Science.gov

Sample records for waste reprocessing plant

  1. Idle reprocessing plant nuke waste fix moving

    SciTech Connect

    Not Available

    1984-02-01

    A system is discussed for cleanup at a defunct nuclear waste reprocessing plant in upstate New York. The new system, a solidification process, is designed to stabilize 600,000 gal of highly radioactive waste into glass logs. The design for a waste-solidification process consists of a slurry-fed, ceramic kiln where the molten borosilicate glass is mixed with wastes. The mix is poured into steel canisters where it hardens into glass logs to be buried at a federal depository. Also discussed is a new disposal method, called caisson waste disposal, for the low-level radioactive waste generated during cleanup.

  2. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect

    Forsberg, Charles W.; Driscoll, Michael J.

    2007-07-01

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  3. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  4. Actinide partitioning processes for fuel reprocessing and refabrication plant wastes

    SciTech Connect

    Finney, B.C.; Tedder, D.W.

    1980-01-01

    Chemical processing methods have been developed on a laboratory scale to partition the actinides from the liquid and solid fuel reprocessing plant (FRP) and refabrication plant (FFP) wastes. It was envisioned that these processes would be incorporated into separate waste treatment facilities (WTFs) that are adjacent to, but not integrated with, the fuel reprocessing and refabrication plants. Engineering equipment and material balance flowsheets have been developed for WTFs in support of a 2000-MTHM/year FRP and a 660-MTHM/year MOX-FFP. The processing subsystems incorporated in the FRP-WTF are: High-Level Solid Waste Treatment, High-Level Liquid Waste Treatment, Solid Alpha Waste Treatment, Cation Exchange Chromatography, Salt Waste Treatment, Actinide Recovery, Solvent Cleanup and recycle, Off-Gas Treatment, Actinide Product Concentration, and Acid and Water Recycle. The WTF supporting a fuel refabrication facility, although similar, does not contain subsystems (1) and (2). Based on the results of the laboratory and hot-cell experimental work, we believe that the processes and flowsheets offer the potential to reduce the total unrecovered actinides in FRP and FFP wastes to less than or equal to 0.25%. The actinide partitioning processes and the WTF concept represent advanced technology that would require substantial work before commercialization. It is estimated that an orderly development program would require 15 to 20 years to complete and would cost about 700 million 1979 dollars. It is estimated that the capital cost and annual operating cost, in mid-1979 dollars, for the FRP-WTF are $1035 million and $71.5 million/year, and for the FFP-WTF are $436 million and $25.6 million/year, respectively.

  5. Reduction of Sodium Nitrate Liquid Waste in Nuclear Reprocessing Plants

    SciTech Connect

    Numata, M.; Mihara, S.; Kojima, S.; Ito, H.; Kato, T.

    2006-07-01

    Sodium nitrate solution has been generated from nuclear reprocessing plant as a result of neutralization of nitric acid. The sodium nitrate has been immobilized by bitumen, cement or other material in the site and waste packages have been produced. In order to reduce an environmental impact of the waste packages from the reprocessing plant, it is preferable to decompose nitrate ion to harmless gases such as nitrogen. A combination of formic acid and catalyst has been proposed for this purpose. But, the method is inadequate for a full decomposition of the nitrate ion. In addition, a mixture of NO and NO{sub 2} is produced during the reaction. Formaldehyde and hydrazine were selected as reductants and a combined use of Pd-Cu catalyst was tried to decompose the nitrate ion. As a result, the nitrate ion can almost entirely be decomposed without any generation of NO and NO{sub 2}. The test was conducted by 1 L flask. In case of formaldehyde, nitrate ion concentration can be reduced from 0.017 mol/l to 3.9x10{sup -4} mol/l. In case of hydrazine, nitrate concentration can be decreased from 2.8 mol/l to 9.5 x 10{sup -3} mol/l and ammonium ion is detected. The ammonium ion concentration in the final solution is 0.12 mol/l when 2.8 mol/l nitrate is reduced by hydrazine. Chemical reactions for formaldehyde on the Pd-Cu catalyst are estimated as combination of: NO{sub 3-} + HCHO = NO{sub 2-} + HCOOH; 2NO{sub 2-} + 3HCOOH = N{sub 2} + 3CO{sub 2} + 2H{sub 2}O + 2OH-; 4NO{sub 2-} + 3HCHO = 2N{sub 2} + 3CO{sub 2} + H{sub 2}O + 4OH-. the other hand, for hydrazine with the Pd-Cu catalyst: 3N{sub 2}H{sub 4} = 2NH{sub 3} + 2N{sub 2} + 3H{sub 2}; NO{sub 3-} + H{sub 2} = NO{sub 2-} + H{sub 2}O; NO{sub 2-} + NH{sub 3} = N{sub 2} + H{sub 2}O + OH-. The fundamental research shows that the combination usage of the Pd-Cu catalyst and formaldehyde or hydrazine is applicable for the reduction of nitrate liquid waste in the nuclear reprocessing plant. (authors)

  6. Mobile plant for low-level radioactive waste reprocessing

    SciTech Connect

    Sobolev, I.A.; Panteleyev, V.I.; Demkin, V.I.

    1993-12-31

    Along with nuclear power plants, many scientific and industrial enterprises generate radioactive wastes, especially low-level liquid wastes. Some of these facilities generate only small amounts on the order of several dozen cubic meters per year. The Moscow scientific industrial association, Radon, developed a mobile pilot system, EKO, for the processing of LLW with a low salt content. The plant consists of three modules: ultrafiltration module; electrodialysis module; and filtration module. The paper describes the technical parameters and test results from the plant on real LLW.

  7. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    SciTech Connect

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m/sup 3//MTU for no treatment to as low as 0.02 m/sup 3//MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs.

  8. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  9. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... property. 2. A fuel reprocessing plant's inventory of high-level liquid radioactive wastes will be limited... requirements of 10 CFR part 71. The dry solid shall be chemically, thermally, and radiolytically stable to the... 10 Energy 1 2011-01-01 2011-01-01 false Policy Relating to the Siting of Fuel Reprocessing...

  10. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... property. 2. A fuel reprocessing plant's inventory of high-level liquid radioactive wastes will be limited... requirements of 10 CFR part 71. The dry solid shall be chemically, thermally, and radiolytically stable to the... 10 Energy 1 2013-01-01 2013-01-01 false Policy Relating to the Siting of Fuel Reprocessing...

  11. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. F Appendix F to Part 50—Policy Relating to the Siting of Fuel...

  12. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. F Appendix F to Part 50—Policy Relating to the Siting of Fuel...

  13. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements of 10 CFR part 71. The dry solid shall be chemically, thermally, and radiolytically stable to the... DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. F Appendix F to Part 50—Policy... property. 2. A fuel reprocessing plant's inventory of high-level liquid radioactive wastes will be...

  14. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    SciTech Connect

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

  15. Plasma techniques for reprocessing nuclear wastes

    SciTech Connect

    Siciliano, E.R.; Lucoff, D.M.; Omberg, R.P.; Walter, A.E.

    1993-06-01

    A newly emerging plasma-based system, currently under development for material dissociation and mass separation applications in the area of high-level radioactive waste treatment, may have possible applications as a central processing unit for spent nuclear fuel reprocessing. Because this system has no moving parts and obtains separations by electromagnetic techniques, it offers a distinct advantage over chemically based separation techniques, in that the total waste volume does not increase. The basic concepts underlying the operation of this plasma-based system are discussed, along with the demonstrated and expected capabilities of this system. Possible fuel reprocessing configurations using this plasma-based technology are also mentioned.

  16. Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents

    SciTech Connect

    Jubin, R.T.

    1988-02-01

    Extensive work in the area of iodine removal from reprocessing plant off-gas streams using various types of solid sorbent materials has been conducted worldwide over the past two decades. This work has focused on the use of carbon filters, primarily for power plant applications. More recently, the use of silver-containing sorbents has been the subject of considerable research. The most recent work in the United States has addressed the use of silver-exchanged faujasites and mordenites. The chemical reactions of iodine with silver on the sorbent are not well defined, but it is generally believed that chemisorbed iodides and iodates are formed. The process for iodine recovery generally involves passage of the iodine-laden gas stream through a packed bed of the adsorbent material preheated to a temperature of about 150/degree/C. Most iodine removal system designs utilizing silver-containing solid sorbents assume only a 30 to 50% silver utilization. Based on laboratory tests, potentially 60 to 70% of the silver contained in the sorbents can be reacted with iodine. To overcome the high cost of silver associated with these materials, various approaches have been explored. Among these are the regeneration of the silver-containing sorbent by stripping the iodine and trapping the iodine on a sorbent that has undergone only partial silver exchange and is capable of attaining a much higher silver utilization. This summary report describes the US work in regeneration of iodine-loaded solid sorbent material. In addition, the report discusses the broader subject of plant off-gas treatment including system design. The off-gas technologies to recovery No/sub x/ and to recover and dispose of Kr, /sup 14/C, and I are described as to their impacts on the design of an integrated off-gas system. The effect of ventilation philosophy for the reprocessing plant is discussed as an integral part of the overall treatment philosophy of the plant off-gas. 103 refs., 5 figs., 8 tabs.

  17. Geohydrologic conditions at the nuclear-fuels reprocessing plant and waste-management facilities at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)

  18. Geohydrologic conditions at the Nuclear Fuel Reprocessing Plant and Waste-Management Facilities at the western New York Nuclear Service Center, Cattaraugus County, New York

    SciTech Connect

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, NY. The facilities are underlain by glacial and postglacial deposits that fill an ancestral bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses, ranges from 0.000018 to 0.000086 m/day.

  19. Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)

    SciTech Connect

    Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

    1986-06-01

    This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

  20. WATER REUSE IN A PAPER REPROCESSING PLANT

    EPA Science Inventory

    This project was undertaken to determine the feasibility of water reuse in a paper reprocessing plant with the goal being to 'close the loop' or to demonstrate zero discharge technology. Before the project began, Big Chief Roofing Company at Ardmore, OK, was discharging 7.89 1/se...

  1. Report of reprocessing of reflection seismic profile X-5 Waste Isolation Pilot Plant site, Eddy County, New Mexico

    USGS Publications Warehouse

    Miller, John J.

    1983-01-01

    Seismic reflection profile X-5 exhibits a 7,700 ft long anomalous zone of poor quality to nonexistent reflections between shotpoints 100 and 170, compared to the high-quality, flat-lying, coherent reflections on either side. Results from drill holes in the area suggest 'layer cake' geology with no detectable abnormalities such as faults present. In an attempt to determine whether the anomalous zone of the seismic profile is an artifact or actually indicates a geologic condition, the data were extensively reprocessed using state-of-the-art processing techniques and the following conclusions were made: 1. The field-recorded data in the anomalous zone are of poor quality due to surface conditions and recording parameters used. 2. Reprocessing shows reflectors throughout the anomalous zone at all levels. However, it cannot prove that the reflectors are continuous throughout the anomalous zone. 3. Significant improvement in data quality may be achieved if the line is reshot using carefully determined recording parameters.

  2. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-25

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  3. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  4. Removal of actinides from nuclear fuel reprocessing wastes using an organophosphorous extractant. [DHDECMP

    SciTech Connect

    Chamberlain, D.B.; Maxey, H.R.; McIsaac, L.D.; McManus, G.J.

    1980-01-01

    By removing actinides from nuclear fuel reprocessing wastes, long term waste storage hazards are reduced. A solvent extraction process to remove actinides has been demonstrated in miniature mixer-settlers and in simulated columns using actinide feeds. Nonradioactive pilot plant results have established the feasibility of using pulse columns for the process.

  5. Evaluation of radioactivity release at Rokkasho reprocessing plant

    SciTech Connect

    Sugiyama, Hiroshi; Ishihara, Noriyuki; Maki, Akira

    2007-07-01

    JNFL have been conducting Active Test with spent fuels at Rokkasho Reprocessing Plant (RRP). In Active Test, the evaluation of radioactivity release to the environment (atmosphere and sea) was obtained. (authors)

  6. Process monitoring in international safeguards for reprocessing plants: A demonstration

    SciTech Connect

    Ehinger, M.H.

    1989-01-01

    In the period 1985--1987, the Oak Ridge National Laboratory investigated the possible role of process monitoring for international safeguards applications in fuel reprocessing plants. This activity was conducted under Task C.59, ''Review of Process Monitoring Safeguards Technology for Reprocessing Facilities'' of the US program of Technical Assistance to the International Atomic Energy Agency (IAEA) Safeguards program. The final phase was a demonstration of process monitoring applied in a prototypical reprocessing plant test facility at ORNL. This report documents the demonstration and test results. 35 figs.

  7. DIRECT DISMANTLING OF REPROCESSING PLANT CELLS THE EUREX PLANT EXPERIENCEe2d12c

    SciTech Connect

    Gili, M.; Troiani, F.; Risoluti, P.

    2003-02-27

    After finishing the reprocessing campaigns in 1970-1983, the EUREX pilot reprocessing plant of ENEA Saluggia Research Center started into a new phase, aiming to materials and irradiated fuel systemation and radioactive wastes conditioning. In 1997 the project ''CORA'' for a vitrification plant for the high and intermediate liquid radioactive wastes started. The ''CORA'' plant will be hosted in some dismantled cells of the EUREX plant, reusing many of the EUREX plant auxiliary systems, duly refurbished, saving money and construction time and avoiding a new nuclear building in the site. Two of the cells that will be reused were part of the EUREX chemical process (solvent recovery and 2nd extraction cycle) and the components were obviously internally contaminated. In 2000 the direct (hands-on) dismantling of one of them started and has been completed in summer 2002; the second one will be dismantled in the next year and then the ''CORA'' plant will be assembled inside the cells. Special care w as taken to avoid spread of contamination in the cells, where ''CORA'' installation activities will start in the next years, during the dismantling process The analysis of data and results collected during the dismantling of the first cell shows that direct dismantling can be achieved with careful choice of tools, procedures and techniques, to reduce volumes of wastes to be disposed and radiological burden.

  8. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  9. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  10. Vitrification Technology Development Plan in Tokai Reprocessing Plant

    SciTech Connect

    Atsushi Aoshima; Kazuhiko Tanaka

    2006-07-01

    The Tokai Vitrification Facility (TVF) is the only operating vitrification plant in Japan, constructed and operated by JAEA, to vitrify concentrated high radioactive liquid waste (HALW) in the Tokai Reprocessing Plant (TRP). JAEA started TVF hot operation in 1995 and produced 218 canisters as of March, 2006. An existing melter is the second melter, which was installed from 2002 to 2004 in place of the first melter stopped its operation by damage of a main electrode. JAEA has estimated that the damage was caused by accumulation of noble metal. Therefore, melter bottom structure was improved to get better drain ability of glass containing noble metal. Completing the melter replacement, vitrification operation was restarted in October 2004 and produced 88 canisters successfully until the end of March 2006. Through these experiences, JAEA made basic strategy to achieve stable TVF operation: keeping stable operation of the existing melter preventing adverse effect by noble metal accumulation and developing a new advanced melter with long lifetime preparing for future exchange as the third melter. Based on the basic strategy, JAEA made a decade development plan of necessary key technologies and has started the development since 2005. (authors)

  11. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  12. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect

    Hemphill, Kevin P

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  13. Status of radioiodine control for nuclear fuel reprocessing plants

    SciTech Connect

    Burger, L.L.; Scheele, R.D.

    1983-07-01

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used.

  14. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect

    Jacobson, Victor Levon

    2002-08-01

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  15. ON-LINE MONITORING FOR CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS AT SPENT FUEL REPROCESSING PLANT

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Lines, Amanda M.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.; Thomas, Elizabeth M.

    2009-11-10

    Advanced techniques that enhance safeguarding of spent fuel reprocessing plants are urgently needed. Our approach is based on the prerequisite that real-time monitoring of solvent extraction flowsheets at a spent fuel reprocessing plant provides the unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and capable of withstanding harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes recently has been developed by our research team for tank waste retrieval. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from nuclear waste storage tanks at the Hanford Site. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information that can be gained by using Vis-NIR capabilities augmenting Raman spectroscopy. A fiber optic Raman probe allows monitoring of high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. Actinides and lanthanides are monitored remotely by Vis-NIR spectroscopy in aqueous and organic phases. In this report, we present our results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels designed to demonstrate the applicability of Raman and Vis-NIR spectroscopic analysis for actual dissolver feed solutions.

  16. Principles of qualification of the PAMELA process for the vitrification of HLLW of the Karlsruhe Reprocessing Plant (WAK)

    SciTech Connect

    Ewest, E.; Kunz, W.; Demonie, M.; Martens, B.R.; Goeyse, M. de

    1993-12-31

    After having reprocessed about 211 t of Uranium, the WAK Karlsruhe Pilot Reprocessing Plant was shut down in 1991. While all the other radioactive waste arising from reprocessing were conditioned parallel to the plant operation, some 60 m{sup 3} of High Level Liquid Waste (HLLW) having a specific {beta}, {gamma}-activity of about 2 E13 Bq/l is not yet processed. The waste is stored in two tanks, having a different activity level and chemical composition. In order to obtain a uniform product both solutions will be blended in a suitable way. It is intended to ship this waste to the PAMELA Vitrification Plant located on the Belgoprocess (BP) site in Dessel, Belgium. The vitrified product shall be returned to Germany. As from October 1986 until September 1991, the facility was operated by a mixed Belgian-German crew under the responsibility of BP for the vitrification of 800 m{sup 3} of HEWC (concentrated high-level waste from the reprocessing of high-enriched uranium fuels). Between October 1, 1985 and September 1, 1991, the total amount of 907 m{sup 3} of EUROCHEMIC HLLW has been successfully vitrified and conditioned in about 2,200 canisters. The typical composition of the different types of glass products are compared with the design data of the WAK glass product.

  17. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  18. Decontamination and decommissioning of a fuel reprocessing pilot plant

    SciTech Connect

    Heine, W.F.; Speer, D.R.

    1988-01-01

    SYNOPSIS The strontium Semiworks Pilot Fuel Reprocessing Plant at the Hanford Site in Washington State was decommissioned by a combination of dismantlement and entombment. The facility contained 9600 Ci of Sr-90 and 10 Ci of plutonium. Process cells were entombed in place. The above-grade portion of one cell with 1.5-m- (5-ft-) thick walls and ceilings was demolished by means of expanding grout. A contaminated stack was remotely sandblasted and felled by explosives. The entombed structures were covered with a 4.6-m- (15-ft-) thick engineered earthen barrier. 5 figs., 2 tabs.

  19. Neptunium flow-sheet verification at reprocessing plants

    SciTech Connect

    Rance, P.; Chesnay, B.; Killeen, T.; Murray, M.; Nikkinen, M.; Petoe, A.; Plumb, J.; Saukkonen, H.

    2007-07-01

    Due to their fissile nature, neptunium and americium have at least a theoretical potential application as nuclear explosives and their proliferation potential was considered by the IAEA in studies in the late 1990's. This work was motivated by an increased awareness of the proliferation potential of americium and neptunium and a number of emerging projects in peaceful nuclear programmes which could result in an increase in the available quantities of these minor actinides. The studies culminated in proposals for various voluntary measures including the reporting of international transfers of separated americium and neptunium, declarations concerning the amount of separated neptunium and americium held by states and the application of flow-sheet verification to ensure that facilities capable of separating americium or neptunium are operated in a manner consistent with that declared. This paper discusses the issue of neptunium flowsheet verification in reprocessing plants. The proliferation potential of neptunium is first briefly discussed and then the chemistry of neptunium relevant to reprocessing plants described with a view to indicating a number of issues relevant to the verification of neptunium flow-sheets. Finally, the scope of verification activities is discussed including analysis of process and engineering design information, plant monitoring and sampling and the potential application of containment and surveillance measures. (authors)

  20. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  1. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents.

  2. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  3. Fully integrated safeguards and security for reprocessing plant monitoring.

    SciTech Connect

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-10-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  4. Applications of curium measurements for safeguarding at large-scale reprocessing plants

    SciTech Connect

    Rinard, P.M.; Menlove, H.O.

    1997-08-01

    Safeguarding the plutonium passing through a large-scale reprocessing plant (such as one with 800 t of uranium per year) involves nondestructive assay measurements for plutonium at key points. The gamma-ray and neutron signals from the plutonium are generally hidden by the much larger backgrounds from fission products and actinides, so indirect measurements are routinely used. The intense neutron emission rate from spent fuel is from curium. In a spent fuel assembly at the head-end of a plant, the curium neutrons are used to deduce the amount of plutonium present. Coincidence and multiplicity counting are alternative ways to measure neutrons from spent fuel; they have advantages over total neutron counting in certain conditions and offer new opportunities for examining assemblies. New uses for measurements of curium`s neutrons are proposed to safeguard waste streams. From a year`s work at a large-scale plant, 4 to 7 kg of plutonium can remain in leached hulls and 4 to 22 kg of plutonium can remain in the vitrified high-level liquid waste. While the plutonium in these wastes has the safeguards advantage of being dilute, it is important to verify (a) that the many kilograms involved are in fact present and (b) that the declared masses are not higher than the actual amounts so that more concentrated plutonium cannot pass through the plant by masquerading as waste. Curium measurements on spent fuel assemblies, the accountability tank, and leached hulls would form a safeguards system around all the inputs and outputs of a plant`s head-end where the plutonium is always intimately mixed with the curium. A neutron measurement of the vitrified waste would help identify the presence of a diversion path upstream because essentially all of the curium measured in the spent fuel assemblies should also be found in the vitrified waste (on a batch basis). 7 refs., 4 figs.

  5. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-10-06

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  6. On-Line Monitoring and Control of Radiochemical Streams at Spent Fuel Reprocessing Plant

    SciTech Connect

    Levitskaia, Tatiana G.; Bryan, Samuel A.

    2008-05-23

    Techniques are needed to provide on-line monitoring and control of the radiochemical processes that are being developed and demonstrated under the Global Nuclear Energy Partnership (GNEP) initiative. The instrumentation used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine/high alkalinity generated during retrieval from Hanford nuclear waste storage tanks. We are currently applying similar methodology for monitoring the radiochemical streams generated at the spent fuel reprocessing plant. The nature of these strems calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities.

  7. Authentication of reprocessing plant safeguards data through correlation analysis

    SciTech Connect

    Burr, T.L.; Wangen, L.E.; Mullen, M.F.

    1995-04-01

    This report investigates the feasibility and benefits of two new approaches to the analysis of safeguards data from reprocessing plants. Both approaches involve some level of plant modeling. All models involve some form of mass balance, either applied in the usual way that leads to material balances for individual process vessels at discrete times or applied by accounting for pipe flow rates that leads to material balances for individual process vessels at continuous times. In the first case, material balances are computed after each tank-to-tank transfer. In the second case, material balances can be computed at any desired time. The two approaches can be described as follows. The first approach considers the application of a new multivariate sequential test. The test statistic is a scalar, but the monitored residual is a vector. The second approach considers the application of recent nonlinear time series methods for the purpose of empirically building a model for the expected magnitude of a material balance or other scalar variable. Although the report restricts attention to monitoring scalar time series, the methodology can be extended to vector time series.

  8. Control of radio-iodine at the German reprocessing plant WAK during operation and after shutdown

    SciTech Connect

    Herrmann, F.J.; Herrmann, B.; Kuhn, K.D.

    1997-08-01

    During 20 years of operation 207 metric tons of oxide fuel from nuclear power reactors with 19 kg of iodine-129 had been reprocessed in the WAK plant near Karlsruhe. In January 1991 the WAK Plant was shut down. During operation iodine releases of the plant as well as the iodine distribution over the liquid and gaseous process streams had been determined. Most of the iodine is evolved into the dissolver off-gas in volatile form. The remainder is dispersed over many aqueous, organic and especially gaseous process and waste streams. After shut down of the plant in January 1991, iodine measurements in the off-gas streams have been continued up to now. Whereas the iodine-129 concentration in the dissolver off-gas dropped during six months after shutdown by three orders of magnitude, the iodine concentrations in the vessel ventilation system of the PUREX process and the cell vent system decreased only by a factor of 10 during the same period. Iodine-129 releases of the liquid high active waste storage tanks did not decrease distinctly. The removal efficiencies of the silver impregnated iodine filters in the different off-gas streams of the WAK plant depend on the iodine concentration in the off-gas. The reason of the observed dependence of the DF on the iodine-129 concentration might be due to the presence of organic iodine compounds which are difficult to remove. 13 refs., 3 figs.

  9. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  10. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  11. Solidification of Savannah River Plant high-level waste

    SciTech Connect

    Maher, R; Shafranek, L F; Stevens, III, W R

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures.

  12. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement

    SciTech Connect

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1999-01-01

    A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 and 4163 psi, exceeding the US Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10{sup {minus}11} to 10{sup {minus}10} cm{sup 2}/s and for Sr were 10{sup {minus}12} cm{sup 2}/s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC Standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m{sup 2}{center_dot}day) for Cs and between 0.34 and 0.70 g/(m{sup 2}{center_dot}day) industry-accepted standard while Cs losses indicate a process sensitive parameter.

  13. Improvement of technology for reprocessing of low-level wastes with the use of ozone

    SciTech Connect

    Revenko, Y.A.; Manakov, S.A.; Petrov, A.I.

    1995-12-31

    An original flowsheet is proposed for reprocessing of low-level wastes (LLW) containing surfactants. The flowsheet involves the use of ozone for destruction of surfactants and clinoptilolite for purification from ozonolysis products. Testing of the process in a pilot facility has shown the possibility for reduction of radioactive slurries by a factor of 10--15 with increasing performance of one filter-cycle by a factor of 2--3.

  14. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  15. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect

    Gray, L.W.

    1986-10-04

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  16. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect

    Durant, W.S.; Perkins, W.C.; Lee, R.; Stoddard, D.H.

    1982-05-20

    The Safety Technology Group is developing methodology that can be used to assess the risk of operating a plant to reprocess spent nuclear fuel. As an early step in the methodology, a preliminary hazards analysis identifies safety-related incidents. In the absence of appropriate safety features, these incidents could lead to significant consequences and risk to onsite personnel or to the public. This report is a compilation of potential safety-related incidents that have been identified in studies at SRL and in safety analyses of various commercially designed reprocessing plants. It is an expanded revision of the version originally published as DP-1558, Published December 1980.

  17. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    SciTech Connect

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  18. Development of a Phosphate Ceramic as a Host for Halide-contaminated Plutonium Pyrochemical Reprocessing Wastes

    SciTech Connect

    Metcalfe, Brian; Fong, Shirley K.; Gerrard, Lee A.; Donald, Ian W.; Strachan, Denis M.; Scheele, Randall D.

    2007-03-31

    The presence of halide anions in four types of wastes arising from the pyrochemical reprocessing of plutonium required an immobilization process to be developed in which not only the actinide cations but also the halide anions were immobilized in a durable waste form. At AWE, we have developed such a process using Ca3(PO4)2 as the host material. Successful trials of the process with actinide- and Cl-bearing Type I waste were carried out at PNNL where the immobilization of the waste in a form resistant to aqueous leaching was confirmed. Normalized mass losses determined at 40°C and 28 days were 12 x 10-6 g∙m-2 and 2.7 x 10-3 g∙m-2 for Pu and Cl, respectively. Accelerated radiation-induced damage effects are being determined with specimens containing 238Pu. No changes in the crystalline lattice have been detected with XRD after the 239Pu equivalent of 400 years ageing. Confirmation of the process for Type II waste (a oxyhydroxide-based waste) is currently underway at PNNL. Differences in the ionic state of Pu in the four types of waste have required different surrogates to be used. Samarium chloride was used successfully as a surrogate for both Pu(III) and Am(III) chlorides. Initial investigations into the use of HfO2 as the surrogate for Pu(IV) oxide in Type II waste indicated no significant differences.

  19. Feasibility study of a plant for LWR used fuel reprocessing by pyrochemical methods

    SciTech Connect

    Bychkov, A.V.; Kormilitsyn, M.V.; Savotchkin, Yu.P.; Sokolovsky, Yu.S.; Baganz, Catherine; Lopoukhine, Serge; Maurin, Guy; Medzadourian, Michel

    2007-07-01

    In 2005, experts from AREVA and RIAR performed a joint research work on the feasibility study of a plant reprocessing 1000 t/y of LWR spent nuclear fuel by the gas-fluoride and pyro-electrochemical techniques developed at RIAR. This work was based on the RIAR experience in development of pyrochemical processes and AREVA experience in designing UNF reprocessing plants. UNF reprocessing pyrochemical processes have been developed at RIAR at laboratory scale and technology for granulated MOX fuel fabrication and manufacturing of vibro-packed fuel rods is developed at pilot scale. The research work resulted in a preliminary feasibility assessment of the reprocessing plant according to the norms and standards applied in France. The study results interpretation must integrate the fact that the different technology steps are at very different stage of development. It appears clearly however that in its present state of development, pyro-electrochemical technology is not adapted to the treatment of an important material flow issuing from thermal reactors. There is probably an economic optimum to be studied for the choice of hydrometallurgical or pyro-electrochemical technology, depending on the area of application. This work is an example of successful and fruitful collaboration between French and Russian specialists. (authors)

  20. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    SciTech Connect

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions.

  1. Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)

    SciTech Connect

    Johnson, Shirley J.; Ehinger, Michael

    2010-08-07

    This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of ‘safeguards by design’. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how ‘safeguardability’ was introduced into RRP.

  2. Process monitoring for reprocessing plant safeguards: a summary review

    SciTech Connect

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed.

  3. Lessons Learned in International Safeguards - Implementation of Safeguards at the Rokkasho Reprocessing Plant

    SciTech Connect

    Ehinger, Michael H; Johnson, Shirley

    2010-02-01

    The focus of this report is lessons learned at the Rokkasho Reprocessing Plant (RRP). However, the subject of lessons learned for application of international safeguards at reprocessing plants includes a cumulative history of inspections starting at the West Valley (New York, U.S.A.) reprocessing plant in 1969 and proceeding through all of the efforts over the years. The RRP is the latest and most challenging application the International Atomic Energy Agency has faced. In many ways the challenges have remained the same, timely inspection and evaluation with limited inspector resources, with the continuing realization that planning and preparations can never start early enough in the life cycle of a facility. Lessons learned over the years have involved the challenges of using ongoing advances in technology and dealing with facilities with increased throughput and continuous operation. This report will begin with a review of historical developments and lessons learned. This will provide a basis for a discussion of the experiences and lessons learned from the implementation of international safeguards at RRP.

  4. The use of artificial intelligence for safeguarding fuel reprocessing plants

    SciTech Connect

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs.

  5. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    SciTech Connect

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of /sup 85/Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of /sup 85/Kr. Instead of releasing the /sup 85/Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing /sup 85/Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from /sup 85/Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of /sup 85/Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for /sup 85/Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated /sup 3/H and /sup 14/C also encourage delaying implementation of the /sup 85/Kr recovery in the early plants.

  6. Evaluation and development plan of NRTA measurement methods for the Rokkasho Reprocessing Plant

    SciTech Connect

    Li, T.K.; Hakkila, E.A.; Flosterbuer, S.F.

    1995-08-01

    Near-real-time accounting (NRTA) has been proposed as a safeguards method at the Rokkasho Reprocessing Plant (RRP), a large-scale commercial boiling water and pressurized water reactors spent-fuel reprocessing facility. NRTA for RRP requires material balance closures every month. To develop a more effective and practical NRTA system for RRP, we have evaluated NRTA measurement techniques and systems that might be implemented in both the main process and the co-denitration process areas at RRP to analyze the concentrations of plutonium in solutions and mixed oxide powder. Based on the comparative evaluation, including performance, reliability, design criteria, operation methods, maintenance requirements, and estimated costs for each possible measurement method, recommendations for development were formulated. This paper discusses the evaluations and reports on the recommendation of the NRTA development plan for potential implementation at RRP.

  7. Explosion investigation of asphalt-salt mixtures in a reprocessing plant.

    PubMed

    Hasegawa, K; Li, Y

    2000-12-15

    Cause investigation of a fire and explosion at the nuclear fuel waste reprocessing plant indicated that self-heating ignition of an asphalt-salt-waste, bituminized, mixture (AS) caused the disaster. A 220l drum was filled with the AS at a temperature of about 180 degrees C. About 20h later the drum ignited and burned as it was being cooled. It is estimated that the AS contained approximately 55wt.% blown asphalt, 25wt.% NaNO(3), 5wt.% NaNO(2), 8wt.% Na(2)CO(3), 2wt.% NaH(2)PO(4), 1wt.% Ba (OH)(2), 1wt.% K(4)[Fe(CN)(6)], and possibly 3wt.% of other materials. To determine the reaction promoting factors and pertinent chemical reaction rates, self-reaction of the AS has been investigated by the use of a C80D heat flux reaction calorimeter. The oxidizing reactions with asphalt are ruled by NaNO(2) rather than by NaNO(3), in spite of a lower concentration of NaNO(2). The kinetic rates of the interfacial reaction between salt particles and asphalt for the reaction controlled and diffusion controlled steps have been formulated as a function of salt particle size for both NaNO(2) and NaNO(3). Numerical solution of the heat balance equations formulating the heterogeneous reaction scheme indicates that a runaway reaction occurs when the AS-filling temperature is 208 degrees C for a drum filled with an AS mixture produced under standard operating conditions. Molecules containing intramolecular hydrogen, such as Na(2)HPO(4) and NaHCO(3), do not oxidize asphalt directly, however, their presence chemically promotes the oxidizing reaction of NaNO(2). Moreover, NaHCO(3) decomposition which produces gases creates many micro holes in the interior of the salt particles. This in turn promotes the oxidizing reactions that are diffusion controlled. Finally, the consequence of a runaway reaction at 180 degrees C or lower is qualitatively explained by taking into account the chemical effect of intramolecular hydrogen and the physical effect of the NaHCO(3) decomposition gases. PMID

  8. Waste Treatment Plant - 12508

    SciTech Connect

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium

  9. Use of the Waste-Incidental-to-Reprocessing Citation Process at the West Valley Demonstration Project - 12250

    SciTech Connect

    Sullivan, Dan; Suttora, Linda; Goldston, Sonny; Petras, Robert; Rowell, Laurene; McNeil, Jim

    2012-07-01

    The West Valley Demonstration Project recently achieved a breakthrough in management of radioactive waste from reprocessing of spent nuclear fuel by taking advantage of lessons learned at other Department of Energy (DOE) sites in implementation of the waste-incidental-to-reprocessing citation process of DOE Manual 435.1-1, Radioactive Waste Management. This breakthrough involved a revision to the site procedure on waste-incidental to reprocessing. This procedure revision served as the basis for a determination by the DOE West Valley field office using the citation process that three secondary waste streams consisting of equipment that had once been contaminated by association with HLW are not HLW following decontamination and may be disposed of as low-level waste (LLW) or transuranic waste. These waste streams, which comprised much of the approximately 380 cubic meters of West Valley waste contaminated by association with HLW, included several vessels and certain tank farm equipment. By making use of lessons learned in use of the citation process by other DOE sites and information developed to support use of the citation process at the Hanford site and the Savannah River Site, the team developed a technical basis for showing that use of the citation process of DOE Manual 435.1-1 for the three new waste stream was appropriate and technically justified. The Waste Management Working Group of the EFCOG assisted in transferring lessons learned by drawing on experience from around the DOE complex. This process shared knowledge about effective implementation of the citation process in a manner that proved to be beneficial to the West Valley Demonstration Project and resulted in a technical basis document that could be used to determine that the three new waste streams were not HLW. (authors)

  10. Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter - 12167

    SciTech Connect

    McNeil, Jim; Kurasch, David; Sullivan, Dan; Crandall, Thomas

    2012-07-01

    The Department of Energy (DOE) has determined that the vitrification melter used in the West Valley Demonstration Project can be disposed of as low-level waste (LLW) after completion of a waste-incidental-to-reprocessing evaluation performed in accordance with the evaluation process of DOE Manual 435.1-1, Radioactive Waste Management Manual. The vitrification melter - which consists of a ceramic lined, electrically heated box structure - was operated for more than 5 years melting and fusing high-level waste (HLW) slurry and glass formers and pouring the molten glass into 275 stainless steel canisters. Prior to shutdown, the melter was decontaminated by processing low-activity decontamination flush solutions and by extracting molten glass from the melter cavity. Because it could not be completely emptied, residual radioactivity conservatively estimated at approximately 170 TBq (4,600 Ci) remained in the vitrification melter. To establish whether the melter was incidental to reprocessing, DOE prepared an evaluation to demonstrate that the vitrification melter: (1) had been processed to remove key radionuclides to the maximum extent technically and economically practical; (2) would be managed to meet safety requirements comparable to the performance objectives for LLW established by the Nuclear Regulatory Commission (NRC); and (3) would be managed by DOE in accordance with DOE's requirements for LLW after it had been incorporated in a solid physical form with radionuclide concentrations that do not exceed the NRC concentration limits for Class C LLW. DOE consulted with the NRC on the draft evaluation and gave other stakeholders an opportunity to submit comments before the determination was made. The NRC submitted a request for additional information in connection with staff review of the draft evaluation; DOE provided the additional information and made improvements to the evaluation, which was issued in January 2012. DOE considered the NRC Technical Evaluation Report

  11. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  12. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  13. Methodology of Qualification of CCIM Vitrification Process Applied to the High- Level Liquid Waste from Reprocessed Oxide Fuels - 12438

    SciTech Connect

    Lemonnier, S.; Labe, V.; Ledoux, A.; Nonnet, H.; Godon, N.

    2012-07-01

    The vitrification of high-level liquid waste from reprocessed oxide fuels (UOX fuels) by Cold Crucible Induction Melter is planed by AREVA in 2013 in a production line of the R7 facility at La Hague plant. Therefore, the switch of the vitrification technology from the Joule Heated Metal Melter required a complete process qualification study. It involves three specialties, namely the matrix formulation, the glass long-term behavior and the vitrification process development on full-scale pilot. A new glass frit has been elaborated in order to adapt the redox properties and the thermal conductivity of the glass suitable for being vitrified with the Cold Crucible Induction Melter. The role of cobalt oxide on the long term behavior of the glass has been described in the range of the tested concentrations. Concerning the process qualification, the nominal tests, the sensitivity tests and the study of the transient modes allowed to define the nominal operating conditions. Degraded operating conditions tests allowed to identify means of detecting incidents leading to these conditions and allowed to define the procedures to preserve the process equipments protection and the material quality. Finally, the endurance test validated the nominal operating conditions over an extended time period. This global study allowed to draft the package qualification file. The qualification file of the UOX package is currently under approval by the French Nuclear Safety Authority. (authors)

  14. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  15. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-03-01

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to save the U.S. Department of Energy (DOE) tens of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass.

  16. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    SciTech Connect

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    1996-09-01

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are the MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.

  17. Surveillance system using the CCTV at the fuel transfer pond in the Tokai reprocessing plant

    SciTech Connect

    Hayakawa, T.; Fukuhara, J.; Ochiai, K.; Ohnishi, T.; Ogata, Y.; Okamoto, H. )

    1991-01-01

    The Fuel Transfer Pond (FTP) in the Tokai Reprocessing Plant (TRP) is a strategic point for safeguards. Spent fuels, therefore, in the FTP have been surveyed by the surveillance system using the underwater CCTV. This system was developed through the improvement of devices composed of cameras and VCRs and the provision of tamper resistance function as one of the JASPAS (Japan Support Program for Agency Safeguards) program. The purpose of this program is to realize the continuous surveillance of the slanted tunnel through which the spent fuel on the conveyor is moved from the FTP to the Mechanical Processing Cell (MPC). This paper reports that, when this surveillance system is applied to an inspection device, the following requirements are needed: To have the ability of continuous and unattended surveillance of the spent fuel on the conveyor path from the FTP to the MPC; To have the tamper resistance function for continuous and unattended surveillance of the spent fuel.

  18. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  19. Collocation and integration of reprocessing and repositories: implications for aqueous flowsheets and waste management

    SciTech Connect

    Forsberg, C.; Lewis, L.

    2013-07-01

    It is an accident of history that the current model of the fuel cycle is a separate set of facilities connected by transportation. The question is whether collocation and integration of reprocessing and fuel fabrication with the repository significantly reduce the costs of a closed fuel cycle while improving system performance in terms of safety and long-term repository performance. This paper examines the question in terms of higher-level functional requirements of reprocessing systems and geological repositories.

  20. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    SciTech Connect

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  1. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    SciTech Connect

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya; Bosbach, Dirk; Gauthier, Rene; Eissler, Alexander

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of the radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste

  2. Computerized Analytical Data Management System and Automated Analytical Sample Transfer System at the COGEMA Reprocessing Plants in La Hague

    SciTech Connect

    Flament, T.; Goasmat, F.; Poilane, F.

    2002-02-25

    Managing the operation of large commercial spent nuclear fuel reprocessing plants, such as UP3 and UP2-800 in La Hague, France, requires an extensive analytical program and the shortest possible analysis response times. COGEMA, together with its engineering subsidiary SGN, decided to build high-performance laboratories to support operations in its plants. These laboratories feature automated equipment, safe environments for operators, and short response times, all in centralized installations. Implementation of a computerized analytical data management system and a fully automated pneumatic system for the transfer of radioactive samples was a key factor contributing to the successful operation of the laboratories and plants.

  3. Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update

    SciTech Connect

    Not Available

    1994-09-01

    The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

  4. Case-control study of leukaemia among young people near La Hague nuclear reprocessing plant: the environmental hypothesis revisited.

    PubMed Central

    Pobel, D.; Viel, J. F.

    1997-01-01

    OBJECTIVE: To investigate the association between childhood leukaemia and established risk factors or other factors related to La Hague nuclear waste reprocessing plant. DESIGN: Case-control study. SETTING: Area within a 35 km radius of La Hague, Normandy, France. SUBJECTS: Twenty seven cases of leukaemia diagnosed during the period 1978-93 in people aged under 25 years and 192 controls matched for sex, age, place of birth, and residence at time of diagnosis. MAIN OUTCOME MEASURES: Antenatal and postnatal exposure to x rays and viral infections, occupational exposure of parents (particularly ionising radiation), living conditions, lifestyle of parents and children. RESULTS: Increased trends were found for use of local beaches by mothers and children (P < or = 0.01); relative risks 2.87 (95% confidence intervals 1.05 to 8.72) and 4.49 (1.52 to 15.23) when categories were aggregated in two levels (more or less than once a month). Consumption of local fish and shellfish also showed an increased trend (P 0.01); relative risk 2.66 (0.91 to 9.51) when categories were grouped in two levels (more or less than once a week). A relative risk of 1.18 a year (1.03 to 1.42) was observed for length of residence in a granite-built house or in a granitic area. No association was shown with occupational radiation exposure in parents. CONCLUSIONS: There is some convincing evidence in childhood leukaemia of a causal role for environmental radiation exposure from recreational activities on beaches. New methods for identifying the environmental pathways, focusing on marine ecosystems, are warranted. PMID:9006467

  5. Field test of New TASTEX system for plutonium product verification at the Tokai Reprocessing Plant

    SciTech Connect

    Kuno, Y.; Shigeoka, K.; Nishida, K.; Ikeda, H.; Hayashi, N.; Wachi, I.; Hsue, S.T.; Sprinkle, J.K.; Gunnink, R.; Ruhter, W.D.

    1988-01-01

    This report describes the field test results of the New TASTEX system. This system consisting of the high resolution gamma spectrometer and the k-edge densitometer can measure both isotopic abundances and concentration of plutonium simultaneously. Entire system is controlled by the multichannel analyzer and a multi-user computer. The system was designed and built under the Japan Support Program for Agency Safeguards (JASPAS). The software of this system developed at LANL and LLNL has been installed in the system assembled at the Tokai reprocessing plant (TRP) in July 1985. In the course of campaigns from 1985 until 1988, field tests have been carried out on plutonium product solutions of TRP. The results of plutonium concentration and isotopic abundances obtained by the k-edge densitometer and the high resolution gamma spectrometer (HRGS) have been compared with those by controlled potential coulometer and mass spectrometer respectively. Precision of plutonium determination with k-edge densitometer is estimated approximately 0.7% and 1.0% for the freshly processed plutonium and the aged plutonium respectively. The scatters in the relative differences between HRGS and the destructive analysis (DA) detected on the results of freshly processed plutonium sample were 1.6%, 0.4%, 0.5%, 1.1%, 8.0% for Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242 respectively, whereas those on the results of aged sample were 1.4%, 0.5%, 1.1%, 1.1% for Pu-238, Pu-239, Pu-240, and Pu-241 respectively. 9 refs., 15 figs., 7 tabs.

  6. Breeder Reprocessing Engineering Test

    SciTech Connect

    Burgess, C.A.; Meacham, S.A.

    1984-01-01

    The Breeder Reprocessing Engineering Test (BRET) is a developmental activity of the US Department of Energy to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the Fast Flux Test Facility (FFTF). It will be installed in the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site near Richland, Washington, The major objectives of BRET are: (1) close the US breeder fuel cycle; (2) develop and demonstrate reprocessing technology and systems for breeder fuel; (3) provide an integrated test of breeder reactor fuel cycle technology - rprocessing, safeguards, and waste management. BRET is a joint effort between the Westinghouse Hanford Company and Oak Ridge National Laboratory. 3 references, 2 figures.

  7. Component failure-rate data with potential applicability to a nuclear fuel reprocessing plant

    SciTech Connect

    Dexter, A.H.; Perkins, W.C.

    1982-07-01

    Approximately 1223 pieces of component failure-rate data, under 136 subject categories, have been compiled from published literature and computer searches of a number of data bases. Component selections were based on potential applicability to facilities for reprocessing spent nuclear fuels. The data will be useful in quantifying fault trees for probabilistic safety analyses and risk assessments.

  8. Computer simulated plant design for waste minimization/pollution prevention

    SciTech Connect

    Bumble, S.

    2000-07-01

    The book discusses several paths to pollution prevention and waste minimization by using computer simulation programs. It explains new computer technologies used in the field of pollution prevention and waste management; provides information pertaining to overcoming technical, economic, and environmental barriers to waste reduction; gives case-studies from industries; and covers computer aided flow sheet design and analysis for nuclear fuel reprocessing.

  9. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    SciTech Connect

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

  10. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  11. 77 FR 38789 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Concentrator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ....1-1, Radioactive Waste Management Manual. DOE is consulting with the Nuclear Regulatory Commission (NRC) before finalizing this evaluation. Although it is not required by DOE Manual 435.1-1, DOE is... documentation. DOE Manual 435.1-1, which implements DOE Order 435.1, Radioactive Waste Management, contains...

  12. 76 FR 13605 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Vitrification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... of offsite as low-level waste (LLW). DOE prepared the draft evaluation pursuant to DOE Manual 435.1-1... this evaluation. Although it is not required by DOE Manual 435.1-1, DOE is making the draft evaluation... 435.1-1, which implements DOE Order 435.1, Radioactive Waste Management, contains a...

  13. Radio Active Waste Plants - Back to the Future

    SciTech Connect

    Earp, J.E.; Thompson, D.R.

    2008-07-01

    This paper outlines the potential to provide smaller, potentially modular radwaste plants, suitable for new reactor proposals, within increasingly strict environmental control regimes, and with reduced discharge authorisations. Aker Kvaerner have been involved in the design, build and commissioning of radwaste plants over many years and provided the plant for Sizewell B, one of the last major PWRs to be built anywhere in the world. Unit operations and design characteristics of radioactive waste processing plant are discussed. It is concluded that these have changed little in the past 30 years. The traditional build characteristics and metrics of large radioactive waste processing facilities are described in both the reprocessing and the power generation industries. New reactor and fuel characteristics are described and used to highlight areas of potential design improvement, reducing the size, complexity, construction programme and cost of future power reactor radwaste facilities. In summary - implications for Design: Taking these factors into account, we can now expect that compared to Sizewell B radwaste plant, it is possible to match the AP1000 metrics given in Figure 4 above. In principle, this could deliver a building and plant volume of the order of one third to one half of that for Sizewell. It may be possible to make larger reductions in building volume although this is primarily due to the removal of evaporation and relocation of gaseous waste processing. The expected improvements are: - Reduced complexity and interactions significantly improve operational safety - Process intensification and close alignment of processes against reactor waste streams deliver reduced plant size. - Accelerated construction; this becomes possible because of reduced building size, and improved, fit-for-purpose building design. - Programme: The use of skid mounted package plant, modular 'pack' systems for filters and ion exchangers, can shorten construction time. - Allowance

  14. Full-scale experimental facility for the development technologies for the reprocessing of tritium contaminated light and heavy water wastes by CECE process and cryogenic distillation

    SciTech Connect

    Trenin, V.D.; Alekseev, I.A.; Karpov, S.P.; Bondarenko, S.D.; Vasyanina, T.V.; Konoplev, K.A.; Fedorchenko, O.A.; Uborski, V.V.; Voronina, T.

    1995-10-01

    The problem of the formation and accumulation of the tritiated heavy and light water wastes produced under operation of the various nuclear facilities is considered. It is shown that the tritium contaminated wastes may have a wide spectrum of isotope concentrations of H:D:T and correlation one with other. Reprocessing of these wastes is expensive matter due to the small tritium concentration respectfully to other hydrogen isotopes and as well as the small value of separation factor. It requires the development of the versatile technology. The description of the full scale experimental facility constructed at PNPI is given. 18 refs., 1 fig.

  15. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    SciTech Connect

    Revyakin, V.; Borisov, L.M.

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the help of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.

  16. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  17. Reprocessing and reuse of waste tire rubber to solve air-quality related problems

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rostam-Abadi, M.; Rood, M.J.; Sun, Jielun

    1998-01-01

    There is a potential for using waste tire rubber to make activated-carbon adsorbents for air-quality control applications. Such an approach provides a recycling path for waste tires and the production of new adsorbents from a low-cost waste material. Tire-derived activated carbons (TDACs) were prepared from waste tires. The resulting products are generally mesoporous, with N2-BET specific surface areas ranging from 239 to 1031 m2/g. TDACs were tested for their ability to store natural gas and remove organic compounds and mercury species from gas streams. TDACs are able to achieve 36% of the recommended adsorbed natural gas (methane) storage capacity for natural-gas-fueled vehicles. Equilibrium adsorption capacities for CH4 achieved by TDACs are comparable to Calgon BPL, a commercially available activated-carbon adsorbent. The acetone adsorption capacity for a TDAC is 67% of the adsorption capacity achieved by BPL at 1 vol % acetone. Adsorption capacities of mercury in simulated flue-gas streams are, in general, larger than adsorption capacities achieved by coal-derived activated carbons (CDACs) and BPL. Although TDACs may not perform as well as commercial adsorbents in some air pollution control applications, the potential lower cost of TDACS should be considered when evaluating economics.

  18. Report on the NGS3 Working Group on Safeguards by Design For Aqueous Reprocessing Plants

    SciTech Connect

    Johnson, Shirley J.; Ehinger, Michael; Schanfein, Mark

    2011-02-01

    The objective of the Working Group on SBD for Aqueous Reprocessing Facilities was to provide recommendations, for facility operators and designers, which would aid in the coordination and integration of nuclear material accountancy and the safeguards requirements of all concerned parties - operators, state/regional authorities, and the IAEA. The recommendations, which are to be provided to the IAEA, are intended to assist in optimizing facility design and operating parameters to ensure the safeguardability of the facility while minimizing impact on the operations. The one day Working Group session addressed a wide range of design and operating topics.

  19. INSPECTIONS OF THE WASTE ISOLATION PILOT PLANT.

    EPA Science Inventory

    The Waste Isolation Pilot Plant (WIPP) is a disposal system for radioactive wastes. Developed by the Department of Energy (DOE), the WIPP is located near Carlsbad in southeastern New Mexico. The DOE is burying radioactive waste 2150 feet underground in an ancient layer of salt ...

  20. NRC Perspectives on Waste Incidental to Reprocessing Consultations and Monitoring - 13398

    SciTech Connect

    McKenney, Christepher A.; Suber, Gregory F.; Felsher, Harry D.; Mohseni, Aby

    2013-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations to assess compliance with NRC regulations in 10 CFR Part 61, Subpart C. The NDAA applies to DOE activities that will remain within the States of South Carolina and Idaho. DOE has chosen to, under DOE Order 435.1, engage in consultation with NRC for similar activities in the State of Washington and New York, however, the NRC has no monitoring responsibilities. In 2007, the NRC developed a draft Final Report for Interim Use entitled, NUREG-1854: NRC Staff Guidance for Activities Related to U.S. Department of Energy Waste Determinations. Since the law was enacted, the DOE and NRC have consulted on three waste determinations within the affected States: (1) the Saltstone Disposal Facility at the Savannah River Site (SRS) within the State of South Carolina in 2005, (2) the INTEC Tank Farm at the Idaho National Laboratory within the State of Idaho in 2006, and (3) the F Tank Farm at SRS in 2011. After the end of consultation and issuance by DOE of the final waste determination, monitoring began at each of these sites, including the development of monitoring plans. In addition to the NDAA sites, DOE has requested NRC consultation support on both individual tanks and the entire C Tank Farm at the Hanford Nuclear Reservation in the State of Washington. DOE also requested consultation of waste determinations performed on the melter and related feed tanks at the West Valley site in New York that would be disposed offsite. In the next few years, NRC and DOE will consult on the last of the NDAA waste determinations for a while, the H Tank Farm waste determination at SRS. DOE may identify other activities in the future but largely

  1. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    SciTech Connect

    Foare, Genevieve; Meze, Florian; Bader, Sven; McGee, Don; Murray, Paul; Prud'homme, Pascal

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were divided into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)

  2. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    SciTech Connect

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  3. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    SciTech Connect

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  4. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    SciTech Connect

    Vorona, N. A.; Gavrikov, A. V. Samokhin, A. A.; Smirnov, V. P.; Khomyakov, Yu. S.

    2015-12-15

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  5. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    NASA Astrophysics Data System (ADS)

    Vorona, N. A.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.; Khomyakov, Yu. S.

    2015-12-01

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  6. Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia

    NASA Astrophysics Data System (ADS)

    Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David

    2014-05-01

    In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  7. Determination of the Structure of Vitrified Hydroceramic/CBC Waste Form Glasses Manufactured from DOE Reprocessing Waste

    SciTech Connect

    Scheetz, B.E.; White, W. B.; Chesleigh, M.; Portanova, A.; Olanrewaju, J.

    2005-05-31

    The selection of a glass-making option for the solidification of nuclear waste has dominated DOE waste form programs since the early 1980's. Both West Valley and Savannah River are routinely manufacturing glass logs from the high level waste inventory in tank sludges. However, for some wastes, direct conversion to glass is clearly not the optimum strategy for immobilization. INEEL, for example, has approximately 4400 m{sup 3} of calcined high level waste with an activity that produces approximately 45 watts/m{sup 3}, a rather low concentration of radioactive constituents. For these wastes, there is value in seeking alternatives to glass. An alternative approach has been developed and the efficacy of the process demonstrated that offers a significant savings in both human health and safety exposures and also a lower cost relative to the vitrification option. The alternative approach utilizes the intrinsic chemical reactivity of the highly alkaline waste with the addition of aluminosilicate admixtures in the appropriate proportions to form zeolites. The process is one in which a chemically bonded ceramic is produced. The driving force for reaction is derived from the chemical system itself at very modest temperatures and yet forms predominantly crystalline phases. Because the chemically bonded ceramic requires an aqueous medium to serve as a vehicle for the chemical reaction, the proposed zeolite-containing waste form can more adequately be described as a hydroceramic. The hydrated crystalline materials are then subject to hot isostatic pressing (HIP) which partially melts the material to form a glass ceramic. The scientific advantages of the hydroceramic/CBC approach are: (1) Low temperature processing; (2) High waste loading and thus only modest volumetric bulking from the addition of admixtures; (3) Ability to immobilize sodium; (4) Ability to handle low levels of nitrate (2-3% NO{sub 3}{sup -}); (5) The flexibility of a vitrifiable waste; and (6) A process that

  8. Storage of mixed waste at nuclear plants

    SciTech Connect

    Bodine, D.

    1995-05-01

    The problems posed by waste that is both radioactive and classified as hazardous by 40CFR261 include storage, proper treatment and disposal. An Enforcement Action issued by the State of Tennessee required that Sequoyah Nuclear Plant (SQN) either find a means to remove its mixed waste from onsite storage or obtain Part B Hazardous Waste Treatment, Storage and Disposal Facility by March 1, 1994. Generators of hazardous waste cannot store the material for longer than 90 days without obtaining a Hazardous Waste Treatment, Storage, and Disposal Facility (TSDF) permit. To complicate this regulation, there are very few permitted TSDFs that can receive radioactive waste. Those facilities that can receive the waste have only one year to store it before treatment. Limited treatment is available for mixed waste that will meet the Land Ban requirements.

  9. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  10. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  11. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    PubMed

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion. PMID:25948824

  12. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  13. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-08-31

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to significantly reduce the cost to the U.S. Department of Energy (DOE) of treating the tank wastes by hundreds of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass. An electrochemical salt-splitting process, based on sodium-ion selective ceramic membranes, is being developed to recover and recycle sodium hydroxide from high-salt radioactive tank wastes in DOE’s complex. The ceramic membranes are from a family of materials known as sodium (Na)—super-ionic conductors (NaSICON)—and the diffusion of sodium ions (Na+) is allowed, while blocking other positively charged ions. A cost/benefit evaluation was based on a strategy that involves a separate caustic-recycle facility based on the NaSICON technology, which would be located adjacent to the WTP facility. A Monte Carlo approach was taken, and several thousand scenarios were analyzed to determine likely economic results. The cost/benefit evaluation indicates that 10,000–50,000 metric tons (MT) of sodium could be recycled, and would allow for the reduction of glass production by 60,000–300,000 MT. The cost of the facility construction and operation was scaled to the low-activity waste (LAW) vitrification facility, showing cost would be

  14. Hanford Waste Vitrification Plant applied technology plan

    SciTech Connect

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  15. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    SciTech Connect

    Butcher, B.M. ); Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C. )

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs.

  16. Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)

    DOE Data Explorer

    The Waste Isolation Pilot Plant (WIPP) is a DOE facility located in the desert outside Carlsbad, New Mexico. Its mission is to safely dispose of defense-related transuranic radioactive waste. Disposal ôroomsö are carved out of the Permian Salt Formation deep below the desertÆs surface. The WIPP Waste Information Service (WWIS) was established in accordance with an Agreement between the United States Department of Energy and the New Mexico Environment Department, dated February 11, 2005, Docket Number HWB 04-07 (CO). The service provides information the containers emplaced at WIPP and the waste products they hold. The public may query by shipment number, location of waste stream or location of the container after it is placed at WIPP, date placed, and Haz Codes or other information about the waste stream profiles. For example, choosing the waste stream identified as ID-SDA-SLUDGE reveals that it may contain more than 20 chemical waste products, including arsenic, spent halogenated solvents, potassium cyanide, and chloroform. The system then tells you each numbered container that has this kind of sludge. Container data is available within 14 days after the containerÆs emplacement in the WIPP Repository.

  17. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  18. Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.; Sole, Ravikumar; Khatak, H. S.; Raj, Baldev

    2008-01-01

    Type 316L stainless steel (SS) is one of the candidate materials proposed for application in pyrochemical reprocessing plants. In the present work, yttria-stabilized zirconia coatings of 300 μm were applied over type 316L SS with a metallic bond coating of 50 μm by an optimized plasma spray process, and were assessed for the corrosion behaviour in molten LiCl-KCl medium at 873 K for periods of 5 h, 100 h, 250 h and 500 h. The as-coated and tested samples were examined by optical microscopy and SEM for homogeneity, penetration of molten salt through coating and corrosion of type 316L SS substrate. The results indicated that the yttria-stabilized zirconia coatings performed well without significant degradation and corrosion attack. Laser melting of the coated samples using CO 2 laser was attempted to consolidate the coatings. The development of large grains with segmented cracks was noticed after laser melting, though the coating defects have been eliminated.

  19. REPROCESSING OF SHALLOW SEISMIC REFLECTION DATA TO IMAGE FAULTS NEAR A HAZARDOUS WASTE SITE ON THE OAK RIDGE RESERVATION, TENNESSEE

    SciTech Connect

    DOLL, W.E.

    1997-12-30

    Shallow seismic reflection data from Bear Creek Valley on the Oak Ridge Reservation demonstrates that spectral balancing and tomographic refraction statics can be important processing tools for shallow seismic data. At this site, reprocessing of data which had previously yielded no useable CMP stacked sections was successful after application of these processing techniques.

  20. Determination of technetium-99, neptunium-237 and isotopes of thorium in uranyl nitrate solutions from a reprocessing plant, using double-focusing ICP-MS

    SciTech Connect

    Mitterrand, B.; Leprovost, P.; Delaunay, J.; Vian, A.M.

    1998-12-31

    The determination of some radionuclides in uranyl nitrate solutions from a reprocessing plant through chemical or radiochemical methods may be tedious, with poor precision. Quadrupole ICP-MS and, more recently, double-focusing ICP-MS, with high resolution capabilities, have proved to be very efficient tools for such determinations. These improvements will be illustrated by the examples of Technetium-99, Neptunium-237 and Thorium.

  1. Waste Water Plant Operators Manual.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual for sewage treatment plant operators was prepared by a committee of operators, educators, and engineers for use as a reference text and handbook and to serve as a training manual for short course and certification programs. Sewage treatment plant operators have a responsibility in water quality control; they are the principal actors in…

  2. Characterization of Savannah River Plant waste glass

    SciTech Connect

    Plodinec, M J

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria.

  3. Concept of advanced spent fuel reprocessing based on ion exchange

    SciTech Connect

    Suzuki, Tatsuya; Takahashi, Kazuyuki; Nogami, Masanobu; Nomura, Masao; Fujii, Yasuhiko; Ozawa, Masaki |; Koyama, Shinichi; Mimura, Hitosi; Fujita, Reiko

    2007-07-01

    Reprocessing based on ion exchange separation is proposed as a safe, proliferation-resistant technology. Tertiary pyridine resin was developed for ion exchange reprocessing. Working medium of the separation system is not nitric acid but hydrochloric acid aqueous solution. The system does not involve strong oxidizing reagent, such as nitric acid but involve chloride ions which works as the week neutron absorbers. The system can be operated at ambient temperatures and pressure. Thus the HCl-ion-exchange reprocessing is regarded as an inherently safe technology. Another advantage of HCl ion-exchange reprocessing is the proliferation-resistant nature. Both U(VI) and Pu(IV) ions are adsorbed in the pyridine type anion exchange resin at relatively high HCl concentration of 6 M. At this condition, the adsorption distribution coefficient of Pu(IV) is smaller than that of U(VI). When uranium is eluted from the resin in the column, plutonium is simultaneously eluted from the column; Pu is recovered with uranium in the front part of uranium adsorption band. Pu(IV) can not be left in the resin after elution of uranium. The use of HCl in the ion-exchange reprocessing causes the problem of the plant materials. Sophisticated material technology is necessary to realize the ion exchange reprocessing using HCl. The technology is so sophisticated that only highly developed countries can hold the technology, thus the technology holding countries will be limited. The plant, therefore, cannot be built under hidden state. In addition, another merit of the process would be the simplicity in operation. One phase, i.e., ion exchange resin is immobile, and the aqueous solution is the only mobile phase. Plant operation is made by the control of one aqueous solution phase. The plant simplicity would ease the international safeguard inspection efforts to be applicable to this kind of reprocessing plant. The present work shows the basic concept of ion exchange reprocessing using HCl medium

  4. Hanford Waste Vitrification Plant technical manual

    SciTech Connect

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  5. The Role of Piece Monitors for the Assay of Plutonium Waste in Alpha Plant Decommissioning Operations

    SciTech Connect

    Wilson, M.; Mullarkey, P.; Orr, C.H.H.; Sharpe, J.; Carr, E.

    2008-07-01

    Plutonium contaminated (TRU) wastes arising during decommissioning and waste retrievals operations at a UK reprocessing facility include small process items, strippable coatings, size-reduced pieces of glove box and metal pipes, etc. These waste materials are generally assayed in a 'Piece Monitor' employing neutron coincidence counting and gamma assay technologies. The major function of the TRU D{sup R} Piece Monitor is to provide an accurate assay of the TRU content of waste pieces/packages, primarily for nuclear safety purposes. The Piece Monitor follows each waste measurement by calculating the cumulative plutonium content of a waste drum as it is filled with this waste, allowing maximum filling of the drum whilst ensuring it remains within fissile content limits. TRU Piece Monitors are deployed at the interface between clean-air (C2) and the active decommissioning (C5) areas by attaching them to the wall of removable modular containment structures (MCSs). In the C5 area, the plant operator uses a variety of cold-cutting processes to size-reduce plant equipment and then places waste items in the monitor chamber for assay, prior to placing the waste in a 200 litre drum. The 're-entrant bulge' design of the assay chamber provides access from the active operations side, whilst the detection equipment remains in the C2 area. This ensures that the Piece Monitor equipment does not become contaminated and remains readily accessible for maintenance or repair. Piece monitors measure and report the plutonium content of each waste item immediately prior to placing in the waste drum, and provides a continuous 'tally' of the drum content. Warnings are shown when a drum is close to exceeding its allowable plutonium content and the waste drum can therefore be changed when either physically full or nearing its nuclear safety limits. (authors)

  6. Waste retrieval plan for the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called bin tests'' and alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met.

  7. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant.

    PubMed

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-09-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH(3)T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH(3)T concentrations. The HT and CH(3)T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Östlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH(3)T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH(4) to estimate global warming in its 2007 report. The longer environmental half-life of CH(3)T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. PMID:21703737

  8. Waste disposal options report. Volume 1

    SciTech Connect

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  9. Plant for collecting and briquetting domestic waste

    SciTech Connect

    Alexandrov, A.M.; Alexeev, G.M.; Bairon, G.V.; Matveev, V.M.; Minin, O.D.; Provalsky, G.B.; Slavinsky, V.N.; Tsimbler, J.A.; Vasiliev, V.A.

    1980-10-28

    In the plant for collecting and briquetting domestic waste the housing has loading and discharge openings and coaxially accommodates therein a chamber for forming domestic waste into briquettes and a conveyer screw for compacting the domestic waste , operatively connected to a reversible drive. The chamber adjoins the screw and has mounted therein an abutment spanning the cross-sectional area of the chamber. The abutment is mounted in the chamber for motion therein under the action of the domestic waste being formed into a briquette and being advanced by the effort of the rotating conveyer screw. The chamber is operatively connected with a drive for being moved axially to release a briquette that has been formed and for being returned into the initial position.

  10. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  11. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  12. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  13. Aqueous Waste Treatment Plant at Aldermaston

    SciTech Connect

    Keene, D.; Fowler, J.; Frier, S.

    2006-07-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  14. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    SciTech Connect

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-06-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described.

  15. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  16. Hanford Waste Vitrification Plant capacity increase options

    SciTech Connect

    Larson, D.E.

    1996-04-01

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

  17. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  18. Waste isolation pilot plant disposal room model

    SciTech Connect

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  19. 76 FR 34007 - Draft Regulatory Basis for a Potential Rulemaking on Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ...: NUREG-1909, a white paper authored by the Advisory Committee on Nuclear Waste and Materials, titled... waste through developing more sophisticated reprocessing technologies. During the Bush Administration... regulatory basis for licensing commercial reprocessing facilities: (1) Regulatory framework, (2)...

  20. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  1. Reprocessing RERTR silicide fuels

    SciTech Connect

    Rodrigues, G.C.; Gouge, A.P.

    1983-05-01

    The Reduced Enrichment Research and Test Reactor Program is one element of the United States Government's nonproliferation effort. High-density, low-enrichment, aluminum-clad uranium silicide fuels may be substituted for the highly enriched aluminum-clad alloy fuels now in use. Savannah River Laboratory has performed studies which demonstrate reprocessability of spent RERTR silicide fuels at Savannah River Plant. Results of dissolution and feed preparation tests and solvent extraction processing demonstrations with both unirradiated and irradiated uranium silicide fuels are presented.

  2. Reprocessing RERTR fuels

    SciTech Connect

    Rodrigues, G.C.

    1983-01-01

    The Reduced Enrichment Research and Test Reactor Program is one element of the United States Government's nonproliferation effort. High density, low enrichment aluminum-clad dispersed uranium compound fuels may be substituted for the highly enriched aluminum-clad aluminum-uranium alloy fuels now in use. Savannah River Laboratory has performed studies which demonstrate reprocessability of spent RERTR fuels at Savannah River Plant. Results of dissolution and feed preparation tests with both unirradiated and irradiated (up to approximately 90% burnup) fuels are presented. 13 references, 2 figures, 4 tables.

  3. PFLOTRAN Simulation of Waste Isolation Pilot Plant Single Waste Panel

    NASA Astrophysics Data System (ADS)

    Park, H.; Hammond, G. E.

    2015-12-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the deep geologic disposal of transuranic (TRU) waste. WIPP performance assessment (PA) calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment arising from events and processes that could occur over the 10,000 year regulatory period. The conceptual model estimates three possible cases and the combinations of these cases: 1) undisturbed condition of the repository, 2) human borehole intrusion condition that penetrates the repository, and 3) human borehole intrusion that penetrates pressurized brine underlying the repository. To date, WIPP PA calculations have employed multiple two-dimensional (2D) numerical models requiring simplification of the mesh and processes including homogenization of materials and regions while maintaining volume aspect ratio. Introducing three-dimensional (3D) numerical models within WIPP PA enables increasingly realistic representations of the WIPP subsurface domain and improved flexibility for incorporating relevant features. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that will be implemented to enhance PA with more physically realistic 3D flow and transport models; eliminating the need for multiple related, but decoupled 2D models. This paper demonstrates PFLOTRAN simulation of a single waste panel of the WIPP undisturbed condition in 3D. The simulation also employs newly implemented WIPP specific functionalities to PFLOTRAN: 1) gas generation from the wastes, 2) creep closure of bedded salt formation, 3) fractures of marker beds near the excavation, 4) Klinkenberg effect on gas permeability in low-permeable materials, and 5) Redlich-Kwong-Soave equation of state for gas density.

  4. Making Plant-Support Structures From Waste Plant Fiber

    NASA Technical Reports Server (NTRS)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  5. Widening the envelope of UK HLW vitrification - Experimental studies with high waste loadings and new product formulations on a full scale non-active vitrification plant

    SciTech Connect

    Short, R.; Gribble, N.; Riley, A.

    2008-07-01

    The Vitrification Test Rig is a full scale waste vitrification plant that processes non-radioactive liquid HLW simulants based on the active waste streams produced by the reprocessing plants in the UK. Previous work on the rig has primarily concerned increasing the operational envelopes for the active waste vitrification plants at Sellafield to accommodate higher throughputs of Blended waste streams, higher waste oxide incorporation rates in the vitrified products, and the incorporation of legacy waste streams from early reactor commissioning and reprocessing operations at Sellafield. Recent operations have focussed on four main areas; dilute liquid feeds, very high Magnox waste stream incorporation levels, alternative base glass formulations and providing an operational envelope for 28 %w/w Magnox waste vitrification. This paper details the work performed and the major findings of that work. In summary: The VTR has been successfully used to determine operational envelopes and product quality for several HLW feed variations that will allow WVP to increase overall plant throughput via increased waste loading in canisters, increased HLW feed rates or a combination of both. The VTR has also demonstrated the ability to go to waste incorporations, feed rates and glass compositions that are currently beyond WVP specified limits, but that are feasible for future vitrification regimes. In addition, the VTR has trialled dilute feeds similar to those that are likely to be received by WVP in the future and the data obtained from these experiments will allow WVP to prepare adequately for the high throughput challenge of such feeds. Furthermore, new equipment has been trialled on the VTR in water feed mode to determine its suitability and operational limitations for WVP. Future operations will, in the short term, be concerned with increasing the throughput of WVP and are likely to focus on HLW decommissioning operations waste streams in the longer term. (authors)

  6. Reduction in waste load from a meat processing plant: Beef

    SciTech Connect

    1986-10-31

    ;Contents: Introduction (Randolph Packing Company, Meat Plant Wastewaters, Slaughterhouses, Packing Houses, Sources of Wastewater, Secondary Manufacturing Processes, An Example of Water Conservation and Waste Control, Water Conservation Program); Plant Review and Survey (Survey for Product Losses and Wastes, Water Use and Waste Load, Wastewater Discharge Limitations and Costs); Waste Centers, Changes, Costs and Results (In-Plant Control Measures, Water Conservation, Recovery Products, By-Products and Reducing Waste Load, Blood Conservation, Paunch Handling and Processing, Summary of Process Changes, Pretreatment, Advantages and Disadvantages of Pretreatment, Pretreatment Systems).

  7. Classic Nuclear Fuel Reprocessing Flowsheet

    SciTech Connect

    Fallgren, Andrew James

    2015-02-13

    This is a flowsheet as well as a series of subsheets to be used for discussion on the standard design of a reprocessing plant. This flowsheet consists of four main sections: offgas handling, separations, solvent wash, and acid recycle. As well as having the main flowsheet, subsections have been broken off into their own sheets to provide for larger font and ease of printing.

  8. METHODS FOR RECONSTRUCTION OF RADIONUCLIDE COMPOSITION AND ACTIVITY OF FISSION PRODUCTS ACCUMULATED IN THE IRRADIATED URANIUM AT THE MOMENT OF ITS RADIOCHEMICAL REPROCESSING AT PLANT “B”, “MAYAK” PA IN THE EARLY 1950s

    SciTech Connect

    Glagolenko, Y. V.; Drozhko, Evgeniy G.; Mokrov, Y.; Rovny, Sergey I.; Lyzhkov, A. V.; Anspaugh, L. R.; Napier, Bruce A.

    2008-06-01

    The article describes calculation procedure for reconstruction of radionuclide composition and activity of fission fragments accumulated in the irridated uranium from “Mayak” PA graphite-uranium reactors at the moment, when irradiation is completed, and at the moment, when the uranium is transferred to radiochemical processing (plant B) in the early 1950s. The procedure includes a reactor model and a cooling pool model. It is based on archive data on monthly uranium unloading and loading in the reactor and in the cooling pool of each reactor. The objects of reconstruction include: order of reloading of uranium versus its location radius in the reactor core; duration of irradiation and radionuclide composition of fission fragments for each radius; order of uranium removal from the cooling pool; effective time of uranium storage in the pool; radionuclide composition and activity of fission fragments in the irradiated uranium delivered to radiochemical reprocessing daily and on average for each month. The model is intended for use in reconstruction of parameters of radionuclide release source into the atmosphere and the source of liquid radioactive waste generation at the “Mayak” PA radiochemical plant.

  9. Radioactive solid waste handling at the Plutonium Finishing Plant

    SciTech Connect

    Manthos, E.J.

    1990-05-01

    The Plutonium Finishing Plant is located on the Hanford Site in the southeast section of Washington State. It has been in operation since 1949. The mission of the plant is to produce plutonium metal and related products for the US Department of Energy defense programs. Solid transuranic, low-level, and mixed wastes are generated at the plant, the radioactive contaminants in the waste being primarily alpha emitting. This paper discusses present waste-handling methods at the plant and recent changes that were made to improve waste characterization. 2 refs.

  10. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect

    Not Available

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  11. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  12. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    SciTech Connect

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  13. Liquid radioactive waste discharges from B plant to cribs

    SciTech Connect

    Williams, J.C., Westinghouse Hanford

    1996-05-29

    This engineering report compiles information on types and quantities of liquid waste discharged from B-Plant directly to cribs, ditches, reverse wells, etc., that are associated with B-Plant. Waste discharges to these cribs via overflow form 241-B, 241-BX, and 241-BY tank farms, and waste discharged to these cribs from sources other than B-Plant are discussed.Discharges from B-Plant to other cribs, unplanned releases, or waste remaining in tanks are not included in the report. Waste stream composition information is used to predict quantities of individual chemicals sent to cribs. This provides an accurate mass balance of waste streams from B-Plant to these cribs. These predictions are compared with known crib inventories as a verification of the process.

  14. Waste Handling Practices for the Plutonium Immobilization Plant

    SciTech Connect

    Severynse, T.F.

    2000-08-04

    Solid waste handling operations refers to all activities associated with the segregation, collection, packaging, assay, storage, and removal of solid radioactive waste from radiological facilities. The Plutonium Immobilization Plant (PIP) is expected to generate the following types of radiological waste, as defined in WSRC Manual 1S, ''Waste Acceptance Criteria'': Low level waste; Mixed hazardous waste; TRU waste; and Mixed TRU waste. Historically, waste handling activities have been demanding proportionately larger amounts of labor, time, and space to effectively manage waste in accordance with increasing regulatory requirements. Since the PIP will be designed for an annual throughput of five metric tonnes plutonium, the facility waste handling operations can be expected to have at least twice the impact of such operations at existing facilities.

  15. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect

    Sheng, Jiawei; Choi, Kwansik; Yang, Kyung-Hwa; Lee, Myung-Chan; Song, Myung-Jae

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  16. Hydrothermal Oxidation Hazardous Waste Pilot Plant Test Bed

    SciTech Connect

    Welland, H.; Reed, W.; Valentich, D.; Charlton, T.

    1995-03-01

    The Idaho National Engineering Laboratory (INEL) is fabricating a Hydrothermal Oxidation (HTO) Hazardous Waste Pilot Plant Test Bed to evaluate and test various HTO reactor concepts for initial processing of the U.S. Department of Energy (DOE) mixed wastes. If the HTO process is successful it will significantly reduce the volume of DOE mixed wastes by destroying the organic constituents.

  17. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  18. Near-field krypton-85 measurements in stable meteorological conditions around the AREVA NC La Hague reprocessing plant: estimation of atmospheric transfer coefficients.

    PubMed

    Connan, O; Solier, L; Hébert, D; Maro, D; Lamotte, M; Voiseux, C; Laguionie, P; Cazimajou, O; Le Cavelier, S; Godinot, C; Morillon, M; Thomas, L; Percot, S

    2014-11-01

    The aim of this work was to study the near-field dispersion of (85)Kr around the nuclear fuel reprocessing plant at La Hague (AREVA NC La Hague - France) under stable meteorological conditions. Twenty-two (85)Kr night-time experimental campaigns were carried out at distances of up to 4 km from the release source. Although the operational Gaussian models predict for these meteorological conditions a distance to plume touchdown of several kilometers, we almost systematically observed a marked ground signal at distances of 0.5-4 km. The calculated atmospheric transfer coefficients (ATC) show values (1) higher than those observed under neutral conditions, (2) much higher than those proposed by the operational models, and (3) higher than those used in the impact assessments. PMID:25078471

  19. Effect of Flue Gas Desulfurization Waste on Corn Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue gas desulfurization gypsum (FGDG) is a by-product of conversion of sulfur dioxide into solid waste from coal combustion power generation plant. This by-product is rich in calcium, magnesium, and contains various other essential plant nutrients. The beneficial use of application of this waste as...

  20. Plant growth-promoting oligosaccharides produced from tomato waste.

    PubMed

    Suzuki, Toshisada; Tomita-Yokotani, Kaori; Tsubura, Hirokazu; Yoshida, Shigeki; Kusakabe, Isao; Yamada, Kosumi; Miki, Yoichi; Hasegawa, Koji

    2002-01-01

    Tomato juice waste was hydrolyzed with acid. Tomato juice waste (500 g; wet weight) was heated with 0.5 N HCl (2.5 l) at 70 degrees C for 4 h. After neutralization, the growth-promoting extracts (300 g; dry weight) in the plants were produced from the tomato waste. The acid extract significantly promoted the growth of cockscomb (Celosia argentea L.) and tomato (Lycopersicon esculentum L.) seedlings. We have recognized potent plant growth-promoting substances in the acid extract from tomato waste. The most effective components in the active fraction were almost all oligogalacturonic acids (DP 6-12). This paper is the first report that plant growth-promoting oligosaccharides can be directly produced from tomato juice waste. It is possible that the substances from the tomato waste can become useful plant growth regulators in the agriculture field in the future. PMID:11762911

  1. Hanford Waste Vitrification Plant hydrogen generation

    SciTech Connect

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H{sub 2}. CO{sub 2}, N{sub 2}0, NO, and NH{sub 3}. For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H{sub 2}, CO, CO{sub 2}, N{sub 2}, N{sub 2}O and NO.

  2. IR and Raman Spectroscopy of Sodium-Aluminophosphate Glasses for Immobilizing High-Level Wastes from Spent Nuclear Fuel Reprocessing

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Myasoedov, B. F.; Remizov, M. B.; Belanova, E. A.

    2014-09-01

    The structure of sodium-aluminophosphate glasses containing constituents of high-level wastes (cesium, magnesium, copper, and molybdenum oxides) from uranium-graphite reactors was studied by IR and Raman spectroscopy coupled with x-ray diffraction. The structural network was shown to be composed of short P-O chains with embedded AlO4 tetrahedra. Cross-linking by Mg2+ was possible in the Mg-bearing samples. The effect of the other oxides (Cs2O, MoO3, CuO) on the glass structure was negligible for the occurring amounts. The glasses devitrified partially upon quenching and more strongly upon annealing. This was reflected in splitting of the vibrational bands for bonds in the glass anionic structural motif.

  3. Polymer solidification of mixed wastes at the Rocky Flats Plant

    SciTech Connect

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-02-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

  4. Nuclear waste strong issues at DOE's Waste Isolation Plant in New Mexico

    SciTech Connect

    Not Available

    1990-01-01

    This paper addresses the Department of Energy's mined geologic depository - the Waste Isolation Pilot Plant - near Carlsbad, New Mexico, to dispose of nuclear waste produced and stored at defense facilities in 10 states. DOE is seeking legislation that would withdraw the land from public use and allow waste storage to begin. The discovery of saltwater seepage, however, has raised serious questions about the site's suitability as a nuclear waste depository. By storing waste in the plant years before determining compliance with disposal standards that are as yet uncertain, DOE might either have to abandon the plant if it does not comply with the new standard or to remove and/or rehandle wastes in order to comply with the standards. This report recommends that DOE give Congress technical justification for storing waste in the plant before determining if the facility can be used as a repository, contingency plans for disposing of wastes stored in the plant in case DOE finds that the facility does not comply with disposal standards, and options for continued waste storage at other DOE facilities while DOE is finishing its assessment of the plant's compliance with the standards.

  5. TRU waste acceptance criteria for the Waste Isolation Pilot Plant: Revision 3

    SciTech Connect

    Not Available

    1989-01-01

    This document is intended to delineate the criteria by which unclassified waste will be accepted for emplacement at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and describe the bases upon which these criteria were established. These criteria are not intended to be specifications but rather limits that will allow waste generating and shipping sites to develop their own procedures and specifications for preparation of TRU waste for shipment to the WIPP. These criteria will also allow waste generating sites to plan future facilities for waste preparation that will produce TRU waste forms compatible with WIPP waste emplacement and isolation requirements. These criteria only apply to contract-handled (CH) and remote-handled (RH) transuranic (TRU) waste forms and are not intended to apply to beta-gamma wastes, spent fuel, high-level waste (HLW), low-level waste (LLW), low specific activity (LSA) waste, or forms of radioactive waste for experimental purposes. Specifications for receipt of experimental waste forms will be prepared by the responsible projects in conjunction with the staff of the WIPP project at a later date. In addition, these criteria only apply to waste emplaced in bedded rock salt. Technical bases for these criteria may differ significantly from those for other host rocks. 25 refs. 4 figs., 1 tab.

  6. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect

    None, None

    2008-03-12

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  7. Waste Isolation Pilot Plant borehole data

    SciTech Connect

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  8. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  9. Hanford Waste Vitrification Plant Project Plan. Revision 1

    SciTech Connect

    Brown, R.W.

    1993-06-01

    A major mission of the US DOE is the permanent disposal of Hanford defense wastes by safe, environmentally acceptable, and cost effective methods which meet applicable regulations. The Hanford Waste Vitrification Plant (HWVP) Project was initiated to immobilize the Hanford high-level waste (HLW) and provide interim storage. The HWVP will vitrify the pre-treated HLW into borosilicate glass, cast the glass into stainless steel canisters, and store the canisters on site until they are shipped to a federal geologic repository. The HWVP project objective is to design, construct, and operate a facility for immobilizing defense high-level waste for storage. Technical objectives include using the Defense Waste Processing Facility designed plants systems or elements, where practical, and the exchange and review of information on plants in foreign countries. More definitive objectives for quality, reliability, environmental, and safety are provided in the HWVP Project Management Plan.

  10. MICROORGANISMS AND HIGHER PLANTS FOR WASTE WATER TREATMENT

    EPA Science Inventory

    Batch experiments were conducted to compare the waste water treatment efficiencies of plant-free microbial filters with filters supporting the growth of reeds (Phragmites communis), cattail (Typha latifolia), rush (Juncus effusus), and bamboo (Bambusa multiplex). The experimental...

  11. WASTE MANAGEMENT CONTROL HANDBOOK FOR DAIRY FOOD PLANTS

    EPA Science Inventory

    Waste control is resource management control in dairy food plant operations. Appreciable reductions can be achieved in product, water, energy, labor, packaging losses and sewer surcharges. A good program in waste control can increase the profit margin by more than 10%, as well as...

  12. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  13. Pelletization process of postproduction plant waste

    NASA Astrophysics Data System (ADS)

    Obidziński, S.

    2012-07-01

    The results of investigations on the influence of material, process, and construction parameters on the densification process and density of pellets received from different mixtures of tobacco and fine-grained waste of lemon balm are presented. The conducted research makes it possible to conclude that postproduction waste eg tobacco and lemon balm wastes can be successfully pelletized and used as an ecological, solid fuels.

  14. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  15. Operating limit evaluation for disposal of uranium enrichment plant wastes

    SciTech Connect

    Lee, D.W.; Kocher, D.C.; Wang, J.C.

    1996-02-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

  16. Test phase plan for the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase.

  17. Nevada Nuclear Waste Storage Investigations Project interim acceptance specifications for Defense Waste Processing Facility and West Valley Demonstration Project waste forms and canisterized waste

    SciTech Connect

    Oversby, V.M.

    1984-08-01

    The waste acceptance specifications presented in this document represent the first stage of the Nevada Nuclear Waste Storage Investigations Project effort to establish specifications for the acceptance of waste forms for disposal at a nuclear waste repository in Yucca Mountain tuff. The only waste forms that will be dealt with in this document are the reprocessed waste forms resulting from solidification of the Savannah River Plant defense high level waste and the West Valley high level wastes. Specifications for acceptance of spent fuel will be covered in a separate document.

  18. Uptake by plants of radionuclides from FUSRAP waste materials

    SciTech Connect

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  19. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect

    Not Available

    1991-12-01

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  20. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  1. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with (85)Kr measurements made in the vicinity of nuclear reprocessing plant.

    PubMed

    Connan, Olivier; Smith, Kilian; Organo, Catherine; Solier, Luc; Maro, Denis; Hébert, Didier

    2013-10-01

    The Institut de Radioprotection et de Sureté Nucléaire (IRSN) performed a series of (85)Kr air sampling campaigns at mesoscale distances (18-50 km) from the AREVA NC La Hague nuclear reprocessing plant (North West France) between 2007 and 2009. The samples were collected in order to test and optimise a technique to measure low krypton-85 ((85)Kr) air concentrations and to investigate the performance of three atmospheric dispersion models (RIMPUFF, HYSPLIT, and ADMS), This paper presents the (85)Kr air concentrations measured at three sampling locations which varied from 2 to 8000 Bq m(-3), along with the (85)Kr air concentrations output by the dispersion models. The dispersion models made reasonable estimates of the mean concentrations of (85)Kr field measurements during steady wind conditions. In contrast, the models failed to accurately predict peaks in (85)Kr air concentration during periods of rapid and large changes in wind speed and/or wind direction. At distances where we made the comparisons (18-50 km), in all cases, the models underestimated the air concentration activities. PMID:23850583

  2. Transformative monitoring approaches for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2011-09-01

    The future of reprocessing in the United States is strongly driven by plant economics. With increasing safeguards, security, and safety requirements, future plant monitoring systems must be able to demonstrate more efficient operations while improving the current state of the art. The goal of this work was to design and examine the incorporation of advanced plant monitoring technologies into safeguards systems with attention to the burden on the operator. The technologies examined include micro-fluidic sampling for more rapid analytical measurements and spectroscopy-based techniques for on-line process monitoring. The Separations and Safeguards Performance Model was used to design the layout and test the effect of adding these technologies to reprocessing. The results here show that both technologies fill key gaps in existing materials accountability that provide detection of diversion events that may not be detected in a timely manner in existing plants. The plant architecture and results under diversion scenarios are described. As a tangent to this work, both the AMUSE and SEPHIS solvent extraction codes were examined for integration in the model to improve the reality of diversion scenarios. The AMUSE integration was found to be the most successful and provided useful results. The SEPHIS integration is still a work in progress and may provide an alternative option.

  3. Defense waste salt disposal at the Savannah River Plant. [Cement-based waste form, saltstone

    SciTech Connect

    Langton, C A; Dukes, M D

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables.

  4. Radiological Monitoring of Waste Treatment Plant

    NASA Astrophysics Data System (ADS)

    Amin, Y. M.; Nik, H. W.

    2011-03-01

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Raeq) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 μSv/h (Administrative building) to 0.35 μSv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

  5. Radiological Monitoring of Waste Treatment Plant

    SciTech Connect

    Amin, Y. M.; Nik, H. W.

    2011-03-30

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

  6. Projecting plant economics for wind, wood, and waste fuels

    SciTech Connect

    Perkins, J.M.; Rundle, W.L.; Strauss, S.D.

    1983-02-01

    This article provides economic analyses for three alternative energy sources which are technically feasible--wind, wood, and solid waste. Total installation cost must be taken into account: base capital cost, engineering, environmental, and installation costs. Contingencies, owner's and working capital, fuel inventories, and escalation allowance for funds during construction are also considered. Cash flow projection then provides an estimate of the percentage of total expenditure during the preconstruction phase. In wood plants, fuel cost will be a critical factor. In solid waste plants, small scale modular incinerators are used. The turbine generator is the other capital cost. The above methodology allows analysis of the economics of plants using various energies.

  7. The Waste Isolation Pilot Plant: An International Center of Excellence

    SciTech Connect

    Matthews, Mark

    2003-02-25

    The United States Department of Energy's Carlsbad Field Office (CBFO) is responsible for the successful management of transuranic radioactive waste (TRUW) in the United States. TRUW is a long-lived radioactive waste/material (LLRM). CBFO's responsibilities includes the operation of the Waste Isolation Pilot Plant (WIPP), which is a deep geologic repository for the safe disposal of U.S. defense-related TRUW and is located 42 kilometers (km) east of Carlsbad, New Mexico. WIPP is the only deep-geological disposal site for LLRM that is operating in the world today. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. As of February 2003, approximately 1500 shipments of waste have been safely transported to the WIPP, which has been operating since March 1999.

  8. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    SciTech Connect

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G.; Adamson, Duane J.; Herman, Connie C.; Peeler, David K.

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  9. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    SciTech Connect

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  10. Waste Isolation Pilot Plant (WIPP) fact sheet

    SciTech Connect

    Not Available

    1993-10-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.

  11. Nuclear Fuel Reprocessing

    SciTech Connect

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  12. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  13. Radioactive and nonradioactive waste intended for disposal at the Waste Isolation Pilot Plant

    SciTech Connect

    SANCHEZ,LAWRENCE C.; DREZ,P.E.; RATH,JONATHAN S.; TRELLUE,H.R.

    2000-05-19

    Transuranic (TRU) waste generated by the handling of plutonium in research on or production of US nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m{sup 3} of TRU waste, corresponding to 168,485 m{sup 3} of contact-handled (CH-) TRU waste and 7,079 m{sup 3} of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e., legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, the closure time for the repository. These wastes were produced at 27 US Department of Energy (DOE) sites in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by Sandia National Laboratories/New Mexico (SNL/NM).

  14. Characterization recommendations for waste sites at the Savannah River Plant

    SciTech Connect

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil.

  15. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  16. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  17. 9 CFR 114.18 - Reprocessing of biological products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  18. 9 CFR 114.18 - Reprocessing of biological products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  19. 9 CFR 114.18 - Reprocessing of biological products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  20. 9 CFR 114.18 - Reprocessing of biological products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  1. 9 CFR 114.18 - Reprocessing of biological products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  2. Optimizing near real time accountability for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2010-06-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  3. Reprocessed uranium exposure and lung cancer risk.

    PubMed

    Canu, Irina Guseva; Jacob, Sophie; Cardis, Elisabeth; Wild, Pascal; Caër-Lorho, Sylvaine; Auriol, Bernard; Laurier, Dominique; Tirmarche, Margot

    2010-09-01

    This study investigated the risk of lung cancer in regards to protracted occupational exposure to reprocessed uranium compounds. Two thousand seven hundred and nine male workers employed at the AREVA NC uranium processing plant between 1960 and 2005 in France were included in the cohort. Historical exposure to reprocessed uranium compounds classified by their solubility type was assessed on the basis of the plant's specific job-exposure matrix. Cox proportional hazard models adjusted for attained age, calendar period, and socioeconomic status were used to estimate relative risks in regards of each type of uranium compound. The relative risk of lung cancer tended to increase with decreasing solubility of reprocessed uranium compounds. The highest-though not statistically significant-relative risk was observed among workers exposed to slowly soluble reprocessed uranium dioxide. This study is the first suggesting an increasing risk of lung cancer associated with exposure to reprocessed uranium. Our results are consistent with data from experimental studies of biokinetics and the action mechanism of slowly soluble uranium compounds, but need to be confirmed in larger studies with more detailed dose-response analyses. PMID:20699691

  4. Robust Solution to Difficult Hydrogen Issues When Shipping Transuranic Waste to the Waste Isolation Pilot Plant

    SciTech Connect

    Countiss, S. S.; Basabilvazo, G. T.; Moody, D. C. III; Lott, S. A.; Pickerell, M.; Baca, T.; CH2M Hill; Tujague, S.; Svetlik, H.; Hannah, T.

    2003-02-27

    The Waste Isolation Pilot Plant (WIPP) has been open, receiving, and disposing of transuranic (TRU) waste since March 26, 1999. The majority of the waste has a path forward for shipment to and disposal at the WIPP, but there are about two percent (2%) or approximately 3,020 cubic meters (m{sup 3}) of the volume of TRU waste (high wattage TRU waste) that is not shippable because of gas generation limits set by the U.S. Nuclear Regulatory Commission (NRC). This waste includes plutonium-238 waste, solidified organic waste, and other high plutonium-239 wastes. Flammable gases are potentially generated during transport of TRU waste by the radiolysis of hydrogenous materials and therefore, the concentration at the end of the shipping period must be predicted. Two options are currently available to TRU waste sites for solving this problem: (1) gas generation testing on each drum, and (2) waste form modification by repackaging and/or treatment. Repackaging some of the high wattage waste may require up to 20:1 drum increase to meet the gas generation limits of less than five percent (5%) hydrogen in the inner most layer of confinement (the layer closest to the waste). (This is the limit set by the NRC.) These options increase waste handling and transportation risks and there are high costs and potential worker exposure associated with repackaging this high-wattage TRU waste. The U.S. Department of Energy (DOE)'s Carlsbad Field Office (CBFO) is pursuing a twofold approach to develop a shipping path for these wastes. They are: regulatory change and technology development. For the regulatory change, a more detailed knowledge of the high wattage waste (e.g., void volumes, gas generation potential of specific chemical constituents) may allow refinement of the current assumptions in the gas generation model for Safety Analysis Reports for Packaging for Contact-Handled (CH) TRU waste. For technology development, one of the options being pursued is the use of a robust container

  5. Low-level waste minimization at the Y-12 Plant

    SciTech Connect

    Koger, J.

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  6. Supercompaction and Repackaging Facility for Rocky Flats Plant transuranic waste

    SciTech Connect

    Barthel, J.M.

    1988-01-01

    The Supercompaction and Repackaging Facility (SaRF) for processing Rocky Flats Plant (RFP) generated transuranic (TRU) waste was conceptualized and has received funding of $1.9 million. The SaRF is scheduled for completion in September, 1989 and will eliminate a labor intensive manual repackaging effort. The semi-automated glovebox-contained SaRF is being designed to process 63,500 cubic feet of TRU waste annually for disposal at the Waste Isolation Pilot Plant (WIPP). Waste will enter the process through an airlock or drum dump and the combustible waste will be precompacted. Drums will be pierced to allow air to escape during supercompaction. Each drum will be supercompacted and transferred to a load out station for final packaging into a 55 gallon drum. Preliminary evaluations indicate an average 5 to 1 volume reduction, 2 to 1 increased processing rate, and 50% reduction in manpower. The SaRF will produce a significant annual savings in labor, material, shipping, and burial costs over the projected 15 year life, and also improve operator safety, reduce personnel exposure, and improve the quality of the waste product. 1 ref., 10 figs., 3 tabs.

  7. STRATEGIES FOR WATER AND WASTE REDUCTION IN DAIRY FOOD PLANTS

    EPA Science Inventory

    A study was undertaken to reduce water and waste discharges in a complex, multiproduct dairy food plant through management control and modifications of equipment and processes. The objectives were to develop approaches that would be broadly applicable throughout the dairy industr...

  8. Mitigation of plant penetration into radioactive waste utilizing herbicides

    SciTech Connect

    Cox, G.R.

    1982-01-01

    This paper describes the use of herbicides as an effective method of precluding plant root penetration into buried radioactive wastes. The discussed surface applications are selective herbicides to control broadleaf vegetation in grasses; nonselective herbicides, which control all vegetation; and slow-release forms of these herbicides to prolong effectiveness.

  9. ENVIRONMENTAL CONTROLS FOR WASTE-TO-ENERGY PLANTS

    EPA Science Inventory

    The paper provides a literature review of selected, published literature relative to the performance of certain pollution control technologies that have been applied to Waste-to-Energy (WTE) plants. It discusses various environmental standards which have been adopted by three Eur...

  10. Fetal loss and work in a waste water treatment plant

    SciTech Connect

    Morgan, R.W.; Kheifets, L.; Obrinsky, D.L.; Whorton, M.D.; Foliart, D.E.

    1984-05-01

    We investigated pregnancy outcomes in 101 wives of workers employed in a waste water treatment plant (WWTP), and verified fetal losses by hospital records. Paternal work histories were compiled and each of the 210 pregnancies was assigned a paternal exposure category. The relative risk of fetal loss was increased when paternal exposure to the WWTP occurred around the time of conception.

  11. Rubber lining for FGD scrubbers for waste incinerator plants

    SciTech Connect

    Rullmann, H.E.

    1999-11-01

    Flue gas desulfurization scrubbers for waste incineration plants can be lined with soft rubber or hard rubber for corrosion protection. Hard rubber is cured under high temperature and pressure in an autoclave. The advantage of hard rubber is the excellent temperature and chemical resistance. The authors have experience with hard rubber lined scrubbers that are in service without failures for over 20 years.

  12. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  13. Removal of dissolved and suspended radionuclides from Hanford Waste Vitrification Plant liquid wastes

    SciTech Connect

    Sharp, S.D. ); Nankani, F.D. ); Bray, L.A.; Eakin, D.E.; Larson, D.E. )

    1990-12-01

    It was determined during Preliminary Design of the Hanford Waste Vitrification Plant that certain intermediate process liquid waste streams should be decontaminated in a way that would permit the purge of dissolved chemical species from the process recycle shop. This capability is needed to ensure proper control of product glass chemical composition and to avoid excessive corrosion of process equipment. This paper discusses the process design of a system that will remove both radioactive particulates and certain dissolved fission products from process liquid waste streams. Supporting data obtained from literature sources as well as from laboratory- and pilot-scale tests are presented. 3 refs., 1 fig., 3 tabs.

  14. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  15. Boiler tube failures in municipal waste-to-energy plants

    SciTech Connect

    Krause, H.H.; Wright, I.G.

    1996-01-01

    Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

  16. CORAL: a stepping stone for establishing the Indian fast reactor fuel reprocessing technology

    SciTech Connect

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    2007-07-01

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR) spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)

  17. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  18. Laboratory plant study on the melting process of asbestos waste

    SciTech Connect

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi; Tsunemi, Takeshi

    1996-12-31

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown that melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.

  19. 75 FR 81250 - Pulse Jet Mixing at the Waste Treatment and Immobilization Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SAFETY BOARD Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Defense Nuclear... the use of pulse jet mixing at the Waste Treatment and Immobilization Plant located in Washington... to the Secretary of Energy Pulse Jet Mixing at the Waste Treatment and Immobilization Plant...

  20. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect

    1998-08-01

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  1. MOPITT V5 reprocessing

    Atmospheric Science Data Center

    2013-08-06

    ... parameters.   While the MOPITT team believes these technical problems would only concern a small number of MOPITT data users, ... the text string 'L1V3.36' whereas the reprocessed L1 files include 'L1V3.37'. The original L2 filenames included the text string ...

  2. Reprocessing of research reactor fuel the Dounreay option

    SciTech Connect

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  3. The waste isolation pilot plant regulatory compliance program

    SciTech Connect

    Mewhinney, J.A.; Kehrman, R.F.

    1996-06-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  4. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Washington Regulatory and Environmental Services

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  5. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-08-05

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose.

  6. Full Focus Needed on Finishing Hanford's Waste Treatment Plant - 12196

    SciTech Connect

    Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika

    2012-07-01

    The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threat to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of

  7. Transporting transuranic waste to the Waste Isolation Pilot Plant: Risk and cost perspectives

    SciTech Connect

    Biwer, B. M.; Gilette, J. L.; Poch, L. A.; Suermann, J. F.

    1999-02-16

    The Waste Isolation Pilot Plant (WIPP) is an authorized US Department of Energy (DOE) research and development facility constructed near the city of Carlsbad in southeastern New Mexico. The facility is intended to demonstrate the safe disposal of transuranic (TRU) radioactive waste resulting from US defense activities. Under the WIPP Land Withdrawal Act of 1992 (LWA), federal lands surrounding the WIPP facility were withdrawn from all public use and the title of those lands was transferred to the Secretary of Energy. The DOE's TRU waste is stored, and in some cases is still being generated, at 10 large-quantity and 13 small-quantity sites across the US. After applicable certification requirements have been met, the TRU waste at these sites will be sent to the WIPP to initiate the disposal phase of the facility, which according to current planning is projected to last for approximately 35 years.

  8. Solid waste recycling activities at the Kansas City Plant

    SciTech Connect

    Brown, D.L.; Huyett, J.D.; Westlake, N.M.

    1992-02-01

    The DCP has as Proactive Solid Waste Recycling Program. Historical activities have consisted of extensive Precious and Scarp Metal Recovery through dedicated efforts of the Excess and Reclamation department. This is the only organization at the KCP that pays for itself'' through utilization of manpower to recover reclaimable material from the teardown of scrap parts, equipment, and machinery. The KCP also initiated an expansion of this program through increased efforts to recovery recyclable materials from normal plant trash. Efforts to date have resulted in the establishment of waste paper and cafeteria grease recycling programs. Another initiative nearing fruition is to recycle waste styrofoam. Activities are also underway to establish future programs to recycle spent carbon, other plastic resins, glass and cardboard.

  9. Solid waste recycling activities at the Kansas City Plant

    SciTech Connect

    Brown, D.L.; Huyett, J.D.; Westlake, N.M.

    1992-02-01

    The DCP has as Proactive Solid Waste Recycling Program. Historical activities have consisted of extensive Precious and Scarp Metal Recovery through dedicated efforts of the Excess and Reclamation department. This is the only organization at the KCP that ``pays for itself`` through utilization of manpower to recover reclaimable material from the teardown of scrap parts, equipment, and machinery. The KCP also initiated an expansion of this program through increased efforts to recovery recyclable materials from normal plant trash. Efforts to date have resulted in the establishment of waste paper and cafeteria grease recycling programs. Another initiative nearing fruition is to recycle waste styrofoam. Activities are also underway to establish future programs to recycle spent carbon, other plastic resins, glass and cardboard.

  10. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  11. Preliminary seal design evaluation for the Waste Isolation Pilot Plant

    SciTech Connect

    Stormont, J C

    1988-03-01

    This report presents a preliminary evaluation of design concepts for the eventual sealing of the shafts, drifts, and boreholes at the Waste Isolation Pilot Plant Facility. The purpose of the seal systems is to limit the flow of water into, through, and out of the repository. The principal design strategy involves the consolidation of crushed or granular salt in response to the closure of the excavations in salt. Other candidate seal materials are bentonite, cementitious mixtures, and possibly asphalt. Results from in situ experiments and modeling studies, as well as laboratory materials testing and related industrial experience, are used to develop seal designs for shafts, waste storage panel entryways, non-waste containing drifts, and boreholes. Key elements of the ongoing experimental program are identified. 112 refs., 25 figs., 1 tab.

  12. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  13. [Hygienic monitoring in a municipal solid waste incineration plant].

    PubMed

    Boccia, Antonio; Del Cimmuto, Angela; Tufi, Daniela; De Giusti, Maria; Grisolia, Massimo

    2003-01-01

    Under President's Executive Order 915/1982, the Malagrotta waste disposal plant has been surrounded by a water-proof ring. This study reflects a eight-year research activity about "the Plant's steadiness and its impact on the land; hygienic monitoring of aquifers, air quality control and sound pollution; health and safety of workers; disinfection and land reclamation". For surface subsidence to be measured, 21 spots were monitored and 30 piezometers were set up in adjacent critical areas, both inside and outside the plant. Some of them were also used to pick up water and test it for chemical and microbiological purposes. Samples of leachates were analysed, air quality assessed and sound tests carried out. Overall outcomes show good performance in terms of interaction between plant, hydro-geological regimen and possible impact on the surrounding land. PMID:14716379

  14. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  15. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  16. Remote handling equipment at the hanford waste treatment plant

    SciTech Connect

    Bardal, M.A.; Roach, J.D.

    2007-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on

  17. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect

    Westinghouse Electric Company Waste Isolation Division

    1999-09-29

    DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement

  18. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as "Hair Waste".

    PubMed

    Cavello, Ivana A; Crespo, Juan M; García, Sabrina S; Zapiola, José M; Luna, María F; Cavalitto, Sebastián F

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  19. Cut waste to reduce surcharges for your dairy plant

    SciTech Connect

    Carawan, R.E.

    1988-12-31

    Wastewater from most dairy plants is discharged to publicly owned treatment works (POTWs), where the majority of the pollutants are removed before the water is discharged to the environment. Treating the water costs money, and most treatment works charge according to the volume of sewage treated. In addition, they commonly charge extra (apply a surcharge) if the waste load exceeds certain specified levels because it costs more to treat water that contains more pollutants.

  20. Management of plant health risks associated with processing of plant-based wastes: a review.

    PubMed

    Noble, R; Elphinstone, J G; Sansford, C E; Budge, G E; Henry, C M

    2009-07-01

    The rise in international trade of plants and plant products has increased the risk of introduction and spread of plant pathogens and pests. In addition, new risks are arising from the implementation of more environmentally friendly methods of biodegradable waste disposal, such as composting and anaerobic digestion. As these disposal methods do not involve sterilisation, there is good evidence that certain plant pathogens and pests can survive these processes. The temperature/time profile of the disposal process is the most significant and easily defined factor in controlling plant pathogens and pests. In this review, the current evidence for temperature/time effects on plant pathogens and pests is summarised. The advantages and disadvantages of direct and indirect process validation for the verification of composting processes, to determine their efficacy in destroying plant pathogens and pests in biowaste, are discussed. The availability of detection technology and its appropriateness for assessing the survival of quarantine organisms is also reviewed. PMID:19329302

  1. Sealing concepts for the Waste Isolation Pilot Plant (WIPP) site

    SciTech Connect

    Christensen, C.L.; Gulick, C.W.; Lambert, S.J.

    1982-09-01

    The Waste Isolation Pilot Plant (WIPP) facility is proposed for development in the southeast portion of the State of New Mexico. The proposed horizon is in bedded salt located approximately 2150 ft below the surface. The purpose of the WIPP is to provide an R&D facility to demonstrate the safe disposal of radioactive wastes resulting from defense activities of the United States. As such, it will include a disposal demonstration for transuranic (TRU) wastes and an experimental area to address issues associated with disposal of defense high level wastes (DHLW) in bedded salt. All DHLW used in the experiments are planned for retrieval at the termination of testing; the TRU waste can be permanently disposed of at the site after the pilot phase is complete. This report addresses only the Plugging and Sealing program, which will result in an adequate and acceptable technology for final sealing and decommissioning of the facility at the WIPP site. The actual plugging operations are intended to be conducted on a commercial industrial basis through contracts issued by the DOE. This report is one in a series that is based on a technical program of modeling, laboratory materials testing and field demonstration which will provide a defensible basis for the actual plugging operations to be conducted by the DOE for final closure of the facility.

  2. Plant characteristics associated with widespread variation in eelgrass wasting disease.

    PubMed

    Groner, Maya L; Burge, Colleen A; Kim, Catherine J S; Rees, Erin; Van Alstyne, Kathryn L; Yang, Sylvia; Wyllie-Echeverria, Sandy; Harvell, C Drew

    2016-02-25

    Seagrasses are ecosystem engineers of essential marine habitat. Their populations are rapidly declining worldwide. One potential cause of seagrass population declines is wasting disease, which is caused by opportunistic pathogens in the genus Labyrinthula. While infection with these pathogens is common in seagrasses, theory suggests that disease only occurs when environmental stressors cause immunosuppression of the host. Recent evidence suggests that host factors may also contribute to disease caused by opportunistic pathogens. In order to quantify patterns of disease, identify risk factors, and investigate responses to infection, we surveyed shoot density, shoot length, epiphyte load, production of plant defenses (phenols), and wasting disease prevalence in eelgrass Zostera marina across 11 sites in the central Salish Sea (Washington state, USA), a region where both wasting disease and eelgrass declines have been documented. Wasting disease was diagnosed by the presence of necrotic lesions, and Labyrinthula cells were identified with histology. Disease prevalence among sites varied from 6 to 79%. The probability of a shoot being diseased was higher in longer shoots, in patches of higher shoot density, and in shoots with higher levels of biofouling from epiphytes. Phenolic concentration was higher in diseased leaves. We hypothesize that this results from the induction of phenols during infection. Additional research is needed to evaluate whether phenols are an adaptive defense against Labyrinthula infection. The high site-level variation in disease prevalence emphasizes the potential for wasting disease to be causing some of the observed decline in eelgrass beds. PMID:26912046

  3. The 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Anderson, D.R.; Jow, H.N.; Marietta, M.G.; Chu, M.S.Y.; Shephard, L.E.; Helton, J.C.; Basabilvazo, G.

    1998-07-01

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic (TRU) waste that has been generated at government defense installations in the United States. The WIPP is located in an area of low population density in southeastern New Mexico. Waste disposal will take place in excavated chambers in a bedded salt formation approximately 655 m below the land surface. This presentation describes a performance assessment (PA) carried out at Sandia National Laboratories (SNL) to support the Compliance Certification Application (CCA) made by the DOE to the US Environmental Protection Agency (EPA) in October, 1996, for the certification of the WIPP for the disposal of TRU waste. Based on the CCA supported by the PA described in this presentation, the EPA has issued a preliminary decision to certify the WIPP for the disposal of TRU waste. At present (April 1998), it appears likely that the WIPP will be in operation by the end of 1998.

  4. Waste retrieval plan for the Waste Isolation Pilot Plant. Revision 1

    SciTech Connect

    Not Available

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ``bin tests`` and ``alcove test(s)`` with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met.

  5. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    SciTech Connect

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  6. Assessing pollutions of soil and plant by municipal waste dump

    NASA Astrophysics Data System (ADS)

    Liu, Changli; Zhang, Yun; Zhang, Feng'e.; Zhang, Sheng; Yin, Miying; Ye, Hao; Hou, Hongbing; Dong, Hua; Zhang, Ming; Jiang, Jianmei; Pei, Lixin

    2007-04-01

    Research is few in the literature regarding the investigation and assessment of pollutions of soil and plant by municipal waste dumps. Based upon previous work in seven waste dumping sites (nonsanitary landfills) in Beijing, Shanghai and Shijiazhuang, this study expounds the investigation and assessment method and report major pollutants. Using relative background values, this study assesses soil pollution degree in the seven dumping sites. Preliminary conclusions are: (1) pollution degrees are moderate or heavy; (2) pollution distance by domestic waste that is dumped on a plane ground is 85 m; (3) the horizontal transport distance of pollutants might be up to 120 m if waste leachates are directly connected with water in saturated soils; (4) vertical transport depth is about 3 m in unsaturated silty clayey soils. Furthermore, using relative background values and hygiene standards of food and vegetable this study assesses the pollutions of different parts of reed, sorghum, watermelon and sweet-melon. It is found: (1) in comparison with the relative background values in a large distance to the waste dumping sites, domestic wastes have polluted the roots and stems of reed and sorghum, whereas fine coal ash has polluted the leaves, rattans and fruits of watermelon and sweet-melon; (2) domestic wastes and fine coal ash have heavily polluted the edible parts of sorghum, water melon and sweet-melon. As, Hg, Pb and F have far exceeded standard values, e.g., Hg has exceeded the standard value by up to 650 1,700 times and Cd by 120 275 times, and the comprehensive pollution index is up to 192.9 369.7; (3) the polluted sorghum, watermelon and sweet-melon are inedible.

  7. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  8. Spent nuclear fuel reprocessing modeling

    SciTech Connect

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V.; Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I.

    2013-07-01

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  9. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  10. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  11. Nondestructive assay and nondestructive examination of remote-handled transuranic waste at the ORNL waste handling and packaging plant

    SciTech Connect

    Schultz, F.J.; Caldwell, J.T.; Pajarito Scientific Corp. )

    1989-01-01

    The purpose of this investigation is to examine the use of an electron linear accelerator (LINAC) in the performance of nondestructive assay (NDA) and nondestructive examination (NDE) measurements of remote-handled transuranic wastes. The system will be used to perform waste characterization and certification activities at the Oak Ridge National Laboratory's proposed Waste Handling and Packaging Plant. The NDA and NDE technologies which were developed for contact-handled wastes are inadequate to perform such measurements on high gamma and neutron dose-rate wastes. A single LINAC will provide the interrogating fluxes required for both NDA and NDE measurements of the wastes. 11 refs., 6 figs.

  12. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  13. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    SciTech Connect

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  14. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  15. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect

    Washington TRU Solutions LLC

    2005-09-01

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  16. [Mercury pollution investigation in predominant plants surrounding Shenzhen Qingshuihe municipal solid waste incineration plant].

    PubMed

    Zhao, Hong-Wei; Zhong, Xiu-Ping; Liu, Yang-Sheng; Wang, Jun-Jian; Hong, Yuan; Zhao, Kang-Sai; Zeng, Hui

    2009-09-15

    In order to investigate the effects of mercury emission from municipal solid waste incineration (MSWI) on the surrounding plants and soils, the mercury concentrations were examined in the plant samples including leaves and stems and the soil samples around Shenzhen Qingshuihe MSWI Plant. Results show that, these plants are significantly polluted by mercury, the mercury concentrations of the plant leaves are 0.030 9-0.246 7 mg x kg(-1), with the mean value 0.094 8 mg x kg(-1), among the local prominent plants, the mercury concentrations in the leaves are in the order of: Acacia confuse > Litsea rotundifolia > Acacia mangium > Acacia auriculaeformis > Schima superb > Ilex asprella. The mercury concentrations of the plant stems are 0.007 4-0.119 6 mg x kg(-1), with the mean value 0.041 7 mg x kg(-1). For the same plant, the mercury concentration in its leaf correlates positively with that in its stem, but presents little correlation with that in the soil where it grows. Under the direction of the dominant wind, the concentration of smoke diffusion is often influenced by the distance from the stack and the difference of terrain. The mercury concentrations of the plant leaves and stems vary almost in accordance with spatial heterogeneity patterns of smoke diffusion. These results demonstrate that the interaction of the smoke and plant leaves play the leading role in the mercury exchange between plants and environment. PMID:19927841

  17. A historical review of Waste Isolation Pilot Plant backfill development

    SciTech Connect

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  18. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  19. Integrated international safeguards concepts for fuel reprocessing

    SciTech Connect

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility.

  20. The disturbed rock zone at the Waste Isolation Pilot Plant.

    SciTech Connect

    Hansen, Francis D.

    2003-12-01

    The Disturbed Rock Zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. The initial portion of this document discusses the disturbed rock zone relative to operational issues pertaining to re-certification of the repository. The remaining sections summarize and document theoretical and experimental advances that quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt.

  1. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  2. ICPP Waste Management Technology Development Program

    SciTech Connect

    Hogg, G.W.; Olson, A.L.; Knecht, D.A.; Bonkoski, M.J.

    1993-01-01

    As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

  3. Detection of pathogenic clostridia in biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Shehata, Awad A; Krüger, Monika

    2015-01-01

    As the number of biogas plants has grown rapidly in the last decade, the amount of potentially contaminated wastes with pathogenic Clostridium spp. has increased as well. This study reports the results from examining 203 biogas plant wastes (BGWs). The following Clostridium spp. with different frequencies could be isolated via a new enrichment medium (Krüne medium) and detected by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS): Clostridium perfringens (58 %) then Clostridium bifermentans (27 %), Clostridium tertium (23 %) and Clostridium butyricum (19 %), Clostridium cadaveris (15 %), Clostridium parapurificum (6 %), Clostridium glycolicum (5 %), Clostridium baratii (4 %), Clostridium sporogenes (2 %), Clostridium sordellii (1 %) and Clostridium subterminale (0.5 %). The mean most probable number (MPN) count of sulfite reducing bacteria was between 10(3) and 10(4)/mL, and the higher the MPN, the more pathogenic Clostridium spp. were present. Also, real-time PCR was used to be compared with culture method for C. perfringens, C. bifermentans, C. butyricum, C. sporogenes/Clostridium botulinum and C. sordellii. Although real-time PCR was more sensitive than the culture method, both systems improve the recovery rate but in different ways and are useful to determine pathogenic clostridia in biogas plants. In conclusion, BGWs could present a biohazard risk of clostridia for humans and animals. PMID:24984829

  4. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  5. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    SciTech Connect

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-12-31

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at {approximately}40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations.

  6. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    SciTech Connect

    Not Available

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  7. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    SciTech Connect

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.

  8. Management and minimization of photographic wastes at Pantex Plant

    SciTech Connect

    Locke, J.G.

    1992-01-01

    There are a variety of photographic processes in use at Pantex Plant. This report describes our approach to minimization of these various waste streams. The wastewater discharge from the Photo Lab has been reduced from 17,400 to 2400 gallons/month by the use of wash water recirculation. Use of an evaporation system has reduced liquid effluents by 90%. When installed, the water recirculation systems in X-ray will reduce wastewater discharge from 112,500 to 5600 gallons/month.

  9. Engineered Barriers in the Waste Isolation Pilot Plant

    SciTech Connect

    Ghose, Shankar

    2002-07-01

    The Waste Isolation Pilot Plant (WIPP) is a deep geological repository being developed by the Department of Energy as a research and disposal facility in the bedded salt deposit of New Mexico. WIPP is essentially an underground salt mine at 2150 feet (655 meters) below the surface and operates on multiple barrier mechanism. Engineered barriers provide an additional protective measure to prevent the movement of fluid towards the accessible environment. Four types of engineered barriers are used in the WIPP disposal system. This paper presents an analysis of the effectiveness of the engineered barriers in various repository environments. (authors)

  10. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  11. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  12. Impacts of (14)C discharges from a nuclear fuel reprocessing plant on surrounding vegetation: Comparison between grass field measurements and TOCATTA-χ and SSPAM(14)C model computations.

    PubMed

    Limer, Laura M C; Le Dizès-Maurel, Séverine; Klos, Ryk; Maro, Denis; Nordén, Maria

    2015-09-01

    This article compares and discusses the ability of two different models to reproduce the observed temporal variability in grass (14)C activity in the vicinity of AREVA-NC La Hague nuclear fuel reprocessing plant in France. These two models are the TOCATTA-χ model, which is specifically designed for modelling transfer of (14)C (and tritium) in the terrestrial environment over short to medium timescales (days to years), and SSPAM(14)C, which has been developed to model the transfer of (14)C in the soil-plant-atmosphere with consideration over both short and long timescales (days to thousands of years). The main goal of this article is to discuss the strengths and weaknesses of the models studied, and to investigate if modelling could be improved through consideration of a much higher level of detail of plant physiology and/or higher number of plant compartments. These models have been applied here to the La Hague field data as it represents a medium term data set with both short term variation and a sizeable time series of measurements against which to compare the models. The two models have different objectives in terms of the timescales they are intended to be applied over, and thus incorporate biological processes, such as photosynthesis and plant growth, at different levels of complexity. It was found that the inclusion of seasonal dynamics in the models improved predictions of the specific activity in grass for such a source term of atmospheric (14)C. PMID:26063400

  13. NRC Waste Incidental to Reprocessing Program: Overview of Consultation and Monitoring Activities at the Idaho National Laboratory and the Savannah River Site - What We Have Learned - 12470

    SciTech Connect

    Suber, Gregory

    2012-07-01

    In 2005 the U.S. Nuclear Regulatory Commission (NRC) began to implement a new set of responsibilities under the Ronald W. Reagan National Defense Authorization Act (NDAA) of Fiscal Year 2005. Section 3116 of the NDAA requires the U.S. Department of Energy (DOE) to consult with the NRC for certain non-high level waste determinations and also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2005, the NRC staff began consulting with DOE and completed reviews of draft waste determinations for salt waste at the Savannah River Site. In 2006, a second review was completed on tank waste residuals including sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center Tank Farm at the Idaho National Laboratory. Monitoring Plans were developed for these activities and the NRC is actively monitoring disposal actions at both sites. NRC is currently in consultation with DOE on the F-Area Tank Farm closure and anticipates entering consultation on the H-Area Tank Farm at the Savannah River Site. This paper presents, from the NRC perspective, an overview of how the consultation and monitoring process has evolved since its conception in 2005. It addresses changes in methods and procedures used to collect and develop information used by the NRC in developing the technical evaluation report and monitoring plan under consultation and the implementation the plan under monitoring. It will address lessons learned and best practices developed throughout the process. The NDAA has presented significant challenges for the NRC and DOE. Past and current successes demonstrate that the NDAA can achieve its intended goal of facilitating tank closure at DOE legacy defense waste sites. The NRC believes many of the challenges in performing the WD reviews have been identified and addressed. Lessons learned have been collected and documented throughout the review process. Future success will be contingent on each agencies commitment to

  14. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  15. Current safeguards inspection for UO sub 3 product and conceptual study of NDA system for UO sub 3 pot in Tokai Reprocessing Plant

    SciTech Connect

    Kashimura, T.; Watanabe, F.; Maki, A.; Sugiyama, T. )

    1991-01-01

    In Tikai Reprocessing Plan (TRP) with a capacity of 0.7 MTU/d, the separated uranium is recovered as UO3 powder which is filled in particular pots and stored in UO3 storage facilities. The total amount of UO3 products in TRP at present is approximately 430 tons, or 1950 pots (December, 1990). These UO3 products undergo safeguards inspection by IAEA once a year. AT the time of inspection IAEA measures the gross weight of pot and confirms the uranium enrichment by non-destructive assays (NDA) for the certain number of pots. This paper summarizes the current safeguards inspection for UO3 products in TRP. The results of conceptual study on an integrated NDA system for UO3 pot are also described.

  16. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    SciTech Connect

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperly sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.

  17. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    SciTech Connect

    Jubin, R. T.; Strachan, D. M.; Ilas, G.; Spencer, B. B.; Soelberg, N. R.

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  18. Power plant waste disposals in open-cast mines

    SciTech Connect

    Herstus, J.; Stastny, J.

    1995-12-01

    High population density in Czech Republic has led, as well as in other countries, to strong NIMBY syndrome influencing the waste disposal location. The largest thermal power plants are situated in neighborhood of extensive open-cast brown coal mines with huge area covered by tipped clayey spoil. Such spoil areas, technically almost useless, are potential space for power giant waste disposal position. There are several limitations, based on specific structural features of tipped clayey spoil, influencing decision to use such area as site for waste disposal. Low shear strength and extremely high compressibility belong to the geotechnical limitations. High permeability of upper ten or more meters of tipped spoil and its changes with applied stress level belongs to transitional features between geotechnical and environmental limitations. The problems of ash and FGD products stabilized interaction with such subgrade represent environmental limitation. The paper reports about the testing procedure developed for thickness and permeability estimation of upper soil layer and gives brief review of laboratory and site investigation results on potential sites from point of view of above mentioned limitations. Also gives an outline how to eliminate the influence of unfavorable conditions.

  19. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect

    Washington Regulatory and Environmental Services

    2006-10-12

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] §7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. §§6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. §§300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. §§2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. §§9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  20. Experimental program plan for the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1994-01-01

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

  1. Summary of scientific investigations for the Waste Isolation Pilot Plant

    SciTech Connect

    Weart, W.D.

    1996-02-01

    The scientific issues concerning disposal of radioactive wastes in salt formations have received 40 years of attention since the National Academy of Sciences (NAS) first addressed this issue in the mid-50s. For the last 21 years, Sandia National Laboratories (SNL) have directed site specific studies for the Waste Isolation Pilot Plant (WIPP). This paper will focus primarily on the WIPP scientific studies now in their concluding stages, the major scientific controversies regarding the site, and some of the surprises encountered during the course of these scientific investigations. The WIPP project`s present understanding of the scientific processes involved continues to support the site as a satisfactory, safe location for the disposal of defense-related transuranic waste and one which will be shown to be in compliance with Environmental Protection Agency (EPA) standards. Compliance will be evaluated by incorporating data from these experiments into Performance Assessment (PA) models developed to describe the physical and chemical processes that could occur at the WIPP during the next 10,000 years under a variety of scenarios. The resulting compliance document is scheduled to be presented to the EPA in October 1996 and all relevant information from scientific studies will be included in this application and the supporting analyses. Studies supporting this compliance application conclude the major period of scientific investigation for the WIPP. Further studies will be of a ``confirmatory`` and monitoring nature.

  2. Modeling Offgas Systems for the Hanford Waste Treatment Plant

    SciTech Connect

    Smith, Frank G., III

    2005-09-02

    To augment steady-state design calculations, dynamic models of three offgas systems that will be used in the Waste Treatment Plant now under construction at the Hanford Site were developed using Aspen Custom Modeler{trademark}. The offgas systems modeled were those for the High Level Waste (HLW) melters, Low Activity Waste (LAW) melters and HLW Pulse Jet Ventilation (PJV) system. The models do not include offgas chemistry but only consider the two major species in the offgas stream which are air and water vapor. This is sufficient to perform material and energy balance calculations that accurately show the dynamic behavior of gas pressure, temperature, humidity and flow throughout the systems. The models are structured to perform pressure drop calculations across the various unit operations using a combination of standard engineering calculations and empirical data based correlations for specific pieces of equipment. The models include process controllers, gas ducting, control valves, exhaust fans and the offgas treatment equipment. The models were successfully used to analyze a large number of operating scenarios including both normal and off-normal conditions.

  3. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. PMID:27067426

  4. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    PubMed

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb. PMID:23734449

  5. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  6. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  7. Noble gas atmospheric monitoring at reprocessing facilities

    SciTech Connect

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  8. Data validation and security for reprocessing.

    SciTech Connect

    Tolk, Keith Michael; Merkle, Peter Benedict; DurÔan, Felicia Angelica; Cipiti, Benjamin B.

    2008-10-01

    Next generation nuclear fuel cycle facilities will face strict requirements on security and safeguards of nuclear material. These requirements can result in expensive facilities. The purpose of this project was to investigate how to incorporate safeguards and security into one plant monitoring system early in the design process to take better advantage of all plant process data, to improve confidence in the operation of the plant, and to optimize costs. An existing reprocessing plant materials accountancy model was examined for use in evaluating integration of safeguards (both domestic and international) and security. International safeguards require independent, secure, and authenticated measurements for materials accountability--it may be best to design stand-alone systems in addition to domestic safeguards instrumentation to minimize impact on operations. In some cases, joint-use equipment may be appropriate. Existing domestic materials accountancy instrumentation can be used in conjunction with other monitoring equipment for plant security as well as through the use of material assurance indicators, a new metric for material control that is under development. Future efforts will take the results of this work to demonstrate integration on the reprocessing plant model.

  9. ALPHA WASTE MINIMIZATION IN TERMS OF VOLUME AND RADIOACTIVITY AT COGEMA'S MELOX AND LA HAGUE PLANTS

    SciTech Connect

    ARSLAN, M.; DUMONT, J.C.; LONDRES, V.; PONCELET, F.J.

    2003-02-27

    This paper describes the management of alpha waste that cannot be stored in surface repositories under current French regulations. The aim of the paper is to provide an overview of COGEMA's Integrated Waste Management Strategy. The topics discussed include primary waste minimization, from facility design to operating feedback; primary waste management by the plant operator, including waste characterization; waste treatment options that led to building waste treatment industrial facilities for plutonium decontamination, compaction and cement solidification; and optimization of industrial tools, which is strongly influenced by safety and financial considerations.

  10. Management of intermediate-level radioactive wastes in the United States

    SciTech Connect

    Aaberg, R.L.; Lakey, L.T.; Greenborg, J.

    1980-07-01

    While used extensively, the term intermediate-level waste is not a clearly defined waste category. Assuming the ILW includes all radioactive wastes requiring shielding but not ordinarily included in a high-level waste canister, its major sources include power plant operations, spent fuel storage, and spent fuel reprocessing. While the volume is approx. 10/sup 2/ greater than that of high-level waste, ILW contains only approx. 1% of the radioactivity. Power plant waste, constituting approx. 87% of the waste volume, is generally nontransuranic waste. The other approximately 13% from fuel reprocessing is generally transuranic. Intermediate-level wastes fall into the general categories of highly radioactive hardware, failed equipment, HEPA filters, wet wastes, and noncombustible solids. Within each category, however, the waste characteristics can vary widely, necessitating different treatments. The wet wastes, primarily power plant resins and sludges, contribute the largest volume; fuel hulls and core hardware represent the greatest activity. Numerous treatments for intermediate-level wastes are available and have been used successfully. Packaging and transportation systems are also available. Intermediate-level wastes from power plants are disposed of by shallow-land burial. However, the alpha-bearing wastes are being stored pending eventual disposal to a geologic repository or by other means, e.g., intermediate-depth burial, sea disposal. Problem areas associated with intermediate-level wastes include: disposal criteria need to be established; fixation of organic ion exchange resins from power plant operation needs improvement; and reprocessing of LWR fuels will produce ILW considerably different from power plant ILW and requiring different treatment.

  11. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    SciTech Connect

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  12. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  13. Wastewater treatment plant expansion encounters unexpected hazardous waste

    SciTech Connect

    Carr, J.

    1994-11-01

    On the face of it, it should have been a straightforward project. The contract provided for the expansion and upgrade of an 8-mgd wastewater treatment facility in Pottstown, Pennsylvania. Essentially, it entailed the expansion of the plant`s capacity to 15 mgd and the replacement of process tankage with activated sludge and tertiary facilities designed to achieve superior effluent quality as mandated by the Pennsylvania Department of Environmental Resources (PADER). The entire project was to have been completed in a three-year period at a cost of just over $17 million. However, the discovery of PCB contaminated soils on the site after the work had already begun led to a series of complications that ultimately turned the project into a much more arduous and costly one than could have been foreseen. The complications involved issues ranging from a determination of pollution levels, to waste disposal permitting, to compliance with OSHA standards for health and safety training, to insurance coverage, to the need to modify operating procedures and reschedule the work. As an added contingency measure, the owner of the plant, the Pottstown Borough Authority, decided to retain a hazardous materials contractor to excavate, transport, and dispose of any further contaminated soils that might be encountered later on.

  14. Summary of Waste Calcination at INTEC

    SciTech Connect

    O'Brien, Barry Henry; Newby, Bill Joe

    2000-10-01

    Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

  15. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. Volume I. Tornado effects on head-end cell airflow

    SciTech Connect

    Holloway, L.J.; Andrae, R.W.

    1981-09-01

    This report describes results of a parametric study of the impacts of a tornado-generated depressurization on airflow in the contaminated process cells within the presently inoperative Nuclear Fuel Services fuel reprocessing facility near West Valley, NY. The study involved the following tasks: (1) mathematical modeling of installed ventilation and abnormal exhaust pathways from the cells and prediction of tornado-induced airflows in these pathways; (2) mathematical modeling of individual cell flow characteristics and prediction of in-cell velocities induced by flows from step 1; and (3) evaluation of the results of steps 1 and 2 to determine whether any of the pathways investigated have the potential for releasing quantities of radioactively contaminated air from the main process cells. The study has concluded that in the event of a tornado strike, certain pathways from the cells have the potential to release radioactive materials of the atmosphere. Determination of the quantities of radioactive material released from the cells through pathways identified in step 3 is presented in Part II of this report.

  16. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    SciTech Connect

    Snider, C.A.; Weston, W.W.

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  17. Recycling plant, human and animal wastes to plant nutrients in a closed ecological system

    NASA Technical Reports Server (NTRS)

    Meissner, H. P.; Modell, M.

    1979-01-01

    The essential minerals for plant growth are nitrogen, phosphorous, potassium (macronutrients), calcium, magnesium, sulfur (secondary nutrients), iron, manganese, boron, copper, zinc, chlorine, sodium, and molybdenum (micronutrients). The first step in recycling wastes will undoubtedly be oxidation of carbon and hydrogen to CO2 and H2O. Transformation of minerals to plant nutrients depends upon the mode of oxidation to define the state of the nutrients. For the purpose of illustrating the type of processing required, ash and off-gas compositions of an incineration process were assumed and subsequent processing requirements were identified. Several processing schemes are described for separating out sodium chloride from the ash, leading to reformulation of a nutrient solution which should be acceptable to plants.

  18. Nondestructive measurements in support of Waste Isolation Pilot Plant at Rockwell Hanford Operations: problems and methods

    SciTech Connect

    Westsik, G.A.

    1986-05-01

    The 234-5Z Analytical Laboratory, located in the 200 West Area of the Hanford Site, has been requested to provide waste package measurement capability for both the Plutonium/Uranium Extraction (PUREX) Plant and Plutonium Finishing Plant (PFP) in support of the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). The requested WIPP values are sensitive to changes in isotopic distribution. Unfortunately, the determination of the isotopic distribution of an individual waste item or drum is difficult. The problems and uncertainties encountered in providing the values are discussed. Also, examples of calculations for the WIPP-WAC are shown.

  19. Waste receiving and processing plant control system; system design description

    SciTech Connect

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  20. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect

    Not Available

    1993-12-31

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

  1. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  2. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin; Jantzen, Carol; Crawford, Charles

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  3. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  4. Glass melter assembly for the Hanford Waste Vitrification Plant

    SciTech Connect

    Chen, A.E.; Russell, A.; Shah, K.R.; Kalia, J.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is designed to solidify high level radioactive waste by converting it into stable borosilicate after mixing with glass frit and water. The heart of this conversion process takes place in the glass melter. The life span of the existing melter is limited by the possible premature failure of the heater assembly, which is not remotely replaceable, in the riser and pour spout. A goal of HWVP Project is to design remotely replaceable riser and pour spout heaters so that the useful life of the melter can be prolonged. The riser pour spout area is accessible only by the canyon crane and impact wrench. It is also congested with supporting frame members, service piping, electrode terminals, canister positioning arm and other various melter components. The visibility is low and the accessibility is limited. The problem is further compounded by the extreme high temperature in the riser core and the electrical conductive nature of the molten glass that flows through it.

  5. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal. PMID:23640706

  6. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  7. Waste form product characteristics

    SciTech Connect

    Taylor, L.L.; Shikashio, R.

    1995-01-01

    The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

  8. Slag cement-low level radioactive waste forms at Savannah River Plant

    SciTech Connect

    Malek, R.I.A.; Roy, D.M.; Langton, C.A.

    1986-12-01

    A hydrated ceramic waste form, ''salt-stone,'' was designed for solidification and stabilization of Savannah River Plant (SRP) low level radioactive defense waste. This waste is a concentrated salt solution containing mainly sodium nitrate, nitrite, aluminate, sulfate, and hydroxide and has radioactivity. Ground, granulated blast furnace slag (a byproduct from the steel industry) was identified as a potential hydraulic ingredient for saltstone since its reactivity was found to be enhanced by the high alkalinity of the waste solution.

  9. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  10. A model for coburning of power plant waste materials in utility boilers

    SciTech Connect

    Stadler, S.P.; Shea, S.C.; Quinn, A.; Murarka, I.

    1994-12-31

    A software package, the Coburning Feed Rate Simulator (COFERS), has been developed which will enable utility environmental specialists and plant engineers to evaluate the impacts of coburning power plant waste materials in coal-fired power plants. Examples of the wastes considered include contaminated soils and low-volume waste materials such as spent solvents, boiler cleaning fluids, waste paints, etc. The impacts considered are trace element and organic compound concentrations in solid waste streams. The program uses data from various EPRI research projects that examine the distribution of trace elements and organic compounds within solid waste streams The program is designed to allow users easily to modify or update the partitioning information as it becomes available in the future. COFERS calculates the maximum coburned waste feed rate possible given a coal feed rate and user-specified limits on the composition of the waste materials being processed. Also, plant waste stream compositions can be determined for specified coal and waste feed rates. Sensitivity analyses can be performed on a variety of parameters. Results are presented in graphical and text formats. The benefits of using this program include assuring a desired chemical composition of the solid wastes generated by coburning, allowing the development of coburning plans based on sensitivity analysis of alternate scenarios, and simplified preparation of coburning plan documents. The Coburning Feed Rate Simulator (COFERS) runs under Microsoft Windows and will be available from the EPRI Product Distribution Center in the fall of 1994.

  11. The Waste Isolation Pilot Plant (WIPP) Groundwater Monitoring Program

    NASA Astrophysics Data System (ADS)

    Hillesheim, M. B.; Beauheim, R. L.

    2006-12-01

    The development of a groundwater monitoring program is an integral part of any radioactive waste disposal facility. Monitoring improves our understanding of the geologic and hydrologic framework, which improves conceptual models and the quality of groundwater models that provide data input for performance assessment. The purpose of a groundwater monitoring program is to provide objective evidence that the hydrologic system is behaving as expected (i.e., performance confirmation). Monitoring should not be limited to near-field observations but should include the larger natural system in which the repository is situated. The Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy (DOE) facility designed for the safe disposal of transuranic wastes resulting from U.S. defense programs, can serve as a model for other radioactive waste disposal facilities. WIPP has a long-established groundwater monitoring program that is geared towards meeting compliance certification requirements set forth by the U.S. Environmental Protection Agency (EPA). The primary task of the program is to measure various water parameters (e.g.., water level, pressure head, chemical and physical properties) using a groundwater monitoring network that currently consists of 85 wells in the vicinity of the WIPP site. Wells are completed to a number of water-bearing horizons and are monitored on a monthly basis. In many instances, they are also instrumented with programmable pressure transducers that take high-frequency measurements that supplement the monthly measurements. Results from higher frequency measurements indicate that the hydrologic system in the WIPP vicinity is in a transient state, responding to both natural and anthropogenic stresses. The insights gathered from the monitoring, as well as from hydrologic testing activities, provide valuable information that contributes to groundwater modeling efforts and performance assessment. Sandia is a multi program laboratory operated by

  12. The Zwilag interim storage plasma plant technology to handle operational waste from nuclear plants

    SciTech Connect

    Heep, Walter

    2007-07-01

    The first processing of low level radioactive wastes from Swiss nuclear power plants marks the successful completion of commissioning in March 2004 of a treatment facility for low and intermediate level radioactive wastes, which is operated with the help of plasma technology. The theoretical principles of this metallurgy-derived process technology are based on plasma technology, which has already been used for a considerable period outside of nuclear technology for the production of highly pure metal alloys and for the plasma synthesis of acetylene. The commercial operation of the Plasma Plant owned by Zwischenlager Wuerenlingen AG (ZWILAG) has also enabled this technology to be used successfully for the first time in the nuclear field, especially in compliance with radiation protection aspects. In addition to a brief presentation of the technology used in the plant, the melting process under operating conditions will be explained in more detail. The separation factors attained and volume reductions achieved open interesting perspectives for the further optimisation of the entire process in the future. (author)

  13. Plasma coal reprocessing

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  14. Use of optimization modeling to evaluate industrial waste reduction options: Application to a sour gas plant

    SciTech Connect

    Roberge, H.D. ); Sikora, R.P. ); Baetz, B.W. . Dept. of Civil Engineering)

    1994-01-01

    This note reports on a study of waste reduction options for the upstream oil and gas industry and involves the application of a waste reduction optimization model to a generic sour gas plant. The waste reduction optimization model is meant as an aid for decision-making relating to the implementation of waste reduction options. The generic facility was developed from process knowledge provided by industry members of a project steering committee, as well as waste management information from industry manuals and represents a facility of average capacity and typical configuration. Several waste minimization options were modeled for selected waste streams. The selected streams were chosen based upon waste flows and disposal costs and their potential for waste reduction. The results of the modeling for the generic sour gas plant have shown that a set of cost-effective waste reduction options exist, there is significant potential for reducing the total quantity of waste to be managed and disposed of, and that implementation of the options would lead to considerable cost savings. The value and usefulness of the modeling approach lie not only in the generated results, but also in the fact that to construct the model, relevant waste flows and every possible manner that these waste flows can be minimized or processed are systematically identified. Once modeled, the parameters can be readily manipulated to determine various possible waste management strategies. To effectively use the modeling approach, the waste reduction team should have knowledge of the plant processes, existing waste management practices and costs, information on potential waste reduction options and technologies, as well as experience in mathematical modeling and analysis.

  15. Current Practice of Duodenoscope Reprocessing.

    PubMed

    Kim, Stephen; Muthusamy, V Raman

    2016-10-01

    Numerous outbreaks of duodenoscope-associated transmission of multi-drug resistant bacteria have recently been reported. Unlike prior episodes of endoscope-transmitted infections, the latest outbreaks have occurred despite strict adherence to duodenoscope reprocessing guidelines. The current standard for all flexible endoscope reprocessing includes pre-cleaning, leak testing, an additional manual cleaning step, and high-level disinfection. When these steps are strictly followed, the risk of infection transmission during endoscopy is exceedingly rare. However, due to its complex design, the duodenoscope may not be able to be adequately disinfected using the current reprocessing standards. Supplemental measures to enhance scope reprocessing have subsequently been recommended to reduce the infection risk in patients undergoing endoscopic retrograde cholangiopancreatography. These methods are likely short-term solutions that have yet to be validated regarded their effectiveness. Additional approaches to monitor the quality of duodenoscope reprocessing may also be useful. Ultimately, a definitive, yet logistically feasible, method of duodenoscope reprocessing is required to ensure the safety of our patients. PMID:27595583

  16. Safety Evaluation for Hull Waste Treatment Process in JNC

    SciTech Connect

    Kojima, H.; Kurakata, K.

    2002-02-26

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation.

  17. Mechanisms governing the direct removal of wastes from the Waste Isolation Pilot Plant repository caused by exploratory drilling

    SciTech Connect

    Berglund, J.W.

    1992-12-01

    Two processes are identified that can influence the quantity of wastes brought to the ground surface when a waste disposal room of the Waste Isolation Pilot Plant is inadvertently penetrated by an exploratory borehole. The first mechanism is due to the erosion of the borehole wall adjacent to the waste caused by the flowing drilling fluid (mud); a quantitative computational model based upon the flow characteristics of the drilling fluid (laminar or turbulent) and other drilling parameters is developed and example results shown. The second mechanism concerns the motion of the waste and borehole spall caused by the flow of waste-generated gas to the borehole. Some of the available literature concerning this process is discussed, and a number of elastic and elastic-plastic finite-difference and finite-element calculations are described that confirm the potential importance of this process in directly removing wastes from the repository to the ground surface. Based upon the amount of analysis performed to date, it is concluded that it is not unreasonable to expect that volumes of waste several times greater than that resulting from direct cutting of a gauge borehole could eventually reach the ground surface. No definitive quantitative model for waste removal as a result of the second mechanism is presented; it is concluded that decomposed waste constitutive data must be developed and additional experiments performed to assess further the full significance of this latter mechanism.

  18. Spent Fuel Reprocessing: More Value for Money Spent in a Geological Repository?

    SciTech Connect

    Kaplan, P.; Vinoche, R.; Devezeaux, J-G.; Bailly, F.

    2003-02-25

    Today, each utility or country operating nuclear power plants can select between two long-term spent fuel management policies: either, spent fuel is considered as waste to dispose of through direct disposal or, spent fuel is considered a resource of valuable material through reprocessing-recycling. Reading and listening to what is said in the nuclear community, we understand that most people consider that the choice of policy is, actually, a choice among two technical paths to handle spent fuel: direct disposal versus reprocessing. This very simple situation has been recently challenged by analysis coming from countries where both policies are on survey. For example, ONDRAF of Belgium published an interesting study showing that, economically speaking for final disposal, it is worth treating spent fuel rather than dispose of it as a whole, even if there is no possibility to recycle the valuable part of it. So, the question is raised: is there such a one-to-one link between long term spent fuel management political option and industrial option? The purpose of the presentation is to discuss the potential advantages and drawbacks of spent fuel treatment as an implementation of the policy that considers spent fuel as waste to dispose of. Based on technical considerations and industrial experience, we will study qualitatively, and quantitatively when possible, the different answers proposed by treatment to the main concerns of spent-fuel-as-a-whole geological disposal.

  19. Retrospective CMORPH Reprocessing Efforts

    NASA Astrophysics Data System (ADS)

    Yarosh, Y.; Joyce, R.; Xie, P.

    2008-05-01

    constellation, there is enough to retrospectively reprocess CMORPH well beyond the current archive start. Also IR based PMW calibrated rainfall estimates will be calculated as part of the retrospective reprocessing. These estimates will be blended for times and locations that the PMW information is too old for relative accuracy. This blended method (CMORPH-IR) combines the CMORPH and IR based estimates via an error model developed by running test CMORPH processing, albeit withholding random high quality PMW estimates, and determining the error/skill of the CMORPH relative to the IR-based rainfall as a function of season, surface type, region, and age of PMW information in half hourly increments from PMW scan time. The retrospective processing will be performed for Year 2002 and proceed backward. Detailed results will be reported at the meeting.

  20. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 1. Revision 1

    SciTech Connect

    1995-02-01

    This document provides baseline inventories of transuranic wastes for the WIPP facility. Information on waste forms, forecasting of future inventories, and waste stream originators is also provided. A diskette is provided which contains the inventory database.

  1. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  2. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Greenfield, M.A.; Sargent, T.J. |

    1998-01-01

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

  3. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  4. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  5. Waste immobilization process development at the Savannah River Plant

    SciTech Connect

    Charlesworth, D L

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed.

  6. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  7. WASTE MINIMIZATION OPPORTUNITY ASSESSMENT: A CLASS 8 TRUCK ASSEMBLY PLANT

    EPA Science Inventory

    EPA has developed a systematic approach to identify and implement options to reduce or eliminate hazardous waste. he approach is presented in a report entitled, "Waste Minimization Opportunity Assessment Manual" (EPA/625/7-88/O03). his report describes the application of the wast...

  8. Plant Availability of Metals in Waste Foundry Sands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foundries in the United States generate several million tons of waste sand each year. These sands are no longer suitable for metalcasting processes, and about 90% are discarded in landfills. However, the majority of these waste foundry sands (WFSs) qualify as non-hazardous industrial waste and the...

  9. WASTE MINIZATION OPPORTUNITY ASSESSMENT: A CLASS 8 TRUCK ASSEMBLY PLANT

    EPA Science Inventory

    EPA has developed a systematic approach to identify and implement options to reduce or eliminate hazardous waste. he approach is presented in a report entitled, "Waste Minimization Opportunity Assessment Manual" (EPA/625/7-88/O03). his report describes the application of the wast...

  10. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  11. Pilot plant for biomethanation of dairy-industry wastes

    SciTech Connect

    Ghosh, S.; Fukushi, K.; Liu, T.

    1994-12-31

    This project was undertaken to demonstrate the application of two-phase anaerobic digestion (TPAD) for simultaneous stabilization and biomethanation of high-COD cheese-waste-dairy-manure mixtures by a pilot-plant operation in Wellsville, Utah. The TPAD system exhibited a total COD (TCOD) reduction of up to 97% with feed COD concentration of 60,000 to 45,000 mg/l. The TCOD reduction decreased as the variability as well as the strength of the feed increased. A quick surge of the feed TCOD concentration to 125,000 mg/l effected a large drop in TCOD reduction, but the integrity of the methane digester, which produced 78 {approximately}87 mol% methane-content gas, was measured and TPAD system performance could be restored to normal levels by diluting the feed to obtain TCOD concentrations below 70,000 mg/l. The TPAD system exhibited a methane yield of 0.27 m{sup 3}/kg TCOD charged (0.36 m{sup 3}/kg TCOD removed).

  12. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  13. Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste

    SciTech Connect

    Langton, C.A.

    1984-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO/sub 3/, NaOH, Na/sub 2/SO/sub 4/, and NaNO/sub 2/. After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove /sup 137/Cs and /sup 90/Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards.

  14. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect

    Duncan, D R; Mayancsik, B A; Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  15. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  16. Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586

    SciTech Connect

    Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas

    2013-07-01

    The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

  17. Detailed plans for the reduction in waste load from a dairy and ice cream plant

    SciTech Connect

    Carawan, R.E.; Rushing, J.E.

    1987-02-28

    The waste load from a dairy processing plant is largely a result of milk products which are intentionally or inadvertaintly lost to the sewer system. Researchers have estimated that over 90 percent of the waste load is of product origin (milk and milk products). The reduction of water and waste requires the application of the best technology to achieve reduced product loss, reduced water usage and reduced ingredient loss. There are two proven ways to reduce water use, wastewater discharge, waste loads and product loss. One method is to operate the plant more efficiently. The other is to institute process changes which have been shown to reduce water use, product waste and wasteloads. This project places emphasis on detailing those losses, recovering these losses, and preventing the milk solids from becoming part of the waste load.

  18. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  19. Reprocessing of lithium titanate pebbles by graphite bed method

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Zhang, Yingchun; Xiang, Maoqiao; Zhang, Yun

    2015-04-01

    Lithium titanate enriched by 6Li isotope is considered as a candidate of tritium breeding materials for fusion reactors due to its excellent performance. The reuse of burned Li2TiO3 pebbles is an important issue because of the high costs of 6Li-enriched materials and waste considerations. For this purpose, reprocessing of Li2TiO3 pebbles by graphite bed method was developed. Simulative Li2TiO3 pebbles with low-lithium content according to the expected lithium burn-up were fabricated. After that, Li2TiO3 pebbles were re-fabricated with lithium carbonate as lithium additives, in order to gain the composition of lithium titanate with a Li/Ti ratio of 2. The process was optimized to obtain reprocessed Li2TiO3 pebbles that were suitable for reuse as ceramic breeder. Density, porosity, grain size and crushing load of the reprocessed pebbles were characterized. This process did not deteriorate the properties of the reprocessed pebbles and was almost no waste generation.

  20. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  1. Neutron shielding analysis for remote handled transuranic waste containers in facility casks at the Waste Isolation Pilot Plant

    SciTech Connect

    Livingston, J.V.; Disney, R.K.

    1984-04-01

    Neutron shielding characteristics of the Waste Isolation Pilot Plant facility cask have been quantified for a variety of combinations of neutron sources and waste matrices which would potentially be handled in waste containers. The neutron attenuation and neutron environment of the waste container and the facility cask have been analyzed to ensure that the design requirement of neutron dose rate will be met under the combinations of the source and waste matrix conditions. The analyses considered the ranges of neutron source spectrum and waste matrices which combine to produce the minimum neutron shielding worth of the facility cask. One-dimensional analyses were performed with discrete ordinate transport theory methods using multigroup neutron cross section data. The results discussed in this report demonstrate the effect of source spectrum and waste container matrix on predicted neutron dose rates adjacent to the unshielded waste container and the surface of the facility cask. An evaluation of the uncertainties in predicted neutron dose rates is provided which results in an assessment of the maximum measured neutron dose rate external to the facility cask. A description of the analytical models developed, the analysis methodology, the neutron source spectra, and the detailed results are described in this report. 10 refs., 50 figs., 39 tabs.

  2. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  3. WASTE REDUCTION PRACTICES AT TWO CHROMATED COPPER ARSENATE WOOD-TREATING PLANTS

    EPA Science Inventory

    Two chromated copper arsenate (CCA) wood-treating plants were assessed for their waste reduction practices. he objectives of this study were to estimate the amount of hazardous wastes that a well-designed and well-maintained CCA treatment facility would generate and to identify w...

  4. WASTE REDUCTION PRACTICES AT TWO CHROMATED COPPER ARSENATE WOOD-TREATING PLANTS

    EPA Science Inventory

    Two chromated copper arsenate (CCA) wood-treating plants were assessed for their waste reduction practices. The objectives of this study were to estimate the amount of hazardous wastes that a well-designed and well-main- tained CCA treatment facility would generate and to iden- t...

  5. Waste heat to save plant $126,000/year. [Monarch Fine Foods Co. , Rexdale, Ont

    SciTech Connect

    Alejandro, C.

    1982-09-20

    A $400,000 conservation program featuring a waste-heat-recovery system should save the Monarch Fine Foods Co., Rexdale, Ontario $126,000 a year in avoided fuel costs. Using an Alpha-Laval plate heat exchanger and a Templifier TPE-063 heat pump made by Westinghouse, the system will recover waste heat from the plant to preheat boiler feedwater. (DCK)

  6. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  7. ELIMINATION OF POLLUTANTS BY UTILIZATION OF EGG BREAKING PLANT SHELL-WASTE

    EPA Science Inventory

    Egg breaking plants yield an estimated 50,000 tons of waste annually. These wastes are commonly disposed of on land. This method of disposal is becoming more difficult due to the potential for pollution of local water resources. A triple pass rotary drum dehydrator was installed ...

  8. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    EPA Science Inventory

    Abstract

    Wastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  9. Steps of Reprocessing and Equipments

    PubMed Central

    Lee, Yong Kook

    2013-01-01

    With the increasing interest in endoscopy and the rising number of endoscopic examinations in hospitals, the importance of endoscopic reprocessing is also increasing. Cure facilities that are understaffed and ill-equipped are trying to cope with the problems of insufficient cleaning and high infection risks. To prevent endoscopy-associated infection, the endoscope cleaning, and disinfection guidelines prepared by the Korean Society of Gastrointestinal Endoscopy must be followed. In this review, the steps of endoscopic reprocessing and the equipments required in each step are discussed. PMID:23767039

  10. Design and construction of the defense waste processing facility project at the Savannah River Plant

    SciTech Connect

    Baxter, R G

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

  11. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  12. Electrical efficiency in modern waste to energy plants -- The advanced solutions adopted in a new Italian plant (Milan)

    SciTech Connect

    Lucchini, F.M.; Pezzella, B.

    1998-07-01

    The paper has the goal to give a general overview of the current approach for the design of modern Waste to Energy (WtE) plants. The thermal treatment of solid waste is an environmentally sound method to get rid of the garbage produced by everyone and to recover energy simultaneously. A typical waste to energy plant is divided in four segments: incineration/boiler, air pollution control, residues treatment and power generation. Still in the 80's a WtE plant was simply consisting of a these four segments without any particular effort in putting them together into a coordinated plant; therefore the results were very poor in term of overall plant performances even if the single segments were properly designed. This paper shows how this approach is changing and how the synergism between the segments allows to reach interesting performances in term of electric efficiency, always keeping in mind that power must be considered a by-product of the incinerator. Therefore all these efforts have to be done without affecting the burning capacity of the station. The new Milan WtE plant is taken as example throughout the paper. The first section of the paper tries to consider the Municipal Solid Waste as standard fuel; then focal point becomes the electrical efficiency of the plant. In the fourth section the flue gas cleaning system is approached, pointing out the gas quality at stack. Then in the fifth and sixth paragraphs all most important and innovative technical solutions of the Milan plant are shown with some details on water/steam cycle, giving also some availability results. Chapter seven shows some interesting key-figures, related to the combustion of 1,000 kg of MSW at 11 MJ/kg, with also some economical evaluations in term of investment cost per ton of waste per day.

  13. Cement-based waste forms for disposal of Savannah River Plant low-level radioactive salt waste

    SciTech Connect

    Langton, C A; Dukes, M D; Simmons, R V

    1983-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 100 million liters of soluble salts containing primarily NaNO/sub 3/, NaOH, NaNO/sub 2/, NaAl(OH)/sub 4/, and Na/sub 2/SO/sub 4/. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses, respectively. It has been concluded that the salt leach rate can be limited so that amounts of salt and radionuclides in the groundwater at the perimeter of the 100-acre disposal site will not exceed EPA drinking water standards. 7 references, 4 figures, 6 tables.

  14. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  15. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  16. Waste Isolation Pilot Plant 2005 Site Environmental Report

    SciTech Connect

    Washington Regulatory and Environmental Services

    2006-10-13

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and

  17. Test phase plan for the Waste Isolation Pilot Plant. Revision 1

    SciTech Connect

    Not Available

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase.

  18. BAR-CODE BASED WEIGHT MEASUREMENT STATION FOR PHYSICAL INVENTORY TAKING OF PLUTONIUM OXIDE CONTAINERS AT THE MINING AND CHEMICAL COMBINE RADIOCHEMICAL REPROCESSING PLANT NEAR KRASNOYARSK, SIBERIA.

    SciTech Connect

    SUDA,S.

    1999-09-20

    This paper describes the technical tasks being implemented to computerize the physical inventory taking (PIT) at the Mining and Chemical Combine (Gorno-Khimichesky Kombinat, GKhK) radiochemical plant under the US/Russian cooperative nuclear material protection, control, and accounting (MPC and A) program. Under the MPC and A program, Lab-to-Lab task agreements with GKhK were negotiated that involved computerized equipment for item verification and confirmatory measurement of the Pu containers. Tasks under Phase I cover the work for demonstrating the plan and procedures for carrying out the comparison of the Pu container identification on the container with the computerized inventory records. In addition to the records validation, the verification procedures include the application of bar codes and bar coded TIDs to the Pu containers. Phase II involves the verification of the Pu content. A plan and procedures are being written for carrying out confirmatory measurements on the Pu containers.

  19. Waste Isolation Pilot Plant 2003 Site Environmental Report

    SciTech Connect

    Washington Regulatory and Environmental Services

    2005-09-03

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  20. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  1. Waste salt disposal at the Savannah River Plant. [Saltstone

    SciTech Connect

    Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wilhite, E.L.

    1986-01-01

    Waste salt solution, produced during processing of high-level nuclear waste, will be incorporated in a cement matrix for emplacement in an engineered disposal facility. Wasteform characteristics and disposal facility details will be presented along with results of a field test of wasteform contaminant release and of modeling studies to predict releases. 5 refs., 11 figs., 5 tabs.

  2. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    SciTech Connect

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented.

  3. Vermicomposting of milk processing industry sludge spiked with plant wastes.

    PubMed

    Suthar, Surindra; Mutiyar, Pravin K; Singh, Sushma

    2012-07-01

    This work illustrates the vermistabilization of wastewater sludge from a milk processing industry (MPIS) unit spiked with cow dung (CD), sugarcane trash (ST) and wheat straw (WS) employing earthworms Eisenia fetida. A total of nine experimental vermibeds were established and changes in chemical parameters of waste material have been observed for 90 days. Vermistabilization caused significant reduction in pH, organic carbon and C:N ratio and substantial increase in total N, available P and exchangeable K. The waste mixture containing MPIS (60%)+CD (10%)+ST (30%) and MPIS (60%)+CD (10%)+WS (30%) had better waste mineralization rate among waste mixtures studied. The earthworm showed better biomass and cocoon numbers in all vermibeds during vermicomposting operation. Results, thus suggest the suitability of E. fetida for conversion of noxious industrial waste into value-added product for land restoration programme. PMID:22609678

  4. Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience

    SciTech Connect

    Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M.; D'Amico, E.; Lattin, W.; Watson, K.

    2008-07-01

    On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the

  5. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion capacity greater than 250 tons per day of municipal solid waste. (See the definition of municipal... capacity of no more than 250 tons per day of municipal solid waste. (See the definition of municipal waste... small municipal waste combustion unit subject to different requirements based on plant capacity?...

  6. Geopolymerisation of silt generated from construction and demolition waste washing plants.

    PubMed

    Lampris, C; Lupo, R; Cheeseman, C R

    2009-01-01

    Recycling plants that size, sort and wash construction and demolition waste can produce high quality aggregate. However, they also produce up to 80ton per hour of filter cake waste containing fine (<63mum) silt particles that is classified as inert waste and normally landfilled. This research investigated the potential to form geopolymers containing silt, which would allow this problematic waste to be beneficially reused as aggregate. This would significantly improve the economic viability of recycling plants that wash wastes. Silt filter cakes have been collected from a number of aggregate washing plants operating in the UK. These were found to contain similar aluminosilicate crystalline phases. Geopolymer samples were produced using silt and silt mixed with either metakaolin or pulverised fuel ash (PFA). Silt geopolymers cured at room temperature had average 7-day compressive strengths of 18.7MPa, while partial substitution of silt by metakaolin or PFA increased average compressive strengths to 30.5 and 21.9MPa, respectively. Curing specimens for 24h at 105 degrees C resulted in a compressive strength of 39.7MPa and microstructural analysis confirmed the formation of dense materials. These strengths are in excess of those required for materials to be used as aggregate, particularly in unbound applications. The implications of this research for the management of waste silt at construction and demolition waste washing plants are discussed. PMID:18579370

  7. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  8. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  9. State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants

    SciTech Connect

    Not Available

    1980-04-01

    A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

  10. Development of Ceramic Waste Forms for High-Level Nuclear Waste Over the Last 30 Years

    SciTech Connect

    Vance, Eric

    2007-07-01

    Many types of ceramics have been put forward for immobilisation of high-level waste (HLW) from reprocessing of nuclear power plant fuel or weapons production. After describing some historical aspects of waste form research, the essential features of the chemical design and processing of these different ceramic types will be discussed briefly. Given acceptable laboratory and long-term predicted performance based on appropriately rigorous chemical design, the important processing parameters are mostly waste loading, waste throughput, footprint, offgas control/minimization, and the need for secondary waste treatment. It is concluded that the 'problem of high-level nuclear waste' is largely solved from a technical point of view, within the current regulatory framework, and that the main remaining question is which technical disposition method is optimum for a given waste. (author)

  11. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  12. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  13. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  14. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    SciTech Connect

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

  15. Automated small-scale fuel alcohol plant: A means to add value to food processing waste

    SciTech Connect

    Wolfram, J.H.; Keller, J.; Wernimont, L.P.

    1993-12-31

    A small scale fuel grade alcohol plant was designed, constructed and operated a decade ago. This plant design incorporated several innovative processes and features that are still on the cutting edge for small scale alcohol production. The plant design could be scaled down or up to match the needs of food processing waste streams that contain sugars or starches as BOD. The novel features include automation requiring four hours of labor per 24 hour day and a plug flow low temperature cooking system which solubilizes and liquifies the starch in one step. This plant consistently produced high yield of alcohol. Yields of 2.6 gallons of absolute alcohol were produced from a bushel of corn. Potato waste grain dust and cheese whey were also processed in this plant as well as barley. Production energy for a 190 proof gallon was approximately 32,000 BTU. This paper discusses the design, results, and applicability of this plant to food processing industries.

  16. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  17. WASTE TREATMENT & IMMOBILIZATION PLANT (WTP) HIGH LEVEL WASTE (HLW) CANISTER PRODUCTION ESTIMATES TO SUPPORT ANALYSES BY THE YUCCA MOUNTAIN PROJECT

    SciTech Connect

    HAMEL, W.F.

    2004-09-09

    This document summarizes estimates of the range of chemical and radiochemical compositions for the immobilized HLW (IHLW) canisters to be generated from the Waste Treatment and Immobilization Plant (WTP) that will be operated at the U.S. Department of Energy's (DOE) Hanford Site. These estimates have been derived from DOE planning, WTP Project and Hanford tank waste characterization information. The IHLW canister composition estimates include three Cases that bound the expected number of IHLW canisters to be produced in the WTP (termed the WTP Program Case, WTP Planning Case and WTP Technology Case) and production of the maximum radionuclide content IHLW canister.

  18. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  19. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  20. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    SciTech Connect

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  1. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  2. 75 FR 45167 - Notice of Public Workshop on a Potential Rulemaking for Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Register on August 31, 1984 (49 FR 34658) discusses waste from reprocessing facilities in the first and... Transuranic Special Nuclear Material (SNM) Classification Certain fissile elements such as americium...

  3. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth. PMID:24117079

  4. The Effect of Congress' Mandate to Create Greater Efficiencies in the Characterization of Transuranic Waste through the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit

    SciTech Connect

    Johnson, G.J.; Kehrman, R.F.

    2008-07-01

    Effective December 1, 2003, the U.S. Congress directed the Department of Energy (DOE) to file a permit modification request with the New Mexico Environment Department (NMED) to amend the Hazardous Waste Facility Permit (hereinafter 'the Permit') at the Waste Isolation Pilot Plant (WIPP). This legislation, Section 311 of the 2004 Energy and Water Development Appropriations Act, was designed to increase efficiencies in Transuranic (TRU) waste characterization processes by focusing on only those activities necessary to characterize waste streams, while continuing to protect human health and the environment. Congressionally prescribed changes would impact DOE generator site waste characterization programs and waste disposal operations at WIPP. With this legislative impetus, in early 2004 the DOE and Washington TRU Solutions (WTS), co-permittee under the Permit, submitted a permit modification request to the NMED pursuant to Section 311. After a lengthy process, including extensive public and other stakeholder input, the NMED granted the Permittees' request in October 2006, as part of a modification authorizing disposal of Remote-Handled (RH) TRU waste at WIPP. In conclusion: Implementation of the Permit under the revised Section 311 provisions is still in its early stages. Data are limited, as noted above. In view of these limited data and fluctuations in waste feed due to varying factors, at the current time it is difficult to determine with accuracy the impacts of Section 311 on the costs of characterizing TRU waste. It is safe to say, however, that the there have been many positive impacts flowing from Section 311. The generator sites now have more flexibility in characterizing waste. Also, RH TRU waste is now being disposed at WIPP - which was not possible before the 2006 Permit modification. As previously noted, the RH modification was approved at the same time as the Section 311 modification. Had the Section 311 changes not been implemented, RH TRU waste may not

  5. Critical components of odors in evaluating the performance of food waste composting plants.

    PubMed

    Mao, I-Fang; Tsai, Chung-Jung; Shen, Shu-Hung; Lin, Tsair-Fuh; Chen, Wang-Kun; Chen, Mei-Lien

    2006-11-01

    The current Taiwan government policy toward food waste management encourages composting for resource recovery. This study used olfactometry, gas chromatography-mass spectrometry (GC-MS) and gas detector tubes to evaluate the ambient air at three of the largest food waste composting plants in Taiwan. Ambient air inside the plants, at exhaust outlets and plant boundaries was examined to determine the comprehensive odor performance, critical components, and odor elimination efficiencies of various odor control engineering. Analytical results identified 29 compounds, including ammonia, amines, acetic acid, and multiple volatile organic compounds (VOCs) (hydrocarbons, ketones, esters, terpenes and S-compounds) in the odor from food waste composting plants. Concentrations of six components--ammonia, amines, dimethyl sulfide, acetic acid, ethyl benzene and p-Cymene--exceeded human olfactory thresholds. Ammonia, amines, dimethyl sulfide and acetic acid accounted for most odors compared to numerous VOCs. The results also show that the biotrickling filter was better at eliminating the concentrations of odor, NH(3), amines, S-compounds and VOCs than the chemical scrubber and biofilters. All levels measured by olfactometry at the boundaries of food waste composting plants (range, 74-115 Odor Concentration (OC)) exceeded Taiwan's EPA standard of 50 OC. This study indicated that the malodor problem continued to be a significant problem for food waste recovery. PMID:16863658

  6. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  7. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  8. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    SciTech Connect

    Not Available

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  9. Influence of heat recuperation in ORC power plant on efficiency of waste heat utilization

    NASA Astrophysics Data System (ADS)

    Borsukiewicz-Gozdur, Aleksandra

    2010-10-01

    The present work is devoted to the problem of utilization of the waste heat contained in the exhaust gases having the temperature of 350 °C. Conversion of the waste heat into electricity using a power plant working with organic fluid cycles is considered. Three Organic Rankine Cycle (ORC) power plant solutions are analysed and compared: a solution with the basic, single thermodynamic conversion cycle, one with internal heat recuperation and one with external heat recuperation. It results from the analysis that it is the proper choice of the working fluid evaporation temperature that fundamentally affects the maximum of the ORC plant output power. Application of the internal heat recuperation in the plant basic cycle results in the output power increase of approx. 5%. Addition of the external heat recuperation to the plant basic cycle, in the form of a secondary supercritical ORC power cycle can rise the output power by approx. 2%.

  10. Application of a Plasma Mass Separator to Advanced LWR Spent Fuel Reprocessing

    SciTech Connect

    Freeman, Richard; Miller, Robert; Papay, Larry; Wagoner, John; Ahlfeld, Charles; Czerwinski, Ken

    2006-07-01

    The US Department of Energy (DOE) is investigating spent fuel reprocessing for the purposes of increasing the effective capacity of a deep geological repository, reducing the radiotoxicity of waste placed in the repository and conserving nuclear fuel resources. DOE is considering hydro-chemical processing of the spent fuel after cutting the fuel cladding and fuel dissolution in nitric acid. The front end process, known as UREX, is largely based on the PUREX process and extracts U, Tc as well as fission product gases. A number of additional processing steps have become known as UREX+. One of the steps includes a further chemical treatment of remove Cs and Sr to reduce repository heat load. Other steps include successive extraction of the actinides from residual fission products, including the lanthanides. The additional UREX+ processing renders the actinides suitable for burning as reactor fuel in an advanced reactor to convert actinides to shorter-lived fission products and to produce power. New methods for separating groups of elements by their atomic mass have been developed and can be exploited to enhance spent fuel reprocessing. These physical processes dry the waste streams so that they can be vaporized and singly ionized in plasma that is contained in longitudinal magnetic and perpendicular electric fields. Proper configuration of the fields causes the plasma to rapidly rotate and expel heavier mass ions at the center of the machine. Lower mass ions form closed orbits within the cylindrical plasma column and are transported to either end of the machine. This plasma mass separator was originally developed to reduce the mass of material that must be immobilized in borosilicate glass from DOE defense waste at former weapons production facilities. The plasma mass separator appears to be well-suited for processing the UREX raffinate and solids streams by exploiting the large atomic mass gap that exists between lanthanides (< {approx}180 amu) and actinides

  11. Basic directions and problems of radioactive waste management in the Mayak Production Association, Chelyabinsk, Russia

    SciTech Connect

    Drozhko, E.G.; Suslov, A.P.; Fetisov, V.I.; Glagolenko, Y.G.; Medvedev, G.M.; Osnovin, V.I.; Dzekun, E.G.

    1993-12-31

    More than 25 thousand cubic meters of high-level wastes are accumulated at the radiochemical plant of Production Association Mayak as a result of 30-years in operation. Most of these wastes were received by alkaline, sulfide and ferrocyanide precipitation methods and are stored as a suspension. The chemical and radionuclide composition of these suspensions is quite complex, because solutions of different types of irradiated block and fuel elements were precipitated. About 6--7 thousand cubic meters of wastes are stored in evaporated acid solution form. Besides that, 6.3--8.4 thousand cubic meters of high-level wastes are produced at the radiochemical plant every year as a result of reprocessing of spent nuclear fuel from power reactors. Wastes after the reprocessing of nuclear fuel are reevaporated many times, strontium will be extracted and decantates will be stored. Wastes after the reprocessing of high-enriched fuel elements, including aluminum, will be evaporated 2 or 3 times and vitrificated. The paper describes the development of a vitrification procedure to process these wastes for future monitored storage or disposal.

  12. Safety evaluation for packaging for onsite transfer of B Plant organic waste

    SciTech Connect

    Mercado, M.S.

    1996-10-07

    This safety evaluation for packaging authorizes the use of a 17,500-L (4,623-gal) tank manufactured by Brenner Tank, Incorporated, to transport up to 16,221 L (4,285 gal) of radioactive organic liquid waste. The waste will be transported from the organic loading pad to a storage pad. Both pads are within the B Plant complex, but approximately 4 mi apart.

  13. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  14. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  15. The Rocky Flats Plant Waste Stream and Residue Identification and Characterization Program (WSRIC): Progress and achievements

    SciTech Connect

    Ideker, V.L.; Doyle, G.M.

    1994-02-01

    The Waste Stream and Residue Identification and Characterization (WSRIC) Program, as described in the WSRIC Program Description delineates the process knowledge used to identify and characterize currently-generated waste from approximately 5404 waste streams originating from 576 processes in 288 buildings at Rocky Flats Plant (RFP). Annual updates to the WSRIC documents are required by the Federal Facilities Compliance Agreement between the US Department of Energy, the Colorado Department of Health and the Environmental Protection Agency. Accurate determination and characterization of waste is a crucial component in RFP`s waste management strategy to assure compliance with Resource Conservation and Recovery Act (RCRA) storage and treatment requirements, as well as disposal acceptance criteria. The WSRIC Program was rebaselined in September 1992, and serves as the linchpin for documenting process knowledge in RFP`s RCRA operating record. Enhancements to the WSRIC include strengthening the waste characterization rationale, expanding WSRIC training for waste generators, and incorporating analytical information into the WSRIC building books. These enhancements will improve credibility with the regulators and increase waste generators` understanding of the basis for credible waste characterizations.

  16. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    PubMed

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. PMID:27128189

  17. Alternative solid forms for Savannah River Plant defense waste

    SciTech Connect

    Stone, J.A.; Goforth, S.T.; Smith, P.K.

    1980-01-01

    Solid forms and processes were evaluated for immobilization of SRP high-level radioactive waste, which contains bulk chemicals such as hydrous iron and aluminium oxides. Borosilicate glass currently is the best overall choice. High-silica glass, tailored ceramics, and coated ceramics are potentially superior products, but require more difficult processes.

  18. WATER QUALITY RENOVATION OF ANIMAL WASTE LAGOONS UTILIZING AQUATIC PLANTS

    EPA Science Inventory

    Duckweeds Spirodela oligorhiza, S. polyrhiza, and Lemna gibba (clone G3) grown on dairy waste lagoons gave an estimated maximum annual yield of 22,023 kg dry wt./ha. S. oligorhiza and L. gibba had higher growth rates in the spring, fall, and winter, with L. gibba growing througho...

  19. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  20. WOOD WASTE AS A POWER PLANT FUEL IN THE OZARKS

    EPA Science Inventory

    The report discusses the testing program conducted on a chain-grate stoker boiler with a blended coal and wood waste fuel. The boiler was designed to produce 18,000 lb/hr of saturated steam at 150 psig. The objective of the tests was to determine the difference, if any, in the pe...

  1. Alternative-waste-form evaluation for Savannah River Plant high-level waste

    SciTech Connect

    Gould, Jr, T H; Crandall, J L

    1982-01-01

    Results of the waste form evaluation are summarized as: risks of human exposure are comparable and extremely small for either borosilicate glass or Synroc ceramic. Waste form properties are more than adequate for either form. The waste form decision can therefore be made on the basis of practicality and cost effectiveness. Synroc offers lower costs for transportation and emplacement. The borosilicate glass form offers the lowest total disposal cost, much simpler and less costly production, an established and proven process, lower future development costs, and an earlier startup of the DWPF.

  2. Position paper on gas generation in the Waste Isolation Pilot Plant

    SciTech Connect

    Brush, L.H.

    1994-11-15

    Gas generation by transuranic (TRU) waste is a significant issue because gas will, if produced in significant quantities, affect the performance of the Waste Isolation Pilot Plant (WIPP) with respect to Environmental Protection Agency (EPA) regulations for the long-term isolation of radioactive and chemically hazardous waste. If significant gas production occurs, it will also affect, and will be affected by, other processes and parameters in WIPP disposal rooms. The processes that will produce gas in WIPP disposal rooms are corrosion, microbial activity and radiolysis. This position paper describes these processes and the models, assumptions and data used to predict gas generation in WIPP disposal rooms.

  3. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  4. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic

  5. They`re up! They`re down! They`re waste-to-energy plants

    SciTech Connect

    Varrasi, J.

    1996-03-01

    Burning garbage - either just to get rid of it, or to recover its latent energy as heat or electricity - has never been a sweet-sounding or -smelling idea. Long before the first boiler and turbine/generator were integrated with a trash incinerator - turning it into a waste-to-energy (WTE) plant - public concern about the air pollution produced by burning municipal solid waste (MSW) began placing an upper bound on the growth of the WTE industry, as it continues to do today. This paper describes some statistics, benefits and problems related to WTE plants.

  6. Status of spent fuel and radioactive waste management in Germany -- Development of casks and waste treatment equipment

    SciTech Connect

    Weh, R.

    1995-12-31

    At present, 20 nuclear power plants produce approximately one third of electricity in Germany. The proper disposal of the spent fuel and waste arising from operation of these plants is largely dealt with jointly by the German electricity suppliers, making use of their subsidiary company GNS. The utilities are responsible for the spent fuel and radioactive waste management; the final repositories are a federal matter. The German electricity suppliers thus concluded additional contracts with the reprocessing companies COGEMA in France and BNFL in the United Kingdom, amounting to approx. 5,500 t HM plus 2,800 t HM as new contracts. In the course of 1994, the German parliament passed a new act (Artikelgesetz) which provides the electricity suppliers an opportunity to choose between reprocessing and direct final disposal. This act is of major importance inasmuch as recent calculations show a clear financial advantage of direct final disposal. As these two disposal paths pose widely differing requirements to plant technology and storage capacities for spent fuel and waste, any kind of conceptual planing requires a high degree of flexibility. Direct final disposal of fuel assemblies as an alternative to reprocessing gains importance to the same degree as reprocessing is considered to be economically no longer justifiable. Limits to the permissible heat load in the planned Gorleben repository require long cooling periods for fuel assemblies which shall be achieved by intermediate storage in AFR stores. If the German utilities decide to stop reprocessing in favor of final disposal, the already constructed and licensed AFR stores at Gorleben (TBL-G) and Ahaus (BZA) will be used. Applications have been filed for the acceptance of fuel assemblies with a higher burn-up (> 60 MWd/t HM) or shorter cooling periods and of new casks with a higher capacity, e.g. the CASTOR V type series.

  7. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    PubMed

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. PMID:23850761

  8. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  9. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  10. Management of radioactive waste from nuclear power plants

    SciTech Connect

    Not Available

    1993-09-01

    Even thought risk assessment is an essential consideration in all projects involving radioactive or hazardous waste, its public role is often unclear, and it is not fully utilized in the decision-making process for public acceptance of such facilities. Risk assessment should be an integral part of such projects and should play an important role from beginning to end, i.e., from planning stages to the closing of a disposal facility. A conceptual model that incorporates all potential pathways of exposure and is based on site-specific conditions is key to a successful risk assessment. A baseline comparison with existing standards determines, along with other factors, whether the disposal site is safe. Risk assessment also plays a role in setting priorities between sites during cleanup actions and in setting cleanup standards for certain contaminants at a site. The applicable technologies and waste disposal designs can be screened through risk assessment.

  11. Waste Isolation Pilot Plant design validation: Final report, Appendices

    SciTech Connect

    Not Available

    1986-10-01

    This volume is comprised of the following appendices: DOE stipulated agreement with State of New Mexico (partial); geologic correlations; mathematical simulation of underground in situ behavior; C and SH shaft geologic logs and maps; waste shaft geologic logs and maps; exhaust shaft geologic log; test rooms geologic maps and sections; drift cross sections; facility level geologic core hole logs; geomechanical instrumentation data plots; and analytical data plots.

  12. Concentrated coal plant wastes contained with concrete cutoff

    SciTech Connect

    Not Available

    1984-03-01

    A 3-mile concrete cutoff wall around a huge scrubber-waste-disposal basin is being constructed in southeastern Montana. The $25-million cutoff is designed to seal highly pervious layers of baked shale surrounding the pond, protecting scarce groundwater reserves from the scrubber slurry generated by a power station 3 miles away. Groundwater contamination concerns led to the decision for the cutoff, which is made from interlocking concrete panels.

  13. Environmental sampling of lead near a battery reprocessing factory

    SciTech Connect

    Leung, H.W.

    1988-09-01

    Exposed workers in lead smelting plants and lead storage battery factories have reported illnesses related to inhalation of lead oxide fumes. The residential community of La Gloria, a town of about 15,000 people located approximately 13 km southwest of Tijuana, Baja California, Mexico was an area where residents were concerned about possible health effects and environmental contamination from lead due to the proximity of battery factory that used lead oxide in the battery grid separation procedure. This study was undertaken to investigate the lead levels in the soil, plant and water collected in various areas around this battery reprocessing plant.

  14. Learning through the waste: olfactory cues from the colony refuse influence plant preferences in foraging leaf-cutting ants.

    PubMed

    Arenas, Andrés; Roces, Flavio

    2016-08-15

    Leaf-cutting ants learn to avoid plants initially harvested if they prove to be harmful for their symbiotic fungus once incorporated into the nest. At this point, waste particles removed from the fungus garden are likely to contain cues originating from both the unsuitable plant and the damaged fungus. We investigated whether leaf-cutting ant foragers learn to avoid unsuitable plants solely through the colony waste. We fed subcolonies of Acromymex ambiguus privet leaves treated with a fungicide undetectable to the ants, then collected the produced waste, and placed it into the fungus chamber of naive subcolonies. In individual choice tests, naive foragers preferred privet leaves before waste was put into the fungus chamber, but avoided them afterwards. Evidence on the influence of olfactory cues from the waste on decision making by foragers was obtained by scenting and transferring waste particles from subcolonies that had been fed either fungicide-treated or untreated leaves. In choice experiments, foragers from subcolonies given scented waste originating from fungicide-treated leaves collected fewer sugared paper discs with that scent compared with foragers from subcolonies given scented waste from untreated leaves. The results indicate that foragers learn to avoid plants unsuitable for the fungus by associating plant odours and cues from the damaged fungus that are present in waste particles. It is argued that waste particles may contribute to spread information about noxious plants for the fungus within the colony. PMID:27284068

  15. Clean tailing reclamation: Tailing reprocessing for sulfide removal and vegetation establishment

    SciTech Connect

    Jennings, S.R.; Kruegar, J.

    1997-12-31

    Mine wastes exhibiting elevated heavy metal concentrations are widespread causes of resource degradation in the western US and elsewhere. This problem is further exacerbated by the presence of pyrite that oxidizes upon exposure to the atmosphere resulting in acid generation. Since pyrite was not recovered as a mineral of economic value during mining, it was disposed of in waste piles and tailing ponds that are now a source of acid generation and release of metals to the environment. Tailing cleaning, or sulfide mineral recovery through reprocessing, was evaluated as an innovative reclamation technology. Tailing materials, from both operational and abandoned mines, were collected to evaluate the feasibility of sulfide mineral recovery. Successful mineral separation was performed resulting in a low volume metal sulfide concentrate and a high volume cleaned silicate media. Total metal concentrations were decreased in the cleaned tailing material and elevated in the sulfide concentrate compared with the original tailing chemistry. In greenhouse trials, vegetation establishment in cleaned tailing material was compared with plant growth in topsoil and lime-amended tailings. While vegetation performance was best in the topsoil control, both lime-amended and cleaned tailings displayed adequate plant growth.

  16. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect

    Not Available

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  17. Commercial Nuclear Reprocessing in the United States

    SciTech Connect

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  18. Clinical Practice Guidelines for Endoscope Reprocessing

    PubMed Central

    Oh, Hyun Jin

    2015-01-01

    Gastrointestinal endoscopy is effective and safe for the screening, diagnosis, and treatment of gastrointestinal disease. However, issues regarding endoscope-transmitted infections are emerging. Many countries have established and continuously revise guidelines for endoscope reprocessing in order to prevent infections. While there are common processes used in endoscope reprocessing, differences exist among these guidelines. It is important that the reprocessing of gastrointestinal endoscopes be carried out in accordance with the recommendations for each step of the process. PMID:26473117

  19. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  20. Endoscope Reprocessing: Update on Controversial Issues

    PubMed Central

    Choi, Hyun Ho

    2015-01-01

    Several issues concerning endoscope reprocessing remain unresolved based on currently available data. Thus, further studies are required to confirm standard practices including safe endoscope shelf life, proper frequency of replacement of some accessories including water bottles and connecting tubes, and microbiological surveillance testing of endoscopes after reprocessing. The efficacy and cost-effectiveness of newer technology that allows automated cleaning and disinfection is one such controversial issue. In addition, there are no guidelines on whether delayed reprocessing and extended soaking may harm endoscope integrity or increase the bioburden on the external or internal device surfaces. In this review, we discuss the unresolved and controversial issues regarding endoscope reprocessing. PMID:26473115

  1. Design criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA). Revision 3

    SciTech Connect

    Not Available

    1982-12-01

    This document provides design criteria which shall be used by the architect-engineer in the Title II detail design of the Waste Isolation Pilot Plant. The design criteria present requirements which the architect-engineer must address in the design of the Waste Isolation Pilot Plant.

  2. Metal accumulation in wild plants surrounding mining wastes.

    PubMed

    González, R Carrillo; González-Chávez, M C A

    2006-11-01

    Four sites were selected for collection of plants growing on polluted soil developed on tailings from Ag, Au, and Zn mines at the Zacatecas state in Mexico. Trace element concentrations varied between sites, the most polluted area was at El Bote mine near to Zacatecas city. The ranges of total concentration in soil were as follows: Cd 11-47, Ni 19-26, Pb 232-695, Mn 1132-2400, Cu 134-186 and Zn 116-827 mg kg(-1) air-dried soil weight. All soil samples had concentrations above typical values for non-polluted soils from the same soil types (Cd 0.6+/-0.3, Ni 52+/-4, Pb 41+/-3mg kg(-1)). However, for the majority of samples the DTPA-extractable element concentrations were less than 10% of the total. Some of the wild plants are potentially metal tolerant, because they were able to grow in highly polluted substrates. Plant metal analysis revealed that most species did not translocate metals to their aerial parts, therefore they behave as excluder plants. Polygonum aviculare accumulated Zn (9236 mg kg(-1)) at concentrations near to the criteria for hyperaccumulator plants. Jatropha dioica also accumulated high Zn (6249 mg kg(-1)) concentrations. PMID:16631286

  3. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    PubMed

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density <1000 persons (km(2))(-1) produce <500 MJ t(-1) of heat. We also found that external use of such energy for factories, markets, and related use, was noted in cities with a population density of 2000 to 4000 persons (km(2))(-1). Several incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. PMID:26628053

  4. Study on Shielding Requirements for Radioactive Waste Transportation in a Mo-99 Production Plant - 13382

    SciTech Connect

    Melo Rego, Maria Eugenia de; Kazumi Sakata, Solange; Vicente, Roberto; Hiromoto, Goro

    2013-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of low enriched uranium (LEU) targets. The planned end of irradiation activity of {sup 99}Mo is about 185 TBq (5 kCi) per week to meet the present domestic demand of {sup 99m}Tc generators. The radioactive wastes from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the wastes can be predicted based on the yields of fission and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production schedule, etc., which were in principle already established by the project management. The transportation of the wastes from the production plant to the treatment facility will be done by means of special shielded packages. An assessment of the shielding required for the packages has been done and the results are presented here, aiming at contributing to the design of the waste management facility for the {sup 99}Mo production plant. (authors)

  5. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  6. Seismic Response of a Deep Underground Geologic Repository for Nuclear Waste at the Waste Isolation Pilot Plant in New Mexico

    SciTech Connect

    Sanchez, P.E.

    1998-11-02

    The Waste Isolation Pilot Plant (WIPP) is a deep underground nuclear waste repository certified by the U.S. Environmental Protection Agency ,(EPA) to store transuranic defense-related waste contaminated by small amounts of radioactive materials. Located at a depth of about 655 meters below the surface, the facility is sited in southeastern New Mexico, about 40 Department of Energy underground facilities, waste disposal. kilometers east of the city of Carlsbad, New Mexico. The U.S. (DOE) managed the design and construction of the surface and and remains responsible for operation and closure following The managing and operating contractor for the DOE at the WIPP, Westinghouse Electric Corporation, maintains two rechmiant seismic monitoring systems located at the surface and in the underground. This report discusses two earthquakes detected by the seismic monitoring system, one a duratior magnitude 5.0 (Md) event located approximately 60 km east-southeast of the facility, and another a body-wave magnitude 5.6 (rob) event that occurred approximately 260 kilometers to the south-southeast.

  7. Unit operations used to treat process and/or waste streams at nuclear power plants. [R

    SciTech Connect

    Godbee, H.W.; Kibbey, A.H.

    1980-01-01

    Estimates are given of the annual amounts of each generic type of LLW (i.e., Government and commerical (fuel cycle and non-fuel cycle)) that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials (liquids (e.g., oils or solvents) and/or solids), could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends.

  8. ``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin

    2007-04-01

    One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.

  9. Urban waste as a potential source for brick plants

    NASA Astrophysics Data System (ADS)

    Daugherty, K. E.; Eberendu, A.; Griffin, J.; Gegbe, H.; Ike, C.; Aboo, A.

    1982-02-01

    A joint government/industry/university project was formulated to address the technical feasibility of utilizing municipal solid waste (MSW) as a commercial fuel for the brick industry. Specifically, refuse derived fuel (RDF) from MSW was investigated for three potential applications in the brick industry: (1) rotary brick kilns; (2) tunnel brick kilns; and (3) moisture dryers. The successful development of such a procedure would be a dramatic achievement with widespread applicability, transferability, and commercial merit for energy displacement. The sampling, collection, and analysis of MSW, the analysis of RDF, and the potential utilization of RDF as an alternate source of fuel for the brick industry are described.

  10. Khazar Iodine Production Plant Site Remediation in Turkmenistan. NORM Contaminated Waste Repository Establishment - 12398

    SciTech Connect

    Gelbutovskiy, Alexander B.; Cheremisin, Peter I.; Troshev, Alexander V.; Egorov, Alexander J.; Boriskin, Mikhail M.; Bogod, Mikhail A.

    2012-07-01

    Radiation safety provisions for NORM contaminated areas are in use in a number of the former Soviet republics. Some of these areas were formed by absorbed radionuclides at the iodine and bromine extraction sites. As a rule, there are not any plant radiation monitoring systems nor appropriate services to ensure personnel, population and environmental radiation safety. The most hazardous sites are those which are situated in the Caspian Sea coastal zone. The bulk of the accumulated waste is represented by a loose mixture of sand and charcoal, which was basically used as the iodine extraction sorbent. The amounts of these wastes were estimated to be approximately 20,000 metric tons. The waste contamination is mainly composed of Ra-226 (U-238 decay series) and Ra-224, Ra-228 (Th-232 decay series). In 2009, the 'ECOMET-S', a Closed Joint-Stock Company from St. Petersburg, Russian Federation, was authorized by the Turkmenistan government to launch the rehabilitation project. The project includes D and D activities, contaminated areas remediation, collected wastes safe transportation to the repository and its disposal following repository closure. The work at the Khazar chemical plant started in September, 2010. Comprehensive radiological surveys to estimate the waste quantities were carried out in advance. In course of the rehabilitation work at the site of the Khazar chemical plant additional waste quantities (5,000 MT, 10,000 m{sup 3}) were discovered after the sludge was dumped and drained. Disposal volumes for this waste was not provided initially. The additional volume of the construction wastes was required in order to accommodate all the waste to be disposed. For the larger disposal volume the project design enterprise VNIPIET, offered to erect a second wall outside the existing one and this solution was adopted. As of May, 2011, 40,575 m{sup 3} of contaminated waste were collected and disposed safely. This volume represents 96.6% of the initial repository volume

  11. Direct utilization of human liquid wastes by plants in a closed ecosystem

    NASA Astrophysics Data System (ADS)

    Lisovsky, G. M.; Gitelson, J. I.; Shilenko, M. P.; Gribovskaya, I. V.; Trubachev, I. N.

    1997-01-01

    Model experiments in phytotrons have shown that urea is able to cover 70% of the demand in nitrogen of the conveyer cultivated wheat. At the same time wheat plants can directly utilize human liquid wastes. In this article by human liquid wastes the authors mean human urine only. In a long-term experiment on ``man-higher plants'' system with two crewmen, plants covered 63 m^2, with wheat planted to - 39.6 m^2. For 103 days, complete human urine (total amount - 210.7 l) was supplied into the nutrient solution for wheat. In a month and a half NaCl supply into the nutrient solution stabilized at 0.9-1.65 g/l. This salination had no marked effect on wheat production. The experiment revealed the realistic feasibility to directly involve liquid wastes into the biological turnover of the life support system. The closure of the system, in terms of water, increased by 15.7% and the supply of nutrients for wheat plants into the system was decreased. Closedness of biological turnover of matter in a man-made ``man - higher plants'' ecological system might involve, among other processes, direct utilization of human liquid wastes by plants. The amount of urine comprises 15-20% of the total amount of water cycling within the system including water as part of food, household, hygiene and potable water necessary for man. What is more, it they contains most nitrogen-bearing compounds emitted by man, almost all of the NaCl and some other substances involved in the biological turnover. Human liquid wastes can be utilized either by preliminary physical-chemical treatment (evaporating or freezing out the water, finally oxidizing the organic matter, isolating the mineral components required for plants, etc.) and further involvement of the obtained products or by direct application into the nutrient solution for plants. The challenge of direct utilization is that plants have no need of Na^+ and Cl^-, and also the organic forms of nitrogen emitted by man cannot fully meet the demand of

  12. A&M. Liquid waste treatment plant, TAN616. Plan, elevations, sections, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Liquid waste treatment plant, TAN-616. Plan, elevations, sections, and details. Evaporator pit. Pump room. Room names and numbers. Ralph M. Parsons 902-3-ANP-616-A 297. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index no. 034-0616-00-693-106889 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. Q Fever Outbreak among Workers at a Waste-Sorting Plant

    PubMed Central

    Alonso, Eva; Lopez-Etxaniz, Idoia; Hurtado, Ana; Liendo, Paloma; Urbaneja, Felix; Aspiritxaga, Inmaculada; Olaizola, Jose Ignacio; Piñero, Alvaro; Arrazola, Iñaki; Barandika, Jesús F.; Hernáez, Silvia; Muniozguren, Nerea; García- Pérez, Ana L.

    2015-01-01

    An outbreak of Q fever occurred in February–April 2014 among workers at a waste-sorting plant in Bilbao (Spain). The outbreak affected 58.5% of investigated employees, 47.2% as confirmed cases (PCR and/or serology) and 11.3% as probable cases (symptoms without laboratory confirmation). Only employees who had no-access to the waste processing areas of the plant were not affected and incidence of infection was significantly higher among workers not using respiratory protection masks. Detection by qPCR of Coxiella burnetii in dust collected from surfaces of the plant facilities confirmed exposure of workers inside the plant. Animal remains sporadically detected among the residues received for waste-sorting were the most probable source of infection. After cleaning and disinfection, all environmental samples tested negative. Personal protection measures were reinforced and made compulsory for the staff and actions were taken to raise farmers’ awareness of the biological risk of discharging animal carcasses as urban waste. PMID:26398249

  14. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  15. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  16. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    SciTech Connect

    Not Available

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  17. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    SciTech Connect

    Washington TRU Solutions LLC

    2007-03-25

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  18. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals - abstract

    EPA Science Inventory

    Phosphates adsorbed on calcium carbonate are environmental friendly, as they do not require further treatment for the phosphate species desorption due to its effectiveness as the plant fertilizer. In this study, an inexpensive calcium carbonate obtained as a waste material from d...

  19. Toxics turf fight: DOE, EPA battling over waste rules at nuke plants

    SciTech Connect

    Not Available

    1984-01-05

    The US DOE's contention that its nuclear weapons and research plants across the country are not subject to the hazardous waste disposal requirements of the Resource Conservation and Recovery Act will be tested in federal court if the Justice Dept. agrees with DOE. The pollution problems in Oak Ridge, TN are discussed.

  20. Q Fever Outbreak among Workers at a Waste-Sorting Plant.

    PubMed

    Alonso, Eva; Lopez-Etxaniz, Idoia; Hurtado, Ana; Liendo, Paloma; Urbaneja, Felix; Aspiritxaga, Inmaculada; Olaizola, Jose Ignacio; Piñero, Alvaro; Arrazola, Iñaki; Barandika, Jesús F; Hernáez, Silvia; Muniozguren, Nerea; García-Pérez, Ana L

    2015-01-01

    An outbreak of Q fever occurred in February-April 2014 among workers at a waste-sorting plant in Bilbao (Spain). The outbreak affected 58.5% of investigated employees, 47.2% as confirmed cases (PCR and/or serology) and 11.3% as probable cases (symptoms without laboratory confirmation). Only employees who had no-access to the waste processing areas of the plant were not affected and incidence of infection was significantly higher among workers not using respiratory protection masks. Detection by qPCR of Coxiella burnetii in dust collected from surfaces of the plant facilities confirmed exposure of workers inside the plant. Animal remains sporadically detected among the residues received for waste-sorting were the most probable source of infection. After cleaning and disinfection, all environmental samples tested negative. Personal protection measures were reinforced and made compulsory for the staff and actions were taken to raise farmers' awareness of the biological risk of discharging animal carcasses as urban waste. PMID:26398249

  1. Experiments on rehabilitation of radioactive metallic waste (RMW) of reactor stainless steels of Siberian chemical plant

    NASA Astrophysics Data System (ADS)

    Kolpakov, G. N.; Zakusilov, V. V.; Demyanenko, N. V.; Mishin, A. S.

    2016-06-01

    Stainless steel pipes, used to cool a reactor plant, have a high cost, and after taking a reactor out of service they must be buried together with other radioactive waste. Therefore, the relevant problem is the rinse of pipes from contamination, followed by returning to operation.

  2. Biodegradation studies of aniline and nitrobenzene in aniline plant waste water by gas chromatography

    SciTech Connect

    Patil, S.S.; Shinde, V.M.

    1988-10-01

    A gas chromatographic (GC) method has been developed for studying the biodegradation of aniline and/or nitrobenzene in aniline plant waste water. The effects of various parameters have been reported and critically discussed. The results are precise and afford simultaneous determination of aniline and nitrobenzene.

  3. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect

    RECHARD,ROBERT P.

    2000-03-01

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  4. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  5. Characterisation of radioactive waste products associated with plant decommissioning.

    PubMed

    Sejvar, J; Fero, A H; Gil, C; Hagler, R J; Santiago, J L; Holgado, A; Swenson, R

    2005-01-01

    The inventory of radioactivity that must be considered in the decommissioning of a typical 1000 MWe Spanish pressurised water reactor (PWR) was investigated as part of a generic plant decommissioning study. Analyses based on DORT models (in both R-Z and R-theta geometries) were used with representative plant operating history and core power distribution data in defining the expected neutron environment in regions near the reactor core. The activation analyses were performed by multiplying the DORT scalar fluxes by energy-dependent reaction cross sections (based on ENDF/B-VI data) to generate reaction rates on a per atom basis. The results from the ORIGEN2 computer code were also used for determining the activities associated with certain nuclides where multi-group cross section data were not available. In addition to the bulk material activation of equipment and structures near the reactor, the activated corrosion-product (or 'crud') deposits on system and equipment surfaces were considered. The projected activities associated with these sources were primarily based on plant data and experience from operating PWR plants. PMID:16381771

  6. Radioactive waste management in the Chernobyl exclusion zone: 25 years since the Chernobyl nuclear power plant accident.

    PubMed

    Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. PMID:21878768

  7. The Waste Isolation Pilot Plant: A Success Story with International Cooperation

    SciTech Connect

    Matthews, M.

    2002-02-26

    The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) administers and operates the Waste Isolation Pilot Plant (WIPP) site, which hosts a deep geologic repository for safe disposal of U.S. defense-related TRU waste and is located 42 kilometers (km) east of Carlsbad, New Mexico. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. The WIPP began receiving waste in March 1999. In some areas of broad international interest, the CBFO has developed a leading expertise through its 25-year WIPP repository and TRU waste characterization activities. In addition to participating in relevant and beneficial experiments, the CBFO will provide the international community convenient access to this information by sponsoring and hosting symposia and workshops on relevant topics and by participation in international waste management organizations and topical meetings. In recognition of the successes at WIPP, the Inter national Atomic Energy Agency (IAEA) has designated WIPP as an International Center of Excellence and part of IAEA's Network of Centers of Excellence. The IAEA will foster cooperative training in and demonstration of waste disposal technologies in underground research facilities (URFs).such as WIPP. The CBFO, supported by its Science Advisor, has agreed to exchange scientific information with eight foreign radioactive waste management organizations, and three more national radioactive waste management and disposal organizations have expressed interest in similar agreements. These activities result in the cost-effective acquisition of scientific information in support of increased WIPP facility operational and post-closure assurance and reliability. It also demonstrates the CBFO's intent and resolve to honor international commitments and obligations.

  8. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES FROM CONCEPT TO PILOT PLANT

    SciTech Connect

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-12-08

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design.

  9. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  10. State oversight review of Waste Isolation Pilot Plant radiation protection and measurement programs

    SciTech Connect

    Channell, J.K.

    1989-01-01

    The Environmental Evaluation Group (EEG), an interdisciplinary organization attached to the New Mexico Institute of Mining and Technology, has been providing an independent scientific oversight of the Waste Isolation Pilot Plant WIPP project since 1978. Evaluations cover all aspects of the project that have potential radiological health and safety considerations. During the early years, most of the review emphasis was on site suitability and involved heavy emphasis on the disciplines of geology and hydrogeology. During the middle years, the amount of emphasis on facility design, waste characterization, waste transportation package development, and quality assurance increased. Now, as final preparations are being made for the receipt of radioactive wastes, EEG is heavily involved in evaluating on-site health physics programs and radiation-measurement systems. Also, EEG is conducting an independent environmental radiation-monitoring program.

  11. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    SciTech Connect

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed.

  12. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    NASA Astrophysics Data System (ADS)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and

  13. Wool-waste as organic nutrient source for container-grown plants

    SciTech Connect

    Zheljazkov, Valtcho D. Stratton, Glenn W.; Pincock, James; Butler, Stephanie; Jeliazkova, Ekaterina A.; Nedkov, Nedko K.; Gerard, Patrick D.

    2009-07-15

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  14. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    SciTech Connect

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.; Mickelsen, R.W.; Hendersen, J.M.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidly in the tanks containing duckweed only. 10 references, 13 tables.

  15. Parameter sensitivity studies of selected components of the Waste Isolation Pilot Plant repository/shaft system

    SciTech Connect

    Rechard, R.P. ); Beyeler, W.; Schreiber, J.D. ); McCurley, R.D.; Rudeen, D.K.; Bean, J.E. )

    1990-03-01

    This status report presents preliminary analyses of flow through the rooms, drifts, seals, and shafts of the Waste Isolation Pilot Plant (WIPP). The purpose of these analyses is to evaluate the importance of various components and parameters of the transuranic waste repository. These analyses are presented to show the current status of repository/shaft system modeling, and to provide input for evaluating proposed engineered modifications to the waste and rooms to ensure compliance with the Environmental Protection Agency's Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Waste. Detailed descriptions are given for nine computational models of the WIPP repository for either undisturbed or human intrusion conditions. Some models are refined versions of earlier models; others include rudimentary studies of an additional phenomenon, flow of generated gas. The models of an undisturbed repository substantiated the results of earlier models by showing that no waste leaves the vicinity of the disposal area in 10,000 yr. The models that studies gas flow agreed with this position; however, the models are too rudimentary to permit conclusive statements. The five models of the human intrusion event explored the importance of parameters that influence the flow of brine through the waste, establishing a base for understanding the behavior of the waste disposal rooms, drifts,and interbeds in the host rock. 63 refs., 92 figs., 29 tabs.

  16. Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.

    PubMed

    García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R

    2007-08-15

    Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes. PMID:17874801

  17. A short history of waste management at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Gephart, Roy E.

    The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of southeastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.” ( Gephart, 2003).

  18. A Short History of Waste Management at the Hanford Site

    SciTech Connect

    Gephart, Roy E.

    2010-03-31

    "The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.”(1) "

  19. Socioeconomic study for the proposed waste isolation pilot plant

    SciTech Connect

    Not Available

    1980-10-01

    This document presents the historical and existing socioeconomic conditions in the vicinity of the proposed plant, projected changes in those conditions with and without the plant, and an outline of the various techniques used to make these projections. The analysis predicts impacts on the general economy in the area near the plant and on employment, personal income, population, social structure, the private economic sector, housing, land use, community services and facilities, and local government finances. Among the most important results are the following predictions: The economy of the area will derive $165 million directly and indirectly during the first 7.5 years of the project. After that, it will derive about $21 million directly and indirectly during each year of full operation. About 2100 jobs will be created directly and indirectly at the peak of the construction and about 950 jobs during the full operation. A net in-migration will occur: about 2250 people at the peak of the construction and about 1000 people during operation. A housing shortage may begin in Carlsbad in 1981 or 1982 and last for about 2 years.

  20. Survey of Endoscope Reprocessing in Korea

    PubMed Central

    Park, Jeong Bae; Yang, Jae Nam; Koo, Ja Seol; Jang, Jae Young; Park, Sang Hoon; Hong, Su Jin; Kim, Sang-Woo; Chun, Hoon Jai

    2015-01-01

    Background/Aims There is a growing emphasis on quality management in endoscope reprocessing. Previous surveys conducted in 2002 and 2004 were not practitioner-oriented. Therefore, this survey is significant for being the first to target actual participants in endoscope reprocessing in Korea. Methods This survey comprised 33 self-filled questions, and was personally delivered to nurses and nursing auxiliaries in the endoscopy departments of eight hospitals belonging to the society. The anonymous responses were collected after 1 week either by post or in person by committee members. Results The survey included 100 participants. In the questionnaire addressing compliance rates with the reprocessing guideline, the majority (98.9%) had a high compliance rate compared to 27% of respondents in 2002 and 50% in 2004. The lowest rate of compliance with a reprocessing procedure was reported for transporting the contaminated endoscope in a sealed container. Automated endoscope reprocessors were available in all hospitals. Regarding reprocessing time, more than half of the subjects replied that reprocessing took more than 15 minutes (63.2%). Conclusions The quality management of endoscope reprocessing has improved as since the previous survey. A national survey expanded to include primary clinics is required to determine the true current status of endoscope reprocessing. PMID:25674525

  1. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    SciTech Connect

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  2. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  3. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    N. R. Soelberg; J. D. Law; T. G. Garn; M. Greenhalgh; R. T. Jubin; P. Thallapally; D. M. Strachan

    2013-08-01

    The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  4. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  5. Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant

    SciTech Connect

    Johnson, H.E.; Whatley, M.E.

    1996-08-01

    WIPP`s long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP`s suitability as a TRU waste repository. Now, as DOE`s Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP`s second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed.

  6. Leaching behaviors of high-sulfur coal wastes from two Appalachian coal-preparation plants

    SciTech Connect

    Heaton, R.C.; Williams, J.M.; Bertino, J.P.; Wangen, L.E.; Nyitray, A.M.; Jones, M.M.; Wanek, P.L.; Wagner, P.

    1982-06-01

    We have completed an assessment of the environmental behaviors of high-sulfur coal wastes obtained from two coal preparation plants located in northern Appalachia. Leachates obtained from these materials are often very acidic, with pH values sometimes less than 2, and contain high concentrations of a number of chemical elements. Aluminum, manganese, iron, nickel, and sometimes copper, zinc, and cadmium are released in environmentally harmful concentrations according to the Environmental Protection Agency Multimedia Environmental Goals/Minimum Acute Toxicity Effluent (MEG/MATE) system of evaluation. Iron is the worst case, with concentrations typically more than 30 times the acceptable level. In terms of leaching behavior, these wastes are very similar to the Illinois Basin coal wastes that we have studied in the past. Unless properly disposed of, these wastes may cause serious environmental degradation as a result of contaminated drainages. Studies of the chemical composition and morphology of these coal wastes reveal that many of the environmentally important elements leached from the solid wastes in high percentages (Fe, Co, Ni, Cu, Zn, As, Se) tend to reside among either mixed-layer clays or pyritic mineral phases. Elements associated with quartz or more orderly clays, such as kaolinite or illite, are generally leached in lower percentages. Important determinants of coal waste leaching behavior are pyrite, which determines the acid generating potential of the waste, calcite, which determines the capacity of the waste to self-neutralize the acids released by oxidation of pyrite, and the clay minerals, which serve as reservoirs for many of the leachable trace elements.

  7. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 1

    SciTech Connect

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility for the demonstration of the permanent isolation of transuranic radioactive wastes in a geologic formation. The facility was constructed in southeastern New Mexico in a manner intended to meet criteria established by the scientific and regulatory community for the safe, long-term disposal of transuranic wastes. The US Department of Energy (DOE) is preparing an application to demonstrate compliance with the requirements outlined in Title 40, Part 191 of the Code of Federal Regulations (CFR) for the permanent disposal of transuranic wastes. As mandated by the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act of 1992, the US Environmental Protection Agency (EPA) must evaluate this compliance application and provide a determination regarding compliance with the requirements within one year of receiving a complete application. Because the WIPP is a very complex program, the DOE has planned to submit the application as a draft in two parts. This strategy will allow for the DOE and the EPA to begin technical discussions on critical WIPP issues before the one-year compliance determination period begins. This report is the first of these two draft submittals.

  8. Evaluation of alternative flow sheets for upgrade of the Process Waste Treatment Plant

    SciTech Connect

    Robinson, S.M.

    1991-04-01

    Improved chemical precipitation and/or ion-exchange (IX) methods are being developed at the Oak Ridge National Laboratory (ORNL) in an effort to reduce waste generation at the Process Waste Treatment Plant (PWTP). A wide variety of screening tests were performed on potential precipitation techniques and IX materials on a laboratory scale. Two of the more promising flow sheets have been tested on pilot and full scales. The data were modeled to determine the operating conditions and waste generation at plant-scale and used to develop potential flow sheets for use at the PWTP. Each flow sheet was evaluated using future-valve economic analysis and performance ratings (where numerical values were assigned to costs, process flexibility and simplicity, stage of development, waste reduction, environmental and occupational safety, post-processing requirements, and final waste form). The results of this study indicated that several potential flow sheets should be considered for further development, and more detailed cost estimates should be made before a final selection is made for upgrade of the PWTP. 19 refs., 52 figs., 22 tabs.

  9. Feasibility study for a demonstration plant for liquefaction and coprocessing of waste plastics and tires

    SciTech Connect

    Huffman, G.P.; Shah, N.; Shelley, M.

    1998-04-01

    The results of a feasibility study for a demonstration plant for the liquefaction of waste polymers and the coprocessing of waste polymers with coal are presented. The study was carried out by a committee of participants from five universities, the US DOE Federal Energy Technology Center, and Burns & Roe Corporation. The study included an assessment of current recycling practices, a review of pertinent research, and a survey of feedstock availability. A conceptual design for a demonstration plant was developed and a preliminary economic analysis for various feedstock mixes was carried out. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case, the return on investment (ROI) was found to range from 8% to 16% as tipping fees for waste plastic and tires increased over a range comparable to that existing in the US. A number of additional feedstock scenarios that were both more and less profitable were also considered and are briefly discussed.

  10. Feasibility study for a demonstration plant for liquefaction and coprocessing of waste plastics and tires

    SciTech Connect

    Huffman, G.P.; Shah, N.; Shelley, M.; El-Halwagi, M.; Schindler, H.; Eastman, M.

    1998-07-01

    The results of a feasibility study for a demonstration plant for the liquefaction of waste polymers and the coprocessing of waste polymers with coal are presented. The study was carried out by a committee of participants from five universities, the US DOE Federal Energy Technology Center, and Burns and Roe Corporation. The study included an assessment of current recycling practices, a review of pertinent research, and a survey of feedstock availability. A conceptual design for a demonstration plant was developed and a preliminary economic analysis for various feedstock mixes was carried out. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 200 tons per day of waste tires. For this base case, the return on investment (ROI) was found to range from 8% to 16% as tipping fees for waste plastic and tires increased over a range comparable to that existing in the US. A number of additional feedstock scenarios that were both more and less profitable were also considered and are briefly discussed.

  11. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. PMID:25959614

  12. Manufactured gas plant sites: Characterization of wastes and IGT`s innovative remediation alternatives

    SciTech Connect

    Srivastava, V.J.

    1993-12-31

    Manufactured gas plants (MGP)--often referred to as town gas plants--have existed in many parts of the world, including the United States, during the nineteenth and twentieth centuries. Consequently, many of these plants disposed of process wastes and less valuable by-products onsite, contaminated with coal-tar wastes, light oils, naphthalene, etc. Polynuclear aromatic hydrocarbons (PAHs) are components of coal-tar wastes and other wastes that remain at many of these town gas sites. PAH- containing soils, as a result, represent the largest waste type at most MGP sites. Also, certain PAHs are recognized today as being potential animal and/or human carcinogens and, as such, represent an environmental hazard. The Institute of Gas Technology (IGT) has developed and/or evaluated several techniques/processes to improve the biodegradation of PAHs present at MGP sites. As a result of extensive studies, IGT has successfully developed and demonstrated an integrated Chemical/Biological Treatment (CBT) process that is capable of enhancing the rate as well as the extent of PAH degradation. This process combines two complementary as well as powerful remedial techniques: (1) chemical pretreatment using Fenton`s reagent and (2) a biological system using native aerobic microorganisms. This paper presents the general characteristics of MGP sites and wastes and the innovative IGT processes at various stages of development and demonstration. This paper also discusses the IGT/GRI treatability protocol that can be used to determine the potential of bioremediation for any MGP site soil within a 2 to 3-month period.

  13. PLANNING AND ASSESSMENT MEASURES TO UPDATING RESOURCES RECYCLING EQUIPMENTS IN COLLABORATION WITH SEWAGE TREATMENT PLANTS AND WASTE INCINERATION PLANTS

    NASA Astrophysics Data System (ADS)

    Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi

    This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.

  14. Radioactive waste management

    SciTech Connect

    Flax, S.J.

    1981-01-01

    This article examines the technical and legal considerations of nuclear waste management. The first three sections describe the technical aspects of spent-fuel-rod production, reprocessing, and temporary storage. The next two sections discuss permanent disposal of high-level wastes and spent-fuel rods. Finally, legislative and judicial responses to the nuclear-waste crisis.

  15. Waste Isolation Pilot Plant TruDock crane system analysis

    SciTech Connect

    Morris, B.C.; Carter, M.

    1996-10-01

    The WIPP TruDock crane system located in the Waste Handling Building was identified in the WIPP Safety Analysis Report (SAR), November 1995, as a potential accident concern due to failures which could result in a dropped load. The objective of this analysis is to evaluate the frequency of failure of the TruDock crane system resulting in a dropped load and subsequent loss of primary containment, i.e. drum failure. The frequency of dropped loads was estimated to be 9.81E-03/year or approximately one every 102 years (or, for the 25% contingency, 7.36E-03/year or approximately one every 136 years). The dominant accident contributor was the failure of the cable/hook assemblies, based on failure data obtained from NUREG-0612, as analyzed by PLG, Inc. The WIPP crane system undergoes a rigorous test and maintenance program, crane operation is discontinued following any abnormality, and the crane operator and load spotter are required to be trained in safe crane operation, therefore it is felt that the WIPP crane performance will exceed the data presented in NUREG-0612 and the estimated failure frequency is felt to be conservative.

  16. Projecting plant economics for wind, wood and waste fuels

    SciTech Connect

    Perkins, J.M.; Rundle, W.L.

    1983-01-01

    A method is described for determining the cost of producing electricity by using the energy of wind and the energy obtained with combustion of wood and solid wastes, to evaluate the economic expediencey of construction an energy system on alternative energy sources as compared to other variants. Data are presented for conditions of northeast United States which characterize the outlays of the main capital with regard for costs associated with environmental protection, preparation of planning documents, unforeseen expenditures, tax deductions for capital investments used during construction and other costs. The data are presented for the calculated year. Evaluation of the economic competitiveness of the WEC is made based on two systems of cost based on the technology of the current production and on the expected economics of mass production with output of the WES 1.5-2.5 MW. Estimates of the cost of producing electricity obtained by burning wood fuel were made for the ES with power of 9, 30 and 46 MW. The cost of wood depends on many local factors and can change in broad limits.

  17. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong; Sundaram, S. K.; Westsik, Joseph H.

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find the correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.

  18. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect

    Chung, Chul-Woo; Chun, Jaehun Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  19. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    SciTech Connect

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  20. An evaluation of the 1992 Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Lee, W.W.L.

    1994-12-31

    The Waste Isolation Pilot Plant (WIPP) is a federal repository for disposal of defense-generated transuranic waste, including hazardous components. To demonstrate that such disposal will be safe, the Department of Energy has prepared a series of performance assessments to show the system safety under a range of conditions. The Environmental Evaluation Group performs independent technical analysis of health and safety issues for WIPP on behalf of the people of New Mexico. This paper presents selected highlights from EEG`s review of the 1992 Performance Assessment.

  1. From science to compliance: Geomechanics studies of the Waste Isolation Pilot Plant

    SciTech Connect

    HANSEN,FRANCIS D.

    2000-06-05

    Mechanical and hydrological properties of salt provide excellent bases for geological isolation of hazardous materials. Regulatory certification of the Waste Isolation Pilot Plant (WIPP) testifies to the nearly ideal characteristics of bedded salt deposits in southeast New Mexico. The WIPP history includes decades of testing and scientific investigations, which have resulted in a comprehensive understanding of salt's mechanical deformational and hydrological properties over an applicable range of stresses and temperatures. Comprehensive evaluation of salt's favorable characteristics helped demonstrate regulatory compliance and ensure isolation of radioactive waste placed in a salt geological setting.

  2. Toxicity of coal gasifier solid waste to the aquatic plants Selenastrum capricornutum and Spirodela oligorhiza

    SciTech Connect

    Klaine, S.J.

    1985-10-01

    Classical assessment of aquatic toxicity has focused on fish and invertebrates primarily due to their economic importance. However, increased awareness of the role of aquatic vegetation as primary producers in aquatic systems has stimulated their use in aquatic hazards evaluations. This paper presents the results of solid waste leaching tests using a procedure which was designed to mimic landfilling of solid waste. Results are reported for leachate analysis of the ash agglomerate and the relative toxicity of this leachate to Selenastrum capricornutum (a unicellular green alga) and Spirodela oligorhiza (a floating aquatic vascular plant).

  3. Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico

    SciTech Connect

    Levich, R. A.; Patterson, R. L.; Linden, R. M.

    2002-02-26

    A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

  4. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant

    NASA Astrophysics Data System (ADS)

    Walser, Tobias; Limbach, Ludwig K.; Brogioli, Robert; Erismann, Esther; Flamigni, Luca; Hattendorf, Bodo; Juchli, Markus; Krumeich, Frank; Ludwig, Christian; Prikopsky, Karol; Rossier, Michael; Saner, Dominik; Sigg, Alfred; Hellweg, Stefanie; Günther, Detlef; Stark, Wendelin J.

    2012-08-01

    More than 100 million tonnes of municipal solid waste are incinerated worldwide every year. However, little is known about the fate of nanomaterials during incineration, even though the presence of engineered nanoparticles in waste is expected to grow. Here, we show that cerium oxide nanoparticles introduced into a full-scale waste incineration plant bind loosely to solid residues from the combustion process and can be efficiently removed from flue gas using current filter technology. The nanoparticles were introduced either directly onto the waste before incineration or into the gas stream exiting the furnace of an incinerator that processes 200,000 tonnes of waste per year. Nanoparticles that attached to the surface of the solid residues did not become a fixed part of the residues and did not demonstrate any physical or chemical changes. Our observations show that although it is possible to incinerate waste without releasing nanoparticles into the atmosphere, the residues to which they bind eventually end up in landfills or recovered raw materials, confirming that there is a clear environmental need to develop degradable nanoparticles.

  5. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant.

    PubMed

    Walser, Tobias; Limbach, Ludwig K; Brogioli, Robert; Erismann, Esther; Flamigni, Luca; Hattendorf, Bodo; Juchli, Markus; Krumeich, Frank; Ludwig, Christian; Prikopsky, Karol; Rossier, Michael; Saner, Dominik; Sigg, Alfred; Hellweg, Stefanie; Günther, Detlef; Stark, Wendelin J

    2012-08-01

    More than 100 million tonnes of municipal solid waste are incinerated worldwide every year. However, little is known about the fate of nanomaterials during incineration, even though the presence of engineered nanoparticles in waste is expected to grow. Here, we show that cerium oxide nanoparticles introduced into a full-scale waste incineration plant bind loosely to solid residues from the combustion process and can be efficiently removed from flue gas using current filter technology. The nanoparticles were introduced either directly onto the waste before incineration or into the gas stream exiting the furnace of an incinerator that processes 200,000 tonnes of waste per year. Nanoparticles that attached to the surface of the solid residues did not become a fixed part of the residues and did not demonstrate any physical or chemical changes. Our observations show that although it is possible to incinerate waste without releasing nanoparticles into the atmosphere, the residues to which they bind eventually end up in landfills or recovered raw materials, confirming that there is a clear environmental need to develop degradable nanoparticles. PMID:22609690

  6. Characterization of nuclide inventories in waste streams from nuclear power plants

    SciTech Connect

    Oppermann, U.; Mueller, W.

    1993-12-31

    Producers of radioactive waste are increasingly required to characterize the nuclide specific activity inventory of their wastes to demonstrate compliance with the acceptance criteria of interim storages or repositories for the final disposal of radioactive wastes. Nuclide specific characterization of activity inventories for nuclides that are hard to measure in nuclear power plant wastes in general is based on calculations by fixed correlations to easy measurable intense {gamma}-emitters (key nuclides). This method is establish within a CEC project for LWR waste streams from four European countries. First experiences from this project in comparison to data from the US and to earlier evaluations for German LWRs are presented. The applicability of the method is discussed with regard to the measurability of radiologically relevant nuclides comparability between different reactor systems and waste streams, and the availability of the necessary data. All topics are illustrated by examples for individual correlations. Conclusions are drawn for the degree of necessary differentiation and the main factors responsible for these differences.

  7. Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-11-01

    The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70.

  8. RADIOACTIVE WASTE MANAGEMENT IN THE USSR: A REVIEW OF UNCLASSIFIED SOURCES, 1963-1990

    SciTech Connect

    Bradley, D. J.; Schneider, K. J.

    1990-03-01

    year capacity as the first of several modules, was about 30% completed by July 1989. The completion of this plant was subsequently "indefinitely postponed." The initial reprocessing scheme at the Kyshtym site used sodium uranyl acetate precipitation from fuel dissolved in nitric acid solutions. The basic method~ ology now appears to be based on the conventional PUREX process. Dry reprocessing on a pilot or laboratory scale has been under way in Dimitrovgrad since 1984, and a larger unit is now being built, according to the French CEA. Perhaps significantly, much research is being done on partitioning high-level waste into element fractions. The Soviets appear to have the technology to remove radioactive noble gases released during reprocessing operations; however, there are no indications of its implementation. Millions of curies of liquid low- and intermediate-level wastes have been disposed of by well injection into underground areas where they were supposedly contained by watertight rock strata. Some gaseous wastes were also disposed of by well injection. This practice is not referred to in recent literature and thus may not be widely used today. Rather, it appears that these waste streams are now first treated to reduce volume, and then solidified using bitumen or concrete. These solidified liquid wastes from Soviet nuclear power reactor operations, along with solid wastes, are disposed of in shallow-land burial sites located at most large power reactor stations. In addition, 35 shallow-land burial sites have been alluded to by the Soviets for disposal of industrial, medical, and research low-level wastes as well as ionization sources. Research on tritium-bearing and other gaseous wastes is mentioned, as well as a waste minimization program aimed at reducing the volume of waste streams by 30%. The Soviets have announced that their high-level waste management plan is to 1) store liquid wastes for 3-5 years; 2) incorporate the waste into glass (at a final glass

  9. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    SciTech Connect

    Not Available

    1993-07-01

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP`s environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence.

  10. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

  11. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    SciTech Connect

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  12. Modeling of Human Intrusion Scenarios at the Waste Isolation Pilot Plant

    SciTech Connect

    Gross, M.B.; Hansen, F.D.; Knowles, M.K.; Larson, K.W.; Thompson, T.W.

    1998-12-04

    The Waste Isolation Pilot Plant is a mined, geologic repository designed for permanent disposal of transuranic waste. The facility is owned by the United States Department of Energy, and licensed for operations by the Environmental Protection Agency. Compliance with license requirements dictates that the repository must comply with regulatory stipulations that performance assessment calculations include the effects of resource exploitation on probable releases. Scenarios for these releases incorporate inadvertent penetration of the repository by an exploratory drilling operation. This paper presents the scenarios and models used to predict releases from the repository to the biosphere during. an inadvertent intrusion into the waste disposal regions. A summary of model results and conclusions is also presented.

  13. Geophysical investigation at Hazardous Waste Management Site 16, Radford Army Ammunition Plant Radford, Virginia. Final report

    SciTech Connect

    Llopis, J.L.; Sjostrom, K.J.

    1989-09-01

    This report describes procedural details and test results of a geophysical investigation conducted at Hazardous Waste Management Site-16 (HWMS-16), Radford Army Ammunition Plant, Va. The geophysical investigation, part of a comprehensive ground-water assessment program, was conducted to obtain subsurface information regarding HWMS-16, thus aiding in determining the most optimal locations for future monitoring wells. The two geophysical methods used in this investigation were electromagnetic (EM) induction and seismic refraction. A number of anomalous areas including a suspected sinkhole were discerned at HWMS-16. Also, the EM method proved to be effective in delineating the boundaries of covered and leveled-off landfill cells and distinguishing landfill cells used for the disposal of household waste from those used for the disposal of hazardous waste.

  14. Demonstration of the TRUEX process for the treatment of actual high activity tank waste at the INEEL using centrifugal contactors

    SciTech Connect

    Law, J.D.; Brewer, K.N.; Todd, T.A.; Olson, L.G.

    1997-10-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), formerly reprocessed spent nuclear fuel to recover fissionable uranium. The radioactive raffinates from the solvent extraction uranium recovery processes were converted to granular solids (calcine) in a high temperature fluidized bed. A secondary liquid waste stream was generated during the course of reprocessing, primarily from equipment decontamination between campaigns and solvent wash activities. This acidic tank waste cannot be directly calcined due to the high sodium content and has historically been blended with reprocessing raffinates or non-radioactive aluminum nitrate prior to calcination. Fuel reprocessing activities are no longer being performed at the ICPP, thereby eliminating the option of waste blending to deplete the waste inventory. Currently, approximately 5.7 million liters of high-activity waste are temporarily stored at the ICPP in large underground stainless-steel tanks. The United States Environmental Protection Agency and the Idaho Department of Health and Welfare filed a Notice of Noncompliance in 1992 contending some of the underground waste storage tanks do not meet secondary containment. As part of a 1995 agreement between the State of Idaho, the Department of Energy, and the Department of Navy, the waste must be removed from the tanks by 2012. Treatment of the tank waste inventories by partitioning the radionuclides and immobilizing the resulting high-activity and low-activity waste streams is currently under evaluation. A recent peer review identified the most promising radionuclide separation technologies for evaluation. The Transuranic Extraction-(TRUEX) process was identified as a primary candidate for separation of the actinides from ICPP tank waste.

  15. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  16. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  17. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system.

    PubMed

    Tikhomirov, A A; Ushakova, S A; Manukovsky, N S; Lisovsky, G M; Kudenko, Yu A; Kovalev, V S; Gribovskaya, I V; Tirrannen, L S; Zolotukhin, I G; Gros, J B; Lasseur, Ch

    2003-01-01

    The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants--SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances--products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. PMID:14649254

  18. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gribovskaya, I. V.; Tirranen, L. S.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    2003-08-01

    The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants — SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances — products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover.

  19. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  20. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    SciTech Connect

    Not Available

    1988-02-26

    This report contains appendix 2 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, Laboratory permeability, and compaction characteristics representative of Kaolin clays from the aiken, South Carolina vicinity. Included in this report are daily field reports Nos. 1 to 54. (KJD)