These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

NEW JERSEY INDUSTRIAL WASTE STUDY (WASTE PROJECTION AND TREATMENT)  

EPA Science Inventory

The study demonstrates a procedure for projecting the hazardous waste shipped off-site by industry. The projection system develops ratios of hazardous waste per employee by SIC code. These ratios can be used to estimate the hazardous waste shipped off-site for any industrial area...

2

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

Not Available

1992-04-01

3

Mixed Waste Treatment Project: Computer simulations of integrated flowsheets  

SciTech Connect

The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE`s Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP`s charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program.

Dietsche, L.J.

1993-12-01

4

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

Not Available

1992-04-01

5

SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20  

EPA Science Inventory

This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

6

Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

Reidel, Steve P.

2006-05-26

7

The Plasma Hearth Process demonstration project for mixed waste treatment  

SciTech Connect

The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years.

Geimer, R. [Science Applications International Corp., Idaho Falls, ID (United States); Dwight, C.; McClellan, G. [Argonne National Lab., Idaho Falls, ID (United States)

1994-07-01

8

Advanced Mixed Waste Treatment Project (AMWTP) Final Environmental Impact Statement  

SciTech Connect

The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the INEEL. The alternatives analyzed were: the No Action Alternative, the Proposed Action, the Non-Thermal Treatment Alternative, and the Treatment and Storage Alternative. The Proposed Action is the Preferred Alternative. Under the Proposed Action/Preferred Alternative, the AMWTP facility would treat transuranic waste, alpha-contaminated low-level mixed waste, and low-level mixed waste in preparation for disposal. After treatment, transuranic waste would be disposed of at the Waste Isolation Pilot Plant in New Mexico. Low-level mixed waste would be disposed of at an approved disposal facility depending on decisions to be based on DOE's Final Waste Management Programmatic Environmental Impact Statement. Evaluation of impacts on land use, socioeconomics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, INEEL services, and environmental justice were included in the assessment.

N /A

1999-02-12

9

Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.  

SciTech Connect

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

Brouns, Thomas M.

2007-07-15

10

Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project  

SciTech Connect

This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

J.D. Mousseau; S.C. Raish; F.M. Russo

2006-05-18

11

Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant  

SciTech Connect

The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

Eibling, R.E.

2001-07-26

12

Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact  

SciTech Connect

The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

Not Available

1992-12-31

13

ASPEN computer simulations of the mixed waste treatment project baseline flowsheet  

SciTech Connect

The treatment and disposal of mixed waste (i.e., waste containing both hazardous and radioactive components) is a challenging waste- management problem of particular concern to Department of Energy (DOE) sites throughout the United States. Traditional technologies used for destroying hazardous wastes must be re- evaluated for their ability to handle mixed wastes, and, in some cases, new technologies must be developed. The Mixed Waste Treatment Project (MWTP), a collaborative effort between Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, and Pacific Northwest Laboratory (PNL), was established by the DOE`s Waste Operations Program (EM-30) to develop and analyze alternative mixed waste treatment approaches. One of the MWTP`s initiatives, and the objective of this study, was to develop flowsheets for prototype, integrated, mixed-waste treatment facilities that can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modeling. The objectives of the flowsheet simulations are to compare process effectiveness and costs of alternative flowsheets and to determine if commercial process-simulation software could be used on the large, complex process of an integrated mixed waste processing facility. Flowsheet modeling is needed to evaluate many aspects of proposed flowsheet designs. A major advantage of modeling the complete flowsheet is the ability to define the internal recycle streams, thereby making it possible to evaluate the impact of one operation on the whole plant. Many effects that can be seen only in this way. Modeling also can be used to evaluate sensitivity and range of operating conditions, radioactive criticality, and relative costs of different flowsheet designs. Further, the modeled flowsheets must be easily modified so that one can examine how alternative technologies and varying feed streams affect the overall integrated process.

Dietsche, L.J.; Upadhye, R.S.; Camp, D.W.; Pendergrass, J.A.; Borduin, L.C.; Thompson, T.K.

1994-07-05

14

Mixed Waste Treatment Project: LLNL and LANL computer simulations of integrated flowsheets  

SciTech Connect

Computer simulations of mixed waste processing flowsheets using ASPEN PLUS process simulation software were completed by a joint Lawrence Livermore National Laboratory/Los National Laboratory (LLNL/LANL) effort for the US Department of Energy Mixed Waste Treatment Project. The LLNL model used relatively detailed synthesized chemical ``cocktails`` to simulate waste streams. The LANL approach used less detail but made extensive use of simple steam splitters and thermodynamic coal models for combustible waste compositions. The two modeling approaches agreed within 16% for the product streams and within 25% for the auxiliary fuel rate. The discrepancy between the auxiliary fuel rates was traced to different methods of handling organics in lab packs and scintillation vials with the process models. The ASPEN models are valuable tools for evaluating waste processing flowsheets.

Camp, D.W.; Dietsche, L.J.; Upadhye, R.S. [Lawrence Livermore National Lab., CA (United States); Borduin, L.C.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States); Thompson, T.K. [Thompson (T.K.), Inc., Los Alamos, NM (United States)

1994-03-01

15

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

SciTech Connect

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

2010-01-04

16

Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

Not Available

1992-04-01

17

SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS  

SciTech Connect

In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

RYAN GW

2008-04-25

18

One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant  

SciTech Connect

The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

Skwarek, Raymond J. [Washington River Protection Systems, Richland, WA (United States); Harp, Ben J. [USDOE Office of River Protection, Richland, WA (United States); Duncan, Garth M. [Bechtel National, Inc. (United States)

2013-12-18

19

Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project  

SciTech Connect

This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

Hutchinson, D.P.

1995-07-01

20

Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report  

SciTech Connect

Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

Watson, D. [Oak Ridge National Lab., TN (United States); Leavitt, M.; Moss, D. [SAIC, Oak Ridge, TN (United States)] [and others

1997-03-01

21

Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

Not Available

1992-04-01

22

Operational waste volume projection  

SciTech Connect

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

Koreski, G.M.

1996-09-20

23

Operational Waste Volume Projection  

SciTech Connect

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

STRODE, J.N.

2000-08-28

24

Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect

Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

Barnett, D. BRENT; Garcia, Benjamin J.

2006-12-15

25

Waste Treatment Plant - 12508  

SciTech Connect

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01

26

Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.  

SciTech Connect

During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

Gardner, Martin G.; Price, Randall K.

2007-02-01

27

Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect

This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.

Horner, Jake A.

2007-02-28

28

Waste Management Project Contingency Analysis  

SciTech Connect

The purpose of this report is to provide the office of Waste Management (WM) with recommended contingency calculation procedures for typical WM projects. Typical projects were defined as conventional construction-type activities that use innovative elements when necessary to meet the project objectives. Projects involve treatment, storage, and disposal of low level, mixed low level, hazardous, transuranic, and high level waste. Cost contingencies are an essential part of Total Cost Management. A contingency is an amount added to a cost estimate to compensate for unexpected expenses resulting from incomplete design, unforeseen and unpredictable conditions, or uncertainties in the project scope (DOE 1994, AACE 1998). Contingency allowances are expressed as percentages of estimated cost and improve cost estimates by accounting for uncertainties. The contingency allowance is large at the beginning of a project because there are more uncertainties, but as a project develops, the allowance shrinks to adjust for costs already incurred. Ideally, the total estimated cost remains the same throughout a project. Project contingency reflects the degree of uncertainty caused by lack of project definition, and process contingency reflects the degree of uncertainty caused by use of new technology. Different cost estimation methods were reviewed and compared with respect to terminology, accuracy, and Cost Guide standards. The Association for the Advancement of Cost Engineering (AACE) methods for cost estimation were selected to represent best industry practice. AACE methodology for contingency analysis can be readily applied to WM Projects, accounts for uncertainties associated with different stages of a project, and considers both project and process contingencies and the stage of technical readiness. As recommended, AACE contingency allowances taper off linearly as a project nears completion.

Edward L. Parsons, Jr.

1999-08-31

29

Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis  

SciTech Connect

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Bloom, R.R.

1996-04-01

30

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01

31

Packaged Waste Treatment  

NASA Technical Reports Server (NTRS)

This Jacksonville, Florida, apartment complex has a wastewater treatment system which clears the water, removes harmful microorganisms and reduces solid residue to ash. It is a spinoff from spacecraft waste management and environmental control technology.

1977-01-01

32

Basalt Waste Isolation Project Reclamation Support Project:  

SciTech Connect

The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory's role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site's altitude and north-facing orientation.

Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

1992-06-01

33

INEL Operable Unit 7-13 Retrieval/Ex Situ Thermal Treatment configuration options: INEL Buried Waste Integrated Demonstration Systems Analysis project  

SciTech Connect

The mission of the Buried Waste Integrated Demonstration (BWID) Systems Analysis project is to identify and evaluate cradle-to-grave systems for the remediation of Transuranic (TRU)Contaminated Waste Pits and Trenches within the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The BWID program will use the results of the BWID Systems Analysis in conjunction with identified Department of Energy (DOE) Complex buried waste needs to develop a long-term strategy for improving buried waste remediation capabilities throughout the DOE system. This report presents Buried Waste Retrieval/Ex Situ Thermal Treatment configuration option concepts in the form of block diagrams. These configuration options are: Retrieval/Melter Treatment; Retrieval/Metal Sort/Thermal Treatment; Retrieval/No Sort/Incineration/Melter Treatment; Retrieval/Interim Storage/Melter Treatment; Retrieval/Interim Storage/Metal Sort/Thermal Treatment; and Retrieval/Interim Storage/No Sort/Incineration/Melter Treatment. Each option is presented as a complete end-to-end system.

Richardson, J.G.; Rudin, M.J.; O`Brien, M.C.; Morrison, J.L.; Raivo, B.

1992-07-01

34

Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form  

SciTech Connect

Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

Keiser, D.D.

1996-11-01

35

Lyophilization -Solid Waste Treatment  

NASA Technical Reports Server (NTRS)

This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

2004-01-01

36

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP  

SciTech Connect

The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

2006-01-18

37

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18

38

Microbiology of Waste Treatment.  

ERIC Educational Resources Information Center

Presents a literature review of the microbiology of waste treatment, covering publications of 1976-77. This review includes topics such as: (1) sanitary microbiology; (2) wastewater disinfectant; (3) viruses in wastewater; and (4) wastewater microbial populations. A list of 142 references is also presented. (HM)

Unz, Richard F.

1978-01-01

39

Continuous in-line gasification\\/vitrification process for thermal waste treatment: process technology and current status of projects  

Microsoft Academic Search

The Thermoselect High Temperature Recycling process has been developed in order to make available a thermal waste treatment technology avoiding major problems as known from traditional techniques like landfills or ashes, filter dust and emission producing processes. It combines slow degassing with fixed bed oxygen blown gasification and mineral and metal residue melting in a closed loop system. Municipal, industrial

Bernd Calaminus; R. Stahlberg

1998-01-01

40

Treatment information assessment project.  

PubMed

Project Inform recently published the final report of the Treatment Information Assessment Project (TIAP). The project was developed with the Kaiser Family Foundation to investigate the types of treatment concerns reported by callers to Project Inform's National HIV/AIDS Treatment Hotline. Differences in the types of questions by callers of different genders, ethnicities, age, and geographic locations were assessed. The study has found that the primary motivations of the discussions are the amount of time a person has been infected with HIV, and their treatment experience. Contact information is provided for ordering a full copy of the report. PMID:11366739

1999-04-01

41

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-print Network

POTENTIAL COSTS FOR TREATMENT & DISPOSAL COST OF RECYCLE, PREVENTION ESTIMATED COST SAVINGS PROJECT Reduction 0 Radioactive Emissions T/B/D in CY2004 after data analyzed (gaseous emissions reduction) $13 exposure to U by laboratory personnel, and decreases total labor time by 75%. Radioactive Waste from

42

WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT  

Microsoft Academic Search

The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment

F. Habashi

2000-01-01

43

USDOE activities in low-level radioactive waste treatment  

NASA Astrophysics Data System (ADS)

Current research, development and demonstration programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment are described. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas were selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting.

Vath, J. E.

44

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01

45

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31

46

Treatment of mercury containing waste  

DOEpatents

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01

47

Solid Waste Treatment Technology  

ERIC Educational Resources Information Center

Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

Hershaft, Alex

1972-01-01

48

Polyoxometalates for Radioactive Waste Treatment  

SciTech Connect

The research project has two major goals: (1) the selective sequestration of lanthanide (Ln) and actinide (An) cations, and technetium species, from tank waste solutions, using radiation-resistant and thermally-stable polyoxometalate anions as complexants, and (2) the conversion of complexed Ln/An/Tc to reduced oxide bronzes (e.g. MxWO3) under relatively mild conditions, and evaluation of the use of such bronzes as waste forms.

Pope, Michael T.; Bryan, Jeffrey

1999-06-01

49

POLYOXOMETALATES FOR RADIOACTIVE WASTE TREATMENT  

SciTech Connect

The research project has two major goals: (1) the selective sequestration of lanthanide (Ln) and actinide (An) cations, and technetium species, from tank waste solutions, using radiation-resistant and thermally-stable polyoxometalate anions as complexants, and (2) the conversion of complexed Ln/An/Tc to reduced oxide bronzes (e.g. MxWO3) under relatively mild conditions, and evaluation of the use of such bronzes as waste forms.

Pope, Michael T.

2000-06-01

50

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01

51

8-Waste treatment and disposal A. Responsibility for waste management  

E-print Network

8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

52

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15

53

Waste water treatment  

SciTech Connect

Waste water containing over 2 ppm Mo and at least one heavy metal impurity selected from the group consisting of Fe, Mn, Cu, Zn, Pb, and Cd, and also containing cyanide ion (CN) is treated by passing waste water having an adjusted pH value ranging from about 3 to 4 through an ion-exchange resin column selective to the removal of Mo and provide an ion-exchange effluent containing at least one of said heavy metal impurities and said cyanide ion. The ph value of the effluent is then adjusted to a range of about 7 to 11 sufficient to precipitate the heavy metal impurity having the highest pH requirement for precipitation, following which the precipitate is flocculated and the effluent containing the flocculated precipitate then subjected to electrolysis using insoluble electrodes to form electrolytic oxygen and hydrogen and effect electroflotation of the flocculated precipitate and form a froth thereof which is separated from the effluent by skimming.

Laferty, J.M.; Van Riper, G.G.; Zundel, W.P.

1980-02-19

54

Assessing mixed waste treatment technologies  

SciTech Connect

The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m{sup 3} of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers.

Berry, J.B.; Bloom, G.A. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

1994-06-01

55

40 CFR 35.925-15 - Treatment of industrial wastes.  

Code of Federal Regulations, 2010 CFR

...Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve industrial sources or (b) costs...

2010-07-01

56

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-print Network

ENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance treatment of waste water to remove priority metals · Install new metering system to dose secondary with SPDES Permit modifications · Ensure effective treatment of waste water EA will Evaluate Treatment

Homes, Christopher C.

57

DEMONSTRATION OF WASTE TREATMENT TECHNOLOGIES  

EPA Science Inventory

The need for long-term, permanent treatment schemes as alternatives to land disposal has been highlighted by legislation such as the Hazardous and Solid Waste Amendments of the Resource Conservation and Recovery Act (RCRA) and the Superfund Amendments and Reauthorization Act (SAR...

58

Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2  

SciTech Connect

The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

Jacobsen, P.H.

1997-09-23

59

DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT  

EPA Science Inventory

In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. he intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative suc...

60

DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT  

EPA Science Inventory

In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. The intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative s...

61

Sustainable waste management in Africa through CDM projects.  

PubMed

Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector. PMID:22498573

Couth, R; Trois, C

2012-11-01

62

Biological treatment of hazardous waste  

SciTech Connect

This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

Lewandowski, G.A.; Filippi, L.J. de [eds.

1998-12-01

63

A Primer on Waste Water Treatment.  

ERIC Educational Resources Information Center

This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

64

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27

65

Aqueous Waste Treatment Plant at Aldermaston  

SciTech Connect

For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

Keene, D. [RWE NUKEM, Ltd, 424 Harwell, Didcot, Oxfordshire, OX 110GJ (United Kingdom); Fowler, J.; Frier, S. [AWE plc, Aldermaston, Berkshire RG7 4PR (United Kingdom)

2006-07-01

66

Waste treatment integration in space  

NASA Technical Reports Server (NTRS)

The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.

Baresi, L.; Kern, R.

1991-01-01

67

Mixed waste characterization, treatment & disposal focus area  

SciTech Connect

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01

68

ENVIRONMENTAL ASSESSMENT WASTE WATER TREATMENT MODIFICATIONS  

E-print Network

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE................................................38 5.3.4 Effects of the Enhanced Treatment Alternative on Water Resources........................39 5.................................................................................................. 21 4.3 Alternative 3 ­ Enhanced Effluent Treatment

Ohta, Shigemi

69

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01

70

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01

71

Sustainable waste management in Africa through CDM projects  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

2012-11-15

72

Waste management project technical baseline description  

SciTech Connect

A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

Sederburg, J.P.

1997-08-13

73

HANDBOOK ON TREATMENT OF HAZARDOUS WASTE LEACHATE  

EPA Science Inventory

Various treatment processes were evaluated for their applicability and effectiveness in treating leachate from hazardous waste land disposal facilities. These technologies include activated sludge treatment, air stripping, carbon adsorption, flow equalization, granular media filt...

74

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

Microsoft Academic Search

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition

P. A. Kumar

2000-01-01

75

PERMEABLE TREATMENT WALL EFFECTIVENESS MONITORING PROJECT, NEVADA STEWART MINE  

EPA Science Inventory

This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 39, Permeable Treatment Wall Effectiveness Monitoring Project, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. De...

76

Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading  

EPA Science Inventory

This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

77

Full Focus Needed on Finishing Hanford's Waste Treatment Plant - 12196  

SciTech Connect

The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threat to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of WTP. - Construct a supplemental low-activity waste (LAW) vitrification facility for the two-thirds balance of LAW that will not be treated by the vitrification facility under construction. - Prepare infrastructure for waste feed from the tanks and facilities to handle the WTP waste streams. To support this project track, Ecology expedites dangerous waste permitting by using a design-build approach to integrate WTP into the Resource Conservation and Recovery Act permit for Hanford. (authors)

Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika [Washington State Department of Ecology, Richland, WA 99354 (United States)

2012-07-01

78

Ecotoxicological screen of Potential Release Site 50-006(d) of Operable Unit 1147 of Mortandad Canyon and relationship to the Radioactive Liquid Waste Treatment Facilities project  

SciTech Connect

Potential ecological risk associated with soil contaminants in Potential Release Site (PRS) 50-006(d) of Mortandad Canyon at the Los Alamos National Laboratory was assessed by performing an ecotoxicological risk screen. The PRS surrounds Outfall 051, which discharges treated effluent from the Radioactive Liquid Waste Treatment Facility. Discharge at the outfall is permitted under the Clean Water Act National Pollution Discharge Elimination System. Radionuclide discharge is regulated by US Department of Energy (DOE) Order 5400.5. Ecotoxicological Screening Action Levels (ESALSs) were computed for nonradionuclide constituents in the soil, and human risk SALs for radionuclides were used as ESALs. Within the PRS and beginning at Outfall 051, soil was sampled at three points along each of nine linear transects at 100-ft intervals. Soil samples from 3 depths for each sampling point were analyzed for the concentration of a total of 121 constituents. Only the results of the surface sampling are reported in this report.

Gonzales, G.J.; Newell, P.G.

1996-04-01

79

Project report for the commercial disposal of mixed low-level waste debris  

SciTech Connect

This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

1994-05-01

80

Waste form development for use with ORNL waste treatment facility sludge  

SciTech Connect

A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

1996-05-01

81

West Valley demonstration project: alternative processes for solidifying the high-level wastes  

SciTech Connect

In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

1981-10-01

82

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01

83

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22

84

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21

85

Thermodynamic Modeling of the AWE Radioactive Aqueous Waste Treatment Plant Evaporator  

SciTech Connect

Operation of the proposed AWE Aldermaston1 Radioactive Aqueous Waste Treatment Plant evaporation system was modeled using the Environmental Simulation Program (ESP) licensed by OLI Systems, Inc. The projected RAWTP waste influents as well as two simulants (High Foam and Low Foam) were modeled to predict the composition of the feed, concentrate and condensate for projected waste influents. This report details the results of the modeled predictions.

Barnes, C.D.

2003-10-20

86

River Protection Project (RPP) Dangerous Waste Training Plan  

SciTech Connect

This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

POHTO, R.E.

2000-03-09

87

HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technology a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.

Sebastian Puente

1998-07-25

88

Treatment of Radioactive Reactive Mixed Waste  

SciTech Connect

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01

89

Medical waste treatment and decontamination system  

DOEpatents

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01

90

TREATMENT AND PRODUCT RECOVERY: SUPERCRITICAL WATER OXIDATION OF NYLON MONOMER MANUFACTURING WASTE  

EPA Science Inventory

EPA GRANT NUMBER: R822721C569 Title: Treatment and Product Recovery: Supercritical Water Oxidation of Nylon Monomer Manufacturing Waste Investigator: Earnest F. Gloyna Institution: University of Texas at Austin EPA Project Officer:...

91

Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan  

Microsoft Academic Search

The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and

2000-01-01

92

Waste treatment for advanced semiconductor packaging operations  

Microsoft Academic Search

Due to the maturity of plastic packaging technology in the semiconductor industry, a long history of successful waste treatment and water recycling applications exists. However, new packaging technologies have evolved that do not limit bond pad location to the edge of the die. These technologies require deposition of a solder bump on the bond pads for electrical connection between die

P. T. Brown; B. Raley

1998-01-01

93

Biological waste air treatment in biofilters  

Microsoft Academic Search

Recent studies in the area of biological waste air treatment in biofilters have addressed fundamental key issues such as microbial dynamics, microscopical characterization of the process culture and oxygen and nutrient limitations. The results from these studies have provided a deeper insight into the overall biofiltration process. In the coming years, such advances should allow for the design of better

Marc A Deshusses

1997-01-01

94

DEMONSTRATION OF HAZARDOUS WASTE SITE TREATMENT TECHNOLOGIES  

EPA Science Inventory

The SITE program is intended to accelerate the use of new and innovative treatment processes that provide permanent control of hazardous waste as well as evaluate innovative measurement and monitoring techniques and pursue an active technology transfer program. ithin the SITE pro...

95

TRAITEMENT DES EFFLUENTS WASTE TREATMENT  

E-print Network

residence time the production of biogas (7l-78 p. 100 CH,) was 237 1 per kg dry matter, i.e. 479 1 of CH to obtain the same amount of biogas four times quicklier. The treatment yield was improved (65 p. 100 COD). The mean production was 4931 biogas/kg degraded COD. It seems to be possible to apply that procedure

Boyer, Edmond

96

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15

97

Transuranic waste projections at SRS for long range planning  

SciTech Connect

This report predicts 30 year receipts of solid transuranic (TRU) wastes from eventual plutonium facility deactivation and cleanup, and combines them with the existing TRU waste holdings to provide a technical and quantitative basis for interim and long range TRU waste management planning. The current TRU waste holdings have been characterized based on data from the Computerized Radioactive Waste Burial Records Analysis (COBRA) system. Six TRU waste disposition categories have been identified for existing TRU waste as shown in Table 1. An additional category has been quantified that includes projected waste volumes from the Decontamination and Decommissioning (D&D) of TRU waste generating facilities. These projections are based on COBRA data from D&D of the original plutonium finishing facilities in F and H Areas that were replaced in the 1970`s and 80`s.

Hootman, H.E.; Cook, J.R.

1994-05-01

98

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-print Network

equipment. Savings are based on the cost of one PCB spill and clean-up event. Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission Reduction 0 Radioactive Emissions $0

99

Nuclear Waste Treatment Program: Annual report for FY 1986  

SciTech Connect

To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

1987-09-01

100

Waste treatment evaluation for aqueous secondary waste from mixed waste incineration  

SciTech Connect

The Consolidated Incineration Facility (CIF) is a rotary kiln incinerator that processes low-level radioactive, hazardous, and mixed wastes generated at the Savannah River Site (SRS). The incinerator offgases are cleaned by a wet offgas system that generates a secondary aqueous waste stream (blowdown). This waste is mixed waste that requires treatment prior to disposal. The blowdown contains approximately 80 wt% water and 20 wt% chloride salts, ash, and radioactive and hazardous contaminants. A study was conducted to evaluate the various technologies that are commercially used or being developed to treat secondary liquid waste. Both wastewater treatment and evaporation were considered in the evaluation as potential de-watering technologies to reduce the volume of waste, and therefore, reduce disposal costs. The residue from the de-watering process must be stabilized in a binding agent before disposal as mixed waste. There is no precedent to follow for stabilization of mixed wastes. Radioactive wastes have been stabilized with cement for years. However, the Nuclear Regulatory Commission (NRC) has concern over the longevity of cement, while Land Disposal Restrictions (LDR) requirements have been implemented giving rise to concern for leaching of hazardous constituents from cement. The various binders that were considered include glass, cement, bitumen, sulphur cement, polyethylene, epoxy, and vinyl ester resin.

Burns, H.H.

1992-01-01

101

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29

102

Energy requirements for waste water treatment.  

PubMed

The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant. PMID:22214091

Svardal, K; Kroiss, H

2011-01-01

103

Basalt Waste Isolation Project Reclamation Support Project:. 1991--1992 Report  

SciTech Connect

The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory`s role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site`s altitude and north-facing orientation.

Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

1992-06-01

104

Equipment for volume-reducing treatment of radioactive waste  

Microsoft Academic Search

An equipment for the volume-reducing treatment of a radioactive waste is disclosed. The equipment comprises means for drying and milling radioactive waste liquor, waste sludge, waste resin and the like generated from an atomic power plant, means for pelletizing the powder obtained from the drying and milling means and means for charging the pellet thus formed into a drum. The

S. Horiuchi; M. Hirano; S. Hirayama; H. Iinuma; R. Ishikawa

1984-01-01

105

Waste treatment by selective mineral ion exchanger  

SciTech Connect

STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

Polito, Aurelie [Areva NC - BUA STMI, 1 route de la Noue - 91196 Gif sur Yvette, Cedex (France)

2007-07-01

106

Project Plan for the evaluation of REDC waste for TRU-waste radionuclides  

SciTech Connect

This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy`s definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary.

Nguyen, L.; Yong, L.; Chapman, J. [and others

1996-09-01

107

Analysis of waste treatment requirements for DOE mixed wastes: Technical basis  

SciTech Connect

The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

NONE

1995-02-01

108

A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste  

SciTech Connect

The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

1992-06-01

109

50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

110

40 CFR 35.925-15 - Treatment of industrial wastes.  

Code of Federal Regulations, 2011 CFR

...Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That...or (b) costs allocable to the treatment for control or removal of pollutants in wastewater introduced into the treatment works by industrial...

2011-07-01

111

40 CFR 35.925-15 - Treatment of industrial wastes.  

...Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That...or (b) costs allocable to the treatment for control or removal of pollutants in wastewater introduced into the treatment works by industrial...

2014-07-01

112

40 CFR 35.925-15 - Treatment of industrial wastes.  

Code of Federal Regulations, 2013 CFR

...Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That...or (b) costs allocable to the treatment for control or removal of pollutants in wastewater introduced into the treatment works by industrial...

2013-07-01

113

40 CFR 35.925-15 - Treatment of industrial wastes.  

Code of Federal Regulations, 2012 CFR

...Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That...or (b) costs allocable to the treatment for control or removal of pollutants in wastewater introduced into the treatment works by industrial...

2012-07-01

114

IN-SITU TREATMENT OF HAZARDOUS WASTE CONTAMINATED SOILS  

EPA Science Inventory

Techniques were investigated for in-situ treatment of hazardous wastes that could be applied to contaminated soils. Included were chemical treatment methods, biological treatment, photochemical transformations and combination methods. Techniques were developed based on fundamenta...

115

Anoka county, Minnesota, Waste-to-energy project  

SciTech Connect

In 1984 the Minnesota State Legislature required that the metro counties seek alternatives to landfilling municipal solid waste (MSW). Northern States Power Company (NSP) elected to enter the resource recovery business and has, as a result, developed a successful resource recovery program. This paper explores the development of those facilities, and how NSP's experience in other waste-to-energy projects and the joint partnership with United Power Association (UPA) contributed to the Anoka County Resource Recovery Project. The project is an example of how older generating units located near municipalities can be utilized in a solid waste management plan.

Kaas, G.D.; Taylor, D.A.; Dutton, R.W. (Black and Veatch Consulting Engineers, Kansas City, MO (United States))

1990-01-01

116

Bulky waste quantities and treatment methods in Denmark.  

PubMed

Bulky waste is a significant and increasing waste stream in Denmark. However, only little research has been done on its composition and treatment. In the present study, data about collection methods, waste quantities and treatment methods for bulky waste were obtained from two municipalities. In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150-250 kg capita(-1) year(-1), and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions were identified of which ten were recyclable and constituted 50-60% of the total quantity. The others were combustible waste for incineration (30-40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled. The recyclable materials were in many cases exported to other countries which made it difficult to track their destination and further treatment. PMID:21890876

Larsen, Anna W; Petersen, Claus; Christensen, Thomas H

2012-02-01

117

Immobilization in ceramic waste forms of the residues from treatment of mixed wastes  

Microsoft Academic Search

The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc

V. M. Oversby; R. A. van Konynenburg; W. E. Glassley; P. G. Curtis

1993-01-01

118

Hanford Waste Vitrification Plant Project Plan. Revision 1  

SciTech Connect

A major mission of the US DOE is the permanent disposal of Hanford defense wastes by safe, environmentally acceptable, and cost effective methods which meet applicable regulations. The Hanford Waste Vitrification Plant (HWVP) Project was initiated to immobilize the Hanford high-level waste (HLW) and provide interim storage. The HWVP will vitrify the pre-treated HLW into borosilicate glass, cast the glass into stainless steel canisters, and store the canisters on site until they are shipped to a federal geologic repository. The HWVP project objective is to design, construct, and operate a facility for immobilizing defense high-level waste for storage. Technical objectives include using the Defense Waste Processing Facility designed plants systems or elements, where practical, and the exchange and review of information on plants in foreign countries. More definitive objectives for quality, reliability, environmental, and safety are provided in the HWVP Project Management Plan.

Brown, R.W.

1993-06-01

119

Evaluation of Biodegradability of Waste Before and After Aerobic Treatment  

NASA Astrophysics Data System (ADS)

An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

Suchowska-Kisielewicz, Monika; J?drczak, Andrzej; Sadecka, Zofia

2014-12-01

120

Waste handling and packaging plant project description  

SciTech Connect

ORNL currently has about 300 m{sup 3} of remote handled transuranic (RHTRU) solid waste retrievably stored in trenches and a bunker. This material will be processed through the Waste Handling and Packaging Plant (WHDP) for shipment to the Waste Isolation Pilot Plant (WIPP). Details of siting, construction, and conceptual flow of RHTRU waste through the plant are provided. ORNL also has liquid waste and sludge stored in the Melton Valley Storage Tanks (MVST). The sludge also contains TRU waste, and the WHPP will process an expected volume of 500,000 gallons of a suernatant/sludge slurry for shipment to the WIPP. Specific systems which require more development include the cask transfer system, the linear accelerator-based nondestructive assay and nondestructive evaluation equipment. (MHB)

Turner, D.W.; Moore, J.W.; Conatser, D.A.

1991-01-01

121

Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429  

SciTech Connect

The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated into the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)

Conroy, Kevin W. [Golder Associates Inc., Lakewood, Colorado (United States); Vandergaast, Gerald [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)

2012-07-01

122

Waste treatment at the La Hague and Marcoule sites  

SciTech Connect

In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

NONE

1995-04-01

123

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24

124

UPGRADING MEAT PACKING FACILITIES TO REDUCE POLLUTION. WASTE TREATMENT  

EPA Science Inventory

;Contents: Micro-organisms and their role in waste treatment; Waste loads from the meat packing industry; Procedures in the planning, design, and construction of a wastewater-treatment system; Wastewater-treatment methods for the meat packing industry; Operation and maintenance o...

125

Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia  

SciTech Connect

The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

2006-07-01

126

FIELD MEASUREMENTS OF FULL-SCALE HAZARDOUS WASTE TREATMENT FACILITIES - ORGANIC SOLVENT WASTES  

EPA Science Inventory

The report describes the treatment of organic hazardous wastes by distillation, thin-film evaporation, incineration, steam stripping, waste blending, carbon adsorption and activated sludge at full-scale facilities....

127

Mixed waste characterization, treatment, and disposal focus area. Technology summary  

SciTech Connect

This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

NONE

1995-06-01

128

Aerobic thermophilic treatment of farm slurry and food wastes  

Microsoft Academic Search

The review discusses the aerobic treatments for farm slurry and food wastes and concentrates in particular on the thermophilic aerobic treatments. Methods are discussed under the heading of chemical, physical and other treatments. From those methods considered, the most suitable physical–microbiological treatment are aerobic thermophilic treatments. The main problem faced in aerobic thermophilic treatments could be the foaming formation during

Mohammed Mohaibes; Helvi Heinonen-Tanski

2004-01-01

129

Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

IT Corporation, Las Vegas

2002-04-24

130

40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...  

Code of Federal Regulations, 2011 CFR

...disposal. CWA-equivalent treatment means biological treatment for organics, alkaline chlorination...hexavalent chromium, or other treatment technology that can be demonstrated...February 10, 1994, the wastes specified in 40 CFR...

2011-07-01

131

Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect

This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

2004-03-29

132

Treatment for hydrazine-containing waste water solution  

NASA Technical Reports Server (NTRS)

The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

Yade, N.

1986-01-01

133

Accelerator Production of Tritium project process waste assessment  

SciTech Connect

DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

Carson, S.D.; Peterson, P.K.

1995-09-01

134

Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect

The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

Vance, R.F.; Brill, B.A.; Carl, D.E. [and others

1997-06-01

135

Global Nuclear Energy Partnership Waste Treatment Baseline  

SciTech Connect

The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

2008-05-01

136

Treatment of halogen-containing waste and other waste materials  

DOEpatents

A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1997-01-01

137

Treatment of halogen-containing waste and other waste materials  

DOEpatents

A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1997-03-18

138

Sodium-Bearing Waste Treatment Alternatives Implementation Study  

SciTech Connect

The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

Charles M. Barnes; James B. Bosley; Clifford W. Olsen

2004-07-01

139

FACTORS AFFECTING THE PHOTOCHEMICAL TREATMENT OF HAZARDOUS WASTE  

EPA Science Inventory

The photochemical treatment of hazardous waste can be optimized by taking into account several factors that influence the rates of photochemical reactions. Physical factors that facilitate photochemical treatment include: (1) maximizing the irradiated surface to volume ratio of t...

140

FACTORS AFFECTING THE PHOTOCHEMICAL TREATMENT OF HAZARDOUS WASTE (JOURNAL VERSION)  

EPA Science Inventory

The photochemical treatment of hazardous waste can be optimized by taking into account various factors that influence the rates of photochemical reactions. Physical factors that facilitate photochemical treatment include: (1) maximizing the irradiated surface to volume ratio of t...

141

BIOLOGICAL TREATMENT OF WASTES FROM THE CORN WET MILLING INDUSTRY  

EPA Science Inventory

Pilot plant aerated lagoon and laboratory completely mixed activated sludge treatment studies of corn wet milling wastes showed that either process could produce a satisfactory effluent. A full scale completely mixed activated sludge treatment plant was designed from laboratory r...

142

MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT  

EPA Science Inventory

This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

143

Bi-state solid-waste-to-energy project  

NASA Astrophysics Data System (ADS)

The system concept developed will comprise a 600 ton per day waste-fired facility (with supplemental oil or gas fired package boilers) selling steam to the City of St. Louis. The history of activities is presented, and project activities are summarized in 10 major task areas: waste quantity and characteristics; energy and materials market development and negotiations; technical and market evalution of the steam loop; final site and system selection; environmental impact assessment; economic and financial analysis; structuring of the project; procurement documents preparation and issue; contractor selection and negotiation; and project management. For each task, the activities performed, its status, and conclusions as appropriate are presented.

1982-12-01

144

Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan  

SciTech Connect

Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

Van Hoesen, S.D.

2003-09-09

145

MOVEMENT OF CONTAMINANTS FROM OILY WASTES DURING LAND TREATMENT  

EPA Science Inventory

Land treatment is a method of handling wastes that are used by the petroleum refinery industry and others. This method allows the simultaneous treatment and final disposal of the wastes. The soil properties and biota are depended upon to degrade, transform or immobilize the hazar...

146

Challenges when performing economic optimization of waste treatment: A review  

SciTech Connect

Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives.

Juul, N., E-mail: njua@dtu.dk [DTU Management, Risř Campus, Technical University of Denmark (Denmark); Münster, M., E-mail: maem@dtu.dk [DTU Management, Risř Campus, Technical University of Denmark (Denmark); Ravn, H., E-mail: hans.ravn@aeblevangen.dk [RAM-lřse edb, Ćblevangen 55, 2765 Smřrum (Denmark); Söderman, M. Ljunggren, E-mail: maria.ljunggren@chalmers.se [Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); IVL Swedish Environmental Research Institute, Gothenburg (Sweden)

2013-09-15

147

Electrokinetic treatment of hazardous wastes in soil and groundwater  

SciTech Connect

Electrokinetic (EK) treatment processes are recognized by the US department of Defense, US Department of Energy, and the US EPA as the most potentially cost effective treatment of hazardous wastes. Recently, EK has attracted the attention of Dupont, General Electric, and Monsanto for various aspects of hazardous waste treatment. Electrolysis and electro-osmosis are known electrokinetic processes. Electrolysis is one of the principal industrial process used in the production of aluminum, chlorine, metal plating, welding, corrosion protection, etc. Electro-osmosis is a very well established process used to dewater and stabilize the clayey foundations of buildings and structures. These processes are very effective in the treatment of hazardous metals and organic compounds in soil, sludge, and water. Electrolysis can be applied in both permeable and impermeable media. It can be used as a neutralization process for pH control. It can also be used for the isolation or capture of metallic ions, or positively charged ions, at and near the cathode electrode. and negatively charged ions at and near the anode electrode. Electrolyis will also oxidize petroleum hydrocarbons and benzene-based organic chemicals such as PCBs, pesticides, and PAHs. Electro-osmosis can be used in the treatment of hazardous chemicals in silty and clayey material. The electro-osmotic process causes and imbalance of charge bonds in clayey material that results in clay compaction and chemical desorption. The compaction and desorption processes will reduce the cleanup time and are particularly successful in the desorption of organic chemicals and metals from clayey materials. This accelerates and improves the performance of typically inefficient pump and treat projects. Electrokinetic processes can be applied both above ground (ex situ) or in the subsurface (in situ).

Loo, W.W. [Environment & Technology Services, San Francisco, CA (United States)

1995-09-01

148

Current and projected liquid low-level waste generation at ORNL  

SciTech Connect

Liquid low level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). This waste is collected via bottles, trucks, or underground collection tanks. It is then neutralized with sodium hydroxide, reduced in volume at the ORNL LLLW evaporator, and stored as concentrated LLLW in one of twelve storage tanks. Many other tanks (called inactive tanks), which contain historical liquids and sludges generated by past activities, will be remediated; the sludges and associated sluicing and scabbling liquids will then be transferred to the active system for treatment and storage. This report presents historical and projected data concerning the volume and the characterization of LLLW, both prior to and after evaporation. Storage space for projected waste generation is also discussed.

DePaoli, S.M.; Walker, A.B.

1998-03-01

149

Tank waste treatment science task quarterly report, April 1995--June 1995  

SciTech Connect

This report describes the work performed by the Pacific Northwest Laboratory (PNL) during the third quarter of FY 1995 under the Tank Waste Treatment Science Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. Work was performed in the following areas: (1) analytical methods development, (2) sludge dissolution modeling, (3) sludge characterization studies, (4) sludge component speciation, (5) pretreatment chemistry evaluation, and (6) colloidal studies for solid-liquid separations.

LaFemina, J.P.

1995-07-01

150

Waste-heat greenhouse research project  

SciTech Connect

Options for the use of waste heat from once-through cooling power plants are discussed. The Astoria 6 unit of the Power Authority of the State of New York is used as an example. Design options for heat delivery from moderate temperature heat sources (80 to 130/sup 0/F) are emphasized. The various types of greenhouse nighttime insulation systems available are presented. The economics of various greenhouse crops are discussed. An overall evaluation of the feasibility of a waste heat greenhouse at the Astoria 6 site is included.

Not Available

1982-08-01

151

TREATMENT AND DISPOSAL OF COMPLEX INDUSTRIAL WASTES  

EPA Science Inventory

The waste effluent from operation of the Tuscaloosa, Alabama, plant of Reichhold Chemicals, Inc., results from both batch and continuous operations, contains both organic and inorganic wastes and varies both in composition and concentration. This report describes development of a...

152

ALTERNATIVE TREATMENT METHODS FOR HAZARDOUS WASTES  

EPA Science Inventory

The five-year schedule for the minimization and restrictions on the disposal of hazardous wastes onto the land is described. Two major items are causing a shift in the way hazardous wastes are managed in the United States. Because of liability for hazardous wastes, companies are ...

153

Plasma based waste treatment and energy production  

NASA Astrophysics Data System (ADS)

During the past centuries, industrial processes and energy conversion plants have shown no or little care for environmental quality. The result is a huge accumulation of pollution and hazardous by-products, left as a heritage for the present and future generations. Recuperation of by-products or thermal energy is not only motivated by cost saving, but also by resource saving considerations. Environmental awareness is more than staying within the lines of the existing regulations. By the application of a plasma based system to a wide range of possible feedstocks which are CO2 neutral, a clean syngas of high caloric value is produced from the organic substances simultaneously with a non-leachable vitrified lava from the inorganic substances. The results will provide the advanced technology for the environmentally friendly treatment of hazardous wastes, biomass and low grade fuel. The driving force behind the task is to give priority to environmental quality at affordable costs. Thus, the investigation of ways to increase the efficiency of the process is very important. A plasma based remediation system is the only technology that prevents undesired pollution in the by-products and end product (such as syngas or other gases). The problem to be solved is twofold: recuperate clean energy from waste and renewables without pollution at affordable costs. Such a technique fulfils the objectives of sustainable development. Today, one of the main reasons that restricts the use of plasma based methods is the cost of electrical energy. The crucial element is the plasma torch performance. Hence, the physics of modern plasma torches is addressed in detail. The optimistic scenario holds the promise to provide 10 15% of the energy needs for the European Union (EU). Thus, the investigation of ways to increase the efficiency of the process is very important.

Tendler, Michael; Rutberg, Philip; van Oost, Guido

2005-05-01

154

Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes  

SciTech Connect

Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

1986-05-01

155

Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants  

PubMed Central

Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

Font, Xavier; Artola, Adriana; Sánchez, Antoni

2011-01-01

156

COMPENDIUM OF TECHNOLOGIES USED IN THE TREATMENT OF HAZARDOUS WASTES  

EPA Science Inventory

This document is intended to serve as an introduction to available technologies which can be used in the treatment of hazardous wastes. echnologies are categorized on the basis of whether they are considered physical treatment, chemical treatment, biological treatment, thermal tr...

157

Yucca Mountain Site Characterization Project Waste Package Plan  

SciTech Connect

The goal of the US Department of Energy`s (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig.

Harrison-Giesler, D.J. [USDOE Nevada Operations Office, Las Vegas, NV (USA). Yucca Mountain Project Office; Morissette, R.P. [Science Applications International Corp., Las Vegas, NV (USA); Jardine, L.J. [Lawrence Livermore National Lab., CA (USA)

1991-02-01

158

A model for quantifying construction waste in projects according to the European waste list.  

PubMed

The new EU challenge is to recover 70% by weight of C&D waste in 2020. Literature reveals that one major barrier is the lack of data. Therefore, this paper presents a model which allows technicians to estimate C&D waste during the design stage in order to promote prevention and recovery. The types and quantities of CW are estimated and managed according to EU guidelines, by building elements and specifically for each project. The model would allow detection of the source of the waste and to adopt other alternative procedures which delete hazardous waste and reduce CW. Likewise, it develops a systematic structure of the construction process, a waste classification system and some analytical expressions which are based on factors. These factors depend on technology and represent a standard on site. It would allow to develop a database of waste anywhere. A Spanish case study is covered. Factors were obtained by studying over 20 dwellings. The source and types of packaging waste, remains, soil and hazardous waste were estimated in detail and were compared with other studies. Results reveal that the model can be implemented in projects and the chances of reducing and recovery C&D waste could be increased, well above the EU challenge. PMID:21353519

Llatas, C

2011-06-01

159

Inductively heated plasma waste treatment for energy recovery.  

PubMed

An assessment of a decentralized inductively heated plasma waste treatment system for energy recovery has been done. The modular miniaturized high enthalpy plasma source IPG6 is a reference for the system and has been qualified for inert but also chemically aggressive gas compositions. An identification and review of applications were undertaken. Niches of high environmental and societal importance are considered: hospital waste (threshold countries), shipboard waste and marine litter. The wastes are reviewed deriving relevant parameter for a system analysis aiming for the derivation of energy production and efficiencies. The system analysis shows advantageous constellation due to the wastes' energy leading to self-feeding systems. PMID:24956751

Herdrich, G; Schmalzriedt, S; Laufer, R; Dropmann, M; Gabrielli, R

2014-08-01

160

Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste  

Microsoft Academic Search

The mechanical and biological waste treatment (MBT) is an increasingly important technology for the treatment of municipal solid waste (MSW) before landfilling. This process includes composting of the material with intensive aeration in order to minimize the organic fraction that may induce methane and leachate emissions after landfilling. The exhaust air is treated by biofilters to remove odorous and volatile

J. Clemens; C. Cuhls

2003-01-01

161

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-print Network

and Graphic Arts Division implemented a pollution prevention project that segregates hazardous fixer from non by the pollution prevention council, installed a xenon pressure cell to allow preparation of samples for protein to the manufacturer . Replaced with energy efficient light emitting diode (LED) signs. Project reduced risk of tritium

162

40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.  

Code of Federal Regulations, 2012 CFR

...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

2012-07-01

163

40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.  

...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

2014-07-01

164

40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.  

Code of Federal Regulations, 2013 CFR

...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

2013-07-01

165

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01

166

Dutch geologic radioactive waste disposal project  

NASA Astrophysics Data System (ADS)

Geologic disposal of radioactive waste is reviewed. The radionuclide release consequences of an accidental flooding of the underground excavations was studied. The results of the quantitative examples made for different effective cross sections of the permeable layer connecting the mine excavations with the boundary of the salt dome are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multilayer disposal configurations were analyzed and compared.

Hamstra, J.; Verkerk, B.

167

Nuclear waste treatment program. Annual report for FY 1985  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are: (1) to ensure that waste management is not an obstacle to the further deployment of light-water reactors (LWR) and the closure of the nuclear fuel cycle and (2) to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Terminal Waste Disposal and Remedial Action of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL) during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide (1) documented technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and (2) problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required, to treat existing wastes. This annual report describes progress during FY 1985 toward meeting these two objectives. The detailed presentation is organized according to the task structure of the program.

Powell, J.A. (ed.)

1986-04-01

168

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01

169

Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

2012-11-15

170

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01

171

EU Carbowaste project: Development of a toolbox for graphite waste management  

NASA Astrophysics Data System (ADS)

A four year collaborative European Project 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (Carbowaste)' was launched in May 2008 under the 7th EURATOM Framework Programme. The aim of the project is to develop best practices in the retrieval, treatment and disposal of irradiated graphite, addressing both existing legacy waste as well as waste from graphite-based nuclear fuel resulting from a new generation of nuclear reactors. This paper covers the activities led by the National Nuclear Laboratory in partnership with the Nuclear Decommissioning Authority in the first year of the project, which includes the lead role in the compilation of a review volume on the extent of irradiated graphite waste globally and the approaches being taken to manage it. An overview is also provided of modelling activities in year two of the project: the application of modelling techniques to the prediction of radiological inventories, to the radiological impact of C-14 and Cl-36 releases on the biosphere and to the decommissioning of Magnox reactor cores.

Metcalfe, M. P.; Banford, A. W.; Eccles, H.; Norris, S.

2013-05-01

172

Waste-to-Energy Cogeneration Project, Centennial Park  

SciTech Connect

The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

2014-04-29

173

The HRA/Solarium Project: Processing of Widely Varying High- and Medium-Level Waste  

SciTech Connect

Starting in 2003, Belgoprocess will proceed with the treatment and conditioning of some 200 m{sup 3} of widely varying high- and medium-level waste from earlier research and development work, to meet standard acceptance criteria for later disposal. The gross volume of primary and secondary packages amounts to 2,600 m{sup 3}. The waste has been kept in decay storage for up to 30 years. The project was started in 1997. Operation of the various processing facilities will take 7-8 years. The overall volume of conditioned waste will be of the order of 800 m{sup 3}. All conditioned waste will be stored in appropriate storage facilities onsite. At present (November, 2002), a new processing facility has been constructed, the functional tests of the equipment have been performed and the startup phase has been started. Several cells of the Pamela vitrification facility onsite will be adapted for the treatment of high-level and highly a-contaminated waste; low-level a/a waste will be treated in the existing facility for super compaction and conditioning by embedding into cement (CILVA). The bulk of these waste, of which 95% are solids, the remainder consisting of mainly solidified liquids, have been produced between 1967 and 1988. They originate from various research programs and reactor operation at the Belgian nuclear energy research centre SCK CEN, isotope production, decontamination and dismantling operations.

Willems, M.; Luycx, P.; Gilis, R.; Belgoprocess; Renard, Cl.; Reyniers, H.; Cuchet, J. M.

2003-02-26

174

On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling  

NASA Astrophysics Data System (ADS)

This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

2011-12-01

175

Treatment of food wastes using slurry-phase decomposition  

Microsoft Academic Search

A bioreactor incorporating a slurry-phase reaction was developed for high-rate decomposition of food wastes with an ultimate goal of complete decomposition leaving minimal residue of food wastes when compared to conventional food waste treatment producing composts. In this slurry-phase decomposition, suspended solids in the reactor disappeared with a maximum rate of 7.9 g dry weight dm?3 day?1. The changes in

Yeoung-Sang Yun; Jong Ik Park; Min Seok Suh; Jong Moon Park

2000-01-01

176

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992  

SciTech Connect

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities: (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1992-12-31

177

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31

178

ACTIVATED SLUDGE TREATMENT OF SELECTED AQUEOUS ORGANIC HAZARDOUS WASTE COMPOUNDS  

EPA Science Inventory

As a result of the Hazardous and Solid Waste Amendments of 1984 and the concurrent land disposal restrictions rule, EPA is in the process of demonstrating achievable treatment techniques to be used as alternatives to the land disposal of hazardous wastes. ata are being collected ...

179

GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES  

EPA Science Inventory

Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

180

Method and an apparatus for biological treatment of waste waters  

SciTech Connect

A waste water treatment plant providing biological oxidation, biological nitrification and denitrification and biological removal of phosphorus and clarification of the treated waste water in a single reaction tank in a single suspended growth sludge system without the use of the traditional compressors, surface aerators, mixers, recirculation pumps, sludge scrapers, sludge return pumps, piping and valving.

Besik, F.

1982-10-12

181

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho. [Waste mixtures of hazardous materials and low-level radioactive wastes or transuranic wastes  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

Not Available

1993-04-01

182

Machine coolant waste reduction by optimizing coolant life. Project summary  

SciTech Connect

The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

Pallansch, J.

1995-08-01

183

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01

184

FEASIBILITY OF COMMERCIALIZED WATER TREATMENT TECHNIQUES FOR CONCENTRATED WASTE SPILLS  

EPA Science Inventory

The suitability and economics of using reverse osmosis, ultrafiltration, ion exchange, wet air oxidation, high purity oxygen activated sludge process, ultraviolet-ozone oxidation, and coagulation/precipitation for on-site treatment of concentrated wastes were evaluated. Published...

185

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12

186

Centralized treatment of metal finishing wastes. Appendices. Final report  

SciTech Connect

The investigation of the feasibility of centralized waste treatment included consideration of the manner in which private companies presently offering waste treatment services to industry operate; therefore, several data-gathering visits were made to private industrial treaters. The first memorandum in this Appendix presents the results of a brief survey of private treaters. The remaining memoranda are records of visits made and data obtained at the sites of such operations.

NONE

1980-08-01

187

A bio-hybrid anaerobic treatment of papaya processing wastes  

SciTech Connect

Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

Yang, P.Y.; Chou, C.Y.

1987-01-01

188

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

Not Available

1993-04-01

189

The residuals analysis project: Evaluating disposal options for treated mixed low-level waste  

SciTech Connect

For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors` offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ``performance evaluations`` for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE`s MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues.

Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

1997-03-01

190

Regional waste treatment with monolith disposal for low-level radioactive waste  

SciTech Connect

An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements.

Forsberg, C.W.

1983-01-01

191

40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.  

Code of Federal Regulations, 2010 CFR

...treatment devices burning particular hazardous waste. 265.383 Section 265.383 Protection...PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

2010-07-01

192

Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of  

E-print Network

13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment Vertical Flow Constructed Wetlands, Waste Stabilization Ponds, operation and maintenance, sludge management

Paris-Sud XI, Université de

193

TWRS privatization support project waste characterization database development  

SciTech Connect

Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford underground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105, 241-AW-101, -103, and -105, 241 AZ-101 and -102; and 241-C-109. Sample data were assembled for sixteen radionuclides and thirty-five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created: the master data set, a subset, and an unreviewed data set. The master data set contains waste composition information for Tanks 241-AN-102 and -107, 241-AP-102 and -105, 241-AW-101; and 241-AZ-101 and -102. The subset contains only the validated analytical sample data from the master data set. The unreviewed data set contains all collected but unreviewed sample data for Tanks 241-AN-104, -105, and -106; 241-AP-104; 241-AW-103 and-105; and 241-C-109. The methodology used to review the waste characterization information was found to be an accurate, useful way to separate the invalid or questionable data from the more reliable data. In the future, this methodology should be considered when validating waste characterization information.

NONE

1995-11-01

194

Treatment studies of paint stripping waste from plastic media blasting  

SciTech Connect

Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

Spence, R.D. [Oak Ridge National Lab., TN (United States)

1995-12-31

195

Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10  

SciTech Connect

The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

BOUNINI, L.

1999-06-17

196

Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10  

SciTech Connect

The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

BOUNINI, L.

1999-05-20

197

Future waste treatment and energy systems – examples of joint scenarios  

SciTech Connect

Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

Münster, M., E-mail: maem@dtu.dk [System Analysis Division, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Finnveden, G. [KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Planning and Environment, Division of Environmental Strategies Research – fms, 100 44 Stockholm (Sweden); Wenzel, H. [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

2013-11-15

198

Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique  

SciTech Connect

This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

Kuchynka, D.J.

1997-01-01

199

Industrial Program of Waste Management - Cigeo Project - 13033  

SciTech Connect

The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

Butez, Marc [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France)] [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France); Bartagnon, Olivier; Gagner, Laurent [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France)] [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France); Advocat, Thierry; Sacristan, Pablo [Commissariat a l'energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France)] [Commissariat a l'energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France); Beguin, Stephane [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)] [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)

2013-07-01

200

Glass Development for Treatment of LANL Evaporator Bottoms Waste  

SciTech Connect

Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

1998-11-20

201

Treatment of radioactive laboratory waste for mercury removal. Revision 1  

SciTech Connect

Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 {mu}g/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite{trademark} GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal.

Osteen, A.B.; Bibler, J.P.

1990-12-31

202

Treatment of radioactive laboratory waste for mercury removal  

SciTech Connect

Routine analyses of Savannah River Laboratory wastes at the Savannah River Site (SRS) occasionally reveal mercury concentrations in the waste in excess of the 0.200 {mu}g/L RCRA limit. A polystyrene/divinylbenzene ion exchange resin with thiol functional groups, Duolite GT-73, has been demonstrated effective, through a special, permitted decontamination project, for the removal of dissolved mercury from this laboratory waste. As a result of this demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal. 3 refs., 4 figs., 4 tabs.

Osteen, A.B.; Bibler, J.P.

1990-01-01

203

Treatment of radioactive laboratory waste for mercury removal  

SciTech Connect

Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 {mu}g/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite{trademark} GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal.

Osteen, A.B.; Bibler, J.P.

1990-01-01

204

Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft  

NASA Technical Reports Server (NTRS)

The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

Weitzmann, A. L.

1977-01-01

205

Functionalized paramagnetic nanoparticles for waste water treatment.  

PubMed

An approach to the design, development and implementation of a new separation technology for use in the decontamination of radioactive waste streams is reported here. Calixarene-crown-6 derivatives with terminal carboxyl groups were synthesised and attached to nano-sized magnetoferritin molecules and their ability to sequester radioactive caesium(i) ions from aqueous solution was demonstrated. PMID:20502784

Urban, Ilona; Ratcliffe, Norman M; Duffield, John R; Elder, George R; Patton, David

2010-07-01

206

RADIOACTIVE WASTES--ORIGIN, HAZARDS AND TREATMENT  

Microsoft Academic Search

When energy is produced by nuclear fission, radioactive wastes also are ; obtained. These are formed in all steps from the mining of uranium ore to the ; operation of reactors. They also arise from the application of radioactive ; nuclides in industry and research. Due to the action of the radiation on the ; different organs in the human

Kinell

1962-01-01

207

Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration  

SciTech Connect

This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

NONE

1993-06-01

208

Reduction of radioactive secondary waste with steam reforming in treatment of waste TBP/dodecane  

SciTech Connect

Waste tributyl phosphate (TBP) and normal dodecane generated from R and D activities on recycle of nuclear fuel has been stored in Japan Atomic Energy Agency (JAEA). If it is incinerated, a large quantity of contaminated phosphorous compounds will be generated as radioactive secondary wastes. The objective of this study is to reduce the generation of the radioactive secondary wastes by the treatment of the waste TBP/dodecane using steam reforming system. We constructed the demonstration scale steam reforming system which consists of a gasification chamber for vaporization of wastes, a metal mesh filter for removal of radioactive nuclides from gasified wastes, a combustion chamber, and scrubbers for removal of phosphorous oxides. We conducted process demonstration tests using waste TBP/dodecane with 0.07 g/L of uranium. We studied the temperature dependence of the gasification ratio of inorganic phosphorus compounds formed by pyrolysis of TBP in the gasification chamber and removal of uranium by the filter. As the results, more than 90% of phosphorus compounds were gasified from the gasification chamber at temperature of 600 deg. C or more, and the uranium concentration in the waste water generated from the off-gas treatment system is under the detection limits. The waste water containing the separated phosphorus compounds can be discharged into the river or the sea as the liquid wastes in which uranium concentration is under the regulatory level. These results show the steam reforming system is effective in the reduction of radioactive secondary waste in the treatment of TBP/dodecane. (authors)

Sone, Tomoyuki; Sasaki, Toshiki; Yamaguchi, Hiromi [Japan Atomic Energy Agency (Japan)

2007-07-01

209

Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551  

SciTech Connect

This paper presents the results of research activities aimed at creation of a principally new LRW distilling treatment method. The new process is based on the instantaneous evaporation method widely used in distillation units. The main difference of the proposed process is that the vapor condensation is conducted without using heat exchangers in practically ideal mode by way of direct contacting in a vapor-liquid system. This process is conducted in a specially designed ejector unit in supersonic mode. Further recuperation of excess heat of vaporization is carried out in a standard heat exchanger. Such an arrangement of the process, together with use of the barometric height principle, allows to carry out LRW evaporation under low temperatures, which enables to use excess heat from NPS for heating initial LRW. Thermal calculations and model experiments have revealed that, in this case, the expenditure of energy for LRW treatment by distilling will not exceed 3 kilowatt-hour/m{sup 3}, which is comparable with the reverse-osmosis desalination method. Besides, the proposed devices are 4 to 5 times less metal-intensive than standard evaporation units. These devices are also characterized by versatility. Experiments have revealed that the new method can be used for evaporation of practically any types of LRW, including those containing a considerable amount of oil products. Owing to arrangement of the evaporation process at low temperatures, the new devices are not sensitive to 'scale formation'. This is why, they can be used for concentrating brines of up to 500-600 g/l. New types of such evaporating devices can be required both for LRW treatment processes at nuclear-power plants under design and for treating 'non-standard' LRW with complex physicochemical and radionuclide composition resulting from the disaster at the Fukushima I Nuclear Power Plant.) As a result of accidents at nuclear energy objects, as it has recently happened at NPP 'Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those containing hardness salts, resulted in generation of LRW concentrate 300-600 g/l. The method is based o

Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

2012-07-01

210

TWRS privatization support project waste characterization database development. Volume 1  

SciTech Connect

Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford under-ground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105; 241-AW-101, -103, and -105, 241-AZ-101 and-102; and 241-C-109. Sample data were assembled for sixteen radio nuclides and thirty five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created., the master data set, a subset, and an unreviewed data set .

Brevick, C.H. [ICF Kaiser Hanford Co., Richland, WA (United States)

1995-11-01

211

Basalt Waste Isolation Project. Annual report, fiscal year 1980  

SciTech Connect

During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies.

Not Available

1980-11-01

212

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

SciTech Connect

In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30

213

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01

214

Hybrid Microwave Treatment of SRS TRU and Mixed Wastes  

SciTech Connect

A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC).

Wicks, G.G.

1999-11-18

215

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01

216

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-06-01

217

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-03-01

218

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-04-01

219

Logistics modeling of future solid waste storage, treatment, and disposal  

SciTech Connect

Logistics modeling is a powerful analytical technique for effective planning of waste storage, treatment, and disposal activities. Logistics modeling facilitates analyses of alternate scenarios for future waste flows, facility schedules, and processing or handling capacities. These analyses provide an increased understanding of the specific needs for waste storage, treatment, and disposal while adequate time remains to plan accordingly. They also help to determine the sensitivity of these needs to various system parameters. This paper discusses a logistics modeling system developed by the Pacific Northwest Laboratory (PNL) to aid in solid waste planning for a large industrial complex managing many different types and classifications of waste. The basic needs for such a system are outlined, and the approach adopted in developing the system is described. A key component of this approach is the development of a conceptual model that provides a flexible framework for modeling the waste management system and addressing the range of logistics and economic issues involved. Developing an adequate description of the waste management system being analyzed is discussed. Examples are then provided of the types of analyses that have been conducted. The potential application of this modeling system to different settings is also examined.

Holter, G.M.; Stiles, D.L.; Shaver, S.R.; Armacost, L.L.

1993-11-01

220

40 CFR 266.225 - What wastes are eligible for the storage and treatment conditional exemption?  

Code of Federal Regulations, 2010 CFR

...wastes are eligible for the storage and treatment conditional exemption? 266.225 ...Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal. Storage and Treatment Conditional Exemption and Eligibility...

2010-07-01

221

LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION  

SciTech Connect

Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very vulnerable. Each of these obstacles can be overcome when there is a common goal and vision shared by all parties and adequate funds are provided to accomplish the task. The upgrading and expansion of this facility and the construction of a similar facility on the Far East coast of Russia will enable the Russians to sign the London Convention dumping prohibition. This project is one of the first waste management construction projects in the north-west of Russia with foreign contribution. Its success may open for additional co-operative projects with Russia in the future.

BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

2000-03-01

222

Hazards associated with retrieval and storage of legacy waste at the Transuranic Waste Inspectable Storage Project  

SciTech Connect

Approximately 17,000 containers of solid transuranic and hazardous waste have been stored beneath earthen cover for nearly twenty years at Technical Area 4 of the Los Alamos National Laboratory. The mission of the Transuranic Waste Inspectable Storage Project (TWISP) is to retrieve, vent, and place these containers into an inspectable storage configuration in compliance with the Resource Conservation and Recovery Act, prior to final disposition at the Waste Isolation Pilot Plant. Significant hazards currently identified with TWISP activities include: (1) the pressurization of drums; (2) volatilization of organic compounds (VOCs) within the drums; and (3) the generation of elevated hydrogen levels by certain waste streams. Based on the retrieval of 15% of the waste containers, the following preliminary conclusions are presented to better protect personnel and the environment: (1) the likelihood of unvented drums becoming pressurized increases when environmental conditions change; (2) pressurized drums must be vented before they become bulging drums; (3) vented drums present the potential for VOC emissions and personnel exposure; (4) the vapor pressure and boiling points of waste stream constituents may be an indication of the likelihood of VOC emissions from stored hazardous waste containers; (5) large numbers of co-located vented drums may present the potential of increased hydrogen and VOC concentrations within unventilated storage domes; (6) monitoring and sampling vented drum storage domes is necessary to ensure that the levels of risk to drum handlers and inspection personnel are acceptable; (7) identifying, tagging, and segregating special case drums is necessary to prevent personnel overexposures and preclude environmental contamination; (8) applying rust inhibitor prolongs the useful life of waste containers stored under earthen cover; (9) acoustic drum pressure detection may be a viable tool in assessing elevated drum pressures.

Pannell, M.A.; Grogin, P.W.; Langford, R.R.

1998-03-01

223

Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026  

SciTech Connect

The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

Starkey, J.G.

1993-05-01

224

The use of fly larvae for organic waste treatment.  

PubMed

The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and decrease production costs. PMID:25453313

?i?ková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

2015-01-01

225

Application for CALS-CCE 2013 Summer Internship Title of project: Food Waste and Consumer Outreach  

E-print Network

Application for CALS-CCE 2013 Summer Internship Title of project: Food Waste and Consumer Outreach outcomes (no more than 5-10 sentences): This project will address the problem of food losses and food waste neglected is the area of food loss and food waste. Food losses account for approximately 40% of food

Keinan, Alon

226

In-situ stabilization of TRU\\/mixed waste project at the INEEL  

Microsoft Academic Search

Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic\\/Mixed Buried Waste

L. W. Milian; J. H. Heiser; J. W. Adams; S. P. Rutenkroeger

1997-01-01

227

DESIGN CRITERIA FOR SWINE WASTE TREATMENT SYSTEMS  

EPA Science Inventory

Coordinated laboratory, field pilot-, and farm-scale lagoon studies were conducted to define relationships between loading intensity and frequency based on treatment performance, sludge accumulation, and odor potential. Surface aeration of field pilot units and farm-scale lagoons...

228

Treatment of mixed radioactive liquid wastes at Argonne National Laboratory  

SciTech Connect

Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

Vandegrift, G.F.; Chamberlain, D.B.; Conner, C. [and others

1994-03-01

229

Treatment of Mixed Wastes via Fixed Bed Gasification  

SciTech Connect

This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

None

1998-10-28

230

Sodium-Bearing Waste Treatment, Applied Technology Plan  

SciTech Connect

Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

2003-06-01

231

75 FR 81250 - Pulse Jet Mixing at the Waste Treatment and Immobilization Plant  

Federal Register 2010, 2011, 2012, 2013

...Energy Pulse Jet Mixing at the Waste Treatment and Immobilization Plant...17, 2010. Introduction Legacy wastes from decades of nuclear weapons...predecessor agencies include high- level radioactive waste stored in 177 underground...

2010-12-27

232

40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.  

Code of Federal Regulations, 2011 CFR

...STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions...munitions. The treatment and disposal of hazardous waste military munitions are subject to the...

2011-07-01

233

40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.  

Code of Federal Regulations, 2012 CFR

...STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions...munitions. The treatment and disposal of hazardous waste military munitions are subject to the...

2012-07-01

234

40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.  

...STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions...munitions. The treatment and disposal of hazardous waste military munitions are subject to the...

2014-07-01

235

40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.  

Code of Federal Regulations, 2013 CFR

...STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions...munitions. The treatment and disposal of hazardous waste military munitions are subject to the...

2013-07-01

236

40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.  

Code of Federal Regulations, 2010 CFR

...STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions...munitions. The treatment and disposal of hazardous waste military munitions are subject to the...

2010-07-01

237

The electrochemistry of chlorophenols and its implications for waste water treatment  

SciTech Connect

Chlorophenols end up in waste water and consequently in soils and ground water. This paper describes electrochemical approaches to the waste treatment of pentachlorophenol containing wastes and the efficiency of the process.

Gattrell, M.; MacDougall, B. [NRC, Ontario (Canada)

1996-12-31

238

Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study  

SciTech Connect

A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

Herbst, A.K.

2000-02-01

239

Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies  

SciTech Connect

This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

Awadalla, N.G.; Eaton, S.C.F.

1996-09-04

240

Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility  

SciTech Connect

The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

Freer, J.; Freer, E.; Bond, A. [and others

1996-07-01

241

Dual Torch Plasma Arc Furnace for Medical Waste Treatment  

Microsoft Academic Search

In this paper, characteristics of a dual torch plasma arc used for hazardous waste treatment and operated at atmospheric pressure are studied, and also compared with those of the multi-torch plasma arc and the single torch plasma arc. The dual torch plasma arc is generated between the cathode and anode with argon as the working gas. The temperature distributions of

Bin Liu; M. Kikuchi; Heping Li; T. Iwao; T. Inaba

2007-01-01

242

ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS  

EPA Science Inventory

This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

243

Vegetable Waste Treatment: Comparison and Critical Presentation of Methodologies  

Microsoft Academic Search

Vegetable industries have been considered responsible for a great amount of pollution; hence, there has been a strong need for the optimization of vegetable waste treatment systems. The currently employed systems are numerous and fall in the following large categories; thermal processes, evaporation, membrance processes, anaerobic digestion, anaerobic co-digestion, biodiesel spraying, combustion, transesterification, coagulation, and composting. Respective methodologies in conjunction

Ioannis S. Arvanitoyannis; Theodoros H. Varzakas

2008-01-01

244

Electrochemical treatment of human waste coupled with molecular hydrogen production  

E-print Network

- water treatment for water recycling and reuse coupled with energy storage. Electrochemical water (WEC) using real human waste for the first time with semiconductor electrode utilizing a mixed particle awareness of an emerging crisis with respect to water resources due to global population growth and climate

Heaton, Thomas H.

245

20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

246

ANNOTATED LITERATURE REFERENCES ON LAND TREATMENT OF HAZARDOUS WASTE  

EPA Science Inventory

The major environmental problem in the decade of the 1980's will be the safe disposal of hazardous and municipal wastes and residues. Land treatment can be used to achieve specific effects through utilization of various management schemes. Through proper management of the land pr...

247

EVALUATION OF PRISTINE LIGNIN FOR HAZARDOUS WASTE TREATMENT  

EPA Science Inventory

A feasibility study was conducted to assess the utilization of lignin, isolated from a steam-exploded hardwood (Tulip poplar) with 95% ethanol and 0.1n NaOH, as a potential adsorbent for hazardous waste treatment. Eight organic compounds and two heavy metals were selected to allo...

248

An Analysis of the Waste Water Treatment Operator Occupation.  

ERIC Educational Resources Information Center

The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

Clark, Anthony B.; And Others

249

An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.  

ERIC Educational Resources Information Center

The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

Clark, Anthony B.; And Others

250

49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

251

Anodic oxidation of phenol for waste water treatment  

Microsoft Academic Search

The electrochemical oxidation of phenol for waste water treatment was studied at a platinum anode. Analysis of reaction intermediates and a carbon balance has shown that the reaction occurs by two parallel pathways; chemical oxidation with electrogenerated hydroxyl radicals and direct combustion of adsorbed phenol or\\/and its aromatic intermediates to CO2.

Ch. Comninellis; C. Pulgarin

1991-01-01

252

TREATMENT OF ELECTROPLATING WASTES BY REVERSE OSMOSIS  

EPA Science Inventory

Reverse osmosis treatment of plating bath rinsewaters has been examined. Emphasis has been placed on closed-loop operation with recycle of purified water for rinsing, and return of plating chemical concentrate to the bath. Three commercially available membrane configurations have...

253

Staff exchange with Chemical Waste Management. Final project report  

SciTech Connect

Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry, but a proposal for transfer and application of PST to Wheelabrator was made.

Harrer, B.J.; Barak, D.W.

1993-12-01

254

Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes  

Microsoft Academic Search

The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes,

J. E. Surma; C. J. Freeman; T. D. Powell; D. R. Cohn; D. L. Smatlak; P. Thomas; P. P. Woskov; R. A. Hamilton; C. H. Titus; J. K. Wittle

1993-01-01

255

The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation  

SciTech Connect

The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. During the realisation of project the future operator of Centre required the contractor to solve the treatment of wastes produced in the process of NPP A-1 decommissioning. On the basis of this requirement the project was modified in order to enable manipulations with waste products from A-1 NPP transported to Centre in steel drums. The initial project was prepared in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC civil works started in August 2004. Initial nonradioactive testing of the system parts were carried out from April to September 2006, then the tests of systems started with model concentrates and non-radioactive resins. After the processes evaluation the radioactive test performed from February 2007. A one-year trial operation of facility is planned for completion during 2007 and 2008. The company JAVYS, Inc. is responsible for radioactive waste and spent fuel treatment in the Slovak republic and will operate the FTC during trial operation and after its completion. This Company has also significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 820 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization on Thin Film Evaporator with rotating wiping blades. Spent resin and sludge are decanted, dried and mixed with bitumen in blade homogeniser. The bitumen product is discharged into 200 dm{sup 3} steel drums. Drums with bitumen product or drums originated from A-1 NPP are loaded into Fibre Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from the mixture of cement, additive and radioactive over-concentrate. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used to produce the cement grout. The grouted FRC containers are stored in the expedition hall and after 28 days of curing are transported to final disposal. After the start of routine operation, the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with bitumen product in drums and filled with radioactive cement product. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. This paper introducing the main parts of FTC and describes the technological procedures including the basic technological parameters for both used technologies, their working capacity and the overall waste flow. The evaluation of experience gained in the phases of Centre construction and commissioning and partially trial operation as well is a part of this paper (Evaluation of completion works process and time schedule, the process of individual system parts testing, testing of systems using model media, radioactive testing and trial operation). (authors)

Krajc, T.; Stubna, M.; Kravarik, K.; Zatkulak, M. [VUJE Trnava, Inc. (Slovakia); Slezak, M.; Remias, V. [Javys - Jadrova a vyradovacia spolocnost, a.s. - Nuclear and Decommissioning Company, plc., Tomasikova 22, 821 02 Bratislava (Slovakia)

2007-07-01

256

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect

This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-10

257

Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products  

SciTech Connect

This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

1999-04-05

258

Steel wastes as versatile materials for treatment of biorefractory wastewaters.  

PubMed

Recent research on novel cost-effective adsorbent materials suggests potential use of industrial wastes for effluent treatment, with the added benefit of reuse of the wastes. Waste steel materials, including blast oxygen furnace sludge (BOFS), blast furnace sludge (BFS), and blast furnace dust (BFD), were investigated as low-cost adsorbents for removal of an oil emulsion and RR195 dye. The residues were characterized by X-ray diffraction, Brunauer-Emmett-Teller area, volume and distribution of pore diameters, Mössbauer spectroscopy, X-ray fluorescence, granulometry, scanning electron microscopy/energy dispersive spectroscopy, and pHpzc. Adsorption kinetics data were obtained by UV-vis spectrophotometry at the maximum absorption wavelength of the dye solution and crude oil emulsion. The use of waste as an adsorbent was more efficient for treatment of the oil emulsion than the dye solution. BOFS had higher total organic carbon (TOC) removal efficiency than the other waste materials. For the RR195 dye, good color removal was observed for all adsorbents, >90 % within 24 h. TOC removal was poor, <10 % for BFD and BFS and a maximum of 37 % for BOFS. For the oil emulsion, 97 % TOC removal was obtained by adsorption onto BOFS and 87 % onto BFS. PMID:25196961

Dos Santos, Sara V; Amorim, Camila C; Andrade, Luiza N; Calixto, Natália C Z; Henriques, Andréia B; Ardisson, José D; Leăo, Mônica M D

2015-01-01

259

Environmental Solutions, A Summary of Contributions for CY04: Battelle Contributions to the Waste Treatment Plant  

SciTech Connect

In support of the Waste Treatment Plant (WTP), Battelle conducted tests on mixing specific wastes within the plant, removing troublesome materials from the waste before treatment, and determining if the final waste forms met the established criteria. In addition, several Battelle experts filled full-time positions in WTP's Research and Testing and Process and Operations departments.

Beeman, Gordon H.

2005-03-08

260

Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE`s needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities.

Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

1998-01-01

261

Comparative environmental analysis of waste brominated plastic thermal treatments  

SciTech Connect

The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of 'fossil fuels' and 'climate change'. Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste.

Bientinesi, M. [Department of Chemical Engineering, Industrial Chemistry and Materials Science (DICCISM), University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)], E-mail: matteo.bientinesi@ing.unipi.it; Petarca, L. [Department of Chemical Engineering, Industrial Chemistry and Materials Science (DICCISM), University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

2009-03-15

262

EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT  

SciTech Connect

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

Crawford, C.; Jantzen, C.

2012-02-02

263

Texas refiner starts up new waste water treatment plant  

SciTech Connect

Chevron Corp. has started up a new waste water treatment plant at its Port Arthur, Tex., refinery. The new facility has an hydraulic capacity of 10,000 gpm and will treat process waste water, cooling tower blowdown, and contaminated storm water. The plant includes: A process unit for removing free and emulsified oil; and equalization facility; a biological system for organics biodegradation; and a volatile organic compounds (VOC) control system. The paper describes predesign studies, the preliminary design and VOC control, the final design, cost savings, process control, and construction.

Al-Tell, N. (Bechtel Corp., Houston, TX (United States)); Lueders, R. (Chevron Corp., Port Arthur, TX (United States))

1994-03-21

264

Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components  

SciTech Connect

This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

Coleman, J.T.; Bickford, D.F.

1991-12-31

265

Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components  

SciTech Connect

This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

Coleman, J.T.; Bickford, D.F.

1991-01-01

266

Liquid low-level waste generation projections for ORNL in 1993  

SciTech Connect

Liquid low-level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). These wastes are collected in underground collection tanks, bottles, and trucks; they are then neutralized with sodium hydroxide and treated for volume reduction at the ORNL evaporator facility. This report presents historical and projected data concerning the volume and characterization of LLLW, prior to and after evaporation. Storage space for projected waste generation is also discussed.

DePaoli, S.M.

1994-04-01

267

Current and projected liquid low-level waste generation at ORNL  

SciTech Connect

Liquid low-level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). This waste is collected in bottles, by trucks, or in underground collection tanks; it is then neutralized with sodium hydroxide and reduced in volume at the ORNL LLLW evaporator. This report presents historical and projected data concerning the volume and the characterization of LLLW, both prior to and after evaporation. Storage space for projected waste generation is also discussed.

DePaoli, S.M.; West, G.D.

1996-04-01

268

Chemical treatment of chelated metal finishing wastes.  

PubMed

This study evaluated two chemical approaches for treatment of commingled cadmium-cyanide (Cd-CN) and zinc-nickel (Zn-Ni) wastewaters. The first approach, which involved application of sodium hypochlorite (NaOCl), focused on elimination of chelating substances. The second approach evaluated the use of sodium dimethyldithiocarbamate (DMDTC) to specifically target and precipitate regulated heavy metals. Results demonstrated that by maintaining a pH of 10.0 and an oxidation-reduction potential (ORP) value of +600 mV, NaOCl treatment was effective in eliminating all chelating substances. Cadmium, chromium, nickel, and zinc solution concentrations were reduced from 0.27, 4.44, 0.06, and 0.10 ppm to 0.16, 0.17, 0.03, and 0.06 ppm, respectively. Similarly, a 1% DMDTC solution reduced these same metal concentrations in commingled wastewater to 0.009, 1.142, 0.036, and 0.320 ppm. Increasing the DMDTC concentration to 2% improved the removal of all regulated heavy metals except zinc, the removal of which at high pH values is limited by its amphotericity. PMID:23342939

McFarland, Michael J; Glarborg, Christen; Ross, Mark A

2012-12-01

269

Feed Composition for Sodium-Bearing Waste Treatment Process  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

Barnes, C.M.

2000-10-30

270

Radiological Monitoring of Waste Treatment Plant  

SciTech Connect

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30

271

Radiological Monitoring of Waste Treatment Plant  

NASA Astrophysics Data System (ADS)

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Raeq) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 ?Sv/h (Administrative building) to 0.35 ?Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M.; Nik, H. W.

2011-03-01

272

Geology of the Waste Treatment Plant Seismic Boreholes  

SciTech Connect

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28

273

Electrocoagulation: A Novel Waste Water Treatment Method  

E-print Network

ABSTRACT: A renewed interest in electrocoagulation has spurred by the search for reliable, cost effective method for the treatment of polluted water. Electrocoagulation present a robust novel and innovative alternative in which a sacrificial metal anode corrodes, due to an applied electric potential, while the simultaneous evolution of hydrogen at the cathode which is removed by flotation. This has the major advantage of providing active cations required for coagulation, without increasing the salinity of the water. Electrocoagulation is a complex process with a multitude of mechanisms operating synergistically to remove the pollutants from the water. Different options exist for key mechanisms and reactor configurations. This paper presents an in-depth discussion and consideration of the factors that are the requirements for the optimum performance of this technology.

Satish. I. Chaturvedi

274

Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan  

SciTech Connect

This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K compliance for Project W-151, Tank 101-AZ Waste Retrieval System. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. Two mixer pumps and instrumentation have been or are planned to be installed in waste tank 101-AZ to demonstrate solids mobilization. The information and experience gained during this process test will provide data for comparison with sludge mobilization prediction models and provide indication of the effects of mixer pump operation on an Aging Waste Facility tank. A limited description of system dates, functions, interfaces, potential Y2K problems, and date resolutions is presented. The project is presently on hold, and definitive design and procurement have been completed. This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems.

BUSSELL, J.H.

1999-08-02

275

Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions  

SciTech Connect

This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

NONE

1995-07-01

276

Advanced Fuel Cycle Treatment, Recycling, and Disposal of Nuclear Waste  

SciTech Connect

Nuclear waste, in the form of used and spent nuclear fuel, is currently being stored in the U.S., mostly at reactor sites to await future direct disposal or treatment to permit recycle of re-usable components and minimization of wastes requiring geologic disposal. The used fuel is currently accumulating at a rate of over 2,000 tons per year and a total of over 60,000 tons is in storage. New dry storage capacity is estimated to cost {approx} $0.6 B per year. Technologies have been developed and deployed worldwide to treat only a portion of the nuclear waste that is generated. Recent research, development, and systems analysis studies have shown that nuclear waste treatment could be done at the rate of generation in a safe, environmentally friendly, and cost-effective manner. These studies continue to show that major benefits can be obtained by allowing the used fuel assemblies to remain in safe storage for 30 years or longer before treatment. During this time, the radioactivity and decay heat generation decrease substantially, such that the separations process can be simplified and made less costly, waste gases containing {sup 85}Kr can be released below regulatory limits, and the solid fission product wastes containing {sup 137}Cs and {sup 90}Sr require decay storage for a much shorter time-period before geologic disposal. In addition, the need for separating curium from americium and for extra purification cycles for the uranium and uranium-plutonium-neptunium products is greatly diminished. Moreover, during the 30+ years of storage prior to treatment, the quality of the recyclable fuel is only degraded by less than 5 percent. The 30+ year storage period also enables recycle of long-lived transuranic actinides to be accomplished in existing light water reactors without waiting on and incurring the cost of the development, licensing, and deployment of future Gen IV reactors. Overall, the safety, environmental, and cost benefits of treating the longer aged used nuclear wastes are substantial.

Collins, Emory D [ORNL; Jubin, Robert Thomas [ORNL; DelCul, Guillermo D [ORNL; Spencer, Barry B [ORNL; Renier, John-Paul [ORNL

2009-01-01

277

Role of water balance in the long-term stability of hazardous waste site cover treatments  

SciTech Connect

After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments.

Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

1986-01-01

278

Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan  

SciTech Connect

The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

GREAGER, T.M.

1999-09-09

279

Hazardous solid waste from domestic wastewater treatment plants.  

PubMed Central

The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

Harrington, W M

1978-01-01

280

Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate  

SciTech Connect

The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

NONE

1995-09-01

281

Implementation of Treatment Systems for Low and Intermediate Radioactive Waste at Site Radwaste Treatment Facility (SRTF), PR China - 12556  

SciTech Connect

The AP1000 reactors being built in the People's Republic of China require a waste treatment facility to process the low and intermediate radioactive waste produced by these nuclear power stations. Westinghouse Electric Germany GmbH was successful in being awarded a contract as to the planning, delivery and commissioning of such a waste treatment facility. The Site Radwaste Treatment Facility (SRTF) is a waste treatment facility that can meet the AP1000 requirements and it will become operational in the near future. The SRTF is situated at the location of Sanmen, People's Republic of China, next to one of the AP1000 and is an adherent building to the AP1000 comprising different waste treatment processes for radioactive spent filter cartridges, ion-exchange resins and radioactive liquid and solid waste. The final product of the SRTF-treatment is a 200 l drum with cemented waste or grouted waste packages for storage in a local storage facility. The systems used in the SRTF are developed for these special requirements, based on experience from similar systems in the German nuclear industry. The main waste treatment systems in the SRTF are: - Filter Cartridge Processing System (FCS); - HVAC-Filter and Solid Waste Treatment Systems (HVS); - Chemical Liquid Treatment Systems (CTS); - Spent Resin Processing Systems (RES); - Mobile Treatment System (MBS). (authors)

Lohmann, Peter; Nasarek, Ralph; Aign, Joerg [Westinghouse Electric Germany GmbH, Mannheim (Germany)

2012-07-01

282

Interface control document between PFP Transition Project and Solid Waste Disposal Division  

SciTech Connect

This interface control document between Plutonium Finishing Plant (PFP) Transition Project and Solid Waste Disposal (SWD) establishes the functional responsibilities of each division where interface exist between the two divisions. The document includes waste volumes and timing for use in planning the proper waste management capabilities.

Venetz, T.J.

1995-01-13

283

Communicating Risk to a Concerned Public in Historic Low-Level Radioactive Waste (LLRW) Projects  

Microsoft Academic Search

The Low-Level Radioactive Waste Management Office (LLRWMO) was established in 1982 to carry out federal government responsibility for historic low-level radioactive waste across Canada. Funded through Natural Resources Canada (NRCan) and administered by Atomic Energy of Canada Limited (AECL), the LLRWMO has conducted waste characterization, delineation and remediation projects in British Columbia, the Northwest Territories, Alberta and Ontario. Most (95%)

P. Arthurs; J. L. Herod; S. E. Stickley

2007-01-01

284

Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)  

SciTech Connect

This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

Fatell, L.B.; Woolsey, G.B.

1993-04-15

285

PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW  

NASA Astrophysics Data System (ADS)

Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

Kita, Tomoko; Kanaya, Ken

286

Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination.

Jorgenson-Waters, M.

1992-09-01

287

Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts  

SciTech Connect

To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

2003-02-25

288

Basalt Waste Isolation Project. Quarterly report, July 1, 1981-September 30, 1981  

SciTech Connect

This document reports progress made in the Basalt Waste Isolation Project during the fourth quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems, waste package, site, repository, regulatory and institutional, test facilities, and in-situ test facilities.

Deju, R.A.

1981-11-01

289

Basalt waste isolation project. Quarterly report, April 1, 1981-June 30, 1981  

SciTech Connect

This document reports progress made in the Basalt Waste Isolation Project during the third quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems; waste package; site; repository; regulatory and institutional; test facilities; in situ test facilities.

Deju, R.A.

1981-08-01

290

Solid waste information and tracking system server conversion project management plan  

SciTech Connect

The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

MAY, D.L.

1999-04-12

291

ENVIRONMENTAL FATE CONSTANTS FOR ORGANIC CHEMICALS UNDER CONSIDERATION FOR EPA'S HAZARDOUS WASTE IDENTIFICATION PROJECTS  

EPA Science Inventory

Under Section 301 of the Resource Conservation and Recovery Act (RCRA), EPA's Office of Solid Waste is in the process of identifying chemicals to be considered in projects called the hazardous waste identification projects. t this time, there are some 200 chemical constituents id...

292

ENVIRONMENTAL FATE CONSTANTS FOR ADDITIONAL 27 ORGANIC CHEMICALS UNDER CONSIDERATION FOR EPA'S HAZARDOUS WASTE IDENTIFICATION PROJECTS  

EPA Science Inventory

Under Section 301 of the Resource Conservation and Recovery Act (RCRA), EPA's Office of Solid Waste is in the process of identifying chemicals to be considered in projects called the Hazardous Waste Identification Projects. revious publication (EPA/600/R-93/132) addressed 189 org...

293

Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

Arm, Stuart T. [Washington River Protection Solutions, Richland, WA (United States); Pell, Michael J. [Bechtel National, Inc., Richland, WA (United States); Van Meighem, Jeffery S. [Washington River Protection Solutions, Richland, WA (United States); Duncan, Garth M. [Bechtel National, Inc., Richland, WA (United States); Harrington, Christopher C. [Department of Energy, Office of River Protection, Richland, Washington (United States)

2012-11-20

294

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

Not Available

1993-04-01

295

MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT  

SciTech Connect

A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks.

GREENWLL, R.D.

2005-01-20

296

Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III  

SciTech Connect

The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

Place, B.G., Westinghouse Hanford

1996-09-24

297

Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275  

SciTech Connect

The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

2012-07-01

298

STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT  

EPA Science Inventory

EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...

299

Solid waste treatment within the framework of life-cycle assessment  

Microsoft Academic Search

Traditionally, treatment of solid waste has been given limited attention in connection with life-cycle assessments (LCAs). Often, only the amounts of solid wastes have been noted. This is unsatisfactory since treatment of solid waste, e.g. by landfilling or incineration, is an operation, requiring inputs and producing outputs, which should be described in the inventory of an LCA, in parallel to

Göran Finnveden; Ann-Christine Albertsson; Jaak Berendson; Erik Eriksson; Lars Olof Höglund; Sigbritt Karlsson; Jan-Olov Sundqvist

1995-01-01

300

Geology of the Waste Treatment Plant Seismic Boreholes  

SciTech Connect

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11

301

Energy and nutrient recovery from anaerobic treatment of organic wastes  

NASA Astrophysics Data System (ADS)

The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component and overall performance. The overall systems model software, ENRAT, predicted that a full-scale operation to treat 18,750 L leachate/day would need an Ammonia Recovery process consisting of 88,300 L of total gas transfer column volume, an activated sludge system of 74,417 L, and an algal post treatment raceway of 683 m2 (30 cm depth). The ARP would consume 262.5 L/day of 6N sulfuric acid and produce 16.12 kg-N/day ammonium sulfate. The activated sludge system and algal post treatment would produce 900 g-VS/day (or 44.6 L 2% sludge) and 6.83 kg-VS/day (or 341.6 L 2% sludge) of bacterial and algal biomass.

Henrich, Christian-Dominik

302

Mechanochemical treatment to recycling asbestos-containing waste.  

PubMed

Numerous industrial and experimental facilities have been set up, particularly in the last ten years, as a result of studies and researches on treating asbestos-containing waste (ACW) to stabilise it and to enable its reuse. Some of the stabilisation processes reduce the hazards of ACW by imprisoning in a cement or resonoid matrix. Other processes modify the fibrous structure of asbestos and transform it into an inert substance. One such inactivation process is mechanochemical transformation. This new technology is extremely interesting both economically and industrially, especially in view of the European Directive 1999/3/CE of 24/4/99, which provides for the obligatory treatment of all types of waste material before its disposal. PMID:12737963

Plescia, P; Gizzi, D; Benedetti, S; Camilucci, L; Fanizza, C; De Simone, P; Paglietti, F

2003-01-01

303

Advancements in stem cells treatment of skeletal muscle wasting  

PubMed Central

Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging. PMID:24575052

Meregalli, Mirella; Farini, Andrea; Sitzia, Clementina; Torrente, Yvan

2014-01-01

304

Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus  

NASA Astrophysics Data System (ADS)

The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the semester, the students conduct a bench-scale laboratory exercise where they study part of the treatment process. Several small start-up companies are testing components in the lab, which adds to the colaboration of the project.; Figure 1. Students in Environmental Water Chemistry lab conducting a titration.

Dittrich, T. M.

2012-12-01

305

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Ubc Food System Project: Food Waste Management The Hot Beverage Cup  

E-print Network

: Food Waste Management ­ The Hot Beverage Cup Vinci Ching, Paul Gazzola, Karen Juzkow, Kenrick Kan, Tina of a project/report". #12;AGSC 450 UBC FOOD SYSTEM PROJECT: FOOD WASTE MANAGEMENT ­ THE HOT BEVERAGE CUP GROUP

306

RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY  

SciTech Connect

Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

SHUFORD DH; STEGEN G

2010-04-19

307

Treatment of waste printed wire boards in electronic waste for safe disposal.  

PubMed

The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications. PMID:17194533

Niu, Xiaojun; Li, Yadong

2007-07-16

308

DOE Waste Package Project. Quarterly progress report, April 1, 1993--June 30, 1993 and end of year summary report  

SciTech Connect

Contents of this report are as follows: Overview and progress of waste package project and container design; waste container alternate design considerations; structural analysis and design of nuclear waste package canister; manipulation of the nuclear waste container; design requirements of various rock tunnel shapes for long term storage of high level waste; and transport phenomena in the near field.

Ladkany, S.G.

1993-08-01

309

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1--June 30, 1991  

SciTech Connect

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1996-08-01

310

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, July 1--September 30, 1991  

SciTech Connect

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1991-12-31

311

Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment  

E-print Network

1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

American Society for Testing and Materials. Philadelphia

2003-01-01

312

ANAEROBIC AND AEROBIC TREATMENT OF COMBINED POTATO PROCESSING AND MUNICIPAL WASTES  

EPA Science Inventory

Demonstration and evaluation of the treatment of combined potato processing waste-water and domestic wastes using various combinations of anaerobic and aerated lagoons. Measured parameters included: BOD, COD, TSS, VSS, nitrogen, phosphorus, volatile acids, total coliform, fecal c...

313

76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes  

Federal Register 2010, 2011, 2012, 2013

...revise the Land Disposal Restrictions (LDR) treatment standards for hazardous wastes...to be discarded. Currently, under the LDR program, most carbamate wastes must be...difficult to measure whether the numeric LDR concentration limits have been met....

2011-06-13

314

Sodium-bearing Waste Treatment Technology Evaluation Report  

SciTech Connect

Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

2004-05-01

315

Assessment of incineration and melting treatment technologies for RWMC buried waste  

SciTech Connect

This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

Geimer, R.; Hertzler, T.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-02-01

316

An evaluation of alternative household solid waste treatment practices using life cycle inventory assessment mode  

Microsoft Academic Search

Waste disposal is an important part of the life cycle of a product and is associated with environmental burdens like any other\\u000a life-cycle stages. In this study, an integrated assessment for solid waste treatment practices, especially household solid\\u000a waste, was undertaken to evaluate the impact contribution of household solid waste treatment alternatives towards the sustainable\\u000a development by using Life Cycle

Nguyen Phuc Thanh; Yasuhiro Matsui

317

Quantifying capital goods for biological treatment of organic waste.  

PubMed

Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting. PMID:25595291

Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

2015-02-01

318

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect

The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

HORHOTA, M.J.

2000-12-21

319

Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306  

SciTech Connect

Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

2012-07-01

320

Waste compatibility assessments to support project W-320  

SciTech Connect

The intent of this internal memo is to provide a recommendation for the transfer of tank 241-C-106 waste, Attachment 2, to tank 241-AY-102. This internal memo also identifies additional requirements which have been deemed necessary for safely receiving and storing the waste documented in Attachment 2 from tank 241-C-106 in tank 241-AY-102. This waste transfer is planned in support of tank 241-C-106 solids sluicing activities. Approximately 200,000 gallons of waste and flush water are expected to be pumped from tank 241-C-106 into tank 241-AY-102. Several transfers will be necessary to complete the sluicing of tank 241-C-106 solids. To assure ourselves that this waste transfer will not create any compatibility concerns, a waste compatibility assessment adhering to current waste compatibility requirements has been performed.

BLAAK, T.M.

1999-04-06

321

Tank waste remediation system optimized processing strategy with an altered treatment scheme  

SciTech Connect

This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

Slaathaug, E.J.

1996-03-01

322

Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522  

SciTech Connect

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has been overlooked and to verify the inventory. After each site has approved their project plan, the site will begin writing procedures and packaging/repackaging their waste. In some cases the sites have already begun the process. The waste will be shipped after all of the waste has been characterized and approved.

Mctaggart, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [DOE

2009-01-01

323

Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges  

SciTech Connect

Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

Castaldi, F.J.; Bombaugh, K.J. [Radian Corp., Austin, TX (United States); McFarland, B. [Chevron Research and Technology Co., Richmond, CA (United States)

1995-12-31

324

Waste treatment and optimal degree of pollution abatement  

SciTech Connect

Environmental impacts of industrial production processes are usually estimated by considering the emissions leaving the process. These emissions are often reduced using abatement processes, such as wastewater treatment technologies, in the belief that reducing emissions will reduce the environmental impact. Typical legislation focuses on reducing discharge levels, without considering the impact on the environment of the additional inputs required by the abatement process to achieve this reduction. This leads to the possibility that some waste streams may be over treated. In other words, industry might be devoting increased resources to reducing discharges and at the same time be worsening the environment. This paper presents a framework for the analysis of wastewater treatment technologies from an economic and environmental point of view. The work examines trade-offs in abatement processes between higher inputs (energy consumption and raw material) and lower discharge quantities (pollutant flow). As a result, an optimal degree of pollution abatement (ODPA), at which environmental impact is minimized, is identified. This value could act as a guideline to legislators who are setting discharge limits and to chemical engineers with waste discharge responsibilities. Case studies on two different abatement technologies, steam stripping and pervaporation, are presented to illustrate this framework.

Romero-Hernandez, O.; Pistikopoulos, E.N.; Livingston, A.G. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering

1998-12-31

325

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01

326

Projected Treatment Capacity Needs in Sierra Leone  

PubMed Central

Background: The ongoing outbreak of Ebola Virus Disease in West Africa requires immediate and sustained input from the international community in order to curb transmission. The CDC has produced a model that indicates that to end the outbreak by pushing the reproductive number below one, 25% of the patients must be placed in an Ebola Treatment Unit (ETC) and 45% must be isolated in community settings in which risk of disease transmission is reduced and safe burials are provided. In order to provide firmer targets for the international response in Sierra Leone, we estimated the national and international personnel and treatment capacity that may be required to reach these percentages. Methods: We developed a compartmental SEIR model that was fitted to WHO data and local data allowing the reproductive number to change every 8 weeks to forecast the progression of the EVD epidemic in Sierra Leone. We used the previously estimated 2.5x correction factor estimated by the CDC to correct for underreporting. Number of personnel required to provide treatment for the predicted number of cases was estimated using UNMEER and UN OCHA requests for resources required to meet the CDC target of 70% isolation. Results: As of today (2014-12-04), we estimate that there are 810 (95% CI=646 to 973) EVD active cases in treatment, with an additional 3751 (95% CI=2778 to 4723) EVD cases unreported and untreated. To reach the CDC targets today, we need 1140 (95% CI=894 to 1387) cases in ETCs and 2052 (95% CI=1608 to 2496) at home or in a community setting with a reduced risk for disease transmission. In 28 days (2015-01-01), we will need 1309 (95% CI=804 to 1814) EVD cases in ETCs and 2356 (95% CI=1447 to 3266) EVD cases at reduced risk of transmission. If the current transmission rate is not reduced, up to 3183 personnel in total will be required in 56 days (2015-01-29) to operate ETCs according to our model. Conclusions: The current outbreak will require massive input from the international community in order to curb the transmission through traditional containment mechanisms by breaking the chains of transmission in Sierra Leone. If sufficient treatment facilities, healthcare workers and support personnel are not rapidly deployed, the increasing number of cases will be overwhelming.In addition to supporting isolation and treatment mechanisms, other viable control options, such as the development of an effective vaccine, should be supported.

White, Richard A; MacDonald, Emily; de Blasio, Birgitte Freiesleben; Nygĺrd, Karin; Vold, Line; Rřttingen, John-Arne

2015-01-01

327

The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project  

SciTech Connect

The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref.

Presgrove, S.B. [Bechtel Savannah River, Inc., North Augusta, SC (United States)

1992-08-01

328

The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project  

SciTech Connect

The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref.

Presgrove, S.B. (Bechtel Savannah River, Inc., North Augusta, SC (United States))

1992-01-01

329

Polyoxometalates for radioactive waste treatment. 1998 annual progress report  

SciTech Connect

'This research is directed towards the use of polyoxoanions of the early transition metals (primarily tungsten) as possible sequestrants and storage matrices for lanthanide, actinide, and technetium species. The latter substances are important radioactive components of tank wastes from spent commercial nuclear fuel, but are present in low proportion by mass. Technetium is a particularly troublesome component because it is highly mobile in groundwater and is volatilized in vitrification processes currently under examination for long-term storage. Scientific goals: synthesis and characterization of new and selective polyoxotungstate complexes of Ln{sup 3+}, An{sup 4+}, UO{sub 2}{sup 2+}; exploration of stable polyoxoanions containing Tc (using, in the first instance, Re as a nonradioactive surrogate); thermal conversion of polytungstate complexes to tungsten bronze materials for their evaluation as inert storage matrices. This report summarizes the results after 20 months of a 3-year project.'

Pope, M.T.

1998-06-01

330

Research Associate (013294.0001) Animal Technologist Position: Chronic Wasting Disease Research Project  

E-print Network

Research Associate (013294.0001) Animal Technologist Position: Chronic Wasting Disease Research for animals and assist with other assays as part of research on chronic wasting disease (CWD) of deer and elk, and be reliable and dedicated to the research project. Minimum requirement: B.S. degree OR an A.A. degree with 4

Stephens, Graeme L.

331

Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program  

Microsoft Academic Search

This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified

Sailer

1996-01-01

332

Identification of the source of methane at a hazardous waste treatment facility using isotopic analysis  

Microsoft Academic Search

Isotopic analyses have been used to determine the source of methane in subsurface sediments at a hazardous waste treatment facility in the Lake Calumet area of Chicago, Illinois. The study area is surrounded by landfills and other waste management operations and has a long history of waste disposal. The facility property consists of land constructed of approximately 15 feet of

K. C. Hackley; C. L. Liu; D. P. Trainor

1992-01-01

333

Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.  

ERIC Educational Resources Information Center

This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

Wooding, N. Henry

334

Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes  

Microsoft Academic Search

Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods

D. Hidalgo; E. Sastre; M. Gómez; P. Nieto

2012-01-01

335

Determination of iron and chromium fluorides solubility for the treatment of wastes from stainless steel mills  

Microsoft Academic Search

Stainless steel pickling waste bath is one of the most important environmental problems in stainless steel mills because of its high toxicity and economic losses due to conventional neutralization treatment of this waste. Nitric and hydrofluoric acids reclamation solves only a part of the problem while metals still are considered as a waste and the whole content of hydrofluoric acid

José L. Gálvez; Javier Dufour; Carlos Negro; Federico López-Mateos

2008-01-01

336

Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process  

Microsoft Academic Search

The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method

K. G. Finucane; L. E. Thompson; T. Abuku; H. Nakauchi

2008-01-01

337

Environmental assessment of proposed effluent guidelines for the centralized waste treatment industry  

SciTech Connect

The purpose of the report is to present an assessment of the water quality benefits of controlling the discharge of priority and nonconventional pollutants from centralized waste treatment facilities to surface waters and publicly-owned treatment works (POTWs). Potential aquatic life and human health impacts of direct discharges on receiving stream water quality and of indirect discharges on POTWs and their receiving streams are projected at current, proposed BPT/BAT (Best Practicable Control Technology/Best Available Technology) and proposed PSES (Pretreatment Standards for Existing Sources) levels by quantifying pollutant releases and by using stream modeling techniques. In addition, EPA Regional and State Pretreatment Coordinators were contacted and State 304(1) Short Lists are reviewed for evidence of documented environmental impacts on aquatic life, human health, and POTW operations and for impacts on the quality of receiving water.

NONE

1995-01-01

338

Treatment and disposal of wastes from dry SOâ control processes  

Microsoft Academic Search

Sulfur dioxide (SOâ) control processes which produce dry wastes include: dry flue gas desulfurization (FGD), fluidized-bed combustion (FBC), and furnace sorbent injection (FSI). Dry waste products are considered to be a major advantage for these processes compared to conventional wet FGD due to the elimination of waste dewatering equipment. A comparison of the chemical composition and physical properties of waste

S. M. Katzberger; W. J. Rymarczyk

1985-01-01

339

The 1996 meeting of the national technical workgroup on mixed waste thermal treatment  

SciTech Connect

The National Technical Workgroup on Mixed Waste Thermal Treatment held its annual meeting in Atlanta Georgia on March 12-14, 1996. The National Technical Workgroup (NTW) and this meeting were sponsored under an interagency agreement between EPA and DOE. The 1996 Annual Meeting was hosted by US DOE Oak Ridge Operations in conjunction with Lockheed Martin Energy Systems - Center for Waste Management. A new feature of the annual meeting was the Permit Writer Panel Session which provided an opportunity for the state and federal permit writers to discuss issues and potential solutions to permitting mixed waste treatment systems. In addition, there was substantial discussion on the impacts of the Waste Combustion Performance Standards on mixed waste thermal treatment which are expected to proposed very soon. The 1996 meeting also focussed on two draft technical resource documents produced by NTW on Waste Analysis Plans and Compliance Test Procedures. Issues discussed included public involvement, waste characterization, and emission issues.

NONE

1996-12-31

340

EMSP project summary (Project ID: 60077): Development of nuclear analysis capabilities for DOE waste management activities  

SciTech Connect

The objective of this project is to develop and demonstrate prototypical analysis capabilities that can be used by nuclear safety analysis practitioners to: (1) demonstrate a more thorough understanding of the underlying physics phenomena that can lead to improved reliability and defensibility of safety evaluations; and (2) optimize operations related to the handling, storage, transportation, and disposal of fissile material and DOE spent fuel. To address these problems, this project has been investigating the implementation of sensitivity and uncertainty methods within existing Monte Carlo codes used for criticality safety analyses. It is also investigating the use of a new deterministic code that allows for specification of arbitrary grids to accurately model geometric details required in a criticality safety analysis. This capability can facilitate improved estimations of the required subcritical margin and potentially enable the use of a broader range of experiments in the validation process. The new arbitrary-grid radiation transport code will also enable detailed geometric modeling valuable for improved accuracy in application to a myriad of other problems related to waste characterization. Application to these problems will also be explored.

Parks, C.V.; Rearden, B.T.; DeHart, M.D.; Broadhead, B.L.; Hopper, C.M.; Petrie, L.M.

2000-02-01

341

Waste Operations Evaluations Project Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Microsoft Academic Search

The DOE Western Environmental Technology Office (WETO) is supporting Oak Ridge National Laboratory (ORNL) by conducting an evaluation of the Liquid and Gaseous Waste Operations (LGWO) at ORNL for future waste generation. In August 2003, UT-Battelle issued The ORNL Liquid and Gaseous Waste Treatment System Strategic Plan that provides their prioritized road-map for the development of cost-effective and upgraded liquid

M. Lee; A. Hart; S. Moon; M. Ferre

2006-01-01

342

Dynamic EcoEfficiency Projections for Construction and Demolition Waste Recycling Strategies at the City Level  

Microsoft Academic Search

SummaryIn this article we have elaborated a consistent framework for the quantification and evaluation of eco-efficiency for scenarios for waste treatment of construction and demolition (C&D) waste. Such waste systems will play an increasingly important role in the future, as there has been for many years, and still is, a significant net increase in stock in the built environment. Consequently,

Rolf André Bohne; Helge Brattebř; Hĺvard Bergsdal

2008-01-01

343

Thalidomide for the treatment of AIDS-associated wasting.  

PubMed

A double-blind, placebo-controlled trial of efficacy and safety of thalidomide in AIDS-associated wasting was carried out. Ninety-nine of 103 male patients had at least one on-study measurement (intent-to-treat [ITT] cohort). Patients were randomized to thalidomide at 100 mg/day (T100) or 200 mg/day (T200), or placebo for 8 weeks. By ITT analysis, the mean change in body weight of the placebo, T100, and T200 treatment groups was 0.3 kg (0.4%), 2.0 kg (3.0%), and 0.9 kg (1.4%), respectively (p = 0.021 for T100 versus placebo; p = 0.53 for T200 versus placebo). Of the 64 patients who completed the 8 weeks of study treatment, significant weight gain was observed in both the T100 group (2.2 kg, [33%]; p = 0.008 versus placebo) and the T200 group (1.5 kg [2.5%]; p = 0.019 versus placebo). Approximately half the weight gain was fat-free mass (bioimpedance analysis). Patients in the T100 or T200 groups had no significant change in CD4+ cell counts, neutrophil counts, or TNF-alpha levels, compared with placebo. HIV viral load measured as log10 copies/ml decreased by a median of 0.07 in the placebo group, and increased by a median of 0.29 (T100 group) and 0.23 (T200 group) (p = 0.024 andp = 0.018 versus placebo, respectively). Thalidomide therapy was associated with mild to moderate rashes and fevers, but not peripheral neuropathy. Although the anabolic benefits of high-dose thalidomide are limited by drug intolerance, 8 weeks of low-dose thalidomide results in significant weight gain in patients with AIDS-associated wasting. PMID:11018854

Kaplan, G; Thomas, S; Fierer, D S; Mulligan, K; Haslett, P A; Fessel, W J; Smith, L G; Kook, K A; Stirling, D; Schambelan, M

2000-09-20

344

Basalt waste isolation project. Quarterly report, October 1, 1980-December 31, 1980  

SciTech Connect

In September 1977, the National Waste Terminal Storage Program was restructured to support investigations of two US DOE sites - Hanford and Nevada. The Basalt Waste Isolation Project within Rockwell Hanford Operations has been chartered with the responsibility of conducting these investigations. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration, geosciences, hydrology, engineered barriers, near-surface test facility, engineering testing, and repository studies. Summaries of major accomplishments for each of these areas are reported in this document.

Deju, R.A.

1981-02-01

345

The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project  

SciTech Connect

This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

2003-02-25

346

COST COMPARISONS OF TREATMENT AND DISPOSAL ALTERNATIVES FOR HAZARDOUS WASTES. VOLUME II. APPENDICES  

EPA Science Inventory

Treatment and disposal alternatives and costs for hazardous wastes from the organic chemicals, inorganic chemicals, and electroplating and metal finishing industries are evaluated. The 16 treatment and 5 disposal technologies were based on applicability to the industry categories...

347

Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report  

SciTech Connect

This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

Pickett, W.W.

1997-12-30

348

Waste Description Type of Project Pounds Reduced, Reused,  

E-print Network

Performance Liquid Chromatography (HPLC) solvent recycler Reuse 110 Hazardous waste $2,500 $0 $6,755 Allows, chemical storage, and disposal associated with the cleaning of vacuum parts. Aerosol can disposal system

349

A multiobjective programming model for locating treatment sites and routing hazardous wastes  

Microsoft Academic Search

In this paper, a multiobjective model for locating disposal or treatment facilities and transporting hazardous waste along the links of a transportation network are presented. Some of the nodes of this network may be population centres generating hazardous waste which must be transported to the treatment facilities. Four objectives are considered: (1) minimisation of total operating cost, (2) minimisation of

Ioannis Giannikos

1998-01-01

350

Biological industrial waste treatment. (Latest citations from the NTIS database). Published Search  

SciTech Connect

The bibliography contains citations concerning treatment of industrial waste by various biological means. Topics include biodegradation, biodeterioration, activated sludge processes, hazardous materials, microorganisms, sewage treatment, solid waste disposal, and water pollution. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01

351

Surface water pollution by herbicides from effluents of waste water treatment plants  

Microsoft Academic Search

Herbicide loads of urban and rural waste water treatment plant effluents were calculated over a one-year period by measuring the herbicide concentrations in 14-day mixed samples. More than three quarters of the total herbicide load of the effluent of the rural waste water treatment plant consists of isoproturon. Particularly large amounts of this substance contribute to the total herbicide load

Walter Schüssler

1998-01-01

352

40 CFR 266.235 - What waste treatment does the storage and treatment conditional exemption allow?  

Code of Federal Regulations, 2013 CFR

...PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage,...

2013-07-01

353

40 CFR 266.235 - What waste treatment does the storage and treatment conditional exemption allow?  

Code of Federal Regulations, 2012 CFR

...PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage,...

2012-07-01

354

40 CFR 266.235 - What waste treatment does the storage and treatment conditional exemption allow?  

Code of Federal Regulations, 2011 CFR

...PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage,...

2011-07-01

355

40 CFR 266.235 - What waste treatment does the storage and treatment conditional exemption allow?  

...PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage,...

2014-07-01

356

State-of-the-art report on low-level radioactive waste treatment  

SciTech Connect

An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

Kibbey, A.H.; Godbee, H.W.

1980-09-01

357

Biological treatment of distillery waste for pollution-remediation.  

PubMed

The biological treatment of spent wash from molasses distilleries was investigated. Analysis of raw spent wash showed it to be a recalcitrant waste, with a high COD of 85,170 mg/l and containing inhibitory phenolic compounds. Reverse phase thin layer chromatography identified gallic and vanillic acid present in spent wash. The fungi Geotrichum candidum, Coriolus versicolor, Phanerochaete chrysosporium and Mycelia sterilia were screened for their ability to decolourize spent wash and to reduce the COD level. A 10 day pretreatment with Geotrichum candidum at 30 degrees C resulted in reducing the COD by 53.17% and total phenols by 47.82%, enabling other bioremediating organisms to grow. Coriolus versicolor immobilized in a packed-bed reactor reduced the COD of spent wash by a further 50.3%, giving an overall reduction in COD of 77% to 15,780 mg/l. A small amount of decolourization was achieved (4.2%), although the spent wash was still coloured. Present studies are encouraging and indicate that it is possible to bioremediate spent wash using a multi-stage treatment process involving an initial pretreatment step with Geotrichum candidum. PMID:8568640

Fitzgibbon, F J; Nigam, P; Singh, D; Marchant, R

1995-01-01

358

Recycling of PVC Waste via Environmental Friendly Vapor Treatment  

NASA Astrophysics Data System (ADS)

This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

2010-11-01

359

Project W-314 Specific Test and Evaluation Plan for 200E Waste Transfer System  

Microsoft Academic Search

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of the newly constructed 200E Waste Transfer System in the W-314 Project. The STEP provides the outline for test and evaluation methods that verify the system's performance and compliance to the established Project design criteria. The STEP is a

2000-01-01

360

Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)  

SciTech Connect

This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers.

Irons, L.G.

1995-06-20

361

Fabrication and closure development of nuclear waste disposal containers for the Yucca Mountain Project: Status report  

SciTech Connect

In GFY 89, a project was underway to determine and demonstrate a suitable method for fabricating thin-walled monolithic waste containers for service within the potential repository at Yucca Mountain. A concurrent project was underway to determine and demonstrate a suitable closure process for these containers after they have been filled with high-level nuclear waste. Phase 1 for both the fabrication and closure projects was a screening phase in which candidate processes were selected for further laboratory testing in Phase 2. This report describes the final results of the Phase 1 efforts. It also describes the preliminary results of Phase 2 efforts.

Domian, H.A.; Robitz, E.S.; Conrardy, C.C.; LaCount, D.F.; McAninch, M.D. [Babcock and Wilcox Co., Alliance, OH (United States); Fish, R.L. [B and W Fuel Co., Lynchburg, VA (United States); Russell, E.W. [Lawrence Livermore National Lab., CA (United States)

1991-09-01

362

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01

363

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains a minimum of 245 citations and includes a subject term index and title list.)

Not Available

1994-03-01

364

Process for treatment of detergent-containing radioactive liquid wastes  

Microsoft Academic Search

A detergent-containing radioactive liquid waste originating from atomic power plants is concentrated to have about 10 wt. % detergent concentration, then dried in a thin film evaporator, and converted into powder. Powdered activated carbon is added to the radioactive waste in advance to prevent the liquid waste from foaming in the evaporator by the action of surface active agents contained

K. Kamiya; K. Chino; K. Funabashi; S. Horiuchi; K. Motojima

1984-01-01

365

LAND TREATMENT OF AN OILY WASTE: DEGRADATION, IMMOBILIZATION AND BIOACCUMULATION  

EPA Science Inventory

An industrial oily waste was applied to field plots in New York to determine loss and immobilization of waste constituents and to determine impact of waste on soil biota. Four replicate plots were established for natural controls, rototilled controls, and low, medium and high app...

366

Treatment and disposal of wastes from dry SOâ control processes  

Microsoft Academic Search

Sulfur dioxide (SOâ) control processes which produce dry waste products have attracted increased interest in recent years based on economic and environmental considerations. This paper compares the chemical composition and physical properties of fly ash and dry waste products from existing SOâ control processes with the properties of dry waste emerging technologies such as furnace sorbent injection and fluidized bed

Steve M. Katzberger; Walter J. Rymarczyk

1986-01-01

367

Solid Waste Projection Model: Database (Version 1.4). Technical reference manual  

SciTech Connect

The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User`s Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193).

Blackburn, C.; Cillan, T.

1993-09-01

368

Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste  

SciTech Connect

The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

2001-06-01

369

Nutrient fate in aquacultural systems for waste treatment  

SciTech Connect

Twelve small, recirculating aquacultural systems were operated for livestock waste treatment to determine nutrient fate. Each system consisted of a 730-L fish tank coupled in a recirculating loop with three sand beds (serving as biofilters) in parallel. Fish (Tilapia species) were grown in the tanks while cattails, reed canary grass, and tomatoes were grown in separate sand beds. Swine waste was added to the fish tanks every other day at average rates of 50, 72, 95, and 118 kg-COD/ha/day of fish tank surface (three replications of each loading rate). Water from the fish tanks was filtered through the sand beds three times per day with 20% of the tank volume passing through the sand each day. The systems were operated in a greenhouse for eight months (21 July to 8 March). Aboveground plant matter was harvested at eight-week intervals. The fish were removed after four months and the tanks were restocked with fingerlings. Initial and final nitrogen (N), phosphorus (P), and potassium (K) contents of the system components, as well as that of the harvested plants and fish, were determined. Nutrient balance calculations revealed that 30 to 68% of added N was lost from the systems, probably via denitrification. Nutrient removal by plants was 6 to 18% for N, 8 to 21% for P, and 25 to 71% for K, with tomatoes (foliage and fruit) accounting for the majority of the removal. Plant growth was limited by growing conditions (particularly day length), not be nutrient availability. Fish growth was limited by temperature; thus nutrient extraction by the fish was minimal. Under the conditions of this experiment, the system required supplemental aeration.

Dontje, J.H.; Clanton, C.J.

1999-08-01

370

High-level waste management and treatment program for The Analytical Laboratory  

SciTech Connect

A new program has been successfully implemented for the treatment, storage, and disposal of high-level radioactive mixed wastes generated during chemical and radiological analysis at the Pacific Northwest Laboratory in Richland, Washington. This shielded laboratory facility has effectively treated RCRA waste generated predominantly from analyses of radioactive samples obtained during the Tank Waste Characterization Program on the Hanford Site. Several batches of the radioactive mixed waste, generated during the full analytical characterization of four Hanford Single Shell Tank cores and the partial characterization of three other cores, were combined and successfully treated during January through August of 1992. The waste treatment process was specifically designed to treat a low-pH, high-chloride, high-gamma activity waste stream. The creation of the treatment, storage and disposal facility required an extensive six-month permit modification process resulting in state and federal regulatory approval.

King, A.G.; Baldwin, D.L.; Steele, R.T.; Poston, K.A.

1993-02-01

371

Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586  

SciTech Connect

The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01

372

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27

373

Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1  

SciTech Connect

May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs.

Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

1997-09-08

374

Functional design criteria for Project W-252, Phase II Liquid Effluent Treatment and Disposal: Revision 1  

SciTech Connect

This document provides the functional design criteria required for the Phase 2 Liquid Effluent Treatment and Disposal Project, Project W-252. Project W-252 shall provide new facilities and existing facility modifications required to implement Best Available Technology/All Known, Available, and Reasonable Methods of Prevention, Control, and Treatment (BAT/AKART) for the 200 East Phase II Liquid Effluent Streams. The project will also provide a 200 East Area Phase II Effluent Collection System (PTECS) for connection to a disposal system for relevant effluent streams to which BAT/AKART has been applied. Liquid wastestreams generated in the 200 East Area are currently discharged to the soil column. Included in these wastestreams are cooling water, steam condensate, raw water, and sanitary wastewaters. It is the policy of the DOE that the use of soil columns to treat and retain radionuclides and nonradioactive contaminants be discontinued at the earliest practical time in favor of wastewater treatment and waste minimization. In 1989, the DOE entered into an interagency agreement with Ecology and EPA. This agreement is referred to as the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Project W-252 is one of the projects required to achieve the milestones set forth in the Tri-Party Agreement. One of the milestones requires BAT/AKART implementation for Phase II streams by October 1997. This Functional Design Criteria (FDC) document provides the technical baseline required to initiate Project W-252 to meet the Tri-Party Agreement milestone for the application of BAT/AKART to the Phase II effluents.

Hatch, C.E.

1994-11-10

375

[Low-temperature thermal treatment of dioxin in medical waste fly ash under unert atmosphere].  

PubMed

Two kinds of fly ash (AG and BG) from hazardous waste rotary kiln were investigated as the targets of thermal treatment. AG was sampled after fabric filter with activated carbon spray and BG was sampled in pipe before fabric filter. The effects of temperature and time on PCDD/Fs degradation rate in fly ash were investigated in quartz tubular. Under nitrogen atmosphere, low-temperature thermal treatment for dioxin degradation had obvious effect. For sample BG, the degradation rate of dioxin in solid phase was 82.8%-99.9%, and the degradation rate of I-TEQ was 77.3%-99.8%. For sample AG, the degradation rate was 66.8% - 99.8%, and the degradation rate of I-TEQ was 43.5% - 99.6%. Although dioxin in solid phase was reduced, it was generated in gas phase, and among all the different temperatures tested, dioxin was generated at highest amounts at 300 degrees C - 350 degrees C, and among all the toxic congeners, OCDD was detected as the most abundant in this experiment. The best conditions of thermal treatment were: heating time 60 min, temperature 400 degrees C, under nitrogen atmosphere. The results indicate that low-temperature thermal treatment under inert atmosphere has good effect on treating dioxin present in medical fly ash, it can be applied in practical projects in large scales. PMID:23323437

Ji, Sha-Sha; Li, Xiao-Dong; Xu, Xu; Chen, Tong

2012-11-01

376

Selection of a reference process for treatment of the West Valley alkaline waste  

SciTech Connect

As part of the West Valley Demonstration Project (WVDP) the alkaline PUREX supernatant stored in Tank 8D2 will be partially decontaminated by the removal of radiocesium. Four processes for removal of radiocesium from the alkaline supernatant were studied through experimentation and engineering analysis to identify a reference approach for the WVDP. These processes included the use of a zeolite inorganic ion-exchanger (Linde Ionsiv IE-95), an organic ion exchange resin (Duolite CS-100), and two precipitation processes; one using sodium tetraphenylboron (NaTPB) and the other using phosphotungstic acid (PTA). Based upon process performance, safety and environmental considerations, process and equipment complexity and impacts to the waste vitrification system, the zeolite ion-exchange process has been selected by West Valley Nuclear Services, Inc., as the reference supernatant treatment process for the WVDP. This paper will summarize the technical basis for the selection of the zeolite ion-exchange process. 4 figures, 2 tables.

Holton, L.K.; Wise, B.M.; Bray, L.A.; Pope, J.M.; Carl, D.E.

1984-08-01

377

Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320  

SciTech Connect

This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue.

Conner, J.C.

1994-10-18

378

Dual Torch Plasma Arc Furnace for Medical Waste Treatment  

NASA Astrophysics Data System (ADS)

In this paper, characteristics of a dual torch plasma arc used for hazardous waste treatment and operated at atmospheric pressure are studied, and also compared with those of the multi-torch plasma arc and the single torch plasma arc. The dual torch plasma arc is generated between the cathode and anode with argon as the working gas. The temperature distributions of the plasma arc are measured using a spectroscope and line pair method with the assumption of local thermodynamic equilibrium (LTE) for the DC arc current I = 100 A and argon flow rate Q = 15 slpm. The measurements show that the temperatures of the dual torch arc plasma in the regions near the cathode, the anode and the center point are 10,000 K, 11,000 K and 9,000 K, respectively. And the high temperature region of the multi torch plasma arc is of double or much wider size than that of a conventional dual torch plasma arc and single plasma torch. Based on the preceding studies, a dual torch plasma arc furnace is developed in this study. The measured gas temperature at the center region of the argon arc is about 11,000 K for the case of I = 200 A and Q = 30 slpm operated in atmosphere.

Liu, Bin; Kikuchi, M.; Li, Heping; Iwao, T.; Inaba, T.

2007-12-01

379

Treatment of phosphogypsum waste produced from phosphate ore processing.  

PubMed

Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Phosphogypsum is a technologically enhanced naturally occurring radioactive material (TE-NORM) that contains radionuclides from (238)U and (232)Th decay series which are of most radio-toxicity. The reduction in concentration of radionuclides content from PG was based on leaching of (226)Ra, (210)Pb, (238)U and (40)K using tri-butyl phosphate (TBP) and tri-octyl phosphine oxide (TOPO) in kerosene. The factors which affect the leaching process such as contact time, concentration of the solvent and temperature were optimized. Based on the experimental results, about 92.1, 88.9, 83.4, 94.6% of (226)Ra, (210)Pb, (238)U and (40)K respectively were successfully removed from the PG. The reduction in the concentration of radionuclides was accompanied by reduction in the concentration of rare earth elements (?REE) equals to 80.1%. Using the desired organic extractant under optimum conditions for treatment of the PG waste leads to obtain a decontaminated product that can be safely used in many industrial applications. PMID:23195600

El-Didamony, H; Gado, H S; Awwad, N S; Fawzy, M M; Attallah, M F

2013-01-15

380

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

SciTech Connect

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16

381

Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.  

PubMed

As one of the fastest developing countries, China is facing severe problems concerning hazardous waste treatment and disposal. This paper presents a new incineration technology and demonstration project in eastern China. The incineration system includes a rotary kiln, a grate furnace for burning out the kiln residue and a flue gas post-combustion chamber. Flue gas treatment and emission control is based on: a quench tower, followed by dry hydrated lime and activated carbon injection, a dual bag filter system, and a wet scrubber. It demonstrated that this incineration technology can effectively dispose of industrial hazardous waste with variable and complex characteristics. Gas emissions meet the demands of the Chinese Environmental Protection Association standard. PMID:21746756

Ma, Pan; Ma, Zengyi; Yan, Jianhua; Chi, Yong; Ni, Mingjiang; Cen, Kefa

2011-10-01

382

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Waste Analysis Plan  

SciTech Connect

The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01

383

Conventional and alternative technologies for the treatment of infectious waste  

Microsoft Academic Search

The limited scientific information about infectious waste, and the heightened public awareness of this special component\\u000a of the waste stream, have contributed to the implementation or strengthening of the regulations in this area. This paper proposes\\u000a a general working definition of infectious waste, and describes the systems used to limit its potential occupational and public\\u000a health impacts. Although incineration and

I. F. Salkin

2003-01-01

384

Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project  

SciTech Connect

This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory`s Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report.

Griebenow, B.E.

1992-01-01

385

Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project  

SciTech Connect

This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report.

Griebenow, B.E.

1992-01-01

386

Solid waste integrated cost analysis model: 1991 project year report. Part 2  

SciTech Connect

The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-12-31

387

Fluid dynamic demonstrations for waste retrieval and treatment  

SciTech Connect

The objective of this study was to develop or identify flow correlations for predicting the flow parameters needed for the design and operation of slurry pipeline systems for transporting radioactive waste of the type stored in the Hanford single-shell tanks and the type stored at the Oak Ridge National Laboratory (ORNL). This was done by studying the flow characteristics of simulated waste with rheological properties similar to those of the actual waste. Chemical simulants with rheological properties similar to those of the waste stored in the Hanford single-shell tanks were developed by Pacific Northwest Laboratories, and simulated waste with properties similar to those of ORNL waste was developed at ORNL for use in the tests. Rheological properties and flow characteristics of the simulated slurry were studied in a test loop in which the slurry was circulated through three pipeline viscometers (constructed of 1/2-, 3/4-, and 1-in. schedule 40 pipe) at flow rates up to 35 gal/min. Runs were made with ORNL simulated waste at 54 wt % to 65 wt % total solids and temperatures of 25{degree}C and 55{degree}C. Grinding was done prior to one run to study the effect of reduced particle size. Runs were made with simulated Hanford single-shell tank waste at approximately 43 wt % total solids and at temperatures of 25{degree}C and 50{degree}C. The rheology of simulated Hanford and ORNL waste supernatant liquid was also measured.

Youngblood, E.L. Jr.; Hylton, T.D.; Berry, J.B.; Cummins, R.L.; Ruppel, F.R. [Oak Ridge National Lab., TN (United States); Hanks, R.W. [R.W. Hanks Associates, Inc. (United States). Slurry Transport Consultant

1994-02-01

388

Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

NONE

1996-12-01

389

Constructed wetland (CW) for industrial waste water treatment  

Microsoft Academic Search

The constructed wetland (CW) in Gradiš?e (Slovenia) has been in operation since 1991 for the purification of waste waters from a food processing plant. It functions according to the method of horizontal subsurface flow. Waste waters are composed of industrial, faecal and meteor waters. The CW is composed of two beds, filled with substrate and planted with Carex gracilis and

Dani Vrhovšek; Vlasta Kukanja; Tjaša Bulc

1996-01-01

390

Treatment and recycling of asbestos-cement containing waste  

Microsoft Academic Search

The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in

F. Colangelo; R. Cioffi; M. Lavorgna; L. Verdolotti; L. De Stefano

2011-01-01

391

Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York  

SciTech Connect

The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

N /A

2004-01-16

392

Developments in odour control and waste gas treatment biotechnology: a review  

Microsoft Academic Search

Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as

Joanna E Burgess; Simon A Parsons; Richard M Stuetz

2001-01-01

393

40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.  

Code of Federal Regulations, 2013 CFR

...treatment device is located. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response will accept comment...tentative decision for 60 days. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response also may...

2013-07-01

394

40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.  

...treatment device is located. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response will accept comment...tentative decision for 60 days. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response also may...

2014-07-01

395

40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.  

Code of Federal Regulations, 2011 CFR

...treatment device is located. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response will accept comment...tentative decision for 60 days. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response also may...

2011-07-01

396

40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.  

Code of Federal Regulations, 2012 CFR

...treatment device is located. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response will accept comment...tentative decision for 60 days. The Assistant Ad-min-is-tra-tor for Solid Waste and E-mer-gen-cy Response also may...

2012-07-01

397

A&M. Hot liquid waste treatment building (TAN616). Camera facing southwest. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

A&M. Hot liquid waste treatment building (TAN-616). Camera facing southwest. Oblique view of east and north walls. Note three corrugated pipes at lower left indicating location of underground hot waste storage tanks. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

398

Free and immobilized cultures of Spirulina maxima for swine waste treatment  

Microsoft Academic Search

We have analyzed the behavior of spirulina maxima at increasing concentration of ammonium nitrogen present in swine waste when it is either growing in suspension or immobilized in polymeric supports. We compared the response of spirulina maxima growth to different concentrations of aeration stabilized swine waste (total phosphorus, ammonium nitrogen) as a way to determine the treatment efficiency of both

R. O. Ca-nizares; A. R. Domínguez; L. Rivas; M. C. Montes; L. Travieso; F. Benítez

1993-01-01

399

Alternatives for the treatment and disposal of healthcare wastes in developing countries  

SciTech Connect

Waste production in healthcare facilities in developing countries has brought about a variety of concerns due to the use of inappropriate methods of managing the wastes. Inappropriate treatment and final disposal of the wastes can lead to adverse impacts to public health, to occupational health and safety, and to the environment. Unfortunately, most economically developing countries suffer a variety of constraints to adequately managing these wastes. Generally in developing countries, few individuals in the staff of the healthcare facility are familiar with the procedures required for a proper waste management program. Furthermore, the management of wastes usually is delegated to poorly educated laborers who perform most activities without proper guidance and insufficient protection. This paper presents some of the most common treatment and disposal methods utilized in the management of infectious healthcare wastes in developing countries. The methods discussed include: autoclave; microwave; chemical disinfection; combustion (low-, medium-, and high-technology); and disposal on the ground (dump site, controlled landfill, pits, and sanitary landfill). Each alternative for treatment and disposal is explained, including a description of the types of wastes that can and cannot be treated. Background information on the technologies also is included in order to provide information to those who may not be familiar with the details of each alternative. In addition, a brief presentation of some of the emissions from each of the treatment and disposal alternatives is presented.

Diaz, L.F. [CalRecovery Inc., 2454 Stanwell Drive, Concord, CA 94520 (United States)]. E-mail: ludiaz@calrecovery.com; Savage, G.M. [CalRecovery Inc., 2454 Stanwell Drive, Concord, CA 94520 (United States); Eggerth, L.L. [CalRecovery Inc., 2454 Stanwell Drive, Concord, CA 94520 (United States)

2005-07-01

400

Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999  

SciTech Connect

A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

Maddox, J.J.; Scott, C.B.

2000-03-01

401

FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory  

SciTech Connect

During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of {sup 90}Sr and {sup 137}Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment.

Bostick, D.T.; Arnold, W.D.; Burgess, M.W. [and others

1995-01-01

402

Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington  

SciTech Connect

This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

Rohay, Alan C.; Reidel, Steve P.

2005-02-24

403

EVALUATION OF AIR EMISSIONS FROM HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES  

EPA Science Inventory

This study has examined the fugitive air emissions from landfills, surface impoundments, storage tanks, containers (drums), solvent recovery processes, and land treatment technologies at hazardous waste disposal facilities (HWDF's). The main objective of this study was to develop...

404

RESIDUAL WASTE MANAGEMENT. PHASE I REPORT  

EPA Science Inventory

The project report presents the economic, social, and environmental analysis regarding alternative plans for the handling and disposal of residual organic waste in Ventura County. Waste quantities from municipal treatment plants, livestock operations, agricultural operations and ...

405

Y-12 ARRA Project Listed Waste Determination Old Salvage Yard Project  

SciTech Connect

The Old Salvage Yard received scrap metal from various plant operations, store liquid hazardous wastes, and de-headed and crushed drums from the early 1950s until October 1999. The acceptance of non-containerized scrap metal for outdoor storage was routine until 1995, when scrap metal received at the site was placed in containers. All scrap metal (containerized and non containerized) stored and handled at the OSY is considered non-classified. There are 5 scrap metal waste piles and approximately 1,100 waste containers, many stacked 2-high within the confines of the OSY.

Milloway, J. D.

2010-01-21

406

Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution  

SciTech Connect

Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

2004-06-15

407

Mixed waste treatment using the ChemChar thermolytic detoxification technique  

SciTech Connect

The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

1995-10-01

408

River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect

This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22

409

Projections of demand for hazardous waste management capacity in Alaska, Idaho, Oregon and Washington: 1989, 1995, and 2009. Final report  

SciTech Connect

The report describes the research methods and presents a summary of results for a series of technical analyses used to project the generation of hazardous waste in Alaska, Idaho, Oregon, and Washington. An overview of the research is provided, followed by descriptions of how the data was derived and how the economic projection methodology works. The next section describes the four-part approach that was used to estimate the effects of waste reduction between 1987 and 2009. Technical appendices present detailed results and material supporting each of the research tasks described in the Final Report. They are: economic projections by State, a waste reduction matrix, results of statistical analysis for Washington and Oregon, engineering analysis profiles, waste management form analysis, groundtruthing results, summary of one-time waste analysis, summary of small quantity generator analysis, and household hazardous waste projections.

Not Available

1989-10-01

410

Materials used in low-level liquid waste reprocessing/treatment studies at Oak Ridge National Laboratory  

SciTech Connect

The importance of effective waste management in the nuclear fuel cycle cannot be overestimated. At Oak Ridge National Laboratory (ORNL), development work in waste reprocessing and treatment includes the testing and use of various additives for the purpose of facilitating adherence to both process and regulatory performance criteria. Three waste reprocessing/treatment technologies and the associated materials are discussed in this paper: (1) suspension and transfer of sludge from waste storage tanks; (2) treatment to render a waste in compliance with regulatory requirements; and (3) fluoride-rich waste reprocessing. 7 refs., 3 figs.

McDaniel, E.W.; Weeren, H.O.; Delzer, D.B.; Sams, T.L.; Tallent, O.K.

1987-01-01

411

Assessment of natural gas technology opportunities in the treatment of selected metals containing wastes. Topical report, June 1994August 1995  

Microsoft Academic Search

The report analyzes the disposal of certain waste streams that contain heavy metals, as determined by Resource Conservation and Recovery Act (RCRA) regulations. Generation of the wastes, the regulatory status of the wastes, and current treatment practices are characterized, and the role of natural gas is determined. The four hazardous metal waste streams addressed in this report are electric arc

J. McGervey; J. G. Holmes; J. Bluestein

1995-01-01

412

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect

The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

2014-08-21

413

Summary report on the wood waste utilization project under the US Department of Energy Appropriate Energy Technology Small Grants Program  

Microsoft Academic Search

This report summarizes activities to promote the use of wood waste as energy within the seven-county Southeast Missouri Region. The history of wood waste projects within the Region is reviewed, the actual activities undertaken are summarized, and a set of lessons learned and conclusions are presented. The primary conclusion is that projects such as this are valuable for rural America

1983-01-01

414

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21

415

Skills Conversion Project, Chapter 13, Solid Waste Management.  

ERIC Educational Resources Information Center

The Skills Conversion Project conducted by the National Society of Professional Engineers sought to study the transition mechanisms required to transfer available technical manpower from aerospace and defense industries into other areas of employment in private industry and public service. Fourteen study teams assessed the likelihood of future…

National Society of Professional Engineers, Washington, DC.

416

Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options  

Microsoft Academic Search

A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose

Carol M. Jantzen; Dennis F. Bickford; Kevin G. Brown; Alex D. Cozzi; Connie C. Herman; James C. Marra; David K. Peeler; John B. Pickett; Ray F. Schumacher; Mike E. Smith; John C. Whitehouse; Jack R. Zamecnik

2000-01-01

417

Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.  

ERIC Educational Resources Information Center

The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

Ridgley, Susan M.; Galvin, David V.

418

Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing  

SciTech Connect

Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed.

Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

1999-11-11

419

Tank waste remediation system privatization phase 1 infrastructure project W-519, project execution plan  

SciTech Connect

This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented.

Parazin, R.J.

1998-08-28

420

Design review plan for Multi-Function Waste Tank Facility (Project W-236A)  

SciTech Connect

This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

Renfro, G.G.

1994-12-20

421

Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility  

SciTech Connect

The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

Not Available

1993-08-01

422

DEVELOPMENT OF A CONTINUOUS INDUCTION MELTER FOR DRY ACTIVE WASTE TREATMENT  

Microsoft Academic Search

A continuous melter with inductively heated graphite cylinder-packed bed for dry active wastes treatment was developed for the purposes of treatment facility scale reduction and melting treatment rate increase. The melts flowed down through the packed bed and are continuously discharged from a notch. This paper reports the melting treatment rate of a 10kHz, 100kW pilot melter, refractory wall lifetime

Toshiaki Matsuo; Takeyuki Kondou; Takashi Nishi; Masami Matsuda

2000-01-01

423

Radioactive mixed waste disposal  

SciTech Connect

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01

424

Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington  

SciTech Connect

In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy's (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were reevaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary's approval of the final seismic criteria in the summer of 2007, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities. The technical basis for the certification of seismic design criteria resulted from a two-year Seismic Boreholes Project that planned, collected, and analyzed geological data from four new boreholes drilled to depths of approximately 1400 feet below ground surface on the WTP site. A key uncertainty identified in the 2005 analyses was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The absence of directly-measured seismic shear wave velocities in the sedimentary interbeds resulted in the use of a wider and more conservative range of velocities in the 2005 analyses. The Seismic Boreholes Project was designed to directly measure the velocities and velocity contrasts in the basalts and sediments below the WTP, reanalyze the ground motion response, and assess the level of conservatism in the 2005 seismic design criteria. The characterization and analysis effort included 1) downhole measurements of the velocity properties (including uncertainties) of the basalt/interbed sequences, 2) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core-hole and data collected through geophysical logging of each borehole, and 3) prediction of ground motion response to an earthquake using newly acquired and historic data. The data and analyses reflect a significant reduction in the uncertainty in shear wave velocities below the WTP and result in a significantly lower spectral acceleration (i.e., ground motion). The updated ground motion response analyses and corresponding design response spectra reflect a 25% lower peak horizontal acceleration than reflected in the 2005 design criteria. These results provide confidence that the WTP seismic design criteria are conservative. (authors)

Brouns, T.M.; Rohay, A.C. [Pacific Northwest National Laboratory, Richland, WA (United States); Youngs, R.R. [Geomatrix Consultants, Inc., Oakland, CA (United States); Costantino, C.J. [C.J. Costantino and Associates, Valley, NY (United States); Miller, L.F. [U.S. Department of Energy, Office of River Protection, Richland, WA (United States)

2008-07-01

425

Photocatalytic post-treatment in waste water reclamation systems  

NASA Technical Reports Server (NTRS)

A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

1989-01-01

426

The effect of supercritical carbon dioxide treatment on the leachability and structure of cemented radioactive waste-forms  

Microsoft Academic Search

The former process for the cementation of transuranic (TRU) low-level wastes poses several technical problems. Specifically in the US a TRU waste-form has not yet passed the Waste Isolation Pilot Plant prohibition for free liquid. For this reason, treatment of the portland cement based waste-form with supercritical carbon dioxide (SCCO2) is shown to satisfy regulations. The effect of SCCO2 treatment

T. Hartmann; P. Paviet-Hartmann; J. B. Rubin; M. R. Fitzsimmons; K. E. Sickafus

1999-01-01

427

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-10-01

428

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01

429

Olive oil waste treatment: a comparative and critical presentation of methods, advantages & disadvantages.  

PubMed

Since olive oil industries were considered responsible for a great amount of pollution there has been a strong need for optimization of olive oil waste treatment systems. The currently employed systems are numerous and fall in the following large categories; bioremediation (ex-situ, in-situ), thermal processes (incineration, pyrolysis, gasification), evaporation, membrance processes, electrolysis, ozonation, digestion, coagulation/flocculation/precipitation, and distillation. Both advantages and disadvantages in conjunction with respective methodology and explicit flow diagrams were presented per waste treatment method. Furthermore, most recent studies were reported and more than twenty-five figures showing mainly the effectiveness of the current waste treatment methods versus time or temperature were displayed. The comparative presentation of the various olive oil waste treatment methodologies showed that though bioremediation stands for the most enviromentally friendly technique, its required longer treatment time in conjuction with its weakness to deal with elemental contaminants makes imperative the employment of a second alternative technique which could either be a membrance process (low energy cost, reliability, reduced capital cost) or a coagulation/flocculation method because of its low cost and high effectiveness. Biogas production appears to be another promising and energy effective waste treatment method. On the other hand, methods like distillation and ozonation (high cost) and electrolysis (experimental level) are unlikely to dominate this field unless their high cost is substantially reduced in the near future. PMID:17453921

Arvanitoyannis, Ioannis S; Kassaveti, Aikaterini; Stefanatos, Stelios

2007-01-01

430

Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes  

SciTech Connect

The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600{degrees}C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation.

Surma, J.E.; Freeman, C.J.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States); Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P. [Massachusetts Inst. of Tech., Cambridge, MA (US). Plasma Fusion Center; Hamilton, R.A.; Titus, C.H.; Wittle, J.K. [Electro-Pyrolysis, Inc., Wayne, PA (US)

1993-06-01

431

Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document  

Microsoft Academic Search

The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified

J. Luey; T. M. Brouns; M. L. Elliott

1990-01-01

432

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

SciTech Connect

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29

433

DOE Waste Package Project. Quarterly progress report, October 1, 1993--December 31, 1993  

SciTech Connect

The Waste Package Project research activities continued in all research areas. The areas include: Container structural and stress analysis; Nuclear fission criticality studies; Investigation of canister design concepts and corrosion studies; Heat transfer studies; Fluid flow in porous media and radionuclide transport in near field rock; Studies of stresses and stability of the rock formations resulting from the thermal loading of the fuel elements and the multi tunnel concept being analyzed; Characterization of a Faulted Rock Tunnel Model Using Photoelastic and Finite Element Studies; Experiment studies of the dynamic response of a flexible three-link robot using strain gages and Lagrange polynomials; and Robotic manipulation of the nuclear waste container.

Ladkany, S.G.

1993-12-31

434

Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration  

SciTech Connect

The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 {times} 10{sup 8} gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented.

Hunt, R.D.; McGinnis, C.P. [Oak Ridge National Lab., TN (United States); Cruse, J.M. [Westinghouse Hanford Co., Richland, WA (United States)

1994-06-01

435

Waste water treatment: Chemical industry. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-05-01

436

Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the Compendex database). Published Search  

SciTech Connect

The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01

437

LAND TREATMENT AND THE TOXICITY RESPONSE OF SOIL CONTAMINATED WITH WOOD PRESERVING WASTE  

EPA Science Inventory

Soils contaminated with wood preserving wastes, including pentachlo-rophenol (PCP) and creosote, are treated at field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). The concentration of selected indicator compounds of treatment ...

438

LAND TREATMENT AND THE TOXICITY RESPONSE OF SOIL CONTAMINATED WITH WOOD PRESERVING WASTE  

EPA Science Inventory

Soils contaminated with wood preserving wastes, including pentachlorophenol (PCP) and creosote, are treated at a field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). he concentration of selected indicator compounds of treatment ...

439

Application of analytic hierarchy process in a waste treatment technology assessment in Mexico.  

PubMed

The high per capita generation of solid waste and the environmental problems in major rural communities of Ensenada, Baja California, have prompted authorities to seek alternatives for waste treatment. In the absence of a selection methodology, three technologies of waste treatment with energy recovery (an anaerobic digester, a downdraft gasifier, and a plasma gasifier) were evaluated, taking the broader social, political, economic, and environmental issues into considerations. Using the scientific literature as a baseline, interviews with experts, decision makers and the community, and waste stream studies were used to construct a hierarchy that was evaluated by the analytic hierarchy process. In terms of the criteria, judgments, and assumptions made in the model, the anaerobic digester was found to have the highest rating and should consequently be selected as the waste treatment technology for this area. The study results showed low sensitivity, so alternative scenarios were not considered. The methodology developed in this study may be useful for other governments who wish to assess technologies to select waste treatment. PMID:24859858

Taboada-González, Paul; Aguilar-Virgen, Quetzalli; Ojeda-Benítez, Sara; Cruz-Sotelo, Samantha

2014-09-01

440

Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision  

SciTech Connect

A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

Not Available

1994-12-01

441

Geomechanical testing development for the Basalt Waste Isolation Project  

SciTech Connect

One component of this project is the development of a geomechanical testing program to support repository design, site characterization, and performance assessment requirements. Geomechanics information includes characteristics of the in situ stress field and the mechanical properties of the rock mass. The nature of the basalts at the proposed repository depth of approximately 970 m imposes some relatively unusual requirements on testing methods typically used to assess the stress state and rock mass deformability. The rock mass is closely jointed, with the spacing estimated from vertical boreholes to be in the range of 5 to 10 cm for both vertical and horizontal joint sets. The ambient temperature at depth is about 50/sup 0/C. The rock mass is considered fully saturated. This presentation summarizes the