Science.gov

Sample records for waste treatment project

  1. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

  2. Mixed and Low-Level Waste Treatment Facility Project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  3. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  4. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  5. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  6. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  7. The Plasma Hearth Process demonstration project for mixed waste treatment

    SciTech Connect

    Geimer, R.; Dwight, C.; McClellan, G.

    1994-07-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years.

  8. Advanced Mixed Waste Treatment Project (AMWTP) Final Environmental Impact Statement

    SciTech Connect

    1999-02-12

    The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the INEEL. The alternatives analyzed were: the No Action Alternative, the Proposed Action, the Non-Thermal Treatment Alternative, and the Treatment and Storage Alternative. The Proposed Action is the Preferred Alternative. Under the Proposed Action/Preferred Alternative, the AMWTP facility would treat transuranic waste, alpha-contaminated low-level mixed waste, and low-level mixed waste in preparation for disposal. After treatment, transuranic waste would be disposed of at the Waste Isolation Pilot Plant in New Mexico. Low-level mixed waste would be disposed of at an approved disposal facility depending on decisions to be based on DOE's Final Waste Management Programmatic Environmental Impact Statement. Evaluation of impacts on land use, socioeconomics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, INEEL services, and environmental justice were included in the assessment.

  9. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  10. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  11. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  12. Mixed and low-level waste treatment facility project

    SciTech Connect

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  13. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    SciTech Connect

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-05-18

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

  14. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  15. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    SciTech Connect

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  16. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    SciTech Connect

    Not Available

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  17. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  18. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  19. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    SciTech Connect

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

  20. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  1. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  2. WASTE TREATMENT & IMMOBILIZATION PLANT (WTP) HIGH LEVEL WASTE (HLW) CANISTER PRODUCTION ESTIMATES TO SUPPORT ANALYSES BY THE YUCCA MOUNTAIN PROJECT

    SciTech Connect

    HAMEL, W.F.

    2004-09-09

    This document summarizes estimates of the range of chemical and radiochemical compositions for the immobilized HLW (IHLW) canisters to be generated from the Waste Treatment and Immobilization Plant (WTP) that will be operated at the U.S. Department of Energy's (DOE) Hanford Site. These estimates have been derived from DOE planning, WTP Project and Hanford tank waste characterization information. The IHLW canister composition estimates include three Cases that bound the expected number of IHLW canisters to be produced in the WTP (termed the WTP Program Case, WTP Planning Case and WTP Technology Case) and production of the maximum radionuclide content IHLW canister.

  3. Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

  4. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  5. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  6. Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project

    SciTech Connect

    Landman, W.; Roesener, S.; Mason, B.; Wolf, K.; Amaria, N.

    2007-07-01

    The patented THOR{sup R} steam reforming waste treatment technology has been selected by the Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL). SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. Design of the IWTU is nearing completion. The IWTU will be constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF), with planned fabrication and construction to start in early 2007 upon receipt of needed permits and completion of design and engineering. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

  7. Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project

    SciTech Connect

    Mason, J.B.; Wolf, K.; Ryan, K.; Roesener, S.; Cowen, M.; Schmoker, D.; Bacala, P.; Landman, B.

    2006-07-01

    The patented THOR{sup R} steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR{sup R} steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR{sup R} technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR{sup R} can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR{sup R} can also produce a final end-product that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR{sup R} process chemistry and process equipment being designed for the IWTU. (authors)

  8. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    SciTech Connect

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  9. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    SciTech Connect

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

  10. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  11. Operational waste volume projection

    SciTech Connect

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995.

  12. Operational Waste Volume Projection

    SciTech Connect

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  13. Radium/Barium Waste Project

    SciTech Connect

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  14. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  15. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. AN NDA Technique for the Disposition of Mixed Low Level Waste at the Advanced Mixed Waste Treatment Project

    SciTech Connect

    M.J. Clapham; J.V. Seamans; R.E. Arbon

    2006-05-16

    The AMWTP is aggressively characterizing and shipping transuranic (TRU) waste to meet the DOE-IDs goal of 6000m3 of TRU waste to the Waste Isolation Pilot Plant (WIPP). The AMWTP shipping schedule requires streamlined waste movements and efficient waste characterization. Achieving this goal is complicated by the presence of waste that cannot be shipped to WIPP. A large amount of this waste is non-shippable due to the fact that no measurable TRU activity is identified during non-destructive assay (NDA).

  18. Waste Treatment Plant - 12508

    SciTech Connect

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium

  19. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  20. Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Horner, Jake A.

    2007-02-28

    This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.

  1. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of

  2. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department

  3. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energy’s (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents – approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes – are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC’s ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates – WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in

  4. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  5. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  6. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    SciTech Connect

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  7. Packaged Waste Treatment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This Jacksonville, Florida, apartment complex has a wastewater treatment system which clears the water, removes harmful microorganisms and reduces solid residue to ash. It is a spinoff from spacecraft waste management and environmental control technology.

  8. Basalt Waste Isolation Project Reclamation Support Project:

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory's role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site's altitude and north-facing orientation.

  9. Waste Management Process Improvement Project

    SciTech Connect

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-02-25

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

  10. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  11. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  12. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect

    Nenni, Joseph A.; Thompson, Theron J.

    2012-07-01

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability

  13. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    SciTech Connect

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  14. Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne

    2015-01-01

    As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.

  15. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  16. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  17. Microbiology of Waste Treatment.

    ERIC Educational Resources Information Center

    Unz, Richard F.

    1978-01-01

    Presents a literature review of the microbiology of waste treatment, covering publications of 1976-77. This review includes topics such as: (1) sanitary microbiology; (2) wastewater disinfectant; (3) viruses in wastewater; and (4) wastewater microbial populations. A list of 142 references is also presented. (HM)

  18. Continuous in-line gasification/vitrification process for thermal waste treatment: Process technology and current status of projects

    SciTech Connect

    Calaminus, B.; Stahlberg, R.

    1998-12-31

    The thermoselect High Temperature Recycling process has been developed in order to make available a thermal waste treatment technology avoiding major problems as known from traditional techniques like landfills or ashes, filter dust and emission producing processes. It combines slow degassing with fixed bed oxygen blown gasification and mineral and metal residue melting in a closed loop system. Municipal, industrial and other kinds of waste are compacted to less than one fifth of their original volume by means of an armored hydraulic press, and then periodically pushed into an indirectly heated degasification channel. As the waste plugs are pushed down the channel in an oxygen-free environment, waste humidity is evaporated and the organic components in the refuse are partially degasified and to a certain extent converted into a carbon-like product as the temperature increases. This flaky product and the enclosed inorganic components such as metals and minerals are continuously fed into a high-temperature reactor (HTR). Pure oxygen is added in controlled quantities and reacts with the material following exothermic oxidation reactions. Due to overall under-stoichiometric conditions, gasification products form a combustible synthesis gas. The heat of reaction leading to temperatures up to about 2,000 C in the core of the lower HTR section acts to also smelt the metal and mineral components of the waste. Chlorinated hydrocarbons such as dioxins and furans are reliably destroyed along with other organic compounds in the gaseous and the liquid phase.

  19. PNNL Supports Hanford Waste Treatment

    SciTech Connect

    2015-06-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  20. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  1. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  2. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  3. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  4. Steel industry wastes. [Wastewater treatment

    SciTech Connect

    Vachon, D.T.; Schmidt, J.W.; Schmidtke, N.W.

    1982-06-01

    A literature review dealing with waste processing of steel industry wastes is presented. The costs for the U.S. steel industry to comply with environmental standards are such that water reuse and recycling may be necessary. The review examines conventional coke plant wastewater treatments such as flotation, phenol extraction, ammonia stripping, and biological nitrification, and alternative treatment processes for blast furnace scrubber blowdown such as alkaline chlorination, ozonation, and reverse osmosis. A review of pickling operations and finishing processes is also included with their appropriate waste methods highlighted.

  5. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  6. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve...

  7. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve...

  8. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve...

  9. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve...

  10. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs of interceptor or collector lines constructed exclusively, or almost exclusively, to serve...

  11. Importance of denitrification to the efficiency of waste-water treatment in forested wetlands. Project completion report

    SciTech Connect

    Twilley, R.R.; Boustany, R.G.

    1990-09-01

    Wastewater, even after secondary treatment, typically contains high concentrations of nutrients that can cause eutrophication of receiving waters and deterioration of water quality. Therefore, there has been much interest in the use of natural wetlands as a simple and energy-efficient means of removing nutrients from wastewater and improving water quality. The utilization of a wetland for tertiary treatment of wastewater is based on the ability of the wetland to act as a nutrient sink. One of the most important processes in wetland ecosystems that influences their capacity as a nitrogen sink is the gaseous exchange of nitrogen with the atmosphere known as denitrification. Since denitrification represents a loss of nitrogen to the atmosphere, the mechanism tends to be most favorable for the removal of nitrogen. The objectives of the research project were to (1) determine the temporal and spatial ambient rates of denitrification and compare these rates to those of sediments amended with increased concentrations of nitrate comparable to concentrations of total nitrogen in the sewage effluent to be discharged; and (2) determine the proportion of total denitrification that can be attributed to direct utilization of nitrate loaded into the wetland, as compared to nitrate produced via nitrification within the wetland. Although nitrate is readily denitrified, short-term incubation rates are relatively low which is attributed to the presently low nitrate concentrations and subsequent reduced denitrifying microbial population in the wetland sediments. Nitrate concentrations varied seasonally associated with increased flooding during spring. Rates of nitrification coupled with denitrification were investigated with nitrogen-15 isotopes. Nitrification is limited in the wetland sedments; therefore, controls the rate of total nitrogen loss from the system.

  12. Assessing mixed waste treatment technologies

    SciTech Connect

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m{sup 3} of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers.

  13. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  14. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  15. Plasma technology for waste treatment

    SciTech Connect

    Cohn, D.R.

    1995-04-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing ({approximately}10,000{degrees}C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300{degrees}C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams.

  16. DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT

    EPA Science Inventory

    In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. The intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative s...

  17. DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT

    EPA Science Inventory

    In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. he intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative suc...

  18. Multimedia strategy considers waste treatment

    SciTech Connect

    Phillips, J.B.

    1995-05-01

    The advent of multimedia pollution prevention programs has raised some interesting and challenging questions on the subject of facility operations. First and foremost is the goal of a multimedia pollution prevention program: how can industrial streams in an operating facility be treated to prevent pollutants from escaping in a particular effluent or waste streams without transferring the same pollutants to another medium? Once this is resolved, the next issue to be addressed is the fate of pollutants removed from effluent streams. EPA is moving toward discouraging destruction as an acceptable means of waste treatment. The strategies are presented for handling pollutants from one media without contaminating another.

  19. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-09-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meetings the sanitary sewer discharge limits and subsequent Land Disposal REstriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered {open_quotes}Best Demonstrated Available Technologies,{close_quotes} or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a mutiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  20. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-02-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meeting the sanitary sewer discharge limits and subsequent Land Disposal Restriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered Best Demonstrated Available Technologies, or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a multiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  1. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect

    Jacobsen, P.H.

    1997-09-23

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  2. Biological treatment of hazardous waste

    SciTech Connect

    Lewandowski, G.A.; Filippi, L.J. de

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  3. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  4. Sustainable waste management in Africa through CDM projects.

    PubMed

    Couth, R; Trois, C

    2012-11-01

    Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector. PMID:22498573

  5. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.T.

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  6. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  7. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  8. Radioactive liquid waste treatment facility

    SciTech Connect

    Black, R.L.

    1984-07-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) at Argonne National Laboratory-West (ANL-W) in Idaho provides improved treatment for low-level aqueous waste compared to conventional systems. A unique, patented evaporated system is used in the RLWTF. SHADE (shielded hot air drum evaporator, US Patent No. 4,305,780) is a low-cost disposable unit constructed from standard components and is self-shielded. The results of testing and recent operations indicate that evaporation rates of 2 to 6 gph (8 to 23 L/h) can be achieved with a single unit housed in a standard 30-gal (114-L) drum container. The operating experience has confirmed the design evaporation rate of 60,000 gal (227,000 L) per year, using six SHADE's. 2 references, 2 figures, 2 tables.

  9. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    SciTech Connect

    Yanochko, Ronald M.; Corcoran, Connie

    2013-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

  10. Aqueous Waste Treatment Plant at Aldermaston

    SciTech Connect

    Keene, D.; Fowler, J.; Frier, S.

    2006-07-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  11. Waste treatment integration in space

    NASA Technical Reports Server (NTRS)

    Baresi, L.; Kern, R.

    1991-01-01

    The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.

  12. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  13. Waste treatment integration in space.

    PubMed

    Baresi, L; Kern, R

    1991-10-01

    The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space. PMID:11537702

  14. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  15. DOE mixed waste treatment capacity analysis

    SciTech Connect

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  16. Mixed waste treatment model: Basis and analysis

    SciTech Connect

    Palmer, B.A.

    1995-09-01

    The Department of Energy`s Programmatic Environmental Impact Statement (PEIS) required treatment system capacities for risk and cost calculation. Los Alamos was tasked with providing these capacities to the PEIS team. This involved understanding the Department of Energy (DOE) Complex waste, making the necessary changes to correct for problems, categorizing the waste for treatment, and determining the treatment system requirements. The treatment system requirements depended on the incoming waste, which varied for each PEIS case. The treatment system requirements also depended on the type of treatment that was desired. Because different groups contributing to the PEIS needed specific types of results, we provided the treatment system requirements in a variety of forms. In total, some 40 data files were created for the TRU cases, and for the MLLW case, there were 105 separate data files. Each data file represents one treatment case consisting of the selected waste from various sites, a selected treatment system, and the reporting requirements for such a case. The treatment system requirements in their most basic form are the treatment process rates for unit operations in the desired treatment system, based on a 10-year working life and 20-year accumulation of the waste. These results were reported in cubic meters and for the MLLW case, in kilograms as well. The treatment system model consisted of unit operations that are linked together. Each unit operation`s function depended on the input waste streams, waste matrix, and contaminants. Each unit operation outputs one or more waste streams whose matrix, contaminants, and volume/mass may have changed as a result of the treatment. These output streams are then routed to the appropriate unit operation for additional treatment until the output waste stream meets the treatment requirements for disposal. The total waste for each unit operation was calculated as well as the waste for each matrix treated by the unit.

  17. One project`s waste is another project`s resource

    SciTech Connect

    Short, J.

    1997-02-01

    The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on this plan. Summaries of examples are presented in tables.

  18. TOPICAL REVIEW: Thermal plasma waste treatment

    NASA Astrophysics Data System (ADS)

    Heberlein, Joachim; Murphy, Anthony B.

    2008-03-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications.

  19. Waste management project technical baseline description

    SciTech Connect

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  20. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    SciTech Connect

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G.; Adamson, Duane J.; Herman, Connie C.; Peeler, David K.

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  1. Mixed and Low-Level Treatment Facility Project

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  2. Sustainable waste management in Africa through CDM projects

    SciTech Connect

    Couth, R.; Trois, C.

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  3. Treatment of industrial waste water

    SciTech Connect

    Anderson, D. R.

    1980-02-12

    A method is disclosed for processing industrial waste waters and , in particular, blow down water from thermal electric plants. The water is processed to concentrate the salts contained therein and to obtain a concentrated brine which can then be passed to a thermal evaporator and/or solar evaporation ponds. The water is processed by the addition of magnesium hydroxide and carbon dioxide in amounts sufficient to precipitate the calcium as calcium carbonate, thereby obtaining a water reduced in calcium content and increased in magnesium content from the industrial waste water. The treated water is processed to recover a purified water from a brine, preferably by reverse osmosis. Calcium hydroxide is added to the brine generated by the reverse osmosis process in an amount sufficient to precipitate magnesium hydroxide therefrom which can be recycled to supply the magnesium hydroxide used in pre-treatment of the water prior to the reverse osmosis process. A clarified brine is recovered from the magnesium hydroxide precipitation step and may then be naturally or thermally evaporated to produce a saturated slurry of salt solids. This slurry can then be further reduced to dryness by solar evaporation.

  4. Project W-236A multi-function waste tank facility waste feed projections

    SciTech Connect

    Larrick, A.P.

    1994-12-22

    A review of Hanford Underground Waste Storage Tank Chemistry, coupled with planned remediation actions and retrieval sequences was conducted in order to predict the chemistry of the waste to be stored in the MWTF tanks. All projected waste solutions to be transferred to the MWTF tanks were found to be in compliance with current tank chemistry specifications; therefore, the waste and the tank materials of construction are expected to be compatible.

  5. Radioactive waste treatment technologies and environment

    SciTech Connect

    HORVATH, Jan; KRASNY, Dusan

    2007-07-01

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  6. Life cycle assessment of electronic waste treatment.

    PubMed

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). PMID:25623003

  7. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  8. HANDBOOK ON TREATMENT OF HAZARDOUS WASTE LEACHATE

    EPA Science Inventory

    Various treatment processes were evaluated for their applicability and effectiveness in treating leachate from hazardous waste land disposal facilities. These technologies include activated sludge treatment, air stripping, carbon adsorption, flow equalization, granular media filt...

  9. Safety Evaluation for Hull Waste Treatment Process in JNC

    SciTech Connect

    Kojima, H.; Kurakata, K.

    2002-02-26

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation.

  10. Life cycle assessment of electronic waste treatment

    SciTech Connect

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  11. Evaluation of generation 3 treatment technology for swine waste - A North Carolina's clean water management trust fund project - Technical environmental performance report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project evaluated and demonstrated the viability of a third generation manure treatment technology. The technology was developed as an alternative to the lagoon/spray field system typically used to treat the wastewater generated by swine farms in North Carolina. It separates solids and liquids ...

  12. Experiences with treatment of mixed waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.H.; Nuttall, E.

    1996-04-10

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

  13. Chemical aspects of nuclear waste treatment

    SciTech Connect

    Bond, W. D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized.

  14. Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

  15. Nevada Nuclear Waste Storage Investigations Project interim acceptance specifications for Defense Waste Processing Facility and West Valley Demonstration Project waste forms and canisterized waste

    SciTech Connect

    Oversby, V.M.

    1984-08-01

    The waste acceptance specifications presented in this document represent the first stage of the Nevada Nuclear Waste Storage Investigations Project effort to establish specifications for the acceptance of waste forms for disposal at a nuclear waste repository in Yucca Mountain tuff. The only waste forms that will be dealt with in this document are the reprocessed waste forms resulting from solidification of the Savannah River Plant defense high level waste and the West Valley high level wastes. Specifications for acceptance of spent fuel will be covered in a separate document.

  16. Waste washing pre-treatment of municipal and special waste.

    PubMed

    Cossu, Raffaello; Lai, Tiziana; Pivnenko, Kostyantyn

    2012-03-15

    Long-term pollution potential in landfills is mainly related to the quality of leachate. Waste can be conveniently treated prior to landfilling with an aim to minimizing future emissions. Washing of waste represents a feasible pre-treatment method focused on controlling the leachable fraction of residues and relevant impact. In this study, non-recyclable plastics originating from source segregation, mechanical-biological treated municipal solid waste (MSW), bottom ash from MSW incineration and automotive shredder residues (ASR) were treated and the removal efficiency of washing pre-treatment prior to landfilling was evaluated. Column tests were performed to simulate the behaviour of waste in landfill under aerobic and anaerobic conditions. The findings obtained revealed how waste washing treatment (WWT) allowed the leachability of contaminants from waste to be reduced. Removal rates exceeding 65% were obtained for dissolved organic carbon (DOC), chemical oxygen demand (COD) and Total Kjeldahl Nitrogen (TKN). A percentage decrease of approximately 60% was reached for the leachable fraction of chlorides, sulphates, fluoride and metals, as proved by a reduction in electric conductivity values (70%). PMID:21968117

  17. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  18. Full Focus Needed on Finishing Hanford's Waste Treatment Plant - 12196

    SciTech Connect

    Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika

    2012-07-01

    The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threat to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of

  19. Tank waste remediation system characterization project quality policies. Revision 1

    SciTech Connect

    Trimble, D.J.

    1995-10-02

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System.

  20. Proposed HWIR alters waste treatment, disposal options

    SciTech Connect

    Hill, M.; Robinson, C.

    1996-04-01

    In what it has called its most important change to the hazardous waste rules since 1980, the Environmental Protection Agency has proposed the Hazardous Waste Identification Rule for process wastes that currently are regulated by the hazardous waste provisions in the Resource Conservation and Recovery Act, or RCRA Subtitle C. The rule addresses wastes that EPA has individually listed as hazardous, as well as wastes that are mixed with, derived from or contain listed hazardous wastes. The HWIR sets constituent-specific exit levels that would let low-risk process wastes escape the rigorous regulations of Subtitle C. EPA also proposes changes to RCRA`s land disposal restrictions so that some wastes that currently must be treated according to strict universal treatment standards may not have to be treated at all -- or could be treated in a less expensive manner -- before disposal. The proposed rule is important to virtually every company that is subject to RCRA`s hazardous waste regulations and raises many issues on which companies may want to comment.

  1. PERMEABLE TREATMENT WALL EFFECTIVENESS MONITORING PROJECT, NEVADA STEWART MINE

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 39, Permeable Treatment Wall Effectiveness Monitoring Project, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. De...

  2. Ecotoxicological screen of Potential Release Site 50-006(d) of Operable Unit 1147 of Mortandad Canyon and relationship to the Radioactive Liquid Waste Treatment Facilities project

    SciTech Connect

    Gonzales, G.J.; Newell, P.G.

    1996-04-01

    Potential ecological risk associated with soil contaminants in Potential Release Site (PRS) 50-006(d) of Mortandad Canyon at the Los Alamos National Laboratory was assessed by performing an ecotoxicological risk screen. The PRS surrounds Outfall 051, which discharges treated effluent from the Radioactive Liquid Waste Treatment Facility. Discharge at the outfall is permitted under the Clean Water Act National Pollution Discharge Elimination System. Radionuclide discharge is regulated by US Department of Energy (DOE) Order 5400.5. Ecotoxicological Screening Action Levels (ESALSs) were computed for nonradionuclide constituents in the soil, and human risk SALs for radionuclides were used as ESALs. Within the PRS and beginning at Outfall 051, soil was sampled at three points along each of nine linear transects at 100-ft intervals. Soil samples from 3 depths for each sampling point were analyzed for the concentration of a total of 121 constituents. Only the results of the surface sampling are reported in this report.

  3. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  4. Project report for the commercial disposal of mixed low-level waste debris

    SciTech Connect

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  5. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  6. Low level mixed waste thermal treatment technical basis report

    SciTech Connect

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  7. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  8. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  9. Sorting of household waste and thermal treatment of waste

    SciTech Connect

    Ferranti, M.P.; Ferrero, G.L.

    1985-01-01

    The priorities in waste policy are implicit in the title of this book. The first goal is sorting and recycling of materials whenever possible. The second priority is for thermal treatment of any materials unsuitable for recovery. The different sessions dealt with the research carried out under cost-shared contracts in the various programme areas.

  10. Lube solvents no threat to waste treatment

    SciTech Connect

    Rowe, E.H.; Tullos, L.F.

    1980-10-01

    Biological treatment of reasonable loads of lubricating oil extraction solvents should pose no problems for a diversified refinery treatment system. Activated sludge, aerated lagoons, or oxidation ponds are the most frequently employed biological processes for treating such wastes. Rates of solvent degradation are reported for phenol and furfural.

  11. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    SciTech Connect

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  12. Microbiological treatment of radioactive wastes

    SciTech Connect

    Francis, A.J.

    1992-12-31

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

  13. Treatment of oil field wastes

    SciTech Connect

    Terry, E.G.; Seedall, L.K.

    1988-06-21

    An apparatus for recovery of barite and clays from spend drilling fluids is described comprising: (a) a rotary kiln having a first end higher than a second end whereby drilling fluids therein will flow from the first end to the second end, the kiln having an inlet at the first end for receiving drilling fluids and combustion air; (b) a burner connected to the first end of the kiln for supplying fire to the kiln for aiding in burning the combustible components of the drilling fluids in the kiln; (c) a fuel and pressurized air inlet connected to the burner; (d) an outlet at the second end of the kiln for removing the light weight waste; (e) means connected to the outlet for removing high weight dried waste from the kiln by gravity; (f) cyclone separator means located downstream of the kiln outlet for separation of particulates such as barite and clays; (g) secondary combustion means located downstream from the cyclone separator means for oxidation of residual pyrolized gases from oxidized carbonaceous waste from the kiln; (h) heat exchanger means for cooling the exhaust gases to substantially a 100% water saturation point with incoming combustion air to preheat the combustion air; and (i) means for removing residual oxides of sulfur from the exhaust gases prior to vending to the atmosphere.

  14. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  15. Economic and environmental optimization of waste treatment

    SciTech Connect

    Münster, M.; Ravn, H.; Hedegaard, K.; Juul, N.; Ljunggren Söderman, M.

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectives given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.

  16. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    SciTech Connect

    Sebastian Puente

    1998-07-25

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technology a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.

  17. Grout treatment facility dangerous waste permit application

    SciTech Connect

    Not Available

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments.

  18. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    SciTech Connect

    Lussiez, G.W.; Zygmunt, S.J.

    1993-05-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft{sup 2} hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility.

  19. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  20. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  1. Medical waste treatment and decontamination system

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  2. Zinc Bromide Waste Solution Treatment Options

    SciTech Connect

    Langston, C.A.

    2001-01-16

    The objective of this effort was to identify treatment options for 20,000 gallons of low-level radioactively contaminated zinc bromide solution currently stored in C-Area. These options will be relevant when the solutions are declared waste.

  3. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  4. Economic and environmental optimization of waste treatment.

    PubMed

    Münster, M; Ravn, H; Hedegaard, K; Juul, N; Ljunggren Söderman, M

    2015-04-01

    This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectives given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system--illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. PMID:25595392

  5. Transuranic waste projections at SRS for long range planning

    SciTech Connect

    Hootman, H.E.; Cook, J.R.

    1994-05-01

    This report predicts 30 year receipts of solid transuranic (TRU) wastes from eventual plutonium facility deactivation and cleanup, and combines them with the existing TRU waste holdings to provide a technical and quantitative basis for interim and long range TRU waste management planning. The current TRU waste holdings have been characterized based on data from the Computerized Radioactive Waste Burial Records Analysis (COBRA) system. Six TRU waste disposition categories have been identified for existing TRU waste as shown in Table 1. An additional category has been quantified that includes projected waste volumes from the Decontamination and Decommissioning (D&D) of TRU waste generating facilities. These projections are based on COBRA data from D&D of the original plutonium finishing facilities in F and H Areas that were replaced in the 1970`s and 80`s.

  6. Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  8. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  9. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    SciTech Connect

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  10. Physical/chemical treatment of mixed waste soils

    SciTech Connect

    Morris, M.I. ); Alperin, E.S.; Fox, R.D. )

    1991-01-01

    This report discusses the results and findings of the demonstration testing of a physical/chemical treatment technology for mixed wastes. The principal objective of the tests was to demonstrate the capability of the low temperature thermal separation (LTTS) technology for rendering PCB-contaminated mixed waste soils as nonhazardous and acceptable for low level radioactive waste disposal. The demonstration testing of this technology was a jointly-conducted project by the US Department of Energy (DOE), the Martin Marietta Energy Systems (Energy Systems) Waste Management Technology Center at the Oak Ridge National Laboratory, and IT Corporation. This pilot-scale demonstration program testing of IT's thermal separator technology in Oak Ridge was conducted as part of the DOE Model Program. This program has private industry, regulators, and universities helping to solve DOE waste management problems. Information gained from the DOE Model is shared with the participating organizations, other federal agencies, and regulatory agencies. The following represent the most significant findings from these demonstration tests: Thermal separation effectively separated PCB contamination from a mixed waste to enable the treated soil to be managed as low level radioactive waste. At the same operating conditions, mercury contamination of 0.8 ppM was reduced to less than 0.1 ppM. The majority of uranium and technetium in the waste feeds oil remained in the treated soil. Radionuclide concentration in cyclone solids is due to carry-over of entrained particles in the exit gas and not due to volatilization/condensation. Thermal separation also effectively treated all identified semi-volatile contaminants in the waste soil to below detection limits with the exception of di-n-butylphthalate in one of the two runs. 4 refs., 1 fig., 6 tabs.

  11. Raw liquid waste treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor)

    1980-01-01

    A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.

  12. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  13. Nuclear Waste Treatment Program: Annual report for FY 1986

    SciTech Connect

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  14. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    SciTech Connect

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  15. TREATMENT OF REACTIVE WASTES AT HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This report is intended to provide an information base for personnel accepting hazardous waste at existing disposal sites, or performing remedial action at uncontrolled waste sites, to make the appropriate decisions regarding the disposition of reactive wastes. It emphasizes simp...

  16. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    SciTech Connect

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.

  17. Project Plan for the evaluation of REDC waste for TRU-waste radionuclides

    SciTech Connect

    Nguyen, L.; Yong, L.; Chapman, J.

    1996-09-01

    This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy`s definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary.

  18. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    SciTech Connect

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

  19. National Institutes of Health: Mixed waste minimization and treatment

    SciTech Connect

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  20. Combustible radioactive waste treatment by incineration and chemical digestion

    SciTech Connect

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  1. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA). PMID:10863011

  2. Waste treatment by selective mineral ion exchanger

    SciTech Connect

    Polito, Aurelie

    2007-07-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  3. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  4. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    SciTech Connect

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m/sup 3//MTU for no treatment to as low as 0.02 m/sup 3//MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs.

  5. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    SciTech Connect

    HARMSEN, R.W.

    1999-10-28

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement.

  6. Basalt Waste Isolation Project Reclamation Support Project:. 1991--1992 Report

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory`s role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site`s altitude and north-facing orientation.

  7. Waste management for Shippingport Station Decommissioning Project: Extended summary

    SciTech Connect

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP.

  8. Flowsheets and source terms for radioactive waste projections

    SciTech Connect

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  9. Tank Waste Treatment Science Task quarterly report for October--December 1994

    SciTech Connect

    LaFemina, J.P.; Anderson, G.S.; Blanchard, D.L.

    1995-01-01

    The Pretreatment Technology Development Project is one of seven Tank Waste Remediation System (TWRS) projects being conducted at Pacific Northwest Laboratory (PNL). A key objective of this project, which includes the Tank Waste Treatment Science Task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, in particular, the 1998 sludge pretreatment decision regarding the level of pretreatment to be incorporated into the tank waste process flowsheets being developed by Westinghouse Hanford Company. This report details work performed by the Tank Waste Treatment Science Task during the first quarter of FY 1995 (October--December 1994) in support of the project objective. Specific activities discussed in the main text are: analytical methods development; sludge dissolution modeling; sludge characterization studies; sludge component speciation; pretreatment chemistry evaluation; and colloidal studies for solid-liquid separations.

  10. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    SciTech Connect

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  11. Tekton Corporation's Wood Waste Briquetting Project. Final report

    SciTech Connect

    Not Available

    1980-07-31

    The purpose of the Wood Waste Briquetting Project was to evaluate and at the same time, develop markets for wood waste briquetted heating fuel and waste wood briquetting equipment. To this end the DOE Northeast Regional Appropriate Technology Small Grant Program awarded Tekton Corporation $31,085 to set up prototype fuel factory to produce, distribute, and test-market densified wood waste fuel which Tekton named ''Tekfuel.'' Tekton set up the plant and fulfilled the project goals during the winter of 1979 to 1980. This final report discusses the project under the following topics: (1) introduction; (2) general overview of briquetting; (3) description of Tekton's Fuel Plant; (4) report on project performance; (5) results of promotional efforts; (6) cost analysis of project; (7) statistical analysis of consumer questionnaires; and (8) prognosis for the future of briquetting. 11 refs.

  12. Reference waste forms and packing material for the Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Oversby, V.M.

    1984-03-30

    The Lawrence Livermore National Laboratory (LLNL), Livermore, Calif., has been given the task of designing and verifying the performance of waste packages for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. NNWSI is studying the suitability of the tuffaceous rocks at Yucca Mountain, Nevada Test Site, for the potential construction of a high-level nuclear waste repository. This report gives a summary description of the three waste forms for which LLNL is designing waste packages: spent fuel, either as intact assemblies or as consolidated fuel pins, reprocessed commercial high-level waste in the form of borosilicate glass, and reprocessed defense high-level waste from the Defense Waste Processing Facility in Aiken, S.C. Reference packing material for use with the alternative waste package design for spent fuel is also described. 14 references, 8 figures, 20 tables.

  13. Anoka county, Minnesota, Waste-to-energy project

    SciTech Connect

    Kaas, G.D.; Taylor, D.A.; Dutton, R.W. )

    1990-01-01

    In 1984 the Minnesota State Legislature required that the metro counties seek alternatives to landfilling municipal solid waste (MSW). Northern States Power Company (NSP) elected to enter the resource recovery business and has, as a result, developed a successful resource recovery program. This paper explores the development of those facilities, and how NSP's experience in other waste-to-energy projects and the joint partnership with United Power Association (UPA) contributed to the Anoka County Resource Recovery Project. The project is an example of how older generating units located near municipalities can be utilized in a solid waste management plan.

  14. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    SciTech Connect

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  15. HANDBOOK: VITRIFICATION TECHNOLOGIES FOR TREATMENT OF HAZARDOUS AND RADIOACTIVE WASTE

    EPA Science Inventory

    The applications and limitations of vitrification technologies for treating hazardous and radioactive waste are presented. everal subgroups of vitrifications technologies exist. iscussions of glass structure, applicable waste types, off gas treatment, testing and evaluation proce...

  16. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  18. Hanford Waste Vitrification Plant Project Plan. Revision 1

    SciTech Connect

    Brown, R.W.

    1993-06-01

    A major mission of the US DOE is the permanent disposal of Hanford defense wastes by safe, environmentally acceptable, and cost effective methods which meet applicable regulations. The Hanford Waste Vitrification Plant (HWVP) Project was initiated to immobilize the Hanford high-level waste (HLW) and provide interim storage. The HWVP will vitrify the pre-treated HLW into borosilicate glass, cast the glass into stainless steel canisters, and store the canisters on site until they are shipped to a federal geologic repository. The HWVP project objective is to design, construct, and operate a facility for immobilizing defense high-level waste for storage. Technical objectives include using the Defense Waste Processing Facility designed plants systems or elements, where practical, and the exchange and review of information on plants in foreign countries. More definitive objectives for quality, reliability, environmental, and safety are provided in the HWVP Project Management Plan.

  19. Bulky waste quantities and treatment methods in Denmark.

    PubMed

    Larsen, Anna W; Petersen, Claus; Christensen, Thomas H

    2012-02-01

    Bulky waste is a significant and increasing waste stream in Denmark. However, only little research has been done on its composition and treatment. In the present study, data about collection methods, waste quantities and treatment methods for bulky waste were obtained from two municipalities. In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150-250 kg capita(-1) year(-1), and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions were identified of which ten were recyclable and constituted 50-60% of the total quantity. The others were combustible waste for incineration (30-40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled. The recyclable materials were in many cases exported to other countries which made it difficult to track their destination and further treatment. PMID:21890876

  20. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    SciTech Connect

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process.

  1. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  2. IN-SITU TREATMENT OF HAZARDOUS WASTE CONTAMINATED SOILS

    EPA Science Inventory

    Techniques were investigated for in-situ treatment of hazardous wastes that could be applied to contaminated soils. Included were chemical treatment methods, biological treatment, photochemical transformations and combination methods. Techniques were developed based on fundamenta...

  3. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SIXTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    EPA Science Inventory

    The Sixteenth Annual Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 3-5, 1990. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects f...

  4. Sound waste management plan. Restoration project 95115. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    1996-02-01

    The project was designed to address marine pollution that is generated from landbased sources within the Prince William Sound communities of Cordova, Valdez, Whittier Tatitlek, and Chenega Bay. The project recommends ways to improve the management of three different waste streams generated within the communities and which are a chronic source of marine pollution: used oil, household hazardous waste, and solid waste. The recommendations, some of which have already been implemented, include: creation of a comprehensive used oil management system in each community, construction of Environmental Operation Stations to improve the overall management of solid and oily wastes, and the development of a regional household hazardous waste program.

  5. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  6. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  7. Treatment of Bone Waste Using Thermal Plasma Technology

    NASA Astrophysics Data System (ADS)

    Ki, Ho Beom; Kim, Woo Hyung; Kim, Bong Soo; Koo, Hyung Joon; Li, Mingwei; Chae, Jae Ou

    2007-10-01

    Daily meat consumption produces a lot of bone waste, and dumped bone waste without treatment would result in environmental hazards. Conventional treatment methods of waste bones have some disadvantages. Herein, an investigation of bone waste treated using thermal plasma technology is presented. A high-temperature plasma torch operated at 25.2 kW was used to treat bone waste for seven minutes. The bone waste was finally changed into vitric matter and lost 2/3 of its weight after the treatment. The process was highly efficient, economical, convenient, and fuel-free. This method could be used as an alternative for disposal of bone waste, small infectious animals, hazardous hospital waste, etc.

  8. Waste treatment at the La Hague and Marcoule sites

    SciTech Connect

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  9. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  10. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    SciTech Connect

    Conroy, Kevin W.; Vandergaast, Gerald

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated into the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)

  11. Tank Waste Treatment Science Task quarterly report for January--March 1995

    SciTech Connect

    LaFemina, J.P.; Anderson, G.S.; Blanchard, D.L.

    1995-04-01

    The pretreatment Technology Development Project is one of seven Tank Waste Remediation (TWRS) System projects being conducted at the Pacific Northwest Laboratory. A key objective of this Project, and of the Tank Waste Treatment Science Task within it, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions; in particular, TPA Milestone M50-03, the 1998 sludge pretreatment decision regarding the level of pretreatment to be incorporated into the tank waste process flowsheets. Work performed by this task during the second quarter of FY 1995 (January--March 1995) is detailed in this report. Work for the first quarter reported in Tank Waste Treatment Science Task, Quarterly Report for October--December 1994.

  12. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    SciTech Connect

    IT Corporation, Las Vegas

    2002-04-24

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

  13. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    SciTech Connect

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  14. Immobilized microbe bioreactors for waste water treatment.

    PubMed

    Portier, R J; Miller, G P

    1991-10-01

    The application of adapted microbial populations immobilized on a porous diatomaceous earth carrier to pre-treat and reduce toxic concentration of volatile organics, pesticides, petroleum aliphatics and aromatics has been demonstrated for several industrial sites. In the pre-treatment of industrial effluents and contaminated groundwaters, these bioreactors have been used to optimize and reduce the cost of conventional treatment systems, i.e. steam stripping, carbon adsorption and traditional biotreatment. Additionally, these systems have been employed as seeding devices for larger biotreatment systems. The cost effective utilization of an immobilized microbe reactor system for water supply regeneration in a microgravity environment is presented. The feasibility of using immobilized biomass reactors as an effluent treatment technology for the biotransformation and biodegradation of phenols, chlorinated halocarbons, residual oils and lubricants was evaluated. Primary biotransformation tests of two benchmark toxicants, phenol and ethylene dichloride at concentrations expected in life support effluents were conducted. Biocatalyst supports were evaluated for colonization potential, surface and structural integrity, and performance in continuous flow bioreactors. The implementation of such approaches in space will be outlined and specific areas for interfacing with other non-biological treatment approaches will be considered for advanced life support, tertiary waste water biotreatment. PMID:11537697

  15. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  16. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  17. Accelerator Production of Tritium project process waste assessment

    SciTech Connect

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

  18. The Los Alamos National Laboratory Transuranic Waste Retireval Project

    SciTech Connect

    Montoya, G.M.; Christensen, D.V.; Stanford, A.R.

    1997-02-01

    This paper presents the status of the Los Alamos National Laboratory (LANL) project for remediation of transuranic (TRU) and TRU mixed waste from Pads 1, 2, and 4. Some of the TRU waste packages retrieved from Pad I are anticipated to be part of LANL`s initial inventory to be shipped to the Waste Isolation Pilot Plant (WIPP) in April 1998. The TRU Waste Inspectable Storage Project (TWISP) was initiated in February 1993 in response to the New Mexico Environment Department`s (NMED`s) Consent Agreement for Compliance Order, ``New Mexico Hazardous Waste Agreement (NMHWA) 93-03.`` The TWISP involves the recovery of approximately 16,865 TRU and TRU-mixed waste containers currently under earthen cover on Pads 1, 2, and 4 at Technical Area 54, Area G, and placement of that waste into inspectable storage. All waste will be moved into inspectable storage by September 30, 2003. Waste recovery and storage operations emphasize protection of worker safety, public health, and the environment.

  19. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  20. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  1. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  2. LAND TREATMENT FIELD STUDIES. VOLUME 6. INORGANIC PICKLING LIQUOR WASTE

    EPA Science Inventory

    This report presents the results of field measurements and observations of a land treatment site for the management of an inorganic pickling liquor waste. The waste is spread on the site as a 20% solids sludge. Sulfate and iron are known to be major waste constituents. The organi...

  3. Waste Treatment in the Urban Society

    PubMed Central

    Jones, Philip H.

    1965-01-01

    Domestic and industrial wastes are treated for two distinct purposes: (1) separation of water from the putrescible organic material, dissolved and particulates; (2) disinfection of the water to prevent the transmission of water-borne pathogens. Currently, in North America, disinfection is accomplished by the addition of a powerful oxidizing chemical such as chlorine or a related compound. Separation of solids from liquid is achieved by flocculation followed by sedimentation. Flocculation may be biologically or chemically induced, the former being more economical where practical. Methods of bioflocculation described include the following processes: (1) activated sludge, (2) contact stabilization, (3) tapered aeration, (4) step aeration, (5) total oxidation, and (6) trickling filter. Non-mechanical processes of sewage treatment are economically and technically sound in many rural and semi-rural applications. The oxidation pond ((lagoon) is not mechanical, but this consideration must not lead rural municipalities to a program of neglect. All plants treating human wastes should provide a disinfection process at the effluent. PMID:14308906

  4. Production of metal waste forms from spent fuel treatment

    SciTech Connect

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  5. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    PubMed

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste. PMID:16784171

  6. Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at INL for ICP

    SciTech Connect

    J. Bradley Mason; Kevin Ryan; Scott Roesener; Michael Cowen; Duane Schmoker; Pat Bacala; Bill Landman

    2006-03-01

    The patented THOR® steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR® steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR® technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR® can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR® can also produce a final endproduct that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR® process chemistry and process equipment being designed for the IWTU.

  7. Environmental projects. Volume 16: Waste minimization assessment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the MoJave Desert, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), the world's largest and most sensitive scientific telecommunications and radio navigation network. The Goldstone Complex is operated for NASA by the Jet Propulsion Laboratory. At present, activities at the GDSCC support the operation of nine parabolic dish antennas situated at five separate locations known as 'sites.' Each of the five sites at the GDSCC has one or more antennas, called 'Deep Space Stations' (DSS's). In the course of operation of these DSS's, various hazardous and non-hazardous wastes are generated. In 1992, JPL retained Kleinfelder, Inc., San Diego, California, to quantify the various streams of hazardous and non-hazardous wastes generated at the GDSCC. In June 1992, Kleinfelder, Inc., submitted a report to JPL entitled 'Waste Minimization Assessment.' This present volume is a JPL-expanded version of the Kleinfelder, Inc. report. The 'Waste Minimization Assessment' report did not find any deficiencies in the various waste-management programs now practiced at the GDSCC, and it found that these programs are being carried out in accordance with environmental rules and regulations.

  8. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site. Revision 1

    SciTech Connect

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-12-31

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally ``rescoped and downsized.`` The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000.

  9. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site

    SciTech Connect

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-01-01

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally rescoped and downsized.'' The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000.

  10. MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT

    EPA Science Inventory

    This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

  11. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  12. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

  13. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  14. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    SciTech Connect

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste and PCB low-level RCRA

  15. Evaluating the technical aspects of mixed waste treatment technologies

    SciTech Connect

    Bagaasen, L.M.; Scott, P.A.

    1992-10-01

    This report discusses treatment of mixed wastes which is thought to be more complicated than treatment of either hazardous or radioactive wastes. In fact, the treatment itself is no more complicated: however, the regulations that define acceptability of the final waste disposal system are significantly more entangled, and sometimes in apparent conflict. This session explores the factors that influence the choice of waste treatment technologies, and expands on some of the limitations to their application. The objective of the presentation is to describe the technical factors that influence potential treatment processes and the ramifications associated with particular selections (for example, the generation of secondary waste streams). These collectively provide a framework for making informed treatment process selections.

  16. Determinants of sustainability in solid waste management--the Gianyar Waste Recovery Project in Indonesia.

    PubMed

    Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David

    2012-11-01

    According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction. PMID:22330265

  17. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment standards were vacated. 268.37 Section 268.37 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land...

  18. BIOLOGICAL TREATMENT OF WASTES FROM THE CORN WET MILLING INDUSTRY

    EPA Science Inventory

    Pilot plant aerated lagoon and laboratory completely mixed activated sludge treatment studies of corn wet milling wastes showed that either process could produce a satisfactory effluent. A full scale completely mixed activated sludge treatment plant was designed from laboratory r...

  19. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years. PMID:26241929

  20. 40 CFR 266.235 - What waste treatment does the storage and treatment conditional exemption allow?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What waste treatment does the...

  1. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    SciTech Connect

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  2. Successful Waste Treatment Methods at Sandia National Laboratories

    SciTech Connect

    Rast, D.M.; Thompson, J.J.; Cooper, T.W.; Stockham, D.J

    2007-07-01

    During the remediation of the waste landfills at Sandia National Laboratory in Albuquerque, New Mexico nine drums of mock high explosives were generated. This mixed waste stream was proposed to several offsite vendors for treatment and prices ranged from $2.50 to $10 per gram a total cost estimated to be in excess of $2 million dollars. This cost represents more than 30 percent of the annual budget for the Sandia Waste Management Operations. Concentrated solutions of common oxidizers, such as nitrates, nitrites, and peroxides, will also act as oxidizers and will give positive results in the Hazard Categorization oxidizer test. These solutions carry an EPA Hazardous Waste Number D001, Ignitable Waste, and Oxidizer as defined in 49 CFR 173.151. Sandia decided that given budget and time constraints to meet a Federal Facilities Compliance Act milestone, a process for onsite treatment should be evaluated. Clean samples of mock high explosive materials were obtained from Pantex excess inventory and treatability studies initiated to develop a treatment formula and process. The following process was developed and implemented in the summer of 2006: - Size reduction to allow for dissolution of the barium nitrate in water; - Dissolution of the Mock HE in water; - Deactivation of the oxidizer; - Stabilization of the barium and the cadmium contamination present as an underlying hazardous constituent. This project was completed and the treatment milestone achieved for less than $300,000. The Disassembly Sanitization Operation (DSO) is a process that was implemented to support weapon disassembly and disposition using recycling and waste minimization while achieving the demilitarization mission. The Department of Energy is faced with disassembling and disposition of a huge inventory of retired weapons, components, training equipment, spare parts, and weapon maintenance equipment. Environmental regulations have caused a dramatic increase for information needed to support the

  3. ALTERNATIVE TREATMENT METHODS FOR HAZARDOUS WASTES

    EPA Science Inventory

    The five-year schedule for the minimization and restrictions on the disposal of hazardous wastes onto the land is described. Two major items are causing a shift in the way hazardous wastes are managed in the United States. Because of liability for hazardous wastes, companies are ...

  4. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  5. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  6. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic

  7. Challenges when performing economic optimization of waste treatment: A review

    SciTech Connect

    Juul, N.; Münster, M.; Ravn, H.; Söderman, M. Ljunggren

    2013-09-15

    Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives.

  8. A model for quantifying construction waste in projects according to the European waste list.

    PubMed

    Llatas, C

    2011-06-01

    The new EU challenge is to recover 70% by weight of C&D waste in 2020. Literature reveals that one major barrier is the lack of data. Therefore, this paper presents a model which allows technicians to estimate C&D waste during the design stage in order to promote prevention and recovery. The types and quantities of CW are estimated and managed according to EU guidelines, by building elements and specifically for each project. The model would allow detection of the source of the waste and to adopt other alternative procedures which delete hazardous waste and reduce CW. Likewise, it develops a systematic structure of the construction process, a waste classification system and some analytical expressions which are based on factors. These factors depend on technology and represent a standard on site. It would allow to develop a database of waste anywhere. A Spanish case study is covered. Factors were obtained by studying over 20 dwellings. The source and types of packaging waste, remains, soil and hazardous waste were estimated in detail and were compared with other studies. Results reveal that the model can be implemented in projects and the chances of reducing and recovery C&D waste could be increased, well above the EU challenge. PMID:21353519

  9. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  10. 300 Area waste acid treatment system closure plan

    SciTech Connect

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  11. Industrial waste treatment process engineering. Volume 2: Biological processes

    SciTech Connect

    Celenza, G.J.

    1999-11-01

    Industrial Waste Treatment Process Engineering is a step-by-step implementation manual in three volumes, detailing the selection and design of industrial liquid and solid waste treatment systems. It consolidates all the process engineering principles required to evaluate a wide range of industrial facilities, starting with pollution prevention and source control and ending with end-of-pipe treatment technologies. This three-volume set is a practical guide for environmental engineers with process implementation responsibilities; a one-stop resource for process engineering requirements--from plant planning to implementing specific treatment technologies for unit operations; a comprehensive reference for industrial waste treatment technologies; and includes calculations and worked problems based on industry cases. The contents of Volume 2 include: aeration; aerobic biological oxidation; activated sludge system; biological oxidation: lagoons; biological oxidation: fixed film processes; aerobic digesters; anaerobic waste treatment, anaerobic sludge treatment; and sedimentation.

  12. Solid waste integrated cost analysis model: 1991 project year report

    SciTech Connect

    Not Available

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  13. Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes

    SciTech Connect

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-05-01

    Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

  14. 40 CFR 266.235 - What waste treatment does the storage and treatment conditional exemption allow?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What waste treatment does the storage and treatment conditional exemption allow? 266.235 Section 266.235 Protection of Environment...-Level Mixed Waste Storage, Treatment, Transportation and Disposal. Treatment § 266.235 What...

  15. Tank waste treatment science task quarterly report, April 1995--June 1995

    SciTech Connect

    LaFemina, J.P.

    1995-07-01

    This report describes the work performed by the Pacific Northwest Laboratory (PNL) during the third quarter of FY 1995 under the Tank Waste Treatment Science Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. Work was performed in the following areas: (1) analytical methods development, (2) sludge dissolution modeling, (3) sludge characterization studies, (4) sludge component speciation, (5) pretreatment chemistry evaluation, and (6) colloidal studies for solid-liquid separations.

  16. Implementing separate waste collection and mechanical biological waste treatment in South Africa: a comparison with Austria and England.

    PubMed

    Trois, Cristina; Simelane, Oscar T

    2010-01-01

    The degradation of organic compounds found in municipal solid waste (MSW) under the anaerobic landfill conditions produces gas and liquid emissions that can protract well into the landfill after-care period. The European Landfill Directives regulate the amount and nature of the organic compounds disposed into landfills. In South Africa and other developing countries, MSW is still landfilled without any kind of pre-treatment. This paper presents a pilot project of mechanical biological waste treatment (MBWT) in South Africa implemented at municipal level in the city of Durban using passively aerated open windrows. Based on case studies from Austria, England and South Africa, a waste minimisation model which can facilitate full-scale implementation of MBWT in developing countries is presented. MSW was treated in open windrows for 8 weeks. Composting temperature reached a maximum of 65 degrees C in less than 10 days. The results of eluate tests on waste samples from the windrows at the end of composting show a reduction of BOD(5) and BOD(5)/COD ratios equal to 35.7% and 16.7%, respectively. The percent waste composition of the treated MSW was 28.3% putrescibles, 17.4% garden refuse, 13.3% plastic, 12.4% fabrics, 12% paper and other elements. The waste composition shows that more than 40% of un-treated organic material and also more than 40% non-biodegradable and recyclable materials are still landfilled without any form of biological treatment or resource recovery. A simple wet and dry waste collection model can promote recycling, treatment of biological waste before landfilling, resource recovery, labour intensive jobs and hence sustainable landfilling in the South African scenario as well as in similar developing countries. PMID:20116993

  17. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    SciTech Connect

    Zurbruegg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Kueper, David

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  18. Interface control document for tank waste remediation system privatization phase 1 infrastructure support Project W-519

    SciTech Connect

    Parazin, R.J.

    1998-04-23

    This document describes the functional and physical interfaces between the Tank Waste Remediation System (TWRS) Privatization Phase 1 Infrastructure Project W-519 and the various other projects (i.e., Projects W-314, W-464, W-465, and W-520) supporting Phase 1 that will require the allocation of land in and about the Privatization Phase 1 Site and/or interface with the utilities extended by Project W-519. Project W-519 will identify land use allocations and upgrade/extend several utilities in the 200-East Area into the Privatization Phase 1 Site (formerly the Grout Disposal Compound) in preparation for the Privatization Contractors (PC) to construct treatment facilities. The project will upgrade/extend: Roads, Electrical Power, Raw Water (for process and fire suppression), Potable Water, and Liquid Effluent collection. The replacement of an existing Sanitary Sewage treatment system that may be displaced by Phase 1 site preparation activities may also be included.

  19. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    SciTech Connect

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200{degrees}C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters.

  20. EPA/DOE joint efforts on mixed waste treatment

    SciTech Connect

    Lee, C.C.; Huffman, G.L.; Nalesnik, R.P.

    1995-12-31

    Under the requirements of the Federal Facility Compliance Act (FFCA), the Department of Energy (DOE) is directed to develop treatment plans for their stockpile of wastes generated at their various sites. As a result, DOE is facing the monumental problem associated with the treatment and ultimate disposal of their mixed (radioactive and hazardous) waste. Meanwhile, the Environmental Protection Agency (EPA) issued a final {open_quotes}Hazardous Waste Combustion Strategy{close_quotes} in November 1994. Under the Combustion Strategy, EPA permit writers have been given the authority to use the Omnibus Provision of the Resource Conservation and Recovery Act (RCRA) to impose more stringent emission limits for waste combustors prior to the development of new regulations. EPA and DOE established a multi-year Interagency Agreement (IAG) in 1991. The main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these technologies particularly under the new requirements of the above-mentioned EPA Combustion Strategy. The objective of this Paper is to summarize the results of the EPA/DOE joint efforts on mixed waste treatment since the establishment of the original Interagency Agreement. Specifically, this Paper will discuss six activities that have been underway; namely: (1) National Technical Workgroup (NTW) on Mixed Waste Treatment, (2) State-of-the-Art Assessment of APC (Air Pollution Control) and Monitoring Technologies for the Rocky Flats Fluidized Bed Unit, (3) Initial Study of Permit {open_quotes}Roadmap{close_quotes} Development for Mixed Waste Treatment, (4) Risk Assessment Approach for a Mixed Waste Thermal Treatment Facility, (5) Development and Application of Technology Selection Criteria for Mixed Waste Thermal Treatment, and (6) Performance Testing of Mixed Waste Incineration: In-Situ Chlorine Capture in a Fluidized Bed Unit.

  1. Chemical fixation increases options for hazardous waste treatment

    SciTech Connect

    Indelicato, G.J.; Tipton, G.A.

    1996-05-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) govern the manner in which hazardous materials are managed. Disposing RCRA hazardous wastes on or in the land is no longer an accepted remedial option. This land disposal restriction requires that all listed and characteristic hazardous wastes must be treated according to specified standards before they are disposed. These treatment standards define technologies and concentration limits. Hazardous wastes that do not meet the standards are prohibited from being disposed on land, such as in landfills, surface impoundments, land treatment units, injection wells, and mines or caves.

  2. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  3. Waste-to-Energy Cogeneration Project, Centennial Park

    SciTech Connect

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  4. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  5. The Vitrification as Pathway for Long Life Organic Waste Treatment

    SciTech Connect

    Girold, C.; Lemort, F.; Pinet, O.

    2006-07-01

    Worldwide, several vitrification processes have been developed and are industrially exploited for the vitrification of high level waste, attesting the efficiency of this technique for fission product treatment and glassy materials for nuclear waste containment is the conditioning that receives the best acceptance. However, these processes operate a very high technology and strangely, for less radioactive waste such as long live intermediate level waste, this technology did not break through even when their final disposal scenario are very close (except mainly thermal consideration). This reflexion gives example for anyone to appreciate how the vitrification of organics intermediate level waste can be an excellent solution and even a competitive technical-economic answer with limited industrial risks. By 'vitrification of organics', we mean in this paper the incineration/vitrification of mixed organic and mineral waste; this results in gasification of organic matter and vitrification of the oxidized mineral fraction of the waste. Such processes can accommodate any ratio of mineral/organic from pure burnable waste to pure mineral sludges. Many advantages come with the vitrification of organics: Treatment of the organic matter, gas release avoided, existing suitable glass composition families, and volume reduction. The technological characteristics that should show a vitrification process for organic waste according to our experience in this field is detailed and examples of treatment with chlorinated waste or old bituminous drums reprocessing are given. (authors)

  6. Nuclear waste treatment program. Annual report for FY 1985

    SciTech Connect

    Powell, J.A.

    1986-04-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are: (1) to ensure that waste management is not an obstacle to the further deployment of light-water reactors (LWR) and the closure of the nuclear fuel cycle and (2) to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Terminal Waste Disposal and Remedial Action of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL) during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide (1) documented technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and (2) problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required, to treat existing wastes. This annual report describes progress during FY 1985 toward meeting these two objectives. The detailed presentation is organized according to the task structure of the program.

  7. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  8. Nuclear waste treatment program: Annual report for FY 1987

    SciTech Connect

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  9. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Danny Anderson

    2014-07-01

    and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  10. The HRA/Solarium Project: Processing of Widely Varying High- and Medium-Level Waste

    SciTech Connect

    Willems, M.; Luycx, P.; Gilis, R.; Belgoprocess; Renard, Cl.; Reyniers, H.; Cuchet, J. M.

    2003-02-26

    Starting in 2003, Belgoprocess will proceed with the treatment and conditioning of some 200 m{sup 3} of widely varying high- and medium-level waste from earlier research and development work, to meet standard acceptance criteria for later disposal. The gross volume of primary and secondary packages amounts to 2,600 m{sup 3}. The waste has been kept in decay storage for up to 30 years. The project was started in 1997. Operation of the various processing facilities will take 7-8 years. The overall volume of conditioned waste will be of the order of 800 m{sup 3}. All conditioned waste will be stored in appropriate storage facilities onsite. At present (November, 2002), a new processing facility has been constructed, the functional tests of the equipment have been performed and the startup phase has been started. Several cells of the Pamela vitrification facility onsite will be adapted for the treatment of high-level and highly a-contaminated waste; low-level a/a waste will be treated in the existing facility for super compaction and conditioning by embedding into cement (CILVA). The bulk of these waste, of which 95% are solids, the remainder consisting of mainly solidified liquids, have been produced between 1967 and 1988. They originate from various research programs and reactor operation at the Belgian nuclear energy research centre SCK CEN, isotope production, decontamination and dismantling operations.

  11. Food waste treatment in a community center.

    PubMed

    Schwalb, Michael; Rosevear, Carrie; Chin, Rebecca; Barrington, Suzelle

    2011-07-01

    For urban community composting centers, the proper selection and use of bulking agent is a key element in not only the cost but also the quality of the finished compost. Besides wood chips (WC) widely used as BA, readily usable cereal residue pellets (CRP) can provide biodegradable carbon and sufficient free air space (FAS) to produce stabilizing temperatures. The objective of the present project was to test at a community center, the effectiveness of CRP in composting food waste (FW). Two recipes were used (CRP with and without WC) to measure: FAS; temperature regimes, and; losses in mass, water, carbon and nitrogen. Both recipes were composted during three consecutive years using a 2 m(3) commercial in-vessel composter operated in downtown Montreal (Canada). For all recipes, FAS exceeded 30% for moisture content below 60%, despite yearly variations in FW and BA physical properties. When properly managed by the center operator, both FW and CRP compost mixtures with and without WC developed within 3 days thermophilic temperatures exceeding 50 °C. The loss of total mass, water, carbon and nitrogen was quite variable for both recipes, ranging from 36% to 54%, 42% to 55%, 48% to 65%, and 4% to 55%, respectively. The highest loss in dry mass, water and C was obtained with FW and CRP without WC aerated to maintain mesophilic rather than thermophilic conditions. Although variable, lower nitrogen losses were obtained with CRP and WC as BA, compared to CRP alone, as also observed during previous laboratory trials. Therefore and as BA, CRP can be used alone but nitrogen losses will be minimized by adding WC. Compost stabilization depends on operator vigilance in terms of aeration. The measured fresh compost density of 530-600 kg/m(3) indicates that the 2 m(3) in-vessel composter can treat 6.5 tons of FW/year if operated during 7 months. PMID:21376554

  12. FINAL REPORT. POLYOXOMETALATES FOR RADIOACTIVE WASTE TREATMENT

    EPA Science Inventory

    The research was directed primarily towards the use of polyoxometalate complexes for separationof lanthanide, actinide, and technetium species from aqueous waste solutions, such as the HanfordTank Wastes. Selective binding of these species responsible for much of the high level...

  13. BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES

    EPA Science Inventory

    Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...

  14. EU Carbowaste project: Development of a toolbox for graphite waste management

    NASA Astrophysics Data System (ADS)

    Metcalfe, M. P.; Banford, A. W.; Eccles, H.; Norris, S.

    2013-05-01

    A four year collaborative European Project 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (Carbowaste)' was launched in May 2008 under the 7th EURATOM Framework Programme. The aim of the project is to develop best practices in the retrieval, treatment and disposal of irradiated graphite, addressing both existing legacy waste as well as waste from graphite-based nuclear fuel resulting from a new generation of nuclear reactors. This paper covers the activities led by the National Nuclear Laboratory in partnership with the Nuclear Decommissioning Authority in the first year of the project, which includes the lead role in the compilation of a review volume on the extent of irradiated graphite waste globally and the approaches being taken to manage it. An overview is also provided of modelling activities in year two of the project: the application of modelling techniques to the prediction of radiological inventories, to the radiological impact of C-14 and Cl-36 releases on the biosphere and to the decommissioning of Magnox reactor cores.

  15. Developing a dependable approach for evaluating waste treatment data

    SciTech Connect

    Gering, K.L.

    1997-12-31

    Decision makers involved with hazardous waste treatment issues are faced with the challenge of making objective evaluations concerning treatment formulations. This work utilizes an effectiveness factor (denoted as {eta}) as the basis for waste treatment evaluations, which was recently developed for application to mixed waste treatability studies involving solidification and stabilization at the Idaho National Engineering and Environmental Laboratory. The effectiveness factor incorporates an arbitrary treatment criterion {Phi}, which in practice could be the Toxicity Characteristic Leaching Procedure, Unconfined Compressive Strength, Leachability Index, or any other criterion used to judge treatment performance. Three values for {Phi} are utilized when assessing a given treatment formulation: before treatment, after treatment, and a reference value (typically a treatment standard). The expression for {eta} also incorporates the waste loading as the prime experimental parameter, and accounts for the contribution that each hazard has upon the overall treatment performance. Also discussed are general guidelines for numerical boundaries and statistical interpretations of treatment data. Case studies are presented that demonstrate the usefulness of the effectiveness factor and related numerical methods, where the typical hazards encountered are toxic metals within mixed waste.

  16. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    SciTech Connect

    1992-12-31

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities: (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

  17. INEL Waste and Environmental Information Integration Project approach and concepts

    SciTech Connect

    Dean, L.A.; Fairbourn, P.J.; Randall, V.C.; Riedesel, A.M.

    1994-06-01

    The Idaho National Engineering, Laboratory (INEL) Waste and Environmental Information integration Project (IWEIIP) was established in December 1993 to address issues related to INEL waste and environmental information including: Data quality; Data redundancy; Data accessibility; Data integration. This effort includes existing information, new development, and acquisition activities. Existing information may not be a database record; it may be an entire document (electronic, scanned, or hard-copy), a video clip, or a file cabinet of information. The IWEIIP will implement an effective integrated information framework to manage INEL waste and environmental information as an asset. This will improve data quality, resolve data redundancy, and increase data accessibility; therefore, providing more effective utilization of the dollars spent on waste and environmental information.

  18. Anaerobic treatment of aircraft deicing wastes: A technology assessment. Final report

    SciTech Connect

    1998-09-01

    The work contained in the study documents the fact that deicing wastes containing ethylene glycol (EG) and propylene glycol (PG) may be effectively treated using an anaerobic biological process. In the report, the treatment of aircraft deicing wastes under anaerobic methanogenic conditions is examined in detail. The major project tasks were: airport sampling to define the characteristics of waste from deicing operations; testing of EG and PG degradation using laboratory-scale reactors and then by means of serum bottle tests; operation of an anaerobic fluidized bed reactor (AFBR); and analysis of the energy aspects of anaerobic processes with cost comparisons to traditional aerobic processes.

  19. Wastewater treatment plant expansion encounters unexpected hazardous waste

    SciTech Connect

    Carr, J.

    1994-11-01

    On the face of it, it should have been a straightforward project. The contract provided for the expansion and upgrade of an 8-mgd wastewater treatment facility in Pottstown, Pennsylvania. Essentially, it entailed the expansion of the plant`s capacity to 15 mgd and the replacement of process tankage with activated sludge and tertiary facilities designed to achieve superior effluent quality as mandated by the Pennsylvania Department of Environmental Resources (PADER). The entire project was to have been completed in a three-year period at a cost of just over $17 million. However, the discovery of PCB contaminated soils on the site after the work had already begun led to a series of complications that ultimately turned the project into a much more arduous and costly one than could have been foreseen. The complications involved issues ranging from a determination of pollution levels, to waste disposal permitting, to compliance with OSHA standards for health and safety training, to insurance coverage, to the need to modify operating procedures and reschedule the work. As an added contingency measure, the owner of the plant, the Pottstown Borough Authority, decided to retain a hazardous materials contractor to excavate, transport, and dispose of any further contaminated soils that might be encountered later on.

  20. Air pollutants emissions from waste treatment and disposal facilities.

    PubMed

    Hamoda, Mohamed F

    2006-01-01

    This study examined the atmospheric pollution created by some waste treatment and disposal facilities in the State of Kuwait. Air monitoring was conducted in a municipal wastewater treatment plant, an industrial wastewater treatment plant established in a petroleum refinery, and at a landfill site used for disposal of solid wastes. Such plants were selected as models for waste treatment and disposal facilities in the Arabian Gulf region and elsewhere. Air measurements were made over a period of 6 months and included levels of gaseous emissions as well as concentrations of volatile organic compounds (VOCs). Samples of gas and bioaerosols were collected from ambient air surrounding the treatment facilities. The results obtained from this study have indicated the presence of VOCs and other gaseous pollutants such as methane, ammonia, and hydrogen sulphide in air surrounding the waste treatment and disposal facilities. In some cases the levels exceeded the concentration limits specified by the air quality standards. Offensive odors were also detected. The study revealed that adverse environmental impact of air pollutants is a major concern in the industrial more than in the municipal waste treatment facilities but sitting of municipal waste treatment and disposal facilities nearby the urban areas poses a threat to the public health. PMID:16401572

  1. Machine coolant waste reduction by optimizing coolant life. Project summary

    SciTech Connect

    Pallansch, J.

    1995-08-01

    The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

  2. Treatability study of absorbent polymer waste form for mixed waste treatment

    SciTech Connect

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  3. TREATMENT AND PRODUCT RECOVERY: SUPERCRITICAL WATER OXIDATION OF NYLON MONOMER MANUFACTURING WASTE

    EPA Science Inventory

    EPA GRANT NUMBER: R822721C569
    Title: Treatment and Product Recovery: Supercritical Water Oxidation of Nylon Monomer Manufacturing Waste
    Investigator: Earnest F. Gloyna
    Institution: University of Texas at Austin
    EPA Project Officer:<...

  4. FOAMING IN RADIOACTIVE WASTE TREATMENT AND IMMOBILIZATION PROCESSES

    EPA Science Inventory

    The physical mechanisms of the formation of foam in radioactive waste treatment and waste immobilization processes are poorly understood. The objective of this research is to develop a basic understanding of the mechanisms that produce foaming, to identify the key parameters whic...

  5. INNOVATIVE THERMAL PROCESSES FOR HAZARDOUS WASTE TREATMENT AND DESTRUCTION

    EPA Science Inventory

    As the land disposal of untreated hazardous wastes has continued to fall into disfavor in North America, increasing attention is being given to alternative hazardous waste treatment and disposal technologies. This increased attention and the public and private support resulting f...

  6. GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES

    EPA Science Inventory

    Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

  7. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  8. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  9. A process for treatment of mixed waste containing chemical plating wastes

    SciTech Connect

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-02-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr{sup VI} to Cr{sup III} from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions.

  10. 327 Building liquid waste handling options modification project plan

    SciTech Connect

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  11. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    SciTech Connect

    Finucane, K.G.; Campbell, B.E.

    2006-07-01

    AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  12. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. 12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR THE PRIMARY AND 22 BAR MILLS. - U.S. Steel Duquesne Works, Auxiliary Buildings & Shops, Along Monongahela River, Duquesne, Allegheny County, PA

  14. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  15. MICROORGANISMS AND HIGHER PLANTS FOR WASTE WATER TREATMENT

    EPA Science Inventory

    Batch experiments were conducted to compare the waste water treatment efficiencies of plant-free microbial filters with filters supporting the growth of reeds (Phragmites communis), cattail (Typha latifolia), rush (Juncus effusus), and bamboo (Bambusa multiplex). The experimental...

  16. A bio-hybrid anaerobic treatment of papaya processing wastes

    SciTech Connect

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  17. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    SciTech Connect

    Lussiez, G.W.; Zygmunt, S.J.

    1994-02-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated.

  18. TWRS privatization support project waste characterization database development

    SciTech Connect

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford underground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105, 241-AW-101, -103, and -105, 241 AZ-101 and -102; and 241-C-109. Sample data were assembled for sixteen radionuclides and thirty-five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created: the master data set, a subset, and an unreviewed data set. The master data set contains waste composition information for Tanks 241-AN-102 and -107, 241-AP-102 and -105, 241-AW-101; and 241-AZ-101 and -102. The subset contains only the validated analytical sample data from the master data set. The unreviewed data set contains all collected but unreviewed sample data for Tanks 241-AN-104, -105, and -106; 241-AP-104; 241-AW-103 and-105; and 241-C-109. The methodology used to review the waste characterization information was found to be an accurate, useful way to separate the invalid or questionable data from the more reliable data. In the future, this methodology should be considered when validating waste characterization information.

  19. Prospects of effective microorganisms technology in wastes treatment in Egypt

    PubMed Central

    Shalaby, Emad A

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  20. Prospects of effective microorganisms technology in wastes treatment in Egypt.

    PubMed

    Shalaby, Emad A

    2011-06-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  1. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  2. Projecting plant economics for wind, wood, and waste fuels

    SciTech Connect

    Perkins, J.M.; Rundle, W.L.; Strauss, S.D.

    1983-02-01

    This article provides economic analyses for three alternative energy sources which are technically feasible--wind, wood, and solid waste. Total installation cost must be taken into account: base capital cost, engineering, environmental, and installation costs. Contingencies, owner's and working capital, fuel inventories, and escalation allowance for funds during construction are also considered. Cash flow projection then provides an estimate of the percentage of total expenditure during the preconstruction phase. In wood plants, fuel cost will be a critical factor. In solid waste plants, small scale modular incinerators are used. The turbine generator is the other capital cost. The above methodology allows analysis of the economics of plants using various energies.

  3. Argonne-West facility requirements for a radioactive waste treatment demonstration

    SciTech Connect

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-03-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne`s Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne`s TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment.

  4. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-03-01

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to save the U.S. Department of Energy (DOE) tens of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass.

  5. New treatment for sulfide-laden tannery waste

    SciTech Connect

    Berberich, S.

    1984-02-01

    A new treatment for tannery wastes containing toxic sulfide has been developed using anaerobic microorganisms that thrive alongside sulfide compounds. The new system, using an anaerobic reactor, transforms sulfide-laden tannery wastes into inert matter, methane, and material (including sulfide) readily digested in an aerobic polishing step. An industrial scale-up of the anaerobic reactor could digest between 60-70% of tannery pollutants. The new treatment offers leather tanneries and other industries that generate high-sulfide waste a cheaper way to meet federal water pollution guidelines.

  6. Performance estimates for waste treatment pyroprocesses in ATW

    SciTech Connect

    Li, N.

    1997-05-01

    The author has identified several pyrometallurgical processes for the conceptual ATW waste treatment cycle. These processes include reductive extraction, electrowinning and electrorefining, which constitute some versatile treatment cycles for liquid-metal based and molten-salt based waste forms when they are properly integrated. This paper examines the implementation of these processes and the achievable separations for some typical species. The author also presents a simple analysis of the processing rates limited by mass diffusion through a thin hydrodynamic boundary layer. It is shown that these processes can be realized with compact and efficient devices to meet the ATW demand for the periodic feeding and cleaning of the waste.

  7. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  8. The Mixed Waste Management Facility: A DOE technology demonstration project

    SciTech Connect

    Adamson, M.G.; Streit, R.D.

    1994-05-01

    The Mixed Waste Management Facility (MWMF) is a national demonstration test bed that will be used to evaluate, at pilot scale, emerging technologies for the effective treatment of low-level radioactive, organic mixed wastes. The treatment technologies will be selected from candidates of advanced processes that have been sufficiently demonstrated in laboratory and bench-scale tests, and most closely meet suitable criteria for demonstration. The primary and initial goal will be to demonstrate technologies that have the potential to effectively treat a selection of organic-based mixed waste streams, currently in storage within the DOE, that list incineration as the best demonstrated available technology (BDAT). In future operations, the facility may also be used to demonstrate technology that addresses a broader range of government, university, medical, and industry needs. The primary objective of the MWMF is to demonstrate integrated mixed-waste processing technologies. While primary treatment processes are an essential component of integrated treatment trains, they are only a part of a fully integrated demonstration.

  9. Treatment studies of paint stripping waste from plastic media blasting

    SciTech Connect

    Spence, R.D.

    1995-12-31

    Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

  10. Industrial Program of Waste Management - Cigeo Project - 13033

    SciTech Connect

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent; Advocat, Thierry; Sacristan, Pablo; Beguin, Stephane

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  11. Characterization of secondary solid waste anticipated from the treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Kent, T.E.; Taylor, P.A.

    1992-09-01

    This project was undertaken to demonstrate that new liquid waste streams, generated as a consequence of closure activities at Waste Area Grouping (WAG) 6, can be treated adequately by existing wastewater treatment facilities at Oak Ridge National Laboratory (ORNL) without producing hazardous secondary solid wastes. Previous bench-scale treatable studies indicated that ORNL treatment operations will adequately remove the contaminants although additional study was required in order to characterize the secondary waste materials produced as a result of the treatment A 0.5-L/min pilot plant was designed and constructed to accurately simulate the treatment capabilities of ORNL fill-scale (490 L/min) treatment facilities-the Process Waste Treatment Plant (PWTP) and Nonradiological Wastewater Treatment Plant (NRWTP). This new test system was able to produce secondary wastes in the quantities necessary for US Environmental Protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system was operated for a 45-d test period with a minimum of problems and downtime. The pilot plant operating data verified that the WAG 6 trench waters can be treated at the PWTP and NRWTP to meet the discharge limits. The results of TCLP testing indicate that none of the secondary solid wastes will be considered hazardous as defined by the Resource Conservation and Recovery Act.

  12. Characterization of secondary solid waste anticipated from the treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Kent, T.E.; Taylor, P.A.

    1992-09-01

    This project was undertaken to demonstrate that new liquid waste streams, generated as a consequence of closure activities at Waste Area Grouping (WAG) 6, can be treated adequately by existing wastewater treatment facilities at Oak Ridge National Laboratory (ORNL) without producing hazardous secondary solid wastes. Previous bench-scale treatable studies indicated that ORNL treatment operations will adequately remove the contaminants although additional study was required in order to characterize the secondary waste materials produced as a result of the treatment A 0.5-L/min pilot plant was designed and constructed to accurately simulate the treatment capabilities of ORNL fill-scale (490 L/min) treatment facilities-the Process Waste Treatment Plant (PWTP) and Nonradiological Wastewater Treatment Plant (NRWTP). This new test system was able to produce secondary wastes in the quantities necessary for US Environmental Protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system was operated for a 45-d test period with a minimum of problems and downtime. The pilot plant operating data verified that the WAG 6 trench waters can be treated at the PWTP and NRWTP to meet the discharge limits. The results of TCLP testing indicate that none of the secondary solid wastes will be considered hazardous as defined by the Resource Conservation and Recovery Act.

  13. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  14. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  15. [Methods for health impact assessment of policies for municipal solid waste management: the SESPIR Project].

    PubMed

    Parmagnani, Federica; Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Chiusolo, Monica; Cadum, Ennio; Lauriola, Paolo; Forastiere, Francesco

    2014-01-01

    The Project Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants (SESPIR) included five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily) and the National Institute of Health in the period 2010-2013. SESPIR was funded by the Ministry of Health as part of the National centre for diseases prevention and control (CCM) programme of 2010 with the general objective to provide methods and operational tools for the implementation of surveillance systems for waste and health, aimed at assessing the impact of the municipal solid waste (MSW) treatment cycle on the health of the population. The specific objective was to assess health impacts resulting from the presence of disposal facilities related to different regional scenarios of waste management. Suitable tools for analysis of integrated assessment of environmental and health impact were developed and applied, using current demographic, environmental and health data. In this article, the methodology used for the quantitative estimation of the impact on the health of populations living nearby incinerators, landfills and mechanical biological treatment plants is showed, as well as the analysis of three different temporal scenarios: the first related to the existing plants in the period 2008-2009 (baseline), the second based on regional plans, the latter referring to MSW virtuous policy management based on reduction of produced waste and an intense recovery policy. PMID:25387745

  16. An overview of in situ waste treatment technologies

    SciTech Connect

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-08-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  17. An overview of in situ waste treatment technologies

    SciTech Connect

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  18. Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10

    SciTech Connect

    BOUNINI, L.

    1999-06-17

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

  19. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    SciTech Connect

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  20. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  1. Grout treatment facility dangerous waste permit application

    SciTech Connect

    Not Available

    1988-11-23

    The long-term performance of the grout disposal system for Phosphate/Sulfate Waste (PSW) was analyzed. PSW is a low-level liquid generated by activities associated with N Reactor operations. The waste will be mixed with dry solids and permanently disposed of as a cementitious grout in sub-surface concrete vaults at Hanford's 200-East Area. Two categories of scenarios were analyzed that could cause humans to be exposed to radionuclides and chemicals from the grouted waste: contaminated groundwater and direct intrusion. In the groundwater scenario, contaminants are released from the buried grout monoliths, then eventually transported via the groundwater to the Columbia River. As modeled, the contaminants are assumed to leach out of the monoliths at a constant rate over a 10,000-year period. The other category of exposure involves intruders who inadvertently contact the waste directly, either by drilling, excavating, or gardening. Long-term impacts that could result from disposal of PSW grout were expressed in terms of incremental increases of (1) chemical concentrations in the groundwater and surface waters, and (2) radiation doses. None of the calculated impacts exceeded the corresponding regulatory limits set by Washington State, Department of Energy, or the Nuclear Regulatory Commission.

  2. PERMIT ROADMAP DEVELOPMENT FOR MIXED WASTE TREATMENT

    EPA Science Inventory

    EPA and DOE established a multi-year Interagency Agreement (IAG) in1991. he main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these tech...

  3. Treatment of radioactive laboratory waste for mercury removal

    SciTech Connect

    Osteen, A.B.; Bibler, J.P.

    1990-01-01

    Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 {mu}g/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite{trademark} GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal.

  4. Treatment of radioactive laboratory waste for mercury removal. Revision 1

    SciTech Connect

    Osteen, A.B.; Bibler, J.P.

    1990-12-31

    Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 {mu}g/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite{trademark} GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal.

  5. TWRS privatization support project waste characterization database development. Volume 1

    SciTech Connect

    Brevick, C.H.

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford under-ground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105; 241-AW-101, -103, and -105, 241-AZ-101 and-102; and 241-C-109. Sample data were assembled for sixteen radio nuclides and thirty five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created., the master data set, a subset, and an unreviewed data set .

  6. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  7. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    SciTech Connect

    Not Available

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies.

  8. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    SciTech Connect

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

  9. Final Reclamation Report: Basalt Waste Isolation Project exploratory shaft site

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  11. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  12. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  13. Study on the plasma treatment of waste oil containing PCB

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Lukashov, V. P.; Vashchenko, S. P.; Morozov, S. V.

    2009-12-01

    The paper presents the results of treatment of transformer oil containing less than 2 ppm polychlorinated biphenyls (PCB) in a plant of high-temperature plasma melting of ash residues after the municipal waste incineration. The content of undecomposed PCBs, dioxins, and other hazardous waste in all secondary products of treatment (off gases; slag; secondary fly ash; process water used for slag granulation) was analyzed by different methods. Performed analytical investigations showed high ecological degree of PCB decomposition in the plant of plasma-thermal treatment of ashes after incinerators.

  14. Reliability analysis of common hazardous waste treatment processes

    SciTech Connect

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  15. Guide to land treatment of municipal waste water in Illinois

    SciTech Connect

    Skelton, L.W.; Hinesly, T.D.; John, S.F.

    1989-01-01

    Waste water is a recyclable commodity. Organic matter, nitrogen, phosphorus, and micronutrients in waste water are generally harmful when discharged to lakes and streams, but these constituents have a positive economic value when applied under properly controlled conditions to vegetated soils. The guide provides an overview of planning for a land-treatment system. It first discusses the potential for land treatment in Illinois, how to modify lagoons for land treatment, economic considerations, health and environmental concerns, regulatory requirements, and public education. It then provides more technical information on land-treatment processes, site and waste-load evaluation, systems for agricultural production, the potential for supplemental irrigation in Illinois, general site management, and system monitoring.

  16. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  17. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those

  18. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    SciTech Connect

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  19. In Situ Modular Waste Retrieval and Treatment System

    SciTech Connect

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches.

  20. Disposal of water treatment wastes containing arsenic - a review.

    PubMed

    Sullivan, Colin; Tyrer, Mark; Cheeseman, Christopher R; Graham, Nigel J D

    2010-03-15

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilize soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As. PMID:20153878

  1. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  2. Hazards associated with retrieval and storage of legacy waste at the Transuranic Waste Inspectable Storage Project

    SciTech Connect

    Pannell, M.A.; Grogin, P.W.; Langford, R.R.

    1998-03-01

    Approximately 17,000 containers of solid transuranic and hazardous waste have been stored beneath earthen cover for nearly twenty years at Technical Area 4 of the Los Alamos National Laboratory. The mission of the Transuranic Waste Inspectable Storage Project (TWISP) is to retrieve, vent, and place these containers into an inspectable storage configuration in compliance with the Resource Conservation and Recovery Act, prior to final disposition at the Waste Isolation Pilot Plant. Significant hazards currently identified with TWISP activities include: (1) the pressurization of drums; (2) volatilization of organic compounds (VOCs) within the drums; and (3) the generation of elevated hydrogen levels by certain waste streams. Based on the retrieval of 15% of the waste containers, the following preliminary conclusions are presented to better protect personnel and the environment: (1) the likelihood of unvented drums becoming pressurized increases when environmental conditions change; (2) pressurized drums must be vented before they become bulging drums; (3) vented drums present the potential for VOC emissions and personnel exposure; (4) the vapor pressure and boiling points of waste stream constituents may be an indication of the likelihood of VOC emissions from stored hazardous waste containers; (5) large numbers of co-located vented drums may present the potential of increased hydrogen and VOC concentrations within unventilated storage domes; (6) monitoring and sampling vented drum storage domes is necessary to ensure that the levels of risk to drum handlers and inspection personnel are acceptable; (7) identifying, tagging, and segregating special case drums is necessary to prevent personnel overexposures and preclude environmental contamination; (8) applying rust inhibitor prolongs the useful life of waste containers stored under earthen cover; (9) acoustic drum pressure detection may be a viable tool in assessing elevated drum pressures.

  3. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    SciTech Connect

    Wicks, G.G.

    1999-11-18

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC).

  4. Apparatus and a method for biological treatment of waste waters

    SciTech Connect

    Besik, F.

    1983-12-20

    An apparatus and a method for biological treatment of waste waters achieving biological oxidation of organic matter, biological nitrification and denitrification of nitrogenous compounds and biological removal of phosphorus and clarification of the treated waste water in a single reaction tank in a single suspended growth sludge system without the use of traditional compressors, mixers, recirculation pumps, piping and valving and without the use of the traditional clarifier.

  5. Logistics modeling of future solid waste storage, treatment, and disposal

    SciTech Connect

    Holter, G.M.; Stiles, D.L.; Shaver, S.R.; Armacost, L.L.

    1993-11-01

    Logistics modeling is a powerful analytical technique for effective planning of waste storage, treatment, and disposal activities. Logistics modeling facilitates analyses of alternate scenarios for future waste flows, facility schedules, and processing or handling capacities. These analyses provide an increased understanding of the specific needs for waste storage, treatment, and disposal while adequate time remains to plan accordingly. They also help to determine the sensitivity of these needs to various system parameters. This paper discusses a logistics modeling system developed by the Pacific Northwest Laboratory (PNL) to aid in solid waste planning for a large industrial complex managing many different types and classifications of waste. The basic needs for such a system are outlined, and the approach adopted in developing the system is described. A key component of this approach is the development of a conceptual model that provides a flexible framework for modeling the waste management system and addressing the range of logistics and economic issues involved. Developing an adequate description of the waste management system being analyzed is discussed. Examples are then provided of the types of analyses that have been conducted. The potential application of this modeling system to different settings is also examined.

  6. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  7. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  8. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  9. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  10. Waste acid detoxification and reclamation: Phase 1, Project planning and concept development

    SciTech Connect

    Stewart, T.L.; Brouns, T.M.

    1988-02-01

    The objectives of this project are to develop processes for reducing the volume, quantity, and toxicity of metal-bearing waste acids. The primary incentives for implemeting these types of waste minimization processes are regulatory and economic in that they meet requirements in the Resource Conservation and Recovery Act and reduce the cost for treatment, storage, and disposal. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids, such as HF/--/HNO/sub 3/ etch solutions contianing Zr as a major metal impurity and HNO/sub 3/ strip solutions containing Cu as a major metal impurity, are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO/sub 3/ and H/sub 2/SO/sub 4/ which contains U as the major metal impurity. Distillation allows NO/sub 3//sup /minus// to be displaced by SO/sub 4//sup /minus/2/ in metal salts; free HNO/sub 3/ is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in downstream precipitation step. These waste minimization processes were developed to meet Hanford's fuel fabrication process needs. 7 refs., 4 figs., 1 tab.

  11. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  12. Solid waste treatment opportunities in the Palestinian authority areas.

    PubMed

    Khatib, Imad; Al-Khateeb, Nader

    2009-05-01

    Municipal services in the Palestinian Authority (PA) areas, including the West Bank and Gaza Strip (WBGS), are facing serious difficulties that have been intensified following the outbreak of the Palestinian uprising in late September 2000. The solid waste management services, being the most essential services provided by the municipalities and village councils, are mostly affected by the ongoing harsh situation and hence proper solutions that take into account the actual amount of generated municipal solid waste and its composition is a pre-requisite for planning proper treatment. Hence, a study was carried out to identify the actual status of solid waste in eight West Bank districts. A social survey was also conducted to collect information concerning the level of public awareness among communities surveyed to the perception of solid waste recycling and reuse. The results of the survey conducted in 2001-2002 were later reviewed during July-October 2008 to assess if the trend of domestic solid waste generation had changed. Based on the survey and post-assessment, it is found that political and economic conditions have both significantly impacted the trend of generated municipal solid waste and since no improvements in either condition are forthcoming, it is concluded that survey results could be used in a planning study. A possible handling of the generated wastes may entail transferring the recyclable waste to Israeli recycling industries, and in constructing three composting plants in different accessible locations in the West Bank. PMID:19121576

  13. Health physics fundamentals, radiation protection, and radioactive waste treatment. Volume ten

    SciTech Connect

    Not Available

    1986-01-01

    Topics include health physics fundamentals (is radiation dangerous, what is health physics, federal regulations, presence of radiation, sources of radiation, types of radiation), radiation protection (amounts of radiation, radiation measurement, individual radiation exposure measurements, reducing the effects of radiation), and radioactive waste treatment (what are radioactive wastes, gaseous radioactive waste, liquid radioactive waste, solid radioactive waste, methods of rad-waste treatment, PWR and BWR radwaste treatment.

  14. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  15. Project characteristics monitoring report: BWIP (Basalt Waste Isolation Program) repository project

    SciTech Connect

    Friedli, E.A.; Herborn, D.I.; Taylor, C.D.; Tomlinson, K.M.

    1988-03-01

    This monitoring report has been prepared to show compliance with provisions of the Nuclear Waste Policy Act of 1982 (NWPA) and to provide local and state government agencies with information concerning the Basalt Waste Isolation Program (BWIP). This report contains data for the time period May 26, 1986 to February 1988. The data include employment figures, salaries, project purchases, taxes and fees paid, worker survey results, and project closedown personal interview summaries. This information has become particularly important since the decision in December 1987 to stop all BWIP activities except those for site reclamation. The Nuclear Waste Policy Amendments Act of 1987 requires nonreclamation work at the Hanford Site to stop as of March 22, 1988. 7 refs., 6 figs., 28 tabs.

  16. OVERLAND RECYCLING SYSTEM FOR ANIMAL WASTE TREATMENT

    EPA Science Inventory

    Twelve 6 x 6 meter plots were designed to receive overland spray or rainfall only and sloped to direct runoff via plastic lined runoff ditches to one cone shaped plastic lined corner of each plot. These plots were completely randomized over all treatments each treatment having fo...

  17. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  18. Radioactive waste management treatments: A selection for the Italian scenario

    SciTech Connect

    Locatelli, G.; Mancini, M.

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

  19. Engineering evaluation of neutralization and precipitation processes applicable to sludge treatment project

    SciTech Connect

    Klem, M.J.

    1998-08-25

    Engineering evaluations have been performed to determine likely unit operations and methods required to support the removal, storage, treatment and disposal of solids/sludges present in the K Basins at the Hanford Site. This evaluation was initiated to select a neutralization process for dissolver product solution resulting from nitric acid treatment of about 50 m{sup 3} of Hanford Site K Basins sludge. Neutralization is required to meet Tank Waste Remediation Waste System acceptance criteria for storage of the waste in the double shell tanks after neutralization, the supernate and precipitate will be transferred to the high level waste storage tanks in 200E Area. Non transuranic (TRU) solids residue will be transferred to the Environmental Restoration Disposal Facility (ERDF). This report presents an overview of neutralization and precipitation methods previously used and tested. This report also recommends a neutralization process to be used as part of the K Basins Sludge Treatment Project and identifies additional operations requiring further evaluation.

  20. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect

    Ladkany, S.G.

    1995-11-15

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis).

  1. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    SciTech Connect

    McVey, C.B.

    1994-10-13

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms.

  2. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    SciTech Connect

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  3. The use of fly larvae for organic waste treatment.

    PubMed

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and

  4. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    SciTech Connect

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database.

  5. Documentation assessment, Project C-018H, 200-E area effluent treatment facility

    SciTech Connect

    Peres, M.W.; Connor, M.D.; Mertelendy, J.I.

    1994-12-21

    Project C-018H is one of the fourteen subprojects to the Hanford Environmental Compliance (HEC) Project. Project C-018H provides treatment and disposal for the 242-A Evaporator and PUREX plant process condensate waste streams. This project used the Integrated Management Team (IMT) approach proposed by RL. The IMT approach included all affected organizations on the project team to coordinate and execute all required project tasks, while striving to integrate and satisfy all technical, operational, functional, and organizational objectives. The HEC Projects were initiated in 1989. Project C-018H began in early 1990, with completion of construction currently targeted for mid-1995. This assessment was performed to evaluate the effectiveness of the management control on design documents and quality assurance records developed and submitted for processing, use, and retention for the Project. The assessment focused primarily on the overall adequacy and quality of the design documentation currently being submitted to the project document control function.

  6. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  7. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    SciTech Connect

    Brown, D.F.

    1994-10-17

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  8. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  9. Treatment of Mixed Wastes via Fixed Bed Gasification

    SciTech Connect

    1998-10-28

    This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

  10. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  11. Assessment of the state of food waste treatment in the United States and Canada.

    PubMed

    Levis, J W; Barlaz, M A; Themelis, N J; Ulloa, P

    2010-01-01

    Currently in the US, over 97% of food waste is estimated to be buried in landfills. There is nonetheless interest in strategies to divert this waste from landfills as evidenced by a number of programs and policies at the local and state levels, including collection programs for source separated organic wastes (SSO). The objective of this study was to characterize the state-of-the-practice of food waste treatment alternatives in the US and Canada. Site visits were conducted to aerobic composting and two anaerobic digestion facilities, in addition to meetings with officials that are responsible for program implementation and financing. The technology to produce useful products from either aerobic or anaerobic treatment of SSO is in place. However, there are a number of implementation issues that must be addressed, principally project economics and feedstock purity. Project economics varied by region based on landfill disposal fees. Feedstock purity can be obtained by enforcement of contaminant standards and/or manual or mechanical sorting of the feedstock prior to and after treatment. Future SSO diversion will be governed by economics and policy incentives, including landfill organics bans and climate change mitigation policies. PMID:20171867

  12. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment. PMID:21963338

  13. TREATMENT OF ELECTROPLATING WASTES BY REVERSE OSMOSIS

    EPA Science Inventory

    Reverse osmosis treatment of plating bath rinsewaters has been examined. Emphasis has been placed on closed-loop operation with recycle of purified water for rinsing, and return of plating chemical concentrate to the bath. Three commercially available membrane configurations have...

  14. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Freer, J.; Freer, E.; Bond, A.

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  15. Staff exchange with Chemical Waste Management. Final project report

    SciTech Connect

    Harrer, B.J.; Barak, D.W.

    1993-12-01

    Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry, but a proposal for transfer and application of PST to Wheelabrator was made.

  16. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  17. Developments in geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Jin, J.Z.

    1992-09-01

    Disposal of toxic solid waste in an environmentally and economically acceptable way may be in some cases a major impediment to large geothermal development. The major thrust of the R&D effort in this laboratory is to develop low-cost processes for the concentration and removal of toxic materials and metals from geothermal residues. In order to accomplish this, biochemical processes elaborated by certain microorganisms which live in extreme environments have served as models for a biotechnology. It has been shown that 80% or better removal of toxic metals can be achieved at fast rates (e.g., 25 hours or less) at acidic pH and temperatures of about 60{degrees}C. There are several process variables which have to be taken into consideration in the development of such biotechnology. These include reactor size and type, strain of microorganisms, biomass growth, temperature, loading concentrations of residual geothermal sludge, and chemical nature of metal salts present. Recent data generated by the research and development effort associated with the emerging biotechnology will be presented and discussed.

  18. EVALUATION OF PRISTINE LIGNIN FOR HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    A feasibility study was conducted to assess the utilization of lignin, isolated from a steam-exploded hardwood (Tulip poplar) with 95% ethanol and 0.1n NaOH, as a potential adsorbent for hazardous waste treatment. Eight organic compounds and two heavy metals were selected to allo...

  19. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  20. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  1. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. BIOLOGICAL WASTE AIR TREATMENT IN BIOTRICKLING FILTERS. (R825392)

    EPA Science Inventory

    Abstract

    Recent studies in the area of biological waste air treatment in biotrickling filters have addressed fundamental key issues, such as biofilm architecture, microbiology of the process culture and means to control accumulation of biomass. The results from these s...

  3. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  4. 20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  5. EPA/DOE JOINT EFFORTS ON MIXED WASTE TREATMENT

    EPA Science Inventory

    This paper summarizes the results of six major activities that have been underway since the inception of the EPA/DOE joint effort in mixed waste thermal treatment as a consequence of establishing their Interagency Agreements (IAGS) in 1991 and 1993. he six IAG activities are: 1) ...

  6. Fetal loss and work in a waste water treatment plant

    SciTech Connect

    Morgan, R.W.; Kheifets, L.; Obrinsky, D.L.; Whorton, M.D.; Foliart, D.E.

    1984-05-01

    We investigated pregnancy outcomes in 101 wives of workers employed in a waste water treatment plant (WWTP), and verified fetal losses by hospital records. Paternal work histories were compiled and each of the 210 pregnancies was assigned a paternal exposure category. The relative risk of fetal loss was increased when paternal exposure to the WWTP occurred around the time of conception.

  7. Progress in geothermal waste treatment biotechnology

    SciTech Connect

    Premuzic, E.T.; Lin, M.S. ); Kang, Sun Ki . Dept. of Chemical Engineering)

    1991-05-01

    Studies directed at the development of an environmentally acceptable technology for the treatment and disposal of geothermal sludges have shown that a biotechnology based on microbial biochemical processes is technically and economically feasible. Process designs for the emerging biotechnology have to take several variables into consideration. In the present paper some of these variables will be discussed in terms of their effect on the cost and efficiency of potential processes. 7 refs., 4 figs., 4 tabs.

  8. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. PMID:23792663

  9. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

    1999-11-03

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  10. Economic evaluation of radiation processing in urban solid wastes treatment

    NASA Astrophysics Data System (ADS)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  11. The Murmansk low-level liquid radioactive waste treatment facility

    SciTech Connect

    Duffey, R.B.; Penzin, R.A.; Tumparov, A.; Gussgard, K.; Dyer, R.A.; Ruksha, V.V.

    1996-09-01

    Since May 1994, Russian, Norway and the US have cooperated successfully to develop the design of the LLRW treatment facility. Among the other participating organizations are the Association for Advanced Technologies, the Royal norwegian Ministry of Foreign Affairs and the US Environmental Protection Agency (EPA). The joint US/Norwegian/Russian Technical Team for the Design provide technical review and advice. A major objective of the design is to enable Russian to permanently cease disposing of this waste in Arctic waters and to formally adhere to the London Convention permanent ban. Therefore, the modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s North Fleet and will improve the stabilization and interim storage of the processed wastes. The plant design utilizes novel technology for the filtration and treatment of the high saline waste streams, as well as waste streams for maintenance and decontamination activities. The discharge streams will meet national and international discharge limits for radionuclides. Following detailed design, the next phase is construction.

  12. Steel wastes as versatile materials for treatment of biorefractory wastewaters.

    PubMed

    Dos Santos, Sara V; Amorim, Camila C; Andrade, Luiza N; Calixto, Natália C Z; Henriques, Andréia B; Ardisson, José D; Leão, Mônica M D

    2015-01-01

    Recent research on novel cost-effective adsorbent materials suggests potential use of industrial wastes for effluent treatment, with the added benefit of reuse of the wastes. Waste steel materials, including blast oxygen furnace sludge (BOFS), blast furnace sludge (BFS), and blast furnace dust (BFD), were investigated as low-cost adsorbents for removal of an oil emulsion and RR195 dye. The residues were characterized by X-ray diffraction, Brunauer-Emmett-Teller area, volume and distribution of pore diameters, Mössbauer spectroscopy, X-ray fluorescence, granulometry, scanning electron microscopy/energy dispersive spectroscopy, and pHpzc. Adsorption kinetics data were obtained by UV-vis spectrophotometry at the maximum absorption wavelength of the dye solution and crude oil emulsion. The use of waste as an adsorbent was more efficient for treatment of the oil emulsion than the dye solution. BOFS had higher total organic carbon (TOC) removal efficiency than the other waste materials. For the RR195 dye, good color removal was observed for all adsorbents, >90 % within 24 h. TOC removal was poor, <10 % for BFD and BFS and a maximum of 37 % for BOFS. For the oil emulsion, 97 % TOC removal was obtained by adsorption onto BOFS and 87 % onto BFS. PMID:25196961

  13. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    SciTech Connect

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  14. Final waste forms project: Performance criteria for phase I treatability studies

    SciTech Connect

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  15. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    SciTech Connect

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P.; Lee, H.T.

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  16. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  17. Method for the treatment of waste sludge

    SciTech Connect

    Tomyn, W.W.

    1984-10-23

    A method for the treatment of sludge to cause its solidification and render it suitable for use as landfill by admixtures of chemicals therewith, the method including the steps of feeding the sludge into a sludge hopper and feeding chemicals into a chemical hopper. The sludge and chemicals are continuously fed, each at a controlled feed rate, into a rotating mixing chamber to control the generation of heat in the mixing chamber generated by the combination of sludge and chemicals whereby the sludge and chemicals therein are mixed and caused to move upwardly and longitudinally of the chamber from the inlet opening to the outlet opening thereof.

  18. Radiological Monitoring of Waste Treatment Plant

    NASA Astrophysics Data System (ADS)

    Amin, Y. M.; Nik, H. W.

    2011-03-01

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Raeq) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 μSv/h (Administrative building) to 0.35 μSv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

  19. Radiological Monitoring of Waste Treatment Plant

    SciTech Connect

    Amin, Y. M.; Nik, H. W.

    2011-03-30

    Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

  20. Chemical treatment of chelated metal finishing wastes.

    PubMed

    McFarland, Michael J; Glarborg, Christen; Ross, Mark A

    2012-12-01

    This study evaluated two chemical approaches for treatment of commingled cadmium-cyanide (Cd-CN) and zinc-nickel (Zn-Ni) wastewaters. The first approach, which involved application of sodium hypochlorite (NaOCl), focused on elimination of chelating substances. The second approach evaluated the use of sodium dimethyldithiocarbamate (DMDTC) to specifically target and precipitate regulated heavy metals. Results demonstrated that by maintaining a pH of 10.0 and an oxidation-reduction potential (ORP) value of +600 mV, NaOCl treatment was effective in eliminating all chelating substances. Cadmium, chromium, nickel, and zinc solution concentrations were reduced from 0.27, 4.44, 0.06, and 0.10 ppm to 0.16, 0.17, 0.03, and 0.06 ppm, respectively. Similarly, a 1% DMDTC solution reduced these same metal concentrations in commingled wastewater to 0.009, 1.142, 0.036, and 0.320 ppm. Increasing the DMDTC concentration to 2% improved the removal of all regulated heavy metals except zinc, the removal of which at high pH values is limited by its amphotericity. PMID:23342939

  1. Liquid low-level waste generation projections for ORNL in 1993

    SciTech Connect

    DePaoli, S.M.

    1994-04-01

    Liquid low-level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). These wastes are collected in underground collection tanks, bottles, and trucks; they are then neutralized with sodium hydroxide and treated for volume reduction at the ORNL evaporator facility. This report presents historical and projected data concerning the volume and characterization of LLLW, prior to and after evaporation. Storage space for projected waste generation is also discussed.

  2. Current and projected liquid low-level waste generation at ORNL

    SciTech Connect

    DePaoli, S.M.; West, G.D.

    1996-04-01

    Liquid low-level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). This waste is collected in bottles, by trucks, or in underground collection tanks; it is then neutralized with sodium hydroxide and reduced in volume at the ORNL LLLW evaporator. This report presents historical and projected data concerning the volume and the characterization of LLLW, both prior to and after evaporation. Storage space for projected waste generation is also discussed.

  3. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    SciTech Connect

    1992-12-31

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility.

  4. Silo 3 Waste Treatment Phase I Physical Testing Final Report

    SciTech Connect

    Langton, C.A.

    2001-03-13

    A characterization study of the Fernald Silo 3 waste was performed at the request of Rocky Mountain Remedial Services, LLC (RMRS) to support treatment of the waste with the Envirobond reagents and Envirobrick process. The Savannah River Technology Center (SRTC) performed the characterization under a Work for Others Agreement WOF-00-007. Physical property testing was subcontracted to the Clemson Environmental Technologies Laboratory (CETL). This report is intended to transmit the results of the physical property testing conducted at the CETL. Results of the physical property testing are summarized in a final report from Steve Hoeffner, CETL.

  5. Two-stage thermal/nonthermal waste treatment process

    SciTech Connect

    Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

    1993-05-01

    An innovative waste treatment technology is being developed in Los Alamos to address the destruction of hazardous organic wastes. The technology described in this report uses two stages: a packed bed reactor (PBR) in the first stage to volatilize and/or combust liquid organics and a silent discharge plasma (SDP) reactor to remove entrained hazardous compounds in the off-gas to even lower levels. We have constructed pre-pilot-scale PBR-SDP apparatus and tested the two stages separately and in combined modes. These tests are described in the report.

  6. Comparative environmental analysis of waste brominated plastic thermal treatments.

    PubMed

    Bientinesi, M; Petarca, L

    2009-03-01

    The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of "fossil fuels" and "climate change". Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste. PMID:18829288

  7. Comparative environmental analysis of waste brominated plastic thermal treatments

    SciTech Connect

    Bientinesi, M. Petarca, L.

    2009-03-15

    The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of 'fossil fuels' and 'climate change'. Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste.

  8. Antimicrobial Use and Resistance in Swine Waste Treatment Systems▿

    PubMed Central

    Jindal, Archana; Kocherginskaya, Svetlana; Mehboob, Asma; Robert, Matthew; Mackie, Roderick I.; Raskin, Lutgarde; Zilles, Julie L.

    2006-01-01

    Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLSB), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLSB resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLSB resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further. PMID:17041160

  9. Antimicrobial use and resistance in swine waste treatment systems.

    PubMed

    Jindal, Archana; Kocherginskaya, Svetlana; Mehboob, Asma; Robert, Matthew; Mackie, Roderick I; Raskin, Lutgarde; Zilles, Julie L

    2006-12-01

    Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLSB), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLSB resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLSB resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further. PMID:17041160

  10. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    SciTech Connect

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  11. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    SciTech Connect

    Liu Peizhe

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  12. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  13. Raw Liquid Waste Treatment System and Process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1974-01-01

    A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, suspended in the sewage water is first separated from the water, in which at least organic matter remains dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material adsorbs the organic matter dissolved in the water and is thereafter supplied in a counter flow direction and combined with the incoming raw sewage to at least facilitate the separation of the non-dissolved settleable materials from the sewage water. Carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  15. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  16. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  17. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  20. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-28

    This thirteenth quarterly report describes work done during the thirteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  1. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    SciTech Connect

    Baker, T.L.

    1998-02-25

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.`s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices.

  2. TREATMENT OF METAL FINISHING WASTES BY SULFIDE PRECIPITATION

    EPA Science Inventory

    This project involved precipitating heavy metals normally present in metal finishing wastewaters by a novel process which employs ferrous sulfide addition (Sulfex), as well as by conventional treatment using calcium hydroxide for comparison purposes. These studies consisted of la...

  3. Development and demonstration of treatment technologies for the processing of US Department of Energy Mixed Waste

    SciTech Connect

    Bloom, G.A.; Berry, J.B.

    1994-01-01

    Mixed waste is defined as ``waste contaminated with chemically hazardous and radioactive species.`` The Mixed Waste Integrated Program (MWIP) was established in response to the need for a unified, DOE complexwide solution to issues of mixed waste treatment that meets regulatory requirements. MWIP is developing treatment technologies that reduce risk, minimize life-cycle cost, and improve process performance as compared to existing technologies. Treatment for waste streams for which no current technology exists, and suitable waste forms for disposal, will be provided to improve operations of the DOE Office of Waste Management. MWIP is composed of six technical areas within a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas are described in this paper

  4. Feed Composition for Sodium-Bearing Waste Treatment Process

    SciTech Connect

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  5. Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan

    SciTech Connect

    BUSSELL, J.H.

    1999-08-02

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K compliance for Project W-151, Tank 101-AZ Waste Retrieval System. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. Two mixer pumps and instrumentation have been or are planned to be installed in waste tank 101-AZ to demonstrate solids mobilization. The information and experience gained during this process test will provide data for comparison with sludge mobilization prediction models and provide indication of the effects of mixer pump operation on an Aging Waste Facility tank. A limited description of system dates, functions, interfaces, potential Y2K problems, and date resolutions is presented. The project is presently on hold, and definitive design and procurement have been completed. This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems.

  6. 324 Building liquid waste handling and removal system project plan

    SciTech Connect

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  7. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  8. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-12-31

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  9. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-01-01

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  10. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  11. Remote handling equipment at the hanford waste treatment plant

    SciTech Connect

    Bardal, M.A.; Roach, J.D.

    2007-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on

  12. HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT

    SciTech Connect

    HAMILTON, D.W.

    2006-01-30

    A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

  13. Treatment technology analysis for mixed waste containers and debris

    SciTech Connect

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  14. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    SciTech Connect

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  15. Approximate cost functions for solid waste treatment facilities.

    PubMed

    Tsilemou, Konstantinia; Panagiotakopoulos, Demetrios

    2006-08-01

    Cost estimation is a basic requirement for planning municipal solid waste management systems. The variety of organizational, financial and management schemes and the continuously developing technological advancements render the economic analysis a complex task, made more complex by the scarcity of real cost data. The objectives of this paper were: (1) to explore the problems arising in getting cost estimates from scattered and limited published data; (2) to suggest a procedure for generating cost functions relating initial set-up cost and operating cost with facility size; and (3) to present such cost functions, relevant to European states, for selected types of solid waste treatment and disposal facilities. Regarding the problems of available scarce data, one needs to deal with cost figures which correspond to facilities with variations in size, technology, year of construction, working conditions, level of technological automation, environmental impacts, social acceptance, capacity utilization rate, composition of inflowing waste, waste management policies, degree of compliance with quality standards, etc. The paper addresses this issue and discusses the proper use of statistical analyses in such cases of fragmented data; moreover, it points out some usual misuses of statistics by analysts and the danger of getting erroneous results. The suggested process for generating cost functions acceptable to the decision-makers is pivoted around the question of acceptable approximation level. Finally, approximate cost curves are suggested for waste-to-energy facilities, landfilling facilities, anaerobic digestion facilities and composting facilities. PMID:16941990

  16. A theory of the plasma torch for waste-treatment

    SciTech Connect

    Uhm, H.S.; Hong, S.H.

    1997-12-31

    Arc-plasma technology has broad applications to waste treatment processing including the safe disposal of hazardous and low-level radioactive wastes. The plasma torch could be useful to the development of an efficient, compact, lightweight, clean burning incinerator for industrial and municipal waste disposal in an environmentally beneficial way. The authors therefore develop a simple theoretical model describing physics of the plasma torch plume in connection with its applications to the arc-plasma waste-treatment system. The theoretical analysis is carried out by making use of Bernoulli`s pressure-balance equation, which provides a stable equilibrium solution of the gas density in the plume ejected from the torch into a high-pressure reactor chamber with 4{var_epsilon} < 1. The pressure depression parameter {var_epsilon} is proportional to the gas temperature and inversely proportional to the square of the chamber pressure. In a low-pressure chamber, characterized by 4{var_epsilon} > 1, there is no stable equilibrium solution satisfying Bernoulli`s equation. Therefore, it is expected that the observable plasma data may change abruptly as the chamber pressure crosses the borderline defined by 4{var_epsilon} = 1. Indeed most of the plasma data measured in an experiment change abruptly at the pressure borderline of 4{var_epsilon} = 1.

  17. Characterization of residues from physicochemical treatment of waste fluorescent lamps.

    PubMed

    Urniezaite, Inga; Denafas, Gintaras; Jankunaite, Dalia

    2010-07-01

    Fluorescent lamps are widely used world-wide due to their long life and energy saving capability. These lamps contain mercury (Hg) as a source of fluorescent radiation. The object of this study is a new technology for physicochemical treatment of waste fluorescent lamps. The residuals of the technological process were evaluated for potential leaching of heavy metals into the environment. Evaluation was performed using standardized extraction tests. Additionally, X-ray diffractometry (XRD) analysis, as well as tests with complex-forming agents and under pH-stable conditions were performed aiming to predict stability of the residuals in various environmental conditions. According to the XRD analysis, the minerals fluorapatite and hydroxylapatite were dominant in analyzed samples. The results of total extraction by aqua regia revealed that residuals contain relatively high total concentrations of Hg, Mn, and Zn. Concentrations of heavy metals, leaching to aqueous solution, were compared to leaching limit values (according to EU legislation). The concentrations of available Hg in the waste fluorescent lamp treatment products, according to its solubility in the water, exceed the limit values. The measured water-leachable Hg concentration was 4.88 mg kg(-1), while the value for waste acceptable at hazardous waste landfill sites is 2 mg kg(-1). Concentrations of other measured heavy metals did not exceed the limit values. According to the results, Hg stabilization potential for presented technology exceeds 99%. PMID:19710106

  18. 75 FR 81250 - Pulse Jet Mixing at the Waste Treatment and Immobilization Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SAFETY BOARD Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Defense Nuclear... the use of pulse jet mixing at the Waste Treatment and Immobilization Plant located in Washington... to the Secretary of Energy Pulse Jet Mixing at the Waste Treatment and Immobilization Plant...

  19. The Fuego Limpio project: Clean fuel from agricultural waste

    SciTech Connect

    Iadarola, C.; Beers, G.; Sargent, S.L.

    1994-12-31

    The Fuego Limpio (Spanish for {open_quotes}Clean Fire{close_quotes}) project aimed to determine the technical and economic feasibility of converting agricultural wastes, such as wheat and barley straw, into densified fuel for home and industrial applications. Consumer acceptance tests and cost studies of the fuel were conducted in the San Luis Valley of southern Colorado, an agricultural area in dire need of inexpensive fuel and economic development. The results indicate that the fuel is acceptable to local residents as an alternative to firewood, but that the production cost, at about $120/ton, is too high for the local economy to support. A more promising niche market is lodging for the mountain tourist industry, where open fires are desirable and clean fuel is a necessity to protect the local air quality.

  20. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  1. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  2. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-08-31

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to significantly reduce the cost to the U.S. Department of Energy (DOE) of treating the tank wastes by hundreds of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass. An electrochemical salt-splitting process, based on sodium-ion selective ceramic membranes, is being developed to recover and recycle sodium hydroxide from high-salt radioactive tank wastes in DOE’s complex. The ceramic membranes are from a family of materials known as sodium (Na)—super-ionic conductors (NaSICON)—and the diffusion of sodium ions (Na+) is allowed, while blocking other positively charged ions. A cost/benefit evaluation was based on a strategy that involves a separate caustic-recycle facility based on the NaSICON technology, which would be located adjacent to the WTP facility. A Monte Carlo approach was taken, and several thousand scenarios were analyzed to determine likely economic results. The cost/benefit evaluation indicates that 10,000–50,000 metric tons (MT) of sodium could be recycled, and would allow for the reduction of glass production by 60,000–300,000 MT. The cost of the facility construction and operation was scaled to the low-activity waste (LAW) vitrification facility, showing cost would be

  3. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    SciTech Connect

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-02-27

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed.

  4. Waste Tank Vapor Project: Tank vapor database development

    SciTech Connect

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase{reg_sign}, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism{reg_sign} and Business Objects{trademark}. A prototype database was constructed to provide the Waste Tank Vapor Project`s Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994.

  5. PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW

    NASA Astrophysics Data System (ADS)

    Kita, Tomoko; Kanaya, Ken

    Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

  6. CLASSIFICATION OF THE MGR WASTE TREATMENT BUILDING SYSTEM

    SciTech Connect

    S.E. Salzman

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste treatment building system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  7. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities. PMID:26946936

  8. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  9. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  10. Optimization of a packed bed reactor for liquid waste treatment

    SciTech Connect

    Schmidt, C.A.; Brower, M.J.; Coogan, J.J.; Tennant, R.A.

    1993-11-01

    The authors describe an optimization study of a packed bed reactor (PBR), developed for the treatment of hazardous liquid wastes. The focus is on the destruction of trichloroethylene (TCE). The PBR technology offers many distinct advantages over other processes: simple design, high destruction rates (99.99%), low costs, ambient pressure operation, easy maintenance and scaleability. The cost effectiveness, optimal operating parameters and scaleability were determined. As a second stage of treatment, a silent discharge plasma (SDP) reactor was installed to further treat offgases from the PBR. A primary advantage of this system is closed loop operation, where exhaust gases are continuously recycled and not released into the atmosphere.

  11. Strategic planning for waste management: Characterization of chemically and radioactively hazardous waste and treatment, storage, and disposal capabilities for diverse and varied multisite operations

    SciTech Connect

    Jolley, R.L.; Rivera, A.L.; Fox, E.C.; Hyfantis, G.J.; McBrayer, J.F.

    1988-01-01

    Information about current and projected waste generation as well as available treatment, storage, and disposal (TSD) capabilities and needs is crucial for effective, efficient, and safe waste management. This is especially true for large corporations that are responsible for multisite operations involving diverse and complex industrial processes. Such information is necessary not only for day-to-day operations, but also for strategic planning to ensure safe future performance. This paper reports on some methods developed and successfully applied to obtain requisite information and to assist waste management planning at the corporate level in a nationwide system of laboratories and industries. Waste generation and TSD capabilities at selected US Department of Energy (DOE) sites were studied. 1 ref., 2 tabs.

  12. ENVIRONMENTAL FATE CONSTANTS FOR ADDITIONAL 27 ORGANIC CHEMICALS UNDER CONSIDERATION FOR EPA'S HAZARDOUS WASTE IDENTIFICATION PROJECTS

    EPA Science Inventory

    Under Section 301 of the Resource Conservation and Recovery Act (RCRA), EPA's Office of Solid Waste is in the process of identifying chemicals to be considered in projects called the Hazardous Waste Identification Projects. revious publication (EPA/600/R-93/132) addressed 189 org...

  13. Basalt Waste Isolation Project. Quarterly report, July 1, 1980-September 30, 1980

    SciTech Connect

    Deju, R.A.

    1980-11-01

    This report presents the technical progress for the Basalt Waste Isolation Project for the fourth quarter of fiscal year 1980. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration; geosciences; hydrology; engineered barriers; near-surface test facility; engineering testing; and repository studies. Summaries of major accomplishments for each of these areas are reported.

  14. Solid waste information and tracking system server conversion project management plan

    SciTech Connect

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  15. Basalt waste isolation project. Quarterly report, April 1, 1981-June 30, 1981

    SciTech Connect

    Deju, R.A.

    1981-08-01

    This document reports progress made in the Basalt Waste Isolation Project during the third quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems; waste package; site; repository; regulatory and institutional; test facilities; in situ test facilities.

  16. Implementation of Treatment Systems for Low and Intermediate Radioactive Waste at Site Radwaste Treatment Facility (SRTF), PR China - 12556

    SciTech Connect

    Lohmann, Peter; Nasarek, Ralph; Aign, Joerg

    2012-07-01

    The AP1000 reactors being built in the People's Republic of China require a waste treatment facility to process the low and intermediate radioactive waste produced by these nuclear power stations. Westinghouse Electric Germany GmbH was successful in being awarded a contract as to the planning, delivery and commissioning of such a waste treatment facility. The Site Radwaste Treatment Facility (SRTF) is a waste treatment facility that can meet the AP1000 requirements and it will become operational in the near future. The SRTF is situated at the location of Sanmen, People's Republic of China, next to one of the AP1000 and is an adherent building to the AP1000 comprising different waste treatment processes for radioactive spent filter cartridges, ion-exchange resins and radioactive liquid and solid waste. The final product of the SRTF-treatment is a 200 l drum with cemented waste or grouted waste packages for storage in a local storage facility. The systems used in the SRTF are developed for these special requirements, based on experience from similar systems in the German nuclear industry. The main waste treatment systems in the SRTF are: - Filter Cartridge Processing System (FCS); - HVAC-Filter and Solid Waste Treatment Systems (HVS); - Chemical Liquid Treatment Systems (CTS); - Spent Resin Processing Systems (RES); - Mobile Treatment System (MBS). (authors)

  17. The mixed waste management facility. Project baseline revision 1.2

    SciTech Connect

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  18. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early. PMID:12865753

  19. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    SciTech Connect

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  20. MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT

    SciTech Connect

    GREENWLL, R.D.

    2005-01-20

    A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks.

  1. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    PubMed

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber. PMID:15878635

  2. Secondary Low-Level Waste Treatment Strategy Analysis

    SciTech Connect

    D.M. LaRue

    1999-05-25

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements.

  3. Treatment of Difficult Wastes with Molten Salt Oxidation

    SciTech Connect

    Hsu, P C; Kwak, S

    2003-02-21

    Molten salt oxidation (MSO) is a good alternative to incineration for the treatment of a variety of organic wastes such as explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. Since mid-1990s, the U.S. Army Defense Ammunition Center (DAC) and the Department of Energy (DOE) have jointly invested in MSO development at the Lawrence Livermore National Laboratory (LLNL). LLNL first demonstrated the MSO process for the effective destruction of explosives, explosives-contaminated materials, and other wastes on a 1.5-kg/hr bench-scale unit, and then in an integrated MSO facility capable of treating 8 kg/hr of low-level radioactive mixed wastes. Several MSO systems have been built with sizes up to 10 ft in height and 16 inches in diameter. LLNL in 2001 completed a MSO plant for DAC for the destruction of explosives-contaminated sludge and explosives-contaminated carbon. We will present in this paper our latest demonstration data and our operational experience with MSO.

  4. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Pell, Michael J.; Van Meighem, Jeffery S.; Duncan, Garth M.; Harrington, Christopher C.

    2012-11-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

  5. Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1996-12-01

    Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

  6. STATUS & DIRECTION OF THE BULK VITRIFICATION PROGRAM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect

    RAYMOND, R.E.

    2005-01-12

    The DOE Office of River Protection (ORP) is managing a program at the Hanford site that will retrieve and treat more than 200 million liters (53 million gal.) of radioactive waste stored in underground storage tanks. The waste was generated over the past 50 years as part of the nation's defense programs. The project baseline calls for the waste to be retrieved from the tanks and partitioned to separate the highly radioactive constituents from the large volumes of chemical waste. These highly radioactive components will be vitrified into glass logs in the Waste Treatment Plant (WTP), temporarily stored on the Hanford Site, and ultimately disposed of as high-level waste in the offsite national repository. The less radioactive chemical waste, referred to as low-activity waste (LAW), is also planned to be vitrified by the WTP, and then disposed of in approved onsite trenches. However, additional treatment capacity is required in order to complete the pretreatment and immobilization of the tank waste by 2028, which represents a Tri-Party Agreement milestone. To help ensure that the treatment milestones will be met, the Supplemental Treatment Program was undertaken. The program, managed by CH2M HILL Hanford Group, Inc., involves several sub-projects each intended to supplement part of the treatment of waste being designed into the WTP. This includes the testing, evaluation, design, and deployment of supplemental LAW treatment and immobilization technologies, retrieval and treatment of mixed TRU waste stored in the Hanford Tanks, and supplemental pre-treatment. Applying one or more supplemental treatment technologies to the LAW has several advantages, including providing additional processing capacity, reducing the planned loading on the WTP, and reducing the need for double-shell tank space for interim storage of LAW. In fiscal year 2003, three potential supplemental treatment technologies were evaluated including grout, steam reforming and bulk vitrification using AMEC

  7. RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY

    SciTech Connect

    SHUFORD DH; STEGEN G

    2010-04-19

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  8. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination.

  9. [Health impact assessment of policies for municipal solid waste management: findings of the SESPIR Project].

    PubMed

    Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Badaloni, Chiara; Cernigliaro, Achille; Chiusolo, Monica; Parmagnani, Federica; Pizzuti, Renato; Scondotto, Salvatore; Cadum, Ennio; Forastiere, Francesco; Lauriola, Paolo

    2014-01-01

    The SESPIR Project (Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants) assessed the impact on health of residents nearby incinerators, landfills and mechanical biological treatment plants in five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily). The assessment procedure took into account the available knowledge on health effects of waste disposal facilities. Analyses were related to three different scenarios: a Baseline scenario, referred to plants active in 2008-2009; the regional future scenario, with plants expected in the waste regional plans; a virtuous scenario (Green 2020), based on a policy management of municipal solid waste (MSW) through the reduction of production and an intense recovery policy. Facing with a total population of around 24 million for the 5 regions, the residents nearby the plants were more than 380,000 people at Baseline. Such a population is reduced to approximately 330.000 inhabitants and 170.000 inhabitants in the regional and Green 2020 scenarios, respectively. The health impact was assessed for the period 2008-2040. At Baseline, 1-2 cases per year of cancer attributable to MSW plants were estimated, as well as 26 cases per year of adverse pregnancy outcomes (including low birth weight and birth defects), 102 persons with respiratory symptoms, and about a thousand affected from annoyance caused by odours. These annual estimates are translated into 2,725 years of life with disability (DALYs) estimated for the entire period. The DALYs are reduced by approximately 20% and 80% in the two future scenarios. Even in these cases, health impact is given by the greater effects on pregnancy and the annoyance associated with the odours of plants. In spite of the limitations due to the inevitable assumptions required by the present exercise, the proposed methodology is suitable for a first approach to assess different policies that can be adopted in regional planning in

  10. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  11. Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts

    SciTech Connect

    Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

    2003-02-25

    To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

  12. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  13. Land treatment field studies. Volume 6. Inorganic pickling liquor waste. Final report Sep 77-Feb 81

    SciTech Connect

    Berkowitz, J.B.; Bysshe, S.E.; Goodwin, B.E.; Harris, J.C.; Land, D.B.

    1983-07-01

    This report presents the results of field measurements and observations of a land treatment site for the management of an inorganic pickling liquor waste. The waste is spread on the site as a 20% solids sludge. Sulfate and iron are known to be major waste constituents. The organic content of the waste is neglible. The site was sampled twice, and observations were made on the type and amount of waste handled, site characteristics, and management procedures for waste application and monitoring. Organic and inorganic analysis was conducted on the waste and soil/waste mixture; inorganic analysis was performed on plant samples.

  14. Modeling Offgas Systems for the Hanford Waste Treatment Plant

    SciTech Connect

    Smith, Frank G., III

    2005-09-02

    To augment steady-state design calculations, dynamic models of three offgas systems that will be used in the Waste Treatment Plant now under construction at the Hanford Site were developed using Aspen Custom Modeler{trademark}. The offgas systems modeled were those for the High Level Waste (HLW) melters, Low Activity Waste (LAW) melters and HLW Pulse Jet Ventilation (PJV) system. The models do not include offgas chemistry but only consider the two major species in the offgas stream which are air and water vapor. This is sufficient to perform material and energy balance calculations that accurately show the dynamic behavior of gas pressure, temperature, humidity and flow throughout the systems. The models are structured to perform pressure drop calculations across the various unit operations using a combination of standard engineering calculations and empirical data based correlations for specific pieces of equipment. The models include process controllers, gas ducting, control valves, exhaust fans and the offgas treatment equipment. The models were successfully used to analyze a large number of operating scenarios including both normal and off-normal conditions.

  15. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  16. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary

  17. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future. PMID:18499345

  18. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  19. Treatment of oilfield produced water by waste stabilization ponds.

    PubMed

    Shpiner, R; Vathi, S; Stuckey, D C

    2007-01-01

    Produced water (PW) from oil wells can serve as an alternative water resource for agriculture if the main pollutants (hydrocarbons and heavy metals) can be removed to below irrigation standards. Waste stabilization ponds seem like a promising solution for PW treatment, especially in the Middle East where solar radiation is high and land is available. In this work, hydrocarbon removal from PW in a biological waste stabilization pond was examined at lab-scale followed by an intermittent slow sand filter. The system was run for 300 days and removed around 90% of the oil in the pond, and 95% after the sand filter. COD removal was about 80% in the pond effluent, and 85% after the filter. The system was tested under various operational modes and found to be stable to shock loads. Installation of oil booms and decantation of surface oil seem to be important in order to maintain good system performance over time. PMID:17591220

  20. The Evolution of Privatization at Hanford Tank Waste Treatment Complex

    SciTech Connect

    BROWN, N.R.

    2001-02-01

    Privatization acquisition strategies embody substantial contract reform principles-private financing and ownership, competition, fixed prices, and payment only upon delivery of services-which in time became the recipe for privatization of Department of Energy (DOE) Environmental Management (EM) cleanup projects. Privatization changes the federal government's approach from traditional cost-plus contracting, where the federal government pays the contractor as the project progresses, to a strategy where the federal government pays for products or services as they are delivered. To be successful, the privatization requires additional risk taking by the contractor. This paper focuses on why the Tank Waste Remediation System (TWRS) pursued privatization, how the TWRS Privatization Project matured, and why the privatization project moved to an alternate path. The paper is organized as follows: a description of the TWRS-Privatization framework, how the project changed from the original request for proposal through the decision not to proceed to Part B-2, and the lessons learned during evolution of the effort, including what worked as well as what went wrong and how such negative outcomes might be prevented in the future.

  1. Energy and nutrient recovery from anaerobic treatment of organic wastes

    NASA Astrophysics Data System (ADS)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  2. Treatment of dairy waste by using water hyacinth.

    PubMed

    Trivedy, R K; Pattanshetty, S M

    2002-01-01

    In the present study treatment of wastewater from a large dairy by using water hyacinth was studied in laboratory experiments. Effects of depth of the system, variations in area coverage, prior settling and of daily renewal of the plants was also studied on the efficacy of hyacinth in treating the dairy waste. Water hyacinth (Eichhornia crassipes) was found to grow exceptionally well in the waste (BOD 840.0 mg/L) and brought down the level of BOD from 840.0 to 121.0 mg/L; COD from 1,160.0 to 164.0 mg/L, total suspended solids from 359.0 mg/L to 245.0 mg/L, TDS from 848.0 mg/L to 352.0 mg/L, total nitrogen from 26.6 mg/L to 8.9 mg/L in 4 days. There was very little reduction, however in calcium, sodium and potassium concentration. Results of different experiments showed that systems with shallow depth were more efficient in removing dissolved solids, suspended solids, BOD, COD, nitrogen and phosphorus. Daily renewal of the plants led to slightly better reduction in suspended and dissolved solids, BOD, COD and nitrogen. Water hyacinth coverage was found to have a direct bearing on the treatment efficiency. Pretreatment (settling) of the waste was also found to be favourable as dissolved oxygen content increased rapidly in the experimental sets with pretreatment. Efficiency of removal of various parameters was also good in these sets. From the study it can be concluded that dairy waste can be effectively treated by water hyacinth. Consideration of above parameters and incorporating them in design factors can greatly increase the efficiency of the system. PMID:12201119

  3. Design of electrochemical processes for treatment of unusual waste streams

    SciTech Connect

    Farmer, J.C.

    1998-01-01

    UCRL- JC- 129438 PREPRINT This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Introduction. An overview of work done on the development of three electrochemical processes that meet the specific needs of low- level waste treatment is presented. These technologies include: mediated electrochemical oxidation [I- 4]; bipolar membrane electrodialysis [5]; and electrosorption of carbon aerogel electrodes [6- 9]. Design strategies are presented to assess the suitability of these electrochemical processes for Mediated electrochemical oxidation. Mixed wastes include both hazardous and radioactive components. It is desirable to reduce the overall volume of the waste before immobilization and disposal in repositories. While incineration is an attractive technique for the destruction of organic fractions of mixed wastes, such high-temperature thermal processes pose the threat of volatilizing various radionuclides. By destroying organics in the aqueous phase at low temperature and ambient pressure, the risk of volatilization can be reduced. One approach that is

  4. Evaluation of the Treatment of Diabetic Retinopathy A Research Project

    ERIC Educational Resources Information Center

    Kupfer, Carl

    1973-01-01

    Evaluated is the treatment of diabetic retinopathy (blindness due to ruptured vessels of the retina as a side effect of diabetes), and described is a research project comparing two types of photocoagulation treatment. (DB)

  5. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Interim status thermal treatment devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE,...

  6. STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT

    EPA Science Inventory

    EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...

  7. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    SciTech Connect

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University of

  8. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  9. DOE Waste Package Project. Quarterly progress report, April 1, 1993--June 30, 1993 and end of year summary report

    SciTech Connect

    Ladkany, S.G.

    1993-08-01

    Contents of this report are as follows: Overview and progress of waste package project and container design; waste container alternate design considerations; structural analysis and design of nuclear waste package canister; manipulation of the nuclear waste container; design requirements of various rock tunnel shapes for long term storage of high level waste; and transport phenomena in the near field.

  10. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.

    2012-12-01

    The University of Colorado-Boulder is one of a few universities in the country that has a licensed Treatment, Storage, and Disposal Facility (TSDF) for hazardous waste on campus. This facility, located on the bottom floor of the Environmental Health and Safety (EH&S) building, allows CU to more economically treat hazardous waste by enabling treatment specialists on staff to safely collect and organize the hazardous waste generated on campus. Hazardous waste is anything that contains a regulated chemical or compound and most chemicals used in engineering labs (e.g., acids, solvents, metal solutions) fall into this category. The EH&S staff is able to treat close almost 33% of the waste from campus and the rest is packed for off-site treatment at various places all over the country for disposal (e.g., Sauget, IL, Port Aurthor, TX). The CU-Boulder campus produced over 50 tons of hazardous waste in 2010 costing over $300,000 in off-campus expenses. The EH&S staff assigns one of over 50 codes to the waste which will determine if the waste can be treated on campus of must be shipped off campus to be disposed of. If the waste can be treated on campus, it will undergo one of three processes: 1) neutralization, 2) UV-ozone oxidation, or 3) ion exchange. If the waste is acidic but contains no heavy metals, the acid is neutralized with sodium hydroxide (a base) and can be disposed "down the drain" to the Boulder Wastewater Treatment Plant. If the waste contains organic compounds and no metals, a UV-ozone oxidation system is used to break down the organic compounds. Silver from photography wastewater can be removed using ion exchange columns. Undergraduate and graduate students worked with the hazardous waste treatment facility at the Environmental Health and Safety (EH&S) building on the CU-Boulder campus during the fall of 2011 and fall of 2012. Early in the semester, students receive a tour of the three batch treatment processes the facility is equipped with. Later in the

  11. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  12. The role of intergenerational influence in waste education programmes: The THAW project

    SciTech Connect

    Maddox, P.; Doran, C.; Williams, I.D.; Kus, M.

    2011-12-15

    Highlights: > Children can be effective advocates in changing their parents' lifestyles. > We investigated the role of intergenerational influence in waste education programmes. > Waste Watch's Take Home Action on Waste project worked with 6705 children in 39 schools. > The results showed increased participation in recycling and declines in residual waste. > The study shows that recycling behaviour is positively impacted by intergenerational influence. - Abstract: Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity ((www.wastewatch.org.uk)), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the 'reduce, reuse and recycle message' home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project

  13. Sodium-bearing Waste Treatment Technology Evaluation Report

    SciTech Connect

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  14. Packed bed reactor treatment of liquid hazardous and mixed wastes

    SciTech Connect

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-01-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO{sub 2} is not released to the environment.

  15. Packed bed reactor treatment of liquid hazardous and mixed wastes

    SciTech Connect

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-05-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO{sub 2} is not released to the environment.

  16. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  17. Waste compatibility assessments to support project W-320

    SciTech Connect

    BLAAK, T.M.

    1999-04-06

    The intent of this internal memo is to provide a recommendation for the transfer of tank 241-C-106 waste, Attachment 2, to tank 241-AY-102. This internal memo also identifies additional requirements which have been deemed necessary for safely receiving and storing the waste documented in Attachment 2 from tank 241-C-106 in tank 241-AY-102. This waste transfer is planned in support of tank 241-C-106 solids sluicing activities. Approximately 200,000 gallons of waste and flush water are expected to be pumped from tank 241-C-106 into tank 241-AY-102. Several transfers will be necessary to complete the sluicing of tank 241-C-106 solids. To assure ourselves that this waste transfer will not create any compatibility concerns, a waste compatibility assessment adhering to current waste compatibility requirements has been performed.

  18. Microwave solidification project overview

    SciTech Connect

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  19. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  20. ANAEROBIC AND AEROBIC TREATMENT OF COMBINED POTATO PROCESSING AND MUNICIPAL WASTES

    EPA Science Inventory

    Demonstration and evaluation of the treatment of combined potato processing waste-water and domestic wastes using various combinations of anaerobic and aerated lagoons. Measured parameters included: BOD, COD, TSS, VSS, nitrogen, phosphorus, volatile acids, total coliform, fecal c...

  1. [The treatment of wastes from antibiotic manufacture by using pyrolusite].

    PubMed

    Faĭngol'd, Z L; Zav'ialova, E V; Karpukhin, V F; Agafonova, V A

    1987-11-01

    Data on laboratory studies with real liquid sewage from antibiotic manufacture are presented. Two schemes are discussed: treatment of the sewage in an electrolysis plant followed by its afterpurification either in a column with pyrolusite or during a joint process of electrochemical purification with catalyst location on the plant bottom under the electrodes. The afterpurification of electrochemically treated liquid sewage on waste pyrolusite can provide and additional effect i.e. lower consumption of oxygen and decoloration at average by 15 and 25 per cent respectively. PMID:3439788

  2. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste.

    PubMed

    Clemens, J; Cuhls, C

    2003-06-01

    The mechanical and biological waste treatment (MBT) is an increasingly important technology for the treatment of municipal solid waste (MSW) before landfilling. This process includes composting of the material with intensive aeration in order to minimize the organic fraction that may induce methane and leachate emissions after landfilling. The exhaust air is treated by biofilters to remove odorous and volatile organic compounds. The emission of direct and indirect greenhouse gases, namely methane (CH4), carbon dioxide (CO2), ammonia (NH3), nitric (NO) and nitrous oxide (N2O) was studied in four existing treatment plants. All gases except NO were emitted from the composting material. The emission factors were 12 to 185 kg ton(-1) substrate for CO2, 6-12 x 10(3) g ton(-1) substrate for CH4, 1.44 to 378 g ton(-1) substrate for N2O and 18-1150 g ton(-1) for NH3. In general, emission factors increased with increasing treatment time. The biofilters had no net effect on CH4, but removed 13-89% of the NH3. For CO2 the biofilters were a small, for N2O a major and for NO the exclusive source. Approximately 26% of the NH3-N that was removed in the biofilter was transformed into N2O when NH3 was the exclusive nitrogen source. Assuming that all municipal waste was treated by MBT, the emissions would account for 0.3 to 5% of the N2O and for 0.1 to 3% of the CH4 emissions in Germany, respectively. Optimising aeration and removing NH3 before the exhaust gas enters the biofilter could lead to reduced greenhouse gas emissions. PMID:12868530

  3. Treatment of DOE and commercial mixed waste by the private sector

    SciTech Connect

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  4. Dynamics of industrial waste stabilization pond treatment process.

    PubMed

    Veeresh, Mangala; Veeresh, A V; Huddar, Basvaraj D; Hosetti, Basaling B

    2010-10-01

    Waste stabilization pond is an artificial ecosystem; its performance is governed by the nature of the biological communities it supports. These are primarily used as secondary effluent treatment plants to polish the effluents. However, they are also used to treat the raw sewage and industrial effluents. In the present study, the functioning of a waste stabilization pond system from an industrial complex located in Goa was taken up. The raw waste released by the industrial complex and the final effluent released from the stabilization ponds were analyzed for pH, dissolved oxygen (DO), biological oxygen demand, phosphate content, chlorophyll content, and algal diversity and density. Also, the activities of the enzymes catalase and phosphatase were measured. The study was carried out for a period of 1 year and the data covering pre-monsoon, monsoon, and post-monsoon seasons are tabulated. The study revealed that DO, chlorophyll content, and algal count were maximum during pre-monsoon when compared to monsoon and post-monsoon. Similarly, maximum enzymatic activity was recorded during pre-monsoon and also maximum removal of biological oxygen demand and phosphate was recorded during this period than in monsoon and post-monsoon. PMID:19731057

  5. Quantifying capital goods for biological treatment of organic waste.

    PubMed

    Brogaard, Line K; Petersen, Per H; Nielsen, Peter D; Christensen, Thomas H

    2015-02-01

    Materials and energy used for construction of anaerobic digestion (AD) and windrow composting plants were quantified in detail. The two technologies were quantified in collaboration with consultants and producers of the parts used to construct the plants. The composting plants were quantified based on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest contribution to Global Warming. The total impact on Global Warming from the capital goods compared to the operation reported in the literature on the AD plant showed an insignificant contribution of 1-2%. For the composting plants, the capital goods accounted for 10-22% of the total impact on Global Warming from composting. PMID:25595291

  6. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin; Jantzen, Carol; Crawford, Charles

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  7. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  8. Assessment of incineration and melting treatment technologies for RWMC buried waste

    SciTech Connect

    Geimer, R.; Hertzler, T.; Gillins, R.; Anderson, G.L.

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  9. Waste treatment: Beverage industry. (Latest citations from Food Science & Technology Abstracts (FSTA)). Published Search

    SciTech Connect

    1995-08-01

    The bibliography contains citations concerning waste treatment in the alcoholic and non-alcoholic beverage industries. Brewery effluent and wastewater management and disposal are reviewed. References cover aerobic treatment, sources of effluents, waste reduction, waste fermentation, effluent purification, and cost-effectiveness evaluation. The use of wastes for biogas production and for building material manufacture is examined. (Contains 50-250 citations and includes a subject term index and title list.)

  10. Permitting plan for the immobilized low-activity waste project

    SciTech Connect

    Deffenbaugh, M.L.

    1997-09-04

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ``the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.`` It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site`s low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste.

  11. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Van Meighem, Jeffery S.; Duncan, Garth M.; Pell, Michael J.; Harrington, Christopher C.

    2013-07-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  12. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  13. Microbial treatment of sulfur-contaminated industrial wastes.

    PubMed

    Gómez-Ramírez, Marlenne; Zarco-Tovar, Karina; Aburto, Jorge; de León, Roberto García; Rojas-Avelizapa, Norma G

    2014-01-01

    The present study evaluated the microbial removal of sulfur from a solid industrial waste in liquid culture under laboratory conditions. The study involved the use of two bacteria Acidithiobacillus ferrooxidans ATCC 53987 and Acidithiobacillus thiooxidans AZCT-M125-5 isolated from a Mexican soil. Experimentation for industrial waste biotreatment was done in liquid culture using 125-mL Erlenmeyer flasks containing 30 mL Starkey modified culture medium and incubated at 30°C during 7 days. The industrial waste was added at different pulp densities (8.25-100% w/v) corresponding to different sulfur contents from 0.7 to 8.63% (w/w). Sulfur-oxidizing activity of the strain AZCT-M125-5 produced 281 and 262 mg/g of sulfate and a sulfur removal of 60% and 45.7% when the pulp density was set at 8.25 and 16.5% (w/v), respectively. In comparison, the strain A. ferrooxidans ATCC 53987 showed a lower sulfur-oxidizing activity with a sulfate production of 25.6 and 12.7 mg/g and a sulfur removal of 6% and 2.5% at the same pulp densities, respectively. Microbial growth was limited by pulp densities higher than 25% (w/v) of industrial waste with minimal sulfur-oxidizing activity and sulfur removal. The rate of sulfur removal for Acidithiobacillus thioxidans AZCT-M125-5 and Acidithiobacillus ferrooxidans ATCC 53987 was 0.185 and 0.0159 mg S g(-1) h(-1) with a pulp density of 16.5% (w/v), respectively. This study demonstrated that Acidithiobacillus thiooxidans AZCT-M125-5 possesses a high sulfur-oxidizing activity, even at high sulfur concentration, which allows the treatment of hazardous materials. PMID:24171423

  14. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    SciTech Connect

    LUKE, S.N.

    1999-02-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

  15. Croatian refiner meets waste water treatment standards, reduces fines

    SciTech Connect

    Meier, A.L.; Nikolic, O.

    1995-11-27

    A new approach to waste water treatment at a refinery in Croatia produces effluent that not only meets the region`s regulations for disposal into the Adriatic Sea, but also surpasses the refinery`s specifications for recycling process water. Key to the dramatic reduction in pollutants was the installation of a Sandfloat unit developed by Krofta Engineering Corp. The Sandfloat unit is a dissolved air flotation clarifier that combines flocculation, flotation, and multilayer filtration to produce high-quality effluent. In fact, the effluent from the unit has a lower hydrocarbon concentration than water from the underground wells that supply process water to the refinery. While similar systems have been used for decades in industrial applications, this is the first time a Sandfloat unit has been installed in an oil refinery. The article describes the problem, refinery operations, treatment costs, and effluent recycling.

  16. The HRA-SOLARIUM project: processing of historical waste on the Belgoprocess site (Belgium): project description and lessons learned after 3 years operations

    SciTech Connect

    Cuchet, J.M.; Luycx, P.; Wathion, M.; Willems, M.; De Goeyse, A.; Braeckeveldt, M.

    2007-07-01

    At the end of the 80's, the Belgian State ordered an inventory of the liabilities of the Belgian nuclear programme, to be fully or partially financed by them. ONDRAF/NIRAS (National Agency for Radioactive Waste and Enriched Fissile Materials) was entrusted with the management of the waste and the development of a programme for the clearance of the identified liabilities. One of these liabilities is the treatment and conditioning of some 200 m3 of widely varying high- and medium level waste. The gross volume of primary and secondary packages amounts to 2,600 m{sup 3}. As the waste is stored in vaults or in concrete shielding containers and no appropriate treating and conditioning facilities are in operation, the HRA/SOLARIUM project was launched. The bulk of these wastes, of which 95% are solids, the remainder consisting of mainly solidified liquids, have been produced between 1967 and 1988. They originate from various research programmes and reactor operation at the Belgian nuclear energy research centre SCK.CEN, isotope production, decontamination and dismantling operations. About 4,800 packages of various types are concerned and must be treated (standard steel barrels, special containers, shielded overpacks,... ); they contain medium-active wastes (solid or liquid), radium bearing or not, {beta}/{gamma} or {alpha}/{beta}/{gamma}, and special wastes (Al, spent resins, Na/Nak,...). The new HRA/SOLARIUM facilities, located on site 2 of Belgoprocess in Mol, have been commissioned in the 2. semester 2003. The paper describes the project itself and focuses on the lessons learned from first operation years. (authors)

  17. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  18. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    SciTech Connect

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  19. Biological waste-water treatment of azo dyes

    SciTech Connect

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  20. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9

    SciTech Connect

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.