These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Presence and Distribution of Organic Wastewater Compounds in Wastewater,  

E-print Network

Presence and Distribution of Organic Wastewater Compounds in Wastewater, Surface, Ground.W., Meyer, M.T., and Zaugg, S.D., 2004, Presence and distri- bution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02: U.S. Geological Survey Scientific

2

Non-targeted analyses of organic compounds in urban wastewater.  

PubMed

A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13) C and (1) H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25354334

Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

2014-10-29

3

Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands  

USGS Publications Warehouse

The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

2004-01-01

4

MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS  

EPA Science Inventory

Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

5

ORGANIC COMPOUNDS IN AN INDUSTRIAL WASTEWATER. THEIR TRANSPORT INTO SEDIMENTS  

EPA Science Inventory

The wastewater from a small specialty chemicals manufacturing plant located on the Pawtuxet River (Rhode Island, USA) has contaminated the water and sediment of that river, the Pawtuxet Cove, the Providence River, and (to a lesser extent) the Narragansett Bay. Since the compounds...

6

Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer.  

PubMed

Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system. PMID:19195779

Chang, Meng-Wen; Chern, Jia-Ming

2009-08-15

7

PARTITIONING OF TOXIC ORGANIC COMPOUNDS ON MUNICIPAL WASTEWATER TREATMENT PLANT SOLIDS  

EPA Science Inventory

Fundamental aspects of partitioning of toxic organic compounds on municipal wastewater treatment plant solids have been investigated. Sorption on wastewater solids was not affected by solids-to-liquid ratio. Kinetic data on sorption showed an initial rapid uptake followed by a sl...

8

The genetic toxicology of organic compounds in natural waters and wastewaters  

SciTech Connect

This review was drawn from the literature describing genotoxic organic compounds in natural water and wastewater, as well as from recent discussions with industrial scientists and environmental regulators. Testing of wastewaters for genotoxicity may become a routine requirement for some industrial wastewater discharge permits, not unlike the more common requirement for routine aquatic toxicity tests. The stimuli for this are concerns that aquatic organisms inhabiting waters impacted by wastewater discharges suffer an increased risk of genetic damage or cancer, and that humans utilizing these waters may suffer similar genetic or carcinogenic risks. Some evidence suggests that neoplasia in aquatic organisms is related to habitat contamination, yet field evaluations fail to substantiate adequately a cause-and-effect relationship. Because aquatic organisms respond like mammals to the same genotoxic compounds, the increased burden of genotoxic compounds to the environment may impact certain endemic species. Wastewater discharges may be one source of genotoxic organic compounds in those impacted areas. With respect to potential human health impacts, evidence is supportive of increased cancer risk to individuals drinking water from surface sources; however, this risk may or may not relate to whether the drinking water source received input of wastewater discharges or known carcinogens. Throughout the published literature reviewed herein, the Salmonella/Ames gene mutation test was widely used to assess genotoxic activity, although studies using indigenous plants and aquatic organisms as in vivo monitors of genotoxic activity exist. No 'standard' or frequently followed protocols for sample collection, sample processing, selection of tests or their conduct, or interpretation of data exist for most of the genotoxicity studies reviewed. 197 references.

Stahl, R.G. Jr. (E.I. du Pont de Nemours and Company, Central Research and Development. Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE (United States))

1991-08-01

9

Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport  

USGS Publications Warehouse

The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate that the detections reported for ground-water samples represented low-level field or laboratory contamination, and it would appear that coliphage were effectively attenuated to less than 1 PFU/100 mL over distances of several feet of transport in the La Pine aquifer and (or) overlying unsaturated zone. Organic wastewater compounds were frequently detected in onsite wastewater. Of the 63 organic wastewater compounds in the analytical schedule, 45 were detected in the 21 samples of onsite wastewater. Concentrations of organic wastewater compounds reached a maximum of 1,300 ug/L (p-cresol). Caffeine was detected at concentrations as high as 320 ug/L. Fourteen of the 45 compounds were detected in more than 90 percent of onsite wastewater samples. Fewer (nine) organic wastewater compounds were detected in ground water, despite the presence of nitrate and chloride likely from onsite wastewater sources. The nine organic wastewater compounds that were detected in ground-water samples were acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), caffeine, cholesterol, hexahydrohexamethyl-cyclopentabenzopyran, N,N-diethyl-meta-toluamide (DEET), tetrachloroethene, tris (2-chloroethyl) phosphate, tris (dichloroisopropyl) phosphate, and tributyl phosphate. Frequent detection of household-chemical type organic wastewater compounds in onsite wastewater provides evidence that some of these organic wastewater compounds may be useful indicators of human waste effluent dispersal in some hydrologic environments. The occurrence of organic wastewater compounds in ground water downgradient from onsite wastewater treatment systems demonstrates that a subgroup of organic wastewater compounds is transported in the La Pine aquifer. The consistently low concentrations (generally less than 1 ug/L) of organic wastewater compounds in water samples collected from wells located no more than 19 feet from drainfield lines indicates that the reactivity (sorption, degradation) of this suite of organic waste

Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

2005-01-01

10

MICROBIAL REMOVAL OF WASTEWATER ORGANIC COMPOUNDS AS A FUNCTION OF INPUT CONCENTRATION IN SOIL COLUMNS  

EPA Science Inventory

The fate of six organic compounds during rapid infiltration of primary wastewater through soil columns was studied. Breakthrough profiles of o-phenylphenol were relatively consistent during the test, with fractional breakthrough (mass output/mass input) being independent of input...

11

ANAEROBIC INHIBITION OF TRACE ORGANIC COMPOUND REMOVAL DURING RAPID INFILTRATION OF WASTEWATER  

EPA Science Inventory

When soil columns were operated aerobically on a flooding-drying schedule in a previous study, good removals were observed for several organic compounds at concentrations ranging from 1 to 1,000 micrograms/l per liter in primary wastewater. In this study, fractional breakthrough ...

12

Production of a High Efficiency Microbial Flocculant by Proteus mirabilis TJ-1 Using Compound Organic Wastewater  

NASA Astrophysics Data System (ADS)

The production of a high efficiency microbial flocculant (MBF) by Proteus mirabilis TJ-1 using compound organic wastewater was investigated. To cut down the cost of the MBF production, several nutritive organic wastewaters were selected to replace glucose and peptone as the carbon source and the nitrogen source in the optimized medium of strain TJ-1, respectively. The compound wastewater of the milk candy and the soybean milk was found to be good carbon source and nitrogen source for this strain to produce MBF. The cost-effective culture medium consists of (per liter): 800 mL wastewater of milk candy, 200 mL wastewater of soybean milk, 0.3 g MgSO4?7 H2O, 5 g K2HPO4, 2 g and KH2PO4, pH 7.0. The economic cost for the MBF production can be cut down over a half by using the developed culture medium. Furthermore, the utilization of the two wastewaters in the preparation of culture medium of strain TJ-1 can not only save their big treatment cost, but also realize their resource reuse.

Zhang, Zhiqiang; Xia, Siqing; Zhang, Jiao

2010-11-01

13

Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater.  

PubMed

Organic components in olive mill wastewater (OMW) were analyzed by exhaustive solvent extraction of the lyophilisate followed by pre-chromatographic derivatization techniques and GC/MS-analysis of the extracts. Simple biophenols including tyrosol (Tyr), hydroxytyrosol (OH-Tyr) and homovanillic alcohol as well as complex biophenols including decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon proved most abundant analytes. Hydroxylated benzoic and cinnamic acids are less abundant, which may indicate a humification process to have occurred. The pattern of organic components obtained from native OMW was compared with that obtained from hydrothermal carbonization (HTC) of the waste product. Former results provided strong evidence that HTC of OMW at 220°C for 14h results in an almost complete hydrolysis of complex aglycons. However, simple biophenols were not decomposed on hydrothermal treatment any further. Phenol and benzenediols as well as low molecular weight organic acids proved most abundant analytes which were generated due to HTC. Similarly to aglycons, lipids including most abundant acylglycerines and less abundant wax esters were subjected almost quantitatively to hydrolysis under hydrothermal conditions. Fatty acids (FAs) released from lipids were further decomposed. The pathways of volatile analytes in both native OMW and aqueous HTC solutions were studied by solventless headspace-Solid Phase Micro Extraction. Basically, a wide array low molecular alcohols and ketones occurring in native OMW survived the HTC process. PMID:23648325

Poerschmann, J; Weiner, B; Baskyr, I

2013-09-01

14

Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09  

USGS Publications Warehouse

Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compound

Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

2012-01-01

15

Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values.  

PubMed

The aim of the current study was the exploitation of agro-industrial wastes or by-products such as olive mill wastewater (OMW) and defective wines. A cost-effective system for their maximum exploitation is suggested, using a combined process of membrane filtration and other physicochemical processes. Wastewaters are first treated in a membrane system (prefiltration, ultrafiltration, nanofiltration, and reverse osmosis) where pure water and other organic fractions (by-products) are obtained. Organic fractions, called hereafter byproducts and not wastes, are further treated for the separation of organic compounds and isolation of high added value products. Experiments were performed with OMW and defective wines as characteristic agro-industrial wastewaters. Profit from the exploitation of agro-industrial wastewaters can readily help the depreciation of the indeed high cost process of membrane filtration. The simple phenolic fraction of the OMW was successfully isolated from the rest of the waste, and problems occurring during winemaking, such as high volatile acidity and odours, were tackled. PMID:24434988

Zagklis, Dimitris P; Paraskeva, Christakis A

2014-01-01

16

Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae.  

PubMed

Batch experiments were carried out for 7 days to investigate the simultaneous removal of various organic and inorganic contaminants including total nitrogen (TN), total phosphorus (TP), metals, pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs), and estrogenic activity in wastewater by four freshwater green microalgae species, Chlamydomonas reinhardtii, Scenedesmus obliquus, Chlorella pyrenoidosa and Chlorella vulgaris. After treatment for 7 days, 76.7-92.3% of TN, and 67.5-82.2% of TP were removed by these four algae species. The removal of metals from wastewater by the four algae species varied among the metal species. These four algae species could remove most of the metals efficiently (>40% removal), but showed low efficiencies in removing Pb, Ni and Co. The four algae species were also found to be efficient in removing most of the selected organic compounds with >50% removal, and the estrogenic activity with removal efficiencies ranging from 46.2 to 81.1% from the wastewater. Therefore, algae could be harnessed to simultaneously remove various contaminants in wastewater. PMID:24953257

Zhou, Guang-Jie; Ying, Guang-Guo; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Peng, Fu-Qiang

2014-08-01

17

Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain  

USGS Publications Warehouse

Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.

Phillips, P.; Chalmers, A.

2009-01-01

18

[Source emission characteristics and impact factors of volatile halogenated organic compounds from wastewater treatment plant].  

PubMed

A low enrichment method of using Tenax as absorbent and liquid nitrogen as refrigerant has been established to sample the volatile halogenated organic compounds in Guangzhou Liede municipal wastewater treatment plant as well as its ambient air. The composition and concentration of target halogenated hydrocarbons were analyzed by combined thermal desorption/GC-MS to explore its sources profile and impact factors. The result showed that 19 halogenated organic compounds were detected, including 11 halogenated alkanets, 3 halogenated alkenes, 3 halogenated aromatic hydrocarbons and 2 haloesters, with their total concentrations ranged from 34.91 microg x m(-3) to 127.74 microg x m(-3) and mean concentrations ranged from n.d. to 33.39 microg x m(-3). Main pollutants of the studied plant were CH2Cl2, CHCl3, CFC-12, C2H4Cl2, CFC-11, C2HCl3 and C2Cl4, they came from the wastewater by volatilization. Among the six processing units, the dehydration room showed the highest level of halogenated organic compounds, followed by pumping station, while the sludge thickener was the lowest. The emissions from pumping station, aeration tank and biochemical pool were significantly affected by temperature and humidity of environment. PMID:22468521

He, Jie; Wang, Bo-Guang; Liu, Shu-Le; Zhao, De-Jun; Tang, Xiao-Dong; Zou, Yu

2011-12-01

19

The effect of mean cell residence time on the adsorbability of dissolved organic compounds found in petrochemical wastewaters  

E-print Network

THF EFFECT OF MEAN CELL RESIDENCE TIME ON THE ADSORBABILITY OF DISSOLVED ORGANIC COMPOUNDS FOUND IN PETROCHEMICAL WASTEWATERS A Thesis by TIMOTHY LURING JOHNSON Submitted to the Graduate College of Texas A&M University ir, Partia. fulfillment... Compounds Found in Petrochemical Mastewaters (August 1979) Timothy Loring Johnson, B. S. , University of Missouri-Columbia Chairman of Advisory Committee: Dr. Thomas D. Reynolds A sample of untreated petrochem1cal wastewater was taken from the influent...

Johnson, Timothy Loring

1979-01-01

20

Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005  

USGS Publications Warehouse

Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak

Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

2007-01-01

21

Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02  

USGS Publications Warehouse

Selected organic wastewater compounds (OWCs) such as household, industrial, and agricultural-use compounds, pharmaceuticals, antibiotics, and sterols and hormones were measured at 65 sites in Minnesota as part of a cooperative study among the Minnesota Department of Health, Minnesota Pollution Control Agency, and the U.S. Geological Survey. Samples were collected in Minnesota during October 2000 through November 2002 and analyzed for the presence and distribution of 91 OWCs at sites including wastewater treatment plant influent and effluent; landfill and feedlot lagoon leachate; surface water; ground water (underlying sewered and unsewered mixed urban land use, a waste dump, and feedlots); and the intake and finished drinking water from drinking water facilities. There were 74 OWCs detected that represent a wide variety of use. Samples generally comprised a mixture of compounds (average of 6 OWCs) and 90 percent of the samples had at least one OWC detected. Concentrations for detected OWCs generally were less than 3 micrograms per liter. The ten most frequently detected OWCs were metolachlor (agricultural-use herbicide); cholesterol (sterol primarily associated with animal waste); caffeine (stimulant), N,N-diethyl-meta-toluamide (DEET) (topical insect repellant); bromoform (disinfection by product); tri(2-chloroethyl)phosphate (flame-retardant and plastic component); beta-sitosterol (plant sterol that is a known endocrine disruptor); acetyl-hexamethyl-tetrahydro- naphthalene (AHTN) (synthetic musk widely used in personal care products, and a known endocrine disruptor); bisphenol-A (plastic component and a known endocrine disruptor); and cotinine (metabolite of nicotine). Wastewater treatment plant influent and effluent, landfill leachate, and ground water underlying a waste dump had the greatest number of OWCs detected. OWC detections in ground-water were low except underlying the one waste dump studied and feedlots. There generally were more OWCs detected in surface water than ground water, and there were twice as many OWCs detected in the surface water sites downstream from wastewater treatment plant (WWTP effluent than at sites not directly downstream from effluent. Comparisons among site classifications apply only to sites sampled during the study. Results of this study indicate ubiquitous distribution of measured OWCs in the environment that originate from numerous sources and pathways. During this reconnaissance of OWCs in Minnesota it was not possible to determine the specific sources of OWCs to surface, ground, or drinking waters. The data indicate WWTP effluent is a major pathway of OWCs to surface waters and that landfill leachate at selected facilities is a potential source of OWCs to WWTPs. Aquatic organism or human exposure to some OWCs is likely based on OWC distribution. Few aquatic or human health standards or criteria exist for the OWCs analyzed, and the risks to humans or aquatic wildlife are not known. Some OWCs detected in this study are endocrine disrupters and have been found to disrupt or influence endocrine function in fish. Thirteen endocrine disrupters, 3-tert-butyl-4-hydoxyanisole (BHA), 4- cumylphenol, 4-normal-octylphenol, 4-tert-octylphenol, acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), benzo[a]pyrene, beta-sitosterol, bisphenol-A, diazinon, nonylphenol diethoxylate (NP2EO), octyphenol diethoxylate (OP2EO), octylphenol monoethoxylate (OP1EO), and total para-nonylphenol (NP) were detected. Results of reconnaissance studies may help regulators who set water-quality standards begin to prioritize which OWCs to focus upon for given categories of water use.

Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

2004-01-01

22

Empirical Model for Predicting Concentrations of Refractory Hydrophobic Organic Compounds in Digested Sludge from Municipal Wastewater Treatment Plants  

PubMed Central

An empirical model is presented allowing for the prediction of concentrations of hydrophobic organic compounds (HOCs) prone to accumulate and persist in digested sludge (biosolids) generated during conventional municipal wastewater treatment. The sole input requirements of the model are the concentrations of the individual HOCs entering the wastewater treatment plant in raw sewage, the compound’s respective pH-dependent octanol-water partitioning coefficient (DOW), and an empirically determined fitting parameter (pfit) that reflects persistence of compounds in biosolids after accounting for all potential removal mechanisms during wastewater treatment. The accuracy of the model was successfully confirmed at the 99% confidence level in a paired t test that compared predicted concentrations in biosolids to empirical measurements reported in the literature. After successful validation, the resultant model was applied to predict levels of various HOCs for which occurrence data in biosolids thus far are lacking. PMID:20161626

Deo, Randhir P.; Halden, Rolf U.

2009-01-01

23

Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry  

USGS Publications Warehouse

Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample types were determined by use of the capillary-column gas chromatography/mass spectrometry. The performance of each method was assessed by using data on recoveries of compounds in fortified surface-water, wastewater, and reagent-water samples. These experiments (referred to as spike experiments) consist of fortifying (or spiking) samples with known amounts of target analytes. Surface-water-spike experiments were performed by using samples obtained from a stream in Colorado (unfiltered method) and a stream in New York (filtered method). Wastewater spike experiments for both the filtered and unfiltered methods were performed by using a treated wastewater obtained from a single wastewater treatment plant in New York. Surface water and wastewater spike experiments were fortified at both low and high concentrations and termed low- and high-level spikes, respectively. Reagent water spikes were assessed in three ways: (1) set spikes, (2) a low-concentration fortification experiment, and (3) a high-concentration fortification experiment. Set spike samples have been determined since 2009, and consist of analysis of fortified reagent water for target compounds included for each group of 10 to18 environmental samples analyzed at the NWQL. The low-concentration and high-concentration reagent spike experiments, by contrast, represent a one-time assessment of method performance. For each spike experiment, mean recoveries ranging from 60 to 130 percent indicate low bias, and relative standard deviations (RSDs) less than ( Of the compounds included in the filtered method, 21 had mean recoveries ranging from 63 to 129 percent for the low-level and high-level surface-water spikes, and had low ()132 percent]. For wastewater spikes, 24 of the compounds included in the filtered method had recoveries ranging from 61 to 130 percent for the low-level and high-level spikes. RSDs were 130 percent) or variable recoveries (RSDs >30 percent) for low-level wastewater spikes, or low recoveries ( Of the compounds included in the unfiltered method, 17 had mean spike recoveries ranging from 74

Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

2014-01-01

24

Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control.  

PubMed

This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000 ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1,000 ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1,000 ppm as CH(4) from primary treatment facilities are less than USD 0.1 for per m(3) wastewater treatment capacity. PMID:17825475

Cheng, Wen-Hsi; Hsu, Shu-Kang; Chou, Ming-Shean

2008-09-01

25

AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER  

E-print Network

#12;AEROBIC BIOTRANSFORMATION OF TOXIC ORGANICS IN WASTEWATER DOE FRAP 1997-15 Prepared for in both domestic and industrial wastewater. The release of these compounds during wastewater treatment to predict the mass of the VOCs in the wastewater treated by biotransformation and the mass stripped

26

NON-THERMAL PLASMA TECHNOLOGY FOR DEGRADATION OF ORGANIC COMPOUNDS IN WASTEWATER CONTROL: A CRITICAL REVIEW  

Microsoft Academic Search

Non-thermal plasma is an emerging technique in environmental pollution control technology, produced by the high-voltage discharge processes and therefore a large amount of high energy electrons and active species are generated. The degradation of difficult-degraded organic pollutions will be greatly enhanced by the active species generated from non-thermal plasma process. However, research on non-thermal plasma technology on organic wastewater cleaning

Hsu-Hui Cheng; Shiao-Shing Chen; Yu-Chi Wu; Din-Lit Ho

27

Adiabatic thin-film evaporation of volatile organic compounds from industrial wastewater into a natural gas receiving stream  

SciTech Connect

This work develops and presents design parameters for a novel unit operation: Adiabatic thin-film evaporation. Liquid flowing downward in a thin film is contacted with gas flowing upward. For applications involving the removal of volatile organic compounds (VOCs) from wastewater, this unit operation is employed and the process design is conducted. In order to prevent cross-media transfer of pollutants, the use of natural gas for the receiving stream is recommended. Subsequent use of the natural gas for fuel would result in destruction of the VOCs. Relative advantages and disadvantages of other technologies for this applications are discussed in detail. 29 refs., 4 figs., 2 tabs.

Phillips, J.B.; Hindawi, M.A.; Carden S.R. [Engineering Development Institute, Tucson, AZ (United States)

1996-12-31

28

Fast online emission monitoring of volatile organic compounds (VOC) in wastewater and product streams (using stripping with direct steam injection).  

PubMed

Open-loop stripping analysis (also referred to as dynamic headspace) is a very flexible and robust technology for online monitoring of volatile organic compounds in wastewater or coolant. However, the quality and reliability of the analytical results depend strongly on the temperature during the stripping process. Hence, the careful and constant heating of the liquid phase inside the stripping column is a critical parameter. In addition, this stripping at high temperatures extends the spectrum of traceable organics to less volatile and more polar compounds with detection limits down to the ppm-level. This paper presents a novel and promising approach for fast, efficient, and constant heating by the direct injection of process steam into the strip medium. The performance of the system is demonstrated for temperatures up to 75 °C and traces of various hydrocarbons in water (e.g., tetrahydrofuran, methanol, 1-propanol, n-butanol, ethylbenzene). PMID:22186871

Schocker, Alexander; Lissner, Bert

2012-03-01

29

Occurrence of organic wastewater compounds in drinking water, wastewater effluent, and the Big Sioux River in or near Sioux Falls, South Dakota, 2001-2004  

USGS Publications Warehouse

The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one OWC was detected at a concentration greater than the study reporting level (metolachlor; 0.0040 ug/L). During base-flow conditions, Big Sioux River sites upstream from the WWTP discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for upstream sites than downstream sites during both base-flow and runoff conditions.discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for

Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.

2006-01-01

30

THE EFFECT OF OZONATION OF ORGANICS IN WASTEWATER  

EPA Science Inventory

The effect of ozone treatment of domestic wastewater and various model compounds has been determined with respect to trace organic components. Organic constituents were identified in wastewater that was treated with ozone at the Upper Thompson Sanitation District Treatment Plant,...

31

Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant.  

PubMed

In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments. PMID:15262161

Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B

2004-08-15

32

Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant  

USGS Publications Warehouse

In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments. ?? 2004 Elsevier B.V. All rights reserved.

Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.

2004-01-01

33

ANALYSIS OF CHLORINATED ORGANIC COMPOUNDS FORMED DURING CHLORINATION OF WASTEWATER PRODUCTS  

EPA Science Inventory

Chemical byproducts produced during the chlorination of municipal wastewater were examined in a study that employed several specially modified analytical methodologies. Volatile byproducts were examined by the use of gas chromatography with selective detectors and gas chromatogra...

34

Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds.  

PubMed

Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance. PMID:23041295

Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin

2012-11-01

35

Summary of Organic Wastewater Compounds and Other Water-Quality Data in Charles County, Maryland, October 2007 through August 2008  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the government of Charles County, Maryland, and the Port Tobacco River Conservancy, Inc., conducted a water-quality reconnaissance and sampling investigation of the Port Tobacco River and Nanjemoy Creek watersheds in Charles County during October 2007 and June-August 2008. Samples were collected and analyzed for major ions, nutrients, organic wastewater compounds, and other selected constituents from 17 surface-water sites and 11 well sites (5 of which were screened in streambed sediments to obtain porewater samples). Most of the surface-water sites were relatively widely spaced throughout the Port Tobacco River and Nanjemoy Creek watersheds, although the well sites and some associated surface-water sites were concentrated in one residential community along the Port Tobacco River that has domestic septic systems. Sampling for enterococci bacteria was conducted by the Port Tobacco River Conservancy, Inc., at each site to coordinate with the sampling for chemical constituents. The purpose of the coordinated sampling was to determine correlations between historically high, in-stream bacteria counts and human wastewater inputs. Chemical data for the groundwater, porewater, and surface-water samples are presented in this report.

Lorah, Michelle M.; Soeder, Daniel J.; Teunis, Jessica A.

2010-01-01

36

Organic contaminants in onsite wastewater treatment systems  

USGS Publications Warehouse

Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

2007-01-01

37

Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005  

USGS Publications Warehouse

Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

Ferrell, G.M.

2009-01-01

38

Odour-causing organic compounds in wastewater treatment plants: evaluation of headspace solid-phase microextraction as a concentration technique.  

PubMed

Odorous emissions from wastewater collection systems and treatment facilities affecting quality of life have given local populations reasons to complain for decades. In order to characterise the composition of such malodorous emissions, a method based on headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometry (GC-MS) has been developed to determine a list of compounds belonging to different chemical families, which have been previously described as potentially responsible for odour complaints, in wastewater matrices. Some parameters affecting the chromatographic behaviour of the target compounds were studied (e.g. splitless time). Experimental conditions affecting the extraction process (temperature, time and salt content) were evaluated by applying a factorial design at two levels. Using a DVB/CAR/PDMS fibre and the optimised HS-SPME conditions, calibration curves were constructed with detection limits in the range of 0.003-0.6 ?g L(-1). Recovery values higher than 70% and relative standard deviation values between 5 and 16% (n=5) were obtained for all compounds and found to be satisfactory. In wastewater samples, a decrease in the concentration of the analysed compounds through the different treatments was observed. Most of the target analytes were found in influent samples while only octanal and carvone were detected in samples from the plant effluent. PMID:21411101

Godayol, Anna; Alonso, Mònica; Besalú, Emili; Sanchez, Juan M; Anticó, Enriqueta

2011-07-29

39

Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida  

USGS Publications Warehouse

An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

2012-01-01

40

Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron  

Microsoft Academic Search

Pre-treatment of olive mill wastewater (OMW) by Fenton Oxidation with zero-valent iron and hydrogen peroxide was investigated to improve phenolic compounds degradation and the chemical oxygen demand (COD) removal. Experimental procedure is performed with diluted OMW with COD 19g\\/L and pH 5.2. The application of zero-valent Fe\\/H2O2 procedure allows high removal efficiency of pollutants from OMW. The optimal experimental conditions

M. Kallel; C. Belaid; T. Mechichi; M. Ksibi; B. Elleuch

2009-01-01

41

Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant  

Microsoft Academic Search

In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples

Paul E. Stackelberg; Edward T. Furlong; Michael T. Meyer; Steven D. Zaugg; Alden K. Henderson; Dori B. Reissman

2004-01-01

42

[Chlorination characteristic and disinfection by-product formation potential of dissolved organic nitrogen compounds in municipal wastewater].  

PubMed

In order to explore the chlorinated disinfection by-product formation potential and chemical structure of dissolved organic nitrogen compounds in municipal wastewater, the water quality parameters, such as DON, DOC, NH4(+) -N and UV254 etc, were determined in the secondary effluent and the molecular weight distribution of the DON was investigated before and after the reaction with chlorine. DBPs were determined by gas chromatography, and the changes of DON were characterized using Fourier transform infrared spectroscopy and three-dimensional fluorescence spectroscopy before and after the reaction with chlorine. The results showed that DON, DOC, NH4(+) -N and UV254 were 2.47 mg x L(-1), 14.45 mg x L(-1), 5.42 mg x L(-1) and 15.88 m(-1), and m(DOC)/m(DON) and SUVA were 5.85 mg x mg(-1) and 1.09 L x (m x mg)(-1) in the secondary effluent. After the reaction with chlorine, the proportion of small molecular weight (M(r) < 6 000) DON increased from 78% to 70% , and the proportion of large molecular weight (M(r) > 20 000) DON decreased from 21% to 14%. The medium molecular weight (M(r)6000-20000) DON accounted for a small proportion and was unchanged. Among the DBPs, the concentration of bromochloroacetonitrile was the highest, which was 6.887 microg x L(-1), and the concentration of trichloroacetonitrile was the lowest, which was only 0.217 microg x L(-1). In FTIR spectrum, the dominating bands were at 3 500-3 400, 2 260-2 200, 1 700-1 640, 1 500-1 450, 1 150-1 100 and 850-800 cm(-1) respectively before the reaction, and the 1 380-1 350 cm(-1) and 600-550 cm(-1) bands were the dominating bands in addition to the original absorbing regions after the reaction. 3DEEM revealed that the variation of DON depends intimately on tryptophan protein-like substances, aromatic protein-like substances and fulvic acid-like substances. PMID:24191563

Liu, Bing; Yu, Xin; Yu, Guo-Zhong; Gu, Li; Zhao, Cheng-Mei; Zhai, Hui-Min; Li, Qing-Fei

2013-08-01

43

Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples  

USGS Publications Warehouse

The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds, using less rigorous identification criteria than is required for reporting data to the National Water Information System database. For the FCS, these data are considered adequate to indicate 'evidence of presence,' and were used only for diagnostic purposes. Evidence of VOCs and WICs at low concentrations near or less than the long-term method detection level can indicate a contamination problem that could affect future datasets if method detection levels were ever to be lowered. None of the 13 VOCs and 16 WICs included in this study were quantified in the VPBW collected and analyzed at the NWQL. This finding indicates that the VPBW was 'contaminant free' when it was shipped from the laboratory to each of the field offices, although some compounds were present in some of the samples at concentrations less than minimum detection levels based on evidence-of-presence data. Toluene, m- and p-xylene, benzene, and carbon disulfide were each quantified in an FCS field-blank analysis, but not in the associated groundwater sample. The native-water rinse of the sampling equipment conducted just before collection of the groundwater sample likely reduced low-level contamination with respect to these compounds. VOCs had lower detection frequencies in source-solution blanks and field blanks collected during the FCS than in the historical dataset collected by the NAWQA Program during 1996-2008. The detection frequency of toluene in field blanks was reduced about an order of magnitude from about 38 percent in the historical NAWQA dataset to 3.1 percent in the FCS dataset. Other VOCs quantified in 5 percent or more of the field blanks in the NAWQA dataset, but not quantified in the FCS field-blank analyses, were ethylbenzene, o-xylene, styrene, 1,2,4-trimethylbenzene, chloroform, dichloromethane, acetone, 2-butanone, and tetrahydrofuran. The lower detection frequencies of most VOCs for the FCS, compared to historical NAWQA data, can most likely be attributed to the use

Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

2011-01-01

44

Changes in reproductive biomarkers in an endangered fish species (bonytail chub, Gila elegans) exposed to low levels of organic wastewater compounds in a controlled experiment  

USGS Publications Warehouse

In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 ?g/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p = 0.021) yet higher levels of 17?-estradiol (p = 0.002) and vitellogenin (p = 0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17?-estradiol than control females (p = 0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r = 0.00) versus control (r = ?0.66) female fish. We found a similar, but not as significant, trend between treatment (r = ?0.45) and control (r = ?0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed.

Walker, David B.; Paretti, Nicholas V.; Cordy, Gail; Gross, Timothy S.; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Matter, William J.; Gwinn, Jessica; McIntosh, Dennis

2009-01-01

45

Changes in reproductive biomarkers in an endangered fish species (bonytail chub, Gila elegans) exposed to low levels of organic wastewater compounds in a controlled experiment  

USGS Publications Warehouse

In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 ??g/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p = 0.021) yet higher levels of 17??-estradiol (p = 0.002) and vitellogenin (p = 0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17??-estradiol than control females (p = 0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r = 0.00) versus control (r = -0.66) female fish. We found a similar, but not as significant, trend between treatment (r = -0.45) and control (r = -0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed. ?? 2009 Elsevier B.V.

Walker, D.B.; Paretti, N.V.; Cordy, G.; Gross, T.S.; Zaugg, S.D.; Furlong, E.T.; Kolpin, D.W.; Matter, W.J.; Gwinn, J.; McIntosh, D.

2009-01-01

46

Occurrence of Selected Pharmaceuticals, Personal-Care Products, Organic Wastewater Compounds, and Pesticides in the Lower Tallapoosa River Watershed near Montgomery, Alabama, 2005  

USGS Publications Warehouse

Synthetic and natural organic compounds derived from agricultural operations, residential development, and treated and untreated sanitary and industrial wastewater discharges can contribute contaminants to surface and ground waters. To determine the occurrence of these compounds in the lower Tallapoosa River watershed, Alabama, new laboratory methods were used that can detect human and veterinary antibiotics; pharmaceuticals; and compounds found in personal-care products, food additives, detergents and their metabolites, plasticizers, and other industrial and household products in the environment. Well-established methods for detecting 47 pesticides and 19 pesticide degradates also were used. In all, 186 different compounds were analyzed by using four analytical methods. The lower Tallapoosa River serves as the water-supply source for more than 100,000 customers of the Montgomery Water Works and Sanitary Sewer Board. Source-water protection is a high priority for the Board, which is responsible for providing safe drinking water. The U.S. Geological Survey, in cooperation with the Montgomery Water Works and Sanitary Sewer Board, conducted this study to provide baseline data that could be used to assess the effects of agriculture and residential development on the occurrence of selected organic compounds in the lower Tallapoosa River watershed. Twenty samples were collected at 10 sites on the Tallapoosa River and its tributaries. Ten samples were collected in April 2005 during high base streamflow, and 10 samples were collected in October 2005 when base streamflow was low. Thirty-two of 186 compounds were detected in the lower Tallapoosa River watershed. Thirteen compounds, including atrazine, 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT), hexazinone, metalaxyl, metolachlor, prometryn, prometon, simazine, azithromycin, oxytetracycline, sulfamethoxazole, trimethoprim, and tylosin, had measurable concentrations above their laboratory reporting levels. Concentrations were estimated for an additional 19 compounds that were detected below their laboratory reporting levels. The two most frequently detected compounds were the pesticides atrazine (19 of 20 samples) and simazine (13 of 20 samples). Tylosin, a veterinary antibiotic, was detected in 8 of 20 samples. Other compounds frequently detected at very low concentrations included CIAT and hexazinone (a degradate of atrazine and a pesticide, respectively); camphor (derived from personal-care products or flavorants), para-cresol (various uses including solvent, wood preservative, and in household cleaning products), and N,N-diethyl-m-toluamide (DEET, an insect repellent).

Oblinger, Carolyn J.; Gill, Amy C.; McPherson, Ann K.; Meyer, Michael T.; Furlong, Edward T.

2007-01-01

47

Controlling chlorinated benzene compounds in plant wastewaters  

Microsoft Academic Search

Four treatment schemes were studied for secondary treatment of the wastewaters from a plant producing chlorinated benzene compounds: a biological system; air stripping; steam distillation; and activated carbon preceded by sand filtration. Laboratory tests of the sand filter\\/activated carbon approach showed that it would meet the final limitations set by the regulatory agency. The system would also be capable of

Wroniewicz

1978-01-01

48

SOURCES OF TOXIC COMPOUNDS IN HOUSEHOLD WASTEWATER  

EPA Science Inventory

This report presents the results of a literature search into the occurrence of EPA's selected 129 priority pollutants in household wastewater. The study identifies consumer product categories and general types of products containing the toxic compounds used in and around the home...

49

Elimination costs for different wastewater compounds.  

PubMed

The present report presents the system and discusses the results of the cost calculation for the reduction/elimination of different wastewater and sludge compounds. These costs were calculated for different types of processes at 102 wastewater treatment plants of Emschergenossenschaft/Lippeverband and Aggerverband. Comparing enhanced biological phosphorus removal and precipitation, one of the results indicates that in general the costs for elimination of one kilogram of phosphorus are lower in the plants in which only chemical precipitation is used for P reduction. Further results of the cost calculation will be presented with a discussion of their possible influence on planning decisions. PMID:12926678

Schulz, A; Obenaus, F; Egerland, B; Reicherter, E

2003-01-01

50

BIODEGRADATION AND CARBON ADSORPTION CARCINOGENIC AND HAZARDOUS ORGANIC COMPOUNDS  

EPA Science Inventory

This research program was conducted to determine the capability of biological treatment and activated carbon adsorption to remove chemical carcinogens and other hazardous organic compounds from water and wastewater. Compounds studied were benzidine, 4-nitrobiphenyl, 3,3'-dichloro...

51

Removal of Organic Wastewater Contaminants in Septic Systems Using Advanced Treatment Technologies  

Microsoft Academic Search

Th e detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface- water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially signifi cant route of entry for organic contaminants to the environment. In this study, effl uent samples were collected and analyzed

Jeffrey D. Wilcox; Jean M. Bahr; Curtis J. Hedman; Jocelyn D. C. Hemming; Miel A. E. Barman; Kenneth R. Bradbury

2009-01-01

52

Occurrence and fate of organic contaminants during onsite wastewater treatment  

USGS Publications Warehouse

Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

2006-01-01

53

SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.  

EPA Science Inventory

Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

54

Pharmaceuticals, Hormones, and Other Organic Wastewater  

E-print Network

Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999 To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other as biogenic hormones are released directly to the environment after passing through wastewater treatment

55

Transformation of molecular weight distributions of dissolved organic carbon and UV-absorbing compounds at full-scale wastewater-treatment plants.  

PubMed

The molecular-weight distribution (MWD) of wastewater dissolved-organic carbon (DOC) was determined in samples from seven full-scale wastewater-treatment plants (WWTPs) that use different biological treatments (air activated sludge [air-AS], pure-oxygen AS [O2-AS], and trickling filters). The research objective was to determine how different biological treatments influenced the MWD of wastewater DOC. Primary sedimentation effluent DOC from most of the WWTPs exhibited a skewed distribution toward the low-molecular-weight fraction (MWF) (40 to 50%, < 0.5 K Daltons [KDa]). The Air-AS effluent DOC exhibited a centrally clustered distribution, with the majority of DOC in the intermediate MWF (0.5 to 3 KDa). The O2-AS effluent DOC exhibited a skewed distribution toward the high MWF (> 3 KDa). The removal of DOC by air- and O2-AS bacteria followed trends predicted by a macromolecule degradation model. Trickling-filter effluent DOC exhibited a skewed distribution toward the high MWF (50% DOC, > 3 KDa). PMID:16629265

Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

2006-03-01

56

A framework for identifying characteristic odor compounds in municipal wastewater effluent.  

PubMed

Municipal wastewater often contains trace amounts of organic compounds that can compromise aesthetics of drinking water and undermine public confidence if a small amount of effluent enters the raw water source of a potable water supply. To efficiently identify compounds responsible for odors in wastewater effluent, an analytical framework consisting of gas chromatography with mass spectrometry (GC-MS) and gas chromatography with olfactometry detection (GC-Olf) coupled with flavor profile analysis (FPA) was used to identify and monitor compounds that could affect the aesthetics of drinking water. After prioritizing odor peaks detected in wastewater effluent by GC-Olf, the odorous components were tentatively identified using retention indices, mass spectra and odor descriptors. Wastewater effluent samples were typically dominated by earthy-musty odors with additional odors in the amine, sulfidic and fragrant categories. 2,4,6-trichloroanisole (246TCA), geosmin and 2-methylisoborneol (2MIB) were the main sources of the earthy/musty odors in wastewater effluent. The other odors were attributable to a suite of compounds, which were detected in some but not all of the wastewater effluents at levels well in excess of their odor thresholds. In most cases, the identities of odorants were confirmed using authentic standards. The fate of these odorous compounds, including 2-pyrrolidone, methylnaphthalenes, vanillin and 5-hydroxyvanillin (5-OH-vanillin), should be considered in future studies of water systems that receive effluent from upstream sources. PMID:22981490

Agus, Eva; Zhang, Lifeng; Sedlak, David L

2012-11-15

57

EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS  

EPA Science Inventory

In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

58

Bioremediation of organic pollutants in a radioactive wastewater  

SciTech Connect

Bioremediation holds the promise as a cost effective treatment technology for a wide variety of hazardous pollutants. In this study, the biodegradation of organic compounds discharged together with radioactive wastes is investigated. Nuclear process wastewater was simulated by a mixture of phenol and strontium, which is a major radionuclide found in radioactive wastewater. Phenol was used in the study as a model compound due to its simplicity of molecular structure. Moreover, the biodegradation pathway of phenol is well known. Biodegradation studies were conducted using pure cultures of Pseudomonas aeruginosa and Pseudomonas putida. The rate of phenol degradation by both species was found to be higher in the test without strontium. This suggests some degree of inhibition in the degradation of phenol by strontium. There was no phenol degradation in the sterile controls. The results indicate the feasibility of the biodegradation of organic pollutants discharged in radioactive effluents by specialised microbial cultures. (authors)

Oboirien, Bilainu; Molokwane, P.E.; Chirwa, Evans [Department of Chemical Engineering, University of Pretoria, Pretoria (South Africa)

2007-07-01

59

Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms  

Microsoft Academic Search

Glutaraldehyde (GA), an aliphatic dialdehyde disinfectant, and surfactants, one of the major components of detergents, are widely used in hospitals in order to eliminate pathogenic organisms causing nosocomial infectious diseases. After their use, disinfectants and surfactants reach the wastewater network together. The discharge of chemical compounds from hospital activities into wastewater is also a well-known problem, causing pollution of water

Evens Emmanuel; Khalil Hanna; Christine Bazin; Gérard Keck; Bernard Clément; Yves Perrodin

2005-01-01

60

Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.  

PubMed

Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. PMID:24140682

Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

2014-02-01

61

Occurrence of Endocrine-Disrupting and Other Wastewater Compounds during Water Treatment with Case Studies from Lincoln, Nebraska and Berlin, Germany  

EPA Science Inventory

Except for herbicides, research on the fate and transport of endocrine disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Analytical methods still are being developed, evalua...

62

ORGANIC COMPOUNDS IN FISSION REACTORS. II. THORIO-ORGANIC COMPOUNDS  

Microsoft Academic Search

The advantages of the use of organic liquids in fission reactors to ; minmize corrosion and pressure problems were studied relative to the solution of ; thorium in such fluids. Thorio-organic compounds were prepared from organic ; acids, diketones, and other chelating compounds. Salts of carboxylic and phospho-; organic acids were insoluble. The chelate with dibenzoylmethane was soluble in ;

1960-01-01

63

Chemical procedures to detect carcinogenic compound in domestic wastewater  

NASA Astrophysics Data System (ADS)

This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

S, Abd Manan T.; A, Malakahmad

2013-06-01

64

Removal of phenolic compounds from wastewaters using soybean peroxidase  

SciTech Connect

Toxic and odiferous phenolic compounds are present in wastewaters generated by a variety of industries including petroleum refining, plastics, resins, textiles, and iron and steel manufacturing among others. Due to its commercial availability in purified form, its useful presence in raw plant material, and its proven ability to remove a variety of phenolic contaminants from wastewaters over a wide range of pH and temperature, horseradish peroxidase (HRP) appears to be the peroxidase enzyme of choice in enzymatic wastewater treatment studies. Problems with HRP catalyzed phenol removal, however, include the formation of toxic soluble reaction by-products, the cost of the enzyme, and costs associated with disposal of the phenolic precipitate generated. Enzyme costs are incurred because the enzyme is inactivated during the phenol removal process by various side reactions. While recent work has shown that enzyme inactivation can be reduced using chemical additives, the problem of enzyme cost could be circumvented by using a less expensive source of enzyme. In 1991, the seed coat of the soybean was identified as a very rich source of peroxidase enzyme. Since the seed coat of the soybean is a waste product of the soybean food industry, soybean peroxidase (SBP) has the potential of being a cost effective alternative to HRP in wastewater treatment. In this study, SBP is characterized in terms of its catalytic activity, its stability, and its ability to promote removal of phenolic compounds from synthetic wastewaters. Results obtained are discussed and compared to similar investigations using HRP.

Wright, H.; Nicell, J.A. [McGill Univ., Montreal, Quebec (Canada). Dept. of Civil Engineering and Applied Mechanics

1996-11-01

65

Effect of Electrolyte and Temperature on Volatile Organic Compounds Removal from Wastewater Using Aqueous Surfactant Two-Phase System of Cationic and Anionic Surfactant Mixtures  

Microsoft Academic Search

Benzene, toluene, ethylbenzene, and xylene are frequently observed contaminants in industrial wastewaters causing concerns about environmental and health effects. An aqueous surfactant two-phase (ASTP) extraction system using mixtures of cationic and anionic surfactants have been shown to be a promising surfactant-based separation technique to concentrate solutes such as proteins and dyes from aqueous solution. A phase separation of a surfactant

Punjaporn Weschayanwiwat; Duanghathai Krutlert; John F. Scamehorn

2009-01-01

66

Removal of Xenobiotic Compounds from Water and Wastewater by Advanced Oxidation Processes  

Microsoft Academic Search

\\u000a Advanced oxidation processes (AOPs) constitute a family of redox technologies that have been involved in various environmental\\u000a applications, including, amongst others, the treatment of municipal and industrial wastewater contaminated by various organic\\u000a and inorganic compounds.\\u000a \\u000a \\u000a This chapter focuses on the science and engineering of water and wastewater treatment in relation to AOPs applications. The\\u000a chapter gives a short but necessary

Despo Fatta-Kassinos; Evroula Hapeshi; Sixto Malato; Dionisis Mantzavinos; Luigi Rizzo; Nikos P. Xekoukoulotakis

67

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater  

E-print Network

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater in a cassette-008-1516-0 T. Shimoyama :S. Komukai :K. Watanabe Laboratory of Applied Microbiology, Marine Biotechnology

68

Semivolatile Organic Compounds (SVOCs) Semivolatile organic compounds (SVOCs) are a group of compounds that includes some  

E-print Network

for years indoors, akin to persistent organic pollutants in the outdoor environment (POPs). Many SVOCs alterSemivolatile Organic Compounds (SVOCs) Background Semivolatile organic compounds (SVOCs products, and additives to materials such as vinyl flooring, furniture, clothing, cookware, food packaging

Iglesia, Enrique

69

Response to Comment on "Pharmaceuticals, Hormones, and Other Organic Wastewater  

E-print Network

wastewater contaminants (OWC) at a Superfund landfill site (2) is well taken, as other reports confirm the presence of such compounds at waste-disposal and landfill sites (3). In fact, literature from more than 20

70

Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005  

USGS Publications Warehouse

Beginning in the late 1990's, the U.S. Geological Survey began to develop analytical methods to detect, at concentrations less than 1 microgram per liter (ug/L), emerging water contaminants such as pharmaceuticals, personal-care chemicals, and a variety of other chemicals associated with various human and animal sources. During 1998-2005, the U.S. Geological Survey analyzed the following Michigan water samples: 41 samples for antibiotic compounds, 28 samples for pharmaceutical compounds, 46 unfiltered samples for wastewater compounds (dissolved and suspended compounds), and 113 filtered samples for wastewater compounds (dissolved constituents only). The purpose of this report is to summarize the status of emerging contaminants in Michigan waters based on data from several different project-specific sample-collection efforts in Michigan during an 8-year period. During the course of the 8-year sampling effort, antibiotics were determined at 20 surface-water sites and 2 groundwater sites, pharmaceuticals were determined at 11 surface-water sites, wastewater compounds in unfiltered water were determined at 31 surface-water sites, and wastewater compounds in filtered water were determined at 40 surface-water and 4 groundwater sites. Some sites were visited only once, but others were visited multiple times. A variety of quality-assurance samples also were collected. This report describes the analytical methods used, describes the variations in analytical methods and reporting levels during the 8-year period, and summarizes all data using current (2009) reporting criteria. Very few chemicals were detected at concentrations greater than current laboratory reporting levels, which currently vary from a low of 0.005 ug/L for some antibiotics to 5 ug/L for some wastewater compounds. Nevertheless, 10 of 51 chemicals in the antibiotics analysis, 9 of 14 chemicals in the pharmaceuticals analysis, 34 of 67 chemicals in the unfiltered-wastewater analysis, and 56 of 62 chemicals in the filtered-wastewater analysis were detected. Antibiotics were detected at 7 of 20 tested surface-water sites, but none were detected in 2 groundwater samples. Pharmaceuticals were detected at 7 of 11 surface-water sites. Wastewater compounds were detected at 25 of 31 sites for which unfiltered water samples were analyzed and at least once at all 40 surface-water sites and all 4 groundwater sites for which filtered water samples were analyzed. Overall, the chemicals detected most frequently in Michigan waters were similar to those reported frequently in other studies nationwide. Patterns of chemical detections were site specific and appear to be related to local sources, overall land use, and hydrologic conditions at the time of sampling. Field-blank results provide important information for the design of future sampling programs in Michigan and demonstrate the need for careful field-study design. Field-replicate results indicated substantial confidence regarding the presence or absence of the many chemicals tested. Overall, data reported herein indicate that a wide array of antibiotic, pharmaceutical, and organic wastewater compounds occur in Michigan waters. Patterns of occurrence, with respect to hydrologic, land use, and source variables, generally appear to be similar for Michigan as for other sampled waters across the United States. The data reported herein can serve as a basis for future studies in Michigan.

Haack, Sheridan Kidd

2010-01-01

71

PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS  

EPA Science Inventory

Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

72

Photochemical dimerization of organic compounds  

DOEpatents

At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

Crabtree, Robert H. (Bethany, CT); Brown, Stephen H. (Princeton, NJ); Muedas, Cesar A. (New Haven, CT); Ferguson, Richard R. (Branford, CT)

1992-01-01

73

A novel treatment technique for DMSO wastewater  

Microsoft Academic Search

We have developed an efficient treatment technique for wastewater containing dimethyl sulfoxide [DMSO, (CH3)2SO], a compound used as a photoresist stripping solvent in semiconductor manufacturing processes. Generally, wastewater containing organic compounds can be treated biologically, but with DMSO wastewater, biological treatment is not available because noxious compounds are produced that harm the environment. Here, we present an effective DMSO wastewater

Tatsuya Koito; Masafumi Tekawa; Arata Toyoda

1998-01-01

74

Occurrence and treatment of wastewater-derived organic nitrogen.  

PubMed

Dissolved organic nitrogen (DON) derived from wastewater effluent can participate in reactions that lead to formation of nitrogenous chlorination by-products, membrane fouling, eutrophication, and nitrification issues, so management of DON is important for both wastewater reuse applications and nutrient-sensitive watersheds that receive discharges from treated wastewater. This study documents DON occurrence in full-scale water/wastewater (W/WW) treatment plant effluents and assesses the removal of wastewater-derived DON by several processes (biodegradation, coagulation, softening, and powdered activated carbon [PAC] adsorption) used for advanced treatment in wastewater reuse applications. After varying levels of wastewater treatment, the dominant aqueous nitrogenous species shifts from ammonia to nitrate after aerobic processes and nitrate to DON in tertiary treatment effluents. The fraction of DON in total dissolved nitrogen (TDN) accounts for at most 52% in tertiary treated effluents (median=13%) and 54% in surface waters impacted by upstream wastewater discharges (median=31%). The 5-day biodegradability/bioavailability of DON (39%) was higher, on average, than that of dissolved organic carbon (DOC, 26%); however, upon chlorination, the DON removal (3%) decreased significantly. Alum coagulation (with ?8 mg/L alum per mg/L DOC) and lime softening (with pH 11.3-11.5) removed<25% of DON and DOC without selectivity. PAC adsorption preferentially removed more DOC than DON by 10% on average. The results provided herein hence shed light on approaches for reducing organic nitrogen content in treated wastewater. PMID:21741064

Chen, Baiyang; Kim, Youngil; Westerhoff, Paul

2011-10-01

75

Extraterrestrial Organic Compounds in Meteorites  

NASA Technical Reports Server (NTRS)

Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

2003-01-01

76

Biomedical Compounds from Marine organisms  

PubMed Central

The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

Jha, Rajeev Kumar; Zi-rong, Xu

2004-01-01

77

Role of fly ash in the removal of organic pollutants from wastewater  

SciTech Connect

Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

M. Ahmaruzzaman [National Institute of Technology, Silchar (India). Department of Chemistry

2009-03-15

78

EMISSIONS OF METALS AND ORGANICS FROM FOUR MUNICIPAL WASTEWATER SLUDGE INCINERATORS: PRELIMINARY DATA  

EPA Science Inventory

The paper presents preliminary results from a U.S. EPA test program on municipal wastewater sludge incinerators. The major objectives of the program were the following: (1) collecting data that allow a comparison of metals and organic compound emissions during steady-state and tr...

79

Thermodynamics of organic compounds  

NASA Astrophysics Data System (ADS)

This research program consisted of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure was used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials were synthesized, and their thermodynamic properties were evaluated. In cooperation with researcher at Wright-Patterson Air Force Base, ramjet fuels currently in use were subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure. During the last year of this effort, seven kerosene-type fuels produced by British Petroleum and seven jet fuels produced from shale oil were studied.

Gammon, B. E.; Smith, N. K.

1982-11-01

80

APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 1: TEXT  

EPA Science Inventory

Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

81

APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 2: APPENDICES  

EPA Science Inventory

Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

82

OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER  

EPA Science Inventory

Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

83

OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER  

EPA Science Inventory

Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCS) from wastewater was studied. hell-and-tube heat-exchanger type of hollow fiber module was considered for treatment of a wastewater containing toluene,...

84

Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.  

PubMed

Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. PMID:21439605

Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

2011-04-01

85

In vivo endocrine disruption assessment of wastewater treatment plant effluents with small organisms.  

PubMed

Surface water receives a variety of micro-pollutants that could alter aquatic organisms' reproduction and development. It is known that a few nanograms per litre of these compounds can induce endocrine-disrupting effects in aquatic species. Many compounds are released daily in wastewater, and identifying the compounds responsible for inducing such disruption is difficult. Methods using biological analysis are therefore an alternative to chemical analysis, as the endocrine disruption potential of the stream as a whole is considered. To detect hormonal disruption of thyroid and oestrogenic functions, fluorescent Xenopus laevis tadpoles and medaka (Oryzias latipes) fish larvae bearing genetic constructs integrating hormonal responsive elements were used for physiological screens for potential endocrine disruption in streams from an urban wastewater treatment plant. The Xenopus model was used to assess thyroid disruption and the medaka model oestrogenic disruption in wastewater samples. Assays using the genetically modified organisms were conducted on 9 influent and 32 effluent samples. The thyroidal effect of wastewater was either reduced or removed by the treatment plant; no oestrogenic effect was detected in any of the wastewater samples. PMID:23823564

Castillo, Luis; Seriki, Kemi; Mateos, Stéphanie; Loire, Nicolas; Guédon, Nathalie; Lemkine, Gregory F; Demeneix, Barbara A; Tindall, Andrew J

2013-01-01

86

Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.  

PubMed

The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295?gL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater. PMID:24997902

Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

2014-09-01

87

Fate of trace organics in a wastewater effluent dependent stream.  

PubMed

Trace organic compounds (TOrCs) in municipal wastewater effluents that are discharged to streams are of potential concern to ecosystem and human health. This study examined the fate of a suite of TOrCs and estrogenic activity in water and sediments in an effluent-dependent stream in Tucson, Arizona. Sampling campaigns were performed during 2011 to 2013 along the Lower Santa Cruz River, where TOrCs and estrogenic activity were measured in aqueous (surface) and solid (riverbed sediment) phases. Some TOrCs, including contributors to estrogenic activity, were rapidly attenuated with distance of travel in the river. Those TOrCs that are not sufficiently attenuated and percolate to ground water have in common low biodegradation probabilities and low octanol-water distribution ratios. Independent experiments showed that attenuation of estrogenic compounds may be due in part to indirect photolysis caused by formation of organic radicals from sunlight absorption. Hydrophobic TOrCs may accumulate in riverbed sediments during dry weather periods, but riverbed sediment quality is periodically affected through storm-related scouring during periods of heavy rainfall and runoff. Taken together, evidence suggests that natural processes can attenuate at least some TOrCs, reducing potential impacts to ecosystem and human health. PMID:25777953

Dong, Bingfeng; Kahl, Alandra; Cheng, Long; Vo, Hao; Ruehl, Stephanie; Zhang, Tianqi; Snyder, Shane; Sáez, A Eduardo; Quanrud, David; Arnold, Robert G

2015-06-15

88

Biorestoration of aquifers contaminated with organic compounds  

Microsoft Academic Search

Several forms of biological treatment can be used to treat contaminated aquifers. In situ treatment increases the activity of the indigenous organisms by the addition of nutrients and electron acceptor. Withdrawal and treatment technologies rely on removal of the ground water and any of several wastewater treatment processes to biodegrade the organics. Addition of acclimated or genetically engineered organisms may

M. D. Lee; J. M. Thomas; R. C. Borden; P. B. Bedient; C. H. Ward; J. T. Wilson; R. A. Conway

1988-01-01

89

Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants  

NASA Astrophysics Data System (ADS)

Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

2013-12-01

90

Volatile Organic Compounds in Uremia  

PubMed Central

Background Although “uremic fetor” has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia. Methods Breath analysis was performed in 28 adults with an eGFR ?60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 10–59 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry. Results Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 10–59 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis. Conclusion Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules. PMID:23049998

Seifert, Luzia; Slodzinski, Rafael; Jankowski, Joachim; Zidek, Walter; Westhoff, Timm H.

2012-01-01

91

Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments.  

PubMed

This study reports the results of a screening survey of perfluoroalkyl compounds (PFCs) in the Danish environment. The study included point sources (municipal and industrial wastewater treatment plants and landfill sites) and the marine and freshwater environments. Effluent and influent water and sewage sludge were analysed for point sources. Sediment, blue mussels (Mytilus edulis) and liver from plaice (Pleuronectes platessa), flounder (Platichthys flesus) and eel (Anguilla anguilla) were analysed for the freshwater and marine environments. The results obtained show a diffuse PFCs contamination of the Danish environment with concentrations similar to those measured in other countries with the absence of primary contamination sources such as fluorochemical production. PFOS and PFOA were generally the most dominating PFCs measured in both point sources and the aquatic environments. PFCs were found in both inflow and outflow water and sewage sludge from municipal and industrial wastewater treatment plants (WWTPs), indicating that WWTPs can be significant sources to PFCs in the environment. This is also reflected in the locally elevated PFCs concentrations found in fish like eels from shallow freshwater and marine areas. However, the highest PFCs concentrations found in fish in this study was in plaice from the Skagerrak (156 ng/g wet weight PFOS), but it is unknown if this can be related to significant sources in the North Sea region or to differences between species. The concentrations of PFCs were below the detection limit in all analysed freshwater and marine samples of sediment and mussels. Despite the relatively low PFCs concentrations measured in marine fish, the high bioaccumulation potential of PFCs, particularly PFOS, may lead to high concentrations of PFCs in marine mammals as shown by previous investigations. PMID:18029290

Bossi, R; Strand, J; Sortkjaer, O; Larsen, M M

2008-05-01

92

Physiological modelling of organic compounds.  

PubMed

In pharmacokinetic modelling the body is represented as a set of compartments. The characteristics of these compartments are defined either by fitting predetermined mathematical equations to the data ('data-based compartments') or by defining compartments based on the actual biological structure of the animal ('physiologically based compartments'). Physiological models of chemical disposition are developed using these physiologically based compartments. These models then consist of sets of organs or types of tissue compartments whose characteristics are based as far as possible on the anatomy and physiology of the test species. Individual organs or types of tissue are defined with respect to their blood flow, volume, kinetic constants for metabolism, storage capacity for the compound involved, protein binding and other relevant characteristics. Linking these compartments together in a proper anatomical arrangement yields the physiological model for compound disposition. This paper provides an overview of the basics for constructing physiological models for organic compounds, focusing on the structure of individual compartments in these models and the data required for model development. Some past applications of physiological models are reviewed and speculation offered on future developments in this field. PMID:1888102

Andersen, M E

1991-06-01

93

Chapter A5. Section 6.1.F. Wastewater, Pharmaceutical, and Antibiotic Compounds  

USGS Publications Warehouse

The USGS differentiates between samples collected for analysis of wastewater compounds and those collected for analysis of pharmaceutical and antibiotic compounds, based on the analytical schedule for the laboratory method. Currently, only the wastewater laboratory method for field-filtered samples (SH1433) is an approved, routine (production) method. (The unfiltered wastewater method LC 8033 also is available but requires a proposal for custom analysis.) At this time, analysis of samples for pharmaceutical and antibiotic compounds is confined to research studies and is available only on a custom basis.

Lewis, Michael Edward; Zaugg, Steven D.

2003-01-01

94

40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2014 CFR

...Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G...Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table...Emitted (Fe ) For HAP Compounds in Wastewater Streams Chemical name CAS...

2014-07-01

95

40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2013 CFR

...Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G...Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table...Emitted (Fe ) For HAP Compounds in Wastewater Streams Chemical name CAS...

2013-07-01

96

40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2011 CFR

...Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G...Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table...Emitted (Fe ) For HAP Compounds in Wastewater Streams Chemical name CAS...

2011-07-01

97

40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2012 CFR

...Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G...Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table...Emitted (Fe ) For HAP Compounds in Wastewater Streams Chemical name CAS...

2012-07-01

98

DETERMINATION OF VOLATILE ORGANICS IN INDUSTRIAL AND MUNICIPAL WASTEWATERS  

EPA Science Inventory

This report describes the systematic evaluation of a series of parameters leading to the development of a test procedure for 36 volatile priority pollutants in wastewaters. A study of the effect of pH, temperature, and residual chlorine on the aqueous stability of the compounds l...

99

Volatile organic compound sensor system  

DOEpatents

Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

2011-03-01

100

Biotreatment of Industrial Wastewaters under Transient-State Conditions: Process Stability with Fluctuations of Organic Load, Substrates, Toxicants, and Environmental Parameters  

Microsoft Academic Search

Biotreatment of industrial wastewater is often challenged by operation under transient states with respect to organic loads, pollutants, and physical characteristics. Furthermore, the potential presence of inhibitory compounds requires careful monitoring and adequate process design. This review describes difficulties encountered in biological treatment of wastewater with highly variable influent characteristics. Typical design aspects of biological processes are presented and discussed

Jan Sipma; M. Begoña Osuna; Maria A. E. Emanuelsson; Paula M. L. Castro

2010-01-01

101

Removal of organic wastewater contaminants in septic systems using advanced treatment technologies  

USGS Publications Warehouse

The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

2009-01-01

102

Reclaiming metals and organics from industrial wastewaters  

SciTech Connect

The liquid membrane transport process is an emerging new technology where specific material species are transported selectively and rapidly across a liquid membrane. Supported liquid membranes (SLMs) can be used in metal ion separations, gas transfer, volatile organic compounds (VOCs) removal, solvent extraction, biotechnology and reverse osmosis (RO)/ultrafiltration (UF). Although SLMs were invented in the early 1970s, the bulk of experimental studies involving SLMs for metal removal have been carried out in the last 10 years. Some of these experimental studies included work that surveyed the liquid membrane applications in general, including those for metal ion removal; discussed the theoretical and experimental aspects of general, facilitated transport systems; reviewed the work being carried out at Argonne National Laboratory on separation of metal species by SLMs and also the development of /simple equations to describe the metal ions transport by SLMs; and presented the basic principles involved in applying SLM transport processes for recovery and separation of metals from aqueous solutions that include passive and active transport, aqueous and membrane diffusion and chemical reactions. This article will describe the economic feasibility for using an SLM for recovery of nickel and chromium from plating rise waters and compare the economics with alternate technologies.

Kilambi, S.

1996-08-01

103

Electroreduction of Halogenated Organic Compounds  

NASA Astrophysics Data System (ADS)

The electroreductive cleavage of the carbon-halogen bond in halogenated organic compounds has been extensively studied for more than 70 years, since it is prodromal to a large variety of synthetic applications in organic electrochemistry. Over the years the research interest have progressively included the environmental applications, since several organic halocompounds are known to have (or have had) a serious environmental impact because of their (present or past) wide use as cleaning agents, herbicides, cryogenic fluids, reagents (e.g. allyl and vinyl monomers) for large production materials, etc. Recent studies have also demonstrated the wide spread out- and in-door-presence of volatile organic halides, although at low level, in connexion with residential and non-residential (e.g. stores, restaurants and transportation) activities. In this context, the detoxification of emissions to air, water and land by the selective removal of the halogen group represents a valid treatment route, which, although not leading to the complete mineralization of the pollutants, produces less harmful streams to be easily treated by electrochemical or conventional techniques. The electroreduction process is analysed and discussed in terms of electrode material, reaction medium, cell design and operation, and of substrate classification.

Rondinini, Sandra; Vertova, Alberto

104

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-print Network

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

105

CONTROL OF ORGANIC SUBSTANCES IN WATER AND WASTEWATER  

EPA Science Inventory

The presence of organic substances of industrial origin in wastewaters, storm runoff and in surface and groundwaters may not always be an unmitigated evil--but, it is safe to say, it never is good. In 1976, EPA was required to give special emphasis to 129 'priority pollutants' th...

106

Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent  

Microsoft Academic Search

Pulp and paper mill wastewater was characterizated, before (influent) and after (effluent) biological wastewater treatment based on an activated sludge process, by microfiltration (8, 3, 0.45 and 0.22?m) and ultrafiltration (100, 50, 30 and 3kDa) of the wastewater samples into different size fractions. Various parameters were measured on each fraction: molecular weight distribution (MWD) using high performance size exclusion chromatography

Tiina Leiviskä; Hannu Nurmesniemi; Risto Pöykiö; Jaakko Rämö; Toivo Kuokkanen; Jaakko Pellinen

2008-01-01

107

Volatile organic compound sensing devices  

DOEpatents

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

Lancaster, Gregory D. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID); Reagen, William K. (Stillwater, MN)

1995-01-01

108

Volatile organic compound sensing devices  

DOEpatents

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

1995-08-29

109

REMOVAL OF PHENOLIC COMPOUNDS FROM WOOD PRESERVING WASTEWATERS  

EPA Science Inventory

Laboratory and pilot-scale studies were undertaken to develop economically feasible technologies for the treatment of wastewaters from wood preserving operations. Of prime concern was the removal of phenol and its chlorinated derivatives, in particular, pentachlorophenol. Screeni...

110

Determination of organic compounds in bottled waters  

Microsoft Academic Search

The presence of organic compounds in bottled waters available in the Greek market and their fate when the representative samples exposed at different conditions were the main purposes of this study. The determination of the organic compounds was performed by gas chromatography–mass spectrometry techniques. Disinfection by-products compounds, such as trihalomethanes (THMs) and haloacetic acids (HAAs), were detected at low concentrations

Stavroula V. Leivadara; Anastasia D. Nikolaou; Themistokles D. Lekkas

2008-01-01

111

REMOVAL OF HYDROPHOBIC MICRO?ORGANIC POLLUTANTS FROM MUNICIPAL WASTEWATER TREATMENT PLANT EFFLUENTS BY SORPTION ONTO SYNTHETIC POLYMERIC ADSORBENTS: UPFLOW COLUMN EXPERIMENTS  

Microsoft Academic Search

Continuous upflow bench?scale column experiments were carried out to investigate the use of a synthetic form polymer, polypropylene, and polypropylene coated with a thin layer of n?hexane as sorbents for hydrophobic organic compounds present in the effluent of municipal wastewater treatment plant. Two polycyclic aromatic hydrocarbons, namely, phenanthrene and fluorene, were selected as representative hydrophobic organic compounds for experimental purposes.

V. S. Muhandiki; Y. Shimizu; Y. A. F. Adou; S. Matsui

2008-01-01

112

Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane.  

PubMed

Extensive organic characterisation of a wastewater using liquid chromatography with a photodiode array and fluorescence spectroscopy (Method A), and UV(254) and organic carbon detector (Method B) was undertaken, as well as with fluorescence excitation emission spectroscopy (EEM). Characterisation was performed on the wastewater before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, and following microfiltration of the wastewater and pre-treated wastewaters. Characterisation by EEM was unable to detect biopolymers within the humic rich wastewaters and was not subsequently used to characterise the MF permeates. IX treatment preferentially removed low molecular weight (MW) organic acids and neutrals, and moderate amounts of biopolymers in contrast to a previous report of no biopolymer removal with IX. PACl preferentially removed moderate MW humic and fulvic acids, and large amounts of biopolymers. PACl showed a great preference for removal of proteins from the biopolymer component in comparison to IX. An increase in the fluorescence response of tryptophan-like compounds in the biopolymer fraction following IX treatment suggests that low MW neutrals may influence the structure and/or inhibit aggregation of organic compounds. Fouling rates for IX and PACl treated wastewaters had high initial fouling rates that reduced to lower fouling rates with time, while the untreated Eastern Treatment Plant (ETP) wastewater displayed a consistent, high rate of fouling. The results for the IX and PACl treated wastewaters were consistent with the long-term fouling rate being determined by cake filtration while both pore constriction and cake filtration contributed to the higher initial fouling rates. Higher rejection of biopolymers was observed for PACl and IX waters compared to the untreated ETP water, suggesting increased adhesion of biopolymers to the membrane or cake layer may lead to the higher rejection. PMID:22871319

Myat, Darli T; Mergen, Max; Zhao, Oliver; Stewart, Matthew B; Orbell, John D; Gray, Stephen

2012-10-15

113

Organics and nitrogen removal from textile auxiliaries wastewater with A(2)O-MBR in a pilot-scale.  

PubMed

The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. PMID:25603291

Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang

2015-04-01

114

Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park  

Microsoft Academic Search

Volatile organic compounds (VOCs) were monitored in the different sections of a wastewater treatment plant (WWTP), the outlet of both the WWTP and rainfall water, and the downstream of the WWTP joining the river in the area or vicinity of an industrial science park located in Hsinchu, Taiwan. Levels of VOCs were determined by collecting air samples over several sampling

Ben-Zen Wu; Tien-Zhi Feng; Usha Sree; Kong-Hwa Chiu; Jiunn-Guang Lo

2006-01-01

115

Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*  

PubMed Central

A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304

Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang

2010-01-01

116

Perfluorinated compounds in sediment samples from the wastewater canal of Pan?evo (Serbia) industrial area.  

PubMed

Perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) were analyzed in sediment samples from the wastewater canal draining the industrial complex of Pan?evo, Serbia (oil refinery, petrochemical plant, and fertilizer factory). The canal is directly connected to Europe's second largest river, the Danube, which drains its water into the Black Sea. Perfluorooctane sulfonate (PFOS) up to 5.7ngg(-1) dry weight (dw) and total Perfluorinated compounds (PFCs) up to 6.3ngg(-1) dw were detected. Compared to other reports, high levels of PFOS were found, even though PFCs are not used in the industrial production associated with this canal. The PFOS concentration in water was recalculated using the adsorption coefficient, KOC from literature. Using the average output of wastewater from the canal, a mass load of 1.38kg PFOS per year discharged in the Danube River has been calculated, which undoubtedly points to the contribution to global persistent organic pollution of surface waters originating from this industrial place. PMID:23415492

Beškoski, Vladimir P; Takemine, Shusuke; Nakano, Takeshi; Slavkovi? Beškoski, Latinka; Gojgi?-Cvijovi?, Gordana; Ili?, Mila; Mileti?, Srdjan; Vrvi?, Miroslav M

2013-06-01

117

An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation  

Microsoft Academic Search

This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in

Daniel Gerrity; Benjamin D. Stanford; Rebecca A. Trenholm; Shane A. Snyder

2010-01-01

118

Process for removing an organic compound from water  

DOEpatents

A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

Baker, Richard W. (Palo Alto, CA); Kaschemekat, Jurgen (Palo Alto, CA); Wijmans, Johannes G. (Menlo Park, CA); Kamaruddin, Henky D. (San Francisco, CA)

1993-12-28

119

An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater.  

PubMed

Groundwater in urban areas can be affected by numerous wastewater sources. Distinguishing these sources can facilitate better management of urban water resources and wastewater, and protection of urban aquatic environments. A single wastewater tracer, even if ideal (i.e. low background levels, non-reactive, low detection limits, etc.), would be unable to accomplish this task. Here, we investigated the potential advantages of using a suite of anthropogenic chemicals as co-tracers to distinguish wastewater sources that contribute to groundwater contamination at two urban sites. We considered both relatively ubiquitous and non-ubiquitous tracers in wastewater. At the Jasper (Alberta, Canada) site, concentrations of an artificial sweetener, two pharmaceutical compounds, and a degradate of nicotine in groundwater were strongly correlated as co-tracers. This evidence, along with the similar spatial distributions of these co-tracers could be used to delineate and distinguish a single municipal wastewater plume. At the Barrie (Ontario, Canada) site, there was moderate to strong correlation of the wastewater co-tracers, but local differences in their distributions and in the ratios of their concentrations could be used to infer that mixtures of two or more domestic septic plumes were present in the groundwater at this site. This study demonstrates the benefit of applying a suite of tracers to urban groundwater affected by wastewater contamination. This approach should be applicable at other urban sites. PMID:23738987

Van Stempvoort, D R; Roy, J W; Grabuski, J; Brown, S J; Bickerton, G; Sverko, E

2013-09-01

120

Removal of indicator organisms by chemical treatment of wastewater.  

PubMed

Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms. PMID:7197865

De Zutter, L; van Hoof, J

1981-01-01

121

Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,  

E-print Network

Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer...................................................................................................................... 5 Acidic Organic Wastewater Compounds

122

DEVELOPMENT AND EVALUATION OF METHODS FOR TOTAL ORGANIC HALIDE AND PURGEABLE ORGANIC HALIDE IN WASTEWATER  

EPA Science Inventory

This report describes a series of studies involving the use of 'surrogate' methods for the determination of total organic halides (TOX), purgeable organic halides (POX), and solvent extractable organic halides (EOX), in wastewater and solid wastes. A pyrolysis/microcoulometric sy...

123

High-Performance Anaerobic Granulation Processes for Treatment of Wastewater-Containing Recalcitrant Compounds  

Microsoft Academic Search

Many of the persistent and recalcitrant organic chemicals found in a wide variety of industrial wastewaters are potentially toxic to human beings and microorganisms. Such organics have been listed as priority pollutants. Because of their stable structures, and to these is added the possibility of a highly oxidized state, such organics are typically not easily degraded under aerobic conditions. This

A. M. Maszenan; Yu Liu; Wun Jern Ng

2011-01-01

124

Biodegradability of wastewater and activated sludge organics in anaerobic digestion.  

PubMed

The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly from those calculated with the AD models. Therefore in plant wide wastewater treatment models the characterization of PS and WAS as defined by the AS models can be applied without modification in AD models. The observed rate limiting hydrolysis/acidogenesis rates of the sludges are listed. PMID:24699419

Ikumi, D S; Harding, T H; Ekama, G A

2014-06-01

125

Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.  

PubMed

The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. PMID:19763679

Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

2010-02-01

126

Occurrence of organic wastewater contaminants, pharmaceuticals, and personal care products in selected water supplies, Cape Cod, Massachusetts, June 2004  

USGS Publications Warehouse

In June 2004, the U.S. Geological Survey, in cooperation with the Barnstable County Department of Health and Environment, sampled water from 14 wastewater sources and drinking-water supplies on Cape Cod, Massachusetts, for the presence of organic wastewater contaminants, pharmaceuticals, and personal care products. The geographic distribution of sampling locations does not represent the distribution of drinking-water supplies on Cape Cod. The environmental presence of the analyte compounds is mostly unregulated; many of the compounds are suspected of having adverse ecological and human health effects. Of the 85 different organic analyte compounds, 43 were detected, with 13 detected in low concentrations (less than 1 microgram per liter) from drinking-water supplies thought to be affected by wastewater because of previously detected high nitrate concentrations. (Phenol and d-limonene, detected in equipment blanks at unacceptably high concentrations, are not included in counts of detections in this report.) Compounds detected in the drinking-water supplies included the solvent, tetrachloroethylene; the analgesic, acetaminophen; the antibiotic, sulfamethoxazole; and the antidepressant, carbamazapine. Nitrate nitrogen, an indicator of wastewater, was detected in water supplies in concentrations ranging from 0.2 to 8.8 milligrams per liter.

Zimmerman, Marc J.

2005-01-01

127

40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2010 CFR

...2010-07-01 true Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection...Part 63—Fraction Measured (Fm ) for HAP Compounds in Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde...

2010-07-01

128

40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection...Part 63—Fraction Measured (Fm ) for HAP Compounds in Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde...

2014-07-01

129

40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2012 CFR

...2011-07-01 true Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection...Part 63—Fraction Measured (Fm ) for HAP Compounds in Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde...

2012-07-01

130

40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection...Part 63—Fraction Measured (Fm ) for HAP Compounds in Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde...

2013-07-01

131

40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection...Part 63—Fraction Measured (Fm ) for HAP Compounds in Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde...

2011-07-01

132

Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR)  

Microsoft Academic Search

As a consequence of insufficient removal during treatment of wastewater released from industry and households, different classes\\u000a of organic micropollutants are nowadays detected in surface and drinking water. Among these micropollutants, bioactive substances,\\u000a e.g., endocrine disrupting compounds and pharmaceuticals, have been incriminated in negative effects on living organisms in\\u000a aquatic biotope. Much research was done in the last years on

Magdalena Cirja; Pavel Ivashechkin; Andreas Schäffer; Philippe F. X. Corvini

2008-01-01

133

Determination of Wastewater Compounds in Whole Water by Continuous Liquid-Liquid Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry  

USGS Publications Warehouse

A method for the determination of 69 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals on aquatic organisms in wastewater. This method also is useful for evaluating the effects of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are indicators of wastewater or have endocrine-disrupting potential. These compounds include the alkylphenol ethoxylate nonionic surfactants, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Wastewater compounds in whole-water samples were extracted using continuous liquid-liquid extractors and methylene chloride solvent, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 0.5 microgram per liter averaged 72 percent ? 8 percent relative standard deviation. The concentration of 21 compounds is always reported as estimated because method recovery was less than 60 percent, variability was greater than 25 percent relative standard deviation, or standard reference compounds were prepared from technical mixtures. Initial method detection limits averaged 0.18 microgram per liter. Samples were preserved by adding 60 grams of sodium chloride and stored at 4 degrees Celsius. The laboratory established a sample holding-time limit prior to sample extraction of 14 days from the date of collection.

Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.

2006-01-01

134

Remediation of a volatile organic compound plume in an anisotropic, fractured bedrock groundwater system  

Microsoft Academic Search

This New York site has a history of halogenated solvent usage and is underlain by mica schist bedrock which is covered by glacial deposits. Dilute wastewater releases resulted in a 2,000-foot long plume of dissolved volatile organic compounds, the shape of which reflects the control of bedrock fractures on groundwater flow. The site has a large number of bedrock monitoring

L. F. Roach; C. G. Robertson; C. A. Rine

1995-01-01

135

SITE TECHNOLOGY CAPSULE: ZENOGEM? WASTEWATER TREATMENT PROCESS  

EPA Science Inventory

Zenon Environmental System's ZenoGem? Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

136

40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams  

Code of Federal Regulations, 2010 CFR

...Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams...Measured (Fm ) and Fraction Emitted (Fe ) For HAP Compounds in Wastewater Streams Chemical name CAS Number a Fm Fe Acetaldehyde 75070 1.00...

2010-07-01

137

Generation of endocrine disruptor compounds during ozone treatment of tannery wastewater confirmed by biological effect analysis and substance specific analysis.  

PubMed

Ozone (O3) with its high oxidation potential was used to degrade or eliminate pollutants contained in tannery wastewater when applying different pHs and quantities of O3. Our objective was a chemical degradation by O3 to achieve an enhancement of biodegradability, with a parallel decrease in toxicity. Conventional analyses and bioassays beside substance specific analyses were performed to clear-up the behaviour of wastewater content from tanning process. The results demonstrate that the dominant organic pollutants were chemically degraded by oxidation as the chemical and biochemical oxygen demand (COD and BOD) prove, while changes in carbon content monitored by total or dissolved organic carbon content (TOC or DOC) were only marginal. Vibrio fischeri and Daphnia magna toxicity testing performed in parallel proved a decrease in toxicity after O3-treatment, while the estrogenic activity determined by enzyme-linked receptor assay (ELRA), however, proved an increase of endocrine disruptor compounds (EDC). Results could be explained by substance-specific analyses using gas chromatography (GC-MS) and liquid chromatography/mass spectrometry (LC-MS). From GC-MS analysis the elimination of non-polar compounds could be recognized, whereas the oxidative conversion led to an increase of EDC compounds, which qualitatively could be identified by LC-MS as nonylphenol ethoxylate (NPEO) degradation products: short chain NPEOs, nonylphenol carboxylates (NPECs) and nonylphenol (NP). PMID:19151483

Schrank, S G; Bieling, U; José, H J; Moreira, R F P M; Schröder, H Fr

2009-01-01

138

Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands.  

PubMed

Open-water cells in unit process treatment wetlands can be used to exploit sunlight photolysis to remove trace organic contaminants from municipal wastewater effluent. To assess the performance of these novel systems, a photochemical model was calibrated using measured photolysis rates for atenolol, carbamazepine, propranolol, and sulfamethoxazole in wetland water under representative conditions. Contaminant transformation by hydroxyl radical ((•)OH) and carbonate radical ((•)CO3(-)) were predicted from steady-state radical concentrations measured at pH values between 8 and 10. Direct photolysis rates and the effects of light screening by dissolved organic matter on photolysis rates were estimated using solar irradiance data, contaminant quantum yields, and light screening factors. The model was applied to predict the land area required for 90% removal of a suite of wastewater-derived organic contaminants by sunlight-induced reactions under a variety of conditions. Results suggest that during summer, open-water cells that receive a million gallons of water per day (i.e., about 4.4 × 10(-2) m(3) s(-1)) of nitrified wastewater effluent can achieve 90% removal of most compounds in an area of about 15 ha. Transformation rates were strongly affected by pH, with some compounds exhibiting faster transformation rates under the high pH conditions associated with photosynthetic algae at the sediment-water interface and other contaminants exhibiting faster transformation rates at the circumneutral pH values characteristic of algae-free cells. Lower dissolved organic carbon concentrations typically resulted in increased transformation rates. PMID:23470043

Jasper, Justin T; Sedlak, David L

2013-10-01

139

SORPTION OF HYDROPHOBIC ORGANIC COMPOUNDS BY SEDIMENTS  

EPA Science Inventory

Thermodynamic and kinetic principles which govern the uptake of nonionic, hydrophobic organic chemicals by sediments in aqueous systems are summarized. Sorption onto organic-rich sediments can be modeled as a process where the hydrophobic compound partitions into the organic matt...

140

INVESTIGATIONS OF BIODEGRADABILITY AND TOXICITY OF ORGANIC COMPOUNDS  

EPA Science Inventory

The development of elaborate industrial societies has led to proliferation of a vast number of complex chemicals for industrial, agricultural and domestic use. Some portion of these compounds eventually find their way into municipal and industrial wastewater. Unless specifically ...

141

Thermodynamic properties of organic iodine compounds  

NASA Astrophysics Data System (ADS)

A critical evaluation has been made of the thermodynamic properties reported in the literature for 43 organic iodine compounds in the solid, liquid, or ideal gas state. These compounds include aliphatic, cyclic and aromatic iodides, iodophenols, iodocarboxylic acids, and acetyl and benzoyl iodides. The evaluation has been made on the basis of carbon number systematics and group additivity relations, which also allowed to provide estimates of the thermodynamic properties of those compounds for which no experimental data were available. Standard molal thermodynamic properties at 25 °C and 1 bar and heat capacity coefficients are reported for 13 crystalline, 29 liquid, and 39 ideal gas organic iodine compounds, which can be used to calculate the corresponding properties as a function of temperature and pressure. Values derived for the standard molal Gibbs energy of formation at 25 °C and 1 bar of these crystalline, liquid, and ideal gas organic iodine compounds have subsequently been combined with either solubility measurements or gas/water partition coefficients to obtain values for the standard partial molal Gibbs energies of formation at 25 °C and 1 bar of 32 aqueous organic iodine compounds. The thermodynamic properties of organic iodine compounds calculated in the present study can be used together with those for aqueous inorganic iodine species to predict the organic/inorganic speciation of iodine in marine sediments and petroleum systems, or in the near- and far-field of nuclear waste repositories.

Richard, Laurent; Gaona, Xavier

2011-11-01

142

Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds.  

PubMed

Hospital effluents contribute to the occurrence of emerging contaminants in the environment due to their high load of pharmaceutical active compounds (PhACs) and some endocrine disruptor compounds (EDCs). Nowadays, hospital wastewaters are co-treated with urban wastewater; however, the dilution factor and the inefficiency of wastewater treatment plants in the removal of PhACs and EDCs make inappropriate the co-treatment of both effluents. In this paper, a new alternative to pre-treat hospital wastewater concerning the removal of PhACs and EDCs is presented. The treatment was carried out in a batch fluidized bed bioreactor under sterile and non-sterile conditions with Trametes versicolor pellets. Results on non-sterile experiments pointed out that 46 out of the 51 detected PhACs and EDCs were partially to completely removed. The total initial PhAC amount into the bioreactor was 8185 ?g in sterile treatment and 8426 ?g in non-sterile treatment, and the overall load elimination was 83.2% and 53.3% in their respective treatments. In addition, the Microtox test showed reduction of wastewater toxicity after the treatment. Hence, the good efficiency of the fungal treatment regarding removal of the wide diversity of PhACs and EDCs detected in hospital effluents is demonstrated. PMID:24951894

Cruz-Morató, Carles; Lucas, Daniel; Llorca, Marta; Rodriguez-Mozaz, Sara; Gorga, Marina; Petrovic, Mira; Barceló, Damià; Vicent, Teresa; Sarrà, Montserrat; Marco-Urrea, Ernest

2014-09-15

143

Organic electronic devices using phthalimide compounds  

DOEpatents

Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

Hassan, Azad M.; Thompson, Mark E.

2012-10-23

144

Organic electronic devices using phthalimide compounds  

DOEpatents

Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

Hassan, Azad M.; Thompson, Mark E.

2010-09-07

145

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Houston, TX)

1989-01-01

146

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

Smith, L.A. Jr.

1989-07-18

147

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1993-01-01

148

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1993-09-07

149

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1994-01-01

150

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1994-06-14

151

Microwave spectra of some volatile organic compounds  

NASA Technical Reports Server (NTRS)

A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

White, W. F.

1975-01-01

152

(CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH  

EPA Science Inventory

A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

153

Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas  

USGS Publications Warehouse

The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.

Bidwell, J.R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

2010-01-01

154

Organic compounds passage through RO membranes  

Microsoft Academic Search

Organic solute permeation, sorption, and rejection by reverse osmosis membranes, from aqueous solutions, were studied experimentally and via artificial neural networks (ANN)-based quantitative structure–property relations (QSPR), for a set of fifty organic compounds for polyamide and cellulose acetate membranes. Membrane solute sorption and passage for dead-end filtration model experiments were quantified based on radioactivity measurements for radiolabeled compounds in the

Dan Libotean; Jaume Giralt; Robert Rallo; Yoram Cohen; Francesc Giralt; Harry F. Ridgway; Grisel Rodriguez; Don Phipps

2008-01-01

155

Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.  

PubMed

Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation. PMID:25479808

Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin

2015-02-01

156

Volatile organic compounds in ambient aerosols  

NASA Astrophysics Data System (ADS)

In order to investigate the concentration levels of volatile organic compounds (VOCs) in ambient aerosols, monocyclic aromatic hydrocarbons (MAHs) and chlorinated hydrocarbons (CHs) in the particulate phase were measured simultaneously with those in the gas phase in the urban atmosphere. Six compounds were detected in the aerosols at concentrations from 0.051 (1,2-dichloroethane) to 1.75 ng m - 3 (benzene). Benzene was detected as the most dominant compound in the aerosols, although toluene was the most dominant compound in the gas phase. The VOCs in the aerosols had concentrations comparable to those reported for some semi-volatile organic compounds (SOCs) in the aerosols. The concentrations of the VOCs in the aerosols were primarily controlled by the aerosol mass loading. Temperature and relative humidity had no significant effect on the gas/particle partitioning of the VOCs. Our results also suggested that the hygroscopic properties of the aerosols should be considered to discuss the partitioning of the VOCs.

Matsumoto, Kiyoshi; Matsumoto, Kumi; Mizuno, Riichi; Igawa, Manabu

2010-07-01

157

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1993-01-01

158

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1993-01-05

159

Air sparging of organic compounds in groundwater  

SciTech Connect

Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ``packing``. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel.

Hicks, P.M. [Groundwater Technology, Inc., Tampa, FL (United States)

1994-12-31

160

Effect of polyelectrolytes and quaternary ammonium compounds on the anaerobic biological treatment of poultry processing wastewater.  

PubMed

Quaternary ammonium compounds (QACs) and polyelectrolytes are extensively used in poultry processing facilities as sanitizing agents and flocculants, respectively. These chemicals may affect the performance of biological treatment systems resulting in low effluent quality. The impact of these chemicals on the anaerobic treatment of poultry processing wastewater (PPWW) samples, collected before and after a solids separation process, was tested in batch assays using a mixed, mesophilic (35 degrees C) methanogenic culture. The results of this study showed that Vigilquat (VQ), a commercial mixture of four QACs, has a high affinity for the organic solids in the PPWW. Cationic and anionic polyelectrolytes, alone or in combination, did not have any adverse effect on the anaerobic biodegradation of PPWW at concentrations typically used in poultry processing facilities (20 and 5 mg/L, respectively). In spite of the high affinity of VQ for the PPWW solids, VQ at a concentration of 50mg/L and above adversely affected the anaerobic degradation of the PPWW, which resulted in a significantly reduced methane production and accumulation of volatile fatty acids. In the absence of any inhibition, the methane yield varied from 0.76 to 0.98 L methane at STP per g volatile solids added. VQ was not biodegraded under the batch, methanogenic conditions used in this study. PMID:17287000

Tezel, Ulas; Pierson, John A; Pavlostathis, Spyros G

2007-03-01

161

POTENTIAL HEALTH EFFECTS FROM PERSISTENT ORGANICS IN WASTEWATER AND SLUDGES USED FOR LAND APPLICATION  

EPA Science Inventory

The potential health problems associated with the presence of persistent organic chemicals in wastewater and sludge, when applied to agricultural lands, are reviewed. The type and amounts of organic chemicals present in wastewater and sludge, their fate on land, and available con...

162

Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.  

PubMed

Increasing attention has been given to pollution of the water environment by pharmaceutical compounds discharged from wastewater treatment plants. High-pressure driven membranes such as a nanofiltration (NF) membrane and a reverse osmosis (RO) membrane are considered to be effective for control of pharmaceuticals in wastewater treatment. In practical applications of NF/RO membranes to municipal wastewater treatment, feed water for the membranes always contains organic macromolecules at concentrations of up to 10mg-TOC/L, which are mainly composed of soluble microbial products (SMPs) produced during biological wastewater treatment such as an activated sludge process. In this study, influence of these organic macromolecules on removal of six pharmaceuticals by NF/RO membranes (UTC-60 and LF10) was investigated. Two types of biological treatment (conventional activated sludge process followed by media filtration (i.e., tertiary treatment) and treatment with a membrane bioreactor (MBR)) were examined as pretreatments for NF/RO membranes in this study. In the filtration tests with wastewater effluents, removal of the pharmaceuticals was higher than that seen with deionized pure water spiked with the pharmaceuticals. The increase was significant in the case of the NF membrane. Both alteration of membrane surface properties due to membrane fouling and association of the pharmaceuticals with organic macromolecules contributed to the increase in removal of pharmaceuticals by the membranes. Characteristics of the organic macromolecules contained in the wastewater effluents differed depending on the type of treatment, implying that removal of pharmaceuticals by NF/RO membranes is influenced by the type of pretreatment employed. PMID:19564034

Kimura, Katsuki; Iwase, Tomonori; Kita, Shusuke; Watanabe, Yoshimasa

2009-08-01

163

Reflectance spectroscopy of organic compounds: 1. Alkanes  

USGS Publications Warehouse

Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

2009-01-01

164

Catalyst for Oxidation of Volatile Organic Compounds  

NASA Technical Reports Server (NTRS)

Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

2000-01-01

165

Analyzing method on biogenic volatile organic compounds  

NASA Astrophysics Data System (ADS)

In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January to July, 2000. A small refrigerator was used so as to remove water in the air sample from gas line, and get accurate concentrations of volatile organic compounds. At 5degreesC, good water removing efficiency can be obtained at controlled flow rate. Air samples were collected around the building of Mesa Lab. of NCAR and analyzed by this gas chromatography system. This paper reports this gas chromatography system and results of air samples. The experimental results show that this gas chromatography system has a good reproducibility and stability, and main interesting volatile organic compounds such as isoprene, monoterpenes have an evident diurnal variation.

Bai, J. H.; Wang, M. X.; Hu, F.; Greenberg, J. P.; Guenther, A. B.

2002-02-01

166

Wet oxidation lumped kinetic model for wastewater organic burden biodegradability prediction.  

PubMed

In many cases, treatment of wastewaters requires a combination of processes that very often includes biological treatment. Wet oxidation (WO) in combination with biotreatment has been successfully used for the treatment of refractory wastes. Therefore, information about the biodegradability of wastewater solutes and particulates after wet oxidation is very important. The present work proposes a model that can describe the oxidation process via organic concentration characteristics such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and immediately available BOD (IA BOD) and so can allow the prediction of biodegradability (i.e., BOD/COD ratio). The reaction mechanism includes the destruction of nonbiodegradable substances bytwo pathways: oxidation to carbon dioxide and water and oxidation to larger biodegradable compounds with their further degradation to smaller ones measured via IA BOD. The destruction of small biodegradable compounds to end products is also included in the model. The experiments were performed at different temperatures (170-200 degrees C) and partial oxygen pressures (0.5-1.5 MPa) in a batch stainless steel high-pressure autoclave. The model of concentrated thermomechanical pulp circulation water was selected for the experiments. The proposed model correlates with the experimental data well and it is compared with other WO models in the literature. PMID:12188362

Verenich, Svetlana; Kallas, Juha

2002-08-01

167

Trace organics variation across the wastewater treatment system of a Class-B refinery and estimate of removal of refractory organics by add-on mixed-media filtration and granular activated carbon at pilot scale  

Microsoft Academic Search

Wastewater at SOHIO's Toledo refinery was sampled every four hours for four successive days in December 1976. Effluents from the full-scale system (dissolved-air-flotation (DAF) unit and final clarifier for the activated-sludge unit) and an add-on pilot-scale unit (mixed-media filter and activated-carbon columns) were sampled for analysis of common wastewater parameters and trace organic compounds. Grab samples taken every four hours

L. A. Raphaelian; W. Harrison

1978-01-01

168

Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions  

USGS Publications Warehouse

During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), ??-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased. ?? 2004 Elsevier B.V. All rights reserved.

Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.

2004-01-01

169

Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada.  

PubMed

Three high volume septic systems in Ontario, Canada, were examined to assess the potential for onsite wastewatertreatment systems to release pharmaceutical compounds to the environment and to evaluate the mobility of these compounds in receiving aquifers. Wastewater samples were collected from the septic tanks, and groundwater samples were collected below and down gradient of the infiltration beds and analyzed for a suite of commonly used pharmaceutical and trace organic compounds. The septic tank samples contained elevated concentrations of several pharmaceutical compounds. Ten of the 12 compounds analyzed were detected in groundwater at one or more sites at concentrations in the low ng L(-1) to low microg L(-1) range. Large differences among the sites were observed in both the number of detections and the concentrations of the pharmaceutical compounds. Of the compounds analyzed, ibuprofen, gemfibrozil, and naproxen were observed to be transported atthe highest concentrations and greatest distances from the infiltration source areas, particularly in anoxic zones of the plumes. PMID:18497127

Carrara, Cherilyn; Ptacek, Carol J; Robertson, William D; Blowes, David W; Moncur, Michael C; Sverko, Ed; Backus, Sean

2008-04-15

170

Atmospheric transformation of volatile organic compounds  

NASA Astrophysics Data System (ADS)

To be able to understand and predict the concentration of a target compound in the atmosphere one must understand the atmospheric chemistry involved. The transformation of volatile organic compounds in the troposphere is predominantly driven by the interaction with the hydroxyl and nitrate radicals. The hydroxyl radical exists in daylight conditions and its reaction rate constant with an organic compound is typically very fast. The nitrate radical drives the nighttime chemistry. These radicals can scavenge hydrogen from an organic molecule generating secondary products that are often overlooked in detection schemes. Secondary products can be more stable and serve as a better target compound in detection schemes. The gas phase reaction of the hydroxyl radical (OH) with cyclohexanol (COL) has been studied. The rate coefficient was determined to be (19.0 +/- 4.8) X 10-12 cm3 molecule-1 s-1 (at 297 +/- 3 K and 1 atmosphere total pressure) using the relative rate technique with pentanal, decane, and tridecane as the reference compounds. Assuming an average OH concentration of 1 X 106 molecules cm-3, an atmospheric lifetime of 15 h is calculated for cyclohexanol. Products of the OH + COL reaction were determined to more clearly define cyclohexanol's atmospheric degradation mechanism. The observed products were: cyclohexanone, hexanedial, 3- hydroxycyclohexanone, and 4-hydroxycyclohexanone. Consideration of the potential reaction pathways suggest that each of these products is formed via hydrogen abstraction at a different site on the cyclohexanol ring.

Henley, Michael V.; Bradley, William R.; Wyatt, Sheryl E.; Graziano, G. M.; Wells, J. R.

2000-07-01

171

EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.  

PubMed

In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides MCPA and mecoprop, perfluoroalkyl substances (such as PFOS and PFOA), caffeine, and gadolinium. PMID:24091184

Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

2013-11-01

172

Chlorinated organic compounds in urban river sediments  

SciTech Connect

Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

1995-12-31

173

Removal of sulfur compounds from petroleum re?nery wastewater through adsorption on modified activated carbon.  

PubMed

The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real re?nery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater. PMID:25353943

Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

2014-01-01

174

Spectroscopic and chromatographic characterization of wastewater organic matter from a biological treatment plant.  

PubMed

Spectroscopic and chromatographic changes in dissolved organic matter (DOM) characteristics of influent and treated sewage were investigated for a wastewater treatment plant (WWTP) with a biological advanced process. Refractory DOM (R-DOM) was defined as the dissolved organic carbon concentrations of the samples after 28-day incubation for this study. Specific UV absorbance (SUVA), hydrophobicity, synchronous fluorescence spectra and molecular weight (MW) distributions were selected as DOM characteristics. The percent distribution of R-DOM for the effluent was much higher than that of the influent, indicating that biodegradable DOM was selectively removed during the process. Comparison of the influent versus the effluent sewage revealed that SUVA, fulvic-like fluorescence (FLF), humic-like fluorescence (HLF), the apparent MW values were enhanced during the treatment. This suggests that more aromatic and humic-like compounds were enriched during the biological process. No significant difference in the DOM characteristics was observed between the original effluent (i.e., prior to the incubation) and the influent sewage after the incubation. This result suggests that the major changes in wastewater DOM characteristics occurring during the biological advanced process were similar to those for simple microbial incubation. PMID:22315538

Park, Min-Hye; Lee, Tae-Hwan; Lee, Bo-Mi; Hur, Jin; Park, Dae-Hee

2010-01-01

175

Measurement of volatile organic compounds inside automobiles†  

Microsoft Academic Search

The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles

Marion J Fedoruk; Brent D Kerger

2003-01-01

176

Azodicarboxylates: synthesis and functionalization of organic compounds  

NASA Astrophysics Data System (ADS)

The data on transformations of dialkyl azodicarboxylates and their analogues involving various substrates are generalized. Nucleophilic addition and oxidation, pericyclic reactions and reactions occurring under the Mitsunobu reaction conditions are considered. Ample opportunities for application of these compounds in fine organic synthesis are shown. The bibliography includes 245 references. Dedicated to Academician B A Trofimov on the occasion of his 75th birthday.

Zhirov, A. M.; Aksenov, A. V.

2014-06-01

177

Catalytic Destruction Of Toxic Organic Compounds  

NASA Technical Reports Server (NTRS)

Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

Voecks, Gerald E.

1990-01-01

178

Global Exposure Modelling of Semivolatile Organic Compounds  

NASA Astrophysics Data System (ADS)

Organic compounds which are persistent and toxic as the agrochemicals ?-hexachlorocyclohexane (?-HCH, lindane) and dichlorodiphenyltrichloroethane (DDT) pose a hazard for the ecosystems. These compounds are semivolatile, hence multicompartmental substances and subject to long-range transport (LRT) in atmosphere and ocean. Being lipophilic, they accumulate in exposed organism tissues and biomagnify along food chains. The multicompartmental global fate and LRT of DDT and lindane in the atmosphere and ocean have been studied using application data for 1980, on a decadal scale using a model based on the coupling of atmosphere and (for the first time for these compounds) ocean General Circulation Models (ECHAM5 and MPI-OM). The model system encompasses furthermore 2D terrestrial compartments (soil and vegetation) and sea ice, a fully dynamic atmospheric aerosol (HAM) module and an ocean biogeochemistry module (HAMOCC5). Large mass fractions of the compounds are found in soil. Lindane is also found in comparable amount in ocean. DDT has the longest residence time in almost all compartments. The sea ice compartment locally almost inhibits volatilization from the sea. The air/sea exchange is also affected , up to a reduction of 35 % for DDT by partitioning to the organic phases (suspended and dissolved particulate matter) in the global oceans. Partitioning enhances vertical transport in the sea. Ocean dynamics are found to be more significant for vertical transport than sinking associated with particulate matter. LRT in the global environment is determined by the fast atmospheric circulation. Net meridional transport taking place in the ocean is locally effective mostly via western boundary currents, upon applications at mid- latitudes. The pathways of the long-lived semivolatile organic compounds studied include a sequence of several cycles of volatilisation, transport in the atmosphere, deposition and transport in the ocean (multihopping substances). Multihopping is more significant for DDT than for lindane. It enhances the LRT potential for both compounds.

Guglielmo, F.; Lammel, G.; Maier-Reimer, E.

2008-12-01

179

Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter.  

PubMed

Direct membrane filtration (DMF) of municipal wastewater using a microfiltration membrane was investigated to capture organic matter. In contrast to the expectation that membrane fouling cannot be controlled in DMF of domestic wastewater, it was possible to stably continue membrane filtration with relatively high membrane fluxes (?20 LMH) for >200 h by applying chemically enhanced backwash (CEB), whereas approximately 75% of the organic matter in wastewater could be recovered. Off-line chemical membrane cleaning could completely restore membrane permeability, indicating the possibility of a much longer operation of DMF. Selection of chemical reagents used for CEB was found to influence the amount of organic matter recovered by DMF. Based on the experimental results, feasibility of DMF was discussed by a comparison with a conventional wastewater treatment plant treating the same wastewater as studied in this study. PMID:24161553

Lateef, Shaik Khaja; Soh, Bing Zheng; Kimura, Katsuki

2013-12-01

180

Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes - a review.  

PubMed

Sonochemical processes have been widely used in chemistry and chemical engineering field. Recently, these processes have found new applications in the environmental field, because of advantages in terms of operational simplicity, secondary pollutant formation and safety. Several studies have reported on sonochemical degradation of organic compounds that are toxic in nature. The objective of this review was to identify and examine some of the studies on sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes. This review also examines the basic theory of sonochemical reactions and the use of sonochemical reactors for environmental applications. PMID:19200588

Chowdhury, Pankaj; Viraraghavan, T

2009-04-01

181

Nonvolatile organic compounds in treated waters.  

PubMed Central

Over the past decade much information has been published on the analysis of organics extracted from treated water. Certain of these organics have been shown to be by-products of the chlorination disinfection process and to possess harmful effects at high concentrations. This has resulted in increased interest in alternative disinfection processes, particularly ozonation. The data on organics had been largely obtained by using gas chromatography-mass spectrometry, which is only capable of analyzing, at best, 20% of the organics present in treated water. Research in key areas such as mutagenicity testing of water and characterization of chlorination and ozonation by-products has emphasized the need for techniques suitable for analysis of the remaining nonvolatile organics. Several methods for the isolation of nonvolatile organics have been evaluated and, of these, freeze-drying followed by methanol extraction appears the most suitable. Reverse-phase HPLC was used for separation of the methanol extract, but increased resolution for separation of the complex mixtures present is desirable. In this context, high resolution size exclusion chromatography shows promise. Characterization of separated nonvolatiles is possible by the application of state-of-the-art mass spectrometric techniques. Results obtained by these techniques have shown that the nonvolatile organic fraction of chlorinated drinking water consists of many discrete compounds. Among these, some of the chlorinated compounds are almost certainly by-products of disinfection. Studies of the by-products of ozonation of fulvic and humic acids isolated from river waters have indicated a similar proportion of nonvolatile organics. Further, ozonation can result in the release of compounds that are trapped in the macromolecules. PMID:6759110

Watts, C D; Crathorne, B; Fielding, M; Killops, S D

1982-01-01

182

Organic photosensitive devices using subphthalocyanine compounds  

DOEpatents

An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

Rand, Barry (Princeton, NJ); Forrest, Stephen R. (Ann Arbor, MI); Mutolo, Kristin L. (Hollywood, CA); Mayo, Elizabeth (Alhambra, CA); Thompson, Mark E. (Anaheim Hills, CA)

2011-07-05

183

Ultrasonic process for remediation of organics-contaminated groundwater/wastewater  

SciTech Connect

A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

Wu, J.M.; Peters, R.W.

1995-07-01

184

Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading.  

PubMed

Acid wastewaters contaminated with Fe - 1000 mg L(-1) and Cu - 100 mg L(-1) were remediated by microbial sulfate-reduction at high organic loading (theoretical TOC/SO4(2-) ratio 1.1) in a laboratory installation. The installation design includes a fixed-bed anaerobic bioreactor for sulfate-reduction, a chemical reactor, a settler and a three-sectional bioreactor for residual organic compounds and hydrogen sulfide removal. Sulfate-reducing bacteria are immobilized on saturated zeolite in the fixed-bed bioreactor. The source of carbon and energy for bacteria was concentrated solution, containing ethanol, glycerol, lactate and citrate. Heavy metals removal was achieved by produced H2S at sulfate loading rate 88 mg L(-1)h(-1). The effluent of the anaerobic bioreactor was characterized with high concentrations of acetate and ethanol. The design of the second bioreactor (presence of two aerobic and an anoxic zones) makes possible the occurrence of nitrification and denitrification as well as the efficiently removal of residual organic compounds and H2S. PMID:23611703

Bratkova, Svetlana; Koumanova, Bogdana; Beschkov, Venko

2013-06-01

185

Toxic organic compounds from energy production  

SciTech Connect

The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

Hites, R.A.

1991-09-20

186

Microbiological degradation of atmospheric organic compounds  

NASA Astrophysics Data System (ADS)

Until now, aerosol transformation was assumed to be via chemical or physical processes. Here we present evidence that an important class of organic aerosols - dicarboxylic acids (DCA) - can be efficiently transformed by existing airborne microbes (bacteria and fungi) in the boundary layer. Isotopic studies indicate that microbiological entities transform and use DCA as nutrients. Several observed products are toxicants or pathogens. Identified volatile products indicate that DCA can be recycled back to the atmosphere via microbiological processes. Thus, biodegradation could be an important atmospheric transformation pathway for organic compounds.

Ariya, Parisa A.; Nepotchatykh, Oleg; Ignatova, Olga; Amyot, Marc

2002-11-01

187

Organic Compounds in Star Forming Regions  

NASA Astrophysics Data System (ADS)

The influence of complex dust composition on the general chemical evolution of a prestellar core and the content of complex organic compounds is studied. It is shown that various component groups respond differently to the presence of a small dust population. At early stages the difference is determined primarily by changes in the balance of photo processes due to effective absorption of ultraviolet photons by small dust grains of the second population and collisional reactions with dust particles. At later stages differences are also caused by the growing dominance of additional reaction channels related to surface organic synthesis.

Kochina, O.; Wiebe, D.

2014-09-01

188

Metabolic Reactions among Organic Sulfur Compounds  

NASA Technical Reports Server (NTRS)

Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. Numerous authors have addressed the energy available from a variety of inorganic sulfur redox pairs. Less attention has been paid, however, to the energy required or gained from metabolic reactions among organic sulfur compounds. Work in this area has focused on the oxidation of alkyl sulfide or disulfide to thiol and formaldehyde, e.g. (CH3)2S + H2O yields CH3SH + HCHO + H2, eventually resulting in the formation of CO2 and SO4(-2). It is also found that reactions among thiols and disulfides may help control redox disequilibria between the cytoplasm and the periplasm. Building on our earlier efforts for thiols, we have compiled and estimated thermodynamic properties for alkyl sulfides. We are investigating metabolic reactions among various sulfur compounds in a variety of extreme environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised HKF equation of state, along with constraints imposed by the geochemical environments sulfur-metabolizing organisms inhabit, we are able to calculate the amount of energy available to these organisms.

Schulte, M.; Rogers, K.

2005-01-01

189

Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin  

USGS Publications Warehouse

Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.

Leenheer, Jerry A.; Rostad, Colleen E.

2004-01-01

190

DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES  

EPA Science Inventory

Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

191

DENSITY LEVELS OF PATHOGENIC ORGANISMS IN MUNICIPAL WASTEWATER SLUDGE: A LITERATURE REVIEW  

EPA Science Inventory

This report presents a critical review of the literature from laboratory and full scale studies regarding density levels of indicator and pathogenic organisms in municipal wastewater sludges and septage. The effectiveness of conventional municipal sludge stabilization processes (...

192

Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.  

PubMed

A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. PMID:23886540

Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

2013-10-01

193

Removal of Salmonella and indicator micro-organisms in integrated constructed wetlands treating agricultural wastewater  

Microsoft Academic Search

The purpose of this study was to investigate the removal of pathogenic and indicator micro-organisms in integrated constructed wetland (ICW) systems treating agricultural wastewater. Nine ICW's treating piggery (3) or dairy (6) wastewaters were sampled and indicator micro-organisms were enumerated in the influent as well as the effluent from the first, mid- and final cells. The presence\\/absence of Salmonella was

Gemma McCarthy; Peadar G. Lawlor; Montserrat Gutierrez; Gillian E. Gardiner

2011-01-01

194

Surface ionization mass spectrometry of organic compounds Part 4. Oxygen-containing organic compounds  

Microsoft Academic Search

Surface ionization organic mass spectrometry (SIOMS) was performed for 42 oxygen-containing organic compounds not previously investigated, using a quadrupole mass spectrometer in which the thermionic ion source has a rhenium oxide emitter. The results are interpreted in terms of the modes of ion formation: molecular surface ionization, dissociative surface ionization and associative surface ionization. SIOMS is particularly well suited to

Toshihiro Fujii; Kouichi Kakizaki; Yoshihiro Mitsutsuka

1991-01-01

195

Gas chromatographic--mass spectrometric determination of volatile organic compounds in fish.  

PubMed

A technique has been developed for the determination of volatile organic compounds in fish. The methodology is based on procedures used to determine purgeable organic compounds in water and wastewater. Fish tissue is added to reagent water, cooled in an ice bath, and homogenized with cell disruption using ultrasonic energy. The processed sample is then analyzed by a purge and trap procedure using an impinger-type device at 70 degrees C, with determination of the purged compounds by computerized gas chromatography-mass spectrometry. Both ground fish and cored fish specimens were successfully analyzed by this technique. The overall average recovery for 39 volatile compounds studied was 77% with an average standard deviation of 20%. PMID:7240070

Easley, D M; Kleopfer, R D; Carasea, A M

1981-05-01

196

Water-Quality Data for Pharmaceuticals and Other Organic Wastewater Contaminants in Ground Water and in Untreated Drinking Water Sources in the United States, 2000-01  

USGS Publications Warehouse

This report presents water-quality data from two nationwide studies on the occurrence and distribution of organic wastewater contaminants. These data are part of the continuing effort of the U.S. Geological Survey Toxic Substances Hydrology Program to collect baseline information on the environmental occurrence of pharmaceuticals and other organic wastewater contaminants. In 2000, samples were collected from 47 ambient ground-water sites (not drinking-water wells) in 18 states and analyzed for 65 organic wastewater contaminants. In the summer of 2001, samples were collected from 74 sources of raw, untreated, drinking water in 25 states and Puerto Rico and analyzed for 100 organic wastewater contaminants. These sources comprise 25 ground-water and 49 surface-water sources of drinking water serving populations ranging from one family to more than 8 million people. Site selection for both studies focused on areas known or suspected to contain sources of animal and/or human wastewater. The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), B -sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).

Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael

2008-01-01

197

Self assembly properties of primitive organic compounds  

NASA Technical Reports Server (NTRS)

A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.

Deamer, D. W.

1991-01-01

198

Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).  

PubMed

In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. PMID:25502693

Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

2015-01-01

199

Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.  

PubMed

The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. PMID:23892132

Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

2013-10-15

200

Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.  

PubMed

Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously. PMID:24520696

Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

2013-08-01

201

REDUCTION OF TOXICITY TO AQUATIC ORGANISMS BY INDUSTRIAL WASTEWATER TREATMENT  

EPA Science Inventory

The specific goal of this research was to conduct 24-hour static acute bioassays with 'untreated' influent and 'treated' effluent using fathead minnows (Pimephales promelas) and water flea (Daphnia magna) to biologically evaluate the effectiveness of industrial wastewater facilit...

202

Palladium catalyzed hydrogenation of bio-oils and organic compounds  

SciTech Connect

The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

Elliott, Douglas C. (Richland, WA); Hu, Jianli (Kennewick, WA); Hart, Todd R. (Kennewick, WA); Neuenschwander, Gary G. (Burbank, WA)

2008-09-16

203

The influence of the buffering capacity on the production of organic acids and alcohols from wastewater in anaerobic reactor.  

PubMed

Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate. PMID:25480346

Silva, A J; Pozzi, E; Foresti, E; Zaiat, M

2015-02-01

204

Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment.  

PubMed

The distribution coefficient (Kd) and the organic carbon distribution coefficient (KOC) were determined for four Perfluorinated Compounds (PFCs) to three different types of sludge taken from a conventional Sewage Treatment Plant (STP). Batch experiments were performed in six different environmental relevant concentrations (200ngL(-1)to 5?gL(-1)) containing 1gL(-1) sludge. Kd values ranged from 330 to 6015, 329 to 17432 and 162 to 11770Lkg(-1) for primary, secondary and digested sludge, respectively. The effects of solution's pH, ionic strength and cation types on PFCs sorption were also evaluated. Sorption capacities of PFCs significantly decreased with increased pH values from 6 to 8. Furthermore, the divalent cation (Ca(2+)) enhanced PFCs sorption to a higher degree in comparison with the monovalent cation (Na(+)) at the same ionic strength. The obtained Kd values were applied to estimate the sorbed fractions of each PFC in different stages of a typical STP and to calculate their removal through treated wastewater and sludge. In primary settling tank, the predicted sorbed fractions ranged from 3% for Perfluorooctanoic Acid (PFOA) to 55% for Perfluoroundecanoic acid (PFUdA), while in activated sludge tank and anaerobic digester sorption was more than 50% for all target compounds. Almost 86% of initial PFOA load is expected to be detected in treated wastewater; while Perfluorodecanoic acid (PFDA), PFUdA and Perfluorooctanesulfonate (PFOS) can be significantly removed (>49%) via sorption to primary and excess secondary sludge. In anaerobic digester, the major part (>76%) of target PFCs is expected to be sorbed to sludge, while almost 3% of initial PFOA load will be detected in sludge leachates. PMID:24997945

Arvaniti, Olga S; Andersen, Henrik R; Thomaidis, Nikolaos S; Stasinakis, Athanasios S

2014-09-01

205

Biogenic volatile organic compounds - small is beautiful  

NASA Astrophysics Data System (ADS)

While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (?-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, ?-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-?-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the morning and raised in the afternoon. This is reversed for the "cataflexistyle" morphology. The bVOC mixture emitted by each morphology in morning and afternoon was complex. However for compounds showing a difference (cis-ocimene and Z + E epoxy -ocimene), the emissions from the anaflexistyle were greater than from the cataflexistyle, and were greater in the afternoon compared with the morning emissions. Where large flowering plant species are abundant, big changes in monoterpene emissions at < 2m above ground level over relatively small periods of time during pollination are likely to be missed in larger scale integrated flux measurements.

Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

2012-12-01

206

Effects of treated wastewater irrigation on contents and dynamics of soil organic carbon and microbial activity  

NASA Astrophysics Data System (ADS)

In many arid and semi-arid regions, the demand for freshwater as drinking water and other domestic uses is constantly growing due to demographic growth and increasing standard of living. Therefore, less freshwater is available for agricultural irrigation and new water sources are needed. Treated wastewater (TWW) already serves as an important water source in Jordan, the Palestinian Territories and Israel. Related to its high loads with nutrients, salts and organic materials within its use as irrigation water major effects on the soil physical and chemical properties can occur, in the worst case leading to soil degradation. In an ongoing study we are investigated in the effects of TWW irrigation on agricultural soils in the region. Here we present results from analyses of total soil carbon contents and qualities in soils irrigated with freshwater and TWW. Furthermore microbiological parameters were investigated as microbial biomass, microbial activities and enzyme activities. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. Apparently, this higher microbial activity is causing an increased depletion of soil organic matter, which may have negative long-term effects on soil quality.

Jüschke, E.; Marschner, B.; Chen, Y.; Tarchitzky, J.

2009-04-01

207

Electrochemical remediation produces a new high-nitrogen compound from NTO wastewaters.  

PubMed

A new high-nitrogen molecule, identified as azoxytriazolone (AZTO), has been generated in high yield by electroreduction of acidic aqueous solutions of nitrotriazolone (NTO). The near-quantitative conversion appears to be driven by the low solubility of the product. AZTO precipitates readily, leaving the solution virtually free of organic material, and the process may therefore present an efficient and productive remediation method for wastewater from NTO manufacture. The chemical formula and molecular structure of AZTO indicate that it may be effective as an insensitive explosive. PMID:17854992

Cronin, Michael P; Day, Anthony I; Wallace, Lynne

2007-10-22

208

Volatile Organic Compound Analysis in Istanbul  

NASA Astrophysics Data System (ADS)

Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Ni?anta??, 34365, ?stanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Ka??thane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Ka??thane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of compounds. N-octane, 3-methylheptane, n-nonane, 2,3,4-trimethylpentane and n-hexane parameters ranged between 3 ppbv and maximum value of 10 ppbv. The other VOC parameters are measured below 3 ppbv value. At participating urban locations for the year of data considered, levels of carbonyls were higher than the level of the other organic compound groups, suggesting that emissions from motor vehicles and photochemical reactions strongly in?uence ambient air concentrations of carbonyls. Of the most prevalent carbonyls, formaldehyde and acetaldehyde were the dominant compounds, ranging from 1.5-7.4 ppbv for formaldehyde, to 0.8-2.7 ppbv for acetaldehyde. Keywords: Air quality, Volatile Organic Compounds (VOC), industry, meteorology, urban, Ka??thane, ?stanbul. Acknowledgment: This work was part of the TUJJB-TUMEHAP-01-10 and Turkish Scientific and Technical Research Council Project No: 109Y132.

?apraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Co?kun, M.

2012-04-01

209

CHLORINATED ORGANIC COMPOUNDS IN DIGESTED, HEAT-CONDITIONED, AND PURIFAX-TREATED SLUDGES  

EPA Science Inventory

Wastewater sludges were stabilized by Purifax treatment, anaerobic digestion and heat conditioning. The processed sludges from the Purifax process at chlorine dosages normally used in processing wastewater sludges contained 2 to > 14 times the total organic chlorine content of th...

210

Measurement of volatile organic compounds inside automobiles.  

PubMed

The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode. PMID:12595882

Fedoruk, Marion J; Kerger, Brent D

2003-01-01

211

Measurements of hydrocarbons and reduced sulfur compounds emitted from a wastewater treatment pond  

SciTech Connect

A flux chamber was deployed on the water surface to monitor the emissions of hydrocarbons and reduced sulfur compounds from a wastewater treatment pond at a refinery site. Air samples were collected in Tedlar bags and analyzed on-site by means of a gas chromatograph/flame ionization detector (GC/FID) for hydrocarbons and a gas chromatograph/flame photometric detector (GC/FPD) for reduced sulfur compounds. The standard deviations of the duplicate samples for hydrocarbons and for reduced sulfur compounds were better than 4% and 11%, respectively. The pond was monitored during the daytime and nighttime, under two different weather conditions where the daytime temperatures were about 22{degrees}C and 14{degrees}C. The results showed that the difference between day and night emissions of hydrocarbons and reduced sulfur compounds were greater during the warm weather compared to those during cool weather. Air samples were also collected with charcoal adsorbent tubes and analyzed by means of a gas chromatograph/mass selective detector (GC/MSD) at the BOVAR Environmental (BE) laboratory to confirm the GC/FID hydrocarbon analyses. There was excellent agreement between hydrocarbons identified by GC/FID and GC/MSD. 10 refs., 3 figs.

Tran, G.; Geen, C.; Friel, D. [BOVAR Environmental, Toronto, Ontario (Canada)

1996-12-31

212

Occurrence of pharmaceuticals and other organic wastewater constituents in selected streams in northern Arkansas, 2004  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.

Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed

2005-01-01

213

Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants  

Technology Transfer Automated Retrieval System (TEKTRAN)

A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

214

CHARACTERIZATION OF REUSABLE MUNICIPAL WASTEWATER EFFLUENTS AND CONCENTRATION OF ORGANIC CONSTITUENTS  

EPA Science Inventory

The main thrust of this project was to collect organic concentrates from operating advanced wastewater treatment (AWT) plants for use in health effects testing. A reverse osmosis process was employed in the first stage concentration; the organics were further concentrated and rec...

215

Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain)  

Microsoft Academic Search

The occurrence of four anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine) in influent and effluent samples from four wastewater treatment plants (WWTPs) in Seville was evaluated. Removal rates in the WWTPs and risk assessment of the pharmaceutically active compounds have been studied. Analytical determination was carried out by high performance liquid

J. L. Santos; I. Aparicio; E. Alonso

2007-01-01

216

Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.  

PubMed

The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. PMID:24370698

Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

2014-03-01

217

Alkaline dechlorination of chlorinated volatile organic compounds  

SciTech Connect

The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

Gu, B.; Siegrist, R.L.

1996-06-01

218

Catalytic destruction of organic volatile nitrogen compounds  

SciTech Connect

A family of catalysts has been identified for purification of industrial gas streams which are contaminated with odorous and/or toxic volatile nitrogen compounds (VNC). Temperature-conversion curves were measured for destruction of a series of organic VNC`s in moist air at 15,000 hr {sup {minus}1} gas hourly space velocity (STP), and the yields of N{sub 2}, N{sub 2}O, and total NO{sub x} (NO + NO{sub 2}) were measured. The VNCs of interest included primary, secondary and tertiary amines, ethylenediamine, ethanolamine, acetonitrile, dimethylfomamide, pyridine, piperidine and aniline. The ease of destruction of these compounds over a monolithic platinum VNC catalyst as reflected in the temperature required or 95% conversion, ranged from n-propylamine (234{degrees}C) to acetonitrile (343{degrees}C). Selectivity to N{sub 2} plus N{sub 2}O at the temperatures of 95% conversion decreased with increasing T-95 from 93% to 46%. Additional studies were done with triethylamine at several space velocities with the VNC catalyst and with some related PT catalysts. The results of these tests suggest that N{sub 2}, N{sub 2}O, and NO{sub x} (NO + NO{sub 2}) are formed by at least three competitive reaction pathways.

Lester, G.R.; Homeyer, S.T. [Allied Signal Inc., Des Plaines, IL (United States)

1993-12-31

219

Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell.  

PubMed

Presence of pathogenic microorganism in anodic effluent of microbial fuel cell (MFC) makes it unfit for reuse. In this study, performance of dual chamber MFC was evaluated in terms of organic matter removal, power generation and disinfection in cathodic chamber. Anodic effluent was treated further in cathodic chamber for achieving disinfection with different doses of sodium hypochlorite (NaOCl) with available chlorine varying from 0.67, 1.32, 2, 3 and 4 g/L. Addition of different doses of NaOCl resulted in satisfactory disinfection along with removal of nitrogenous compounds. Power output of MFC improved up to 3g/L of available chlorine (6.5 W/m(3)); however, further increase in chlorine concentration decreased the power. Voltammetric and impedance analysis showed higher and faster electron reduction and decrease in polarization resistance at 3g/L dose. Higher organic matter removal from wastewater and complete elimination of microorganism, along with improved power output, demonstrates effectiveness of hypochlorite as catholyte. PMID:24835745

Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

2014-07-01

220

ANALYSIS OF ENDOCRINE DISRUPTING COMPOUNDS IN WASTEWATER AND DRINKING WATER TREATMENT PLANTS AT THE NANOGRAM PER LITRE LEVEL  

Microsoft Academic Search

The determination of steroid hormones, alkylphenolic compounds and bisphenol A at the ng l level in environmental water samples (surface water and WasteWater Treatment Plant samples (WWTP)) is performed by a specific analytical procedure. Pre?concentration by solid?phase extraction conditions was optimized using C18 cartridges for steroid hormones and polymeric Oasis HLB cartridges for phenolic compounds. Identification and quantification were performed

C. Stavrakakis; R. Colin; V. Hequet; C. Faur; P. Le Cloirec

2008-01-01

221

Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds.  

PubMed

Table olive processing wastewaters (TOPW) have high salt concentration and total phenolic content (TPC) causing many environmental problems. To reduce them, ultrafiltration (UF) was applied for treating TOPW. However, NaCl, which is the main responsible of salinity in TOPW, and phenols are small molecules that cannot be separated by conventional UF membranes. They have serious problems caused by fouling, which can be overcome using membrane modification techniques. For these reasons, photomodification may be an effective technique to obtain a stream rich in TPC due to the changes in membrane surface properties. UV-modification in the presence of two hydrophilic compounds (polyethylene glycol and aluminium oxide) was performed to achieve membranes with high reductions of organic matter and to keep the TPC as high as possible. Commercial polyethersulfone (PES) membranes of 30kDa were used. Surface modification was evaluated using FTIR-ATR spectroscopy and membrane performance was studied by calculating the rejection ratios of colour, chemical oxygen demand (COD) and TPC. Results demonstrated that UF is a useful pre-treatment to reduce organic matter from TOPW, obtaining a permeate rich in TPC. PES/Al2O3 membranes displayed superior antifouling properties and rejection values, keeping high the TPC (>95%). Therefore, UF using modified membranes is an appropriate and sustainable technique for treating TOPW. PMID:25744202

Garcia-Ivars, Jorge; Iborra-Clar, Maria-Isabel; Alcaina-Miranda, Maria-Isabel; Mendoza-Roca, José-Antonio; Pastor-Alcañiz, Laura

2015-06-15

222

Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study.  

PubMed

The effect of hydraulic retention time (HRT) and seasonality on the removal efficiency of 26 organic microcontaminants from urban wastewater was studied in two pilot high-rate algal ponds (HRAPs). The targeted compounds included pharmaceuticals and personal care products, fire retardants, surfactants, anticorrosive agents, pesticides and plasticizers, among others. The pilot plant, which was fed at a surface loading rate of 7-29g of COD m(-2)d(-1), consisted of a homogenisation tank and two parallel lines, each one with a primary settler and an HRAP with a surface area of 1.5m(2) and a volume of 0.5m(3). The two HRAPs were operated with different HRTs (4 and 8d). The removal efficiency ranged from negligible removal to more than 90% depending on the compound. Microcontaminant removal efficiencies were enhanced during the warm season, while the HRT effect on microcontaminant removal was only noticeable in the cold season. Our results suggest that biodegradation and photodegradation are the most important removal pathways, whereas volatilization and sorption were solely achieved for hydrophobic compounds (log Kow>4) with a moderately high Henry's law constant values (11-12Pam(-3)mol(-1)) such as musk fragrances. Whereas acetaminophen, ibuprofen and oxybenzone presented ecotoxicological hazard quotients (HQs) higher than 1 in the influent wastewater samples, the HQs for the effluent water samples were always below 1. PMID:25682515

Matamoros, Víctor; Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Bayona, Josep M

2015-05-15

223

Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.  

PubMed

Rejection of trace organic compounds, including disinfection by-products (DBPs) and pharmaceutical active compounds (PhACs), by high-pressure membranes has become a focus of public interest internationally in both drinking water treatment and wastewater reclamation/reuse. The ability to simulate, or even predict, the rejection of these compounds by high-pressure membranes, encompassing nanofiltration (NF) and reverse osmosis (RO), will improve process economics and expand membrane applications. The objective of this research is to develop a membrane transport model to account for diffusive and convective contributions to solute transport and rejection. After completion of cross-flow tests and diffusion cell tests with target compounds, modeling efforts were performed in accordance with a non-equilibrium thermodynamic transport equation. Comparing the percentages of convection and diffusion contributions to transport, convection is dominant for most compounds, but diffusion is important for more hydrophobic non-polar compounds. Convection is also more dominant for looser membranes (i.e., NF). In addition, higher initial compound concentrations and greater J(0)/k ratios contribute to solute fluxes more dominated by convection. Given the treatment objective of compound rejection, compound transport and rejection trends are inversely related. PMID:17631378

Kim, Tae-Uk; Drewes, Jörg E; Scott Summers, R; Amy, Gary L

2007-09-01

224

Volatile organic compounds at swine facilities: a critical review.  

PubMed

Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks. Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5mgd(-1)kg(-1) pig at swine finishing barns and from 2.3 to 45.2gd(-1)m(-2) at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates. Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors. PMID:22682363

Ni, Ji-Qin; Robarge, Wayne P; Xiao, Changhe; Heber, Albert J

2012-10-01

225

GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES  

EPA Science Inventory

The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

226

ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS  

EPA Science Inventory

Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...

227

Characterisation of organic pollutants in textile wastewaters and landfill leachate by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass spectrometric detection  

Microsoft Academic Search

In the present work, the characterisation of toxic organic compounds present in complex mixtures like textile effluents and landfill leachates is proposed. The protocol developed for the wastewater characterisation is based on solid phase extraction (SPE) combined with toxicity-fractionation followed by high temperature-gas chromatography-mass spectrometry (HT-GC-MS) and liquid chromatography-mass spectrometry (LC-MS). In this work Daphnia magna was used as the

Monserrat Castillo; Damià Barceló

2001-01-01

228

Comparative toxicity of SRC-I wastewater to aquatic organisms. Final technical report  

SciTech Connect

SRI International performed a series of acute and chronic toxicity studies on SRC-I wastewaters using fish, zooplankton, and algae as test organisms. The tests were designed to determine the toxicity of SRC-I wastewaters to quatic organisms and based on differences in toxicity of the various water samples, to evaluate the efficacy of various wastewater treatment methods. Survival data from acute and chronic daphnid studies indicate that phenol recovery markedly reduced wastewater toxicity. In treatment processes that did not include phenol recovery, powdered activated carbon reduced toxicity more effectively than granulated activated carbon. All treated water supported algal growth in excess of that in controls, particularly those waters subjected to phenol recovery. The toxicity of each SRC-I wastewater sample was compared with that of a corresponding synthetic salt solution to determine whether the salt load was the toxic element. The wastewaters typically exhibited higher toxicity than their associated salt solutions. The effect was greatest in the daphnid chronic studies. The aquatic ecotoxicity tests were performed as part of ICRC's post-Base-line environmental R and D program. One objective of the program was to evaluate the impact of phenol recovery on effluent quality. Another objective was to assess the potential impact of wastewater discharge on aquatic organisms. The results of this study have been integrated with results from the rest of the R and D program, and are documented in ICRC's Integration Report for SRC-I Post-Baseline Environmental R and D. 7 references, 10 figures and 22 tables.

Bailey, H.C.

1984-01-01

229

Hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil.  

PubMed

The objective of this study is to investigate the hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil using in vivo and in vitro experiments on mice and rat. Soil samples were collected from a wastewater-irrigated area and groundwater-irrigated area, i.e. clean water-irrigated area as control group. The organic contaminants were extracted using an ultrasonic oscillator. In vivo experiment was performed by contamination of hepatocytes of rat using the organic extract, and comet assay was used to analyse the DNA damage of hepatocytes. For in vitro experiment, mice were first gavaged with extracts, and then the indicators for kidney functions, liver functions and oxidative damage of tissues were investigated. The result shows, for in vitro experiments, compared with clean water-irrigated area groups, the average DNA tailing length for the wastewater-irrigated area group is larger, and for the wastewater-irrigated area groups with extract concentration 0.6 g/ml and 0.9 g/ml, the tailing rate increases significantly (P?wastewater-irrigated area, while both kidney and liver indices decreased for wastewater-irrigated area high-dose group (P?wastewater-irrigated low-dose group and Gamma-glutamyl transpeptidase, creatinine for high-dose group all increased (P?wastewater-irrigated groups and glutathione peroxidase activity for high-dose group, malondialdehyde content all decreased (P?wastewater-irrigated high-dose group decreased (P?wastewater-irrigated soil is able to cause DNA damage of hepatocytes in rats, changes of liver functions in mice and lead to oxidative damage of liver and kidney. PMID:25263415

Gao, Hongxia; Liu, Yingli; Guan, Weijun; Li, Qingzhao; Liu, Nan; Gao, Zhenjie; Fan, Jianjun

2015-03-01

230

Soluble organic compounds in the Tagish Lake meteorite  

NASA Astrophysics Data System (ADS)

The C2 ungrouped Tagish Lake meteorite preserves a range of lithologies, reflecting variable degrees of parent-body aqueous alteration. Here, we report on soluble organic compounds, including aliphatic and aromatic hydrocarbons, monocarboxylic acids, and amino acids, found within specimens representative of the range of aqueous alteration. We find that differences in soluble organic compounds among the lithologies may be explained by oxidative, fluid-assisted alteration, primarily involving the derivation of soluble organic compounds from macromolecular material. In contrast, amino acids probably evolved from precursor molecules, albeit in parallel with other soluble organic compounds. Our results demonstrate the role of parent-body alteration in the modification of organic matter and generation of prebiotic compounds in the early solar system, and have implications for interpretation of the complement of soluble organic compounds in carbonaceous chondrites.

Hilts, Robert W.; Herd, Christopher D. K.; Simkus, Danielle N.; Slater, Greg F.

2014-04-01

231

Method and reaction pathway for selectively oxidizing organic compounds  

DOEpatents

A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

Camaioni, Donald M. (Richland, WA); Lilga, Michael A. (Richland, WA)

1998-01-01

232

Effect of different types of organic compounds on the photocatalytic reduction of Cr(VI).  

PubMed

The effect of different types of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol) on the photocatalytic reduction of Cr(VI) with illuminated TiO2 was studied in this work with variation of the solution pH, contact time, initial Cr(VI) concentration and type of organic compounds. As the pH increased, the removal efficiency for Cr(VI) decreased. The increase in Cr(VI) removal by UV/TiO2 with decreasing solution pH was due to the increased potential difference between the conduction band of TiO2 and Cr(VI)/Cr(III) as well as the anionic-type adsorption of Cr(VI) on to the TiO2 surface. Removal efficiency for Cr(VI) increased in the presence of organic compound compared with that without organic compound because positive holes in the TiO2 were scavenged by organic additives. The reduction pattern of Cr(VI) was better described by the first-order kinetic model. Finally photocatalytic reaction with illuminated TiO2 can be effectively applied to treat wastewater contaminated with Cr(VI). PMID:23240196

Yang, J K; Lee, S M; Siboni, M Shirzad

2012-09-01

233

Breath measurements as volatile organic compound biomarkers.  

PubMed Central

A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

1996-01-01

234

Molecular Models of Volatile Organic Compounds  

NSDL National Science Digital Library

This month's Featured Molecules come from the Report from Other Journals column, Nature: Our Atmosphere in the Year of Planet Earth, and the summary found there of the paper by Lelieveld et al. (1, 2) Added to the collection are several volatile organic compounds (VOCs) that are emitted by a variety of plants. The term VOCs is a common one in environmental chemistry, and is interpreted quite broadly, typically referring to any organic molecule with a vapor pressure sufficiently high to allow for part-per-billion levels in the atmosphere. Common VOCs include methane (the most prevalent VOC), benzene and benzene derivatives, chlorinated hydrocarbons, and many others. The source may be natural, as in the case of the plant emissions, or anthropogenic, as in the case of a molecule such as the gasoline additive methyl tert-butyl ether (MTBE).The oxidation of isoprene in the atmosphere has been a source of interest for many years. Several primary oxidation products are included in the molecule collection, although a number of isomeric forms are also possible (3).The area of VOCs provides innumerable topics for students research papers and projects at all levels of the curriculum from high-school chemistry through the undergraduate courses in chemistry and environmental science. Along the way students have the opportunity for exposure to fields such as epidemiology and toxicology, that may be new to them, but are of increasing importance in the environmental sciences. The MTBE story is an interesting one for students to discover, as it once again emphasizes the role that unintended consequences play in life. An exploration of the sources, structures, reactivity, health and environmental effects and ultimate fate of various VOCs reinforces in students minds just how interconnected the chemistry of the environment is, a lesson that bears repeating frequently.

235

Oceanic protection of prebiotic organic compounds from UV radiation  

NASA Technical Reports Server (NTRS)

It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

1998-01-01

236

A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection.  

PubMed

A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 ?L) and chloroform as dispersive solvent (200 ?L) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. PMID:25056775

Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

2015-03-01

237

DEMONSTRATION BULLETIN: ZENOGEM? WASTEWATER TREATMENT PROCESS - ZENON ENVIRONMENTAL SYSTEMS  

EPA Science Inventory

Zenon Environmental Systems (Zenon) has developed the ZenoGem? process to remove organic compounds from wastewater by integrating biological treatment and membrane-based ultrafiltration. This innovative system combines biological treatment to remove biodegradable organic compou...

238

Volatile organic compound remedial action project  

SciTech Connect

This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

NONE

1991-12-01

239

Microwave process for volatile organic compound abatement.  

PubMed

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor. PMID:15666467

Cha, C Y; Carlisle, C T

2001-12-01

240

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS  

SciTech Connect

Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

2002-06-01

241

Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone.  

PubMed

The hyporheic zone - a spatially fluctuating ecotone connecting surface water and groundwater - is considered to be highly reactive with regard to the attenuation of organic micropollutants. In the course of the presented study an undisturbed sediment core was taken from the infiltration zone of a bank filtration site in Berlin and operated under controlled laboratory conditions with wastewater-influenced surface water at two different temperatures, simulating winter and summer conditions. The aim was to evaluate the fate of site-relevant micropollutants, namely metoprolol, iopromide, diclofenac, carbamazepine, acesulfame, tolyltriazole, benzotriazole, phenazone and two phenazone type metabolites, within the first meter of infiltration dependent on the prevailing temperature. A change in temperature resulted in a development of significantly distinct redox conditions. Both temperature dependencies and related redox dependencies were identified for all micropollutants except for benzotriazole and carbamazepine, which behaved persistent under all conditions. For the remaining compounds degradation rate constants generally decreased from warm and oxic/penoxic/suboxic over cold and oxic/penoxic to warm and manganese reducing (transition zone). Individual degradation rate constants ranged from 0 (e.g. diclofenac, acesulfame and tolyltriazole in the transition zone) to 1.4×10(-4)s(-1) for metoprolol under warm conditions within the oxic to suboxic zone. PMID:24642095

Burke, Victoria; Greskowiak, Janek; Asmuß, Tina; Bremermann, Rebecca; Taute, Thomas; Massmann, Gudrun

2014-06-01

242

Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke  

NASA Astrophysics Data System (ADS)

Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

2010-12-01

243

POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION  

EPA Science Inventory

Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...

244

ANALYSIS OF INDUSTRIAL WASTEWATER FOR ORGANIC POLLUTANTS IN CONSENT DECREE SURVEY  

EPA Science Inventory

In response to a need of the Effluent Guidelines Division of the U.S. EPA Office of Water Regulations and Standards, industrial wastewater survey sample extracts were analyzed for organic pollutants other than the Priority Pollutants. Chromatographic analyses were performed on ca...

245

EMISSION OF METALS AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS - VOLUME I: SUMMARY REPORT  

EPA Science Inventory

Emissions of metals and organics from a series of four wastewater sludge incinerators were determined. hree multiple hearth units and one fluidized bed combustor were tested. missions were controlled with a combination of venturi and/or tray impingement scrubbers. ne site incorpo...

246

Identification of selected hydrophobic organic contaminants in wastewater with semipermeable membrane devices (SPMDs)  

Microsoft Academic Search

A preliminary test of semipermeable membrane devices (SPMDs) as simple and robust substitutes for automatic sampling for hydrophobic organic contaminants (HOCs) in wastewater is reported. The SPMD sampler allows for time integrated sampling of HOCs from 24 h to 6 days. The concentration of analytes in SPMDs reflects the concentrations measured in the water phase. SPMDs may be used for

F. Stuer-Lauridsen; J. Kjølholt

2000-01-01

247

Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review  

Microsoft Academic Search

Organic dyes are one of the largest groups of pollutants discharged into wastewaters from textile and other industrial processes. Owing to the potential toxicity of the dyes and their visibility in surface waters, removal and degradation of them have attracted considerable attention worldwide. A wide range of approaches have been developed, amongst which the heterogeneous photocatalysis involving zinc oxide (ZnO)

Sze-Mun Lam; Jin-Chung Sin; Ahmad Zuhairi Abdullah; Abdul Rahman Mohamed

2012-01-01

248

Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent  

Microsoft Academic Search

Dissolved organic matter (DOM) was concentrated from natural waters and the effluent of a wastewater treatment plant using a portable reverse osmosis (RO) system. The humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The FA fractions predominated in natural waters and accounted for

Huizhong Ma; Herbert E Allen; Yujun Yin

2001-01-01

249

OCCURRENCE OF PHARMACEUTICALS AND OTHER ORGANIC WASTEWATER CONSTITUENTS IN SELECTED STREAMS IN NORTHERN ARKANSAS, 2004.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Data was collected in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many chemicals that are an emerging concern. Samples were collected at17 sites upstream or downstream from municipal effluent discharges on 7 streams in northwestern Arkans...

250

Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent.  

PubMed

Dissolved organic matter (DOM) was concentrated from natural waters and the effluent of a wastewater treatment plant using a portable reverse osmosis (RO) system. The humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The FA fractions predominated in natural waters and accounted for 54-68% of the total amount of dissolved organic carbon (DOC), whereas the HA and HyI fractions constituted, respectively, 13-29 and 9-30% of the total DOC. The effluent of wastewater was almost devoid of HA and the HyI fraction exceeded FA. The elemental compositions of HA and FA were in the ranges typical for natural humic materials, but the HyI fractions did not exhibit humic character. 1H NMR spectra revealed that the HyI fractions were almost devoid of aromatic protons and the aliphatic region featured more sharp signals than HA and FA fractions, indicating that HyI fractions were consisted of more simple compounds and less complex mixtures. The aliphatic functional groups in these fractions of DOM samples followed the order HA < FA HyI. The rate of Cu complexation with the HyI fraction was faster than the rate with the HA or FA fraction of the Suwannee River DOM, implying that copper reacted with relatively weak ligands faster than with strong ligands. PMID:11235894

Ma, H; Allen, H E; Yin, Y

2001-03-01

251

Secondary organic aerosol from biogenic volatile organic compound mixtures  

NASA Astrophysics Data System (ADS)

The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

Hatfield, Meagan L.; Huff Hartz, Kara E.

2011-04-01

252

Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses.  

PubMed

Two types of integrative sampling approaches (passive samplers and biomonitors) were tested for their sampling characteristics of selected endocrine disrupting compounds (EDCs). Chemical analyses (LC/MS/MS) were used to determine the amounts of five EDCs (nonylphenol, bisphenol A, estrone, 17beta-estradiol and 17alpha-ethinylestradiol) in polar organic chemical integrative samplers (POCIS) and freshwater mussels (Unio pictorum); both had been deployed in the influent and effluent of a municipal wastewater treatment plant (WWTP) in Genoa, Italy. Estrogenicity of the POCIS samples was assessed using the yeast estrogen screen (YES). Estradiol equivalent values derived from the bioassay showed a positive correlation with estradiol equivalents calculated from chemical analyses data. As expected, the amount of estrogens and EEQ values in the effluent were lower than those in the influent. Passive sampling proved to be the preferred method for assessing the presence of these compounds since employing mussels had several disadvantages both in sampling efficiency and sample analyses. PMID:19497651

Liscio, C; Magi, E; Di Carro, M; Suter, M J-F; Vermeirssen, E L M

2009-10-01

253

SORPTION OF ORGANIC ACID COMPOUNDS TO SEDIMENTS: INITIAL MODEL DEVELOPMENT  

EPA Science Inventory

The adsorption to sediments and soils of selected organic acid compounds was examined as a function of compound and sediment properties. ntrinsic compound properties examined included the dissociation constant (pKa) and hydrophobic character. roperties of the sediment examined in...

254

Destruction of volatile organic compounds via catalytic incineration (journal version)  

Microsoft Academic Search

This paper gives results of an investigation of the effect of catalytic incinerator design and operation on the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compounds and compound mixtures. Conclusions of the study, presented here as applying only to the test

M. A. Palazzolo; B. A. Tichenor

1987-01-01

255

Destruction of volatile organic compounds via catalytic incineration  

Microsoft Academic Search

The paper gives results of an investigation of the effect of catalytic-incinerator design and operation the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compounds and compound mixtures. Conclusions of the study, presented here as applying only to the test catalyst and

B. A. Tichenor; M. A. Palazzolo

1985-01-01

256

High Arctic Biogenic Volatile Organic Compound emissions  

NASA Astrophysics Data System (ADS)

Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions, affecting the tropospheric ozone concentration and the lifetimes of greenhouse gasses such as methane. Also, they affect the formation of secondary organic aerosols. BVOCs thus provide a strong link between the terrestrial biosphere, the atmosphere and the climate. Global models of BVOC emissions have assumed minimal emissions from the high latitudes due to low temperatures, short growing seasons and sparse vegetation cover. However, measurements from this region of the world are lacking and emissions from the High Arctic have not been published yet. The aim of this study was to obtain the first estimates for BVOC emissions from the High Arctic. Hereby, we wish to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in NE Greenland (74°30' N, 20°30' W) in four vegetation communities in the study area. These four vegetation communities were dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and Kobresia myosuroides/Dryas octopetela/Salix arctica, respectively. Emissions were measured by enclosure technique and collection of volatiles into adsorbent cartridges in August 2009. The volatiles were analyzed by gas chromatography-mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica-dominated heath, where it was the dominant single BVOC. However, isoprene emission decreased below detection limit in the end of August when the temperature was at or below 10°C. According to a principal component analysis, monoterpene and sesquiterpene emissions were especially associated with C. tetragona-dominated heath. Especially S. arctica and C. tetragona dominated heaths showed distinct patterns of emitted BVOCs. Emissions of BVOC from the studied high arctic heaths were clearly lower than the emissions observed previously in subarctic heaths with more dense vegetation and higher ambient temperature. However, high arctic BVOC emissions are expected to increase in the future as a result of the predicted pronounced climate warming effects in the High Arctic. Therefore, we suggest that further studies should be conducted to investigate the effects of climate changes in the region in order to gain new knowledge and understanding of future global BVOC emissions.

Schollert, Michelle; Buchard, Sebrina; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

2013-04-01

257

REACTIVITY OF NITROGENOUS AND OTHER ORGANIC COMPOUNDS WITH AQUEOUS CHLORINE  

EPA Science Inventory

A protocol for determining the chlorine demand of organic compounds was developed and tested. Organics were reacted with chlorine at mole ratios of 1:05, 1:1, and 1:3 at pH values of 6, 7, and 8 over a one week period. Compounds tested were drawn mainly from the EPA Register of O...

258

METHODS FOR THE DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER  

EPA Science Inventory

Thirteen analytical methods for the identification and measurement of organic compounds in drinking water are described in detail. ix of the methods are for volatile organic compounds (VOC's) and certain disinfection byproducts and these methods were cited in the Federal Register...

259

TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...

260

Organic--Inorganic Layer Compounds: Physical Properties and Chemical Reactions  

Microsoft Academic Search

In contrast with intercalation compounds, which can exist both with and without organic molecules between the planes of inorganic material, `molecular composite' compounds have organic groups covalently or ionically bound to inorganic layers. In such crystals the aim is to combine magnetic or optical properties characteristic of the inorganic solid state, like magnetism and luminescence, with properties found in the

P. Day

1985-01-01

261

A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.  

ERIC Educational Resources Information Center

Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

Hendrickson, James B.

1985-01-01

262

Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes  

Microsoft Academic Search

Four olive mill wastewater (OMW) composts, prepared with three N-rich organic wastes and two different bulking agents, were\\u000a studied in a pilot plant using the Rutgers system. Organic matter (OM) losses during composting followed a first-order kinetic\\u000a equation in all the piles, the slowest being the OM mineralisation rate in the pile using maize straw (MS). The highest N\\u000a losses

C. Paredes; A. Roig; M. P. Bernal; M. A. Sánchez-Monedero; J. Cegarra

2000-01-01

263

Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania  

PubMed Central

This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants. PMID:22919336

Popa, Paula; Timofti, Mihaela; Voiculescu, Mirela; Dragan, Silvia; Trif, Catalin; Georgescu, Lucian P.

2012-01-01

264

Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.  

PubMed

We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater. PMID:25706086

Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

2015-05-01

265

Accumulation and Transformation of Sulfonated Aromatic Compounds by Higher Plants –Toward the Phytotreatment of Wastewater from Dye and Textile Industries  

Microsoft Academic Search

Sulfonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation and thus not\\u000a eliminated by classical wastewater treatments. In the development of a phytoremediation process to remove sulfonated aromatic\\u000a compounds from industrial effluents, the most promising results have been obtained with Rheum rabarbarum (rhubarb), a plant species producing natural anthraquinones. Rhubarb is not only able to accumulate,

Jean-Paul Schwitzguébel; Stéphanie Braillard; Valérie Page; Sylvie Aubert

266

Volatile organic compound sources for Southern Finland  

NASA Astrophysics Data System (ADS)

Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in both sites. However during spring biogenic influence increased. In addition to source analysis this behaviour was visible in enhanced diurnal cycles of VOCs (Patokoski et al., 2014, in press). We will present important sources and source areas for Southern Finland's concentrations. References: Patokoski, J., Ruuskanen, T.M., Hellén, H., Taipale, R., Grönholm, T., Kajos, M.K., Petäjä, T., Hakola, H., Kulmala, M. & Rinne, J., 2014. Winter to spring transition and diurnal variation of VOCs in Finland at an urban background site and a rural site. Boreal Env. Res. 19. In press.

Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

2014-05-01

267

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS  

SciTech Connect

Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward the goal of developing a portable test kit for screening halogenated VOCs in the field.

John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

2003-07-01

268

Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.  

PubMed

Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of microbial bioelectrochemical systems (BESs) that use microorganisms to convert chemical energy in wastewaters into useful energy products such as (bio)electricity (MFC) or hydrogen gas (MEC). These two systems were evaluated for their capacity to attenuate trace organic compounds (TOrCs), commonly found in municipal wastewater, under closed circuit (current generation) and open circuit (no current generation) conditions, using acetate as the carbon source. A biocide was used to evaluate attenuation in terms of biotransformation versus sorption. The difference in attenuation observed before and after addition of the biocide represented biotransformation, while attenuation after addition of a biocide primarily indicated sorption. Attenuation of TOrCs was similar in MFCs and MECs for eight different TOrCs, except for caffeine and trimethoprim where slightly higher attenuation was observed in MECs. Electric current generation did not enhance attenuation of the TOrCs except for caffeine, which showed slightly higher attenuation under closed circuit conditions in both MFCs and MECs. Substantial sorption of the TOrCs occurred to the biofilm-covered electrodes, but no consistent trend could be identified regarding the physico-chemical properties of the TOrCs tested and the extent of sorption. The octanol-water distribution coefficient at pH 7.4 (log DpH 7.4) appeared to be a reasonable predictor for sorption of some of the compounds (carbamazepine, atrazine, tris(2-chloroethyl) phosphate and diphenhydramine) but not for others (N,N-Diethyl-meta-toluamide). Atenolol also showed high levels of sorption despite being the most hydrophilic in the suite of compounds studied (log DpH 7.4 = -1.99). Though BESs do not show any inherent advantages over conventional wastewater treatment, with respect to TOrC removal, overall removals in BESs are similar to that reported for conventional wastewater systems, implying the possibility of using BESs for energy production in wastewater treatment without adversely impacting TOrC attenuations. PMID:25644628

Werner, Craig M; Hoppe-Jones, Christiane; Saikaly, Pascal E; Logan, Bruce E; Amy, Gary L

2015-04-15

269

Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene  

PubMed Central

Summary Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1. PMID:25550739

Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T

2014-01-01

270

Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater.  

PubMed

The competitive impacts of different fractions of wastewater treatment plant effluent organic matter (EfOM) on organic micro-pollutant (OMP) adsorption were investigated. The fractionation was accomplished using separation by nanofiltration (NF). The waters resulting from NF were additionally treated to obtain the same dissolved organic carbon (DOC) concentrations as the initial water. Using size exclusion chromatography (LC-OCD) it could be shown that the NF treatment resulted in an EfOM separation by size. Adsorption tests showed different competitive effects of the EfOM fractions with the OMP. While large EfOM compounds that were retained in NF demonstrated a reduced competition as compared to the raw water, the NF-permeating EfOM compounds showed an increased competition with the majority of the measured OMP. The effects of small size EfOM are particularly negative for OMP which are weak/moderate adsorbates. Adsorption analysis was carried out for the differently fractionized waters. The small sized EfOM contain better adsorbable compounds than the raw water while the large EfOM are less adsorbable. This explains the observed differences in the EfOM competitiveness. The equivalent background compound (EBC) model was applied to model competitive adsorption between OMP and EfOM and showed that the negative impacts of EfOM on OMP adsorption increase with decreasing size of the EfOM fractions. The results suggest that direct competition for adsorption sites on the internal surface of the activated carbon is more substantial than indirect competition due to pore access restriction by blockage. Another explication for reduced competition by large EfOM compounds could be the inability to enter and block the pores due to size exclusion. PMID:25150517

Zietzschmann, Frederik; Worch, Eckhard; Altmann, Johannes; Ruhl, Aki Sebastian; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

2014-11-15

271

Volatile organic compounds from garden waste  

Microsoft Academic Search

About 170 compounds were identified in the headspace or liquid exudate from garden waste. Typical for microbiological growth were branched and straight chain alcohols, carboxylic acids and esters C2–C8. Several of the substances have been identified in early studies of compost For some waste samples the organosulfur compound concentration (C1 and C3 mono-, di- and trisulfides) was ca. 10 mg\\/m3

Ken Wilkins; Kjeld Larsen

1996-01-01

272

Thermal diffusion desorption for the comprehensive analysis of organic compounds.  

PubMed

Comprehensive analysis of organic compounds is crucial yet challenging considering that information on elements, fragments, and molecules is unavailable simultaneously by current analytical techniques. Additionally, many compounds are insoluble or only dissolve in toxic solvents. A solvent- and matrix-free strategy has been developed which allows the organic compound analyzed in its original form. It utilizes thermal diffusion desorption with the solid analyte irradiated with high energy laser. It is capable of providing explicit elemental, fragmental, and molecular information simultaneously for a variety of organic compounds. Thermal diffusion desorption has many advantages compared to the electrospray and MALDI techniques. The protons that form the protonated molecular ions originate from the analyte itself. All the elements and fragments are also derived from the analyte itself, which provides abundant information and expedites the identification of organic compounds. PMID:24914465

Yin, Zhibin; Wang, Xiaohua; Li, Weifeng; He, Miaohong; Hang, Wei; Huang, Benli

2014-07-01

273

Load and distribution of organic matter and nutrients in a separated household wastewater stream.  

PubMed

Wastewater from a source-separated sanitation system connected to 24 residential flats was analysed for the content of organic matter and nutrients and other key parameters for microbiological processes used in the treatment and reuse of wastewater. Black water (BW) was the major contributor to the total load of organic matter and nutrients in the wastewater, accounting for 69% of chemical oxygen demand (COD), 83% of total nitrogen (N) and 87% of phosphorus (P). With a low COD/N ratio and high content of free ammonia, treating BW alone is a challenge in traditional biological nitrogen removal approaches. However, its high nitrogen concentration (1.4-1.7?g L(-1)) open up for nutrient reuse as well as for novel, more energy efficient N-removal technologies. Grey water (GW) contained low amounts of nutrients relative to organic matter, and this may limit biological treatment processes under certain conditions. GW contains a higher proportion of soluble, readily degradable organic substances compared with BW, which facilitates simple, decentralized treatment approaches. The concentration of organic matter and nutrients varied considerably between our study and other studies, which could be related to different toilet flushing volumes and water use habits. The daily load per capita, on the other hand, was found to be in line with most of the reported studies. PMID:25495947

Todt, Daniel; Heistad, Arve; Jenssen, Petter D

2015-06-01

274

Organic and detergent degradation in combined O3/UF for domestic laundry wastewater reclamation.  

PubMed

This paper focuses on the evaluation of organic and detergent degradation in a combined Ozone/UF system for domestic laundry wastewater reclamation. Formation of by-product was investigated by GC/MS for the reclaimed water. Ozone was injected into the raw wastewater in a 10 L contact tank and the wastewater was circulated through the membrane module for inner pressurized cross-flow filtration. The concentrate was returned back to the contact tank. The membrane used in this experiment was hollow fiber polysulfone UF membrane with MWCO 10,000. It has an effective filtration area of 0.06 m2. The experiment was carried out with intermittent ozone injection, 5 min injection and 10 min idling. Ozone was dosed at the concentration of 1.5 mg/L. The flux of the UF could be maintained at 0.24 m/d under filtration pressure 40-45 kPa and water temperature, 20-22 degrees C. The organic removal efficiency by the system was 90% in terms of COD. Ozone was considerably effective to degrade organics in the wastewater. Molecular weight of organics in the raw waste was mostly greater than 10,000 (72% of 950 mgCOD/L). However 86% of effluent COD (94-100 mg/L) was composed of organics smaller than MWCO 500 by ozone injection. No harmful by-products by ozone contact were detected from the analysis of treated water using GC/MS. It was identified that residual organics in the treated water were 1,1'-Oxybisbenzene, Octadecanoic acid, Squalene and Benzenmethanol, etc., which were additives contained originally in the detergent. Consequently the reclaimed water quality could be estimated safe enough to recycle for the rinsing cycle in a washing machine. PMID:15537022

Seo, G T; Lee, T S; Kim, J T; Yoon, C H; Park, H G; Hong, S C

2004-01-01

275

Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry  

USGS Publications Warehouse

A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be reported as estimated with the 'E' remark code for one of three reasons: (1) unacceptably low-biased recovery (less than 60 percent) or highly variable method performance (greater than 25 percent relative standard deviation), (2) reference standards prepared from technical mixtures, or (3) potential blank contamination. Samples were preserved by freezing to -20 degrees Celsius. The U.S. Geological Survey National Water Quality Laboratory has established a 1-year sample-holding time limit (prior to sample extraction) from the date of sample collection (if the sample is kept at -20?C) until a statistically accepted method can be used to determine the effectiveness of the sample-freezing procedure.

Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

2006-01-01

276

Oxidation of Organic Compounds in the Soil.  

E-print Network

.. ; .......................................... 27 lummary and Conclusions .................................... 27 [Blank Page in Original Bulletin] OXIDATION OF ORGANIC MATTER IN THE SOIL The osidation of organic matter in the soil is a matter of consider- le agricultural importance. Ammonia...~truction or loss from the soil may give rise to changes in physical character. The oxidation of organic matter containing nitrogen could be studied indirectly by means of the nitrates and ammonia produced. TT'e might assume that the oxidation of the carbon...

Fraps, G. S. (George Stronach)

1915-01-01

277

Organic Compounds in Circumstellar and Interstellar Environments  

NASA Astrophysics Data System (ADS)

Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

Kwok, Sun

2015-02-01

278

Decomposition of hydrogen peroxide and organic compounds in the presence of iron and iron oxides  

E-print Network

Most advanced oxidation processes use the hydroxyl radical (OH) to treat pollutants found in wastewater and contaminated aquifers because OH reacts with numerous compounds at near diffusion-limited rates. OH can be made ...

Kwan, Wai P. (Wai Pang), 1974-

2003-01-01

279

Evaluating the treatment of a synthetic wastewater containing a pharmaceutical and personal care product chemical cocktail: compound removal efficiency and effects on juvenile rainbow trout.  

PubMed

Pharmaceutical and personal care products (PPCPs) can evade degradation in sewage treatment plants (STPs) and can be chronically discharged into the environment, causing concern for aquatic organisms, wildlife, and humans that may be exposed to these bioactive chemicals. The ability of a common STP process, conventional activated sludge (CAS), to remove PPCPs (caffeine, di(2-ethylhexyl)phthalate, estrone, 17?-ethinylestradiol, ibuprofen, naproxen, 4-nonylphenol, tonalide, triclocarban and triclosan) from a synthetic wastewater was evaluated in the present study. The removal of individual PPCPs by the laboratory-scale CAS treatment plant ranged from 40 to 99.6%. While the efficiency of removal for some compounds was high, remaining quantities have the potential to affect aquatic organisms even at low concentrations. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to influent recreated model wastewater with methanol (IM, solvent control) or with PPCP cocktail (IC), or CAS-treated effluent wastewater with methanol (EM, treated control) or with PPCP cocktail (EC). Alterations in hepatic gene expression (evaluated using a quantitative nuclease protection plex assay) and plasma vitellogenin (VTG) protein concentrations occurred in exposed fish. Although there was partial PPCP removal by CAS treatment, the 20% lower VTG transcript levels and 83% lower plasma VTG protein concentration found in EC-exposed fish compared to IC-exposed fish were not statistically significant. Thus, estrogenic activity found in the influent was retained in the effluent even though typical percent removal levels were achieved raising the issue that greater reduction in contaminant load is required to address hormone active agents. PMID:24963889

Osachoff, Heather L; Mohammadali, Mehrnoush; Skirrow, Rachel C; Hall, Eric R; Brown, Lorraine L Y; van Aggelen, Graham C; Kennedy, Christopher J; Helbing, Caren C

2014-10-01

280

Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.  

PubMed

Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (?80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. PMID:24503280

Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

2014-04-15

281

BEHAVIOR OF ORGANIC POLLUTANTS DURING RAPID-INFILTRATION OF WASTEWATER INTO SOIL: 2. MATHEMATICAL DESCRIPTION OF TRANSPORT AND TRANSFORMATION  

EPA Science Inventory

A compartmental screening model was developed to describe the movement of volatile and transformable organic chemicals in rapid-infiltration wastewater treatment systems. The first compartment describes losses of the chemical from the infiltration basin when the basin is flooded ...

282

[The qualitative analysis method of the dissolved organic matter (DOM) for ABS wastewater].  

PubMed

The dissolved organic matter (DOM) of acrylonitrile-butadiene-styrene (ABS) resin wastewater was qualitatively analysed by gas chromatography with mass spectrometry(GC-MS), Fourier transform infrared spectrometer(FTIR) and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. The detected results shows that the GC-MS qualitatively analysed 21 dissolved organic pollutants, such as acetophenone, styrene, alpha, alpha-dimethyl-benzenemethanol, 3,3'oxybis-propanenitrile, 3, 3'-iminobis-propanenitrile, 3,3'-thiobis-propanenitrile, 3-(dimethylamino)-propanenitrile and 2-propenenitrile. The results of Fourier transform infrared spectrometer (FTIR) and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy could examine and certify the accuracy and integrity for the qualitative analysis of GC-MS. The results of this study provides an important guiding role for the development of wastewater treatment process. PMID:21595240

Lai, Bo; Zhou, Yue-xi; Song, Yu-dong; Xi, Hong-bo; Sun, Li-dong; Chen, Jia-yun

2011-03-01

283

NONVOLATILE ORGANICS IN DISINFECTED WASTEWATER EFFLUENTS: CHEMICAL CHARACTERIZATION AND MUTAGENICITY  

EPA Science Inventory

Principal objectives of this research program were to examine the effects of disinfection by chlorine, ozone, and ultraviolet light irradiation on nonvolatile organic constituents in secondary effluents relative to chemical effects and formation of mutagenic substances. In a comp...

284

Degradation of Organic Compounds by Active Species Sprayed in a Dielectric Barrier Corona Discharge System  

NASA Astrophysics Data System (ADS)

Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped to the external wall (used as ground electrode), was introduced to generate active species which were sprayed into the organic solution through an aerator fixed on the bottom of the tube. The effect of four factors-the discharge voltage, gas flow rate, solution conductivity, and pH of wastewater, on the degradation efficiency of phenol was assessed. The obtained results demonstrated that this process was an effective method for phenol degradation. The degradation rate was enhanced with the increase in power supplied. The degradation efficiency in alkaline conditions was higher than those in acid and neutral conditions. The optimal gas flow rate for phenol degradation in the system was 1.6 L/min, while the solution conductivity had little effect on the degradation.

Li, Jie; Song, Ling; Liu, Qiang; Qu, Guangzhou; Li, Guofeng; Wu, Yan

2009-04-01

285

COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I  

EPA Science Inventory

Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

286

LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES  

EPA Science Inventory

Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with ...

287

Micropatterned Polymeric Gratings as Chemoresponsive Volatile Organic Compound  

E-print Network

Micropatterned Polymeric Gratings as Chemoresponsive Volatile Organic Compound Sensors or physical means, including but not limited to covalent, ionic, van der Waals, or hydrogen- patterning of a "receptor" material, regardless of atomic or molecular structure, into a periodic array

288

IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest: o Contributions to EPA Regional Monit...

289

Synthesis of fluorinated organic compounds using oxygen difluoride  

NASA Technical Reports Server (NTRS)

Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

Toy, M. S.

1971-01-01

290

METHODS FOR LEVEL 2 ANALYSIS BY ORGANIC COMPOUND CATEGORY  

EPA Science Inventory

The report gives Level 2 procedures, including results of a laboratory evaluation of detailed methods for analyzing organic chemicals in particular compound categories. The report, supplementing an earlier Level 2 procedures manual, provides an initial experimental data base as a...

291

ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC  

EPA Science Inventory

The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

292

40 CFR 60.392 - Standards for volatile organic compounds.  

Code of Federal Regulations, 2014 CFR

...CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds. On and...

2014-07-01

293

GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES  

EPA Science Inventory

The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

294

SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2  

EPA Science Inventory

High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

295

Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.  

PubMed

Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOrCs) such as pharmaceuticals, personal care products, plasticizers, and flame-retardants by FO and a hybrid FO-RO system was investigated at both the bench- and pilot-scales. More than 30 compounds were analyzed, of which 23 nonionic and ionic TOrCs were identified and quantified in the studied wastewater effluent. Results revealed that almost all TOrCs were highly rejected by the FO membrane at the pilot scale while rejection at the bench scale was generally lower. Membrane fouling, especially under field conditions when wastewater effluent is the FO feed solution, plays a substantial role in increasing the rejection of TOrCs in FO. The hybrid FO-RO process demonstrated that the dual barrier treatment of impaired water could lead to more than 99% rejection of almost all TOrCs that were identified in reclaimed water. PMID:21838294

Hancock, Nathan T; Xu, Pei; Heil, Dean M; Bellona, Christopher; Cath, Tzahi Y

2011-10-01

296

Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater  

Microsoft Academic Search

Adsorbable organic halides (AOX) are generated in the pulp and paper industry during the bleaching process. These compounds are formed as a result of reaction between residual lignin from wood fibres and chlorine\\/chlorine compounds used for bleaching. Many of these compounds are recalcitrant and have long half-life periods. Some of them show a tendency to bioaccumulate while some are proven

D. V. Savant; R. Abdul-Rahman; D. R. Ranade

2006-01-01

297

BIODEGRADABILITY STUDIES WITH ORGANIC PRIORITY POLLUTANT COMPOUNDS  

EPA Science Inventory

Ninty-six organic priority pollutants (from EPA Effluent Guidelines Consent Decree) were studied to determine the extent and rate of microbial degradation and the acclimation periods needed for substrate biooxidation. The pollutants have been classified into groups with character...

298

Analysis of the volatile organic compounds in seized cocaine hydrochloride  

Microsoft Academic Search

The volatile organic compounds in seized cocaine hydrochloride were analyzed using Gas Chromatography Mass Spectrometry (GC\\/MS). Two different methods of sampling volatile compounds were investigated. In the first method, 20, 50, and 100 mg samples of seized cocaine hydrochloride were loaded into 2-inch glass tubes. The headspace of each tube was then purged with ultra high purity (UHP) helium and

Lindy E. Dejarme; Sara J. Lawhon; Prasenjit Ray; Michael R. Kuhlman

1997-01-01

299

Speciation of volatile organic compounds from poultry production  

Technology Transfer Automated Retrieval System (TEKTRAN)

The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

300

A New Method of Separation of Organic Compounds  

Microsoft Academic Search

DURING attempts to purify a yellow crystalline compound obtained from acetone extract of resin, Canarium strictum Roxb., which could not be purified either by recrystallization with various solvents and mixtures of solvents or by chromatography over alumina and calcium sulphate, a new method of separation of organic compounds by fractional crystallization on filter paper has been developed.

R. C. Vasisth; M. S. Muthana

1953-01-01

301

INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS  

EPA Science Inventory

The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

302

Predicting the emission of volatile organic compounds from silage systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

303

DESTRUCTION OF VOLATILE ORGANIC COMPOUNDS VIA CATALYTIC INCINERATION  

EPA Science Inventory

The paper gives results of an investigation of the effect of catalytic incinerator design and operation the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compound...

304

Influence of surfactants on microbial degradation of organic compounds  

Microsoft Academic Search

Surfactants have the ability to increase aqueous concentrations of poorly soluble compounds and interfacial areas between immiscible fluids, thus potentially improving the accessibility of these substrates to microorganisms. However, both enhancements and inhibitions of biodegradation of organic compounds in the presence of surfactants have been reported. The mechanisms behind these phenomena are not well understood. To better understand the factors

Joseph D. Rouse; David A. Sabatini; Joseph M. Suflita; Jeffrey H. Harwell

1994-01-01

305

OCCURRENCE & CHEMISTRY OF ORGANIC COMPOUNDS IN HANFORD SITE WASTE TANKS  

Microsoft Academic Search

Volatile and semivolatile organic compounds continuously evolve from the waste tanks at the Hanford Site. Some are identical to the compounds originally transferred to tanks and others are formed through interdependent chemical and radiolytic reactions. This document provides a technical basis for understanding the chemical consequences of long term storage, sluicing, the addition of chemicals, and the prediction of other

L. M. STOCK; J. E. MEACHAM

2004-01-01

306

An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation.  

PubMed

This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in batch and single-pass modes to examine contaminant degradation rates and the remediation capabilities of the technology, respectively. Values for electrical energy per order (EEO) of magnitude degradation ranged from <0.3 kWh/m(3)-log for easily degraded compounds (e.g., carbamazepine) in surface water to 14 kWh/m(3)-log for more recalcitrant compounds (e.g., meprobamate) in wastewater. Changes in the bulk organic matter based on UV(254) absorbance and excitation-emission matrices (EEM) were also monitored and correlated to contaminant degradation. These results indicate that NTP may be a viable alternative to more common AOPs due to its comparable energy requirements for contaminant degradation and its ability to operate without any additional feed chemicals. PMID:19822343

Gerrity, Daniel; Stanford, Benjamin D; Trenholm, Rebecca A; Snyder, Shane A

2010-01-01

307

Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies  

NASA Technical Reports Server (NTRS)

Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.

Cooper, George W.

1998-01-01

308

Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies  

NASA Astrophysics Data System (ADS)

Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10-2 torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.

Cooper, George W.

1998-06-01

309

Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites  

NASA Technical Reports Server (NTRS)

Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

Cooper, George

2003-01-01

310

Process for reducing organic compounds with calcium, amine, and alcohol  

DOEpatents

Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

Benkeser, R.A.; Laugal, J.A.; Rappa, A.

1985-08-06

311

Process for reducing organic compounds with calcium, amine, and alcohol  

DOEpatents

Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

Benkeser, Robert A. (West Lafayette, IN); Laugal, James A. (Lostant, IL); Rappa, Angela (Baltimore, MD)

1985-01-01

312

Composition and major sources of organic compounds in urban aerosols  

Microsoft Academic Search

Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography–mass spectrometry (GC\\/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic

Xinhui Bi; Bernd R. T. Simoneit; Guoying Sheng; Shexia Ma; Jiamo Fu

2008-01-01

313

Biodegradation of synthetic and naturally occuring mixtures of mono-cyclic aromatic compounds present in olive mill wastewaters by two aerobic bacteria.  

PubMed

Two bacterial strains, Ralstonia sp. LD35 and Pseudomonas putida DSM 1868, were assayed for their ability to degrade the monocyclic aromatic compounds commonly found in olive mill wastewaters (OMWs). The goal was to study the possibility of employing the two strains in the removal of these recalcitrant and toxic compounds from the effluents of anaerobic treatment plants fed with OMWs. At first, the two strains were separately assayed for their ability to degrade a synthetic mixture of nine aromatic acids present in OMWs, both in growing- and resting-cell conditions. Then, due to the complementary activity exhibited by the two strains, a co-culture of the two bacteria was tested under growing-cell conditions for degradation of the same synthetic mixture. Finally, the degradation activity of the co-culture on two fractions was studied. Both fractions one deriving from natural OMWs through reverse osmosis treatment and containing low-molecular weight organic molecules, and the other obtained from an anaerobic lab-scale treatment plant fed with OMWs, were rich in monocyclic aromatic compounds. The co-culture of the two strains was able to biodegrade seven of the nine components of the tested synthetic mix (2, 6-dihydroxybenzoic acid and 3, 4, 5-trimethoxybenzoic acid were the two undegraded compounds). In addition, an efficient biodegrading activity towards several aromatic molecules present in the two natural fractions was demonstrated. PMID:11414330

Di Gioia, D; Fava, F; Bertin, L; Marchetti, L

2001-05-01

314

Biodegradation of wastewater nitrogen compounds in fractures: Laboratory tests and field observations  

NASA Astrophysics Data System (ADS)

Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.

Masciopinto, Constantino

2007-07-01

315

Organic removal from domestic wastewater by activated alumina adsorption  

E-print Network

to describe the isotherm data of TOC adsorption by activated carbon. The linear isotherm equation was used to describe the isotherm data for adsorption of chloroform, 1, 2-dichlorobenzene and endrin by activated carbon. The studies show that activated... proven to be a poor adsorbent for removal of chloroform, 1, 2-dichlorobenzene and endrin at trace level. However, activated carbon is an effective adsorbent for removal of these compounds, and an optimum pH for adsorption near pH 8 was observed...

Yang, Pe-Der

1982-01-01

316

Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study.  

PubMed

The ecological threat associated with emerging pollutants detected in wastewater was estimated in country level. Treated wastewater was analyzed for pharmaceuticals and illicit drugs; whereas the concentrations of all emerging contaminants determined in Greek Sewage Treatment Plants were recorded through literature review. Toxicity data was collected after literature review or using ECOSAR and risk quotients (RQs) were calculated for treated wastewater and 25 Greek rivers, for 3 different aquatic organisms (fish, daphnia magna, algae). According to the results, monitoring data was available for 207 micropollutants belonging to 8 different classes. RQ>1 was calculated for 30 compounds in secondary treated wastewater. Triclosan presented RQ>1 (in algae) for all studied rivers; decamethylcyclopentasilane (in daphnia magna), caffeine (in algae) and nonylphenol (in fish) presented RQ>1 in rivers with dilution factors (DF) equal or lower to 1910, 913 and 824, respectively. The class of emerging contaminants that present the greatest threat due to single or mixture toxicity was endocrine disrupters. The mixture of microcontaminants seems to pose significant ecological risk, even in rivers with DF equal to 2388. Future national monitoring programs should include specific microcontaminants that seem to possess environment risk to surface water. PMID:25464317

Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S

2015-02-11

317

Interlaboratory exercises for volatile organic compound determination  

NASA Astrophysics Data System (ADS)

The results of a European level intercomparison involving measurements of 26 hydrocarbons (from C2 to C9) at ambient air concentration level are discussed. On-line sampling with cryo-GC-FID analysis was the most commonly used methodology among the 20 participating laboratories. The stability of the gas samples in the canisters; the calibration methodology, the separation of peaks and the low level of concentrations were identified as the most important factors, which contributed to the increase in the uncertainty of the measurement. Uncertainty values associated with the common method used for the quantification of each compound and exercise were also determined.

Ballesta, P. Pérez; Field, R.; De Saeger, E.

318

Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: comparison with heterogeneous TiO? photocatalysis.  

PubMed

This work aims at decontaminating biologically treated domestic wastewater effluents from organic micropollutants by sulfate radical based (SO4(-)) homogeneous photo-Fenton involving peroxymonosulfate as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This oxidative system was evaluated by using several probe compounds belonging to pesticides (bifenthrin, mesotrione and clothianidin) and pharmaceuticals (diclofenac, sulfamethoxazole and carbamazepine) classes and its kinetic efficiency was compared to that to the well known UV-Vis/TiO2 heterogeneous photocatalysis. Except for carbamazepine, apparent kinetic rate constants were always 10 times higher in PMS/Fe(II)/UV-Vis than in TiO2/UV-Vis system and more than 70% of total organic carbon abatement was reached in less than one hour treatment. Hydroxyl radical (OH) and SO4(-) reactivity was investigated using mesotrione as a probe compound through by-products identification by liquid chromatography-high resolution-mass spectrometry and transformation pathways elucidation. In addition to two OH based transformation pathways, a specific SO4(-) transformation pathway which first involved degradation through one electron transfer oxidation processes followed by decarboxylation were probably responsible for mesotrione degradation kinetic improvement upon UV-Vis/PMS/Fe(II) system in comparison to UVVis/TiO2 system. PMID:25108605

Ahmed, Moussa Mahdi; Brienza, Monica; Goetz, Vincent; Chiron, Serge

2014-12-01

319

Reconnaissance of selected organic contaminants in effluent and ground water at fifteen municipal wastewater treatment plants in Florida, 1983- 84  

USGS Publications Warehouse

Results of a 1983-84 reconnaissance of 15 municipal wastewater treatment plants in Florida indicated that effluent from most of the plants contains trace concentrations of volatile organic compounds. Chloroform was detected in the effluent at 11 of the 15 plants and its common occurrence was likely the result of chlorination. The maximum concentration of chloroform detected in the effluent sampled was 120 micrograms/L. Detectable concentrations of selected organophosphorus insecticides were also common. For example, diazinon was detected in the effluent at 12 of the 15 plants with a maximum concentration of 1.5 micrograms/L. Organochlorine insecticides, primarily lindane, were detected in the effluent at 8 of the 15 plants with a maximum concentration of 1.0 micrograms/L. Volatile compounds, primarily chloroform, were detected in water from monitor wells at four plants and organophosphorus insecticides, primarily diazinon, were present in the groundwater at three treatment plants. Organochlorine insecticides were not detected in any samples from monitor wells. Based on the limited data available, this cursory reconaissance suggests that the organic contaminants commonly occurring in the effluent of many of the treatment plants are not transported into the local groundwater. (Author 's abstract)

Pruitt, J.B.; Troutman, D.E.; Irwin, G.A.

1985-01-01

320

Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes.  

PubMed

Organic UV filters are used in personal care products such as sunscreen products, and in cosmetics, beauty creams, skin lotions, lipsticks, hair sprays, hair dyes, shampoos, and so forth. The compounds enter the aquatic environmentfrom showering, wash-off, washing (laundering), and so forth via wastewater treatment plants (WWTPs) ("indirect inputs") and from recreational activities such as swimming and bathing in lakes and rivers ("direct inputs"). In this study, we investigated the occurrence of four important organic UV filter compounds (benzophenone-3, BP-3; 4-methylbenzylidene camphor, 4-MBC; ethylhexyl methoxy cinnamate, EHMC; octocrylene, OC) in wastewater, and in water and fish from various Swiss lakes, using gas chromatographic/mass spectrometric analyses. All four UV filters were present in untreated wastewater (WWTP influent) with a maximum concentration of 19 microg L(-1) for EHMC. The data indicate a seasonal variation with influent loads higher in the warmer season (June 2002) than in the colder one (April 2002). The influent loads were in the order EHMC > 4-MBC approximately BP-3 > OC. The concentrations in treated wastewater (WWTP effluent) were considerably lower, indicating substantial elimination in the plants. 4-MBC was usually the most prevalent compound (maximum concentration, 2.7 microg L(-1)), followed by BP-3, EHMC, and OC. UV filters were also detected in Swiss midland lakes and a river (Limmat) receiving inputs from WWTPs and recreational activities. However, all concentrations were low (<2-35 ng L(-1)); no UV filters (<2 ng L(-1)) were detected in a remote mountain lake. Data from passive sampling using semipermeable membrane devices (SPMDs) supported the presence of these UV filters in the lakes and the river and suggested some potential for accumulation of these compounds in biota. SPMD-derived water concentrations increased in the order Greifensee < Zürichsee < Hüttnersee. This order is reversed from that observed for methyl triclosan, used as a chemical marker for WWTP-derived lipophilic contaminants in the lakes. This indicated inputs of UV filters from sources other than WWTPs to the lakes during summer,for example,inputs from recreational activities. Fish (white fish, Coregonus sp.; roach, Rutilus rutilus; perch, Perca fluviatilis) from these lakes contained low but detectable concentrations of UV filters, in particular, 4-MBC (up to 166 ng g(-1) on a lipid basis). 4-MBC concentrations relative to methyl triclosan were lower in fish than in SPMDs exposed in the same lakes, suggesting that 4-MBC is less bioaccumulated than expected or metabolized in fish. The lipid-based bioconcentration factor (BCF(L)) estimated from the fish (roach) data and SPMD-derived water concentrations was about 1-2.3 x 10(4) and thus approximately 1 order of magnitude lower than expected from its Kow value. PMID:15773466

Balmer, Marianne E; Buser, Hans-Rudolf; Müller, Markus D; Poiger, Thomas

2005-02-15

321

Analysis of volatile organic compounds from illicit cocaine samples  

SciTech Connect

Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

Robins, W.H.; Wright, B.W.

1994-07-01

322

Organic fouling and regeneration of zeolite membrane in wastewater treatment  

Microsoft Academic Search

Aluminum-doped ZSM-5 zeolite membranes were synthesized by seeding and secondary growth. The membrane has Na+ rejection of 97.3% and water flux of 4.72kgm?2h?1 for 0.1M NaCl at 2.76MPa operating pressure. Toluene solution was selected as a foulant to investigate organic fouling and its influence on membrane performance. The fouling resulted in a 34.8% loss in water flux. The Na+ and

Jun Lu; Ning Liu; Liangxiong Li; Robert Lee

2010-01-01

323

Treatment of Organic-Contaminated Wastewater by Pervaporation  

E-print Network

The removal and recovery of organic contaminants from aqueous streams by pervaporation membrane systems is a viable and economical treatment for many waste streams. Specific opportunities for the technology are identified in this paper. La... from aqueous streams by pervaporation membrane systems is a viable and economical treatment for many waste streams. Specific opportunities for the technology are identified in this paper. La~oratoryand pilot system data are used! to develop system des...

Wijmans, J. G.; Kaschemekat, J.; Baker, R. W.; Simmons, V. L.

324

Assessment of wastewater treatment plant effluent effects on fish reproduction  

EPA Science Inventory

Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

325

A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States--II) untreated drinking water sources.  

PubMed

Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people. Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), beta-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States. PMID:18433838

Focazio, Michael J; Kolpin, Dana W; Barnes, Kimberlee K; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Barber, Larry B; Thurman, Michael E

2008-09-01

326

COMPARISON OF AMBIENT AIR SAMPLING TECHNIQUES FOR VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

A series of fourteen experimental sampling runs were carried out at a field site to collect data from several ambient air monitoring methods for volatile organic compounds (VOCs). Ambient air was drawn through a sampling manifold and was continuously spiked with volatile organic ...

327

Students' Understanding of Molecular Structure and Properties of Organic Compounds.  

ERIC Educational Resources Information Center

The purpose of this study was to investigate senior high school students' difficulties predicting the existence of hydrogen bridge bonds between organic molecules, investigate students' difficulties predicting the relative boiling points of simple organic compounds, and develop test questions that enable teachers to quickly get information about…

Schmidt, Hans-Jurgen

328

Leveraging the beneficial compounds of organic and pasture milk  

Technology Transfer Automated Retrieval System (TEKTRAN)

Much discussion has arisen over the possible benefits of organic food, including milk. Organic milk comes from cows that are on pasture during the growing season, and would be expected to contain some compounds that are not found in animals receiving conventional feed, or at higher concentrations. ...

329

INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS  

EPA Science Inventory

Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

330

BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION  

EPA Science Inventory

Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

331

IDENTIFICATION OF ORGANIC COMPOUNDS IN INDUSTRIAL EFFLUENT DISCHARGES  

EPA Science Inventory

Samples of 63 effluent and 22 intake waters were collected from a wide range of chemical manufacturers in areas across the United States. The samples were analyzed for organic compounds in an effort to identify previously unknown and potentially hazardous organic pollutants. Each...

332

Highly stable meteoritic organic compounds as markers of asteroidal delivery  

NASA Astrophysics Data System (ADS)

Multiple missions to search for water-soluble organic compounds on the surfaces of Solar System bodies are either current or planned and, if such compounds were found, it would be desirable to determine their origin(s). Asteroid or comet material is likely to have been components of all surface environments throughout Solar System history. To simulate the survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to comparatively high impact-shock pressures (>30 GPa) and/or to extremely oxidizing/corrosive acid solution. Consistent with past impact experiments, ?-amino acids survived only at trace levels above ?18 GPa. Polyaromatic hydrocarbons (PAHs) survived at levels of 4-8% at a shock pressure of 36 GPa. Lower molecular weight sulfonic and phosphonic acids (S&P) had the highest degree of impact survival of all tested compounds at higher pressures. Oxidation of compounds was done with a 3:1 mixture of HCl:HNO3, a solution that generates additional strong oxidants such as Cl2 and NOCl. Upon oxidation, keto acids and ?-amino acids were the most labile compounds with proline as a significant exception. Some fraction of the other compounds, including non-? amino acids and dicarboxylic acids, were stable during 16-18 hours of oxidation. However, S&P quantitatively survived several months (at least) under the same conditions. Such results begin to build a profile of the more robust meteoritic compounds: those that may have survived, i.e., may be found in, the more hostile Solar System environments. In the search for organic compounds, one current mission, NASA's Mars Science Laboratory (MSL), will use analytical procedures similar to those of this study and those employed previously on Earth to identify many of the compounds described in this work. The current results may thus prove to be directly relevant to potential findings of MSL and other missions designed for extraterrestrial organic analysis.

Cooper, George; Horz, Friedrich; Spees, Alanna; Chang, Sherwood

2014-01-01

333

Degradation of organic matter from domestic wastewater with loofah sponge biofilm reactor.  

PubMed

A laboratory-scale oxic biofilm reactor using loofah sponge as support material was carried out to study its start-up characteristics and the optimum operation parameters in removing organic matter and nitrogen from domestic wastewater. It took no more than 10 days to complete microbiological cultivation and acclimation, indicating that the natural loofah sponge was a superior support material compared with some conventional ones. The influence parameter experiments showed that the hydraulic retention time (HRT) had a significant influence on the COD and NH(3)-N removal efficiencies, the average COD and NH(3)-N removal efficiencies were 83.7 and 96.9% respectively when the temperature was 25 ± 2 °C, the influent flow rate was 0.21 L/h and the HRT was 7.5 h. The loofah sponge biofilm system had a strong tolerance to organic shock loading in the present experiment. Additionally, it was found that domestic wastewater could be preferably treated with 88.9% of COD and 98.7% of NH(3)-N removal efficiencies with the corresponding influent concentrations of 260.0 and 26.8 mg/L, respectively. The observations obtained in the present study indicated that the loofah sponge was an excellent natural support material, potentially feasible for the present system for the treatment of the decentralized domestic wastewater. PMID:22173425

Zhang, Liwei; Sun, Ken; Hu, Na

2012-01-01

334

Indicator pathogens, organic matter and LAS detergent removal from wastewater by constructed subsurface wetlands  

PubMed Central

Background Constructed wetland is one of the natural methods of municipal and industrial wastewater treatments with low initial costs for construction and operation as well as easy maintenance. The main objective of this study is to determine the values of indicator bacteria removal, organic matter, TSS, ammonia and nitrate affecting the wetland removal efficiency. Results The average concentration of E. coli and total coliform in the input is 1.127?×?1014 and 4.41?×?1014 MPN/100 mL that reached 5.03?×?1012 and 1.13?×?1014 MPN/100 mL by reducing 95.5% and 74.4% in wetland 2. Fecal streptococcus reached from the average 5.88?×?1014 in raw wastewater to 9.69?×?1012 in the output of wetland 2. Wetland 2 could reduce 1.5 logarithmic units of E. coli. The removal efficiency of TSS for the wetlands is 68.87%, 71.4%, 57.3%, and 66% respectively. Conclusions The overall results show that wetlands in which herbs were planted had a high removal efficiency about the indicator pathogens, organic matter, LAS detergent in comparison to a control wetland (without canes) and could improve physicochemical parameters (DO, ammonia, nitrate, electrical conductivity, and pH) of wastewater. PMID:24581277

2014-01-01

335

Can volatile organic compounds be markers of sea salt?  

PubMed

Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt. PMID:25236204

Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

2015-02-15

336

Degradation of Organic Substances and Reactive Dye in an Immobilized-Cell Sequencing Batch Reactor Operation on Simulated Textile Wastewater  

Microsoft Academic Search

Textile wastewater generally consists of high organic substances and is strongly colored. Reactive dye has been used extensively in the textile industries. It is water soluble and difficult to remove by chemical coagulation. Removal of organic substances simultaneously with dye can be achieved by a biological process. This study aims to investigate the treatability of the organic substances and reactive

N. Pasukphun; S. Vinitnantharat

2003-01-01

337

Influence of organic shock loads in an ASBBR treating synthetic wastewater with different concentration levels.  

PubMed

Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm. In the assays 2L of two types of synthetic wastewater were treated in 8-h cycles. Synthetic wastewater I was based on sucrose-amide-cellulose with concentration of 500 mg COD/L and synthetic wastewater II was based on volatile acids with concentration ranging from 500 to 2000 mg COD/L. Organic shock loads of 2-4 times the operation concentration were applied during one and two cycles. System efficiency was monitored before and after application of the perturbation. When operating with concentrations from 500 to 1000 mg COD/L and shock loads of 2-4 times the influent concentration during one or two cycles the system was able to regain stability after one cycle and the values of organic matter, total and intermediate volatile acids, bicarbonate alkalinity and pH were similar to those prior to the perturbations. At a concentration of 2000 mg COD/L the reactor appeared to be robust, regaining removal efficiencies similar to those prior to perturbation at shock loads twice the operation concentration lasting one cycle and stability was recovered after two cycles. However, for shock loads twice the operation concentration during two cycles and shock loads four times the operation concentration during one or two cycles filtered sample removal efficiency decreased to levels different from those prior to perturbation, on an average of 90-80%, approximately, yet the system managed to attain stability within two cycles after shock application. Therefore, this investigation envisions the potential of full scale application of this type of bioreactor which showed robustness to organic shock loads, despite discontinuous operation and the short times available for treating total wastewater volume. PMID:17669646

Moreira, Mariana Bueno; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Zaiat, Marcelo; Foresti, Eugênio

2008-05-01

338

Organic compounds assessed in Neuse River water used for public supply near Smithfield, North Carolina, 2002-2005  

USGS Publications Warehouse

Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.

Moorman, Michelle C.

2012-01-01

339

Similarities in effluent organic matter characteristics from Connecticut wastewater treatment plants.  

PubMed

Effluent organic matter (EfOM) from five Connecticut (USA) municipal wastewater treatment plants was isolated with DAX8 (hydrophobic fraction) and XAD4 (transphilic fraction) resins. Isolate recoveries ranged from 18 to 42% of the total organic carbon for DAX8 resin and from 6 to 12% for XAD4 resin. Isolated EfOM was characterized by traditional organic geochemistry techniques. Weight-averaged molecular weights of extracted EfOM by size exclusion chromatography were 450-670 Da with higher weights observed for the hydrophobic fractions than the transphilic fractions. Fluorescence characterization showed both humic- and fulvic-like fluorescence, as well as tryptophan- and tyrosine-like fluorescence, the latter not commonly observed for terrestrial organic matter. Fluorescence indices were between 1.5 and 1.9 with lower values observed for hydrophobic EfOM fractions than for transphilic fractions. Specific ultraviolet absorbance was measured between 0.8 and 3.0 L mg(-1)m(-1) with higher values for the hydrophobic EfOM fractions. Together these results indicated that isolated EfOM is similar in characteristics to microbially derived organic matter from natural aquatic systems. Little variation in EfOM characteristics was observed between the five wastewater treatment plants, suggesting that the characteristics of EfOM are similar, regardless of treatment plant design. PMID:22104296

Quaranta, Matthew L; Mendes, Mykel D; MacKay, Allison A

2012-02-01

340

Measurements of bromine containing organic compounds at the tropical tropopause  

Microsoft Academic Search

The amount of bromine entering the stratosphere from organic source gases is a primary factor involved in determining the magnitude of bromine catalyzed loss of ozone. Thirty two whole air samples were collected at the tropical tropopause during the NASA STRAT Campaign in Feb., Aug., and Dec., 1996 and were analyzed for brominated organic compounds. Total organic bromine was 17.4+\\/-0.9ppt

S. M. Schauffler; E. L. Atlas; F. Flocke; R. A. Lueb; V. Stroud; W. Travnicek

1998-01-01

341

75 FR 2090 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...  

Federal Register 2010, 2011, 2012, 2013, 2014

...applicability of Indiana's approved volatile organic compound (VOC) automobile...refinishing coatings or coating components that sell or distribute these...recordkeeping requirements, Volatile organic compounds. Dated:...

2010-01-14

342

Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater.  

PubMed

The application of powdered activated carbon (PAC) as an advanced wastewater treatment step for the removal of organic micropollutants (OMP) necessitates complete separation of the PAC particles, e.g. by coagulation. In this study, potential positive or negative indirect or direct effects of coagulation on the adsorption of OMPs onto PAC in treated wastewater were investigated. Although the concentration of dissolved organic matter (DOM) was significantly reduced by coagulation, the selective removal of mainly larger DOM components such as biopolymers and humic substances did not improve subsequent OMP adsorption onto PAC, demonstrating that coagulation has minor effects on DOM constituents that are relevant for direct competition or pore blocking. The combination of coagulation and adsorption yielded the sum of the individual removals, as adsorption predominantly affected smaller compounds. While the formation of flocs led to visible incorporation of PAC particles, no significant mass transfer limitations impeded the OMP adsorption. As a result, the dosing sequence of coagulant and PAC is not critical for efficient adsorption of OMPs onto PAC. The relationships between adsorptive OMP removal and corresponding reduction of UV absorption at 254nm (UVA254) as a promising surrogate correlation for the real-time monitoring and PAC adjustment were affected by coagulation, leading to individual correlations depending on the water composition. Correcting for UVA254 reduction by coagulation produces adsorptive UVA254 removal, which correlates highly with OMP removal for different WWTP effluents and varying coagulant doses and can be applied in combined adsorption/coagulation processes to predict OMP removal and control PAC dosing. PMID:25582393

Altmann, Johannes; Zietzschmann, Frederik; Geiling, Eva-Linde; Ruhl, Aki Sebastian; Sperlich, Alexander; Jekel, Martin

2015-04-01

343

Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes  

NASA Technical Reports Server (NTRS)

Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

2015-01-01

344

GROUND WATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER  

EPA Science Inventory

The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. hree compounds (naphthalene, phenathrene, and DDT) that spanned three orders of magnitude in water solubility were used. nstead of humic matter, mole...

345

GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER  

EPA Science Inventory

The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

346

Monitoring of Phenol in Wastewater Bioremediation by HPLC  

Microsoft Academic Search

Bioremediation emphasizes the detoxification and destruction of toxic substances by microorganisms. Wastewater obtained from an industrial concern was solvent extracted with methyl alcohol and dichloromethane and analysed by GC\\/MS. Besides phenol, a large variety of organic compounds were detected. Under controlled laboratory conditions, the wastewater was innoculated with a mixed culture of microorganisms specially selected for their abilities to degrade

KC Ng; G Poi; CM Puah; V De Castro; PL Rogers

1997-01-01

347

Assessment of the Phytoremediation Potential of Salvinia minima Baker Compared to Spirodela polyrrhiza in High-strength Organic Wastewater  

Microsoft Academic Search

Salvinia minima combines several advantages for being used in aquatic phytoremediation. The objectives of this work were to compare the growth\\u000a kinetics and productivity of S. minima and Spirodela polyrrhiza in high-strength synthetic organic wastewater (HSWW) and to evaluate the growth characteristics of S. minima in various culture media, including anaerobic effluents from pig wastewater (PWAE). It was found that

Eugenia J. Olguín; Gloria Sánchez-Galván; Teresa Pérez-Pérez

2007-01-01

348

Microbial Removal of the Pharmaceutical Compounds Ibuprofen and Diclofenac from Wastewater  

PubMed Central

Studies on the occurrence of pharmaceuticals show that the widely used pharmaceuticals ibuprofen and diclofenac are present in relevant concentrations in the environment. A pilot plant treating hospital wastewater with relevant concentrations of these pharmaceuticals was evaluated for its performance to reduce the concentration of the pharmaceuticals. Ibuprofen was completely removed, whereas diclofenac yielded a residual concentration, showing the necessity of posttreatment to remove diclofenac, for example, activated carbon. Successively, detailed laboratory experiments with activated sludge from the same wastewater treatment plant showed bioremediation potential in the treatment plant. The biological degradation pathway was studied and showed a mineralisation of ibuprofen and degradation of diclofenac. The present microbes were further studied in laboratory experiments, and DGGE analyses showed the enrichment and isolation of highly purified cultures that degraded either ibuprofen or diclofenac. This research illuminates the importance of the involved bacteria for the effectiveness of the removal of pharmaceuticals in a wastewater treatment plant. A complete removal of pharmaceuticals from wastewater will stimulate water reuse, addressing the worldwide increasing demand for clean and safe fresh water. PMID:24350260

Inderfurth, Nadia; Schraa, Gosse; Kujawa-Roeleveld, Katarzyna; Rijnaarts, Huub

2013-01-01

349

Occurrence and degradation of butyltins and wastewater marker compounds in sediments from Barcelona harbor, Spain  

Microsoft Academic Search

Contamination of Barcelona harbor sediments was assessed by the quantitative determination of butyltins (TBT, DBT and MBT) and surfactant intermediates, namely linear alkylbenzenes (LABs) and nonylphenols (NPs), as markers of urban and industrial wastewater contamination, respectively. Degradation indexes of TBT and LABs were calculated. Tributyltin predominated in the whole area over its degradation products, ranging from 98 to 4702 ng Sn\\/g.

Sergi Díez; Eric Jover; Joan Albaigés; Josep M. Bayona

2006-01-01

350

Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: Photolysis and catalytic wet oxidation.  

PubMed

In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 ?m) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). PMID:25600300

Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

2015-03-15

351

Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants.  

PubMed

In this study we analyzed and characterized 29 psychoactive remedies, illicit drugs and their metabolites in single stages of wastewater treatment plants in the capital city of Slovakia. Psychoactive compounds were present within all stages, and tramadol was detected at a very high concentration (706ng/L). Significant decreases of codeine, THC-COOH, cocaine and buprenorphine concentration were observed in the biological stage. Consequently, we were interested in the possibility of alternative tertiary post-treatment of effluent water with the following aquatic plants: Cabomba caroliniana, Limnophila sessiliflora, Egeria najas and Iris pseudacorus. The most effective plant for tertiary cleansing was I. pseudacorus which demonstrated the best pharmaceutical removal capacity. After 48h codeine and citalopram was removed with 87% efficiency. After 96h were all analyzed compounds were eliminated with efficiencies above 58%. PMID:25818110

Macku?ak, Tomáš; Mosný, Michal; Škubák, Jaroslav; Grabic, Roman; Birošová, Lucia

2015-03-01

352

Tertiary ozonation of industrial wastewater for the removal of estrogenic compounds (NP and BPA): a full-scale case study.  

PubMed

Wastewater treatment plant (WWTP) effluents are considered to be a major source for the release in the aquatic environment of endocrine-disrupting compounds (EDCs). Ozone has proved to be a suitable solution for polishing secondary domestic effluents. In this work, the performance of a full-scale ozonation plant was investigated in order to assess the removal efficiency of four target EDCs: nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and bisphenol A. The studied system was the tertiary treatment stage of a municipal WWTP which receives an important industrial (textile) load. Chemical analyses showed that the considered substances occurred with a significant variability, typical of real wastewaters; based on this, ozonation performance was carefully evaluated and it appeared to be negatively affected by flow-rate increase (during rainy days, with consequent contact time reduction). Moreover, EDCs' measured removal efficiency was lower than what could be predicted based on literature data, because of the relatively high residual content of biorefractory compounds still present after biological treatment. PMID:23925184

Bertanza, G; Papa, M; Pedrazzani, R; Repice, C; Dal Grande, M

2013-01-01

353

SDBS: Integrated Spectral Data Base System for Organic Compounds  

NSDL National Science Digital Library

Provided by Agency of Industrial Science and Technology of Japan, the Integrated Spectral Data Base System for Organic Compounds is a database of mass spectral, NMR (proton and carbon), and infrared spectra data. As of March 1999, the database contains 19,600 spectra of MS, 11,000 spectra of ^13 C NMR, 13,500 spectra of ^1 H NMR, 2,000 spectra of ESR, 47,500 spectra of IR, 3,500 spectra of Raman, and 30,000 compounds in the Compound Dictionary. A search engine (Frames) for the database allows the following fields to be specified: Compound Name, Molecular Formula, Number of Atoms (Carbon, Hydrogen, Oxygen, and Nitrogen), Molecular Weight, CAS Registry Number, and SDBS Number. Access is free; however, no more than 50 spectra and/or compound files may be downloaded in one day.

354

The Role of Lipids on Sorption Characteristics of Freshwater and Wastewater-Irrigated Soils  

Microsoft Academic Search

The soil lipid fraction can play an important role in the sorption of organic compounds. In this study, the impact of the lipid fraction of freshwater- and wastewater-irrigated soils on the sorption of non- and relatively polar compounds was assessed. Lipid analyses revealed a clear difference between the two lipid fractions. The lipid extract from the wastewater-irrigated soil was consistent

Yaron Drori; Buuan Lam; Andre Simpson; Zeev Aizenshtat; Benny Chefetz

2006-01-01

355

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOEpatents

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

Vo-Dinh, T.

1987-07-14

356

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOEpatents

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

1987-01-01

357

Bioconcentration factors for volatile organic compounds in vegetation.  

PubMed

Samples of air and leaves were taken at the University of Nevada [Formula: see text] Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compounds (VOCs) and to characterize the equilibration of VOCs between the leaves and air. The bioconcentration of volatiles in the leaves of some species can be predicted using the partition coefficients between air and octanol (K(oa)) and only considering VOC absorption in the lipid fraction of leaves. For these leaves, the bioconcentration factors agreed with existing models. Leaves of some species displayed a bioconcentration of volatiles that greatly exceeded theory. These hyperbioconcentration leaves also contain appreciable concentrations of monoterpenes, suggesting that a terpenoid compartment should be considered for the bioconcentration of organic compounds in leaves. Adding an additional "terpenoid" compartment should improve the characterization of volatile organic compounds in the environment. The uptake of VOCs from air by leaves is rapid, and the equilibration rates are seen to be quicker for compounds that have higher vapor pressures. The release of VOCs from the leaves of plants is slower for hyperbioconcentration leaves. PMID:21644617

Hiatt, M H

1998-03-01

358

Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations  

SciTech Connect

Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

Wingender, R J; Harrison, W; Raphaelian, L A

1981-02-01

359

Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Wastewater Compounds by Polystyrene-Divinylbenzene Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry  

USGS Publications Warehouse

A method for the determination of 67 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals in wastewater on aquatic organisms. This method also may be useful for evaluating the impact of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are an indicator of wastewater or that have been chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclicaromatic hydrocarbons, and high-use domestic pesticides. Water samples are filtered to remove suspended particulate matter and then are extracted by vacuum through disposable solid-phase cartridges that contain polystyrene-divinylbenzene resin. Cartridges are dried with nitrogen gas, and then sorbed compounds are eluted with dichloromethane-diethyl ether (4:1) and determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 4 micrograms per liter averaged 74 percent ? 7 percent relative standard deviation for all method compounds. Initial method detection limits for single-component compounds (excluding hormones and sterols) averaged 0.15 microgram per liter. Samples are preserved by filtration, the addition of 60 grams NaCl, and storage at 4 degrees Celsius. The laboratory has established a sample-holding time (prior to sample extraction) of 14 days from the date of sample collection until a statistically accepted method can be used to determine the effectiveness of these sample-preservation procedures.

Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.; Barber, Larry B.; Burkhardt, Mark R.

2002-01-01

360

Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area.  

PubMed

The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from "negative removal" to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment. PMID:24176710

Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

2014-02-01

361

Method development for measuring biodegradable organic carbon in reclaimed and treated wastewaters  

SciTech Connect

Analyses that measure oxygen demand, such as biochemical oxygen demand (BOD) and chemical oxygen demand (COD) analyses, have long been used as indicators of contamination and wastewater treatment plant efficiency. They measure the tendency of pollutants to react with oxygen, which is generally a good indicator of the stability or level of treatment. Both parameters include reactions with organic as well as inorganic substances and suffer from a lack of precision and accuracy at low concentrations, which are becoming increasingly more important. Biodegradable dissolved organic carbon (BDOC) analysis is a relatively new procedure that has advantages over both BOD and COD analyses, including insensitivity to inorganic oxidations. A modified BDOC procedure was developed to characterize the performance of advanced treatment methods, such as those used in municipal water reclamation and secondary-treated wastewaters, where moderately low dissolved organic carbon concentrations (4 to 15 mg/L) are routinely encountered. The development of the modified BDOC procedure was based on a combination of the existing batch BDOC protocol and BOD techniques. Various aspects and incubation conditions were investigated to finalize the procedure. Nitrification does not interfere with the procedure. It is possible to simultaneously determine the soluble BOD (SBOD) under certain conditions. The procedure has reduced variability and increased precision as compared to BOD and COD analyses.

Khan, E.; Babcock, R.W. Jr.; Suffet, I.H.; Stenstrom, M.K.

1998-07-01

362

Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles  

NASA Astrophysics Data System (ADS)

Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be detected at some agricultural fields by SOC measurements (Jüschke 2009). Therefore attention has to be drawn especially on the carbon content and quality of the used TWW for irrigation purposes.

Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

2010-05-01

363

Analysis of the volatile organic compounds in seized cocaine hydrochloride  

NASA Astrophysics Data System (ADS)

The volatile organic compounds in seized cocaine hydrochloride were analyzed using Gas Chromatography Mass Spectrometry (GC/MS). Two different methods of sampling volatile compounds were investigated. In the first method, 20, 50, and 100 mg samples of seized cocaine hydrochloride were loaded into 2-inch glass tubes. The headspace of each tube was then purged with ultra high purity (UHP) helium and the gas exiting the tube was directed through a cryogenic loop filled with glass beads and maintained at liquid nitrogen temperature. The volatile organic compounds were collected onto the glass beads while the helium gas was vented. The organic compounds were subsequently thermally desorbed onto the column and analyzed by GC/MS. In the second method, 10 mg and 100 mg samples of seized cocaine hydrochloride were loaded into glass tubes fitted with glass frits at one end. UHP helium was purged through each sample and the purge gas containing organic compounds was collected onto a sorbent tube packed with Tenax TA. The concentrated organic compounds were then thermally desorbed onto a 4 m section of a split GC capillary column maintained at -70 degrees C with flow rates of 20-28 ml/min. Flow was returned to 2.8 ml/min during analysis. By sampling the seized samples of cocaine hydrochloride using a cryogenic loop, methanol, methyl ethyl ketone, acetic acid, 2,2,4-trimethyl pentane, 2-methyl pentane, dichloromethane, 2-propanol, and 2-propanol, and 2-propane (acetone) were found in three different seized cocaine hydrochloride samples. The observed quantities of these volatile organic compounds were different for each of the three seized cocaine hydrochloride samples. THe observed quantities of these volatile organic compounds were different for each of the three seized samples labeled A, B, and C. By sampling the seized samples of cocaine hydrochloride using sorbent tubes, cocaine was consistently observed. Although volatile components other than cocaine were observed, the number and amount of volatile components were not consistent with the cryogenic loop results.

Dejarme, Lindy E.; Lawhon, Sara J.; Ray, Prasenjit; Kuhlman, Michael R.

1997-02-01

364

Chemical reactions of organic compounds on clay surfaces.  

PubMed Central

Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

Soma, Y; Soma, M

1989-01-01

365

Key volatile organic compounds emitted from swine nursery house  

NASA Astrophysics Data System (ADS)

This study was carried out to quantify the concentration and emission levels of key volatile organic compounds (VOCs) - sulfides, indolics, phenolics and volatile fatty acids (VFA) - emitted from swine nursery house, and assess the effect of microclimate (including temperature, relative humidity and air speed) on the key odorous compounds. Samples were collected from the Experimental Farm of Seoul National University in Suwon, South Korea. And the collection took place for four seasons and the sampling time was fixed at 10:30 in the morning. The application of one-way ANOVA and Bonferroni t analyses revealed that, most of the odorous compound concentrations, such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), indole, p-cresol and all the volatile fatty acids were lowest during the summer ( P < 0.01). Meanwhile, negative correlations were observed between temperature and odorants, as well as air speed and odorants. A possible reason was that high ventilation transferred most of the odors out of the house during the summer. From the whole year data, non-linear multiple regressions were conducted and the equations were proposed depending upon the relationships between microclimate parameters and odorous compounds. The equations were applied in hope of easily calculating the concentrations of the odorous compounds in the commercial farms. The results obtained in this study should be used for reducing the volatile organic compounds by controlling microclimate parameters and also could be helpful in setting a guideline for good management practices in nursery house.

Yao, H. Q.; Choi, H. L.; Zhu, K.; Lee, J. H.

2011-05-01

366

Biological nitrogen removal using bio-sorbed internal organic carbon from piggery wastewater in a post-denitrification MLE process.  

PubMed

Nitrogen removal from a piggery wastewater was investigated in a post-denitrification modified Lüdzack Ettinger (PDMLE) process. Overall hydraulic retention time (HRT) of the PDMLE, consisting of contact/separator (C/S), nitrification, denitrification and re-aerobic bioreactor was 10 days. 60% of the influent SCOD was separated in the C/S by contacting the return sludge with the synthetic wastewater, however, only 10% of the influent SCOD was separated from the piggery wastewater. Biosorption capacities of the synthetic wastewater and piggery wastewater were 800 and 150 mg/g-MLSS, respectively. In spite of the high organic and nitrogen load, nitrification efficiency was above 95%, and nitrification rate was about 180 mg-NH4+-N/L x day. The removed delta COD/delta nitrate ratios in the denitrification tank were 4.0 and 11.5 g-SCOD/g-nitrate, while denitrification rates were 8.4 and 2.6 mg-nitrate/day for synthetic and piggery wastewater, respectively. In the proposed PDMLE process, both bio-sorbed and bypassed organic matter could be successfully used for nitrate reduction as carbon sources and the final TN removal efficiency was as high as 95%. PMID:15137447

Park, S M; Jun, H B; Chung, Y J; Lee, S H

2004-01-01

367

Occurrence and degradation of butyltins and wastewater marker compounds in sediments from Barcelona harbor, Spain.  

PubMed

Contamination of Barcelona harbor sediments was assessed by the quantitative determination of butyltins (TBT, DBT and MBT) and surfactant intermediates, namely linear alkylbenzenes (LABs) and nonylphenols (NPs), as markers of urban and industrial wastewater contamination, respectively. Degradation indexes of TBT and LABs were calculated. Tributyltin predominated in the whole area over its degradation products, ranging from 98 to 4702 ng Sn/g. These elevated concentrations reveal a persistent historical contamination and a moderate degradation (BT(deg)). Moreover, the high LAB concentrations (1.2-53.1 microg/g) compared to the relatively low NP levels (3.8-72.0 ng/g) suggest a predominance of urban over industrial wastewater inputs, although a significant correlation (r(2) = 0.82, N = 12, P = 0.001) between LABs and NPs was found. Stormwater runoff and combined sewer overflows (CSO) were likely the most possible sources for both surfactant intermediates. The high degradation index values obtained for LABs could indicate an improvement in the wastewater management reducing its recent discharge into the Barcelona harbor area. PMID:16806472

Díez, Sergi; Jover, Eric; Albaigés, Joan; Bayona, Josep M

2006-09-01

368

Characterization of four olive-mill-wastewater indigenous bacterial strains capable of aerobically degrading hydroxylated and methoxylated monocyclic aromatic compounds.  

PubMed

Seven aerobic bacterial strains capable of degrading several of the monocyclic aromatic compounds occurring in the phenolic fraction of olive-mill wastewaters (OMWs) were isolated from an Italian OMW. The results of the 16S rDNA restriction analysis evidenced that these strains are distributed among four different groups. One strain of each group was taxonomically characterized by sequencing the amplified 16S rDNA, and the four strains were assigned to the genera Comamonas (strain AV1A), Ralstonia (strain AV5BG), Pseudomonas (strain AV2A) and Sphingomonas (strain AV6C). The four strains, when checked for the ability to degrade nine monocyclic aromatic compounds abundant in OMWs, were found to significantly metabolize five to eight of them, both as resting cells and growing cells. Specific enzyme analyses of the same selected strains showed: (1) the occurrence of O-demethylating activities towards four methoxylated mono-aromatic acids in three of the four studied strains (strains AV1A, AV5BG and AV6C), (2) ring-cleavage activity towards protocatechuic acid in all of the strains, and (3) a ring-cleavage activity towards catechol in strain AV6C. The isolates described here exhibit a biodegradation potential towards monocyclic aromatic compounds of OMWs that is markedly broader and higher than that displayed by other aerobic bacteria described previously. These features make them excellent candidates for removing the low-molecular-weight phenolic compounds persisting in the effluent following anaerobic digestion of OMWs. PMID:12189422

Di Gioia, Diana; Barberio, Claudia; Spagnesi, Sonia; Marchetti, Leonardo; Fava, Fabio

2002-09-01

369

AERATION TO REMOVE VOLATILE ORGANIC COMPOUNDS FROM GROUND WATER  

EPA Science Inventory

The interim report presents general information on the use of aeration to remove volatile organic compounds from drinking water for public health reasons. The report illustrates the types of aerators, shows where they are being used, presents a means of estimating aeration perfor...

370

ABSORPTION OF SOME ORGANIC COMPOUNDS THROUGH THE SKIN IN MAN  

Microsoft Academic Search

We studied the percutaneous penetration of 21 organic chemicals. The experimental method consisted of the application of the chemical to the human forearm and quantitating its penetration through the skin by its appearance in urine.There was a great diversity in the ability of the chemicals to penetrate human skin. Compounds such as hippuric acid, nicotinic acid, and nitrobenzene support the

Robert J. Feldmann; Howard I. Maibach

1970-01-01

371

Luminescent properties of organic compounds in nanodimensional aluminium oxide structures  

Microsoft Academic Search

Dielectric anodic oxide alumina films have a nanoscale 2D structure consisting of cylindrical pores placed perpendicularly to the surface. Such films with a regular structure where pores distance is equal to pore diameter and can be changed from 5 nm to 400 nm are created. The spectral and luminescent properties of different organic compounds luminescing in a wide spectral region

A. Kukhto; E. Kolesnik; A. Mozalev; M. Taoubi

1998-01-01

372

CHARACTERIZATION OF VOLATILE ORGANIC COMPOUND PROFILES OF BACTERIAL THREAT AGENTS  

Microsoft Academic Search

Volatile organic compound (VOC) profiles are potentially an underutilized class of threat agent signatures that may be exploited in the identification of threat agents. In the present study we first focused on determining if VOC profiles collected from liquid culture headspace could be utilized to differentiate between bacterium of different genus, in this case Bacillus and Yersinia. The second focus

Jennifer Horsmon; Kathy Crouse

373

The Survival of Meteorite Organic Compounds with Increasing Impact Pressure  

NASA Technical Reports Server (NTRS)

The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.

Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)

2000-01-01

374

Destruction of Volatile Organic Compounds Using Catalytic Oxidation  

Microsoft Academic Search

Catalytic oxidation is an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emission stream are oxidized with the help of a catalyst Design of catalytic systems for control of point source emissions is based on stream-specific characteristics and desired control efficiency. This paper discusses the key emission stream characteristics and VOC

Michael Kosusko; Carlos M. Nunez

1990-01-01

375

Effects of airborne volatile organic compounds on plants  

Microsoft Academic Search

Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than

J. N. Cape

2003-01-01

376

A titrimetric method for estimation of fluorine in organic compounds.  

PubMed

A simple and rapid titrimetric method for estimation of fluorine in organic compounds and fluoropolymers is reported. It involves combustion of the sample in oxygen, absorption of the combustion products in an aqueous solution of Ce(III) nitrate and glycerol, containing hexamethylenetetramine, and finally titration with EDTA, with Xylenol Orange and Methylene Blue as screened indicator. PMID:18964642

Das, P S; Adhikari, B; Maiti, M M; Maiti, S

1988-11-01

377

Organic compounds in the rain water of Los Angeles  

Microsoft Academic Search

Solvent-extractable and purgeable (volatile) organic matter was studied by using a capillary GC-MS in rain water from a station in West Los Angeles on the UCLA campus. More than 600 peaks were obtained on gas chromatograms, and approximately 300 compounds have so far been either identified or tentatively identified in the neutral, acidic, and basic fractions of solvent extracts, including

K. Kawamura; I. R. Kaplan

1983-01-01

378

Volatile organic compounds in Gulf of Mexico sediments  

Microsoft Academic Search

Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1)

1988-01-01

379

OXYGENATED ORGANIC COMPOUND CONCENTRATIONS NEAR A ROADWAY IN LITHUANIA, SSR  

EPA Science Inventory

During the period June 1 to June 9, 1989, aldehyde and other oxygenated organic compound concentrations were examined at sites 3, 10, and 80 meters northeast of the Vilnius-Kaunas highway in Lithuania, SSR by collecting 120 liter (1 L/min for 120 min) samples on 2,4-dinitrophenyl...

380

Modeling emissions of volatile organic compounds from silage  

Technology Transfer Automated Retrieval System (TEKTRAN)

Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

381

SORPTION OF IONIZABLE ORGANIC COMPOUNDS TO SEDIMENTS AND SOILS  

EPA Science Inventory

The sorption of ionizable organic compounds to sediments and saturated soils is examined. he sorption of pentachlorophenol to two sediment silt-clay fractions as a function of pH is described. Sorption of both the neutral and the ionic species was shown to occur; results were qua...

382

EMISSIONS OF REACTIVE VOLATILE ORGANIC COMPOUNDS FROM UTILITY BOILERS  

EPA Science Inventory

The report gives results of the measurement of emission factors for reactive volatile organic compounds (VOC) from 43 utility boilers firing bituminous coal, lignite, oil, and natural gas. The boilers ranged in size from 9 to 910 MW. The median reactive VOC emission factors were ...

383

Measuring Emissions of Volatile Organic Compounds from Silage  

Technology Transfer Automated Retrieval System (TEKTRAN)

Volatile organic compound (VOC) emissions are considered to be important precursors to smog and ozone production. An experimental protocol was developed to obtain undisturbed silage samples from silage storages. Samples were placed in a wind tunnel where temperature, humidity, and air flow were cont...

384

Volatile organic compound emissions from dairy facilities in central California  

Technology Transfer Automated Retrieval System (TEKTRAN)

Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

385

Chemo-enzymatic fluorination of unactivated organic compounds  

E-print Network

Chemo-enzymatic fluorination of unactivated organic compounds Andrea Rentmeister1, Frances H Arnold1 & Rudi Fasan1,2 Fluorination has gained an increasingly important role in drug discovery. This procedure was applied for the rapid identification of fluorinated drug derivatives with enhanced membrane

Arnold, Frances H.

386

Qualitative analysis of volatile organic compounds on biochar  

Microsoft Academic Search

Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs can directly inhibit\\/stimulate microbial and plant processes. Over 70 biochars encompassing a variety of parent feedstocks and manufacturing processes were evaluated and

Kurt A. Spokas; Jeffrey M. Novak; Catherine E. Stewart; Keri B. Cantrell; Minori Uchimiya; Martin G. DuSaire; Kyoung S. Ro

2011-01-01

387

Destruction of volatile organic compounds via catalytic incineration  

Microsoft Academic Search

EPA's Air and Energy Engineering Research Laboratory conducts and sponsors research on technology to reduce or eliminate emissions of volatile organic compounds (VOC's) from industrial\\/commercial sources. Recently, a study on the use of catalytic oxidation to destroy VOC's (including potentially toxic air pollutants) was completed by Radian Corporation under an EPA contract. The study was designed to investigate the effect

B. A. Tichenor; M. A. Palazzolo

1985-01-01

388

DESTRUCTION OF VOLATILE ORGANIC COMPOUNDS VIA CATALYTIC INCINERATION (JOURNAL VERSION)  

EPA Science Inventory

The paper gives results of an investigation of the effect of catalytic incinerator design and operation on the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compo...

389

FIELD-DEPLOYABLE MONITORS FOR VOLATILE ORGANIC COMPOUNDS IN AIR  

EPA Science Inventory

Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

390

LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

391

NATIONAL AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS) DATA BASE UPDATE, DOCUMENTATION  

EPA Science Inventory

Data on the observed concentrations of three hundred twenty (320) volatile organic compounds (VOCs) were compiled, critically evaluated, and assembled into a relational data base. Ambient (i.e., outdoor) measurements, indoor data, and data collected with personal monitors are inc...

392

A global model of natural volatile organic compound emissions  

Microsoft Academic Search

Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly

Alex Guenther; C. Nicholas Hewitt; David Erickson; Ray Fall; Chris Geron; Tom Graedel; Peter Harley; Lee Klinger; Manuel Lerdau; W. A. McKay; Tom Pierce; Bob Scholes; Rainer Steinbrecher; Raja Tallamraju; John Taylor; Pat Zimmerman

1995-01-01

393

MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL  

EPA Science Inventory

This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

394

Modeling emissions of volatile organic compounds from silage  

Technology Transfer Automated Retrieval System (TEKTRAN)

Volatile organic compounds (VOCs), necessary reactants for photochemical smog formation, are emitted from numerous sources. Limited available data suggest that dairy farms emit VOCs with cattle feed, primarily silage, being the primary source. Process-based models of VOC transfer within and from si...

395

PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF ORGANIC COMPOUNDS  

EPA Science Inventory

The results of thermal and photothermal destruction of the vapors of organic compounds were compared by conducting tests in a photothermal detoxification unit. enon are lamp was used as the irradiation source. he tests were conducted on trichlorethylene (TCE), 1,2-dichlorobenzene...

396

Flammability of gas mixtures containing volatile organic compounds and hydrogen  

Microsoft Academic Search

An experimental program was conducted to evaluate the accuracy of some current methods for predicting the flammability of gas mixtures containing hydrogen and flammable or nonflammable volatile organic compounds (VOCs) in air. The specific VOCs tested were toluene, 1,2-dichloroethane, 2-butanone, and carbon tetrachloride. The lower flammability limits (LFLs) of gas mixtures containing equal molar quantities of the components were determined

Kevin J. Liekhus; Isaac A. Zlochower; Kenneth L. Cashdollar; Sinisa M. Djordjevic; Cindy A. Loehr

2000-01-01

397

PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

The contamination of subsurface soil and groundwater by volatile organic compounds (VOCS) is a pervasive problem in the United States. n-situ soil vapor extraction (SVE) and ex-situ thermal desorption are the most adapted technologies for the remediation of contaminated soil whil...

398

Qualitative analysis of volatile organic compounds on biochar  

Technology Transfer Automated Retrieval System (TEKTRAN)

Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

399

Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.  

PubMed

A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater orwastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72+/-1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43+/-1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at approximately 1000 mg COD/L), including glucose (212+/-2 mW/ m2), acetate (286+/-3 mW/m2), butyrate (220+/-1 mW/ m2), dextran (150+/-1 mW/m2), and starch (242+/-3 mW/ m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system. PMID:15575304

Min, Booki; Logan, Bruce E

2004-11-01

400

Structuring of bacterioplankton communities by specific dissolved organic carbon compounds.  

PubMed

The main role of microorganisms in the cycling of the bulk dissolved organic carbon pool in the ocean is well established. Nevertheless, it remains unclear if particular bacteria preferentially utilize specific carbon compounds and whether such compounds have the potential to shape bacterial community composition. Enrichment experiments in the Mediterranean Sea, Baltic Sea and the North Sea (Skagerrak) showed that different low-molecular-weight organic compounds, with a proven importance for the growth of marine bacteria (e.g. amino acids, glucose, dimethylsulphoniopropionate, acetate or pyruvate), in most cases differentially stimulated bacterial growth. Denaturing gradient gel electrophoresis 'fingerprints' and 16S rRNA gene sequencing revealed that some bacterial phylotypes that became abundant were highly specific to enrichment with specific carbon compounds (e.g. Acinetobacter sp. B1-A3 with acetate or Psychromonas sp. B3-U1 with glucose). In contrast, other phylotypes increased in relative abundance in response to enrichment with several, or all, of the investigated carbon compounds (e.g. Neptuniibacter sp. M2-A4 with acetate, pyruvate and dimethylsulphoniopropionate, and Thalassobacter sp. M3-A3 with pyruvate and amino acids). Furthermore, different carbon compounds triggered the development of unique combinations of dominant phylotypes in several of the experiments. These results suggest that bacteria differ substantially in their abilities to utilize specific carbon compounds, with some bacteria being specialists and others having a more generalist strategy. Thus, changes in the supply or composition of the dissolved organic carbon pool can act as selective forces structuring bacterioplankton communities. PMID:22697392

Gómez-Consarnau, Laura; Lindh, Markus V; Gasol, Josep M; Pinhassi, Jarone

2012-09-01

401

Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong  

Microsoft Academic Search

Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they

Yunchun Li

2008-01-01

402

Application of Ultrasonic Technology for Water and Wastewater Treatment  

Microsoft Academic Search

Ultrasonic technology as an innovative technology may be used for water and wastewater treatment for pollution removal. This technology acts as an advanced oxidation process. Application of this technology leads to the decomposition of many complex organic compounds to much simpler compounds during physical and chemical compounds during cavitation proc- ess. In this article review, some applications of this valuable

AH Mahvi

2009-01-01

403

Analysis of organic compounds in returned comet nucleus samples  

NASA Technical Reports Server (NTRS)

Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

Cronin, J. R.

1989-01-01

404

Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents  

PubMed Central

Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

2013-01-01

405

Surface modification of inorganic layer compound with organic compound and preparation of thin films  

Microsoft Academic Search

Water treated ZnAl layered double hydroxide (LDH) was prepared by the reaction of LDH oxide and water. By the reaction of the water treated ZnAl LDH or amorphous metal hydroxide and organic oxychloride, surface modified inorganic layer compounds were prepared. Their layer structures were similar to those of the orginal LDHs except the reaction product of amorphous metal hydroxide and

Hideyuki Tagaya; Hiroyuki Morioka; Sumikazu Ogata; Masa Karasu; Jun-ichi Kadokawa; Koji Chiba

1997-01-01

406

Determination of fluorine in organic compounds: Microcombustion method  

USGS Publications Warehouse

A reliable and widely applicable means of determining fluorine in organic compounds has long been needed. Increased interest in this field of research in recent years has intensified the need. Fluorine in organic combinations may be determined by combustion at 900?? C. in a quartz tube with a platinum catalyst, followed by an acid-base titration of the combustion products. Certain necessary precautions and known limitations are discussed in some detail. Milligram samples suffice, and the accuracy of the method is about that usually associated with the other halogen determinations. Use of this method has facilitated the work upon organic fluorine compounds in this laboratory and it should prove to be equally valuable to others.

Clark, H.S.

1951-01-01

407

Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance  

USGS Publications Warehouse

To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.

Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T.

2002-01-01

408

Simultaneous determination of selected endocrine disrupter compounds in wastewater samples in ultra trace levels using HPLC-ES-MS/MS.  

PubMed

An analytical procedure for the simultaneous determination of six selected endocrine disrupter compounds (EDCs: diltiazem, progesterone, benzyl butyl phthalate (BBP), estrone, carbamazepine (Cbz), acetaminophen) was developed by liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). All of the parameters for HPLC and ES-MS/MS systems including mobile phase composition, flow rate, and sample injection volume were optimized to obtain not only the best separation of species interested but also low detection limits. Reverse phase chromatography coupled to ES-MS/MS was used for the separation and detection of EDCs. Formic acid (0.10% ) and 5.0 mM ammonium formate were selected as mobile phase composition in gradient elution. Detection limits for diltiazem, progesterone, BBP, estrone, Cbz, and acetaminophen were found to be 0.13, 0.12, 0.04, 0.13, 0.12, and 0.05 ng/mL, respectively. Influent and effluents from three different wastewater treatment plants located in Ankara, i.e., rotating flat-sheet membrane unit, pilot type flat-sheet membrane unit located at METU Campus and samples from Ankara central wastewater treatment plant were analyzed for their EDCs contents under the optimum conditions. PMID:21912869

Komesli, Okan Tar?k; Bak?rdere, Sezgin; Bayören, Ceren; Gökçay, Celal Ferdi

2012-08-01

409

Measurements of halogenated organic compounds near the tropical tropopause  

NASA Technical Reports Server (NTRS)

The amount of organic chlorine and bromine entering the stratosphere have a direct influence on the magnitude of chlorine and bromine catalyzed ozone losses. Twelve organic chlorine species and five organic bromine species were measured from 12 samples collected near the tropopause between 23.8 deg N and 25.3 deg N during AASE 2. The average mixing ratios of total organic chlorine and total organic bromine were 3.50 +/- 0.06 ppbv and 21.1 +/- 0.8 pptv, respectively. CH3Cl represented 15.1% of the total organic chlorine, with CFC 11 (CCl3F) and CFC 12 (CCl2F2) accounting for 22.6% and 28.2%, respectively, with the remaining 34.1% primarily from CCl4, CH3CCl3, and CFC 113 (CCl2FCClF2). CH3Br represented 54% of the total organic bromine. The 95% confidence intervals of the mixing ratios of all but four of the individual compounds were within the range observed in low and mid-latitude mid-troposphere samples. The four compounds with significantly lower mixing ratios at the tropopause were CHCl3, CH2Cl2, CH2Br2, and CH3CCl3. The lower mixing ratios may be due to entrainment of southern hemisphere air during vertical transport in the tropical region and/or to exchange of air across the tropopause between the lower stratosphere and upper troposphere.

Schauffler, S. M.; Heidt, L. E.; Pollock, W. H.; Gilpin, T. M.; Vedder, J. F.; Solomon, S.; Lueb, R. A.; Atlas, E. L.

1993-01-01

410

Measurements of Halogenated Organic Compounds near the Tropical Tropopause  

NASA Technical Reports Server (NTRS)

The amount of organic chlorine and bromine entering the stratosphere have a direct influence on the magnitude of chlorine and bromine catalyzed ozone losses. Twelve organic chlorine species and five organic bromine species were measured from 12 samples collected near the tropopause between 23.8 deg N and 25.3 deg N during AASE 2. The average mixing ratios of total organic chlorine and total organic bromine were 3.50 +/- 0.06 ppbv and 21.1 +/- 0.8 pptv, respectively. CH3Cl represented 15.1% of the total organic chlorine, with CFC 11 (CCl3F) and CFC 12 (CCl2F2) accounting for 22.6% and 28.2%, respectively, with the remaining 34.1% primarily from CCl4, CH3CCl3, and CFC 113 (CCl2FCClF2). CH3Br represented 54% of the total organic bromine. The 95% confidence intervals of the mixing ratios of all but four of the individual compounds were within the range observed in low and mid-latitude midtroposphere samples. The four compounds with significantly lower mixing ratios at the tropopause were CHCl3, CH2Cl2, CH2Br2, and CH3CCl3. The lower mixing ratios may be due to entrainment of southern hemisphere air during vertical transport in the tropical region and/or to exchange of air across the tropopause between the lower stratosphere and upper troposphere.

Schauffler, S. M.; Heidt, L. E.; Pollock, W. H.; Gilpin, T. M.; Vedder, J. F.; Solomon, S.; Leub, R. A.; Atlas, E. L.

1993-01-01

411

Concentration of organic contaminants in fish and their biological effects in a wastewater-dominated urban stream.  

PubMed

Data are presented on the concentrations of alkylphenol and alkylphenol ethoxylates (APEs) and persistent organic compounds in largemouth bass collected from a waste-water dominated stream in downtown Chicago. The fish residue concentrations of APEs are compared to concentrations of the APEs in the water that were collected at weekly intervals over two months bracketing the fall (2006) and a spring (2007) fish collection. The concentrations of APEs were significantly higher in the spring-collected fish (5.42?g/g) versus the fall (0.99?g/g) tand these differences were shared by differences in the water concentrations (spring - 11.47 versus fall - 3.44?g/L). The differences in water concentration were negatively correlated with water temperatures observed over the two sampling times. Fish residue concentrations of persistent organic compounds (PCBs, PBDEs, toxaphene, and many legacy pesticides including the DDT family) did not vary from fall to spring. Some of these residue concentrations were comparable to the highest NPE (nonylphenol ethoxylate) homologue concentrations, e.g. NP1EO was 3.5?g/g in the bass for the spring, the PBDE-congener 47 and p,p'-DDE averaged 1.0?g/g and 0.5?g/g, respectively, over both seasons. All the other persistent single-analyte concentrations were lower. Biological endpoints for endocrine effects measured in the same fish showed that there was an apparent positive correlation for physiological effects based on increased vitellogenin levels in males versus concentration of NPEs; however there were no observable histological differences in fall versus spring fish samples. PMID:22341470

Lozano, Nuria; Rice, Clifford P; Pagano, James; Zintek, Larry; Barber, Larry B; Murphy, Elizabeth W; Nettesheim, Todd; Minarik, Tom; Schoenfuss, Heiko L

2012-03-15

412

Biodiversity of volatile organic compounds from five French ferns.  

PubMed

Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

2010-10-01

413

A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms  

EPA Science Inventory

This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

414

Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa).  

PubMed

Steroid hormone Endocrine Disrupting Compounds (EDCs) (natural estrogens (17-?-estradiol (E2), estrone (E1), estriol (E3), synthetic estrogen (17-?-ethinylestradiol (EE2)), natural androgen (testosterone) (tes) and natural progestogen (progesterone) (pro)) at an activated sludge wastewater works (WWW), were quantitated using Enzyme-linked immunosorbent assay (ELISA). The steroid hormone profile in the adjacent surface water was also determined. Pro was the most abundant (41%, 408 ng/L) in the influent, followed by tes (35%, 343 ng/L) and E2 (12%, 119 ng/L). E1 was the most abundant (35%, 23 ng/L) in effluent, followed by E2 (30%, 20 ng/L) and tes (17%, 11 ng/L). Chemical removal efficiencies of the steroid hormones by the WWW averaged 92%. High removal efficiency was observed for pro (98% ± 2) and tes (96% ± 1), compared to natural (72-100%) and synthetic estrogen (90% ± 3), with biodegradation being the major removal route for pro and tes. The lowest removal for E2 is in spring (65%), and maximum removal is in winter (95%). Natural (E2, E1) and synthetic estrogen (EE2) were major contributors to influent (E2 = 69%) and effluent (E2 = 73%) estrogenic potency. The estrogenic potency removal averaged 85% (range: 73-100). Risk assessment of the steroid hormones present in wastewater effluent, and surface water, indicated that EE2 and E2 pose the highest risk to human health and fish. EE2 was found to be much more resistant to biodegradation, compared to E2, in surface water. Estrone, as the breakdown product of E2 and EE2 in wastewater, appears to be suitable as an indicator of EDCs. The study suggests that a battery of tests: quantitative chemical assay, bioassay for estrogenic activity and risk assessment methods, collectively, are preferred in order to make meaningful, accurate conclusions regarding potential adverse effects of EDCs present in treated wastewater effluent or surface water, to the aquatic environment, human health, and wildlife systems. PMID:24056449

Manickum, T; John, W

2014-01-15

415

DISTRIBUTION OF HYDROPHOBIC IONOGENIC ORGANIC COMPOUNDS BETWEEN OCTANOL AND WATER: ORGANIC ACIDS  

EPA Science Inventory

The octanol-water distributions of 10 environmentally significant organic acid compounds were determined as a function of aqueous-phase salt concentration (0.05-0.2 M LiCl, NaCl, KCl, CaCl2, or MgCl2) and pH. he compounds were pentachlorophenol 2,3,4,5-tetrachlorophenol, (2,4,5-t...

416

Polycyclic aromatic hydrocarbon sampling in wastewaters using semipermeable membrane devices: Accuracy of time-weighted average concentration estimations of truly dissolved compounds  

Microsoft Academic Search

Semipermeable membrane devices (SPMDs) previously spiked with performance reference compounds were exposed in wastewater. After 6 days of exposure, 13 polycyclic aromatic hydrocarbons (PAHs) were quantified in SPMDs. Exchange rate constants and time-weighted average (TWA) concentrations of SPMD-available PAHs in water were calculated. The bias of using SPMDs to estimate an actual TWA concentration if the concentration in water fluctuates,

Catherine Gourlay-Francé; Catherine Lorgeoux; Marie-Hélène Tusseau-Vuillemin

2008-01-01

417

Group extraction of organic compounds present in liquid samples  

NASA Technical Reports Server (NTRS)

An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

Jahnsen, Vilhelm J. (Inventor)

1976-01-01

418

Effect of soluble organic, particulate organic, and hydraulic shock loads on anaerobic sequencing batch reactors treating slaughterhouse wastewater at 20 °C  

Microsoft Academic Search

Anaerobic sequencing batch reactors (ASBRs) treating slaughterhouse wastewater at 20°C were subjected to soluble organic, particulate organic and hydraulic shock loads. The normal organic loading rate (OLR) was increased by a factor ranging from 1.5 to 3.6. During the soluble organic shock load, effluent soluble chemical oxygen demand (SCOD), volatile fatty acid (VFA), and suspended solids (SS) concentrations increased from

L. Masse; D. I. Massé

2005-01-01

419

Natural organic compounds as tracers for biomass combustion in aerosols  

SciTech Connect

Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

1995-08-01

420

Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid-water distribution coefficients.  

PubMed

The concentrations of eighteen perfluorinated compounds (PFCs: C5-C14 carboxylates, C4, C6-C8 and C10 sulfonates and 3 sulfonamides) were determined in wastewater and sludge samples originating from two different wastewater treatment plants (WWTPs). The analytes were extracted by solid phase extraction (dissolved phase) or sonication followed by solid phase extraction (solid phase). Qualitative and quantitative analyses were performed by LC-MS/MS. According to the results, perfluoropentanoic acid (PFPeA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were dominant in wastewater and sludge samples from both plants. The average concentrations in the raw and treated wastewater ranged up to 75.7 ng L(-1) (perfluorotridecanoic acid, PFTrDA) and 76.0 ng L(-1) (PFPeA), respectively. Concentrations of most PFCs were higher in effluents than in influents, indicating their formation during wastewater treatment processes. In sewage sludge, the average concentrations ranged up to 6.7 ng g(-1) dry weight (PFOS). No significant seasonal variations in PFCs concentrations were observed, while higher concentrations of PFOA, PFOS and perfluorononanoic acid (PFNA) were determined in the WWTP receiving municipal and industrial wastewater. Significantly different distribution coefficient (Kd) values were determined for different PFCs and different type of sludge, ranging between 169 L kg(-1) (PFHxS) to 12,922 L kg(-1) (PFDA). PMID:22370204

Arvaniti, Olga S; Ventouri, Elpida I; Stasinakis, Athanasios S; Thomaidis, Nikolaos S

2012-11-15

421

Simultaneous removal of organic matter and nitrogen compounds by an aerobic/anoxic membrane biofilm reactor.  

PubMed

The hydrogen-based membrane biofilm reactor (MBfR) has been well studied and applied for denitrification of nitrate-containing water and wastewater. Adding an oxygen-based MBfR allows total-nitrogen removal when the input nitrogen is ammonium. However, most wastewaters also contain a significant concentration or organic material, measured as chemical oxygen demand (COD). This study describes experiments to investigate the removal of organic and nitrogenous compounds in the combined Aerobic/Anoxic MBfR, in which an Aerobic MBfR (Aer MBfR) precedes an Anoxic MBfR (An MBfR). The experiments demonstrate that the Aer/An MBfR combination accomplished COD oxidation and nitrogen removal for a total oxygen demand flux (i.e., from COD and NH(4) oxidations) in the range of 1.2-7.2 g O(2)/m(2)-d for 4.5 psi (0.3 atm) oxygen pressure to the Aer MBfR, but was overloaded and did not accomplish nitrification for the total oxygen demand load higher than 14 g O(2)/m(2)-d. Total-nitrogen removal was controlled by nitrification in the Aer MBfR, because the An MBfR denitrified all NO(3)(-) provided to it by the Aer MBfR. The overload of total oxygen demand did not affect COD oxidation in the Aer MBfR, but caused a small increase of COD in the An MBfR due to net release of soluble microbial products (SMP). PMID:18684483

Hasar, Halil; Xia, Siqing; Ahn, Chang Hoon; Rittmann, Bruce E

2008-09-01

422

Metamaterial resonator arrays for organic and inorganic compound sensing  

NASA Astrophysics Data System (ADS)

In this paper, an electromagnetic metamaterial resonator operating in the terahertz frequency range is presented. By arranging the resonator in a planar array, it is possible to use the structure as a sensing device for organic and inorganic compounds. The sensor is designed to detect the presence of a biological compound by permittivity or absorption measurements. The presence of the biological matter modifies the effective permittivity and, thus, the resonant frequency significantly varies. In addition, biological compounds typically exhibit absorption characteristics that depend on the corresponding molecular structure. Therefore, it is necessary to illuminate the material selectively. We show that by employing the "selective" properties of the metamaterial resonator proposed, it is possible to enhance the sensing performances. The proposed design is suitable to sense the presence of healthy and malignant tissues, with possible applications in food and medical diagnostics. The operation of the sensing device has been demonstrated through proper full-wave simulations.

La Spada, Luigi; Bilotti, Filiberto; Vegni, Lucio

2011-09-01

423

Metamaterial resonator arrays for organic and inorganic compound sensing  

NASA Astrophysics Data System (ADS)

In this paper, an electromagnetic metamaterial resonator operating in the terahertz frequency range is presented. By arranging the resonator in a planar array, it is possible to use the structure as a sensing device for organic and inorganic compounds. The sensor is designed to detect the presence of a biological compound by permittivity or absorption measurements. The presence of the biological matter modifies the effective permittivity and, thus, the resonant frequency significantly varies. In addition, biological compounds typically exhibit absorption characteristics that depend on the corresponding molecular structure. Therefore, it is necessary to illuminate the material selectively. We show that by employing the "selective" properties of the metamaterial resonator proposed, it is possible to enhance the sensing performances. The proposed design is suitable to sense the presence of healthy and malignant tissues, with possible applications in food and medical diagnostics. The operation of the sensing device has been demonstrated through proper full-wave simulations.

La Spada, Luigi; Bilotti, Filiberto; Vegni, Lucio

2012-02-01

424

COMPARISON OF SOLID PHASE MICRO-EXTRACTION TECHNIQUES FOR THE QUANTIFICATION OF MALODOROUS COMPOUNDS IN WASTEWATER  

Technology Transfer Automated Retrieval System (TEKTRAN)

Emission of malodorous compounds from swine production facilities is due to the anaerobic metabolism of amino acids, production of short chain fatty acids through fermentation, and dissimulatory sulfate reduction. The majority of these compounds are polar, and therefore highly water soluble. In a ty...

425

Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.  

PubMed

Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. PMID:23026644

Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

2012-10-01

426

Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study  

NASA Astrophysics Data System (ADS)

Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

2012-10-01

427

Bibliography on contaminants and solubility of organic compounds in oxygen  

NASA Technical Reports Server (NTRS)

A compilation of a number of document citations is presented which contains information on contaminants in oxygen. Topics covered include contaminants and solubility of organic compounds in oxygen, reaction characteristics of organic compounds with oxygen, and sampling and detection limits of impurities. Each citation in the data bank contains many items of information about the document. Some of the items are title, author, abstract, corporate source, description of figures pertinent to hazards or safety, key references, and descriptors (keywords) by which the document can be retrieved. Each citation includes an evaluation of the technical contents as to being good/excellent, acceptable, or poor. The descriptors used to define the contents of the d