strength and at 1:1 dilution. It was determined that minimum pretreatment required for biological oxidation consisted of reducing wastewater alkalinity, and decreasing raw

R. G. Luthy; J. T. Tallon

1978-01-01

288

EFFECT OF UNDERGROUND COAL GASIFICATION ON GROUNDWATER  

EPA Science Inventory

The potential effect of underground coal gasification on groundwater has been examined in a laboratory study. The study was directed at Fruitland Formation subbituminous coal of the San Juan Basin and at the groundwater found in this coal seam. Two wells were drilled into the coa...

289

BIOMASS GASIFICATION PILOT STUDY PLANT STUDY  

EPA Science Inventory

The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

290

Coal gasification for power plant fuel  

Microsoft Academic Search

Combustion Engineering, Inc. is a major supplier of stack gas scrubbing systems in the United States, and has active development programs underway in gasification, solvent refining and fluid bed combustion. These development programs are in response to the growing need for economical and environmentally-acceptable methods to use coal to produce electric power. Although primary development in the United States has

1979-01-01

291

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: ORGANICS  

EPA Science Inventory

The report summarizes the organics data from environmental assessments of several low- and medium-Btu coal gasification processes conducted between 1977 and 1981 under the sponsorship of the U.S. EPA. The data summary focuses on the concentration, composition, and mass flow of or...

292

Integration of biomass gasification with MCFC  

Microsoft Academic Search

Biomass gasification, integrated with molten carbonate fuel cell (MCFC) represents an alternative to the direct use of fossil fuel energy. Integration of both technologies has been under investigation for quite long time [Kivisaari T, Bjorbom P, Sylwan C. Power Sources 2002;104:115–24[1

G. Iaquaniello; A. Mangiapane

2006-01-01

293

DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.  

EPA Science Inventory

The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

294

Optimum Design of Coal Gasification Plants  

E-print Network

This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01

295

Dioxin formation and control in a gasification-melting plant.  

PubMed

We investigated dioxin formation and removal in a commercial thermal waste treatment plant employing a gasification and melting process that has become widespread in the last decade in Japan. The aim was to clarify the possibility of dioxin formation in a process operation at high temperatures and the applicability of catalytic decomposition of dioxins. Also, the possible use of dioxin surrogate compounds for plant monitoring was further evaluated. The main test parameter was the influence of changes in the amount and type of municipal solid waste (MSW) supplied to the thermal waste treatment plant which from day to day operation is a relevant parameter also from commercial perspective. Here especially, the plastic content on dioxin release was assessed. The following conclusions were reached: (1) disturbance of combustion by adding plastic waste above the capability of the system resulted in a considerable increase in dioxin content of the flue gas at the inlet of the bag house and (2) bag filter equipment incorporating a catalytic filter effectively reduced the gaseous dioxin content below the standard of 0.1 ng toxic equivalency (TEQ)/m(3) N, by decomposition and partly adsorption, as was revealed by total dioxin mass balance and an increased levels in the fly ash. Also, the possible use of organohalogen compounds as dioxin surrogate compounds for plant monitoring was further evaluated. The levels of these surrogates did not exceed values corresponding to 0.1 ng TEQ/m(3) N dioxins established from former tests. This further substantiated that surrogate measurement therefore can well reflect dioxin levels. PMID:24894757

Kawamoto, Katsuya; Miyata, Haruo

2014-06-01

296

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOEpatents

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02

297

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOEpatents

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10

298

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOEpatents

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18

299

Process for treating fission waste  

DOEpatents

A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

Rohrmann, Charles A. (Kennewick, WA); Wick, Oswald J. (Richland, WA)

1983-01-01

300

Coal gasification by CO 2 gas bubbling in molten salt for solar\\/fossil energy hybridization  

Microsoft Academic Search

Coal gasification with CO2 (the Boudouard reaction: C+CO2=2CO, ?rH°=169.2 kJ\\/mol at 1150 K), which can be applied to a solar thermochemical process to convert concentrated solar heat into chemical energy, was conducted in the molten salt medium (eutectic mixture of Na2CO3 and K2CO3, weight ratio=1\\/1) to provide thermal storage. When CO2 gas was bubbled through the molten salt, higher reaction

Jun Matsunami; Shinya Yoshida; Yoshinori Oku; Osamu Yokota; Yutaka Tamaura; Mitsunobu Kitamura

2000-01-01

301

Catalytic gasification of coal using eutectic salts: reaction kinetics with binary and ternary eutectic catalysts  

Microsoft Academic Search

Kinetic studies of the catalytic steam gasification of Illinois No. 6 coal were carried out using binary and ternary eutectic salt mixtures in a fixed-bed reactor. The effects of major process variables such as temperature, pressure, catalyst loading and steam flow rate were evaluated for the binary 29% Na2CO3–71% K2CO3 and ternary 43.5% Li2CO3–31.5% Na2CO3–25% K2CO3 eutectic catalyst systems. A

Atul Sheth; Yaw D. Yeboah; Anuradha Godavarty; Yong Xu; Pradeep K. Agrawal

2003-01-01

302

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalyst for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char activities. The effects of potassium impregnation conditions (pH and coal surface charge) on the reactivities, in carbon dioxide, of chars derived from demineralized lignite, subbituminous and bituminous coals have been determined. Impregnation of the acid-leached coal with potassium from strongly acidic solutions resulted in initial slow char reactivity which progressively increased with reaction time. Higher reactivities were obtained for catalyst (potassium) loaded at pH 6 or 10. The dependence of char gasification rates on catalyst addition pH increased in the order: pH 6 {approximately} pH 10 {much gt} pH 1.

Abotsi, G.M.K.; Bota, K.B.

1991-01-01

303

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.  

PubMed

For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. PMID:24290971

Samolada, M C; Zabaniotou, A A

2014-02-01

304

Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.  

PubMed

Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. PMID:24736208

Narobe, M; Golob, J; Klinar, D; Franceti?, V; Likozar, B

2014-06-01

305

CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF LEACHATES FROM COAL SOLID WASTES  

EPA Science Inventory

The report gives results of the chemical and mineralogical characterization of coal solid wastes. The wastes included three Lurgi gasification ashes, mineral residues from the SRC-1 and H-Coal liquefaction processes, two chars, two coal-cleaning residues, and a fly-ash-and-water-...

306

Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer  

E-print Network

Thermal gasification of biomass is being considered as one of the most promising technologies for converting biomass into gaseous fuel. Here we present results of gasification, using an adiabatic bed gasifier with air, steam as gasification medium...

Chen, Wei 1981-

2012-11-27

307

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15

308

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

Microsoft Academic Search

Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of

Stephen Burnley; Rhiannon Phillips; Terry Coleman; Terence Rampling

2011-01-01

309

Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal  

SciTech Connect

Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with its many drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hierarchy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grate incineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the field comprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments are reviewed.

Malkow, Thomas

2004-07-01

310

Investigation of gasification of char from refuse derived fuel. 1: Influence of gasifying agent and temperature  

SciTech Connect

In a batch fixed bed gasifying reactor made of stainless steel, the influence on gasification of the refuse derived fuel (RDF) char from Shanghai municipal solid waste (MSW) is investigated. The experimental results are as follows: (1) when steam-air, air or steam is used as a gasifying agent, the calorific value of the gas obtained is 4.18 MJ/m{sup 3}, 3.06 MJ/m{sup 3} and 9.89 MJ/m{sup 3} respectively. Among above gasifying agents, steam-air has the highest gasifying intensity (105 kg/m{sup 2} {center_dot} h); (2) increasing the reaction temperature seems favorable to the gasification process, but it is limited by the melting point of the ash of RDF. When the reaction temperature is raised from 850 C to 950 C with steam-air as a gasifying agent, the calorific value of the gas obtained is increased from 3.22 MJ/m{sup 3} to 5.19 MJ/m{sup 3}, and the gasifying intensity from 131 kg/m{sup 2} {center_dot} h to 166 kg/m{sup 2} {center_dot} h, respectively. Moreover, blow rate is also an important effective parameter in RDF char gasification.

Wu Jiazheng; Wen Wang [Tongji Univ., Shanghai (China). Dept. of Thermal Engineering

1997-12-31

311

Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.  

PubMed

Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. PMID:23673951

Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

2013-01-01

312

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI’s Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE’s Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser’s New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

313

Livestock waste-to-energy concepts  

Technology Transfer Automated Retrieval System (TEKTRAN)

Currently there is interest in energy-value-added products from thermochemical conversion processes using agriculture wastes, namely animal manures. Our objective was to review the application and integration of gasification technology for the treatment and energy conversion of animal manures. Conce...

314

Converting Waste into Clean Renewable Fuel  

E-print Network

­ Waste and biomass gasification ­ Standard cleaning of synthesis gas ­ Ultra-deep cleaning of synthesis #12;InEnTec's Plasma Enhanced MelterTM Process Gasifier converts much of the organic material to synthesis gas Trash goes in here Plasma heating Resistive heating of inorganic materials in pool of molten

315

Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass.  

PubMed

The effect of steam gasification conditions on products properties was investigated in a bubbling fluidized bed reactor, using larch wood as the starting material. For bed material effect, calcined limestone and calcined waste concrete gave high content of H(2) and CO(2), while silica sand provided the high content of CO. At 650 degrees C, calcined limestone proved to be most effective for tar adsorption and showed high ability to adsorb CO(2) in bed. At 750 degrees C it could not capture CO(2) but still gave the highest cold gas efficiency (% LHV) of 79.61%. Steam gasification gave higher amount of gas product and higher H(2)/CO ratio than those obtained with N(2) pyrolysis. The combined use of calcined limestone and calcined waste concrete with equal proportion contributed relatively the same gas composition, gas yield and cold gas efficiency as those of calcined limestone, but showed less attrition, sintering, and agglomeration propensities similar to the use of calcined waste concrete alone. PMID:18793834

Weerachanchai, Piyarat; Horio, Masayuki; Tangsathitkulchai, Chaiyot

2009-02-01

316

Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H(2)-rich gas production.  

PubMed

Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H(2) + CO production and carbon conversion. Gasification of the different rank coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production. Co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass. PMID:20061144

Fermoso, J; Arias, B; Gil, M V; Plaza, M G; Pevida, C; Pis, J J; Rubiera, F

2010-05-01

317

Modeling and Numerical Investigation of the Process of Vapor-Oxygen Gasification of Solid Fuels in a Vertical Flow Reactor Under Pressure  

NASA Astrophysics Data System (ADS)

With the use of the developed model, detailed information has been obtained on the working process in a flow reactor with single- and two-stage schemes of vapor-oxygen gasification of coals under a pressure of 3 MPa. The dependence of the ratios of mass flow rates O2/coal and H2O/coal on the type of fuel has been established and their optimal values for the "Shell" process have been found. At a given consumption ratio of gas coal and brown coal of brand B1, the optimum diameters of particles providing minimum combustible loss of the carbon mixture have been determined. It has been found that the content of methane in the syngas in the case of two-stage gasification is much higher than in the case of single-stage gasification.

Rokhman, B. B.

2014-09-01

318

Method for increasing steam decomposition in a coal gasification process  

DOEpatents

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23

319

Hydrogen production by coal plasma gasification for fuel cell technology  

Microsoft Academic Search

Coal gasification in steam and air atmosphere under arc plasma conditions has been investigated with Podmoskovnyi brown coal, Kuuchekinski bituminous coal and Canadian petrocoke. It was found that for those coals the gasification degree to synthesis gas were 92.3%, 95.8 and 78.6% correspondingly. The amount of produced syngas was 30–40% higher in steam than in air gasification of the coal.The

V. Galvita; V. E. Messerle; A. B. Ustimenko

2007-01-01

320

Method for increasing steam decomposition in a coal gasification process  

DOEpatents

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01

321

Chemical Processing in High-Pressure Aqueous Environments. 8. Improved Catalysts for Hydrothermal Gasification.  

SciTech Connect

Improved catalyst formulations have been developed and tested for hydrothermal gasification of wet organics. A high-pressure (about 20 MPa) and high-temperature (about 350?C) liquid water processing environment was used to treat organic chemical model compounds. The organic feedstocks were converted primarily to methane and carbon dioxide in the presence of a heterogeneous catalyst. Test results with different catalyst formulations showed that catalyst composition could be tailored for the hydrothermal environment to effectively process wet wastes and wastewater and to recover useful fuel gas.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.

2006-04-26

322

Effect Of Gas Mixture Composition On Tar Removal Process In A Pulsed Corona Discharge Reactor  

Microsoft Academic Search

The simulation of naphthalene (C10H8) removal from several gas mixtures (pure nitrogen, mixtures containing N2 with CO2, CO, H2, H2O, and biogas - the product of biomass gasification), has been investigated. The modeling is based on the experimental data obtained in the reactor with a pulsed positive corona discharge. The problem of simulation of the cleaning process includes description of

Filimonova E; G. Naidis

2010-01-01

323

Gasification performance of switchgrass pretreated with torrefaction and densification  

SciTech Connect

The purpose of this study was to investigate gasification performance of four switchgrass pretreatments (torrefaction at 230 and 270 °C, densification, and combined torrefaction and densification) and three gasification temperatures (700, 800 and 900 °C). Gasification was performed in a fixed-bed externally heated reactor with air as an oxidizing agent. Switchgrass pretreatment and gasification temperature had significant effects on gasification performance such as gas yields, syngas lower heating value (LHV), and carbon conversion and cold gas efficiencies. With an increase in the gasification temperature, yields of H2 and CO, syngas LHV, and gasifier efficiencies increased whereas CH4, CO2 and N2 yields decreased. Among all switchgrass pretreatments, gasification performance of switchgrass with combined torrefaction and densification was the best followed by that of densified, raw and torrefied switchgrass. Gasification of combined torrefied and densified switchgrass resulted in the highest yields of H2 (0.03 kg/kg biomass) and CO (0.72 kg/kg biomass), highest syngas LHV (5.08 MJ m-3), CCE (92.53%), and CGE (68.40%) at the gasification temperature of 900 °C.

Jaya Shankar Tumuluru; Various

2014-08-01

324

Solar heated fluidized bed gasification system  

NASA Technical Reports Server (NTRS)

A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

Qader, S. A. (inventor)

1981-01-01

325

Fluidized bed gasification of extracted coal  

DOEpatents

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01

326

Fluidized bed gasification of extracted coal  

DOEpatents

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06

327

Apparatus and method for solar coal gasification  

DOEpatents

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

Gregg, David W. (Moraga, CA)

1980-01-01

328

Supercritical droplet gasification experiments with forced convection  

NASA Technical Reports Server (NTRS)

Preliminary results of a comprehensive experimental program are presented which offer the first direct observations of suspended n-heptane droplet gasifications in pure nitrogen with forced convection without the interference to optical probing associated with a flame. Measurements show attainment of a wet-bulb temperature until reduced pressures exceed about 1.0 under supercritical gas temperatures. Thereafter, temperature measurements indicate fully transient heat-up through the critical temperature. The surface is found to regress in a continuous manner with the measured temperature approaching the critical value at the end of the droplet lifetime under supercritical conditions with very mild level of convection. At increased level of convection for the same ambient conditions, similar sized droplets will undergo significant deformation during the gasification process until partially convected away as a dense vapor cloud as the critical temperature is approached.

Litchford, Ron; Parigger, Chris; Jeng, San-Mou

1992-01-01

329

Gasification Product Improvement Facility (GPIF). Final report  

SciTech Connect

The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

NONE

1995-09-01

330

GASIFICATION BASED BIOMASS CO-FIRING  

SciTech Connect

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01

331

Gasification combined cycle R&A assessment  

NASA Astrophysics Data System (ADS)

This paper describes the development and application of a methodology for assessing the reliability and availability of coal gasification combined cycle (GCC) power plant designs. The methodology was developed for and applied to a design of an 1100-megawatt baseload GCC power plant. The specific objectives of the analysis were to obtain baseline reliability and availability values for the GCC plant design and to develop criticality rankings of the plant's components based on their impact on the system's reliability and availability measures

Witt, J. H.; Neely, M. C.

332

Fluidized bed injection assembly for coal gasification  

DOEpatents

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01

333

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

334

Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant  

Microsoft Academic Search

Oxy-gasification, or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. Moreover, oxy-co-gasification with biomass implies the use of a renewable resource and additional CO2 reduction. Proper gasifier operation is a key issue in both techniques. A model of an entrained flow gasifier, validated with nearby 3000 actual steady-state operation data

Antonio Valero; Sergio Usón

2006-01-01

335

Issues Impacting Refractory Service Life in Biomass/Waste Gasification  

SciTech Connect

Different carbon sources are used, or are being considered, as feedstock for gasifiers; including natural gas, coal, petroleum coke, and biomass. Biomass has been used with limited success because of issues such as ash impurity interactions with the refractory liner, which will be discussed in this paper.

Bennett, J.P.; Kwong, K.-S.; Powell, C.A.

2007-03-01

336

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO{sub 2} was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO{sub 2}. In contrast, mixed char reactivity to H{sub 2}O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H{sub 2}O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times a

Mitchell, Reginald

2013-09-30

337

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

DOEpatents

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

Ghate, M.R.; Yang, R.T.

1985-10-03

338

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

DOEpatents

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

1987-01-01

339

Treatment of mercury containing waste  

DOEpatents

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01

340

Hand-held gas chromatography-ion mobility spectrometry for on-site analysis of complex organic mixtures in air or vapors over waste sites  

SciTech Connect

The strengths of Ion mobility spectrometry (IMS) are low detection limits, a wide range of application, and simplicity of design and operation. The gentle ionization processes used in IMS impart a measure of selectivity to its response. However, atmospheric pressure chemical ionization with compounds of comparable proton affinities leads to mobility spectra for which interpretive and predictive models do not exist. An alternative approach for the analysis of complex mixtures with IMS is the use of a separation device such as a gas chromatograph (GC) as an inlet. Results suggest that an IMS cell temperature of ca. 150{degrees} to 175{degrees}C provided mobility spectra with suitable spectral detail without the complications of ion-molecule clusters or fragmentation. Significant fluctuation in peak heights were observed over a 30 day test period. Neural network pattern identification techniques were applied to data obtained at room temperature and at 150{degrees}. Results showed that spectral variables within compound classes as insufficient to distinguish related compounds when mobility data was obtained using the commercial room temperature IMS cell. Similar but less severe difficulty was encountered using the 150{degrees} data. 5 refs., 3 figs., 2 tabs.

Bell, S.C. (Los Alamos National Lab., NM (USA)); Eiceman, G.A. (New Mexico State Univ., Las Cruces, NM (USA). Dept. of Chemistry)

1991-01-01

341

Gasification of agricultural residues in a demonstrative plant: corn cobs.  

PubMed

Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). PMID:25299486

Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

2014-12-01

342

Effect of pulsation on black liquor gasification. Final report  

SciTech Connect

Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be used to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

Zinn, B.T.; Jagoda, J.; Jeong, H.; Kushari, A.; Rosen, L.J.

1998-12-01

343

Improved system integration for integrated gasification combined cycle (IGCC) systems  

Microsoft Academic Search

Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility

H. Christopher Frey; Yunhua Zhu

2006-01-01

344

Technical underground-coal-gasification summation: 1982 status. [77 references  

Microsoft Academic Search

There are three basic reasons for the recent emergence of underground coal gasification (UGC) as a leading synfuels candidate: (1) favorable projected economics, (2) ability to use coal seams that are unattractive for mining, and (3) modest environmental impact. The objectives of this summation are to list major underground coal gasification results and conclusions (particularly field-oriented results) and to briefly

D. R. Stephens; C. B. Thorsness; R. W. Hill; D. S. Thompson

1982-01-01

345

Methods for sequestering carbon dioxide into alcohols via gasification fermentation  

DOEpatents

The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

2013-11-26

346

Review of literature on catalysts for biomass gasification  

Microsoft Academic Search

Biomass gasification is a possible alternative to the direct use of fossil fuel energy. Biomass, a CO2 neutral source of renewable fuel, can contribute to the demand for heat, electricity and synthesis gas. However, there are inefficiencies in the technology, which at present render biomass gasification economically unviable. The presence of condensable organic compounds and methane in the product gas

David Sutton; Brian Kelleher; Julian R. H. Ross

2001-01-01

347

BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS  

EPA Science Inventory

A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

348

Chemical Equilibrium Computations for Gasification of Biomass to Produce Methanol  

Microsoft Academic Search

Gasification of biomass into synthesis gas is the first step in producing methanol from biomass. Catalytic conversion of the gas produced by the gasifier into methanol is strongly affected by the composition of the product gas. It is thus important to know what the gas composition would be under different gasification conditions and to be able to identify those conditions

CHARLES M. KINOSHITA; YUE WANG; PATRICK K. TAKAHASHI

1991-01-01

349

FUGITIVE EMISSION TESTING AT THE KOSOVO COAL GASIFICATION PLANT  

EPA Science Inventory

The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasif...

350

ENVIRONMENTAL EFFECTS OF IN SITU GASIFICATION OF TEXAS LIGNITE  

EPA Science Inventory

A general survey of the environmental effects of the in-situ gasification of Texas lignite was undertaken. The survey emphasized the following subjects: Identification of location, quality and quantity of resources; Assessment of applicable in-situ gasification technologies; Dete...

351

Subtask 4.2 - Coal Gasification Short Course  

Microsoft Academic Search

Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of

Kevin Galbreath

2009-01-01

352

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-print Network

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R November 7983) A comparative study is made of the relative catalytic effects of potassium and calcium of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

353

Coal gasification. Quarterly report, July-September 1979  

SciTech Connect

The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

None

1980-07-01

354

Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.  

PubMed

Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management. PMID:23916845

Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

2013-11-01

355

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01

356

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01

357

Cool Water Coal Gasification Program: Monitoring Review Committee meeting report, Washington, D. C. , July 12, 1988  

SciTech Connect

The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic-fuels plants. The Cool Water Coal Gasification Program is one of the four projects awarded financial assistance. The program agreed to comply with existing environmental monitoring in the areas of water, air, solid waste, worker health and safety, and socioeconomic impacts during the period 1984-1989. As the first commercial-scale integrated gasification combined-cycle plant for generating energy from coal, the plant is designed to process a variety of coals with no liquid discharge, produce non-hazardous solid wastes, and produce very few air emissions. Monitoring data are to provide an information base for evaluating plant operations and for establishing information on environmental uncertainties associated with replication of synthetic-fuels facilities. A Monitoring Review Committee (MRC) comprised of participants from DOE, EPA, and the California Energy Commission, meets with the Program annually to discuss monitoring activities and review environmental and health monitoring information to determine any significant trends or patterns on pollutants releases. Results of the annual MRC meeting held July 12, 1988 in Washington, DC are presented.

Not Available

1988-01-01

358

Energy recovery from sewage sludge by means of fluidised bed gasification  

SciTech Connect

Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes.

Gross, Bodo [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany); Eder, Christian [CET, Christian Eder Technology, Eduard-Didion Strasse, D-66539 Neunkirchen (Germany); Grziwa, Peter [BISANZ Anlagenbau GmbH, Scheidter Strasse 2, D-66123 Saarbruecken (Germany); Horst, Juri [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)], E-mail: horst@izes.de; Kimmerle, Klaus [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)

2008-07-01

359

Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting  

SciTech Connect

Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

Cascarosa, Esther [Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza (Spain); Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, Thomas [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark)

2013-11-15

360

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07

361

Modeling of Waste-to-Energy Combustion with Continuous Variation of the Solid Waste Fuel  

Microsoft Academic Search

A mathematical model of a mass-burn, waste-to-energy combustion chamber has been developed that includes stochastic representation of the variability of the fuel (municipal solid waste, MSW). The drying, pyrolysis, gasification and combustion processes on the moving grate are governed by several factors such as proximate and ultimate analysis, particle size, moisture, heating value, and bulk density, all of which change

MASATO NAKAMURA; HANWEI ZHANG; KARSTEN MILLRATH; NICKOLAS J. THEMELIS

362

Methanol production from eucalyptus wood chips. Attachment VIII. The wood-fueled gasification system, Evergreen Energy Corporation's final engineering report  

SciTech Connect

Evergreen Energy Corporation provided projected cost and operating data on the Evergreen/Texaco entrained-bed wood gasification system currently under development as an alternative to the state-of-the-art fixed-bed wood gasification system proposed by Davy McKee. Overall capital costs for the total plant remain about the same at approx. $250 million. The Evergreen/Texaco system will provide significant capital cost savings in the gasifiers, gas cleanup, and waste water treatment sections, and eliminate the need for a large off-site wood-fired power boiler. These reductions are offset by higher investments in the feedstock preparation, drying, and feeding section plus the need for a larger air separation plant and compressor to supply oxygen at high pressure to the gasifier.

Fishkind, H.H.

1982-06-01

363

Supercritical gasification for the treatment of o-cresol wastewater.  

PubMed

The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater. PMID:17078539

Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

2006-01-01

364

Solar gasification of biomass: design and characterization of a molten salt gasification reactor  

NASA Astrophysics Data System (ADS)

The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.

Hathaway, Brandon Jay

365

ENCOAL mild coal gasification project. Annual report  

SciTech Connect

This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

Not Available

1993-10-01

366

Combustion, pyrolysis, gasification, and liquefaction of biomas  

NASA Astrophysics Data System (ADS)

The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T. B.

1980-09-01

367

Advanced gasification-based biomass power generation  

SciTech Connect

A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

Williams, R.H.; Larson, E.D. [Princeton Univ., NJ (United States)

1993-12-31

368

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

2001-11-01

369

Techniques for Mercury Control and Measurement in Gasification Systems  

SciTech Connect

A major concern for power systems that use coal as an energy source is the air emissions from the plant. Although certain air emissions are currently regulated, the emergence of new regulations for other pollutants are on the horizon. Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. The Department of Energy envisions increased use of gasification in the United States during the next twenty years. As such, the DOE Gasification Technologies Program will strive to approach a near-zero emissions goal with respect to pollutants. The mercury research detailed in this proposal addresses the Gas Cleaning and Conditioning program technology area.

Granite, E.J.; King, W.P.; Pennline, H.W.

2002-09-20

370

The role of high-Btu coal gasification technology  

NASA Astrophysics Data System (ADS)

An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

German, M. I.

371

Waste gas storage  

NASA Technical Reports Server (NTRS)

Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

Vickers, Brian D. (Inventor)

1994-01-01

372

Process for treating fission waste. [Patent application  

DOEpatents

A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

Rohrmann, C.A.; Wick, O.J.

1981-11-17

373

Study on properties of recycled tire rubber modified asphalt mixtures using dry process  

Microsoft Academic Search

To minimize waste tires pollution and improve properties of asphalt mixtures, properties of recycled tire rubber modified asphalt mixtures using dry process are studied in laboratory. Tests of three types asphalt mixtures containing different rubber content (1%, 2% and 3% by weight of total mix) and a control mixture without rubber were conducted. Based on results of rutting tests (60°C),

Weidong Cao

2007-01-01

374

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

375

SOIL SORPTION OF VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS IN A MIXTURE  

EPA Science Inventory

Studies were conducted to evaluate lipophilicity as a predictor sorption for a mixture of organic compounds with high vapor pressures commonly present at hazardous waste sites. Sorption partition coefficients (Kp) for the mixture of 16 volatile and semivolatile ...

376

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we conducted two exposure tests with coated and uncoated coupons. The first one was aborted after a short period, because of a leak in the pressure regulator of a CO/CO{sub 2}/H{sub 2} gas mixture gas cylinder that was used to prepare the simulated coal gas stream. Nevertheless, this run was very instructive as it showed that during the brief exposure when the concentration of H{sub 2}S increased to 8.6%, even specialty alloys such as HR160 and I800 were badly corroded, yet the sample of a SS405-steel that was coated with Ti/Ta showed no signs of corrosion. After replacing the pressure regulator, a second run was conducted with a fresh set of coated and uncoated samples. The Ti/Ta-coated on to SS405 steel from the earlier runs was also exposed in this test. The run proceeded smoothly, and at the end of test the uncoated steels were badly damaged, some evidence of corrosion was found on coupons of HR160 and I800 alloys and the Cr-coated steels, but again, the Ti/Ta-coated sample appeared unaffected.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-03-01

377

Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog  

NASA Technical Reports Server (NTRS)

The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

1980-01-01

378

Transient combustion of municipal solid waste in a grate furnace : modelling and experiments  

Microsoft Academic Search

To simulate the behaviour of a burning municipal solid waste (MSW) bed in a batch pilot reactor, a two-dimensional, axisymmetrical, transient mathematical model has been developed. It describes most of the physico-chemical and thermal phenomena occurring during waste combustion: gas flow, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasification of char, and bed shrinkage. To

Y. Menard; F. Patisson; D. Ablitzer; A. Merz; H. Seifert

379

A Decision Support Tool for Regional Biomass Waste Management and its Application in Regional Australia  

Microsoft Academic Search

Biomass waste from organic municipal solid waste and food manufacturing can be used as a source of renewable energy via incineration, gasification or anaerobic digestion. Alternatively, after composting type processing it can be returned to improve the nutrient and drainage structure of agricultural soils, thereby reducing the demand for phosphate rock based fertilizers and their associated highly toxic contaminants particularly

Napat Jakrawatana; Australia Iain MacGill; Australia Stephen Moore; Stephen Moore

380

Description, applications and numerical modelling of bubbling fluidized bed combustion in waste-to-energy plants  

Microsoft Academic Search

The use of the fluidized bed combustor (FBC) has increased. It began in the 20th century as coal combustion and gasification, which then developed into catalytic reactions. Only recently, the application field has been extended to the incineration of biomass and pre-treated waste, for either power generation or waste disposal. The success of fluidized bed combustion is due to high

S. Ravelli; A. Perdichizzi; G. Barigozzi

2008-01-01

381

The suitability of coal gasification in India's energy sector  

E-print Network

Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

Simpson, Lori Allison

2006-01-01

382

Pyrolysis and gasification of coal at high temperatures  

SciTech Connect

The macropore structure of chars is a major factor in determining their reactivity during the gasification stage. The major objectives of this contract were to (a) quantify by direct measurements the effect of pyrolysis conditions of the macropore structure, and (b) establish how the macropores affected the reactivity pattern, the ignition behavior and the fragmentation of the char particles during gasification in the regime of strong diffusional limitations. Results from this project provide much needed information on the factors that affect the quality of the solid products (chars) of coal utilization processes (for example, mild gasification processes). The reactivity data will also provide essential parameters for the optimal design of coal gasification processes. (VC)

Zygourakis, K.

1992-02-10

383

GASIFICATION BASED BIOMASS CO-FIRING - PHASE I  

SciTech Connect

Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

Babul Patel; Kevin McQuigg; Robert F. Toerne

2001-12-01

384

Underground coal gasification: a brief review of current status  

SciTech Connect

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15

385

Carbon dioxide sorption capacities of coal gasification residues.  

PubMed

Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 °C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities. PMID:21210659

Kempka, Thomas; Fernández-Steeger, Tomás; Li, Dong-Yong; Schulten, Marc; Schlüter, Ralph; Krooss, Bernhard M

2011-02-15

386

Utilisation of Malaysian Coal: Merit Pila in the Gasification System  

NASA Astrophysics Data System (ADS)

Gasification is the most efficient Clean Coal Technology. Gasification of Merit Pila coal had been studied in a laboratory-scale, atmospheric fluidized bed gasifier using air and air-steam as fluidizing agent. Merit Pila coal was chosen for the gasification study because of its high reactivity in nitrogen. Determination of the producer gas compositions were conducted using Gas Chromatography. Gasification experiments were conducted at bed temperature of 650-800 °C, different equivalence ratios, ER and different bed heights. Low heating value, LHVpg of the producer gas were in the range of 2.0-5.5 MJ/Nm3. Introduction of steam as the gasifying agents had shown significant increased of CO, CH4 and H2 contents in producer gas. LHV also increased about 35% with the presence of steam.

Othman, Nor Fadzilah; Bosrooh, Mohd Hariffin; Majid, Kamsani Abdul

2011-06-01

387

Coal gasification: New challenge for the Beaumont rotary feeder  

NASA Technical Reports Server (NTRS)

The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

Stelian, J.

1977-01-01

388

Methane Production from Catalytic Wet Gasification of Animal Manure  

Technology Transfer Automated Retrieval System (TEKTRAN)

This research investigates the technical and economical viability of a proprietary catalytic wet gasification process in treating animal wastewater, capturing nutrients, destroying pharmaceutically active compounds (PACs) and estrogens, and producing methane. This study reviews and analyzes physicoc...

389

Gasification and combustion modeling for porous char particles  

E-print Network

Gasification and combustion of porous char particles occurs in many industrial applications. Reactor-scale outputs of importance depend critically on processes that occur at the particle-scale. Because char particles often ...

Singer, Simcha Lev

2012-01-01

390

Exploration of the gasification of Spirulina algae in supercritical water.  

PubMed

This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported. PMID:22728180

Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

2012-09-01

391

BIOMASS GASIFICATION FOR AGRICULTURAL ENERGY SOURCES AND SOIL ENRICHMENT  

EPA Science Inventory

Phase I of the Biomass Gasification Project gave birth to many success stories and demonstrated enormous potential for members of the local agricultural community and for students within the university. Community-building Watauga County Cooperative Ext...

392

Fluidized bed gasification of agricultural residue  

E-print Network

on the pyrolysis reactions and that particle size was also an important parameter. Burton and Bailie (1974) employed a fluidized bed unit to pyrolyze solid wastes. Gases were the main product of' the system, and the experimental data were used to calculate mass... in determining a method of disposal for cotton gin wastes include economy, avail= ability, and reliability. There are many methods available for waste disposal including composting, pyrolysis, gasifi- cation, and combustion. Present techniques generally used...

Groves, John David

1979-01-01

393

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature of the vapor phase components of the conveyed sample gas. In addition, to minimize adsorption or chemical changes in the syngas components prior to analysis, the temperature of the transported stream is maintained as hot as is practical, while still being cooled only as much necessary prior to entering the analyzer(s). The successful transport of the sample gas stream to the analyzer(s) is accomplished through the managed combination of four basic gas conditioning methods that are applied as specifically called for by the process conditions, the gas constituent concentrations, the analyzer requirements, and the objectives of the syngas analyses: 1) removing entrained particulate matter from the sample stream; 2) maintaining the temperature of the sample gas stream; 3) lowering the pressure of the sample gas stream to decrease the vapor pressures of all the component vapor species in the sample stream; and 4) diluting the gas stream with a metered, inert gas, such as nitrogen. Proof-of-concept field demonstrations of the sampling approach were conducted for gasification process streams from a black liquor gasifier, and from the gasification of biomass and coal feedstocks at GTI’s Flex-Fuel Test Facility. In addition to the descriptions and data included in this Final Report, GTI produced a Special Topical Report, Design and Protocol for Monitoring Gaseous Species in Thermochemical Processes, that explains and describes in detail the objectives, principles, design, hardware, installation, operation and representative data produced during this successful developmental effort. Although the specific analyzers used under Cooperative Agreement DE-FC36-02GO12024 were referenced in the Topical Report and this Final Report, the sampling interface design they present is generic enough to adapt to other analyzers that may be more appropriate to alternate process streams or facilities.

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

394

Advanced Gasification By-Product Utilization  

SciTech Connect

With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The objectives of this collaborative effort between the University of Kentucky Center for Applied Energy Research (CAER), The Pennsylvania State University Energy Institute, and industry collaborators supplying gasifier char samples were to investigate the potential use of gasifier slag carbons as a source of low cost sorbent for Hg and NOX capture from combustion flue gas, concrete applications, polymer fillers and as a source of activated carbons. Primary objectives were to determine the relationship of surface area, pore size, pore size distribution, and mineral content on Hg storage of gasifier carbons and to define the site of Hg capture. The ability of gasifier slag carbon to capture NOX and the effect of NOX on Hg adsorption were goals. Secondary goals were the determination of the potential for use of the slags for cement and filler applications. Since gasifier chars have already gone through a devolatilization process in a reducing atmosphere in the gasifier, they only required to be activated to be used as activated carbons. Therefore, the principal objective of the work at PSU was to characterize and utilize gasification slag carbons for the production of activated carbons and other carbon fillers. Tests for the Hg and NOX adsorption potential of these activated gasifier carbons were performed at the CAER. During the course of this project, gasifier slag samples chemically and physically characterized at UK were supplied to PSU who also characterized the samples for sorption characteristics and independently tested for Hg-capture. At the CAER as-received slags were tested for Hg and NOX adsorption. The most promising of these were activated chemically. The PSU group applied thermal and steam activation to a representative group of the gasifier slag samples separated by particle sizes. The activated samples were tested at UK for Hg-sorption and NOX capture and the most promising Hg adsorbers were tested for Hg capture in a simulated flue gas. Both UK and PSU tested the use of the gasifier slag samples as fillers. The CAER analyzed the slags for possible use in cement applications

Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

2006-08-31

395

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31

396

Supercritical water gasification of biomass: Thermodynamic constraints.  

PubMed

In the present work, the supercritical water gasification (SCWG) of biomass is analyzed with a view to outlining the possible thermodynamic constraints that must be taken into account to develop this new process. In particular, issues concerning the formation of solid carbon and the process heat duty are discussed. The analysis is conducted by means of a two-phase non-stoichiometric thermodynamic model, based on Gibbs free energy minimization. Results show that char formation at equilibrium only occurs at high biomass concentrations, with a strong dependence on biomass composition. As regards the process heat duty, SCWG is mostly endothermic when biomass concentration is low, although a very small amount of oxidizing agent is able to make the process exothermic, with only a small loss in the heating value of the syngas produced. PMID:21640582

Castello, Daniele; Fiori, Luca

2011-08-01

397

Heat exchanger for coal gasification process  

DOEpatents

This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

Blasiole, George A. (Greensburg, PA)

1984-06-19

398

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

Unknown

2000-04-24

399

Conceptual design of a black liquor gasification pilot plant  

SciTech Connect

In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

Kelleher, E. G.

1987-08-01

400

Greenhouse Gas Emissions from Coal Gasification Power Generation Systems  

Microsoft Academic Search

Life cycle assessments (LCA) of coal gasification-based electricity generation technologies for emissions of greenhouse gases (GHG), principally CO2, are computed. Two approaches for computing LCAs are compared for construction and operation of integrated coal gasification combined cycle (IGCC) plants: a traditional process-based approach, and one based on economic input-output analysis named Economic Input-Output Life Cycle Assessment (EIO-LCA). It is shown

John A. Ruether; Massood Ramezan; Peter C. Balash

2004-01-01

401

Investigation of a sulfur reduction technique for mild gasification char. [Quarterly] technical report, March 1--May 31, 1993  

SciTech Connect

The objective of this program is to investigate the desulfurization of mild gasification char using H{sub 2}:CH{sub 4} mixtures. Mild gasification of coal produces char, liquids, and gases at 1000{degrees}--1500{degrees}F and near-ambient pressure. Char, comprising 60--70% of the product, can be used to make high-value form coke for steel making and foundries. However, a sulfur content below 1 wt% is desirable, and char from high-sulfur Illinois coals must be upgraded to meet this criterion. Illinois No. 6 chars were treated in a batch fluidized bed with H{sub 2}:CH{sub 4} blends containing 9--24 vol% CH{sub 4} at 1100{degrees}--1600{degrees}F and 50--200 psig. Sulfur removal up to 92.5 wt% were obtainer, and the char desulfurization susceptibility was related to porosity, density, and crystallite size. The relationships among mild gasification parameters, char properties, and char desulfurization susceptibility are being studied. Acid washing of coal to remove Ca and Fe is being explored for its effect on subsequent sulfur removal, and secondary desulfurization of form coke produced from the desulfurized chars is also being studied. Desulfurization tests of entrained and fluidized-bed reactor chars from IBC-105 coal (4.1--4.3 wt% sulfur) were completed. Desulfurization conditions were 1400{degrees}F, 100--200 psig and reactant gas compositions of 15-49 vol% CH{sub 4} in H{sub 2}. Sulfur removal ranged from 28 to 95%, with carbon losses from 5 to 29%. Acid-washing of the coal prior to mild gasification or the char prior to desulfurization increased its susceptibility to desulfurization, with sulfur content reduced to as low as 0.10 wt% dry char. Fluidized-bed chars were easier to desulfurize than entrained chars, and were less affected by acid-washing.

Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States)

1993-09-01

402

Toxicity studies of mild gasification products  

SciTech Connect

The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL{number_sign}830331, MG-122IBP-420{degree}F, MG-122 420--720{degree}F, and MG-122 720{degree}F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC{number_sign}11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC{number_sign}11 were similar for both solvents, DMSO and Tween 80 (Table 2).

Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

1992-11-01

403

Toxicity studies of mild gasification products  

SciTech Connect

The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL[number sign]830331, MG-122IBP-420[degree]F, MG-122 420--720[degree]F, and MG-122 720[degree]F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC[number sign]11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC[number sign]11 were similar for both solvents, DMSO and Tween 80 (Table 2).

Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

1992-01-01

404

Gasification Studies Task 4 Topical Report  

SciTech Connect

A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the environment within the gasifier.

Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

2014-02-01

405

Pilot gasification and hot gas cleanup operations  

SciTech Connect

The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

1995-12-31

406

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

2003-02-01

407

Physical and chemical characterization of waste wood derived biochars  

Technology Transfer Automated Retrieval System (TEKTRAN)

Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties, such as its high surface area and...

408

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01

409

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01

410

Solar coal gasification reactor with pyrolysis gas recycle  

DOEpatents

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01

411

Conceptual design report -- Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

1994-09-01

412

Subtask 4.2 - Coal Gasification Short Course  

SciTech Connect

Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

Kevin Galbreath

2009-06-30

413

FRACTIONATION OF COMPLEX MIXTURES USING AND ION-EXCHANGE METHODOLOGY  

EPA Science Inventory

Fractionation of particle emission extracts captured from complex combustion mixtures gas performed upon environmental samples using an ion-exchange technique. aptured emissions from hazardous waste, municipal and medical/pathological incinerators along with urban air imputed by ...

414

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

415

Ames test mutagenicity studies of the subfractions of the mild gasification composite material, MG-120  

SciTech Connect

Mutagenicity of six mild gasification product samples was studied using the Ames Salmonella/microsomal assay system. The results of the Ames testing of the MG-119 and MG-120 subfractions indicate significant mutagenic activity only in the nonpolar neutral fraction. The activity was evident on bacterial strains, TA98 and TA100, with and without metabolic activation for MG-120, and with metabolic activation for MG-119. Previous testing of MG-119 and MG-120 when solvated in DMSO had shown possible, but unconfirmable, mutagenic activity. Tween 80-solvated MG-119 and MG-120 showed low, but significant, mutagenic activity only on TA98 with metabolic activation. Comparison of these results indicate an inhibition of the mutagenic components by nonmutagenic components in the complex mixture. 4 refs., 2 tabs.

Not Available

1992-04-17

416

Gasification of oil palm empty fruit bunches: a characterization and kinetic study.  

PubMed

Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification. PMID:22326334

Mohammed, M A A; Salmiaton, A; Wan Azlina, W A K G; Mohamad Amran, M S

2012-04-01

417

Gasification of dried sewage sludge: status of the demonstration and the pilot plant.  

PubMed

The disposal of sewage sludge from municipal waste water treatment plants is suffering from raising costs. The gasification is an alternative way of treatment, which can reduce the amount of solid residues that must be disposed from a water treatment plant. The produced gas can be used very flexible to produce electrical energy, to burn it very cleanly or to use it for upgrading. The gasification in the fluidised bed and the gas cleaning with the granular bed filter has shown successful operation. A demonstration plant in Balingen was set up in 2002 and rebuilt to a larger throughput in 2010. As a next step a demonstration plant was built in Mannheim and is now at the end of the commissioning phase. Nowadays the product gas is blended with biogas from sludge fermentation and utilized in a gas engine or combustion chamber to produce heat. In the future the process control for a maximized efficiency and the removal of organic and inorganic impurities in the gas will be further improved. PMID:22284442

Judex, Johannes W; Gaiffi, Michael; Burgbacher, H Christian

2012-04-01

418

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece  

SciTech Connect

Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

2014-02-15

419

Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report  

SciTech Connect

The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

NONE

1997-12-01

420

Study of the treatability of wastewater from a coal-gasification plant. Final report, July 15, 1978-July 14, 1980  

SciTech Connect

This study focused on the coal gasification facility serving the Holston Army Ammunition Plant in Kingsport, Tennessee. Objectives were to characterize the wastewater produced by the gasification facility, and to evaluate technology for treating the waste in preparation for dischage to the environment. Most wastewater was recycled for scrubbing and cooling the product gas, with the excess requiring disposal found to be an average of only 1170 gallons per day (53 gallons per ton of coal, as received, and 366 gallons per million cubic feet of product gas). Analysis indicated that the waste was warm, high in alkaline material, especially ammonia, high in organic material, especially phenols, and also contaminated with other substances. Sulfides and thiocyanates were especially high in concentration. It was found that pretreatment could be accomplished by stripping (air injection) at high pH, removal of grease and oil (by pH suppression and light aeration) and neutralizatin. Equations were developed to describe the first two steps. Biological treatment through activated sludge was found to be successful, but effected only a moderate degree of treatment, and was troubled with frequent process upset. Attempts to improve treatment efficiency and stability are described. The data indicated the need to study aerated waste stabilization ponds as an alternative to activated sludge. Biological reaction kinetics were studied for activated sludge. Evaluation of the application of granular activated carbon suggested that this could be an effective practical tertiary treatment.

Iglar, A. F.

1980-01-01

421

Environmental behaviour of a construction made of a mixture of hydraulic binders and air pollution control residues from municipal solid waste incineration Part 2. Simulation tests and validation of the source term modelling  

Microsoft Academic Search

The reuse of waste materials requires the development of assessment methods for the long-term release of pollutants (source term) from wastes (or materials containing wastes) in contact with water. These methods depend on the scenario conditions: characteristics of the materials (especially physical structure and composition), contact with water… The scenario studied here is a water storage reservoir for fire extinguishing.

R Barna; Z Rethy; Y Perrodin; P Moszkowicz; L Tiruta-Barna

2000-01-01

422

Method and apparatus for reducing mixed waste  

DOEpatents

The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.

Elliott, Michael L. (Kennewick, WA); Perez, Jr., Joseph M. (Richland, WA); Chapman, Chris C. (Richland, WA); Peters, Richard D. (Pasco, WA)

1995-01-01

423

Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process  

SciTech Connect

This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

1981-06-01

424

Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)  

SciTech Connect

The development of third world rural areas depends largely on the availability of energy and for an improvement in agricultural production; an increase in energy consumption is required. It seems attractive to replace the fossil liquid fuels needed for machinery by locally produced fuels. The thermal gasification of agricultural waste which produces gas that can be used directly to drive engines is suggested. A study to identify the social and economic advantages of this process and its applicability in rural areas of Tanzania has been made.

Groeneveld, M.J.; Westerterp, K.R.

1980-01-01

425

Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project  

SciTech Connect

The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

1998-09-30

426

Radioactive Waste Radioactive Waste  

E-print Network

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

427

MODEL OF ADDITIVE EFFECTS OF MIXTURES OF NARCOTIC CHEMICALS  

EPA Science Inventory

Biological effects data with single chemicals are far more abundant than with mixtures. et, environmental exposures to chemical mixtures, for example near hazardous waste sites or nonpoint sources, are very common and using test data from single chemicals to approximate effects o...

428

Separation of a Five-Component Gas Mixture by Pressure Swing Adsorption  

Microsoft Academic Search

Bulk separation of a five-component mixture simulating coal gasification products was performed by pressure swing adsorption (PSA) using activated carbon. The PSA cycle consisted of four commercially used steps: (I) pressurization with H2, (II) adsorption, (III) blowdown, and (IV) evacuation. Using this cycle, four products were obtained with a single PSA unit: H2 (over 99.7% purity), CO, CH4, and acid

Peiling Cen; Ralph T. Yang

1985-01-01

429

Computerized composting of municipal wastes  

SciTech Connect

Windrow composting of organic wastes generally requires the addition of an organic drying-bulking agent to reduce the moisture content of the mixture and to increase the porosity of the organic raw material. Moisture contents of the wastes above 60% were generally associated with easily detectable septic odors. A computer program called ''compost'' was developed for the AGNET system to determine the optimum moisture content for composting mixtures under different climatic conditions using a hydraulic auger-type feed mixing wagon.

Chesnin, L.

1982-01-01

430

CATALYTIC HYDROTHERMAL GASIFICATION OF BIOMASS FOR THE PRODUCTION OF HYDROGEN-CONTAINING FEEDSTOCK (METHANE)  

SciTech Connect

Hydrothermal processing can be used to treat wet biomass by converting the organic contaminants to gases. When the system is operated as a metal catalyzed process at nominally 350?C and 21 MPa (so-called low-temperature gasification), it can produce a methane/carbon dioxide product gas from water slurries of biomass. This process can be utilized for both waste disposal and energy recovery. Catalyst stability in an aqueous processing environment is a major hurdle for use of such a system. Development of useful catalyst formulations has been achieved through bench-scale process development work. Catalyst lifetimes in excess of 5000h have been shown. Protection of the catalyst from feedstock impurities is a second major issue, which is more prominent in the biomass applications. Systems are under development to address mineral matter and sulfur contaminants.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.

2008-04-07

431

Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia  

NASA Astrophysics Data System (ADS)

Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

Boueres, Luis Carlos S.; Patterson, Ronald K.

1981-03-01

432

POLLUTANTS FROM SYNTHETIC FUELS PRODUCTION: SAMPLING AND ANALYSIS METHODS FOR COAL GASIFICATION  

EPA Science Inventory

The report describes sampling and analysis methods involving a laboratory-scale coal gasification facility used to study the generation, sampling, chemical analysis, process evaluation, and environmental assessment of pollutants from coal gasification. It describes methods for pa...

433

78 FR 52764 - Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined...  

Federal Register 2010, 2011, 2012, 2013, 2014

...ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification...and announces public hearings for the Hydrogen Energy California's Integrated Gasification...Commission (CEC) or DOE concerning the Hydrogen Energy California Project (HECA)...

2013-08-26

434

78 FR 54640 - Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined...  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle...Extension of Public Comment Period and Public Hearing for the Hydrogen Energy California's Integrated Gasification Combined...

2013-09-05

435

Carbon mineralization from organic wastes at different composting stages during their incubation with soil  

Microsoft Academic Search

The decomposition of seven different organic waste mixtures prepared with sewage sludges, animal manures, city refuse and industrial and plant residues, was studied during their aerobic incubation with soil. The waste mixtures were composted by the Rutgers static pile system, and four samples of each mixture were collected at various composting stages: the initial mixture, and samples taken during the

M. P. Bernal; M. A. Sánchez-Monedero; C. Paredes; A. Roig

1998-01-01

436

Stabilization of spent sorbents from coal gasification. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

The objective of this investigation was to determine the rates of reactions involving partially sulfided dolomite and oxygen, which is needed for the design of the reactor system for the stabilization of sulfide-containing solid wastes from gasification of high sulfur coals. To achieve this objective, samples of partially sulfided dolomite were reacted with oxygen at a variety of operating conditions in a fluidized-bed reactor. The effect of external diffusion was eliminated by using small quantities of the sorbent and maintaining a high flow rate of the reactant gas. The reacted sorbents were analyzed to determine the extent of conversion as a function of operating variables including sorbent particle size, reaction temperature and pressure, and oxygen concentration. The results of sulfation tests indicate that the rate of reaction increases with increasing temperature, increasing oxygen partial pressure, and decreasing sorbent particle size. The rate of the sulfation reaction can be described by a diffuse interface model where both chemical reaction and intraparticle diffusion control the reaction rate. The kinetic model of the sulfation reaction was used to determine the requirements for the reactor system, i.e., reactor size and operating conditions, for successful stabilization of sulfide-containing solid wastes from gasification of high sulfur coals (with in-bed desulfurization using calcium based sorbents). The results indicate that the rate of reaction is fast enough to allow essentially complete sulfation in reactors with acceptable dimensions. The optimum sulfation temperature appears to be around 800{degrees}C for high pressure as well as atmospheric stabilization of the spent sorbents.

Abbasian, J.; Hill, A.H.; Rue, D.M.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

1993-12-31

437

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasfication process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and landfill. We determined that it would be extremely difficult for ``as-generated`` slag to find acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that would meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by heating it to between 1600 and 1900{degree}F in a kiln, which indicated the potential for using such materials as substitutes for lightweight aggregates. Between 1987 and 1993, the technologies to produce these materials from slag were developed by Praxis with funding from the Electric Power Research Institute, Illinois Clean Coal Institute, and internal resources.

NONE

1994-12-01

438

Biomass gasification in near- and super-critical water: Status and prospects  

Microsoft Academic Search

The current status of biomass gasification in near- and supercritical water (SCWG) is reviewed. There are two approaches to biomass gasification in supercritical water. The first: low-temperature catalytic gasification, employs reaction temperature ranging from 350 to 600°C, and gasifies the feedstock with the aid of metal catalysts. The second: high-temperature supercritical water gasification, employs reaction temperatures ranging from 500 to

Yukihiko Matsumura; Tomoaki Minowa; Biljana Potic; Sascha R. A. Kersten; Wolter Prins; Willibrordus P. M. van Swaaij; Bert van de Beld; Douglas C. Elliott; Gary G. Neuenschwander; Andrea Kruse; Michael Jerry Antal Jr.

2005-01-01

439

Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction  

SciTech Connect

The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya [University of Shanghai for Science & Technology, Shanghai (China). Department of Power Engineering

2009-05-15

440

Fuels from biomass and wastes  

NASA Astrophysics Data System (ADS)

The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

Klass, D. L.; Emert, G. H.

441

Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.  

PubMed

Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

2014-01-01

442

Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier  

PubMed Central

Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

2014-01-01

443

Countercurrent fixed-bed gasification of biomass at laboratory scale  

SciTech Connect

A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to p