Note: This page contains sample records for the topic wastewater organic compounds from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

IDENTIFICATION OF ORGANIC COMPOUNDS IN AN INDUSTRIAL WASTEWATER  

EPA Science Inventory

Gas chromatography/mass spectrometry (GC/MS) was used in a survey analysis of organic compounds in an industrial wastewater. Problems in the interpretation of the GC/MS data in effluent from a specialty chemicals plant were addressed. An important feature of the study was the use...

2

Removal of Organic Compounds from Municipal Wastewater by Wastewater by W Immobilized Biomass  

Microsoft Academic Search

Two porous ceramic carriers (internal active surface 0.04 m 2 for carrier I and 0.2 m 2 for carrier II) with immobilized activated sludge were the stationary filling of the reactors. Municipal wastewater was treated at hydraulic retention time (HRT) from 70 to 15 min. The efficiency of organic compounds removal from wastewater changed for reactor I from 85.2 to

M. Zieli?ska; I. Wojnowska-Bary?a

2004-01-01

3

Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands  

USGS Publications Warehouse

The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

Keefe, S. H.; Barber, L. B.; Runkel, R. L.; Ryan, J. N.

2004-01-01

4

MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS  

EPA Science Inventory

Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

5

ORGANIC COMPOUNDS IN AN INDUSTRIAL WASTEWATER. THEIR TRANSPORT INTO SEDIMENTS  

EPA Science Inventory

The wastewater from a small specialty chemicals manufacturing plant located on the Pawtuxet River (Rhode Island, USA) has contaminated the water and sediment of that river, the Pawtuxet Cove, the Providence River, and (to a lesser extent) the Narragansett Bay. Since the compounds...

6

Anaerobic inhibition of trace organic compound removal during rapid infiltration of wastewater.  

PubMed Central

When soil columns were operated aerobically on a flooding-drying schedule in a previous study, good removals were observed for several organic compounds at concentrations ranging from 1 to 1,000 micrograms per liter in primary wastewater. In this study, fractional breakthroughs of most compounds increased substantially once operating parameters were modified and the soil became anaerobic. These results imply that microbial removal of trace organic compounds can be inhibited if anaerobic conditions develop during rapid infiltration of wastewater.

Hutchins, S R; Tomson, M B; Wilson, J T; Ward, C H

1984-01-01

7

OCCURRENCE OF ORGANIC WASTEWATER-INDICATOR COMPOUNDS IN THE URBAN STREAMS OF ATLANTA, GEORGIA, 2003-2006  

Microsoft Academic Search

Between March 2003 and January 2006, 856 water samples were collected from 63 stream sites in seven watersheds encompassed by the City of Atlanta, Georgia. These samples were analyzed for 60 anthropogenic organic compounds commonly found in wastewater efflu- ents and collectively called organic wastewater-indicator compounds. Nancy Creek, Sandy Creek, and Utoy Creek watersheds did not contain outfalls for combined

Stephen J. Lawrence

8

Production of a High Efficiency Microbial Flocculant by Proteus mirabilis TJ-1 Using Compound Organic Wastewater  

NASA Astrophysics Data System (ADS)

The production of a high efficiency microbial flocculant (MBF) by Proteus mirabilis TJ-1 using compound organic wastewater was investigated. To cut down the cost of the MBF production, several nutritive organic wastewaters were selected to replace glucose and peptone as the carbon source and the nitrogen source in the optimized medium of strain TJ-1, respectively. The compound wastewater of the milk candy and the soybean milk was found to be good carbon source and nitrogen source for this strain to produce MBF. The cost-effective culture medium consists of (per liter): 800 mL wastewater of milk candy, 200 mL wastewater of soybean milk, 0.3 g MgSO4.7 H2O, 5 g K2HPO4, 2 g and KH2PO4, pH 7.0. The economic cost for the MBF production can be cut down over a half by using the developed culture medium. Furthermore, the utilization of the two wastewaters in the preparation of culture medium of strain TJ-1 can not only save their big treatment cost, but also realize their resource reuse.

Zhang, Zhiqiang; Xia, Siqing; Zhang, Jiao

2010-11-01

9

MICROBIAL REMOVAL OF WASTEWATER ORGANIC COMPOUNDS AS A FUNCTION OF INPUT CONCENTRATION IN SOIL COLUMNS  

EPA Science Inventory

The fate of six organic compounds during rapid infiltration of primary wastewater through soil columns was studied. Breakthrough profiles of o-phenylphenol were relatively consistent during the test, with fractional breakthrough (mass output/mass input) being independent of input...

10

The genetic toxicology of organic compounds in natural waters and wastewaters.  

PubMed

This review was drawn from the literature describing genotoxic organic compounds in natural water (rivers, lakes, streams) and wastewater, as well as from recent discussions with industrial scientists and environmental regulators. Testing of wastewaters for genotoxicity may become a routine requirement for some industrial wastewater discharge permits, not unlike the more common requirement for routine aquatic toxicity tests. The stimuli for this are concerns that aquatic organisms inhabiting waters impacted by wastewater discharges suffer an increased risk of genetic damage or cancer, and that humans utilizing these waters for recreational and drinking water purposes may suffer similar genetic or carcinogenic risks. Some evidence suggests that neoplasia in aquatic organisms is related to habitat contamination, yet field evaluations fail to substantiate adequately a cause-and-effect relationship. Because aquatic organisms respond like mammals to the same genotoxic compounds, the increased burden of genotoxic compounds to the environment may impact certain endemic species. Wastewater discharges may be one source of genotoxic organic compounds in those impacted areas. With respect to potential human health impacts, evidence is supportive of increased cancer risk to individuals drinking water from surface sources; however, this risk may or may not relate to whether the drinking water source received input of wastewater discharges or known carcinogens. Throughout the published literature reviewed herein, the Salmonella/Ames gene mutation test was widely used to assess genotoxic activity, although studies using indigenous plants and aquatic organisms as in vivo monitors of genotoxic activity exist. No "standard" or frequently followed protocols for sample collection, sample processing, selection of tests or their conduct, or interpretation of data exist for most of the genotoxicity studies reviewed. For the Salmonella/Ames test, the aqueous samples were concentrated usually on XAD resin or by liquid:liquid extraction, and without this concentration step few samples exhibited genotoxic activity. Hence, in most instances, the ambient concentration of the compounds causing this activity is below that which is readily detectable by this test, a finding not new to this review. In contrast, aquatic organisms in laboratory and field studies responded to ambient concentrations of genotoxic compounds, thus alleviating the need for sample concentration. However, there appears to be a reluctance to utilize this information for extrapolation to potential human health effects. Unfortunately, no generally accepted and scientifically validated protocol for preparing aqueous samples for genotoxicity testing exists. Developing such a protocol is necessary before embarking on widespread genotoxicity testing of wastewaters, especially if results are to be used for permit compliance.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1915000

Stahl, R G

1991-08-01

11

[Characteristics and evaluation of volatile organic compounds discharge in typical enterprise wastewater in Hangzhou City].  

PubMed

Totally 77 kinds of volatile organic compounds (VOCs) in inlet/outlet wastewater of 10 typical enterprises in Hangzhou City were determined by headspace-gas chromatography-mass spectrometry, then the discharge characteristics of VOCs were analyzed, and the monitoring results were evaluated. The results indicated that 22 kinds of VOCs were detected in inlet wastewater, the range of VOCs concentrations was 7-3.39 x 10(6) microg x L(-1), while 14 kinds of VOCs were detected in outlet wastewater, the range of VOCs concentrations was 16- 6.82 x 10(4) microg x L(-1). The concentrations of VOCs in inlet/outlet wastewater of flavors and fragrances manufacturing enterprises were much higher than those of other industries. When using the third class discharge standard of "integrated wastewater discharge standard" (GB 8978-1996) as the evaluation criteria, the toluene concentration detected in outlet wastewater of enterprise 1 was 2.45 x 10(3), microg x L(-1), which exceeded the standard limit. In addition. When the discharge multimedia environmental goals (DMEG(WH)) of VOCs in water was used as the evaluation criteria, the concentrations of n-butyl alcohol, isopropyl alcohol, acetone in outlet wastewater of enterprise 3 exceeded their respective discharge multimedia environmental goals. PMID:24640903

Chen, Feng; Xu, Jian-Fen; Tang, Fang-Liang; Zhang, Ming; Ruan, Dong-De

2013-12-01

12

Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: a review of potential options.  

PubMed

Platinum group metal (PGM) refining processes produce large quantities of wastewater, which is contaminated with the compounds that make up the solvents/extractants mixtures used in the process. These compounds often include solvesso, beta-hydroxyxime, amines, amides and methyl isobutyl ketone. A process to clean up PGM refinery wastewaters so that they could be re-used in the refining process would greatly contribute to continual water storage problems and to cost reduction for the industry. Based on the concept that organic compounds that are produced biologically can be destroyed biologically, the use of biological processes for the treatment of organic compounds in other types of waste stream has been favoured in recent years, owing to their low cost and environmental acceptability. This review examines the available biotechnologies and their effectiveness for treating compounds likely to be contained in precious metal extraction process wastewaters. The processes examined include: biofilters, fluidized bed reactors, trickle-bed bioreactors, bioscrubbers, two-phase partitioning bioreactors, membrane bioreactors and activated sludge. Although all processes examined showed adequate to excellent removal of organic compounds from various gaseous and fewer liquid waste streams, there was a variation in their effectiveness. Variations in performance of laboratory-scale biological processes are probably due to the inherent change in the microbial population composition due to selection pressure, environmental conditions and the time allowed for adaptation to the organic compounds. However, if these factors are disregarded, it can be established that activated sludge and membrane bioreactors are the most promising processes for use in the treatment of PGM refinery wastewaters. PMID:17316749

Barbosa, V L; Tandlich, R; Burgess, J E

2007-07-01

13

[Adsorbable organic halogen compounds and bio-toxicity in hospital wastewater treatment].  

PubMed

Adsorbable organic halogen compounds (AOX) exist persistently in the aquatic environment, and accumulate in the food chain. Some of them are toxic for humans and other organisms. However, hospital wastewater is considered as an important source of AOX in municipal wastewater. The aim of this study was to evaluate the generation of AOX both in a raw hospital wastewater and the effluent from a membrane sequencing batch reactor, also the effect of cR t value and the bio-toxicity were investigated. The results show that the removal of AOX in the hospital wastewater is 63.6% after treated by the membrane sequencing batch reactor, and the contribution of membrane rejection accounts for 14.5%. The concentration of AOX in the raw hospital wastewater is much higher than that of the effluent from membrane sequencing batch reactor at the same value of cR t for its higher chlorine-demands. Along with the increasing of cR t value, the fitting curves of AOX present exponential growth for the raw hospital wastewater, while linearity relation for the effluent from membrane sequencing batch reactor. To meet the requirement for indicative microorganism (fecal coliform) in the Discharge Standard of Water Pollutants for Medical Organization (GB 18466-2005), the demands of cR t value for the raw hospital wastewater and the effluent from membrane sequencing batch reactor are 5.5 (mg x h)/L and 0.0075 (mg x h)/L respectively, the bio-toxity by acute toxicity test with Daphnia magna are 40.39 microg/L (K2Cr2O7) and 8.96 microg/L (K2Cr2O7), and correspondingly the concentration of AOX produced are 607.1 microg/L and 102.5 microg/L. PMID:18268982

Sun, Ying-xue; Zhang, Feng; Wang, Ke-li; Gu, Ping

2007-10-01

14

Organic Wastewater Compounds, Pharmaceuticals, and Coliphage in Ground Water Receiving Discharge from Onsite Wastewater Treatment Systems Near La Pine, Oregon: Occurrence and Implications for Transport.  

National Technical Information Service (NTIS)

The occurrence of organic wastewater compounds (components of personal care products and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and f...

S. R. Hinkle R. J. Weick J. M. Johnson J. D. Cahill S. G. Smith

2005-01-01

15

Priority organic compounds in wastewater effluents from the Mediterranean and Atlantic basins of Andalusia (Spain).  

PubMed

A comprehensive survey of the occurrence of organic compounds in 30 wastewater (WW) effluent samples from 21 urban wastewater treatment plants (WWTPs) from both secondary and tertiary treatments was carried out in the Mediterranean and Atlantic basins of the Andalusia region (south of Spain). For each sample, a total of 226 compounds including pesticides and some transformation products, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs) were monitored with the aim of evaluating their occurrence in urban WW effluents. Compounds belonging to each class were detected. Among pesticides, insecticides such as clorfenvinphos and diazinon as well as herbicides such as diuron, sebuthylazine, terbuthylazine and terbuthylazine desethyl were the most frequently detected. The ubiquity of some compounds such as fluorene, phenanthrene and pyrene was also demonstrated. The compounds evaluated were detected at low concentrations (in general below 1 ?g L(-1)), except 4-tert-octylphenol, which was detected at extremely high concentrations (up to 443 ?g L(-1)). PAHs and VOCs were the compounds most frequently detected in the assayed samples, and they are the main sources of contamination in WWTPs, as well as some herbicides and transformation products. PMID:24141237

Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José Luis; Castro, Antonio J; Martín, Isabel; Salas, Juan José; Frenich, Antonia Garrido

2013-12-01

16

Removal of organic compounds during treating printing and dyeing wastewater of different process units.  

PubMed

Wastewater in Shaoxing wastewater treatment plant (SWWTP) is composed of more than 90% dyeing and printing wastewater with high pH and sulfate. Through a combination process of anaerobic acidogenic [hydraulic retention time (HRT) of 15h], aerobic (HRT of 20h) and flocculation-precipitation, the total COD removal efficiency was up to 91%. But COD removal efficiency in anaerobic acidogenic unit was only 4%. As a comparison, the COD removal efficiency was up to 35% in the pilot-scale upflow anaerobic sludge bed (UASB) reactor (HRT of 15h). GC-MS analysis showed that the response abundance of these wastewater samples decreased with their removal of COD. A main component of the raw influent was long-chain n-alkanes. The final effluent of SWWTP had only four types of alkanes. After anaerobic unit at SWWTP, the mass percentage of total alkanes to total organic compounds was slightly decreased while its categories increased. But in the UASB, alkanes categories could be removed by 75%. Caffeine as a chemical marker could be detected only in the effluent of the aerobic process. Quantitative analysis was given. These results demonstrated that GC-MS analysis could provide an insight to the measurement of organic compounds removal. PMID:17997469

Wang, J; Long, M C; Zhang, Z J; Chi, L N; Qiao, X L; Zhu, H X; Zhang, Z F

2008-03-01

17

Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09  

USGS Publications Warehouse

Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compound

Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor,Arianne; Manning, Rhonda; Titler, Robert

2012-01-01

18

Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain  

USGS Publications Warehouse

Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.

Phillips, P.; Chalmers, A.

2009-01-01

19

Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005  

USGS Publications Warehouse

Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak

Giorgino, M. J.; Rasmussen, R. B.; Pfeifle, C.M .

2007-01-01

20

Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02  

USGS Publications Warehouse

Selected organic wastewater compounds (OWCs) such as household, industrial, and agricultural-use compounds, pharmaceuticals, antibiotics, and sterols and hormones were measured at 65 sites in Minnesota as part of a cooperative study among the Minnesota Department of Health, Minnesota Pollution Control Agency, and the U.S. Geological Survey. Samples were collected in Minnesota during October 2000 through November 2002 and analyzed for the presence and distribution of 91 OWCs at sites including wastewater treatment plant influent and effluent; landfill and feedlot lagoon leachate; surface water; ground water (underlying sewered and unsewered mixed urban land use, a waste dump, and feedlots); and the intake and finished drinking water from drinking water facilities. There were 74 OWCs detected that represent a wide variety of use. Samples generally comprised a mixture of compounds (average of 6 OWCs) and 90 percent of the samples had at least one OWC detected. Concentrations for detected OWCs generally were less than 3 micrograms per liter. The ten most frequently detected OWCs were metolachlor (agricultural-use herbicide); cholesterol (sterol primarily associated with animal waste); caffeine (stimulant), N,N-diethyl-meta-toluamide (DEET) (topical insect repellant); bromoform (disinfection by product); tri(2-chloroethyl)phosphate (flame-retardant and plastic component); beta-sitosterol (plant sterol that is a known endocrine disruptor); acetyl-hexamethyl-tetrahydro- naphthalene (AHTN) (synthetic musk widely used in personal care products, and a known endocrine disruptor); bisphenol-A (plastic component and a known endocrine disruptor); and cotinine (metabolite of nicotine). Wastewater treatment plant influent and effluent, landfill leachate, and ground water underlying a waste dump had the greatest number of OWCs detected. OWC detections in ground-water were low except underlying the one waste dump studied and feedlots. There generally were more OWCs detected in surface water than ground water, and there were twice as many OWCs detected in the surface water sites downstream from wastewater treatment plant (WWTP effluent than at sites not directly downstream from effluent. Comparisons among site classifications apply only to sites sampled during the study. Results of this study indicate ubiquitous distribution of measured OWCs in the environment that originate from numerous sources and pathways. During this reconnaissance of OWCs in Minnesota it was not possible to determine the specific sources of OWCs to surface, ground, or drinking waters. The data indicate WWTP effluent is a major pathway of OWCs to surface waters and that landfill leachate at selected facilities is a potential source of OWCs to WWTPs. Aquatic organism or human exposure to some OWCs is likely based on OWC distribution. Few aquatic or human health standards or criteria exist for the OWCs analyzed, and the risks to humans or aquatic wildlife are not known. Some OWCs detected in this study are endocrine disrupters and have been found to disrupt or influence endocrine function in fish. Thirteen endocrine disrupters, 3-tert-butyl-4-hydoxyanisole (BHA), 4- cumylphenol, 4-normal-octylphenol, 4-tert-octylphenol, acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), benzo[a]pyrene, beta-sitosterol, bisphenol-A, diazinon, nonylphenol diethoxylate (NP2EO), octyphenol diethoxylate (OP2EO), octylphenol monoethoxylate (OP1EO), and total para-nonylphenol (NP) were detected. Results of reconnaissance studies may help regulators who set water-quality standards begin to prioritize which OWCs to focus upon for given categories of water use.

Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

2004-01-01

21

Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants  

Microsoft Academic Search

The study determined the organic silicon compounds in biogases from landfills, wastewater treatment plants (WWTPs), and biogas plants processing different organic material. The aim was to provide information for gas utilisation applications, as siloxanes are reported to shorten the life time of engines when biogas is used for energy production. In total, 48 samples were measured. The total concentration of

Saija Rasi; Jenni Lehtinen; Jukka Rintala

2010-01-01

22

Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas.  

PubMed

Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value<0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000 m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value=0.03), caffeine (p-value=0.01), and tris(2-butoxyethyl) phosphate (p-value<0.01) than those collected downstream from more rural watersheds. PMID:16935319

Lee, Casey J; Rasmussen, T J

2006-12-01

23

Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas  

USGS Publications Warehouse

Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

Lee, C. J.; Rasmussen, T. J.

2006-01-01

24

Empirical Model for Predicting Concentrations of Refractory Hydrophobic Organic Compounds in Digested Sludge from Municipal Wastewater Treatment Plants  

PubMed Central

An empirical model is presented allowing for the prediction of concentrations of hydrophobic organic compounds (HOCs) prone to accumulate and persist in digested sludge (biosolids) generated during conventional municipal wastewater treatment. The sole input requirements of the model are the concentrations of the individual HOCs entering the wastewater treatment plant in raw sewage, the compound’s respective pH-dependent octanol-water partitioning coefficient (DOW), and an empirically determined fitting parameter (pfit) that reflects persistence of compounds in biosolids after accounting for all potential removal mechanisms during wastewater treatment. The accuracy of the model was successfully confirmed at the 99% confidence level in a paired t test that compared predicted concentrations in biosolids to empirical measurements reported in the literature. After successful validation, the resultant model was applied to predict levels of various HOCs for which occurrence data in biosolids thus far are lacking.

Deo, Randhir P.; Halden, Rolf U.

2009-01-01

25

Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.  

PubMed

During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. PMID:20821446

Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

2010-02-01

26

Effects of organic compounds on the degradation of p -nitrophenol in lake and industrial wastewater by inoculated bacteria  

Microsoft Academic Search

Many microorganisms fail to degrade pollutants when introduced in different natural environments. This is a problem in selecting inocula for bioremediation of polluted sites. Thus, a study was conducted to determine the success of four inoculants to degradep-nitrophenol (PNP) in lake and industrial wastewater and the effects of organic compounds on the degradation of high and low concentrations of PNP

Baqar R. Zaidi; Narinder K. Mehta

1995-01-01

27

Microbial removal of wastewater organic compounds as a function of input concentration in soil columns.  

PubMed Central

The fate of six organic compounds during rapid infiltration of primary wastewater through soil columns was studied. Feed solutions were prepared which contained all six compounds in individual concentrations ranging from 1 to 1,000 micrograms/liter and were applied to separate soil columns on a flooding-drying schedule. Feed solutions and column effluents were analyzed for the compounds by XAD resin (Rohm and Haas Co.) extraction and gas chromatography-mass spectrometry during each of three successive inundation cycles. Breakthrough profiles of o-phenylphenol were relatively consistent during the test, with fractional breakthrough (mass output/mass input) being independent of input concentration. Consistent profiles were also observed for 2-(methylthio)benzothiazole, although fractional breakthroughs were higher at lower input concentrations, indicating that removal processes were operating less efficiently at these levels. The behavior of p-dichlorobenzene was similar to that of 2-(methylthio)benzothiazole after the first inundation cycle, with the exception that increased fractional breakthroughs were observed at the highest input concentration as well. Microbial adaptation was evident for benzophenone, 2-methylnaphthalene, and p-(1,1,3,3-tetramethylbutyl)phenol, as indicated by increased removal efficiencies during successive inundation cycles, especially at the higher input concentrations. Column effluent concentrations of the latter two compounds were independent of input concentrations during the final stage of the test. Microbial activity and adaptation were confirmed for several of the compounds by using isotopes and measuring the extent of mineralization in batch tests with soil from one of the columns.(ABSTRACT TRUNCATED AT 250 WORDS)

Hutchins, S R; Tomson, M B; Wilson, J T; Ward, C H

1984-01-01

28

NON-THERMAL PLASMA TECHNOLOGY FOR DEGRADATION OF ORGANIC COMPOUNDS IN WASTEWATER CONTROL: A CRITICAL REVIEW  

Microsoft Academic Search

Non-thermal plasma is an emerging technique in environmental pollution control technology, produced by the high-voltage discharge processes and therefore a large amount of high energy electrons and active species are generated. The degradation of difficult-degraded organic pollutions will be greatly enhanced by the active species generated from non-thermal plasma process. However, research on non-thermal plasma technology on organic wastewater cleaning

Hsu-Hui Cheng; Shiao-Shing Chen; Yu-Chi Wu; Din-Lit Ho

29

Preparation and performance of integrated photocatalyst adsorbent (IPCA) employed to degrade model organic compounds in synthetic wastewater  

Microsoft Academic Search

An integrated photocatalyst adsorbent (IPCA) system was prepared for the purpose of removing organic pollutants from wastewater. Its efficiency to remove some representative compounds from the most frequently occurring water contaminants commonly treated by activated carbon was tested on laboratory scale. The IPCA formulation was built using TiO2 as the photoactive component and a non-carbon family of adsorbents (zeolites) as

Farzana Haque; Elena Vaisman; Cooper H. Langford; Apostolos Kantzas

2005-01-01

30

Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08  

USGS Publications Warehouse

The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.

Phelan, Daniel J.; Miller, Cherie V.

2010-01-01

31

Effects of organic compounds on the degradation of p-nitrophenol in lake and industrial wastewater by inoculated bacteria.  

PubMed

Many microorganisms fail to degrade pollutants when introduced in different natural environments. This is a problem in selecting inocula for bioremediation of polluted sites. Thus, a study was conducted to determine the success of four inoculants to degrade p-nitrophenol (PNP) in lake and industrial wastewater and the effects of organic compounds on the degradation of high and low concentrations of PNP in these environments. Corynebacterium strain Z4 when inoculated into the lake and wastewater samples containing 20 micrograms/ml of PNP degraded 90% of PNP in one day. Addition of 100 micrograms/ml of glucose as a second substrate did not enhance the degradation of PNP and the bacterium utilized the two substrates simultaneously. Glucose used at the same concentration (100 micrograms/ml), inhibited degradation of 20 micrograms of PNP in wastewater by Pseudomonas strain MS. However, glucose increased the extent of degradation of PNP by Pseudomonas strain GR. Phenol also enhanced the degradation of PNP in wastewater by Pseudomonas strain GR, but had no effect on the degradation of PNP by Corynebacterium strain Z4. Addition of 100 micrograms/ml of glucose as a second substrate into the lake water samples containing low concentration of PNP (26 ng/ml) enhanced the degradation of PNP and the growth of Corynebacterium strain Z4. In the presence of glucose, it grew from 2 x 10(4) to 4 x 10(4) cells/ml in 3 days and degraded 70% of PNP as compared to samples without glucose in which the bacterium declined in cell number from 2 x 10(4) to 8 x 10(3) cells/ml and degraded only 30% PNP. The results suggest that in inoculation to enhance biodegradation, depending on the inoculant, second organic substrate many play an important role in controlling the rate and extent of biodegradation of organic compounds. PMID:8580642

Zaidi, B R; Mehta, N K

1995-01-01

32

Fast online emission monitoring of volatile organic compounds (VOC) in wastewater and product streams (using stripping with direct steam injection).  

PubMed

Open-loop stripping analysis (also referred to as dynamic headspace) is a very flexible and robust technology for online monitoring of volatile organic compounds in wastewater or coolant. However, the quality and reliability of the analytical results depend strongly on the temperature during the stripping process. Hence, the careful and constant heating of the liquid phase inside the stripping column is a critical parameter. In addition, this stripping at high temperatures extends the spectrum of traceable organics to less volatile and more polar compounds with detection limits down to the ppm-level. This paper presents a novel and promising approach for fast, efficient, and constant heating by the direct injection of process steam into the strip medium. The performance of the system is demonstrated for temperatures up to 75 °C and traces of various hydrocarbons in water (e.g., tetrahydrofuran, methanol, 1-propanol, n-butanol, ethylbenzene). PMID:22186871

Schocker, Alexander; Lissner, Bert

2012-03-01

33

Preparation of solid composite polyferric sulfate and its flocculation behavior for wastewater containing high concentration organic compounds.  

PubMed

A new kind of inorganic polymer flocculant, the solid composite polyferric sulfate (SPFS) was prepared using ferrous sulfate and Na-Bentonite. The obtained SPFS was characterized by FT-IR spectra, thermogravimetric analysis (TG), scanning electron microscope (SEM) and X-ray Diffraction (XRD). It showed that SPFS was a kind of composite inorganic polymer, which was the complex of PFS and Na-Bent, not only a simple mixture of raw materials. The synthetic mechanism and surface structure of SPFS were also discussed. Acting as a kind of environment-friendly flocculating agent, the solid composite polyferric sulfate (SPFS) was applied in pretreatment of potato starch industry wastewater, a typical wastewater containing high concentration organic compounds, which COD was above 6,000 mg/L. The results showed that the COD removal value reached 4,070 mg/L with COD removal rates being 46.6%. Based on these results, it is suggested that the SPFS can be attractive pretreatment agent for the starch industry wastewater. PMID:20489247

Wang, R M; Wang, Y; He, Y F; Li, F Y; Zhou, Y; He, N P

2010-01-01

34

A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION  

EPA Science Inventory

A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

35

ANALYSIS OF CHLORINATED ORGANIC COMPOUNDS FORMED DURING CHLORINATION OF WASTEWATER PRODUCTS  

EPA Science Inventory

Chemical byproducts produced during the chlorination of municipal wastewater were examined in a study that employed several specially modified analytical methodologies. Volatile byproducts were examined by the use of gas chromatography with selective detectors and gas chromatogra...

36

Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant  

USGS Publications Warehouse

In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments. ?? 2004 Elsevier B.V. All rights reserved.

Stackelberg, P. E.; Furlong, E. T.; Meyer, M. T.; Zaugg, S. D.; Henderson, A. K.; Reissman, D. B.

2004-01-01

37

Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds.  

PubMed

Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance. PMID:23041295

Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin

2012-11-01

38

Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the PhATE™ model.  

PubMed

This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids. PMID:22162313

Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J

2012-07-01

39

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 1. Project summaries. Final report  

SciTech Connect

The objectives of the Phase II research project on emission of potentially toxic organic compounds (PTOCs) from wastewater treatment plants were fivefold: (1) assessment of the importance of gaseous emissions from municipal wastewater collection systems; (2) resolution of the discrepancy between the measured and estimated emissions (Phase I), from the Joint Water Pollution Control Plant (JWPCP) operated by the County Sanitation Districts of Los Angeles County (CSDLAC); (3) determination of airborne concentrations of PTOCS immediately downwind of an activated sludge aeration process at the City of Los Angeles' Hyperion Treatment Plant (HTP); (4) a modeling assessment of the effects of transient loading on emissions during preliminary and primary treatment at a typical municipal wastewater treatment plant (MWTP); (5) a preliminary investigation of effects of chlorination practices on haloform production. Volume 1, for which the abstract was prepared, contains a summary of results from each project; Volume 2 contains the discussion regarding the modeling of collection system emissions; Volume 3 addresses methods development and field sampling efforts at the JWPCP and HTP, data on emissions from a mechanically ventilated sewer and results of some preliminary haloform formation studies in wastewaters; and Volume 4 discusses aspects of the emissions modeling problem.

Chang, D.P.Y.; Schroeder, E.D.; Corsi, R.L.; Guensler, R.; Meyerhofer, J.A.

1991-08-01

40

[Chlorination characteristic and disinfection by-product formation potential of dissolved organic nitrogen compounds in municipal wastewater].  

PubMed

In order to explore the chlorinated disinfection by-product formation potential and chemical structure of dissolved organic nitrogen compounds in municipal wastewater, the water quality parameters, such as DON, DOC, NH4(+) -N and UV254 etc, were determined in the secondary effluent and the molecular weight distribution of the DON was investigated before and after the reaction with chlorine. DBPs were determined by gas chromatography, and the changes of DON were characterized using Fourier transform infrared spectroscopy and three-dimensional fluorescence spectroscopy before and after the reaction with chlorine. The results showed that DON, DOC, NH4(+) -N and UV254 were 2.47 mg x L(-1), 14.45 mg x L(-1), 5.42 mg x L(-1) and 15.88 m(-1), and m(DOC)/m(DON) and SUVA were 5.85 mg x mg(-1) and 1.09 L x (m x mg)(-1) in the secondary effluent. After the reaction with chlorine, the proportion of small molecular weight (M(r) < 6 000) DON increased from 78% to 70% , and the proportion of large molecular weight (M(r) > 20 000) DON decreased from 21% to 14%. The medium molecular weight (M(r)6000-20000) DON accounted for a small proportion and was unchanged. Among the DBPs, the concentration of bromochloroacetonitrile was the highest, which was 6.887 microg x L(-1), and the concentration of trichloroacetonitrile was the lowest, which was only 0.217 microg x L(-1). In FTIR spectrum, the dominating bands were at 3 500-3 400, 2 260-2 200, 1 700-1 640, 1 500-1 450, 1 150-1 100 and 850-800 cm(-1) respectively before the reaction, and the 1 380-1 350 cm(-1) and 600-550 cm(-1) bands were the dominating bands in addition to the original absorbing regions after the reaction. 3DEEM revealed that the variation of DON depends intimately on tryptophan protein-like substances, aromatic protein-like substances and fulvic acid-like substances. PMID:24191563

Liu, Bing; Yu, Xin; Yu, Guo-Zhong; Gu, Li; Zhao, Cheng-Mei; Zhai, Hui-Min; Li, Qing-Fei

2013-08-01

41

Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand  

Microsoft Academic Search

Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs.

Chinagarn Kunacheva; Shuhei Tanaka; Shigeo Fujii; Suwanna Kitpati Boontanon; Chanatip Musirat; Thana Wongwattana; Binaya Raj Shivakoti

2011-01-01

42

Relation between organic-wastewater compounds, groundwater geochemistry, and well characteristics for selected wells in Lansing, Michigan  

USGS Publications Warehouse

In 2010, groundwater from 20 Lansing Board of Water and Light (BWL) production wells was tested for 69 organic-wastewater compounds (OWCs). The OWCs detected in one-half of the sampled wells are widely used in industrial and environmental applications and commonly occur in many wastes and stormwater. To identify factors that contribute to the occurrence of these constituents in BWL wells, the U.S. Geological Survey (USGS) interpreted the results of these analyses and related detections of OWCs to local characteristics and groundwater geochemistry. Analysis of groundwater-chemistry data collected by the BWL during routine monitoring from 1969 to 2011 indicates that the geochemistry of the BWL wells has changed over time, with the major difference being an increase in sodium and chloride. The concentrations of sodium and chloride were positively correlated to frequency of OWC detections. The BWL wells studied are all completed in the Saginaw aquifer, which consists of water-bearing sandstones of Pennsylvanian age. The Saginaw aquifer is underlain by the Parma-Bayport aquifer, and overlain by the Glacial aquifer. Two possible sources of sodium and chloride were evaluated: basin brines by way of the Parma-Bayport aquifer, and surficial sources by way of the Glacial aquifer. To determine if water from the underlying aquifer had influenced well-water geochemistry over time, the total dissolved solids concentration and changes in major ion concentrations were examined with respect to well depth, age, and pumping rate. To address a possible surficial source of sodium and chloride, 25 well, aquifer, or hydrologic characteristics, and 2 groundwater geochemistry variables that might influence whether, or the rate at which, water from the land surface could reach each well were compared to OWC detections and well chemistry. The statistical tests performed during this study, using available variables, indicated that reduced time of travel of water from the land surface to the well opening was significantly correlated with detections of OWCs. No specific well or aquifer characteristic was correlated with OWC detections; however, wells with detections tended to have less modeled confining material thickness (as simulated in the regional groundwater flow model), which is an estimate of the amount of clay or shale between the Glacial and Saginaw aquifers. Additional analyses and collection of other data would be required to more conclusively identify the source and to determine the potential vulnerability of other wells because each BWL well may have a somewhat unique set of characteristics that governs its response to pumping. Therefore, it is possible that a relevant explanatory variable was not included in this analysis. The current patterns of geochemistry, and the relation between these patterns and volume of pumpage for the BWL wells, indicates other wells may be susceptible to OWCs in the future.

Haack, Sheridan K.; Luukkonen, Carol L.

2013-01-01

43

Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples  

USGS Publications Warehouse

The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds, using less rigorous identification criteria than is required for reporting data to the National Water Information System database. For the FCS, these data are considered adequate to indicate 'evidence of presence,' and were used only for diagnostic purposes. Evidence of VOCs and WICs at low concentrations near or less than the long-term method detection level can indicate a contamination problem that could affect future datasets if method detection levels were ever to be lowered. None of the 13 VOCs and 16 WICs included in this study were quantified in the VPBW collected and analyzed at the NWQL. This finding indicates that the VPBW was 'contaminant free' when it was shipped from the laboratory to each of the field offices, although some compounds were present in some of the samples at concentrations less than minimum detection levels based on evidence-of-presence data. Toluene, m- and p-xylene, benzene, and carbon disulfide were each quantified in an FCS field-blank analysis, but not in the associated groundwater sample. The native-water rinse of the sampling equipment conducted just before collection of the groundwater sample likely reduced low-level contamination with respect to these compounds. VOCs had lower detection frequencies in source-solution blanks and field blanks collected during the FCS than in the historical dataset collected by the NAWQA Program during 1996-2008. The detection frequency of toluene in field blanks was reduced about an order of magnitude from about 38 percent in the historical NAWQA dataset to 3.1 percent in the FCS dataset. Other VOCs quantified in 5 percent or more of the field blanks in the NAWQA dataset, but not quantified in the FCS field-blank analyses, were ethylbenzene, o-xylene, styrene, 1,2,4-trimethylbenzene, chloroform, dichloromethane, acetone, 2-butanone, and tetrahydrofuran. The lower detection frequencies of most VOCs for the FCS, compared to historical NAWQA data, can most likely be attributed to the use

Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

2011-01-01

44

Wastewater Indicator Compounds in Wastewater Effluent, Surface Water, and Bed Sediment in the St. Croix National Scenic Riverway and Implications for Water Resources and Aquatic Biota, Minnesota and Wisconsin, 2007-08.  

National Technical Information Service (NTIS)

The U.S. Geological Survey and the National Park Service cooperated on a study to determine the occurrence of wastewater indicator compounds including nutrients; organic wastewater compounds (OWCs), such as compounds used in plastic components, surfactant...

A. A. Tomasek D. S. Hansen K. E. Lee

2011-01-01

45

Occurrence of Selected Pharmaceuticals, Personal-Care Products, Organic Wastewater Compounds, and Pesticides in the Lower Tallapoosa River Watershed near Montgomery, Alabama, 2005  

USGS Publications Warehouse

Synthetic and natural organic compounds derived from agricultural operations, residential development, and treated and untreated sanitary and industrial wastewater discharges can contribute contaminants to surface and ground waters. To determine the occurrence of these compounds in the lower Tallapoosa River watershed, Alabama, new laboratory methods were used that can detect human and veterinary antibiotics; pharmaceuticals; and compounds found in personal-care products, food additives, detergents and their metabolites, plasticizers, and other industrial and household products in the environment. Well-established methods for detecting 47 pesticides and 19 pesticide degradates also were used. In all, 186 different compounds were analyzed by using four analytical methods. The lower Tallapoosa River serves as the water-supply source for more than 100,000 customers of the Montgomery Water Works and Sanitary Sewer Board. Source-water protection is a high priority for the Board, which is responsible for providing safe drinking water. The U.S. Geological Survey, in cooperation with the Montgomery Water Works and Sanitary Sewer Board, conducted this study to provide baseline data that could be used to assess the effects of agriculture and residential development on the occurrence of selected organic compounds in the lower Tallapoosa River watershed. Twenty samples were collected at 10 sites on the Tallapoosa River and its tributaries. Ten samples were collected in April 2005 during high base streamflow, and 10 samples were collected in October 2005 when base streamflow was low. Thirty-two of 186 compounds were detected in the lower Tallapoosa River watershed. Thirteen compounds, including atrazine, 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT), hexazinone, metalaxyl, metolachlor, prometryn, prometon, simazine, azithromycin, oxytetracycline, sulfamethoxazole, trimethoprim, and tylosin, had measurable concentrations above their laboratory reporting levels. Concentrations were estimated for an additional 19 compounds that were detected below their laboratory reporting levels. The two most frequently detected compounds were the pesticides atrazine (19 of 20 samples) and simazine (13 of 20 samples). Tylosin, a veterinary antibiotic, was detected in 8 of 20 samples. Other compounds frequently detected at very low concentrations included CIAT and hexazinone (a degradate of atrazine and a pesticide, respectively); camphor (derived from personal-care products or flavorants), para-cresol (various uses including solvent, wood preservative, and in household cleaning products), and N,N-diethyl-m-toluamide (DEET, an insect repellent).

Oblinger, Carolyn J.; Gill, Amy C.; McPherson, Ann K.; Meyer, Michael T.; Furlong, Edward T.

2007-01-01

46

Formation of Halogenated Organics during Wastewater Disinfection.  

National Technical Information Service (NTIS)

The research examined the formation of trihalomethanes (THMs) and total organic halides (TOX) during wastewater chlorination at three wastewater treatment plants in the central Piedmont of North Carolina. Secondary effluent samples were collected before a...

P. C. Singer R. A. Brown J. F. Wiseman

1988-01-01

47

Elimination costs for different wastewater compounds.  

PubMed

The present report presents the system and discusses the results of the cost calculation for the reduction/elimination of different wastewater and sludge compounds. These costs were calculated for different types of processes at 102 wastewater treatment plants of Emschergenossenschaft/Lippeverband and Aggerverband. Comparing enhanced biological phosphorus removal and precipitation, one of the results indicates that in general the costs for elimination of one kilogram of phosphorus are lower in the plants in which only chemical precipitation is used for P reduction. Further results of the cost calculation will be presented with a discussion of their possible influence on planning decisions. PMID:12926678

Schulz, A; Obenaus, F; Egerland, B; Reicherter, E

2003-01-01

48

Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse  

Microsoft Academic Search

Because of the vast use of organic chemicals in modern society, almost any wastewater stream from industrial processes or households contains such compounds and disposal without proper treatment will therefore result in exposure to humans and the environment. Some of them may exhibit endocrine disrupting effects (EDCs) and they widely exist in wastewater. The current effluent standards for Urban Wastewater

Vincenzo Belgiorno; Luigi Rizzo; Despo Fatta; Claudio Della Rocca; Giusy Lofrano; Anastasia Nikolaou; Vincenzo Naddeo; Sureyya Meric

2007-01-01

49

Occurrence and fate of organic contaminants during onsite wastewater treatment.  

PubMed

Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from <1% to >99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. PMID:17180989

Conn, Kathleen E; Barber, Larry B; Brown, Gregory K; Siegrist, Robert L

2006-12-01

50

Widespread detection of N,N-diethyl-m-toluamide in U.S. streams: Comparison with concentrations of pesticides, personal care products, and other organic wastewater compounds  

USGS Publications Warehouse

One of the most frequently detected organic chemicals in a nationwide study concerning the effects of wastewater on stream water quality conducted in the year 2000 was the widely used insect repellant N,N-diethyl-m-toluamide (DEET). It was detected at levels of 0.02 ??g/L or greater in 73% of the stream sites sampled, with the selection of sampling sites being biased toward streams thought to be subject to wastewater contamination (i.e., downstream from intense urbanization and livestock production). Although DEET frequently was detected at all sites, the median concentration was low (0.05 ??g/L). The highest concentrations of DEET were found in streams from the urban areas (maximum concentration, 1.1 ??g/L). The results of the present study suggest that the movement of DEET to streams through wastewater-treatment systems is an important mechanism that might lead to the exposure of aquatic organisms to this chemical. ?? 2005 SETAC.

Sandstrom, M. W.; Kolpin, D. W.; Thurman, E. M.; Zaugg, S. D.

2005-01-01

51

Gallic acid photochemical oxidation as a model compound of winery wastewaters  

Microsoft Academic Search

Winery wastewaters (WW) are characterized by their high organic load and by the presence of non-biodegradable compounds such as phenolic compounds. This study was undertaken to evaluate the capacity of different Advanced Oxidation Processes (AOP) combined with several radiation sources to degrade the phenolic compound Gallic Acid (GA). A toxicological assessment was also carried out to evaluate the subproduct's harmful

Marco S. Lucas; Albino A. Dias; Rui M. Bezerra; José A. Peres

2008-01-01

52

Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater  

Microsoft Academic Search

Sodium hypochlorite (NaOCl) is often used for disinfecting hospital wastewater in order to prevent the spread of pathogenic microorganisms, causal agents of nosocomial infectious diseases. Chlorine disinfectants in wastewater react with organic matters, giving rise to organic chlorine compounds such as AOX (halogenated organic compounds adsorbable on activated carbon), which are toxic for aquatic organisms and are persistent environmental contaminants.

Evens Emmanuel; Gérard Keck; Jean-Marie Blanchard; Paul Vermande; Yves Perrodin

2004-01-01

53

Calibration and field test of the Polar Organic Chemical Integrative Samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC).  

PubMed

In this work, home-made Polar Organic Chemical Integrative Samplers (POCIS) were studied for passive sampling of 15 endocrine disrupting compounds (4 alkylphenols and steroid hormones) in influent and effluent samples of wastewater treatment plants (WWTPs) as well as up- and downstream of the receiving river water. POCIS calibration at laboratory conditions was carried out using a continuous-flow calibration system. The influence of the exposure position of the POCIS within the calibration device, horizontal or vertical, to the water flow direction was evaluated. While the sampling rates of most of the target substances were not affected by the sampler position, for cis-ADT, E1, E2 and E3, the vertical position provided the highest analyte accumulation. Hence, the POCIS samplers were preferably exposed vertical to the water flow in overall experiments. Using the continuous-flow calibration device, lab-based sampling rates were determined for all the target compounds (RSBPA = 0.0326 L/d; RScisADT = 0.0800 L/d, RSE1 = 0.0398 L/d, RSEQ = 0.0516 L/d, RSTT = 0.0745 L/d, RSE2 = 0.0585 L/d, RSEE2 = 0.0406 L/d, RSNT = 0.0846 L/d, RSPG = 0.0478 L/d and RSE3 = 0.1468 L/d), except for DES, MeEE2, 4tOP, 4OP, 4NPs, where the uptake after 14 days POCIS exposure was found to be insignificant or indicated a no linear behaviour. Recoveries from POCIS extractions were in the range between 71 and 152% for most of the target analytes except for DES and E3 with around 59%. Good precision of the sampling procedure up till 20% was observed and limits of detection were at ng/L level. Two deuterated compounds ([(2)H3]-E2 and [(2)H4]-EQ) were successfully tested as performance reference compounds (PRC, [Formula: see text] = 0.0507 L/d and [Formula: see text] = 0.0543 L/d)). Finally, the POCIS samplers were tested for monitoring EDCs at two wastewater treatment plants, in Halle and Leipzig (Germany). BPA, E1, EQ, E2, MeEE2, NT, EE2, PG and E3 were quantified and their time-weighted average concentrations calculated on the basis of the lab-derived sampling rates were compared with the results based on conventional grab samples. While the influent concentration of BPA, cisADT, E1, TT, PG, EE2 reached the ?g/L level, the rest of the target analytes were determined at ng/L. The analyte concentrations in the effluent never exceed ng/L level except for BPA. The concentration determined by spot sampling was partially lower (BPA, E1, TT) or comparable (EQ, E2, EE2, PG, E3) to the concentration obtained by POCIS using performance reference compounds (PRC). PMID:23517875

Vallejo, A; Prieto, A; Moeder, M; Usobiaga, A; Zuloaga, O; Etxebarria, N; Paschke, A

2013-05-15

54

Organic Compounds Database  

NSDL National Science Digital Library

The Colby College Department of Chemistry offers the Organic Compounds Database, which was compiled by Harold Bell of the Virginia Polytechnic Institute. Visitors can search by the compounds melting point, boiling point, index of refraction, molecular weight, formula, absorption wavelength, mass spectral peak, chemical type, and by partial name. Once entered, results are returned with basically the same type of information that can be searched, plus any other critical information. References are provided for the close to 2500 organic compounds included in the database; yet, because the site was last modified in 1995, varying the data may be required to fully authenticate its accuracy.

Bell, Harold M.

2000-01-01

55

A framework for identifying characteristic odor compounds in municipal wastewater effluent.  

PubMed

Municipal wastewater often contains trace amounts of organic compounds that can compromise aesthetics of drinking water and undermine public confidence if a small amount of effluent enters the raw water source of a potable water supply. To efficiently identify compounds responsible for odors in wastewater effluent, an analytical framework consisting of gas chromatography with mass spectrometry (GC-MS) and gas chromatography with olfactometry detection (GC-Olf) coupled with flavor profile analysis (FPA) was used to identify and monitor compounds that could affect the aesthetics of drinking water. After prioritizing odor peaks detected in wastewater effluent by GC-Olf, the odorous components were tentatively identified using retention indices, mass spectra and odor descriptors. Wastewater effluent samples were typically dominated by earthy-musty odors with additional odors in the amine, sulfidic and fragrant categories. 2,4,6-trichloroanisole (246TCA), geosmin and 2-methylisoborneol (2MIB) were the main sources of the earthy/musty odors in wastewater effluent. The other odors were attributable to a suite of compounds, which were detected in some but not all of the wastewater effluents at levels well in excess of their odor thresholds. In most cases, the identities of odorants were confirmed using authentic standards. The fate of these odorous compounds, including 2-pyrrolidone, methylnaphthalenes, vanillin and 5-hydroxyvanillin (5-OH-vanillin), should be considered in future studies of water systems that receive effluent from upstream sources. PMID:22981490

Agus, Eva; Zhang, Lifeng; Sedlak, David L

2012-11-15

56

Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions.  

PubMed

Urban watersheds are susceptible to numerous pollutant sources and the identification of source-specific indicators can provide a beneficial tool in the identification and control of input loads, often times needed for a water body to achieve designated beneficial uses. Differentiation of wastewater flows from other urban wet weather flows is needed in order to more adequately address such environmental concerns as water body nutrient impairment and potable source water contamination. Anthropogenic compounds previously suggested as potential wastewater indicators include caffeine, carbamazepine, N,N-diethyl-meta-toluamide (DEET), gemfibrozil, primidone, sulfamethoxazole, and TCEP. This paper compares the suitability of a variety of anthropogenic compounds to sucralose, an artificial sweetener, as wastewater indicators by examining occurrence data for 85 trace organic compounds in samples of wastewater effluents, source waters with known wastewater point source inputs, and sources without known wastewater point source inputs. The findings statistically demonstrate the superior performance of sucralose as a potential indicator of domestic wastewater input in the U.S. While several compounds were detected in all of the wastewater effluent samples, only sucralose was consistently detected in the source waters with known wastewater discharges, absent in the sources without wastewater influence, and consistently present in septic samples. All of the other compounds were prone to either false negatives or false positives in the environment. PMID:21665241

Oppenheimer, Joan; Eaton, Andrew; Badruzzaman, Mohammad; Haghani, Ali W; Jacangelo, Joseph G

2011-07-01

57

Organic compounds in meteorites  

NASA Technical Reports Server (NTRS)

The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

Anders, E.; Hayatsu, R.; Studier, M. H.

1973-01-01

58

Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.  

PubMed

Pulp and paper mill wastewater was characterizated, before (influent) and after (effluent) biological wastewater treatment based on an activated sludge process, by microfiltration (8, 3, 0.45 and 0.22microm) and ultrafiltration (100, 50, 30 and 3kDa) of the wastewater samples into different size fractions. Various parameters were measured on each fraction: molecular weight distribution (MWD) using high performance size exclusion chromatography (HPSEC), total organic carbon (TOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (Tot-P), phosphate phosphorus (PO(4)-P), electrical conductivity, pH, turbidity, charge quantity and zeta potential. The MWD, TOC and COD(Cr) results indicated that the majority of the material present in both the influent and effluent was in the medium molecular weight (MW) range (i.e. MW<10kDa) with three main MW sub-fractions. There were no significant differences in the range of the MWD between the influent and effluent samples. The magnitude of the MWD in the effluent was about one half that in the influent, the greatest reduction being in the 6kDa fraction. The 3kDa fractions of both the influent and effluent showed a considerable increase in BOD(7), probably due to the removal of compounds harmful to bacteria in 3kDa ultrafiltration. Influent turbidity decreased considerably in microfiltration (8-0.22microm). As the turbidity was removed by 0.22microm filtration, the anionic charge quantity started to decrease. Particles in the influent and effluent contained 19-29% and 14-20% of the total phosphorus, respectively. The major phosphorus fraction was in the form of soluble phosphate. PMID:18707750

Leiviskä, Tiina; Nurmesniemi, Hannu; Pöykiö, Risto; Rämö, Jaakko; Kuokkanen, Toivo; Pellinen, Jaakko

2008-08-01

59

Organic compounds in meteorites  

NASA Technical Reports Server (NTRS)

Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

Lawless, J. G.

1980-01-01

60

Occurrence of Endocrine-Disrupting and Other Wastewater Compounds during Water Treatment with Case Studies from Lincoln, Nebraska and Berlin, Germany  

EPA Science Inventory

Except for herbicides, research on the fate and transport of endocrine disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Analytical methods still are being developed, evalua...

61

Occurrence and treatment of wastewater-derived organic nitrogen  

Microsoft Academic Search

Dissolved organic nitrogen (DON) derived from wastewater effluent can participate in reactions that lead to formation of nitrogenous chlorination by-products, membrane fouling, eutrophication, and nitrification issues, so management of DON is important for both wastewater reuse applications and nutrient-sensitive watersheds that receive discharges from treated wastewater. This study documents DON occurrence in full-scale water\\/wastewater (W\\/WW) treatment plant effluents and assesses

Baiyang Chen; Youngil Kim; Paul Westerhoff

2011-01-01

62

Removal of Dissolved Organic Carbon and Color from Dyeing Wastewater by Pre-ozonation and Subsequent Biological Treatment  

Microsoft Academic Search

The effects of pre-ozonation and subsequent biological treatment on the decrease in dissolved organic carbon (DOC) and color from dyeing wastewater were investigated. Moreover, the compositions of organic compounds in raw wastewater (RW) and the respective treated waters were estimated, and microscopic observations of the mixed liquor were conducted. The amount of ozone required to remove 1 mg of DOC

Nobuyuki Takahashi; Tomoya Kumagai

2006-01-01

63

Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments  

Microsoft Academic Search

This study reports the results of a screening survey of perfluoroalkyl compounds (PFCs) in the Danish environment. The study included point sources (municipal and industrial wastewater treatment plants and landfill sites) and the marine and freshwater environments. Effluent and influent water and sewage sludge were analysed for point sources. Sediment, blue mussels (Mytilus edulis) and liver from plaice (Pleuronectes platessa),

R. Bossi; J. Strand; O. Sortkjær; M. M. Larsen

2008-01-01

64

Singlet oxygen formation from wastewater organic matter.  

PubMed

Singlet oxygen ((1)O2) plays an important role in the inactivation of pathogens and the degradation of organic contaminants. The present study looks at the surface steady-state concentration of (1)O2 and quantum yields (?SO) for organic matter present in or derived from wastewater (WWOM), including those that are partially treated and after undergoing oxidation. The surface steady state concentrations of (1)O2 ranged from 1.23 to 1.43 × 10(-13) M for bulk wastewaters under simulated sunlight. The ?SO values for these samples varied from 2.8% to 4.7% which was higher than the values observed for the natural organic matter isolates evaluated (1.6-2.1%). Size fractionation of WWOM resulted in ?SO increases, with a value of up to 8.6% for one of the <1 kDa fractions. Furthermore, oxidation of WWOM by hypochlorous acid (HOCl) and molecular ozone also resulted in an increase in ?SO, with the highest measured value being 9.3%. This research further explores the correlations between the photosensitizing properties of WWOM and optical characteristics (e.g., absorbance, E2:E3 ratio). Making use of easily measurable absorbance values, a model for the prediction of (1)O2 steady-state concentrations is proposed. PMID:23799636

Mostafa, Simón; Rosario-Ortiz, Fernando L

2013-08-01

65

Potential Antimalarial Organic Sulfur Compounds.  

National Technical Information Service (NTIS)

In an attempt to develop useful antimalarial medicinal agents, a series of twenty two organic sulfur compounds were synthesized which were analogous in structure to 4,4'-diaminodiphenyl sulfone an effective antimalarial. Fifteen of these compounds were N-...

K. K. Andersen J. Bhattacharyya S. K. Mukhopadhyay

1969-01-01

66

Physicochemical properties and trace organic compounds in a dairy processor's aerobic bioreactor.  

PubMed

Wastewater samples were taken from an aerobic bioreactor, operated by a dairy processor in southeastern Australia to reduce nutrient and pollutant loads. Samples were taken over a two-year period, to determine whether trace organic compounds or physicochemical analyses of the wastewater could be used to discriminate the water taken before, during and after processing of the wastewater in the bioreactor. Multivariate analyses of the physicochemical data suggested that nitrate, pH and total dissolved nitrogen best described the infeed wastewater entering the bioreactor, while organic and particulate phosphorus concentrations where predominantly responsible for describing the composition of the content of the bioreactor. Gas chromatography-mass spectrometry data of organic compounds within the wastewater samples were also analysed via multivariate analyses. The analyses found that the compound 4-nitrophenol was associated with ammonia concentrations and mixed liquor wastewater. Therefore, 4-nitrophenol may possibly be used to act as an indicator of anaerobicity in aerobic bioreactors. PMID:22989640

Heaven, Michael W; Wild, Karl; De Souza, David; Nahid, Amsha; Tull, Dedreia; Watkins, Mark; Hannah, Murray; Nash, David

2012-11-01

67

Ozonation of nonbiodegradable organics in tannery wastewater.  

PubMed

The study explores the impact of ozonation on the fate of different soluble COD fractions in the tannery wastewater at different phases during the course of biological treatment, in order to identify the phase where ozonation is likely to generate the maximum beneficial effect on biological treatability. Samples from the biological treatment influent and from the mixed liquor at periods significant for the fate of COD fractions have been ozonated. Ozone treatment at the phase where the readily biodegradable COD component was biologically depleted is determined as the most promising alternative among others, since the highest COD removal efficiencies are achieved even with low feeding time of 5 min at the selected ozone flow-rate of 42.8 mg min. The merit of ozonation at this stage in the formation of simpler more biodegradable compounds deserves further attention. PMID:15242120

Dogruel, Serdar; Ates Genceli, Esra; Germirli Babuna, Fatos; Orhon, Derin

2004-01-01

68

Toxic organic emissions from synfuels and related industrial-wastewater treatment systems. Final report, June 1985-June 1986  

SciTech Connect

The report gives results of an examination of the potential for toxic organic emissions from synfuels wastewater treatment systems. The synthetic fuels facilities examined were coal gasification, direct and indirect coal liquefaction, shale oil, by-product coke, and associated petrochemical products. A literature survey was performed to assess the fate of organic priority pollutants during wastewater treatment. Pollutants in the volatile, base-neutral, and acid-extractable fractions were examined in order to assess their potential for volatilization during waste-water treatment. Compounds found to contribute organic emissions during waste-water storage and treatment were in the volatile fraction (e.g., benzene, toluene) and the base-neutral fraction (e.g., polynuclear aromatic hydrocarbons). Acid extractables (e.g., phenol) also present in synfuels wastewaters are rarely stripped or volatilized from wastewater stored in impoundments or during activated sludge treatment.

Scheffel, F.A.; Castaldi, F.J.

1986-12-01

69

Identification of estrogenic compounds in wastewater effluent.  

PubMed

In order to identify the dominant contributors to estrogenic activity in environmental waters, a comprehensive fractionation method using silica gel column chromatography, combined with recombinant yeast assay for detecting estrogenic activity and with gas chromatography-mass spectrometry for quantifying endocrine disruptors and natural estrogens, was developed. The method was applied to the municipal sewage treatment plant (STP) secondary effluent discharged to the Tamagawa River in Tokyo, Japan, where endocrine disruption was observed in wild carp. The instrumental analysis demonstrated that averaged concentrations of nonylphenol, bisphenol A, estrone (E1), and 17beta-estradiol (E2) were 564 +/- 127, 27 +/- 19, 33 +/- 11, and 4.6 +/- 3.0 ng/L, respectively. Based on the concentration and relative potency of these compounds, the natural estrogens E1 and E2 represented more than 98% of the total estrogen equivalent concentration (EEQ) in the STP effluent, while the contribution of phenolic compounds to total EEQ was less than 2%. Estrogenic activities associated with the dissolved phase of the effluent samples were detected by a recombinant yeast assay. By using silica gel column chromatography, the dissolved phase was separated into several fractions that were subjected to the bioassay. The polar fractions exhibited estrogenic activity. The greatest estrogenic activity was found in a polar fraction containing E1 and E2 and represented 66 to 88% of the total estrogenic activities estimated from the bioassay data. These results lead to the conclusion that E1 and E2 were the dominant environmental estrogens in the STP effluent, but a significant contribution to estrogenic activities stems from unidentified components in the effluents. PMID:15648753

Nakada, Norihide; Nyunoya, Hiroshi; Nakamura, Masaru; Hara, Akihiko; Iguchi, Taisen; Takada, Hideshige

2004-12-01

70

Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater.  

PubMed

Adsorbable organic halides (AOX) are generated in the pulp and paper industry during the bleaching process. These compounds are formed as a result of reaction between residual lignin from wood fibres and chlorine/chlorine compounds used for bleaching. Many of these compounds are recalcitrant and have long half-life periods. Some of them show a tendency to bioaccumulate while some are proven carcinogens and mutagens. Hence, it is necessary to remove or degrade these compounds from wastewater. Physical, chemical and electrochemical methods reported to remove AOX compounds are not economically viable. Different types of aerobic, anaerobic and combined biological treatment processes have been developed for treatment of pulp and paper industry wastewater. Maximum dechlorination is found to occur under anaerobic conditions. However, as these processes are designed specifically for reducing COD and BOD of wastewater, they do not ensure complete removal of AOX. This paper reviews the anaerobic biological treatments developed for pulp and paper industry wastewater and also reviews the specific micro-organisms reported to degrade AOX compounds under anaerobic conditions, their nutritional and biochemical requirements. It is imperative to consider these specific micro-organisms while designing an anaerobic treatment for efficient removal of AOX. PMID:16551531

Savant, D V; Abdul-Rahman, R; Ranade, D R

2006-06-01

71

Organic Compounds in Carbonaceous Meteorites  

NASA Technical Reports Server (NTRS)

Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

Cooper, Grorge

2001-01-01

72

PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS  

EPA Science Inventory

Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

73

Organic Compounds in Stardust  

NASA Technical Reports Server (NTRS)

The successful return of the STARDUST spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from Comet 81P/Wild-2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two-step laser mass spectrometry (L2MS) demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N-rich. Spectral analysis in combination with instrumental detection sensitivities suggest that N is incorporated predominantly in the form of aromatic nitriles (R-C N). While organic species in the STARDUST samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N-containing species in comets has astrobiological implications since comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.

McKay, David S.; Clemett. Simon J.; Sandford, Scott A.; Nakamura-Messenger, Keiko; Hoerz, Fredrich

2011-01-01

74

Volatile Organic Compounds (VOCs)  

MedlinePLUS

... carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions. Organic ... day. The hazards include exposure to chemicals from glues, polishes, removers, and other salon products; muscle strains ...

75

EMISSIONS OF METALS AND ORGANICS FROM FOUR MUNICIPAL WASTEWATER SLUDGE INCINERATORS: PRELIMINARY DATA  

EPA Science Inventory

The paper presents preliminary results from a U.S. EPA test program on municipal wastewater sludge incinerators. The major objectives of the program were the following: (1) collecting data that allow a comparison of metals and organic compound emissions during steady-state and tr...

76

Role of fly ash in the removal of organic pollutants from wastewater  

SciTech Connect

Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

M. Ahmaruzzaman [National Institute of Technology, Silchar (India). Department of Chemistry

2009-03-15

77

Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet\\/hydrogen peroxide and biodegradation  

Microsoft Academic Search

This study investigates the feasibility of using a two-stage process combining a photochemical oxidation process (UV\\/H2O2) and a biological fluidized-bed system to treat dilate-organic wastewater discharged from semiconductor manufacturing facilities. This combined process has the merits of decomposing recalcitrant organic chemicals into intermediate products more amenable to biodegradation, thereby achieving high degree of mineralization of organic compounds that are otherwise

W. Den; Fu-Hsiang Ko; Tiao-Yuan Huang

2002-01-01

78

Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants  

Microsoft Academic Search

Recent studies have shown that the wastewater treatment plant (WWTP) is a significant source of perfluoroalkyl compounds (PFCs) in natural water. In this study, 10 PFCs were analyzed in influent and effluent wastewater and sludge samples in 15 municipal, 4 livestock and 3 industrial WWTPs in Korea. The observed distribution pattern of PFCs differed between the wastewater and sludge samples.

Rui Guo; Won-Jin Sim; Eung-Sun Lee; Ji-Hyun Lee; Jeong-Eun Oh

2010-01-01

79

Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts.  

PubMed

Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides ?-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas ?-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution. PMID:20980092

Rodríguez-Liébana, José A; Mingorance, Ma Dolores; Peña, Aránzazu

2011-03-01

80

Thermodynamics of organic compounds  

NASA Astrophysics Data System (ADS)

This research program consisted of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure was used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials were synthesized, and their thermodynamic properties were evaluated. In cooperation with researcher at Wright-Patterson Air Force Base, ramjet fuels currently in use were subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure. During the last year of this effort, seven kerosene-type fuels produced by British Petroleum and seven jet fuels produced from shale oil were studied.

Gammon, B. E.; Smith, N. K.

1982-11-01

81

[Energies of organic compounds  

SciTech Connect

The enthalpy of reduction of lactones to the corresponding diols has been determined, allowing the enthaipies of formation of the lactones to be determined. Results of this study agree well with data obtained for enthalpies of hydrolysis of the lactones. We have begun the measurement of the enthalpies of reduction of norbornanones, and we have shown that it is possible to determine the difference in energy between the exo and endo forms of the product alcohols by measuring the equilibrium constant as a function of temperature. The study of the enthalpies of hydration of carbonyl compounds has continued, and the enthalpies of hydrolysis of the corresponding ketals is being determined. The study of the enthalpies of hydration of alkenes is nearly completed, and the rearrangement reactions which were uncovered are being investigated.

Wiberg, K.B.

1991-12-31

82

Energies of organic compounds  

SciTech Connect

The enthalpy of reduction of lactones to the corresponding diols has been determined, allowing the enthalpies of formation of the lactones to be determined. The results of this study agree well with the data we have obtained for the enthalpies of hydrolysis of the lactones. We have begun the measurement of the enthalpies of reduction of norbornanones, and we have shown that it is possible to determine the difference in energy between the exo and endo forms of the product alcohols by measuring the equilibrium constant as a function of temperature. The study of the enthalpies of hydration of carbonly compounds has continued, and the enthalpies of hydrolysis of the corresponding ketals is being determined. The study of the enthalpies of hydration of alkenes is nearly completed, and the rearrangement reactions which were uncovered are being investigated.

Not Available

1990-01-01

83

OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER  

EPA Science Inventory

Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

84

OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER  

EPA Science Inventory

Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCS) from wastewater was studied. hell-and-tube heat-exchanger type of hollow fiber module was considered for treatment of a wastewater containing toluene,...

85

APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 1: TEXT  

EPA Science Inventory

Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

86

APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 2: APPENDICES  

EPA Science Inventory

Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

87

Fate and degradation of nonylphenolic compounds during wastewater treatment process.  

PubMed

In order to explore the biodegradation behavior of nonylphenolic compounds during wastewater treatment processing, two full-scale wastewater treatment plants were investigated and batch biodegradation experiments were conducted. The biodegradation pathways under the various operational conditions were identified from batch experiments: shortening of ethoxy-chains dominated under the anaerobic condition, whereas oxidizing of the terminal alcoholic group prevailed over the other routes under the aerobic condition. Results showed that the anoxic condition could accelerate the biodegradation rates of nonylphenolic compounds, but had no influence on the biodegradation pathway. The biodegradation rates of nonylphenol (NP) and short-chain nonylphenol polyethoxylates (NPnEOs, n: number of ethoxy units) increased from the anaerobic condition, then the anoxic, finally to the aerobic condition, while those of long-chain NPnEOs and nonylphenoxy carboxylates (NPECs) seemed similar under the various conditions. Under every operational condition, long-chain NPnEOs showed the highest biodegradation activity, followed by NPECs and short-chain NPnEOs, whereas NP showed relatively recalcitrant characteristics especially under the anaerobic condition. In addition, introducing sulfate and nitrate to the anaerobic condition could enhance the biodegradation of NP and short-chain NPnEOs by supplying more positive redox potentials. PMID:24520688

Lian, Jing; Liu, Junxin

2013-08-01

88

Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.  

PubMed

Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. PMID:21439605

Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

2011-04-01

89

Ammonia removal from wastewater by ion exchange in the presence of organic contaminants.  

PubMed

The scope of this study was the removal of ammonium by ion exchange from simulated wastewater. The study looks at the effect of organics upon ammonium ion exchange equilibrium uptake. The ion exchangers included a natural zeolite clinoptilolite, and two polymeric exchangers, Dowex 50w-x8, and Purolite MN500. The organic compounds studied included citric acid and a number of proteins. The traditional method for removal of ammonium and organic pollutants from wastewater is biological treatment, but ion exchange offers a number of advantages including the ability to handle shock loadings and the ability to operate over a wider range of temperatures. The results show that in most of the cases studied, the presence of organic compounds enhances the uptake of ammonium ion onto the ion exchangers. PMID:12697216

Jorgensen, T C; Weatherley, L R

2003-04-01

90

Development and Evaluation of Methods for Total Organic Halide and Purgeable Organic Halide in Wastewater.  

National Technical Information Service (NTIS)

This report describes a series of studies involving the use of 'surrogate' methods for the determination of total organic halides (TOX), purgeable organic halides (POX), and solvent extractable organic halides (EOX), in wastewater and solid wastes. A pyro...

R. M. Riggin S. V. Lucas J. Lathouse G. A. Jungclaus A. K. Wensky

1984-01-01

91

Identification of polar, ionic, and highly water soluble organic pollutants in untreated industrial wastewaters  

SciTech Connect

This paper presents a generic protocol for the determination of polar, ionic, and highly water soluble organic pollutants on untreated industrial wastewaters involving the use of two different solid-phase extraction (SPE) methodologies followed by liquid chromatography-mass spectrometry (LC-MS). Untreated industrial wastewaters might contain natural and synthetic dissolved organic compounds with total organic carbon (TOC) values varying between 100 and 3000 mg/L. All polar, ionic and highly water soluble compounds comprising more than 95% of the organic content and with major contribution to the total toxicity of the sample cannot be analyzed by conventional gas chromatography-mass spectrometry (GC-MS), and LC-MS is a good alternative. In this work two extraction procedures were used to obtain fractionated extracts of the nonionic polar compounds: a polymeric Isolute ENV + SPE cartridge for the preconcentration of anionic analytes and a sequential solid-phase extraction (SSPE) method percolating the samples first in octadecylsilica cartridge in series with the polymeric Lichrolut EN cartridge. Average recoveries ranging from 72% to 103% were obtained for a variety of 23 different analytes. Determination of nonionic pollutants was accomplished by reverse-phase liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS), while anionic compounds were analyzed by ion pair chromatography-electrospray-mass spectrometry (IP-ESI-MS) and LC-ESI-MS. This protocol was applied to a pilot survey of textile and tannery wastewaters leading to the identification and quantification of 33 organic pollutants.

Castillo, M.; Alonso, M.C.; Riu, J.; Barcelo, D. [IIQAB-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry] [IIQAB-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry

1999-04-15

92

Ammonia removal from wastewater by ion exchange in the presence of organic contaminants  

Microsoft Academic Search

The scope of this study was the removal of ammonium by ion exchange from simulated wastewater. The study looks at the effect of organics upon ammonium ion exchange equilibrium uptake. The ion exchangers included a natural zeolite clinoptilolite, and two polymeric exchangers, Dowex 50w-x8, and Purolite MN500. The organic compounds studied included citric acid and a number of proteins. The

T. C. Jorgensen; L. R. Weatherley

2003-01-01

93

Photoprotective compounds from marine organisms  

Microsoft Academic Search

The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth’s\\u000a surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater\\u000a ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and\\u000a several other UV-absorbing substances of unknown chemical structure

Rajesh P. Rastogi; Richa; Rajeshwar P. Sinha; Shailendra P. Singh; Donat-P. Häder

2010-01-01

94

Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants  

NASA Astrophysics Data System (ADS)

Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

2013-12-01

95

Photoprotective compounds from marine organisms.  

PubMed

The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found. PMID:20401734

Rastogi, Rajesh P; Richa; Sinha, Rajeshwar P; Singh, Shailendra P; Häder, Donat-P

2010-06-01

96

Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.  

PubMed

The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295?gL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater. PMID:24997902

Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

2014-09-01

97

Low volatile organic compound paints  

Microsoft Academic Search

Increasingly stringent air emission standards in various states has dictated the elimination of engineering finishes which are derived from high volatile organic compound (VOC) paint chemistries. In July 1989, Allied-Signal, Inc., Kansas City Division, Kansas City, Missouri, voluntarily closed its paint facility, due to non-compliance with local air emission standards. The following details the materials selection and evaluations which led

1991-01-01

98

DETERMINATION OF VOLATILE ORGANICS IN INDUSTRIAL AND MUNICIPAL WASTEWATERS  

EPA Science Inventory

This report describes the systematic evaluation of a series of parameters leading to the development of a test procedure for 36 volatile priority pollutants in wastewaters. A study of the effect of pH, temperature, and residual chlorine on the aqueous stability of the compounds l...

99

CONTROL OF ORGANIC SUBSTANCES IN WATER AND WASTEWATER  

EPA Science Inventory

The presence of organic substances of industrial origin in wastewaters, storm runoff and in surface and groundwaters may not always be an unmitigated evil--but, it is safe to say, it never is good. In 1976, EPA was required to give special emphasis to 129 'priority pollutants' th...

100

Volatile organic compound sensor system  

DOEpatents

Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

2011-03-01

101

Volatile organic compound sensor system  

DOEpatents

Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

Schabron, John F. (Laramie, WY) [Laramie, WY; Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Laramie, WY) [Laramie, WY; Sorini-Wong, Susan S. (Laramie, WY) [Laramie, WY

2009-02-10

102

Organic compounds in carbonaceous meteorites.  

PubMed

The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the solar system 4.6 billion years ago. These carbon-rich objects contain a variety of extraterrestrial organic molecules that constitute a record of chemical evolution prior to the origin of life. Compound classes include aliphatic hydrocarbons, aromatic hydrocarbons, amino acids, carboxylic acids, sulfonic acids, phosphonic acids, alcohols, aldehydes, ketones, sugars, amines, amides, nitrogen heterocycles, sulfur heterocycles and a relatively abundant high molecular weight macromolecular material. Structural and stable isotopic characteristics suggest that a number of environments may have contributed to the organic inventory, including interstellar space, the solar nebula and the asteroidal meteorite parent body. This review covers work published between 1950 and the present day and cites 193 references. PMID:12137279

Sephton, Mark A

2002-06-01

103

Bioassay-directed identification of novel antiandrogenic compounds in bile of fish exposed to wastewater effluents.  

PubMed

The widespread occurrence of feminized male fish downstream of some UK Wastewater Treatment Works (WwTWs) has been associated with exposure to estrogenic and potentially antiandrogenic (AA) contaminants in the effluents. In this study, profiling of AA contaminants in WwTW effluents and fish was conducted using HPLC in combination with in vitro androgen receptor transcription screens. Analysis of extracts of wastewater effluents revealed complex profiles of AA activity comprising 21-53 HPLC fractions. Structures of bioavailable antiandrogens were identified by exposing rainbow trout to a WwTW effluent and profiling the bile for AA activity using yeast (anti-YAS) and mammalian-based (AR-CALUX) androgen receptor transcription screens. The predominant fractions with AA activity in both androgen receptor screens contained the germicides chlorophene and triclosan, and together these contaminants accounted for 51% of the total anti-YAS activity in the fish bile. Other AA compounds identified in bile included chloroxylenol, dichlorophene, resin acids, napthols, oxybenzone, 4-nonylphenol, and bisphenol A. Pure standards of these compounds were active in the androgen receptor screens at potencies relative to flutamide of between 0.1 and 13.0. Thus, we have identified, for the first time, a diverse range of AA chemicals in WwTWs that are bioavailable to fish and which need to be assessed for their risk to the reproductive health of these organisms and other aquatic biota. PMID:22047186

Rostkowski, Pawel; Horwood, Julia; Shears, Janice A; Lange, Anke; Oladapo, Francis O; Besselink, Harrie T; Tyler, Charles R; Hill, Elizabeth M

2011-12-15

104

Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane.  

PubMed

Extensive organic characterisation of a wastewater using liquid chromatography with a photodiode array and fluorescence spectroscopy (Method A), and UV(254) and organic carbon detector (Method B) was undertaken, as well as with fluorescence excitation emission spectroscopy (EEM). Characterisation was performed on the wastewater before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, and following microfiltration of the wastewater and pre-treated wastewaters. Characterisation by EEM was unable to detect biopolymers within the humic rich wastewaters and was not subsequently used to characterise the MF permeates. IX treatment preferentially removed low molecular weight (MW) organic acids and neutrals, and moderate amounts of biopolymers in contrast to a previous report of no biopolymer removal with IX. PACl preferentially removed moderate MW humic and fulvic acids, and large amounts of biopolymers. PACl showed a great preference for removal of proteins from the biopolymer component in comparison to IX. An increase in the fluorescence response of tryptophan-like compounds in the biopolymer fraction following IX treatment suggests that low MW neutrals may influence the structure and/or inhibit aggregation of organic compounds. Fouling rates for IX and PACl treated wastewaters had high initial fouling rates that reduced to lower fouling rates with time, while the untreated Eastern Treatment Plant (ETP) wastewater displayed a consistent, high rate of fouling. The results for the IX and PACl treated wastewaters were consistent with the long-term fouling rate being determined by cake filtration while both pore constriction and cake filtration contributed to the higher initial fouling rates. Higher rejection of biopolymers was observed for PACl and IX waters compared to the untreated ETP water, suggesting increased adhesion of biopolymers to the membrane or cake layer may lead to the higher rejection. PMID:22871319

Myat, Darli T; Mergen, Max; Zhao, Oliver; Stewart, Matthew B; Orbell, John D; Gray, Stephen

2012-10-15

105

Electroreduction of Halogenated Organic Compounds  

NASA Astrophysics Data System (ADS)

The electroreductive cleavage of the carbon-halogen bond in halogenated organic compounds has been extensively studied for more than 70 years, since it is prodromal to a large variety of synthetic applications in organic electrochemistry. Over the years the research interest have progressively included the environmental applications, since several organic halocompounds are known to have (or have had) a serious environmental impact because of their (present or past) wide use as cleaning agents, herbicides, cryogenic fluids, reagents (e.g. allyl and vinyl monomers) for large production materials, etc. Recent studies have also demonstrated the wide spread out- and in-door-presence of volatile organic halides, although at low level, in connexion with residential and non-residential (e.g. stores, restaurants and transportation) activities. In this context, the detoxification of emissions to air, water and land by the selective removal of the halogen group represents a valid treatment route, which, although not leading to the complete mineralization of the pollutants, produces less harmful streams to be easily treated by electrochemical or conventional techniques. The electroreduction process is analysed and discussed in terms of electrode material, reaction medium, cell design and operation, and of substrate classification.

Rondinini, Sandra; Vertova, Alberto

106

Biological removal of organic constituents in high-Btu coal gasification wastewaters  

SciTech Connect

Studies have been initiated to assess the efficiency of activated sludge treatment for removal of organic contaminants from coal gasification process effluents. Samples of pilot plant raw gas quench wastewater were obtained from the Institute of Gas Technology's HYGAS process and from the Grand Forks Energy Technology Center (GFETC) slagging fixed-bed process. These wastewaters were subjected to long term biological treatability studies, followed by detailed characterization of organic constituents. The samples were extracted using a methylene chloride pH-fractionation method to neutral, acidic, and basic fractions for analysis by capillary column gas chromotography/mass spectrometry. Influent acid extract samples of both HYGAS and GFETC wastewaters showed that nearly 99% of the total extractable and chromatographable organic material was comprised of phenol and alkylated phenols. Activated sludge treatment removed these compounds almost completely. Influent base extracts of HYGAS and GFETC samples showed alkylated pyridines, anilines, and quinolines; the GFETC sample also showed, as major components, aminopyrroles, imidazoles and/or pyrazoles, and diazines. Removal efficiency of these compounds was generally good, with the exception of certain alkylated pyridines. The influent neutral fractions of both the HYGAS and GFETC samples were comprised of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes, abundant in the HYGAS sample, were generally absent in the GFETC sample. Removal efficiencies for certain alkylated benzenes, polycyclic aromatic hydrocarbons, and cycloalkanes and cycloalkenes were poor, especially at low influent concentrations.

Stamoudis, V.C.; Luthy, R.G.

1980-01-01

107

Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC)  

Microsoft Academic Search

Electrical power generated by a photovoltaic cell (PVC) was supplied to diluted industrial wastewater in a mechanically mixed and sealed stainless-steel reactor for hydrogen gas production. Three different electrodes, graphite, stainless steel and aluminum rods were used for comparison. Protons released from decomposition of organic compounds and electrons provided by the DC current reacted to form hydrogen gas. The highest

Fikret Kargi

2011-01-01

108

Development of a method for the monitoring of odor-causing compounds in atmospheres surrounding wastewater treatment plants.  

PubMed

This study describes the development of an analytical method based on active collection in a multisorbent Tenax TA/Carbograph 1TD tube, followed by thermal desorption and GC-MS for the determination of 16 volatile organic compounds in air samples. The analyzed compounds include ozone precursors and odor-causing compounds belonging to different chemical families (sulfur- and nitrogen-containing compounds, aldehydes, and terpenes). Two types of sorbents were tested and desorption conditions (temperature, time, and sampling, and desorption flow) were evaluated. External calibration was carried out using the multisorbent bed. Method detection limits in the range 0.2-2.0 ?g m(-3) for 1 L samples were obtained. The method was applied for determining the target compounds in air samples from two different wastewater treatment plants. Most compounds were detected and toluene, limonene, and nonanal were found in particularly high concentrations with maximum values of 438, 233, and 382 ?g m(-3), respectively. PMID:23495009

Godayol, Anna; Marcé, Rosa M; Borrull, Francesc; Anticó, Enriqueta; Sanchez, Juan M

2013-05-01

109

Volatile organic compound sensing devices  

DOEpatents

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

Lancaster, Gregory D. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID); Reagen, William K. (Stillwater, MN)

1995-01-01

110

Volatile organic compound sensing devices  

DOEpatents

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

1995-08-29

111

DEVELOPMENT AND EVALUATION OF METHODS FOR TOTAL ORGANIC HALIDE AND PURGEABLE ORGANIC HALIDE IN WASTEWATER  

EPA Science Inventory

This report describes a series of studies involving the use of 'surrogate' methods for the determination of total organic halides (TOX), purgeable organic halides (POX), and solvent extractable organic halides (EOX), in wastewater and solid wastes. A pyrolysis/microcoulometric sy...

112

Respirometric methods for determination of biodegradability and biodegradation kinetics for hazardous organic-pollutant compounds  

SciTech Connect

The purpose of the study was to obtain information on biological treatability of the benzene, phenol, phthalate and ketone organics and of the Superfund CERCLA organics bearing wastes in wastewater treatment systems which will support development of an EPA technical guidance document on the discharge of the above organics to POTWs. The study was to generate basic information on the fate of CERCLA leachate organics during on-site treatment and biodegradation and inhibition data for pollutants found in Superfund site wastewater that could be discharged to POTWs. Respirometric biodegradability, biokinetic and inhibition data were generated for the selected RCRA benzene, phenolic, phthalate and ketone compounds.

Tabak, H.H.; Desai, S.; Govind, R.

1992-01-01

113

Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants  

NASA Astrophysics Data System (ADS)

Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

Panizza, Marco

114

Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF\\/RO membranes  

Microsoft Academic Search

The growing demand on water resources has increased interest in wastewater reclamation for potable reuse, in which rejection of organic micropollutants such as disinfection by-products (DBPs), endocrine disrupting compounds (EDCs), and pharmaceutically active compounds (PhACs) is of great concern. The objective of this study was to investigate the rejection of DBPs, EDCs, and PhACs by nanofiltration (NF) and reverse osmosis

Katsuki Kimura; Gary Amy; Jörg E. Drewes; Thomas Heberer; Tae-Uk Kim; Yoshimasa Watanabe

2003-01-01

115

Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*  

PubMed Central

A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs.

Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang

2010-01-01

116

Biodegradability of wastewater and activated sludge organics in anaerobic digestion.  

PubMed

The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly from those calculated with the AD models. Therefore in plant wide wastewater treatment models the characterization of PS and WAS as defined by the AS models can be applied without modification in AD models. The observed rate limiting hydrolysis/acidogenesis rates of the sludges are listed. PMID:24699419

Ikumi, D S; Harding, T H; Ekama, G A

2014-06-01

117

Perfluorinated compounds in sediment samples from the wastewater canal of Pan?evo (Serbia) industrial area.  

PubMed

Perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) were analyzed in sediment samples from the wastewater canal draining the industrial complex of Pan?evo, Serbia (oil refinery, petrochemical plant, and fertilizer factory). The canal is directly connected to Europe's second largest river, the Danube, which drains its water into the Black Sea. Perfluorooctane sulfonate (PFOS) up to 5.7ngg(-1) dry weight (dw) and total Perfluorinated compounds (PFCs) up to 6.3ngg(-1) dw were detected. Compared to other reports, high levels of PFOS were found, even though PFCs are not used in the industrial production associated with this canal. The PFOS concentration in water was recalculated using the adsorption coefficient, KOC from literature. Using the average output of wastewater from the canal, a mass load of 1.38kg PFOS per year discharged in the Danube River has been calculated, which undoubtedly points to the contribution to global persistent organic pollution of surface waters originating from this industrial place. PMID:23415492

Beškoski, Vladimir P; Takemine, Shusuke; Nakano, Takeshi; Slavkovi? Beškoski, Latinka; Gojgi?-Cvijovi?, Gordana; Ili?, Mila; Mileti?, Srdjan; Vrvi?, Miroslav M

2013-06-01

118

Biodepollution of wastewater containing phenolic compounds from leather industry by plant peroxidases.  

PubMed

This study deals with the use of peroxidases (POXs) from Allium sativum, Ipomoea batatas, Raphanus sativus and Sorghum bicolor to catalyze the degradation of free phenolic compounds as well as phenolic compounds contained in wastewater from leather industry. Secretory plant POXs were able to catalyze the oxidation of gallic acid, ferulic acid, 4-hydroxybenzoic acid, pyrogallol and 1,4-tyrosol prepared in ethanol 2% (v:v). Efficiency of peroxidase catalysis depends strongly on the chemical nature of phenolic substrates and on the botanical source of the enzymes. It appeared that POX from Raphanus sativus had the highest efficiency. Results show that POXs can also remove phenolic compounds present in industrial wastewater such as leather industry. Removal of phenolic compounds in wastewater from leather industry by POX was significantly enhanced by polyethylene glycol. PMID:20803235

Diao, Mamounata; Ouédraogo, Nafissétou; Baba-Moussa, Lamine; Savadogo, Paul W; N'Guessan, Amani G; Bassolé, Imael H N; Dicko, Mamoudou H

2011-04-01

119

Process for removing an organic compound from water  

DOEpatents

A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

Baker, Richard W. (Palo Alto, CA); Kaschemekat, Jurgen (Palo Alto, CA); Wijmans, Johannes G. (Menlo Park, CA); Kamaruddin, Henky D. (San Francisco, CA)

1993-12-28

120

Evaluation of perfluorinated compounds in seven wastewater treatment plants in Beijing urban areas  

Microsoft Academic Search

The presence of perfluorinated compounds (PFCs) in seven major wastewater treatment plants (WWTPs) in Beijing was investigated\\u000a in the current study. We detected nine PFCs in all the wastewater and sludge samples. Perfluorooctane acid (PFOA) is the dominant\\u000a PFCs in influents and effluents, while perfluorooctane sulfonate (PFOS) is the major contaminant in sludge. The highest PFC\\u000a concentration was found in

YuanYuan Pan; YaLi Shi; JieMing Wang; YaQi Cai

2011-01-01

121

Calcium sulfate solubility in organic-laden wastewater. Progress report, September 1981December 1982  

Microsoft Academic Search

The purpose of this investigation was to determine the solubility of calcium sulfate in wastewaters, and to examine the effect of organic constituents in wastewater and in synthetic waters on calcium sulfate solubility. The study entailed both laboratory experiments and chemical equilibria computer modeling. The calcium sulfate solubility product in a solvent-extracted, ammonia-stripped coal gasification wastewater was found to be

I. Banz; R. G. Luthy

1982-01-01

122

Wastewater-Derived Dissolved Organic Nitrogen: Analytical Methods, Characterization, and Effects—A Review  

Microsoft Academic Search

Wastewater-derived dissolved organic nitrogen (DON) accounts for up to 80% of dissolved nitrogen in nitrified-denitrified effluent. The sturdiness of DON measurements hindered the characterization of DON, especially in wastewater matrix, leading to an unsatisfying knowledge level. Measurement of DON and DON species is imortant not only as a measure of treatibility of wastewater in treatment plants, but also for the

Elif Pehlivanoglu-Mantas; David L. Sedlak

2006-01-01

123

Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.  

PubMed

The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. PMID:19763679

Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

2010-02-01

124

Occurrence of organic wastewater contaminants, pharmaceuticals, and personal care products in selected water supplies, Cape Cod, Massachusetts, June 2004  

USGS Publications Warehouse

In June 2004, the U.S. Geological Survey, in cooperation with the Barnstable County Department of Health and Environment, sampled water from 14 wastewater sources and drinking-water supplies on Cape Cod, Massachusetts, for the presence of organic wastewater contaminants, pharmaceuticals, and personal care products. The geographic distribution of sampling locations does not represent the distribution of drinking-water supplies on Cape Cod. The environmental presence of the analyte compounds is mostly unregulated; many of the compounds are suspected of having adverse ecological and human health effects. Of the 85 different organic analyte compounds, 43 were detected, with 13 detected in low concentrations (less than 1 microgram per liter) from drinking-water supplies thought to be affected by wastewater because of previously detected high nitrate concentrations. (Phenol and d-limonene, detected in equipment blanks at unacceptably high concentrations, are not included in counts of detections in this report.) Compounds detected in the drinking-water supplies included the solvent, tetrachloroethylene; the analgesic, acetaminophen; the antibiotic, sulfamethoxazole; and the antidepressant, carbamazapine. Nitrate nitrogen, an indicator of wastewater, was detected in water supplies in concentrations ranging from 0.2 to 8.8 milligrams per liter.

Zimmerman, Marc J.

2005-01-01

125

Gallic acid photochemical oxidation as a model compound of winery wastewaters.  

PubMed

Winery wastewaters (WW) are characterized by their high organic load and by the presence of non-biodegradable compounds such as phenolic compounds. This study was undertaken to evaluate the capacity of different Advanced Oxidation Processes (AOP) combined with several radiation sources to degrade the phenolic compound Gallic Acid (GA). A toxicological assessment was also carried out to evaluate the subproduct's harmful effect generated during the most efficient AOP in the GA photoxidation. Through the course of the study it was verified that the UV radiation lamp TNN 15/32 showed the capacity to degrade 34.7% of GA, the UV radiation lamp TQ 150 achieved a value of 20.2% and the solar radiation presented only a value of 2.3% in 60 minutes. The combination of different advanced oxidation processes (Fenton's reagent, ferrioxalate and heterogeneous photocatalysis) were evaluated with the previously studied sources of radiation. From the experiments conducted it was possible to suggest that the AOP in combination with Fe(2 +) + H(2)O(2) + UV TNN 15/32 (photo-Fenton process) was the most efficient process thereby achieving the GA degradation value of 95.6% in 7.5 minutes and resulting in a total elimination of toxicity. PMID:18642152

Lucas, Marco S; Dias, Albino A; Bezerra, Rui M; Peres, Jose A

2008-09-01

126

Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR)  

Microsoft Academic Search

As a consequence of insufficient removal during treatment of wastewater released from industry and households, different classes\\u000a of organic micropollutants are nowadays detected in surface and drinking water. Among these micropollutants, bioactive substances,\\u000a e.g., endocrine disrupting compounds and pharmaceuticals, have been incriminated in negative effects on living organisms in\\u000a aquatic biotope. Much research was done in the last years on

Magdalena Cirja; Pavel Ivashechkin; Andreas Schäffer; Philippe F. X. Corvini

2008-01-01

127

High-Performance Anaerobic Granulation Processes for Treatment of Wastewater-Containing Recalcitrant Compounds  

Microsoft Academic Search

Many of the persistent and recalcitrant organic chemicals found in a wide variety of industrial wastewaters are potentially toxic to human beings and microorganisms. Such organics have been listed as priority pollutants. Because of their stable structures, and to these is added the possibility of a highly oxidized state, such organics are typically not easily degraded under aerobic conditions. This

A. M. Maszenan; Yu Liu; Wun Jern Ng

2011-01-01

128

Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands.  

PubMed

Open-water cells in unit process treatment wetlands can be used to exploit sunlight photolysis to remove trace organic contaminants from municipal wastewater effluent. To assess the performance of these novel systems, a photochemical model was calibrated using measured photolysis rates for atenolol, carbamazepine, propranolol, and sulfamethoxazole in wetland water under representative conditions. Contaminant transformation by hydroxyl radical ((•)OH) and carbonate radical ((•)CO3(-)) were predicted from steady-state radical concentrations measured at pH values between 8 and 10. Direct photolysis rates and the effects of light screening by dissolved organic matter on photolysis rates were estimated using solar irradiance data, contaminant quantum yields, and light screening factors. The model was applied to predict the land area required for 90% removal of a suite of wastewater-derived organic contaminants by sunlight-induced reactions under a variety of conditions. Results suggest that during summer, open-water cells that receive a million gallons of water per day (i.e., about 4.4 × 10(-2) m(3) s(-1)) of nitrified wastewater effluent can achieve 90% removal of most compounds in an area of about 15 ha. Transformation rates were strongly affected by pH, with some compounds exhibiting faster transformation rates under the high pH conditions associated with photosynthetic algae at the sediment-water interface and other contaminants exhibiting faster transformation rates at the circumneutral pH values characteristic of algae-free cells. Lower dissolved organic carbon concentrations typically resulted in increased transformation rates. PMID:23470043

Jasper, Justin T; Sedlak, David L

2013-10-01

129

Vapor Adsorption of Volatile Organic Compounds Using Organically Modified Clay  

Microsoft Academic Search

Organically modified clay was used to adsorb volatile organic compounds from a gaseous phase. The organoclay was prepared by adsorbing hexadecyltrimethylammonium (HDTMA) on the surface of montmorillonite particles. Two volatile organic compounds (VOCs), chlorobenzene and trichloroethylene, were adsorbed to the organoclay using a fixed adsorption bed. The adsorption was carried out at various inlet concentrations of gaseous VOCs in a

2008-01-01

130

Equilibrium tritium isotope effect in organic compounds  

SciTech Connect

Experimental vibrational frequencies and a previously developed method for calculating equilibrium tritium (T) isotope effects are used to compose tables of {beta}-factors for T/H substitution of most organic compounds. The data presented enable the equilibrium T isotope effect to be sufficiently accurately estimated for most organic compounds.

Knyazev, D.A.; Myasoedov, N.F.; Bochkarev, A.V.

1995-01-01

131

Determination of Wastewater Compounds in Whole Water by Continuous Liquid-Liquid Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry  

USGS Publications Warehouse

A method for the determination of 69 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals on aquatic organisms in wastewater. This method also is useful for evaluating the effects of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are indicators of wastewater or have endocrine-disrupting potential. These compounds include the alkylphenol ethoxylate nonionic surfactants, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Wastewater compounds in whole-water samples were extracted using continuous liquid-liquid extractors and methylene chloride solvent, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 0.5 microgram per liter averaged 72 percent ? 8 percent relative standard deviation. The concentration of 21 compounds is always reported as estimated because method recovery was less than 60 percent, variability was greater than 25 percent relative standard deviation, or standard reference compounds were prepared from technical mixtures. Initial method detection limits averaged 0.18 microgram per liter. Samples were preserved by adding 60 grams of sodium chloride and stored at 4 degrees Celsius. The laboratory established a sample holding-time limit prior to sample extraction of 14 days from the date of collection.

Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.

2006-01-01

132

Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas  

USGS Publications Warehouse

The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.

Bidwell, J. R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M. T.

2010-01-01

133

Control of chironomid midge larvae in wastewater stabilisation ponds: comparison of five compounds.  

PubMed

Chironomid midge larvae are a valuable component of wastewater stabilisation pond (WSP) ecology. However, in high numbers, adult midge swarms can be a nuisance to near-by urban areas. Improving WSP treatment by incorporating aerobic or maturation ponds or by the addition of pre-treatment to reduce organic loading also increases the availability of aerobic sediment (midge larva habitat) in the pond system and the potential for midge nuisance problems. The efficacy of Maldison, an organophosphate traditionally used to control midge larvae in New Zealand WSPs, was compared to Bacillus thuringiensis var. israelensis (Bti), Methoprene, Pyriproxyfen and Diflubenzuron which are all more specific to insects and have fewer adverse environmental effects. Initial laboratory trials established the concentration of each compound required to achieve 95% control of the midge population. During 21-day small-scale trials within the WSP, Bti, Diflubenzuron and Maldison reduced live larvae numbers substantially (80-89%) compared to controls and adult midge emergence was markedly reduced by all compounds (72-96%). Large-scale trials with Bti (Vectobac WG) powder (1000 microg/L) only caused a slight reduction in midge larvae numbers compared to controls and had little effect on adult emergence, however, Methoprene (Prolink XRG granules) (50 microgAI/L) reduced midge adult emergence by approximately 80% over 25 days and has been used successfully to control several midge nuisance outbreaks. PMID:16114682

Craggs, R; Golding, L; Clearwater, S; Susarla, L; Donovan, W

2005-01-01

134

Removal of trace organic chemicals in onsite wastewater soil treatment units: a laboratory experiment.  

PubMed

Onsite wastewater treatment is used by 20% of residences in the United States. The ability of these systems, specifically soil treatment units (STUs), to attenuate trace organic chemicals (TOrCs) is not well understood. TOrCs released by STUs pose a potential risk to downstream groundwater and hydraulically-connected surface water that may be used as a drinking water source. A series of bench-scale experiments were conducted using sand columns to represent STUs and to evaluate the efficacy of TOrC attenuation as a function of hydraulic loading rate (1, 4, 8, 12, and 30 cm/day). Each hydraulic loading rate was examined using triplicate experimental columns. Columns were initially seeded with raw wastewater to establish a microbial community, after which they were fed with synthetic wastewater and spiked with 17 TOrCs, in four equal doses per day, to provide a consistent influent water quality. After an initial start-up phase, effluent from all columns consistently demonstrated >90% reductions in dissolved organic carbon and nearly complete (>85%) oxidation of ammonia to nitrate, comparable to the performance of field STUs. The results of this study suggest STUs are capable of attenuating many TOrCs present in domestic wastewater, but attenuation is compound-specific. A subset of TOrCs exhibited an inverse relationship with hydraulic loading rate and attenuation efficiency. Atenolol, cimetidine, and TCPP were more effectively attenuated over time in each experiment, suggesting that the microbial community evolved to a stage where these TOrCs were more effectively biotransformed. Aerobic conditions as compared to anaerobic conditions resulted in more efficient attenuation of acetaminophen and cimetidine. PMID:22871318

Teerlink, Jennifer; Martínez-Hernández, Virtudes; Higgins, Christopher P; Drewes, Jörg E

2012-10-15

135

Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.  

PubMed

The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation. PMID:19491501

Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

2009-09-01

136

Oxidative destabilization of dissolved organics and E. coli in domestic wastewater through immobilized cell reactor system.  

PubMed

Domestic wastewater contains a considerable amount of pathogenic organisms besides non-biodegradable organics. The conventional technologies followed for the treatment of domestic wastewater are less efficient in removing pathogenic organisms despite substantial removal of dissolved organics. The focal theme of the present investigation was to use a chemo-autotrophic activated carbon oxidation (CAACO) system, an immobilized cell reactor using chemoautotrophs (Bacillus sp.) for the treatment of domestic wastewater. The oxidation of organics and Escherichia coli in wastewater is controlled by the parameters space time, O(2)/COD, bed height and cod loading. The scheme comprised of anaerobic treatment, sand filtration and CAACO treatment removed BOD. COD, Total organic carbon (TOC), dissolved protein, total Kjeldhal nitrogen (TKN) and bacterial count (most probable number (MPN)) by 81%, 92%, 84%, 94%, 93% and 99.9997%, respectively. The low concentration of E. coli in the CAACO-treated wastewater was completely eliminated through UV irradiation in 3 min at 254 nm. PMID:17000043

Sekaran, G; Ramani, K; Ganesh Kumar, A; Ravindran, B; John Kennedy, L; Gnanamani, A

2007-07-01

137

REMOVAL OF ORGANIC CHEMICALS FROM WASTEWATER BY SURFACTANT SEPARATION  

SciTech Connect

This research presents a novel hybrid process for removing organic chemicals from contaminated water. The process uses surfactant to carry out two unit operations (1) Extraction; (2) Foam flotation. In the first step, surfactant is used to extract most of the amounts of organic contaminants in the stream. In the second step, foam flotation is used to further reduce organic contaminants and recover surfactant from the stream. The process combines the advantages of extraction and foam flotation, which allows the process not only to handle a wide range of organic contaminants, but also to effectively treat a wide range of the concentration of organic contaminants in the stream and reduce it to a very low level. Surfactant regeneration can be done by conventional methods. This process is simple and low cost. The wastes are recoverable. The objective of this research is to develop an environmentally innocuous process for the wastewater or reclaimed water treatment with the ability to handle a wide range of organic contaminants, also to effectively treat a wide range of the concentration of organic contaminants in contaminated water and reduce it to a very low level, finally, provides simpler, less energy cost and economically-practical process design. Another purpose is to promote the environmental concern in minority students and encourage minority students to become more involved in environmental engineering research.

Unknown

2002-01-01

138

INVESTIGATIONS OF BIODEGRADABILITY AND TOXICITY OF ORGANIC COMPOUNDS  

EPA Science Inventory

The development of elaborate industrial societies has led to proliferation of a vast number of complex chemicals for industrial, agricultural and domestic use. Some portion of these compounds eventually find their way into municipal and industrial wastewater. Unless specifically ...

139

Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds.  

PubMed

Hospital effluents contribute to the occurrence of emerging contaminants in the environment due to their high load of pharmaceutical active compounds (PhACs) and some endocrine disruptor compounds (EDCs). Nowadays, hospital wastewaters are co-treated with urban wastewater; however, the dilution factor and the inefficiency of wastewater treatment plants in the removal of PhACs and EDCs make inappropriate the co-treatment of both effluents. In this paper, a new alternative to pre-treat hospital wastewater concerning the removal of PhACs and EDCs is presented. The treatment was carried out in a batch fluidized bed bioreactor under sterile and non-sterile conditions with Trametes versicolor pellets. Results on non-sterile experiments pointed out that 46 out of the 51 detected PhACs and EDCs were partially to completely removed. The total initial PhAC amount into the bioreactor was 8185?g in sterile treatment and 8426?g in non-sterile treatment, and the overall load elimination was 83.2% and 53.3% in their respective treatments. In addition, the Microtox test showed reduction of wastewater toxicity after the treatment. Hence, the good efficiency of the fungal treatment regarding removal of the wide diversity of PhACs and EDCs detected in hospital effluents is demonstrated. PMID:24951894

Cruz-Morató, Carles; Lucas, Daniel; Llorca, Marta; Rodriguez-Mozaz, Sara; Gorga, Marina; Petrovic, Mira; Barceló, Damià; Vicent, Teresa; Sarrà, Montserrat; Marco-Urrea, Ernest

2014-09-15

140

Effects-directed analysis of organic toxicants in wastewater effluent from Zagreb, Croatia  

Microsoft Academic Search

The organic toxicants present in the effluent of the main sewer of the city of Zagreb, Croatia were isolated and identified through the use of effects-directed characterisation techniques. At the time of investigation, the wastewater effluent received no treatment and was comprised of a mixture of effluent from domestic and industrial sources. The organic load of the wastewater was isolated

Merete Grung; Rainer Lichtenthaler; Marijan Ahel; Knut-Erik Tollefsen; Katherine Langford; Kevin V. Thomas

2007-01-01

141

POTENTIAL HEALTH EFFECTS FROM PERSISTENT ORGANICS IN WASTEWATER AND SLUDGES USED FOR LAND APPLICATION  

EPA Science Inventory

The potential health problems associated with the presence of persistent organic chemicals in wastewater and sludge, when applied to agricultural lands, are reviewed. The type and amounts of organic chemicals present in wastewater and sludge, their fate on land, and available con...

142

Electrolytic Reduction of Organic Compounds.  

National Technical Information Service (NTIS)

The final report describes very briefly the results of efforts to achieve selective, electrochemical reductions of organic molecules containing various functional groups. In all cases the electrolytic cell was a simple three-neck flask equipped with two p...

R. A. Benkeser

1970-01-01

143

Organics removal and protein recovery from wastewater discharged during the production of chondroitin sulfate.  

PubMed

Bentonite, chitosan and polyaluminum chloride (PAC) were applied to treat wastewater discharged during the production of chondroitin sulfate and recover protein dissolved in the wastewater. The results showed that the combination of pH 9.00, 3-4 mL chitosan solution, 2 g of bentonite and 5 mL of 8% PAC solution per 100 mL of wastewater with a 4.0 h flocculation time were the optimal conditions for the recovery of protein and removal of total organic carbon (TOC) from wastewater. A pilot-scale test also was conducted, and 130 kg (dry weight) of sediment was obtained from 1.1 m(3) of discharged wastewater. This sediment contained abundant amino acids (proteins comprised 61% of the total sediment), after the recovery of protein, the dissolved TOC concentration in wastewater was decreased by approximately 80% and the residual wastewater could be readily disposed using a traditional activated sludge process. PMID:24135108

Sheng, Yanqing; Xing, Li

2013-01-01

144

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1994-06-14

145

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1994-01-01

146

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1993-01-01

147

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1993-09-07

148

BIORESTORATION OF AQUIFERS CONTAMINATED WITH ORGANIC COMPOUNDS  

EPA Science Inventory

Techniques available to remediate ground water contaminated with organic compounds. These include physical containment, in situ treatment with chemicals or microbes, and withdrawal and treatment via various forms of physical, chemical, or biological processes. (Copyright (c) CRC ...

149

Microwave spectra of some volatile organic compounds  

NASA Technical Reports Server (NTRS)

A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

White, W. F.

1975-01-01

150

Volatile organic compounds of Schenella pityophilus.  

PubMed

Volatile organic compounds of Schenella pityophilus have been identified via solid-phase microextraction-gas chromatography-mass spectrometry analysis. Ten compounds have been identified, in which 3-methylthio-1-propene was the most significant component. Some other components were previously identified in Tuber aestivum and Tuber melanosporum. PMID:22236093

D'Auria, Maurizio; Racioppi, Rocco; Rana, Gian Luigi

2013-01-01

151

PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH  

EPA Science Inventory

A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

152

Identification and quantification of volatile organic compounds from a dairy  

NASA Astrophysics Data System (ADS)

Volatile organic compounds (VOCs) that contribute to odor and air quality problems have been identified from the Washington State University Knott Dairy Farm using gas chromatography-mass spectroscopy (GC-MS). Eighty-two VOCs were identified at a lactating cow open stall and 73 were detected from a slurry wastewater lagoon. These compounds included alcohols, aldehydes, ketones, esters, ethers, aromatic hydrocarbons, halogenated hydrocarbons, terpenes, other hydrocarbons, amines, other nitrogen containing compounds, and sulfur-containing compounds. The concentration of VOCs directly associated with cattle waste increased with ambient air temperature, with the highest concentrations present during the summer months. Concentrations of most detected compounds were below published odor detection thresholds. Emission rates of ethanol (1026±513 ?g cow -1 s -1) and dimethyl sulfide (DMS) (13.8±10.3 ?g cow -1 s -1) were measured from the lactating stall area using an atmospheric tracer method and concentrations were plotted using data over a 2-year period. Emission rates of acetone (3.03±0.85 ng cow -1 s -1), 2-butanone (145±35 ng cow -1 s -1), methyl isobutyl ketone (3.46±1.11 ng cow -1 s -1), 2-methyl-3-pentanone (25.1±8.0 ng cow -1 s -1), DMS (2.19±0.92 ng cow -1 s -1), and dimethyl disulfide (DMDS) (16.1±3.9 ng cow -1 s -1) were measured from the slurry waste lagoon using a laboratory emission chamber.

Filipy, Jenny; Rumburg, Brian; Mount, George; Westberg, Hal; Lamb, Brian

153

Use of lees materials as an adsorbent for removal of organochlorine compounds or benzene from wastewater.  

PubMed

Lees materials such as wheat bran, rapeseed, linseed, okara (lees of bean curd), and sakekasu (sake lees) were found to effectively adsorb organochlorine compounds. The amounts of these compounds such as chloroform, dichloromethane, and benzene adsorbed were plotted against the equilibrium concentration of substances in solution on a logarithmic scale. A linear relationship was obtained, indicating that the adsorption reactions were of the Freundlich type. When the lees materials were applied to wastewater (pH: 10) containing 0.1 g/l of dichloromethane, dichloromethane was removed from the wastewater in the range of 70-90% efficiency after 90 min. There was a high correlation between the removal efficiency and the number of spherosomes, which are intracellular particles attributed to the uptake of organochlorine compounds. PMID:15621195

Adachi, Atsuko; Hamamoto, Hiroko; Okano, Toshio

2005-02-01

154

Effects-directed analysis of organic toxicants in wastewater effluent from Zagreb, Croatia.  

PubMed

The organic toxicants present in the effluent of the main sewer of the city of Zagreb, Croatia were isolated and identified through the use of effects-directed characterisation techniques. At the time of investigation, the wastewater effluent received no treatment and was comprised of a mixture of effluent from domestic and industrial sources. The organic load of the wastewater was isolated by solid phase extraction and toxicity profiles obtained using reverse-phase HPLC. All procedures were evaluated through the analysis of a series of reference compounds of widely differing polarity. Toxicity profiles for EROD activity (CYP1A induction), vitellogenin induction (estrogenic activity), cytotoxicity (membrane stability and metabolic inhibition) were obtained using a rainbow trout (Oncorhynchus mykiss) primary hepatocyte bioassay. The suite of bioassays showed biological responses after exposure to the raw extracts for all the endpoints tested. However, a combination of mixture toxicity and cytotoxicity in the complex raw extract had some masking effect on the sub-lethal responses of vitellogenin and EROD induction. Bioassay testing of the fine fractions obtained by HPLC produced a range of endpoint-specific toxicity profiles for each sample. A number of compounds were identified by the use of GC-MS and LC-MS/MS as responsible for the observed effects. The steroid estrogens 17 beta-estradiol and estriol were identified by LC-MS/MS as estrogen receptor agonists in two of the estrogenic fractions. In addition, GC-MS analysis identified different alkylphenols, benzophenone and methylparaben which also contributed to the estrogenic activity of the sample. Polycyclic aromatic hydrocarbons (PAHs), alkyl substituted PAHs, nitro-polycyclic aromatic compounds (nitro-PACs), carbazoles and alkyl substituted carbazoles and other known CYP1A inducers were identified by GC-MS analysis as responsible for some of the observed EROD activity. Some active compounds remain unidentified. PMID:17166550

Grung, Merete; Lichtenthaler, Rainer; Ahel, Marijan; Tollefsen, Knut-Erik; Langford, Katherine; Thomas, Kevin V

2007-02-01

155

Alkylation of organic aromatic compounds  

DOEpatents

Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1993-01-01

156

Trace organics variation across the wastewater treatment system of a Class-B refinery and estimate of removal of refractory organics by add-on mixed-media filtration and granular activated carbon at pilot scale  

Microsoft Academic Search

Wastewater at SOHIO's Toledo refinery was sampled every four hours for four successive days in December 1976. Effluents from the full-scale system (dissolved-air-flotation (DAF) unit and final clarifier for the activated-sludge unit) and an add-on pilot-scale unit (mixed-media filter and activated-carbon columns) were sampled for analysis of common wastewater parameters and trace organic compounds. Grab samples taken every four hours

L. A. Raphaelian; W. Harrison

1978-01-01

157

Possible complex organic compounds on Mars.  

PubMed

It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed. PMID:11541335

Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

1997-01-01

158

Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism.  

PubMed

Recent studies have shown that the lack of ideal anodes with both good activity and stability is still one of the critical problems in electrochemical oxidation for organic wastewater treatment. The electrochemical properties, the activity and stability for anodic oxidation of various phenolic compounds, and the degradation mechanism on a novel beta-PbO2 electrode modified with fluorine resin were investigated. The anode life after modification was greatly improved to be more than 10 yr in common electrochemical current conditions. Such an anode was effective for partial degradation of phenolic compounds, but selective because reactive activities were varied with different substituents. Characterized by SEM and XRD, the crystal form of the anode was verified to be mainly beta-PbO2, and it hardly changed when used for p-nitrophenol degradation for around 320 h although there existed slow electrode corrosion. The active species generated during anodic oxidation were determined to be mainly hydroxyl radical and little ozone. The reactions between hydroxyl radical and phenolic compounds were proved to be electrophilic reactions, based on which a general electrochemical degradation mechanism for aromatic compounds was proposed. In general, such a novel anode has a good performance for organics degradation with perfect electrode life, showing potential for environmental application. PMID:15667118

Zhou, Minghua; Dai, Qizhou; Lei, Lecheng; Chun'an, M A; Wang, Dahui

2005-01-01

159

Photocatalytic oxidation of organic compounds on Mars  

NASA Technical Reports Server (NTRS)

Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.

Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.

1978-01-01

160

Nutrient removal and microbial granulation in an anaerobic process treating inorganic and organic nitrogenous wastewater  

Microsoft Academic Search

Abstract The sustainable anaerobic nitrogen removal and microbial granulation were investigated by using alaboratory anaerobic granular sludge bed reactor, treating synthetic (inorganic and organic) wastewater and piggery waste. From inorganic synthetic wastewater, lithoautotrophic ammonium oxidation to nitrite\\/nitrate was observed by an addition of hydroxylamine. Also, the results revealed that the Anammox intermediates (particularly, hydrazine) contents in the substrate would be

Y. h. Ahn; H. c. Kim

161

Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells  

Microsoft Academic Search

Many industries are charged fees based on the organic loads in effluents. Therefore, it can be advantageous to reduce the wastewater strength prior to discharge. We investigated the use of microbial fuel cells (MFCs) to reduce the chemical oxygen demand (COD) of a paper?plant wastewater while at the same time producing electricity in a continuous flow system. At a hydraulic

Liping Huang; Shaoan Cheng; Farzaneh Rezaei; Bruce E. Logan

2009-01-01

162

Treatment of wastewater from dye manufacturing industry by coagulation  

Microsoft Academic Search

Chemical coagulation was used to remove the compounds present in wastewater from dye manufacturing industry. The character of wastewater was determined. Most compounds found in the wastewater are phenol derivatives, aniline derivatives, organic acid and benzene derivatives, output from dye manufacturing. Various polyferric chloride coagulants were investigated. Results showed that high extent of Fe(III) hydrolysis was not always suited for

YUAN Yu-li; WEN Yue-zhong; LI Xiao-ying; LUO Si-zhen

163

Reflectance spectroscopy of organic compounds: 1. Alkanes  

USGS Publications Warehouse

Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

Clark, R. N.; Curchin, J. M.; Hoefen, T. M.; Swayze, G. A.

2009-01-01

164

Ozone remediation of some phenol compounds present in food processing wastewater  

Microsoft Academic Search

Aqueous ozonation of four phenolic compounds (gallic acid, tyrosol, (+)?catechin and p?hydroxybenzoic acid) has been carried out in a semibatch reactor. The influence of the presence of free radical scavengers (t?BuOH), inlet ozone partial pressure and pH has been investigated in aqueous solution using high concentrations of the phenolic substances (up to 3 g L), typically found in wastewater from

Fernando J. Beiträn; Javier Rivas; Pedro M. Álvarez; Eva Rodríguez

2000-01-01

165

Analyzing method on biogenic volatile organic compounds  

NASA Astrophysics Data System (ADS)

In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January to July, 2000. A small refrigerator was used so as to remove water in the air sample from gas line, and get accurate concentrations of volatile organic compounds. At 5degreesC, good water removing efficiency can be obtained at controlled flow rate. Air samples were collected around the building of Mesa Lab. of NCAR and analyzed by this gas chromatography system. This paper reports this gas chromatography system and results of air samples. The experimental results show that this gas chromatography system has a good reproducibility and stability, and main interesting volatile organic compounds such as isoprene, monoterpenes have an evident diurnal variation.

Bai, J. H.; Wang, M. X.; Hu, F.; Greenberg, J. P.; Guenther, A. B.

2002-02-01

166

Catalyst for Oxidation of Volatile Organic Compounds  

NASA Technical Reports Server (NTRS)

Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

2000-01-01

167

Origin of organic compounds in carbonaceous chondrites.  

PubMed

Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix. PMID:11537361

Cronin, J R

1989-01-01

168

Origin of organic compounds in carbonaceous chondrites  

NASA Astrophysics Data System (ADS)

Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypothesis have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix.

Cronin, J. R.

169

Wastewater indicator compounds in wastewater effluent, surface water, and bed sediment in the St. Croix National Scenic Riverway and implications for water resources and aquatic biota, Minnesota and Wisconsin, 2007-08  

USGS Publications Warehouse

The results of this study indicate that aquatic biota in the St. Croix River are exposed to a wide variety of organic contaminants that originate from diverse sources including WWTP effluent. The data on wastewater indicator compounds indicate that exposures are temporally and spatially variable and that OWCs may accumulate in bed sediment. These results also indicate that OWCs in water and bed sediment increase downstream from discharges of wastewater effluent to the St. Croix River; however, the presence of OWCs in surface water and bed sediment at the Sunrise site indicates that potential sources of compounds, such as WWTPs or other sources, are upstream from the Taylors Falls-St. Croix Falls area.

Tomasek, Abigail A.; Lee, Kathy E.; Hansen, Donald S.

2012-01-01

170

Sulfate minerals and organic compounds on Mars  

NASA Astrophysics Data System (ADS)

Strong evidence for evaporitic sulfate minerals such as gypsum and jarosite has recently been found on Mars. Although organic molecules are often codeposited with terrestrial evaporitic minerals, there have been no systematic investigations of organic components in sulfate minerals. We report here the detection of organic material, including amino acids and their amine degradation products, in ancient terrestrial sulfate minerals. Amino acids and amines appear to be preserved for geologically long periods in sulfate mineral matrices. This suggests that sulfate minerals should be prime targets in the search for organic compounds, including those of biological origin, on Mars.

Aubrey, Andrew; Cleaves, H. James; Chalmers, John H.; Skelley, Alison M.; Mathies, Richard A.; Grunthaner, Frank J.; Ehrenfreund, Pascale; Bada, Jeffrey L.

2006-05-01

171

Compositing water samples for analysis of volatile organic compounds  

USGS Publications Warehouse

Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Researchers are able to derive accurate values for the mean concentration of VOCs from a single VOC analysis using established techniques for the collection of representative, discrete water samples. Such samples are then composited with a gas-tight syringe. This methodology can be employed in conjunction with chemical assessment using a conventional laboratory, field-portable equipment, or a mobile laboratory. Estimates of mass loadings in wastewater and urban storm runoff can be generated using values for the flow-weighted mean VOC concentrations. Spatially integrated mean VOC concentrations are useful for the evaluation of drinking waters. Factors that influence the value for the total error are identified.

Lopes, T. J.; Fallon, J. D.; Maluk, T. L.

2000-01-01

172

Metastable Equilibria Among Aqueous Organic Compounds  

NASA Astrophysics Data System (ADS)

Metastable equilibrium states exist when reactions among a subset of compounds in a chemical system are reversible even though other irreversible reactions exist in the same system. The existence of metastable equilibrium among organic compounds was initially detected by comparing ratios of organic acid concentrations reported for oil-field brines (Shock, 1988, Geology 16, 886-890; Shock, 1989, Geology 17, 572-573), and calculating the same ratios for likely oxidation states determined by mineral assemblages and mixtures of hydrocarbons in coexisting petroleum (Shock, 1994, in: The Role of Organic Acids in Geological Processes, Springer). This led to the notion of extending the concept of metastable equilibrium states to explicitly account for petroleum compositions (Helgeson et al., 1993, GCA, 57, 3295-3339), which eventually yielded the concept of hydrolytic disproportionation of kerogens to produce petroleum and CO2(g) (Helgeson et al., 2009, GCA, 73, 594-695). Experimental tests of metastable equilibrium among organic compounds began with the identification of reversible reactions between alkanes and alkenes that are dependent on the H2 fugacity of the experimental system (Seewald, 1994, Nature 370, 285-287). These were followed with a comprehensive series of long-term experiments leading to the hypothesis that reversible reactions include alkanes, alkenes, alcohol, aldehydes, ketones and carboxylic acids (e.g., Seewald, 2001, GCA 65, 1641-1664; 2003, Nature 426, 327-333; McCollom & Seewald, 2003, GCA 67, 3645-3664). We have conducted sets of hydrothermal organic transformation experiments that test the extent to which these reactions are indeed reversible using aromatic and cyclic compounds. Results demonstrate reversibility for reactions among dibenzyl ketone, 1,3-diphenyl-2-propanol, 1,3-diphenylpropene and 1,3-diphenylpropane, as well as among methylcyclohexanes, methylcyclohexenes, methylcyclohexanols, methylcyclohexanones and methylcyclohexadienes. The compounds chosen for study include structural features that provide mechanistic insight into the reactions. By including cyclic and aromatic compounds, these results expand the diversity of organic compounds that react reversibly in geochemical processes. It follows that metastable equilibria among organic compounds may be inescapable during hydrothermal alteration and petroleum generation.

Shock, E.; Shipp, J.; Yang, Z.; Gould, I. R.

2011-12-01

173

Fractionation and Characterization of Organic Matter in Wastewater from a Swine Waste-Retention Basin.  

National Technical Information Service (NTIS)

Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutra...

J. A. Leenheer C. E. Rostad

2004-01-01

174

Toxic Organic Emissions from Synfuels and Related Industrial Wastewater Treatment Systems.  

National Technical Information Service (NTIS)

The report gives results of an examination of the potential for toxic organic emissions from synfuels wastewater treatment systems. The synthetic fuels facilities examined were coal gasification, direct and indirect coal liquefaction, shale oil, by-produc...

F. A. Scheffel F. J. Castaldi

1986-01-01

175

DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES  

EPA Science Inventory

Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

176

DENSITY LEVELS OF PATHOGENIC ORGANISMS IN MUNICIPAL WASTEWATER SLUDGE: A LITERATURE REVIEW  

EPA Science Inventory

This report presents a critical review of the literature from laboratory and full scale studies regarding density levels of indicator and pathogenic organisms in municipal wastewater sludges and septage. The effectiveness of conventional municipal sludge stabilization processes (...

177

Ultrasonic process for remediation of organics-contaminated groundwater/wastewater  

SciTech Connect

A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

Wu, J.M.; Peters, R.W.

1995-07-01

178

Ultraviolet radiation absorbing compounds in marine organisms  

SciTech Connect

Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

Chalker, B.E.; Dunlap, W.C. (Australian Inst. of Marine Science, Queensland (Australia))

1990-01-09

179

Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading.  

PubMed

Acid wastewaters contaminated with Fe - 1000 mg L(-1) and Cu - 100 mg L(-1) were remediated by microbial sulfate-reduction at high organic loading (theoretical TOC/SO4(2-) ratio 1.1) in a laboratory installation. The installation design includes a fixed-bed anaerobic bioreactor for sulfate-reduction, a chemical reactor, a settler and a three-sectional bioreactor for residual organic compounds and hydrogen sulfide removal. Sulfate-reducing bacteria are immobilized on saturated zeolite in the fixed-bed bioreactor. The source of carbon and energy for bacteria was concentrated solution, containing ethanol, glycerol, lactate and citrate. Heavy metals removal was achieved by produced H2S at sulfate loading rate 88 mg L(-1)h(-1). The effluent of the anaerobic bioreactor was characterized with high concentrations of acetate and ethanol. The design of the second bioreactor (presence of two aerobic and an anoxic zones) makes possible the occurrence of nitrification and denitrification as well as the efficiently removal of residual organic compounds and H2S. PMID:23611703

Bratkova, Svetlana; Koumanova, Bogdana; Beschkov, Venko

2013-06-01

180

Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada.  

PubMed

Three high volume septic systems in Ontario, Canada, were examined to assess the potential for onsite wastewatertreatment systems to release pharmaceutical compounds to the environment and to evaluate the mobility of these compounds in receiving aquifers. Wastewater samples were collected from the septic tanks, and groundwater samples were collected below and down gradient of the infiltration beds and analyzed for a suite of commonly used pharmaceutical and trace organic compounds. The septic tank samples contained elevated concentrations of several pharmaceutical compounds. Ten of the 12 compounds analyzed were detected in groundwater at one or more sites at concentrations in the low ng L(-1) to low microg L(-1) range. Large differences among the sites were observed in both the number of detections and the concentrations of the pharmaceutical compounds. Of the compounds analyzed, ibuprofen, gemfibrozil, and naproxen were observed to be transported atthe highest concentrations and greatest distances from the infiltration source areas, particularly in anoxic zones of the plumes. PMID:18497127

Carrara, Cherilyn; Ptacek, Carol J; Robertson, William D; Blowes, David W; Moncur, Michael C; Sverko, Ed; Backus, Sean

2008-04-15

181

Global Exposure Modelling of Semivolatile Organic Compounds  

NASA Astrophysics Data System (ADS)

Organic compounds which are persistent and toxic as the agrochemicals ?-hexachlorocyclohexane (?-HCH, lindane) and dichlorodiphenyltrichloroethane (DDT) pose a hazard for the ecosystems. These compounds are semivolatile, hence multicompartmental substances and subject to long-range transport (LRT) in atmosphere and ocean. Being lipophilic, they accumulate in exposed organism tissues and biomagnify along food chains. The multicompartmental global fate and LRT of DDT and lindane in the atmosphere and ocean have been studied using application data for 1980, on a decadal scale using a model based on the coupling of atmosphere and (for the first time for these compounds) ocean General Circulation Models (ECHAM5 and MPI-OM). The model system encompasses furthermore 2D terrestrial compartments (soil and vegetation) and sea ice, a fully dynamic atmospheric aerosol (HAM) module and an ocean biogeochemistry module (HAMOCC5). Large mass fractions of the compounds are found in soil. Lindane is also found in comparable amount in ocean. DDT has the longest residence time in almost all compartments. The sea ice compartment locally almost inhibits volatilization from the sea. The air/sea exchange is also affected , up to a reduction of 35 % for DDT by partitioning to the organic phases (suspended and dissolved particulate matter) in the global oceans. Partitioning enhances vertical transport in the sea. Ocean dynamics are found to be more significant for vertical transport than sinking associated with particulate matter. LRT in the global environment is determined by the fast atmospheric circulation. Net meridional transport taking place in the ocean is locally effective mostly via western boundary currents, upon applications at mid- latitudes. The pathways of the long-lived semivolatile organic compounds studied include a sequence of several cycles of volatilisation, transport in the atmosphere, deposition and transport in the ocean (multihopping substances). Multihopping is more significant for DDT than for lindane. It enhances the LRT potential for both compounds.

Guglielmo, F.; Lammel, G.; Maier-Reimer, E.

2008-12-01

182

Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin  

USGS Publications Warehouse

Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.

Leenheer, Jerry A.; Rostad, Colleen E.

2004-01-01

183

REDUCTION OF TOXICITY TO AQUATIC ORGANISMS BY INDUSTRIAL WASTEWATER TREATMENT  

EPA Science Inventory

The specific goal of this research was to conduct 24-hour static acute bioassays with 'untreated' influent and 'treated' effluent using fathead minnows (Pimephales promelas) and water flea (Daphnia magna) to biologically evaluate the effectiveness of industrial wastewater facilit...

184

Organic photosensitive devices using subphthalocyanine compounds  

DOEpatents

An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

Rand, Barry (Princeton, NJ) [Princeton, NJ; Forrest, Stephen R. (Ann Arbor, MI) [Ann Arbor, MI; Mutolo, Kristin L. (Hollywood, CA) [Hollywood, CA; Mayo, Elizabeth (Alhambra, CA) [Alhambra, CA; Thompson, Mark E. (Anaheim Hills, CA) [Anaheim Hills, CA

2011-07-05

185

Disinfection. [Wastewater treatment  

SciTech Connect

Methods of disinfection of wastewater including chlorination, ultraviolet radiation, ozone, and quaternary compounds are reviewed. Various analytical methods to detect residues of the disinfectants are described. The production of inorganic and nonvolatile organic compounds in conventional water treatment processes is reviewed. (KRM)

Haas, C.N. (Illinois Inst. of Technology, Chicago); McCreary, J.J.

1982-06-01

186

Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.  

PubMed

Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously. PMID:24520696

Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

2013-08-01

187

Microbiological degradation of atmospheric organic compounds  

NASA Astrophysics Data System (ADS)

Until now, aerosol transformation was assumed to be via chemical or physical processes. Here we present evidence that an important class of organic aerosols - dicarboxylic acids (DCA) - can be efficiently transformed by existing airborne microbes (bacteria and fungi) in the boundary layer. Isotopic studies indicate that microbiological entities transform and use DCA as nutrients. Several observed products are toxicants or pathogens. Identified volatile products indicate that DCA can be recycled back to the atmosphere via microbiological processes. Thus, biodegradation could be an important atmospheric transformation pathway for organic compounds.

Ariya, Parisa A.; Nepotchatykh, Oleg; Ignatova, Olga; Amyot, Marc

2002-11-01

188

Chemicapacitive microsensors for volatile organic compound detection  

Microsoft Academic Search

A low-cost, low-power volatile organic compound (VOC) sensor has been constructed from an array of micromachined parallel-plate capacitors. The sensor has demonstrated detection of many VOCs well below the lower explosive limits and could be used in industrial leak monitoring applications or for homeland defense. In place of a standard dielectric, the individual capacitors were filled with selectively absorbing polymers.

S. V. Patel; T. E. Mlsna; B. Fruhberger; E. Klaassen; S. Cemalovic; D. R. Baselt

2003-01-01

189

Reflectance spectroscopy of organic compounds: 1. Alkanes  

Microsoft Academic Search

Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 mum. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the

Roger N. Clark; John M. Curchin; Todd M. Hoefen; Gregg A. Swayze

2009-01-01

190

Reflectance spectroscopy of organic compounds: 1. Alkanes  

Microsoft Academic Search

Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 ?m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the

Roger N. Clark; John M. Curchin; Todd M. Hoefen; Gregg A. Swayze

2009-01-01

191

The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants  

Microsoft Academic Search

Goal, Scope and Background  Dissolved organic carbon (DOC) constitutes a parameter of organic pollution for waters and wastewaters, which is not so often\\u000a studied, and it is not yet regulated by directives. The term ‘DOC’ is used for the fraction of organics that pass through\\u000a a 0.45 ?m pores’ size membrane. The type of wastewater plays an important role in the

Athanasios Katsoyiannis; Constantini Samara

2007-01-01

192

Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters  

Microsoft Academic Search

The accumulation of organic matter (OM) was investigated after two and five years in a series of four gravel-bed constructed wetlands supplied with different hydraulic loading rates (21, 26, 46 and 72mmd?1) of farm dairy wastewaters. At these hydraulic loadings, mean wastewater loadings of particulate OM (determined as volatile suspended solids) to the wetlands ranged between ?1.7 and 5.8gm?2d?1. Vertical

Chris C Tanner; James P. S Sukias; Martin P Upsdell

1998-01-01

193

Recalcitrant organic matter removal from textile wastewater by an aerobic cell-immobilized pellet column.  

PubMed

The treatment of textile wastewater is difficult because of its recalcitrant organic content. The biological removal of recalcitrant organics requires a long retention time for microbial growth. Activated sludge was immobilized in a polyethylene glycol pellet to allow for sufficient sludge retention time. The pellets were filled in an aerobic cell-immobilized pellet column (CIPC) reactor in order to investigate the removal of recalcitrant organics from textile wastewater. A textile wastewater effluent treated by a conventional activated sludge reactor was used as a target wastewater. The chemical oxygen demand (COD) removal efficiency of the aerobic CIPC reactor at various empty bed contact times was in the range of 42.2-60.5%. Half of the input COD was removed in the lower part (bottom 25% of the reactor volume) of the reactor when the organic loading rate was less than 1.5 kg COD/(m(3)•d). About 15-30% of the input COD was removed in the remaining part of the column reactor. The COD removed in this region was limitedly biodegradable. The biodegradation of recalcitrant organics could be carried out by the interactional functions of the various bacteria consortia by using a cell-immobilization process. The CIPC process could effectively treat textile wastewater using a short retention time because the microorganisms that degrade limitedly biodegradable organics were dominant in the reactor. PMID:23656958

Kim, Moonil; Han, Dukkyu; Cui, Fenghao; Bae, Wookeun

2013-01-01

194

Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.  

PubMed

The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively. PMID:23925658

Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

2014-01-01

195

Self assembly properties of primitive organic compounds  

NASA Technical Reports Server (NTRS)

A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.

Deamer, D. W.

1991-01-01

196

Production of volatile organic compounds by mycobacteria.  

PubMed

The need for improved rapid diagnostic tests for tuberculosis disease has prompted interest in the volatile organic compounds (VOCs) emitted by Mycobacterium tuberculosis complex bacteria. We have investigated VOCs emitted by Mycobacterium bovis BCG grown on Lowenstein-Jensen media using selected ion flow tube mass spectrometry and thermal desorption-gas chromatography-mass spectrometry. Compounds observed included dimethyl sulphide, 3-methyl-1-butanol, 2-methyl-1-propanol, butanone, 2-methyl-1-butanol, methyl 2-methylbutanoate, 2-phenylethanol and hydrogen sulphide. Changes in levels of acetaldehyde, methanol and ammonia were also observed. The compounds identified are not unique to M. bovis BCG, and further studies are needed to validate their diagnostic value. Investigations using an ultra-rapid gas chromatograph with a surface acoustic wave sensor (zNose) demonstrated the presence of 2-phenylethanol (PEA) in the headspace of cultures of M. bovis BCG and Mycobacterium smegmatis, when grown on Lowenstein-Jensen supplemented with glycerol. PEA is a reversible inhibitor of DNA synthesis. It is used during selective isolation of gram-positive bacteria and may also be used to inhibit mycobacterial growth. PEA production was observed to be dependent on growth of mycobacteria. Further study is required to elucidate the metabolic pathways involved and assess whether this compound is produced during in vivo growth of mycobacteria. PMID:22224870

McNerney, Ruth; Mallard, Kim; Okolo, Phyllis Ifeoma; Turner, Claire

2012-03-01

197

CHLORINATED ORGANIC COMPOUNDS IN DIGESTED, HEAT-CONDITIONED, AND PURIFAX-TREATED SLUDGES  

EPA Science Inventory

Wastewater sludges were stabilized by Purifax treatment, anaerobic digestion and heat conditioning. The processed sludges from the Purifax process at chlorine dosages normally used in processing wastewater sludges contained 2 to > 14 times the total organic chlorine content of th...

198

Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB  

NASA Astrophysics Data System (ADS)

In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SS.L-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000~6000 mg COD.L-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 L.d-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4~4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

Wang, Lu; Li, Yong-Feng; Wang, Yi-Xuan; Yang, Chuan-Ping

2010-11-01

199

WASTE TREATABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS  

EPA Science Inventory

Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen facilities were visited by EPA's Office of Research and Development (ORD) from June 1985 to September 1986, to conduct sampl...

200

WASTE TRETABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS  

EPA Science Inventory

Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen faclities were visited by EPA's Office of Research and Developement ORD) from June 1985 to September 1986, to conduct sampli...

201

Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment.  

PubMed

The distribution coefficient (Kd) and the organic carbon distribution coefficient (KOC) were determined for four Perfluorinated Compounds (PFCs) to three different types of sludge taken from a conventional Sewage Treatment Plant (STP). Batch experiments were performed in six different environmental relevant concentrations (200ngL(-1)to 5?gL(-1)) containing 1gL(-1) sludge. Kd values ranged from 330 to 6015, 329 to 17432 and 162 to 11770Lkg(-1) for primary, secondary and digested sludge, respectively. The effects of solution's pH, ionic strength and cation types on PFCs sorption were also evaluated. Sorption capacities of PFCs significantly decreased with increased pH values from 6 to 8. Furthermore, the divalent cation (Ca(2+)) enhanced PFCs sorption to a higher degree in comparison with the monovalent cation (Na(+)) at the same ionic strength. The obtained Kd values were applied to estimate the sorbed fractions of each PFC in different stages of a typical STP and to calculate their removal through treated wastewater and sludge. In primary settling tank, the predicted sorbed fractions ranged from 3% for Perfluorooctanoic Acid (PFOA) to 55% for Perfluoroundecanoic acid (PFUdA), while in activated sludge tank and anaerobic digester sorption was more than 50% for all target compounds. Almost 86% of initial PFOA load is expected to be detected in treated wastewater; while Perfluorodecanoic acid (PFDA), PFUdA and Perfluorooctanesulfonate (PFOS) can be significantly removed (>49%) via sorption to primary and excess secondary sludge. In anaerobic digester, the major part (>76%) of target PFCs is expected to be sorbed to sludge, while almost 3% of initial PFOA load will be detected in sludge leachates. PMID:24997945

Arvaniti, Olga S; Andersen, Henrik R; Thomaidis, Nikolaos S; Stasinakis, Athanasios S

2014-09-01

202

Adsorption of organic compounds by microbial biomass  

SciTech Connect

The adsorption of hazardous organic compounds such as phenol, 2-chlorophenol, 2-nitrophenol, chlorobenzene, and ethylbenzene onto two types of inactive microbial biomass (activated sludge and nitrifying bacteria) was studied. The adsorption isotherms could be expressed by the Freundlich adsorption isotherm and were found to be nearly linear over the range of concentrations (50-200 mg/l) studied. Desorption studies showed that the adsorption process was partially reversible. Heat of sorption was estimated and indicate that the biosorption process involves a physical rather than a chemical mechanism. The adsorptive capacity of biomass is about two to three orders of magnitude less than activated carbon. In bisolute systems, the uptake of each solute is reduced in the presence of a second solute, but the combined adsorptive capacity was greater than that for either of the individual substances from its pure solution. The compound with higher octanol/water partition coefficient was observed to be more favorably adsorbed. In the case of activated carbon, the more hydrophobic compound was observed to be more favorably adsorbed. The uptake of each solute is reduced, when the initial concentration of other solute is increased. In multi-solute systems, the equilibrium capacity for each solute is reduced significantly in the presence of other solutes and the effect of competition become more pronounced with the increase in number of solutes in solution. The overall adsorption capacity of biomass was barely affected by the presence of more solutes in solution. Live and inactive biomass do not exhibit the same level of biosorptive uptake, and the differences appear to depend on the specific organic compound.

Selvakumar, A.

1988-01-01

203

CHARACTERIZATION OF REUSABLE MUNICIPAL WASTEWATER EFFLUENTS AND CONCENTRATION OF ORGANIC CONSTITUENTS  

EPA Science Inventory

The main thrust of this project was to collect organic concentrates from operating advanced wastewater treatment (AWT) plants for use in health effects testing. A reverse osmosis process was employed in the first stage concentration; the organics were further concentrated and rec...

204

GC/MS METHODOLOGY FOR PRIORITY ORGANICS IN MUNICIPAL WASTEWATER TREATMENT  

EPA Science Inventory

A state-of-the-art review is presented on the current GC/MS methodology for the analysis of priority toxic organics in municipal wastewater treatment. The review summarizes both recent published and unpublished literature on GC/MS methods for analysis of toxic organics in municip...

205

Preparing Soil Samples for Volatile Organic Compound Analysis.  

National Technical Information Service (NTIS)

Three equilibrium headspace and three solvent extraction methods of preparing soil samples for determining volatile organic compounds (VOCs) were compared. Soil samples were spiked with five gasoline range aromatic compounds and four chlorinated compounds...

A. D. Hewitt

1997-01-01

206

Biogenic volatile organic compounds - small is beautiful  

NASA Astrophysics Data System (ADS)

While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (?-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, ?-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-?-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the morning and raised in the afternoon. This is reversed for the "cataflexistyle" morphology. The bVOC mixture emitted by each morphology in morning and afternoon was complex. However for compounds showing a difference (cis-ocimene and Z + E epoxy -ocimene), the emissions from the anaflexistyle were greater than from the cataflexistyle, and were greater in the afternoon compared with the morning emissions. Where large flowering plant species are abundant, big changes in monoterpene emissions at < 2m above ground level over relatively small periods of time during pollination are likely to be missed in larger scale integrated flux measurements.

Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

2012-12-01

207

Organic Compounds Evaporating from Building Materials into Indoor Atmosphere.  

National Technical Information Service (NTIS)

Volatile organic compounds evaporating from building materials produce odor to indoor atmosphere and may cause health hazards. The latest publications on organic compounds emitted by building and interior finish materials have been reviewed. These publica...

S. Jaemsae A. Kivistoe M. Ojala K. Saarela M. Waeaenaenen

1986-01-01

208

Palladium catalyzed hydrogenation of bio-oils and organic compounds  

DOEpatents

The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

2011-06-07

209

Supercritical water oxidation for the destruction of toxic organic wastewaters: a review.  

PubMed

The destruction of toxic organic wastewaters from munitions demilitarization and complex industrial chemical clearly becomes an overwhelming problem if left to conventional treatment processes. Two options, incineration and supercritical water oxidation (SCWO), exist for the complete destruction of toxic organic wastewaters. Incinerator has associated problems such as very high cost and public resentment; on the other hand, SCWO has proved to be a very promising method for the treatment of many different wastewaters with extremely efficient organic waste destruction 99.99% with none of the emissions associated with incineration. In this review, the concepts of SCWO, result and present perspectives of application, and industrial status of SCWO are critically examined and discussed. PMID:17915678

Veriansyah, Bambang; Kim, Jae-Duck

2007-01-01

210

Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.  

PubMed

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring. PMID:24369993

Escher, Beate I; Allinson, Mayumi; Altenburger, Rolf; Bain, Peter A; Balaguer, Patrick; Busch, Wibke; Crago, Jordan; Denslow, Nancy D; Dopp, Elke; Hilscherova, Klara; Humpage, Andrew R; Kumar, Anu; Grimaldi, Marina; Jayasinghe, B Sumith; Jarosova, Barbora; Jia, Ai; Makarov, Sergei; Maruya, Keith A; Medvedev, Alex; Mehinto, Alvine C; Mendez, Jamie E; Poulsen, Anita; Prochazka, Erik; Richard, Jessica; Schifferli, Andrea; Schlenk, Daniel; Scholz, Stefan; Shiraishi, Fujio; Snyder, Shane; Su, Guanyong; Tang, Janet Y M; van der Burg, Bart; van der Linden, Sander C; Werner, Inge; Westerheide, Sandy D; Wong, Chris K C; Yang, Min; Yeung, Bonnie H Y; Zhang, Xiaowei; Leusch, Frederic D L

2014-02-01

211

Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell.  

PubMed

Presence of pathogenic microorganism in anodic effluent of microbial fuel cell (MFC) makes it unfit for reuse. In this study, performance of dual chamber MFC was evaluated in terms of organic matter removal, power generation and disinfection in cathodic chamber. Anodic effluent was treated further in cathodic chamber for achieving disinfection with different doses of sodium hypochlorite (NaOCl) with available chlorine varying from 0.67, 1.32, 2, 3 and 4 g/L. Addition of different doses of NaOCl resulted in satisfactory disinfection along with removal of nitrogenous compounds. Power output of MFC improved up to 3g/L of available chlorine (6.5 W/m(3)); however, further increase in chlorine concentration decreased the power. Voltammetric and impedance analysis showed higher and faster electron reduction and decrease in polarization resistance at 3g/L dose. Higher organic matter removal from wastewater and complete elimination of microorganism, along with improved power output, demonstrates effectiveness of hypochlorite as catholyte. PMID:24835745

Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

2014-07-01

212

Minimization of organic content in simulated industrial wastewater by Fenton type processes: a case study.  

PubMed

Pre-treatment of simulated industrial wastewaters (SIM1, SIM2 and SIM3) containing organic and inorganic compounds (1,2-dichloroethane, sodium formate, sodium hydrogen carbonate, sodium carbonate and sodium chloride) by oxidative degradation using homogeneous Fenton type processes (Fe2+/H2O2 and Fe3+/H2O2) has been evaluated. The effects of initial Fe2+ and Fe3+ concentrations, [Fe2+/3+], type of iron salt (ferrous sulfate vs. ferric chloride), initial hydrogen peroxide concentration, [H2O2], on mineralization extent, i.e., total organic content (TOC) removal, were studied. Response surface methodology (RSM), particularly Box-Behnken design (BBD) was used as modelling tool, and obtained predictive function was used to optimize the overall process by the means of desirability function approach (DFA). Up to 94% of initial TOC was removed after 120 min. Ferrous sulfate was found to be the most appropriate reagent, and the optimal doses of Fe2+ and H2O2 for reducing the pollutant content, in terms of final TOC and sludge production were assessed. PMID:19525062

Grci?, Ivana; Vujevi?, Dinko; Sepci?, Josip; Koprivanac, Natalija

2009-10-30

213

Volatile Organic Compound Analysis in Istanbul  

NASA Astrophysics Data System (ADS)

Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Ni?anta??, 34365, ?stanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Ka??thane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Ka??thane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of compounds. N-octane, 3-methylheptane, n-nonane, 2,3,4-trimethylpentane and n-hexane parameters ranged between 3 ppbv and maximum value of 10 ppbv. The other VOC parameters are measured below 3 ppbv value. At participating urban locations for the year of data considered, levels of carbonyls were higher than the level of the other organic compound groups, suggesting that emissions from motor vehicles and photochemical reactions strongly in?uence ambient air concentrations of carbonyls. Of the most prevalent carbonyls, formaldehyde and acetaldehyde were the dominant compounds, ranging from 1.5-7.4 ppbv for formaldehyde, to 0.8-2.7 ppbv for acetaldehyde. Keywords: Air quality, Volatile Organic Compounds (VOC), industry, meteorology, urban, Ka??thane, ?stanbul. Acknowledgment: This work was part of the TUJJB-TUMEHAP-01-10 and Turkish Scientific and Technical Research Council Project No: 109Y132.

?apraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Co?kun, M.

2012-04-01

214

Identification of priority organic compounds in groundwater recharge of China.  

PubMed

Groundwater recharge using reclaimed water is considered a promising method to alleviate groundwater depletion, especially in arid areas. Traditional water treatment systems are inefficient to remove all the types of contaminants that would pose risks to groundwater, so it is crucial to establish a priority list of organic compounds (OCs) that deserve the preferential treatment. In this study, a comprehensive ranking system was developed to determine the list and then applied to China. 151 OCs, for which occurrence data in the wastewater treatment plants were available, were selected as candidate OCs. Based on their occurrence, exposure potential and ecological effects, two different rankings of OCs were established respectively for groundwater recharge by surface infiltration and direct aquifer injection. Thirty-four OCs were regarded as having no risks while the remaining 117 OCs were divided into three groups: high, moderate and low priority OCs. Regardless of the recharge way, nonylphenol, erythromycin and ibuprofen were the highest priority OCs; their removal should be prioritized. Also the database should be updated as detecting technology is developed. PMID:24960229

Li, Zhen; Li, Miao; Liu, Xiang; Ma, Yeping; Wu, Miaomiao

2014-09-15

215

Semivolatile organic compounds in indoor environments  

NASA Astrophysics Data System (ADS)

Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame retardants. This paper critically examines equilibrium partitioning of SVOCs among indoor compartments. It proceeds to evaluate kinetic constraints on sorptive partitioning to organic matter on fixed surfaces and airborne particles. Analyses indicate that equilibrium partitioning is achieved faster for particles than for typical indoor surfaces; indeed, for a strongly sorbing SVOC and a thick sorptive reservoir, equilibrium partitioning is never achieved. Mass-balance considerations are used to develop physical-science-based models that connect source- and sink-rates to airborne concentrations for commonly encountered situations, such as the application of a pesticide or the emission of a plasticizer or flame retardant from its host material. Calculations suggest that many SVOCs have long indoor persistence, even after the primary source is removed. If the only removal mechanism is ventilation, moderately sorbing compounds ( Koa > 10 10) may persist indoors for hundreds to thousands of hours, while strongly sorbing compounds ( Koa > 10 12) may persist for years. The paper concludes by applying the newly developed framework to explore exposure pathways of building occupants to indoor SVOCs. Accumulation of SVOCs as a consequence of direct air-to-human transport is shown to be potentially large, with a maximum indoor-air processing rate of 10-20 m 3/h for SVOC uptake by human skin, hair and clothing. Levels on human skin calculated with a simple model of direct air-to-skin transfer agree remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients.

Weschler, Charles J.; Nazaroff, William W.

216

Variability of trace organic chemical concentrations in raw wastewater at three distinct sewershed scales.  

PubMed

The site-specific daily fluctuations and scale-dependent variability of influent water quality, particularly concentrations of trace organic chemicals (TOrCs), have not yet been well described. In this study, raw wastewater from three distinct sewershed scales was sampled including a centralized wastewater treatment facility in Boulder, Colorado (population ~125,000) and two decentralized wastewater catchments in Golden, Colorado (clustered system population 400, and septic system population 32). Each site was sampled hourly for 26 h and samples were subsequently analyzed in triplicate for 32 TOrCs using liquid chromatography with tandem mass spectrometry and stable isotope dilution. Detection frequency (DF) of the various TOrCs was positively correlated with sewershed size with the greatest DF of the targeted TOrCs at the Boulder site and with decreasing DF with decreasing sewershed size. Site-specific fluctuations were both scale and compound-specific. The 11 TOrCs detected greater than 75% of the time across all three sites were used to further investigate and quantify variability and to develop a statistical model to investigate the flow-dependence and time-dependence of TOrC variability. Sewershed scale was inversely correlated to variability with coefficients of variation ranging from 0.24 to 0.96, 0.39 to 2.22, and 0.32 to 3.93 for the Boulder, cluster, and septic sites, respectively. A significant linear relationship was observed between concentration and flow and concentration and the concentration at prior time points for most TOrCs at the Boulder site. This suggests less variable influent concentrations result from dispersion and mixing in the conveyance system and a larger number of discrete inputs. A notable exception was the chlorinated flame retardant TCPP, which is likely associated with a high concentration, low-flow industrial input. A significant linear relationship between flow and concentration and sequential time points was not common at the decentralized sites. Scientists and engineers developing decentralized treatment systems must consider a larger range of influent qualities, particularly with respect to TOrCs. PMID:22516176

Teerlink, Jennifer; Hering, Amanda S; Higgins, Christopher P; Drewes, Jörg E

2012-06-15

217

Comparative toxicity of SRC-I wastewater to aquatic organisms. Final technical report  

SciTech Connect

SRI International performed a series of acute and chronic toxicity studies on SRC-I wastewaters using fish, zooplankton, and algae as test organisms. The tests were designed to determine the toxicity of SRC-I wastewaters to quatic organisms and based on differences in toxicity of the various water samples, to evaluate the efficacy of various wastewater treatment methods. Survival data from acute and chronic daphnid studies indicate that phenol recovery markedly reduced wastewater toxicity. In treatment processes that did not include phenol recovery, powdered activated carbon reduced toxicity more effectively than granulated activated carbon. All treated water supported algal growth in excess of that in controls, particularly those waters subjected to phenol recovery. The toxicity of each SRC-I wastewater sample was compared with that of a corresponding synthetic salt solution to determine whether the salt load was the toxic element. The wastewaters typically exhibited higher toxicity than their associated salt solutions. The effect was greatest in the daphnid chronic studies. The aquatic ecotoxicity tests were performed as part of ICRC's post-Base-line environmental R and D program. One objective of the program was to evaluate the impact of phenol recovery on effluent quality. Another objective was to assess the potential impact of wastewater discharge on aquatic organisms. The results of this study have been integrated with results from the rest of the R and D program, and are documented in ICRC's Integration Report for SRC-I Post-Baseline Environmental R and D. 7 references, 10 figures and 22 tables.

Bailey, H.C.

1984-01-01

218

Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials.  

PubMed

The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ~5.5 h), using wastewater with high (mean ~120 mg L(-1)) and low (mean ~20 mg L(-1)) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life. PMID:24001604

Nilsson, Charlotte; Renman, Gunno; Westholm, Lena Johansson; Renman, Agnieszka; Drizo, Aleksandra

2013-10-15

219

Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater  

SciTech Connect

Reuse of treated wastewater through groundwater recharge has emerged as an integral part of water and wastewater management in arid regions of the world. Aerated-lagoon wastewater treatment followed by surface infiltration offers a simple low-tech, low-cost treatment option for developing countries. This study investigated the fate of dissolved organic carbon (DOC) through laboratory-scale soil aquifer treatment (SAT) soil columns over a 64-week period. Aerated-lagoon wastewater (average DOE = 17 mg/l) and two soils were collected near the USA/Mexico border near Nogales, AZ. Laboratory-scale SAT columns exhibited three phases of aging where infiltration rates and DOC removals were delineated. DOC removal ranged from 39% to greater than 70% during the study, with DOC levels averaging 3.7 and 5.8 mg/l for the SAT columns packed with different soils. Soil with a higher fraction of organic carbon content had higher effluent DOC levels, presumably due to leaching of soil organic matter. UV absorbance data indicated preferential biodegradation removal of low molecular weight, low aromatic DOC. Overall, SAT reduced the potential towards forming trihalomethanes (THMs) during disinfection, although the reactivity ({mu}g THM/mg DOC) increased. SAT and groundwater recharge would provide a high degree of DOC removal in an integrated low-tech wastewater reuse management strategy, especially for developing countries in arid regions of the world.

Westerhoff, P.; Pinney, M.

2000-07-01

220

Alternatives to Automotive Consumer Products That Use Volatile Organic Compounds (VOC) and/or Chlorinated Organic Compound Solvents. Addendum.  

National Technical Information Service (NTIS)

This addendum to the document entitled 'Alternatives to Automotive Consumer Products that use Volatile Organic Compounds (VOC) and/or Chlorinated Organic Compound Solvents' presents the questionnaires that were filled out by the staff of the Institute for...

D. Wolf J. Zavadil M. Morris

2004-01-01

221

Toxic organic emissions from synfuels and related industrial-wastewater treatment systems. Final report, June 1985June 1986  

Microsoft Academic Search

The report gives results of an examination of the potential for toxic organic emissions from synfuels wastewater treatment systems. The synthetic fuels facilities examined were coal gasification, direct and indirect coal liquefaction, shale oil, by-product coke, and associated petrochemical products. A literature survey was performed to assess the fate of organic priority pollutants during wastewater treatment. Pollutants in the volatile,

F. A. Scheffel; F. J. Castaldi

1986-01-01

222

Influence of salts and phenolic compounds on olive mill wastewater detoxification using superabsorbent polymers.  

PubMed

For a selection of nine commercially available superabsorbent polymers, the absorption capacity was evaluated for the principal absorption-inhibition constituent of OMW, mineral salts and for phytotoxic-components, the phenolic compounds. A double exponential model was established for electrical conductivities ranging 4.2-25,000 microS cm(-1). For solutions of phenolic compounds ranging 0-0.5 g l(-1), a distribution coefficient near unit was achieved, while for OMW, the phenolic compounds were concentrated inside the gel as the distribution coefficient was 1.4. Correction of OMW pH towards neutrality was found to increase the absorption capacity by up to 35%. The phytotoxicity was assessed by the germination of Lepidium sativum. Inhibition in plant growth occurred for all OMW dilutions without superabsorbent polymers application. For 5% of OMW (COD 5 gl(-1) and 200 ppm of phenolic compounds) immobilised in PNa2 (1 gl(-1)), plant growth was promoted being observed a 120% growth germination, thus indicating that olive mill wastewater detoxification occurred. PMID:15288268

Davies, L C; Novais, J M; Martins-Dias, S

2004-12-01

223

Removal of dissolved organic matter in water-hyacinth waste-water treatment lagoons  

SciTech Connect

Secondary treatment of domestic wastewater in water hyacinth lagoons was evaluated under experimental conditions to assess the role of the roots' bacterial biofilm in the removal of dissolved organic matter (DOM). Research was conducted to (1) quantify removal rates by the biofilm as a function of bulk DOM concentration, (2) formulate an analytical model of DOM removal incorporating biofilm activity, and (3) test the model response to variable organic loads in a pilot-scale plant. Removal of DOM by the biofilm was quantified in continuous-flow water hyacinth tanks at ten concentrations ranging from 45 to 330 g COD m {sup {minus}3} . Total DOM removal in the denitrifying, acetate-based experimental system was measured and partitioned into two fractions associated with the activity of biofilm and suspended bacteria. Calculated DOM removal by the biofilm was adjusted for the release of organic compounds by debris decomposition. Values of DOM removal were used to calculate oxygen transfer rates from the water hyacinth roots. A model of DOM removal in water hyacinth lagoons was formulated. The model, composed of four differential equations, was solved at steady-state conditions and the validity of its simulation results was tested in pilot-scale tanks. Hydraulic detection times ranging from 2 to 28 days were evaluated using biofilm density and concentrations of DOM and particulate organics as monitoring parameters of the model response. The observed decrease of suspended bacterial biomass along the tank was correctly simulated by the model, but predictions of effluent concentrations were not always consistent. Predicted values of biofilm bacterial mass were similar to those measured in the tanks, except when large algal populations were present in the film.

Victoria-Rueda, C.H.

1991-01-01

224

Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China.  

PubMed

This study presents the occurrence of 43 semi-volatile organic compounds (SVOCs) listed as priority pollutants by both China and the United States Environmental Protection Agency, in sewage sludges collected from eleven wastewater treatment plants (WWTPs) of mainland and Hong Kong, China. Thirty-six SVOCs were detected by gas chromatography coupled with mass spectrometer (GC-MS) and at least 14 in each sample. The most abundant compounds were phthalic acid esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) with total concentrations ranging from 10 to 114mgkg(-1) dry weight (d.w.) (with a mean of 30mgkg(-1) d.w.) and from 1.4 to 33mgkg(-1)d.w. (with a mean of 16mgkg(-1) d.w.), respectively, followed by chlorobenzenes, nitroaromatics, haloethers and halogenated hydrocarbons which occurred generally at concentrations lower than 10mgkg(-1) d.w. Large variations were observed between the concentrations of individual compounds as well as their total concentrations in sludge samples from different WWTPs. The highest values of sum concentration of 16 PAHs and of 6 PAEs were found in sewage sludge from Beijing. The mean total concentration of each class of SVOCs in sewage sludge from mainland was remarkably higher than that from Hong Kong. The concentrations of di(2-ethylhexyl) phthalate in 91% sludge samples met the limit (100mgkg(-1)d.w.) proposed by the Europe Union for land application, whereas the PAH concentrations of 64% sludge samples exceeded the maximum permissible concentration (6.0mgkg(-1)d.w.). The occurrence of SVOCs in this study are compared with other studies and their sources are discussed. PMID:17509650

Cai, Quan-Ying; Mo, Ce-Hui; Wu, Qi-Tang; Zeng, Qiao-Yun; Katsoyiannis, Athanasios

2007-08-01

225

PERVAPORATIVE REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM MULTICOMPONENT AQUEOUS MIXTURES  

Microsoft Academic Search

The present study concerns with the separation of binary and ternary water–organics mixtures by pervaporation using different organophilic membranes (i.e., PERVAP-1060—polydimethylsiloxane, PERVAP-1070—zeolite filled polydimethylsiloxane, PEBAX-4033—polyether block amide). The following binary and ternary liquid mixtures were investigated: water–methyl acetate; water–ethyl acetate; water–butyl acetate, water–methyl t-butyl ether (MTBE), and water–methanol–MTBE. The organic components of these mixtures can be found in the wastewaters

Wojciech Kujawski; Renata Roszak

2002-01-01

226

Removal of organotin compounds, Cu and Zn from shipyard wastewaters by adsorption – flocculation: A technical and economical analysis  

Microsoft Academic Search

Several commercially available adsorbents were screened for their ability to remove Cu, Zn and organotin compounds from both artificial contaminated and real dockyard wastewater. An adsorption – flocculation process using a mixture of two adsorbents (a clay based adsorbent and a powdered activated carbon) was optimized for an optimal adsorbent and pollutant removal. At the optimal conditions the process was

Steven Vreysen; Andre Maes; Hans Wullaert

2008-01-01

227

Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.  

PubMed

The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. PMID:24370698

Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

2014-03-01

228

Alkaline dechlorination of chlorinated volatile organic compounds  

SciTech Connect

The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

Gu, B.; Siegrist, R.L.

1996-06-01

229

The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse.  

PubMed

The fate of organic micropollutans (MPs) in a membrane system based on microfiltration (MF) and reverse osmosis/nanofiltration (RO/NF) has been investigated for the case of wastewater reuse. Both an operating full-scale water reuse plant and a pilot plant were employed, with 22 individual organic compounds at their ambient concentrations studied for the former and the latter employing two target compounds over a range of feed concentrations. Results revealed removal efficiencies higher than 75% for most compounds in the full-scale plant, though mass flow studies on all streams revealed a significant imbalance of material for some compounds. Rejection efficiencies measured for candidate commercial NF and RO membranes tested at pilot scale challenged with a pharmaceutically active compound (ibuprofen, IBU) and an endocrine-disrupting chemical (nonylphenol, NP) exceeded 99%. Permeate concentrations were 0.005-0.14 microg/L for IBU and below the limit of detection for NP. A mass balance of the MPs for the full-scale plant across the MF and RO stages revealed a significant imbalance associated with the challenge of accurate determination of low concentrations. Differences in pilot plant and full-scale data were otherwise attributed to the impact of membrane ageing (and specifically hydrolysis) on RO rejection of the MPs examined. PMID:24617078

Garcia, N; Moreno, J; Cartmell, E; Rodriguez-Roda, I; Judd, S

2013-01-01

230

Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H?O? treatment.  

PubMed

The treatment of a pharmaceutical wastewater resulting from the production of an antibacterial drug (nalidixic acid) was investigated employing a membrane bioreactor (MBR) integrated with either ozonation or UV/H(2)O(2) process. This was achieved by placing chemical oxidation in the recirculation stream of the MBR. A conventional configuration with chemical oxidation as polishing for the MBR effluent was also tested as a reference. The synergistic effect of MBR when integrated with chemical oxidation was assessed by monitoring (i) the main wastewater characteristics, (ii) the concentration of nalidixic acid, (iii) the 48 organics identified in the raw wastewater and (iv) the 55 degradation products identified during wastewater treatment. Results showed that MBR integration with ozonation or UV/H(2)O(2) did not cause relevant drawbacks to both biological and filtration processes, with COD removal rates in the range 85-95%. Nalidixic acid passed undegraded through the MBR and was completely removed in the chemical oxidation step. Although the polishing configuration appeared to give better performances than the integrated system in removing 15 out of 48 secondary organics while similar removals were obtained for 19 other compounds. The benefit of the integrated system was however evident for the removal of the degradation products. Indeed, the integrated system allowed higher removals for 34 out of 55 degradation products while for only 4 compounds the polishing configuration gave better performance. Overall, results showed the effectiveness of the integrated treatment with both ozone and UV/H(2)O(2). PMID:22136062

Laera, G; Cassano, D; Lopez, A; Pinto, A; Pollice, A; Ricco, G; Mascolo, G

2012-01-17

231

Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies  

Microsoft Academic Search

The aim of this work is to determine the potential of application of banana peel as a biosorbent for removing phenolic compounds from olive mill wastewaters. The effect of adsorbent dosage, pH and contact time were investigated. The results showed that the increase in the banana peel dosage from 10 to 30g\\/L significantly increased the phenolic compounds adsorption rates from

M. Achak; A. Hafidi; N. Ouazzani; S. Sayadi; L. Mandi

2009-01-01

232

GC/MS Methodology for Priority Organics in Municipal Wastewater Treatment.  

National Technical Information Service (NTIS)

A state-of-the-art review is presented on the current GC/MS methodology for the analysis of priority toxic organics in municipal wastewater treatment. The review summarizes both recent published and unpublished literature on GC/MS methods for analysis of ...

D. F. Bishop

1980-01-01

233

ANALYSIS OF INDUSTRIAL WASTEWATER FOR ORGANIC POLLUTANTS IN CONSENT DECREE SURVEY  

EPA Science Inventory

In response to a need of the Effluent Guidelines Division of the U.S. EPA Office of Water Regulations and Standards, industrial wastewater survey sample extracts were analyzed for organic pollutants other than the Priority Pollutants. Chromatographic analyses were performed on ca...

234

Wastewater treatment in a hybrid biological reactor (HBR): effect of organic loading rates  

Microsoft Academic Search

A novel hybrid biological reactor which contained both suspended- and attached-growth biomass was developed by introducing porous materials into a regular activated sludge unit and used for the treatment of domestic wastewater. The development of suspended- and attached-growth biomass in this reactor and the effect of the organic loading rates (OLR) on the operational performance were investigated. SEM observation revealed

Wang Jianlong; Shi Hanchang; Qian Yi

2000-01-01

235

Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent  

Microsoft Academic Search

Dissolved organic matter (DOM) was concentrated from natural waters and the effluent of a wastewater treatment plant using a portable reverse osmosis (RO) system. The humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The FA fractions predominated in natural waters and accounted for

Huizhong Ma; Herbert E Allen; Yujun Yin

2001-01-01

236

A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States — I) Groundwater  

Microsoft Academic Search

As part of the continuing effort to collect baseline information on the environmental occurrence of pharmaceuticals, and other organic wastewater contaminants (OWCs) in the Nation's water resources, water samples were collected from a network of 47 groundwater sites across 18 states in 2000. All samples collected were analyzed for 65 OWCs representing a wide variety of uses and origins. Site

Kimberlee K. Barnes; Dana W. Kolpin; Edward T. Furlong; Steven D. Zaugg; Michael T. Meyer; Larry B. Barber

2008-01-01

237

TOXIC ORGANIC EMISSIONS FROM SYNFUELS AND RELATED INDUSTRIAL WASTEWATER TREATMENT SYSTEMS  

EPA Science Inventory

The report gives results of an examination of the potential for toxic organic emissions from synfuels wastewater treatment systems. The synthetic fuels facilities examined were coal gasification, direct and indirect coal liquefaction, shale oil, by-product coke, and associated pe...

238

Sources of priority substances entering an urban wastewater catchment—trace organic chemicals  

Microsoft Academic Search

The implementation of new legislation such as the Water Framework Directive (WFD) requires Member States to gain a better understanding of priority substances entering surface waters. This will include inputs from wastewater treatment works as well as from other urban, industrial and agricultural sources. There is currently a lack of available data regarding the magnitude and sources of organic priority

K. L. Rule; S. D. W. Comber; D. Ross; A. Thornton; C. K. Makropoulos; R. Rautiu

2006-01-01

239

Organic compounds in meteorites and their origins  

NASA Technical Reports Server (NTRS)

The current investigation represents an extensively updated version of a review conducted by Anders et al. (1973). The investigation takes into account the literature through mid-1980. It is pointed out that Type 1 carbonaceous chondrites (C1) contain 6% of their cosmic complement of carbon, mainly in the form of organic matter. Most authors now agree that this material represents primitive prebiotic matter. The principal questions remaining are what abiotic processes formed the organic matter, and to what extent these processes took place in locales other than the solar nebula, such as interstellar clouds or meteorite parent bodes. The problem is approached in three stages. It is attempted to reconstruct the physical conditions during condensation from the clues contained in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is determined on the basis of thermodynamic calculations. Model experiments on the condensation of carbon are performed, and the synthesized compounds are compared with those actually found in meteorites.

Hayatsu, R.; Anders, E.

1981-01-01

240

Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone.  

PubMed

The hyporheic zone - a spatially fluctuating ecotone connecting surface water and groundwater - is considered to be highly reactive with regard to the attenuation of organic micropollutants. In the course of the presented study an undisturbed sediment core was taken from the infiltration zone of a bank filtration site in Berlin and operated under controlled laboratory conditions with wastewater-influenced surface water at two different temperatures, simulating winter and summer conditions. The aim was to evaluate the fate of site-relevant micropollutants, namely metoprolol, iopromide, diclofenac, carbamazepine, acesulfame, tolyltriazole, benzotriazole, phenazone and two phenazone type metabolites, within the first meter of infiltration dependent on the prevailing temperature. A change in temperature resulted in a development of significantly distinct redox conditions. Both temperature dependencies and related redox dependencies were identified for all micropollutants except for benzotriazole and carbamazepine, which behaved persistent under all conditions. For the remaining compounds degradation rate constants generally decreased from warm and oxic/penoxic/suboxic over cold and oxic/penoxic to warm and manganese reducing (transition zone). Individual degradation rate constants ranged from 0 (e.g. diclofenac, acesulfame and tolyltriazole in the transition zone) to 1.4×10(-4)s(-1) for metoprolol under warm conditions within the oxic to suboxic zone. PMID:24642095

Burke, Victoria; Greskowiak, Janek; Asmuß, Tina; Bremermann, Rebecca; Taute, Thomas; Massmann, Gudrun

2014-06-01

241

Organic Compounds in Truckee River Water Used for Public Supply near Reno, Nevada, 2002-05  

USGS Publications Warehouse

Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. Of 258 compounds measured, 28 were detected in at least 1 source water sample collected approximately monthly during 2002-05 at the intake of the Chalk Bluff Treatment Plant, on the Truckee River upstream of Reno, Nevada. The diversity of compounds detected indicate various sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including point sources from treated wastewater outfalls upstream of the sampling location, overland runoff, and groundwater discharge) to drinking-water supply intakes. Three compounds were detected in more than 20 percent of the source-water intake samples at low concentrations (less than 0.1 microgram per liter), including caffeine, p-cresol (a wood preservative), and toluene (a gasoline hydrocarbon). Sixteen of the 28 compounds detected in source water also were detected in finished water (after treatment, but prior to distribution; 2004-05). Additionally, two disinfection by-products not detected in source water, bromodichloromethane and dibromochloromethane, were detected in all finished water samples. Two detected compounds, cholesterol and 3-beta-coprostanol, are among five naturally occurring biochemicals analyzed in this study. Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the compounds. Seven compounds (toluene, chloroform, bromodichloromethane, dibromodichloromethane, bisphenol A, cholesterol, and 3-beta-coprostanol) were measured at concentrations greater than 0.1 microgram per liter. On the basis of this screening-level assessment, adverse effects to human health are expected to be negligible (subject to limitations of available human-health benchmarks).

Thomas, Karen A.

2009-01-01

242

Relative energy of organic compounds II. Halides, nitrogen, and sulfur compounds  

Microsoft Academic Search

The energies of the following types of compounds are characterized by their calculated relative enthalpies: alkyl, alkenyl,\\u000a and aryl halides; carboxylic acid halides; carbonyl halides; amines; carboxylic acid amides; hydrazine derivatives; nitriles;\\u000a heteroaromatic compounds; nitro-compounds; organic nitrites and nitrates; organic sulfides; thiols; disulfides; sulfoxides;\\u000a sulfones; organic sulfites and sulfates; and selected inorganic compounds. Stabilization energy of pyrrol and thiophene has

Árpád Furka

2009-01-01

243

Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification  

Microsoft Academic Search

The aim of this work was to remove nitrate-N and organic pollutants from wastewater of the dairy industry by denitrification.\\u000a An artificially prepared wastewater, containing 250?mg\\/l nitrate-N and 1.5?g\\/l whey powder, was completely denitrified with\\u000a removal of 90%–93% of the chemical oxygen demand (COD) of the whey powder by suspended or immobilized mixed cultures and by\\u000a a suspended or immobilized

G. Zayed; J. Winter

1998-01-01

244

Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent.  

PubMed

Dissolved organic matter (DOM) was concentrated from natural waters and the effluent of a wastewater treatment plant using a portable reverse osmosis (RO) system. The humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The FA fractions predominated in natural waters and accounted for 54-68% of the total amount of dissolved organic carbon (DOC), whereas the HA and HyI fractions constituted, respectively, 13-29 and 9-30% of the total DOC. The effluent of wastewater was almost devoid of HA and the HyI fraction exceeded FA. The elemental compositions of HA and FA were in the ranges typical for natural humic materials, but the HyI fractions did not exhibit humic character. 1H NMR spectra revealed that the HyI fractions were almost devoid of aromatic protons and the aliphatic region featured more sharp signals than HA and FA fractions, indicating that HyI fractions were consisted of more simple compounds and less complex mixtures. The aliphatic functional groups in these fractions of DOM samples followed the order HA < FA HyI. The rate of Cu complexation with the HyI fraction was faster than the rate with the HA or FA fraction of the Suwannee River DOM, implying that copper reacted with relatively weak ligands faster than with strong ligands. PMID:11235894

Ma, H; Allen, H E; Yin, Y

2001-03-01

245

Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants  

NASA Astrophysics Data System (ADS)

Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model for the electrodissolution of anodes (first stage in electrocoagulation processes). This later model use a mixed macroscopic/maximum gradient approach to describe the chemical and electrochemical processes and it also assumes that the rates of all processes are very high, and that they can be successfully modeled using pseudoequilibrium approaches.

Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

246

Wastewater treatment with microalgae  

Microsoft Academic Search

In locations where total solar energy inputs average 400 langeleys or more, microscopic algae, grown in properly designed ponds, can contribute significantly and economically to wastewater treatment. While growing, microalgae produce an abundance of oxygen for microbial and biochemical oxidation of organics and other reduced compounds and for odor control. Microalgae also accelerate the inactivation of disease bacteria and parasitic

Oswald

1992-01-01

247

Treatment and reuse of coal conversion wastewaters  

Microsoft Academic Search

This paper presents a synopsis of recent experimental activities to evaluate processing characteristics of coal conversion wastewaters. Treatment studies have been performed with high-BTU coal gasification process quench waters to assess enhanced removal of organic compounds via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing by ammonia removal, biological oxidation,

Luthy

1980-01-01

248

Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry.  

PubMed

The occurrence of 26 commonly used cytostatic compounds in wastewaters was evaluated using an automated solid-phase extraction (SPE) method with liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Detection was optimized using Oasis HLB SPE cartridges at pH 2. Two hospital effluents and their two receiving wastewater treatment plants were sampled over five days. In hospital effluents, eight cytostatics were detected at levels up to 86.2 ?g L(-1) for ifosfamide, 4.72 ?g L(-1) for cyclophosphamide, and 0.73 ?g L(-1) for irinotecan, the three most relevant compounds identified. Cyclophosphamide and megestrol acetate were found in wastewaters at concentrations up to 0.22 ?g L(-1) for the latter. The predicted environmental concentrations (PEC) in sewage effluents of ifosfamide (2.4-4.3 ng L(-1)), capecitabine (11.5-14.2 ng L(-1)), and irinotecan (0.4-0.6 ng L(-1)), calculated from consumption data in each hospital, published excretion values for the target compounds, and wastewater elimination rates, were in agreement with experimental values. PMID:24825763

Gómez-Canela, Cristian; Ventura, Francesc; Caixach, Josep; Lacorte, Silvia

2014-06-01

249

Ferrate Ion: Potential Uses in Advanced Wastewater Treatment.  

National Technical Information Service (NTIS)

The potential use of ferrate (VI) ion in the treatment of industrial wastewater containing particularly objectionable organic compounds in the absence of a high biochemical oxygen demand was explored. The oxidation kinetics of a variety of aqueous organic...

J. D. Carr

1982-01-01

250

DEMONSTRATION BULLETIN: ZENOGEM? WASTEWATER TREATMENT PROCESS - ZENON ENVIRONMENTAL SYSTEMS  

EPA Science Inventory

Zenon Environmental Systems (Zenon) has developed the ZenoGem? process to remove organic compounds from wastewater by integrating biological treatment and membrane-based ultrafiltration. This innovative system combines biological treatment to remove biodegradable organic compou...

251

GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES  

EPA Science Inventory

The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

252

ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS  

EPA Science Inventory

Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...

253

Molecular Models of Volatile Organic Compounds  

NSDL National Science Digital Library

This month's Featured Molecules come from the Report from Other Journals column, Nature: Our Atmosphere in the Year of Planet Earth, and the summary found there of the paper by Lelieveld et al. (1, 2) Added to the collection are several volatile organic compounds (VOCs) that are emitted by a variety of plants. The term VOCs is a common one in environmental chemistry, and is interpreted quite broadly, typically referring to any organic molecule with a vapor pressure sufficiently high to allow for part-per-billion levels in the atmosphere. Common VOCs include methane (the most prevalent VOC), benzene and benzene derivatives, chlorinated hydrocarbons, and many others. The source may be natural, as in the case of the plant emissions, or anthropogenic, as in the case of a molecule such as the gasoline additive methyl tert-butyl ether (MTBE).The oxidation of isoprene in the atmosphere has been a source of interest for many years. Several primary oxidation products are included in the molecule collection, although a number of isomeric forms are also possible (3).The area of VOCs provides innumerable topics for students research papers and projects at all levels of the curriculum from high-school chemistry through the undergraduate courses in chemistry and environmental science. Along the way students have the opportunity for exposure to fields such as epidemiology and toxicology, that may be new to them, but are of increasing importance in the environmental sciences. The MTBE story is an interesting one for students to discover, as it once again emphasizes the role that unintended consequences play in life. An exploration of the sources, structures, reactivity, health and environmental effects and ultimate fate of various VOCs reinforces in students minds just how interconnected the chemistry of the environment is, a lesson that bears repeating frequently.

254

Breath measurements as volatile organic compound biomarkers.  

PubMed Central

A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water.

Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

1996-01-01

255

Fate of organic nitrogen in four biological nutrient removal wastewater treatment plants.  

PubMed

This study investigated the fate of nitrogen species, especially organic nitrogen, along the mainstream wastewater treatment processes in four biological nutrient removal (BNR) wastewater treatment plants (WWTPs). It was found that the dissolved organic nitrogen (DON) fraction was as high as 47% of soluble nitrogen (SN) in the low-SN effluent plant, which limited the plant's capability to remove nitrogen to very low levels. A lower DON fraction was observed in high-SN effluent plants. Effluent DON concentrations from the four plants ranged from 0.5 to 2 mg N/L and did not vary significantly, even though there was a large variation in the influent organic nitrogen concentrations. Size fractionation of organic nitrogen by serial filtration through 1.2-, 0.45-, and 0.22-microm pore-sized membrane filters and the flocculation-and-filtration with zinc sulfate (ZnSO4) method was investigated. The maximum colloidal organic nitrogen (CON) fractions found were 68 and 45% in the primary effluent and final effluent, respectively. The experimental results showed that effluents after filtration through the 0.45-microm pore-sized filter contain significant colloidal fractions; hence, the constituents, including organic nitrogen, are not truly dissolved. A high CON fraction was observed in wastewater influents and was less significant in effluents. The flocculation and filtration method removed the colloidal fraction; therefore, the true DON fraction can be determined. PMID:21214024

Sattayatewa, Chakkrid; Pagilla, Krishna; Sharp, Robert; Pitt, Paul

2010-12-01

256

[Experimental research on printing and dyeing wastewater treatment through new compound flocculation agent].  

PubMed

Research on the treatment efficiency and coagulation experiments was done using a new compound flocculation agent SE in printing and dyeing wastewater. Taking COD and chromaticity color as indexes, We did research on the coagulation efficiency under different condition of SE dosage, pH value, settling time, and agitation speed, and then we did comparative experiments between SE and PAC, SE and PFS. The experiments show that SE can effectively remove COD and chromaticity color. The four parameters namely pH of 8 - 10, settling of 30 min, agitation of 75 r/min and dosage of 155 mg/L were chosen, the COD and chromaticity color removal rate were recorded as high as 83% and 94% respectively, and the optimum effluent COD and chromaticity color were 155 mg/L and 37 respectively. Compared with PAC and PFS, SE produced bigger and more compact floc, settling time was shorter, the amount of mud and chemical dosage were less, and effluent quality was much better. The results show that SE is a high-effective and practical compound coagulant agent. PMID:17674737

Fan, Di; Wang, Lin; Wang, Juan

2007-06-01

257

BEHAVIOR OF ORGANIC POLLUTANTS DURING RAPID-INFILTRATION OF WASTEWATER INTO SOIL: 1. PROCESSES, DEFINITION, AND CHARACTERIZATION USING A MICROCOSM  

EPA Science Inventory

A microcosm was constructed to study the behavior of organic pollutants during rapid infiltration of municipal wastewater into soil. The microcosm permitted a direct measure of the amount of volatilization and allowed calculation of the amount that degraded. The wastewater was am...

258

Soluble organic compounds in the Tagish Lake meteorite  

NASA Astrophysics Data System (ADS)

The C2 ungrouped Tagish Lake meteorite preserves a range of lithologies, reflecting variable degrees of parent-body aqueous alteration. Here, we report on soluble organic compounds, including aliphatic and aromatic hydrocarbons, monocarboxylic acids, and amino acids, found within specimens representative of the range of aqueous alteration. We find that differences in soluble organic compounds among the lithologies may be explained by oxidative, fluid-assisted alteration, primarily involving the derivation of soluble organic compounds from macromolecular material. In contrast, amino acids probably evolved from precursor molecules, albeit in parallel with other soluble organic compounds. Our results demonstrate the role of parent-body alteration in the modification of organic matter and generation of prebiotic compounds in the early solar system, and have implications for interpretation of the complement of soluble organic compounds in carbonaceous chondrites.

Hilts, Robert W.; Herd, Christopher D. K.; Simkus, Danielle N.; Slater, Greg F.

2014-04-01

259

Fluorescent components of organic matter in wastewater: Efficacy and selectivity of the water treatment.  

PubMed

Characterization of organic matter (OM) present in treated wastewater (TWW) after various treatment stages is important for optimizing wastewater recycling. The general aim of this research was to carry out a long-term examination of OM in wastewater along the treatment, by applying excitation-emission matrices (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC). Fluorescent OM was examined in water samples obtained from four wastewater treatment plants (WWTPs) in Israel for 20 months. The PARAFAC analysis of EEMs of water samples from the four WWTPs yielded six components. The fluorescent components included proteinaceous tryptophan-like matter (C1), three humic-like components (C2-C4), a component (C5) that was characterized by excitation and emission with a distinct vibrational structure similar to that of pyrene and a component (C6) that was characterized by the excitation and emission spectra demonstrating two peaks where the appearance of two emission peaks was suggested to reflect the formation of an intra-molecular exyplex. The biological treatment strongly reduced the concentration of component C1 thus increasing the overall fraction of humic-like OM over the proteinaceous OM in the treated water. The fluorescence of component C1 could therefore be used as an indicator of the biological treatment efficacy. The concentration of the humic-like component C2 characterized by excitation and emission maxima at <240,305/422 nm, respectively, was also sensitive to biological treatment. The soil aquifer treatment was not effective in completely eliminating the fingerprints of the initial wastewater. The concentrations of the fluorescent components in wastewater after the biological treatment were only slightly affected by filtration (0.45 ?m) of the samples. For water sampled prior to the biological treatment, the 0.45 ?m filtration had the most pronounced effect on concentrations of the proteinaceous matter and component C6. Strong positive correlations were found between concentrations of component C1 and total carbon (TC) in wastewater samples from the WWTPs thus suggesting the proteinaceous fluorescence in wastewater as an indicator for TC reduction. Chemical oxygen demand (COD) and the fluorescein diacetate hydrolyzing activity (a measure for the total microbial activity) were strongly positively correlated with the concentrations of components C1-C3 thus suggesting the fluorescence of these components as indicators for reduction in COD and the total microbial activity in wastewater. PMID:24636841

Cohen, Elinatan; Levy, Guy J; Borisover, Mikhail

2014-05-15

260

A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation.  

PubMed

This article, for the first time, provides a novel advanced oxidation process based on sulfate radical (SO4*-) to degrade organic pollutants in wastewater: microwave (MW)-activated persulfate oxidation (APO) with or without active carbon (AC). Azo dye acid Orange 7 (AO7) is used as a model compound to investigate the high reactivity of MW-APO. It is found that AO7 (up to 1000 mg/L) is completely decolorized within 5-7 min under an 800 W MW furnace assisted-APO. In the presence of chloride ion (up to 0.50 mol/L), the decolorization is still 100% completed, though delayed for about 1-2 min. Experiments are made to examine the enhancement by AC. It is exciting to find that the 100% decolorization of AO7 (500 mg/L) is achieved within 3 min by MW-APO using 1.0 g/L AC as catalyst, while the degradation efficiency maintains at 50% by MW energy without persulfate after about 5 min. Besides the destruction of visible light chromophore band of AO7 (484 nm), during MW-APO, two bands in the ultraviolet region (228 nm and 310 nm) are rapidly broken down. The removal of COD is about 83%-95% for 500 mg/L AO7. SO4*- is identified with quenching studies using specific alcohols. Both SO4*- and *OH could degrade AO7, but SO4*- plays the dominant role. In a word, MW-APO AC is a new catalytic combustion technology for destruction of organic contamination even for high concentration. PMID:19999962

Yang, Shiying; Wang, Ping; Yang, Xin; Wei, Guang; Zhang, Wenyi; Shan, Liang

2009-01-01

261

Mechanochemical synthesis of organic compounds and composites with their participation  

NASA Astrophysics Data System (ADS)

The results of experimental studies in the mechanochemical synthesis of organic compounds and composites with their participation published over the last 15 years are described systematically. The key reactions of organic compounds are considered: synthesis of the salts of organic acids, acylation, substitution, dehalogenation, esterification, hydrometallation and other reactions. Primary attention is devoted to systems and compounds that cannot be obtained by traditional chemistry methods.

Lyakhov, Nikolai Z.; Grigorieva, Tatiana F.; Barinova, Antonina P.; Vorsina, I. A.

2010-05-01

262

Separation of Organic Compounds from Surfactant Solutions: A Review  

Microsoft Academic Search

This review summarizes the recent development in separation of emulsified organic compounds from surfactant solutions for surfactant reuse and\\/or surfactant?contaminant disposal. Three major principles have been employed for separating organic compounds and\\/or surfactants from aqueous solutions, namely, organic compound inter?phase mass transfer, surfactant micelle removal, and manipulation of surfactant solution phase behavior. Details of these principles and their applications are

Hefa Cheng; David A. Sabatini

2007-01-01

263

Secondary organic aerosol from biogenic volatile organic compound mixtures  

NASA Astrophysics Data System (ADS)

The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

Hatfield, Meagan L.; Huff Hartz, Kara E.

2011-04-01

264

Quantification of pathogenic micro-organisms in the sludge from treated hospital wastewater.  

PubMed

The sludge from hospital waste treatment facilities is a potential source of infectious organisms. The average numbers of micro-organisms in the sludge of hospital wastewater in Taiwan were as follows: total count 8.1 x 10(7) cfu g-1 (dry weight of sludge), and 1.4 x 10(6), 3.6 x 10(5), 1.6 x 10(5), 2.2 x 10(5) and 5.5 x 10(4) cfu g-1 (dry weight of sludge) for total coliforms, faecal coliforms, faecal streptococci, Pseudomonas aeruginosa and Salmonella spp., respectively. Salmonella spp. were detected in 37% (10 of 27) of the sludges from hospital wastewaters. Therefore, the treatment of such sludge to reduce pathogenic micro-organisms should be considered. PMID:9721667

Tsai, C T; Lai, J S; Lin, S T

1998-07-01

265

Oceanic protection of prebiotic organic compounds from UV radiation  

NASA Technical Reports Server (NTRS)

It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

1998-01-01

266

Treatment of wastewater from dye manufacturing industry by coagulation  

Microsoft Academic Search

Chemical coagulation was used to remove the compounds present in wastewater from dye manufacturing industry. The character\\u000a of wastewater was determined. Most compounds found in the wastewater are phenol derivatives, aniline derivatives, organic\\u000a acid and benzene derivatives, output from dye manufacturing. Various polyferric chloride coagulants were investigated. Results\\u000a showed that high extent of Fe(III) hydrolysis was not always suited for

Yu-li Yuan; Yue-zhong Wen; Xiao-ying Li; Si-zhen Luo

2006-01-01

267

The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography–mass spectrometry  

Microsoft Academic Search

The analysis of pharmaceuticals and potential endocrine disruptors in the environment has rightly concentrated on their presence in wastewaters and possible contamination of receiving bodies, such as groundwaters. However, wastewater is increasingly being reused for irrigation and in order to fully understand the environmental fate of these compounds, reliable methods for their analysis in soil are required, of which there

Juan C. Durán-Alvarez; Elías Becerril-Bravo; Vanessa Silva Castro; Blanca Jiménez; Richard Gibson

2009-01-01

268

Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania  

PubMed Central

This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants.

Popa, Paula; Timofti, Mihaela; Voiculescu, Mirela; Dragan, Silvia; Trif, Catalin; Georgescu, Lucian P.

2012-01-01

269

Organic and detergent degradation in combined O3/UF for domestic laundry wastewater reclamation.  

PubMed

This paper focuses on the evaluation of organic and detergent degradation in a combined Ozone/UF system for domestic laundry wastewater reclamation. Formation of by-product was investigated by GC/MS for the reclaimed water. Ozone was injected into the raw wastewater in a 10 L contact tank and the wastewater was circulated through the membrane module for inner pressurized cross-flow filtration. The concentrate was returned back to the contact tank. The membrane used in this experiment was hollow fiber polysulfone UF membrane with MWCO 10,000. It has an effective filtration area of 0.06 m2. The experiment was carried out with intermittent ozone injection, 5 min injection and 10 min idling. Ozone was dosed at the concentration of 1.5 mg/L. The flux of the UF could be maintained at 0.24 m/d under filtration pressure 40-45 kPa and water temperature, 20-22 degrees C. The organic removal efficiency by the system was 90% in terms of COD. Ozone was considerably effective to degrade organics in the wastewater. Molecular weight of organics in the raw waste was mostly greater than 10,000 (72% of 950 mgCOD/L). However 86% of effluent COD (94-100 mg/L) was composed of organics smaller than MWCO 500 by ozone injection. No harmful by-products by ozone contact were detected from the analysis of treated water using GC/MS. It was identified that residual organics in the treated water were 1,1'-Oxybisbenzene, Octadecanoic acid, Squalene and Benzenmethanol, etc., which were additives contained originally in the detergent. Consequently the reclaimed water quality could be estimated safe enough to recycle for the rinsing cycle in a washing machine. PMID:15537022

Seo, G T; Lee, T S; Kim, J T; Yoon, C H; Park, H G; Hong, S C

2004-01-01

270

Hourly, In-Situ Quantitation of Organic Aerosol Marker Compounds.  

National Technical Information Service (NTIS)

This study was conducted to determine the contribution from various organic aerosol sources downwind of the Los Angeles Air Basin, a region currently out of compliance with air quality standards. Organic marker compounds were measured with hourly time res...

A. H. Goldstein

2008-01-01

271

Basics of compounding: basics of compounding with organic salts.  

PubMed

The purity and form of all ingredients used in compounding, especially of active pharmaceutical ingredients, must be known and considered during formulation. When a prescription is received, it is the responsibility of the pharmacist, and should be routine procedure, to correctly determine whether or not the salt or base/acid form of a drug is to be used as the basis for the dose. This is important information because the bulk substance, or active pharmaceutical ingredient, in a salt form is not 100% active drug. The purpose of the salt form is usually to enhance the solubility of the drug, but it may also enhance and change other attributes of the drug that make it easier to handle and manipulate for producing dosage forms. Resources for the purpose of determining this information include the United States Pharmacopeia, product package insert, and a call to the manufacturer or physician as appropriate. This article discusses compounding with salts and the factors that may affect a final compounded preparation. PMID:23965540

Allen, Loyd V

2010-01-01

272

Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.  

PubMed

Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

Fox, Peter; Makam, Roshan

2011-10-01

273

Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke  

NASA Astrophysics Data System (ADS)

Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

2010-12-01

274

[Removal of metal ions and dissolved organic compounds in the aqueous solution via micellar enhanced ultrafiltration].  

PubMed

With continuing stringent environmental regulation, the traditional techniques are incapable of reducing the concentration of dissolved organics and heavy metals to the levels required by law or prohibitively expensive. Surfactant-based separation process such as micellar-enhanced ultrafiltration has been extensively proposed. Micellar-enhanced ultrafiltration has been demonstrated to be effective in removal of heavy metals and/or organic contaminants from wastewater stream. The process can be low energy cost and easily included in a whole process. Micellar-enhanced ultrafiltration has been shown to be a promising method for the removal of low-levelsof heavy metal ions and organic compounds from industrial effluents. This paper introduces the working mechanism, main factors of MEUF and the selection of surfactant and membrane. The lasted study progress on the application of micellar-enhanced ultrafiltration is reviewed. The recovery and reuse of surfactant from the retentate and permeate are also discussed. PMID:16767979

Fang, Yao-yao; Zeng, Guang-ming; Huang, Jin-hui; Xu, Ke

2006-04-01

275

Effects of Wastewater Discharges on Endocrine and Reproductive Function of Western Mosquitofish (Gambusia spp.) and Implications for the Threatened Santa Ana Sucker (Catostomus santaanae). Revised May 2009.  

National Technical Information Service (NTIS)

The Santa Ana River in southern California is impacted by effluents from wastewater treatment plants (WWTP), which are sources of organic wastewater compounds (OWCs) and urban runoff. The Santa Ana River is one of only three river basins supporting native...

H. M. Oliver J. A. Jenkins R. O. Draugelis-Dale S. A. Sobiech S. L. Goodbred

2009-01-01

276

BEHAVIOR OF ORGANIC POLLUTANTS DURING RAPID-INFILTRATION OF WASTEWATER INTO SOIL: 2. MATHEMATICAL DESCRIPTION OF TRANSPORT AND TRANSFORMATION  

EPA Science Inventory

A compartmental screening model was developed to describe the movement of volatile and transformable organic chemicals in rapid-infiltration wastewater treatment systems. The first compartment describes losses of the chemical from the infiltration basin when the basin is flooded ...

277

MONITORING AND ANALYSIS OF HAZARDOUS ORGANICS IN MUNICIPAL WASTEWATER - A STUDY OF TWENTY-FIVE TREATMENT PLANTS  

EPA Science Inventory

The Municipal Environmental Research Laboratory of the U.S. Environmental Protection Agency funded an extramural research program to (1) develop sensitive analytical methods capable of analyzing municipal wastewaters and sludges for 114 organic priority pollutants and (2) survey ...

278

SORPTION OF ORGANIC ACID COMPOUNDS TO SEDIMENTS: INITIAL MODEL DEVELOPMENT  

EPA Science Inventory

The adsorption to sediments and soils of selected organic acid compounds was examined as a function of compound and sediment properties. ntrinsic compound properties examined included the dissociation constant (pKa) and hydrophobic character. roperties of the sediment examined in...

279

Composition and Analysis of Mineral Oils and Other Organic Compounds in Metalworking and Hydraulic Fluids  

Microsoft Academic Search

Metalworking fluids (MWFs) are the primary source of organic contaminants in oily wastewater at many manufacturing facilities. Such facilities, including those in the automotive industry, face the continuing challenge of improving wastewater treatment for organics. Hydraulic fluids (HFs), chemically similar to MWFs, have been a major source of costly soil contamination at industrial and commercial facilities. A better understanding of

James E. Anderson; Byung R. Kim; Sherry A. Mueller; Tiffany V. Lofton

2003-01-01

280

Preliminary test of the wet oxidation of organics in basin F wastewater at Rocky Mountain Arsenal  

SciTech Connect

Various decontamination processes are candidate for treatment of wastewater from several sources at RMA. Wet oxidation is a unit operation that involves oxidation of organic materials with gaseous oxygen in the presence of liquid water at temperatures between about 400 degree and 700 degree F. Waste from basin F at RMA has several percent organics content. It was used for the initial wet oxidation experiment because the wet oxidation rate is proportional to the concentration of organics. The extent of oxidation obtained in this first trial was about 78 percent of the basin F cod in 60 minutes (74 percent in 30 minutes).

Lawless, H.L.

1978-04-01

281

[The qualitative analysis method of the dissolved organic matter (DOM) for ABS wastewater].  

PubMed

The dissolved organic matter (DOM) of acrylonitrile-butadiene-styrene (ABS) resin wastewater was qualitatively analysed by gas chromatography with mass spectrometry(GC-MS), Fourier transform infrared spectrometer(FTIR) and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. The detected results shows that the GC-MS qualitatively analysed 21 dissolved organic pollutants, such as acetophenone, styrene, alpha, alpha-dimethyl-benzenemethanol, 3,3'oxybis-propanenitrile, 3, 3'-iminobis-propanenitrile, 3,3'-thiobis-propanenitrile, 3-(dimethylamino)-propanenitrile and 2-propenenitrile. The results of Fourier transform infrared spectrometer (FTIR) and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy could examine and certify the accuracy and integrity for the qualitative analysis of GC-MS. The results of this study provides an important guiding role for the development of wastewater treatment process. PMID:21595240

Lai, Bo; Zhou, Yue-xi; Song, Yu-dong; Xi, Hong-bo; Sun, Li-dong; Chen, Jia-yun

2011-03-01

282

Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong  

Microsoft Academic Search

The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs

S. C. Lee; M. Y. Chiu; K. F. Ho; S. C. Zou; Xinming Wang

2002-01-01

283

REACTIVITY OF NITROGENOUS AND OTHER ORGANIC COMPOUNDS WITH AQUEOUS CHLORINE  

EPA Science Inventory

A protocol for determining the chlorine demand of organic compounds was developed and tested. Organics were reacted with chlorine at mole ratios of 1:05, 1:1, and 1:3 at pH values of 6, 7, and 8 over a one week period. Compounds tested were drawn mainly from the EPA Register of O...

284

Organic--Inorganic Layer Compounds: Physical Properties and Chemical Reactions  

Microsoft Academic Search

In contrast with intercalation compounds, which can exist both with and without organic molecules between the planes of inorganic material, `molecular composite' compounds have organic groups covalently or ionically bound to inorganic layers. In such crystals the aim is to combine magnetic or optical properties characteristic of the inorganic solid state, like magnetism and luminescence, with properties found in the

P. Day

1985-01-01

285

DYNAMIC ANALYSIS OF SORPTION OF VOLATILE ORGANIC COMPOUNDS IN WATER  

Microsoft Academic Search

Chlorinated and brominated volatile organic compounds are among the groundwater pollutants creating major environmental problems. In this study, dynamic behavior of certain volatile organic compounds in water was investigated by using a novel moment technique. Adsorption equilibrium constant and the penetration length of tracers were evaluated by the first absolute and the second central moment expressions derived for a pulse-response

Nail Yasyerli; Ugur Harbili

2008-01-01

286

A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.  

ERIC Educational Resources Information Center

Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

Hendrickson, James B.

1985-01-01

287

Temporal Variability Measurement of Specific Volatile Organic Compounds  

Microsoft Academic Search

Methodology was developed to unambiguously determine trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. This capability is important because volatile organic compounds (VOCs) are usually measured by time-integrative techniques that average out peak exposures to insignificance. The specific method presented here involves a preprogrammed sequential syringe sampler that can fill 150-cm

Joachim D. Pleil; William A. McClenny; Karen D. Oliver

1989-01-01

288

METHODS FOR THE DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER  

EPA Science Inventory

Thirteen analytical methods for the identification and measurement of organic compounds in drinking water are described in detail. ix of the methods are for volatile organic compounds (VOC's) and certain disinfection byproducts and these methods were cited in the Federal Register...

289

40 CFR 60.452 - Standard for volatile organic compounds.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment...Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or after the date on which the...

2013-07-01

290

40 CFR 60.462 - Standards for volatile organic compounds.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment...Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date on which §...

2013-07-01

291

Volatile organic compound sources for Southern Finland  

NASA Astrophysics Data System (ADS)

Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in both sites. However during spring biogenic influence increased. In addition to source analysis this behaviour was visible in enhanced diurnal cycles of VOCs (Patokoski et al., 2014, in press). We will present important sources and source areas for Southern Finland's concentrations. References: Patokoski, J., Ruuskanen, T.M., Hellén, H., Taipale, R., Grönholm, T., Kajos, M.K., Petäjä, T., Hakola, H., Kulmala, M. & Rinne, J., 2014. Winter to spring transition and diurnal variation of VOCs in Finland at an urban background site and a rural site. Boreal Env. Res. 19. In press.

Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

2014-05-01

292

Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes  

Microsoft Academic Search

Wastewater effluent organic matter (EfOM) was isolated into different fractions including colloids, and hydrophobic (HPO) and transphilic (TPI) fractions. The EfOM isolates were characterized by different techniques, for example, size exclusion chromatography (SEC) with on-line UVA and DOC detectors, Fourier transform infrared (FTIR), specific UVA (SUVA), and total sugars analysis. The colloidal fraction is primarily composed of polysaccharides, proteins, and\\/or

Chalor Jarusutthirak; Gary Amy; Jean-Philippe Croué

2002-01-01

293

Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes  

Microsoft Academic Search

Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-b-hydroxyalkanoate

Gregory R. Crocetti; Jillian F. Banfield; J. Keller; P. L. Bond; L. L. Blackall

2002-01-01

294

Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell  

Microsoft Academic Search

A new highly scalable microbial fuel cell (MFC) design, consisting of a series of cassette electrodes (CE), was examined for\\u000a increasing power production from organic matter in wastewater. Each CE chamber was composed of a box-shaped flat cathode (two\\u000a air cathodes on both sides) sandwiched in between two proton-exchange membranes and two graphite-felt anodes. Due to the simple\\u000a design of

Takefumi Shimoyama; Shoko Komukai; Akira Yamazawa; Yoshiyuki Ueno; Bruce E. Logan; Kazuya Watanabe

2008-01-01

295

A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States--I) groundwater.  

PubMed

As part of the continuing effort to collect baseline information on the environmental occurrence of pharmaceuticals, and other organic wastewater contaminants (OWCs) in the Nation's water resources, water samples were collected from a network of 47 groundwater sites across 18 states in 2000. All samples collected were analyzed for 65 OWCs representing a wide variety of uses and origins. Site selection focused on areas suspected to be susceptible to contamination from either animal or human wastewaters (i.e. down gradient of a landfill, unsewered residential development, or animal feedlot). Thus, sites sampled were not necessarily used as a source of drinking water but provide a variety of geohydrologic environments with potential sources of OWCs. OWCs were detected in 81% of the sites sampled, with 35 of the 65 OWCs being found at least once. The most frequently detected compounds include N,N-diethyltoluamide (35%, insect repellant), bisphenol A (30%, plasticizer), tri(2-chloroethyl) phosphate (30%, fire retardant), sulfamethoxazole (23%, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19%, detergent metabolite). Although sampling procedures were intended to ensure that all groundwater samples analyzed were indicative of aquifer conditions it is possible that detections of some OWCs could have resulted from leaching of well-construction materials and/or other site-specific conditions related to well construction and materials. Future research will be needed to identify those factors that are most important in determining the occurrence and concentrations of OWCs in groundwater. PMID:18556047

Barnes, Kimberlee K; Kolpin, Dana W; Furlong, Edward T; Zaugg, Steven D; Meyer, Michael T; Barber, Larry B

2008-09-01

296

Effects of Organic Compounds on Amphibian Reproduction.  

National Technical Information Service (NTIS)

Aquatic toxicity tests were conducted with atrazine, carbon tetrachloride, chloroform, methylene chloride, trisodium nitrilotriacetic acid (NTA), and phenol. Each compound was administered to developmental stages of three to five amphibian species. Exposu...

W. J. Birge J. A. Black R. A. Kuehne

1980-01-01

297

Electricity generation directly using human feces wastewater for life support system  

Microsoft Academic Search

Wastewater reuse and power regeneration are key issues in the research of bioregeneration life support system (BLSS). Microbial fuel cell (MFC) can generate electricity during the process of wastewater treatment, which might be promising to solve the two problems simultaneously. We used human feces wastewater containing abundant organic compounds as the substrate of MFC to generate electricity, and the factors

Du Fangzhou; Li Zhenglong; Yang Shaoqiang; Xie Beizhen; Liu Hong

2011-01-01

298

Volatile organic compounds from garden waste  

Microsoft Academic Search

About 170 compounds were identified in the headspace or liquid exudate from garden waste. Typical for microbiological growth were branched and straight chain alcohols, carboxylic acids and esters C2–C8. Several of the substances have been identified in early studies of compost For some waste samples the organosulfur compound concentration (C1 and C3 mono-, di- and trisulfides) was ca. 10 mg\\/m3

Ken Wilkins; Kjeld Larsen

1996-01-01

299

TREATMENT OF ORGANIC CHEMICAL MANUFACTURING WASTEWATER FOR REUSE  

EPA Science Inventory

This research demonstrated the quality of water produced by each step of a state-of-the-art, commercially available process sequence and determined the feasibility and economics of renovating organic chemical watewater for reuse as boiler feedwater or cycle cooling water. The 5-g...

300

Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies.  

PubMed

The aim of this work is to determine the potential of application of banana peel as a biosorbent for removing phenolic compounds from olive mill wastewaters. The effect of adsorbent dosage, pH and contact time were investigated. The results showed that the increase in the banana peel dosage from 10 to 30 g/L significantly increased the phenolic compounds adsorption rates from 60 to 88%. Increase in the pH to above neutrality resulted in the increase in the phenolic compounds adsorption capacity. The adsorption process was fast, and it reached equilibrium in 3-h contact time. The Freundlich and Langmuir adsorption models were used for mathematical description of the adsorption equilibrium and it was found that experimental data fitted very well to both Freundlich and Langmuir models. Batch adsorption models, based on the assumption of the pseudo-first-order, pseudo-second-order and intraparticle diffusion mechanism, showed that kinetic data follow closely the pseudo-second-order than the pseudo-first-order and intraparticle diffusion. Desorption studies showed that low pH value was efficient for desorption of phenolic compounds. These results indicate clearly the efficiency of banana peel as a low-cost solution for olive mill wastewaters treatment and give some preliminary elements for the comprehension of the interactions between banana peel as a bioadsorbent and the very polluting compounds from the olive oil industry. PMID:19144464

Achak, M; Hafidi, A; Ouazzani, N; Sayadi, S; Mandi, L

2009-07-15

301

Extended structures and physicochemical properties of uranyl-organic compounds.  

PubMed

The ability of uranium to undergo nuclear fission has been exploited primarily to manufacture nuclear weapons and to generate nuclear power. Outside of its nuclear physics, uranium also exhibits rich chemistry, and it forms various compounds with other elements. Among the uranium-bearing compounds, those with a uranium oxidation state of +6 are most common and a particular structural unit, uranyl UO(2)(2+) is usually involved in these hexavalent uranium compounds. Apart from forming solids with inorganic ions, the uranyl unit also bonds to organic molecules to generate uranyl-organic coordination materials. If appropriate reaction conditions are employed, uranyl-organic extended structures (1-D chains, 2-D layers, and 3-D frameworks) can be obtained. Research on uranyl-organic compounds with extended structures allows for the exploration of their rich structural chemistry, and such studies also point to potential applications such as in materials that could facilitate nuclear waste disposal. In this Account, we describe the structural features of uranyl-organic compounds and efforts to synthesize uranyl-organic compounds with desired structures. We address strategies to construct 3-D uranyl-organic frameworks through rational selection of organic ligands and the incorporation of heteroatoms. The UO(2)(2+) species with inactive U?O double bonds usually form bipyramidal polyhedral structures with ligands coordinated at the equatorial positions, and these polyhedra act as primary building units (PBUs) for the construction of uranyl-organic compounds. The geometry of the uranyl ions and the steric arrangements and functionalities of organic ligands can be exploited in the the design of uranyl--organic extended structures, We also focus on the investigation of the promising physicochemical properties of uranyl-organic compounds. Uranyl-organic materials with an extended structure may exhibit attractive properties, such as photoluminescence, photocatalysis, photocurrent, and photovoltaic responses. In particular, the intriguing, visible-light photocatalytic activities of uranyl-organic compounds are potentially applicable in decomposition of organic pollutants and in water-splitting with the irradiation of solar light. We ascribe the photochemical properties of uranyl-organic compounds to the electronic transitions within the U?O bonds, which may be affected by the presence of organic ligands. PMID:21612214

Wang, Kai-Xue; Chen, Jie-Sheng

2011-07-19

302

Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere.  

PubMed

Polyfluoroalkyl compounds (PFCs) were determined in air around a wastewater treatment plant (WWTP) and two landfill sites using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers in summer 2009. The samples were analyzed for five PFC classes (i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides (FOSAs), sulfonamidoethanols (FOSEs), perfluoroalkyl sulfonic acids (PFSAs), and perfluoroalkyl carboxylic acids (PFCAs)) to investigate their concentration in air, composition and emissions to the atmosphere. ?PFC concentrations in air were 3-15 times higher within the WWTP (2280-24?040 pg/m(3)) and 5-30 times higher at the landfill sites (2780-26?430 pg/m(3)) compared to the reference sites (597-1600 pg/m3). Variations in the PFC pattern were observed between the WWTP and landfill sites and even within the WWTP site. For example, FTOHs were the predominant PFC class in air for all WWTP and landfill sites, with 6:2 FTOH as the dominant compound at the WWTP (895-12?290 pg/m(3)) and 8:2 FTOH dominating at the landfill sites (1290-17?380 pg/m(3)). Furthermore, perfluorooctane sulfonic acid (PFOS) was dominant within the WWTP (43-171 pg/m(3)), followed by perfluorobutanoic acid (PFBA) (55-116 pg/m(3)), while PFBA was dominant at the landfill sites (101-102 pg/m(3)). It is also noteworthy that the PFCA concentrations decreased with increasing chain length and that the emissions for the even chain length PFCAs outweighed emissions for the odd chain length compounds. Furthermore, highly elevated PFC concentrations were found near the aeration tanks compared to the other tanks (i.e., primary and secondary clarifier) and likely associated with increased volatilization during aeration that may be further enhanced through aqueous aerosol-mediated transport. ?PFC yearly emissions estimated using a simplified dispersion model were 2560 g/year for the WWTP, 99 g/year for landfill site 1, and 1000 g/year for landfill site 2. These results highlight the important role of WWTPs and landfills as emission sources of PFCs to the atmosphere. PMID:21466185

Ahrens, Lutz; Shoeib, Mahiba; Harner, Tom; Lee, Sum Chi; Guo, Rui; Reiner, Eric J

2011-10-01

303

Thermal diffusion desorption for the comprehensive analysis of organic compounds.  

PubMed

Comprehensive analysis of organic compounds is crucial yet challenging considering that information on elements, fragments, and molecules is unavailable simultaneously by current analytical techniques. Additionally, many compounds are insoluble or only dissolve in toxic solvents. A solvent- and matrix-free strategy has been developed which allows the organic compound analyzed in its original form. It utilizes thermal diffusion desorption with the solid analyte irradiated with high energy laser. It is capable of providing explicit elemental, fragmental, and molecular information simultaneously for a variety of organic compounds. Thermal diffusion desorption has many advantages compared to the electrospray and MALDI techniques. The protons that form the protonated molecular ions originate from the analyte itself. All the elements and fragments are also derived from the analyte itself, which provides abundant information and expedites the identification of organic compounds. PMID:24914465

Yin, Zhibin; Wang, Xiaohua; Li, Weifeng; He, Miaohong; Hang, Wei; Huang, Benli

2014-07-01

304

Evaluating the treatment of a synthetic wastewater containing a pharmaceutical and personal care product chemical cocktail: Compound removal efficiency and effects on juvenile rainbow trout.  

PubMed

Pharmaceutical and personal care products (PPCPs) can evade degradation in sewage treatment plants (STPs) and can be chronically discharged into the environment, causing concern for aquatic organisms, wildlife, and humans that may be exposed to these bioactive chemicals. The ability of a common STP process, conventional activated sludge (CAS), to remove PPCPs (caffeine, di(2-ethylhexyl)phthalate, estrone, 17?-ethinylestradiol, ibuprofen, naproxen, 4-nonylphenol, tonalide, triclocarban and triclosan) from a synthetic wastewater was evaluated in the present study. The removal of individual PPCPs by the laboratory-scale CAS treatment plant ranged from 40 to 99.6%. While the efficiency of removal for some compounds was high, remaining quantities have the potential to affect aquatic organisms even at low concentrations. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to influent recreated model wastewater with methanol (IM, solvent control) or with PPCP cocktail (IC), or CAS-treated effluent wastewater with methanol (EM, treated control) or with PPCP cocktail (EC). Alterations in hepatic gene expression (evaluated using a quantitative nuclease protection plex assay) and plasma vitellogenin (VTG) protein concentrations occurred in exposed fish. Although there was partial PPCP removal by CAS treatment, the 20% lower VTG transcript levels and 83% lower plasma VTG protein concentration found in EC-exposed fish compared to IC-exposed fish were not statistically significant. Thus, estrogenic activity found in the influent was retained in the effluent even though typical percent removal levels were achieved raising the issue that greater reduction in contaminant load is required to address hormone active agents. PMID:24963889

Osachoff, Heather L; Mohammadali, Mehrnoush; Skirrow, Rachel C; Hall, Eric R; Brown, Lorraine L Y; van Aggelen, Graham C; Kennedy, Christopher J; Helbing, Caren C

2014-10-01

305

Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry  

USGS Publications Warehouse

A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be reported as estimated with the 'E' remark code for one of three reasons: (1) unacceptably low-biased recovery (less than 60 percent) or highly variable method performance (greater than 25 percent relative standard deviation), (2) reference standards prepared from technical mixtures, or (3) potential blank contamination. Samples were preserved by freezing to -20 degrees Celsius. The U.S. Geological Survey National Water Quality Laboratory has established a 1-year sample-holding time limit (prior to sample extraction) from the date of sample collection (if the sample is kept at -20?C) until a statistically accepted method can be used to determine the effectiveness of the sample-freezing procedure.

Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

2006-01-01

306

Indicator pathogens, organic matter and LAS detergent removal from wastewater by constructed subsurface wetlands  

PubMed Central

Background Constructed wetland is one of the natural methods of municipal and industrial wastewater treatments with low initial costs for construction and operation as well as easy maintenance. The main objective of this study is to determine the values of indicator bacteria removal, organic matter, TSS, ammonia and nitrate affecting the wetland removal efficiency. Results The average concentration of E. coli and total coliform in the input is 1.127?×?1014 and 4.41?×?1014 MPN/100 mL that reached 5.03?×?1012 and 1.13?×?1014 MPN/100 mL by reducing 95.5% and 74.4% in wetland 2. Fecal streptococcus reached from the average 5.88?×?1014 in raw wastewater to 9.69?×?1012 in the output of wetland 2. Wetland 2 could reduce 1.5 logarithmic units of E. coli. The removal efficiency of TSS for the wetlands is 68.87%, 71.4%, 57.3%, and 66% respectively. Conclusions The overall results show that wetlands in which herbs were planted had a high removal efficiency about the indicator pathogens, organic matter, LAS detergent in comparison to a control wetland (without canes) and could improve physicochemical parameters (DO, ammonia, nitrate, electrical conductivity, and pH) of wastewater.

2014-01-01

307

Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.  

PubMed

Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined. PMID:24866947

Fischer, Klaus; Majewsky, Marius

2014-08-01

308

Are we about to upgrade wastewater treatment for removing organic micropollutants?  

PubMed

Activated sludge treatment allows only for a partial removal of micropollutants, mainly via sorption and biological degradation. Ozonation and activated carbon filtration are processes bearing the potential to drastically reduce the micropollutant load discharged to the environment after (centralized) biological treatment. The estimated total costs between 0.05 and 0.20 euro per m3 treated water (depending on plant size and effluent DOC content) represent only a small fraction of the total costs for urban wastewater management and are therefore considered feasible. Full scale testing is currently planned or under way with the aim to a) confirm this cost estimation and b) to demonstrate the benefit by quantification of the effect of removal and by documenting the impact on the ecology of receiving waters. Ozonation would have the additional advantage of achieving partial disinfection. Another issue currently being intensively studied is the byproducts formed during ozonation and their toxicity. Evidence is needed that the formed ozonation byproducts are either harmless or easily degradable. Since a 5% to 20% loss of sewage is occurring due to sewer leakage and combined sewer overflow an improved reduction of micropollutant input to the aquatic environment requires that advanced centralized treatment is complemented with measures taken before discharge into the sewer. Options hereto may be waste design, labeling of compounds according to environmental friendliness or separate treatment of quantitatively significant point sources (e.g. hospital wastewater, nursery homes, industrial wastewater). PMID:18235179

Joss, A; Siegrist, H; Ternes, T A

2008-01-01

309

Nonmethane organic compound monitoring program final report, 1988. Volume 1. Nonmethane organic compounds  

SciTech Connect

In certain areas of the country where the National Ambient Air Quality Standard for ozone is being exceeded, additional measurements of ambient nonmethane organic compounds (NMOC) are needed to assist the affected states in developing revised ozone control strategies. Because of previous difficulty in obtaining accurate NMOC measurements, the U.S. Environmental Protection Agency (EPA) has provided monitoring and analytical assistance to these states through Radian Corporation. This assistance began in 1984 and continues through the 1988 NMOC Monitoring Program. Between April 18 and October 30, 1988, Radian analyzed 3,497 ambient air samples, collected at 45 sites. These NMOC analyses were performed by the cryogenic preconcentration, direct flame ionization detection (PDFID) method. Based on 1984, 1985, 1986, and 1987 studies, the method was shown to be precise, accurate, and cost effective relative to the capillary column gas chromatographic, flame ionization detection (GC/FID) method. In 1987 Radian Corporation developed a gas chromatographic multidetector (GC/MD) method to determine the concentration of 38 selected toxic compounds in ambient air. In 1988, air toxic analyses were conducted by GC/MD on ambient air samples taken at 13 sites at which NMOC samples were taken. The 1988 Urban Air Toxics Monitoring Program (UATMP) began in October 1987 at 19 urban sites and extended through September 1988.

McAllister, R.A.; O'Hara, P.L.; Moore, W.H.; Dayton, D.P.; Rice, J.

1988-12-01

310

Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater.  

PubMed

Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization. PMID:17849987

Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P

2007-01-01

311

Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.  

PubMed

Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOrCs) such as pharmaceuticals, personal care products, plasticizers, and flame-retardants by FO and a hybrid FO-RO system was investigated at both the bench- and pilot-scales. More than 30 compounds were analyzed, of which 23 nonionic and ionic TOrCs were identified and quantified in the studied wastewater effluent. Results revealed that almost all TOrCs were highly rejected by the FO membrane at the pilot scale while rejection at the bench scale was generally lower. Membrane fouling, especially under field conditions when wastewater effluent is the FO feed solution, plays a substantial role in increasing the rejection of TOrCs in FO. The hybrid FO-RO process demonstrated that the dual barrier treatment of impaired water could lead to more than 99% rejection of almost all TOrCs that were identified in reclaimed water. PMID:21838294

Hancock, Nathan T; Xu, Pei; Heil, Dean M; Bellona, Christopher; Cath, Tzahi Y

2011-10-01

312

A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States--II) untreated drinking water sources.  

PubMed

Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people. Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), beta-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States. PMID:18433838

Focazio, Michael J; Kolpin, Dana W; Barnes, Kimberlee K; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Barber, Larry B; Thurman, Michael E

2008-09-01

313

Degradability of five aromatic compounds in a pilot wastewater treatment system  

Microsoft Academic Search

Purified terephthalic acid-manufacturing wastewater was treated aerobically with the microbial fusant Fhhh in the carrier activated sludge process at a pilot wastewater treatment plant. Biodegradability of p-toluic acid (p-Tol), benzoic acid (BA), 4-carboxybenzaldehyde (4-CBA), phthalic acid (PA) and terephthalic acid (TA) was monitored. The TOC and COD loading rate of suspended solids (SS) in the sludge were 0.53gTOCgSS?1 d?1 and

X. X. Zhang; S. P. Cheng; Y. Q. Wan; S. L. Sun; C. J. Zhu; D. Y. Zhao; W. Y. Pan

2006-01-01

314

Biodegradation of wastewater nitrogen compounds in fractures: laboratory tests and field observations.  

PubMed

Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates. PMID:17307273

Masciopinto, Constantino

2007-07-17

315

Biodegradation of wastewater nitrogen compounds in fractures: Laboratory tests and field observations  

NASA Astrophysics Data System (ADS)

Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.

Masciopinto, Constantino

2007-07-01

316

Anaerobic transformations of wastewater organic matter and sulfide production--investigations in a pilot plant pressure sewer.  

PubMed

Anaerobic transformations of wastewater organic matter and sulfide production rate were studied using a pilot plant pressure sewer (inner diameter: 102 mm, length: 47 m). Furthermore, a process model description including carbon and sulfur cycle was presented. Wastewater characterization based on oxygen utilization rate (OUR) measurement and VFA analysis was employed. Under anaerobic conditions, a net production of readily biodegradable substrate was observed, which fact is important for biological removal of nitrogen and phosphorus at subsequent wastewater treatment plants. Model parameters were determined on the basis of experimental findings. The model simulation of transformations of organic matter in sewers can be used as input to the model simulation and evaluation of the processes in wastewater treatment plants. The model is also useful to evaluate the problems in both sewers themselves and treatment plants caused by hydrogen sulfide. PMID:11902483

Tanaka, N; Hvitved-Jacobsen, T

2002-01-01

317

Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites  

NASA Technical Reports Server (NTRS)

Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

Cooper, George

2004-01-01

318

An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation.  

PubMed

This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in batch and single-pass modes to examine contaminant degradation rates and the remediation capabilities of the technology, respectively. Values for electrical energy per order (EEO) of magnitude degradation ranged from <0.3 kWh/m(3)-log for easily degraded compounds (e.g., carbamazepine) in surface water to 14 kWh/m(3)-log for more recalcitrant compounds (e.g., meprobamate) in wastewater. Changes in the bulk organic matter based on UV(254) absorbance and excitation-emission matrices (EEM) were also monitored and correlated to contaminant degradation. These results indicate that NTP may be a viable alternative to more common AOPs due to its comparable energy requirements for contaminant degradation and its ability to operate without any additional feed chemicals. PMID:19822343

Gerrity, Daniel; Stanford, Benjamin D; Trenholm, Rebecca A; Snyder, Shane A

2010-01-01

319

40 CFR 60.492 - Standards for volatile organic compounds.  

Code of Federal Regulations, 2013 CFR

...CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after the date on...

2013-07-01

320

SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2  

EPA Science Inventory

High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

321

40 CFR 60.392 - Standards for volatile organic compounds.  

Code of Federal Regulations, 2013 CFR

...CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds. On and...

2013-07-01

322

ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC  

EPA Science Inventory

The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

323

IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest: o Contributions to EPA Regional Monit...

324

DEVELOPMENT OF OZONE REACTIVITY SCALES FOR VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

Methods for developing a numerical scale ranking reactivities of volatile organic compounds (VOCs) towards ozone formation were investigated. ffects of small VOC additions on ozone formation (incremental reactivities) were calculated for 140 types of VOCs in model scenarios repre...

325

Determination of individual organic compounds in shale oil  

Microsoft Academic Search

Several techniques have been investigated for quantitating individual organic compounds in shale oil. Acid-base extraction and high performance liquid chromatography were emphasized as independent methods of shale oil fractionation. Gas chromatography, gas chromatography-mass spectrometry, and high performance liquid chromatography were used for individual compound quantitation utilizing external and\\/or internal standards or standard addition techniques. The following compounds were measured in

H. S. Hertz; J. M. Brown; S. N. Chesler; F. R. Guenther; L. R. Hilpert; W. E. May; R. M. Parris; S. A. Wise

1980-01-01

326

Toxic organic compounds from energy production: Progress report  

Microsoft Academic Search

The theme of this program has been identifying potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The following have been accomplished: As part of out continuing study of the fate of dioxins we are currently measuring atmospheric concentration of polychlorinated dioxins

Hites

1988-01-01

327

VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS  

EPA Science Inventory

A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

328

Volatile organic compounds at an urban monitoring station in Korea  

Microsoft Academic Search

Measurements of 56 volatile organic compounds (VOC) were undertaken at a monitoring site in Seoul, Korea in 2004. The VOC pollution at the site was evaluated for both functional groups and individual compounds. The highest concentrations for the functional groups were recorded by aromatic (AR: 430ppbC) followed by paraffin (PR), olefin (OF), and alkyne (AK). The mean concentrations of individual

Hang Thi Nguyen; Ki-Hyun Kim; Min-Young Kim

2009-01-01

329

Global observations of oxygenated Volatile Organic Compounds from space  

Microsoft Academic Search

Formaldehyde (HCHO), the smallest aldehyde of the atmosphere and glyoxal (CHO.CHO), the smallest a- dicarbonyl compound, are key intermediate products of the oxidation of volatile organic compounds (VOCs). Due to their short lifetime they are expected to provide valuable information on the global identification of the photochemical hot spots which are attributed to the various emission sources of anthropogenic, biogenic

M. Vrekoussis; F. Wittrock; A. Richter; J. P. Burrows

2008-01-01

330

Adsorption of Organic Compounds on Cottage Grove Sandstone.  

National Technical Information Service (NTIS)

The equilibrium adsorption properties of nine organic compounds on the Cottage Grove sandstone were determined at 3,000 psi and two temperatures. The rates of adsorption were calculated for each compound as a function of the concentration of the reactant ...

E. C. Donaldson M. E. Crocker F. S. Manning

1975-01-01

331

Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites  

NASA Technical Reports Server (NTRS)

Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

Cooper, George

2003-01-01

332

Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies  

NASA Astrophysics Data System (ADS)

Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10-2 torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.

Cooper, George W.

1998-06-01

333

Removal of natural and xeno-estrogens during conventional wastewater treatment  

Microsoft Academic Search

The ecological impacts of natural estrogens and xenoestrogens in treated wastewater include altered sexual development and\\u000a sex ratios among continuously exposed organisms. The primary sources of estrogenic activity in wastewater are natural estrogens\\u000a such as estrone, 17?-estradiol and estriol and synthetic compounds like 17?-ethinylestradiol, alkylphenols and alklphenol\\u000a ethoxylates. Precursors in raw wastewater can yield estrogenic intermediates during wastewater treatment. All

Sondra S. Teske; Robert G. Arnold

2008-01-01

334

Heavy metals removal from wastewaters using organic solid waste-rice husk.  

PubMed

In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5-6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g(-1), respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15-20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed. PMID:23381799

Sobhanardakani, S; Parvizimosaed, H; Olyaie, E

2013-08-01

335

Microalgae and wastewater treatment  

PubMed Central

Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.

Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

2012-01-01

336

Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater.  

PubMed

Land application of recycled manure produced from biosolids and reclaimed wastewater can transfer pharmaceutical chemicals to terrestrial environments, giving rise to potential accumulation of these residues in edible plants. In this study, the potential for plant uptake of 13 pharmaceutical chemicals, and the relation between the accumulation features within the plant and the physicochemical properties were examined by exposing pea and cucumber to an aqueous solution containing pharmaceutical chemicals. Ten of 13 compounds tested were detected in plant leaves and stems. Comparison of the plant uptake characteristics and the octanol-water partition coefficient of pharmaceutical chemicals showed that compounds with an intermediate polarity such as carbamazepine and crotamiton could be easily transported to plant shoots. Moreover, these results suggest the possibility of highly hydrophilic pharmaceutical chemicals such as trimethoprim and sulfonamides to be accumulated in plant roots owing to their low permeability in root cell membranes. PMID:23003104

Tanoue, Rumi; Sato, Yuri; Motoyama, Miki; Nakagawa, Shuhei; Shinohara, Ryota; Nomiyama, Kei

2012-10-17

337

Development of a fluorescence in situ hybridization protocol for the identification of micro-organisms associated with wastewater particles and flocs  

Microsoft Academic Search

Fluorescence in situ hybridization (FISH) provides a unique tool to study micro-organisms associated with particles and flocs. FISH enables visual examination of micro-organisms while they are structurally intact and associated with particles. However, application of FISH to wastewater and sludge samples presents a specific set of problems. Wastewater samples generate high background fluorescence due to their organic and inorganic content

Banu Örmeci; Karl G. Linden

2008-01-01

338

Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit.  

PubMed

Using a cross-flow membrane bioreactor, high anaerobic conversion rates of three different types of wastewater with varying organic content were achieved. Loading rates obtained were as follows: 20 g CODL(-1) x d(-1) for artificial wastewater, approximately 8 g CODL(-1) x d(-1) from vegetable processing industry (sauerkraut brine) and 6-8 g CODL(-1) x d(-1) for wastewater from an animal slaughterhouse. At stable conditions, COD-removal rates in all three wastewaters were higher than 90%. Methane yields from the treatment of artificial wastewater, sauerkraut brine, and animal slaughterhouse wastewater were in the range of 0.17-0.30, 0.20-0.34, and 0.12-0.32 L(n) x g(-1) COD(-1) fed, respectively. The complete retention of biomass and suspended solids is a unique feature of this treatment process, which combines a high loading capacity and at the same time, high COD removal rates even for complex wastewater containing high concentrations of particulate matter. PMID:12531272

Fuchs, W; Binder, H; Mavrias, G; Braun, R

2003-02-01

339

Transport, behavior, and fate of volatile organic compounds in streams  

USGS Publications Warehouse

Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

Rathbun, R. E.

1998-01-01

340

Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.  

PubMed

The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. PMID:22033369

Wang, Wei; Han, Hongjun

2012-01-01

341

Biodegradability enhancement of textile wastewater by electron beam irradiation  

NASA Astrophysics Data System (ADS)

Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5/COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process.

Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

2007-06-01

342

The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)  

NASA Astrophysics Data System (ADS)

Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

2009-08-01

343

Analysis of volatile organic compounds from illicit cocaine samples  

SciTech Connect

Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

Robins, W.H.; Wright, B.W.

1994-07-01

344

40 CFR Table 8 to Subpart G of... - Organic HAP's Subject to the Wastewater Provisions for Process Units at New Sources  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Organic HAP's Subject to the Wastewater Provisions...CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for...

2013-07-01

345

40 CFR Table 9 to Subpart G of... - Organic HAP's Subject to the Wastewater Provisions for Process Units at New and Existing Sources...  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Organic HAP's Subject to the Wastewater Provisions...CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for...

2013-07-01

346

Nitrification–Denitrification of Optoelectronic Industrial Wastewater by Anoxic\\/Aerobic Process  

Microsoft Academic Search

This research focused on the biological treatment of high-strength organic nitrogen wastewater, and presented the results from the nitrification and denitrification of an actual industrial wastewater using anoxic\\/aerobic process. The opto-electronic industrial wastewater often contains a significant quantity of organic nitrogen compounds and has a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N). In this study, a

T. K. Chen; C. H. Ni; J. N. Chen

2003-01-01

347

Temporal stability of polar organic compounds in stainless steel canisters  

SciTech Connect

Because of considerable interest at US EPA for the collection of polar organic compounds in stainless steel canisters, particularly for the Toxic Air Monitoring Site (TAMS) study, the stability of 10 selected polar organics in canisters was investigated and the results are described in this paper. The polar organic compounds selected for this stability study were: methanol, acetone, isoprene, acrylonitrile, vinyl acetate, methyl ethyl ketone, t-butyl methyl ether, ethyl acetate, n-butanol, and ethyl acrylate. Two nonpolar compounds, methyl chloroform and toluene, shown to be stable in previous work were included in the stability study as controls. The compounds were loaded in unpolished and Summa-polished canisters at parts-per-billion (ppb) levels under dry and humid conditions. The canister samples were analyzed on Days 0, 1, 3, 4, 14, and 31 after loading. The experimental procedures and stability results are summarized briefly.

Pate, B.; Jayanty, R.K.M.; Peterson, M.R. (Research Triangle Inst., Research Triangle Park, NC (United States)); Evans, G.F. (Environmental Protection Agency, Research Triangle Park, NC (United States))

1992-04-01

348

INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS  

EPA Science Inventory

Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

349

BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION  

EPA Science Inventory

Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

350

Biological aspects of constructing volatile organic compound emission inventories  

Microsoft Academic Search

The: emission of volatile organic compounds (VOCs) from vegetation is subject to numerous biological controls. Past inventories have relied heavily on empirical models which are limited in their ability to simulate the response of organisms to short- and long-term changes in their growth environment. In this review we consider the principal biochemical, physiological and ecological controls over VOC emission with

Ray Fall; Mt Lerdau; Td Sharkey

1995-01-01

351

COMPARISON OF AMBIENT AIR SAMPLING TECHNIQUES FOR VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

A series of fourteen experimental sampling runs were carried out at a field site to collect data from several ambient air monitoring methods for volatile organic compounds (VOCs). Ambient air was drawn through a sampling manifold and was continuously spiked with volatile organic ...

352

Performance of constructed wetland treating wastewater from seafood industry  

Microsoft Academic Search

Wastewater from seafood industry contains high concentrations of organic matter, nitrogen compounds, and solid matter. Constructed wetland can be used as tertiary treatment and for nutrient recycling. This research studied the performance of nitrogen and suspended solids removal efficiency of a constructed wetland treating wastewater from a seafood-processing factory located at Songkhla, southern Thailand. The existing constructed wetland has dimensions

C. Yirong; U. Puetpaiboon

353

Anaerobic fluid-bed treatment of coal conversion wastewater  

Microsoft Academic Search

Wastewaters generated during petroleum refining, coal coking, and coal gasification contain a variety of organic compounds which pollute the environment and may be toxic to aquatic life if discharged into natural waters. Recent research has demonstrated the ability of the anaerobic granular activated carbon (GAC) reactor to successfully treat coal gasification wastewater. In this system pollutants can be classified as

M. T. Suidan; J. T. Pfeffer; G. F. Nakhla; U. K. Traegner; R. Vidic

1989-01-01

354

Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen.  

PubMed

The enantioselective degradation of ibuprofen and naproxen enantiomers was evaluated in five different wastewater treatment systems, including three constructed wetlands (vertical- and horizontal-flow configurations), a sand filter and an activated sludge wastewater treatment plant. In addition, injection experiments were carried out with racemic ibuprofen at microcosm- and pilot-scale constructed wetlands. Ibuprofen and naproxen have an asymmetric carbon atom and, consequently, two enantiomeric forms (i.e. S and R). The enantiomeric fraction (EF=S/(S+R)) in the raw sewage and effluents of various wastewater treatments were found to be compound-dependent (i.e. ibuprofen: EF(influent)=0.73-0.90, EF(effluent)=0.60-0.76; naproxen: EF(influent)=0.88-0.90, EF(effluent)=0.71-0.86). Of the two chiral pharmaceuticals, naproxen was the only one whose effluent EF correlated with its removal efficiency (p<0.05). The lack of correlation found for ibuprofen was attributable to the fact that its enantioselective degradation kinetics were different under prevailing aerobic and anaerobic conditions. Injection experiments of ibuprofen in constructed wetlands at microcosm and pilot-scale followed similar trends. Hence, under prevailing aerobic conditions, S-ibuprofen degraded faster than R-ibuprofen, whereas under prevailing anaerobic conditions, the degradation was not enantioselective. In summary, the naproxen EF measurements in wastewater effluents show that naproxen is a suitable alternative for evaluating the removal efficiency of treatment systems because its enantioselective degradation is similar under prevailing aerobic and anaerobic conditions. PMID:19155040

Matamoros, Víctor; Hijosa, María; Bayona, Josep M

2009-04-01

355

Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes.  

PubMed

The distillery wastewater of Guangdong Jiujiang Distillery, which is characteristic of containing high organic matters and rich total nitrogen, was treated by a combination of methane fermentation and denitrification/nitrification processes. 80% of COD in the raw wastewater was removed by methane fermentation at the COD volumetric loading rate of 20 kg COD/(m3 x d) using the expanded granule sludge bed (EGSB) process. However, almost all the organic nitrogen in the raw wastewater was converted into ammonia by ammonification there. Ammonia and volatile fatty acids (VFA) remaining in the anaerobically treated wastewater were simultaneously removed utilizing VFA as an electron donor by denitrification occurring in the other EGSB reactor and nitrification using PEG-immobilized nitrifying bacteria with recirculation process. An aerobic biological contact oxidization reactor was designed between denitrification/nitrification reactor for further COD removal. With the above treatment system, 18000-28000 mg/L of COD in raw wastewater was reduced to less than 100 mg/L. Also, ammonia in the effluent of the system was not detected and the system had a high removal rate for 900-1200 mg/L of TN in the raw wastewater, only leaving 400 mg/L of nitrate nitrogen. PMID:17078541

Li, Jun; Zhang, Zhen-jia; Li, Zhi-rong; Huang, Guang-yu; Abe, Naoki

2006-01-01

356

Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis during wastewater treatment.  

PubMed

The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. PMID:25065793

Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng

2014-10-01

357

Regulation of renal tubular secretion of organic compounds  

Microsoft Academic Search

Regulation of renal tubular secretion of organic compounds.BackgroundInformation on the molecular basis underlying organic anion and cation transport in renal tubules has expanded in recent years with the identification and characterization of numerous transporters. However, little is known about the regulation of this transport.MethodsBoth English and Russian language studies dealing with the regulation of organic ion transport by the kidney

Efim B Berkhin; Michael H Humphreys

2001-01-01

358

Identification and separation of the organic compounds in coal-gasification condensate waters  

SciTech Connect

A substantial fraction of the organic solutes in condensate waters from low-temperature coal-gasification processes are not identified by commonly employed analytical techniques, have low distribution coefficients (K/sub D/) into diisopropyl ether (DIPE) or methyl isobutyl ketone (MIBK), and are resistant to biological oxidation. These compounds represent an important wastewater treatment problem. Analytical techniques were developed to detect these polar compounds, the the liquid-liquid phase equilibria were measured with several solvents. A high-performance liquid chromatography (HPLC) technique was employed to analyze four condensate-water samples from a slagging fixed-bed gasifier. A novel sample-preparation technique, consisting of an azeotropic distillation with isopropanol, allowed identification of compounds in the HPLC eluant by combined gas chromatography and mass spectrometry. Solvents containing trioctyl phosphine oxide (TOPO) have high K/sub D/ values for phenol and dihydroxy benzenes. A fraction of the compounds which are not removed by MIBK may be Lewis acids, because some of them were extracted by the strong Lewis bases, TBP and TOPO.

Mohr, D.H. Jr.

1983-01-01

359

Microbial Removal of the Pharmaceutical Compounds Ibuprofen and Diclofenac from Wastewater  

PubMed Central

Studies on the occurrence of pharmaceuticals show that the widely used pharmaceuticals ibuprofen and diclofenac are present in relevant concentrations in the environment. A pilot plant treating hospital wastewater with relevant concentrations of these pharmaceuticals was evaluated for its performance to reduce the concentration of the pharmaceuticals. Ibuprofen was completely removed, whereas diclofenac yielded a residual concentration, showing the necessity of posttreatment to remove diclofenac, for example, activated carbon. Successively, detailed laboratory experiments with activated sludge from the same wastewater treatment plant showed bioremediation potential in the treatment plant. The biological degradation pathway was studied and showed a mineralisation of ibuprofen and degradation of diclofenac. The present microbes were further studied in laboratory experiments, and DGGE analyses showed the enrichment and isolation of highly purified cultures that degraded either ibuprofen or diclofenac. This research illuminates the importance of the involved bacteria for the effectiveness of the removal of pharmaceuticals in a wastewater treatment plant. A complete removal of pharmaceuticals from wastewater will stimulate water reuse, addressing the worldwide increasing demand for clean and safe fresh water.

Inderfurth, Nadia; Schraa, Gosse; Kujawa-Roeleveld, Katarzyna; Rijnaarts, Huub

2013-01-01

360

Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations  

SciTech Connect

Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

Wingender, R J; Harrison, W; Raphaelian, L A

1981-02-01

361

Improving rubber concrete by waste organic sulfur compounds.  

PubMed

In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly. PMID:19710121

Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

2010-01-01

362

GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER  

EPA Science Inventory

The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

363

Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents  

PubMed Central

Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

2013-01-01

364

Tertiary ozonation of industrial wastewater for the removal of estrogenic compounds (NP and BPA): a full-scale case study.  

PubMed

Wastewater treatment plant (WWTP) effluents are considered to be a major source for the release in the aquatic environment of endocrine-disrupting compounds (EDCs). Ozone has proved to be a suitable solution for polishing secondary domestic effluents. In this work, the performance of a full-scale ozonation plant was investigated in order to assess the removal efficiency of four target EDCs: nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and bisphenol A. The studied system was the tertiary treatment stage of a municipal WWTP which receives an important industrial (textile) load. Chemical analyses showed that the considered substances occurred with a significant variability, typical of real wastewaters; based on this, ozonation performance was carefully evaluated and it appeared to be negatively affected by flow-rate increase (during rainy days, with consequent contact time reduction). Moreover, EDCs' measured removal efficiency was lower than what could be predicted based on literature data, because of the relatively high residual content of biorefractory compounds still present after biological treatment. PMID:23925184

Bertanza, G; Papa, M; Pedrazzani, R; Repice, C; Dal Grande, M

2013-01-01

365

Volatile organic compounds in Gulf of Mexico sediments  

SciTech Connect

Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, and benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.

McDonald, T.J.

1988-01-01

366

Corrosion of electrodeposited copper by exposure to volatile organic compounds  

Microsoft Academic Search

In this paper we investigate the corrosive behaviour of various volatile organic compounds (VOCs) on electroplated copper.\\u000a The VOCs we considered were of the following types: (i) aromatic and substituted-aromatic compounds (benzene, toluene and\\u000a ethyl benzene); (ii) a chlorine-substituted hydrocarbon (dichloromethane) and (iii) an aliphatic alcohol (isopropyl alcohol).\\u000a Contamination by VOCs is typical of ULSI (Ultra Large Scale Integration) manufacturing

Lucia D’Urzo; Benedetto Bozzini

2009-01-01

367

Photosynthetic marine organisms as a source of anticancer compounds  

Microsoft Academic Search

Since early human history, plants have served as the most important source of medicinal natural products, and even in the\\u000a “synthetic age” the majority of lead compounds for pharmaceutical development remain of plant origin. In the marine realm,\\u000a algae and seagrasses were amongst the first organisms investigated by marine natural products scientists on their quest for\\u000a novel pharmaceutical compounds. Forty

F. Folmer; M. Jaspars; M. Dicato; M. Diederich

2010-01-01

368

[Biosensors for detecting organic compounds. II. Sensors for carbohydrates, aromatic, heterocyclic and other organic compounds].  

PubMed

The use of biosensors for detecting aromatic compounds (aniline, hydroquinone, phenol, and N,N-dimethyl-p-phenylenediamine), heterocyclic compounds (adenosine, AMP, ATP, bilirubin, hypoxanthine, guanine, inosine, inosine 5'-phosphate, xanthine, creatinine, uric acid, and NAD), carbohydrates (glucose, galactose, lactose, maltose, and sucrose), vitamins, antibiotics, steroids, mutagens, and organophosphorous pesticides is discussed. Basic metrological characteristics of these biosensors are reviewed. PMID:9566290

Sorochinski?, V V; Kurganov, B I

1998-01-01

369

Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area.  

PubMed

The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from "negative removal" to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment. PMID:24176710

Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

2014-02-01

370

Application of wastewater from paper and food seasoning industries with green manure to increase soil organic carbon: a laboratory study.  

PubMed

This laboratory scale experiment was designed to study the suitability of organic wastes from paper and food seasoning industries to improve the soil organic carbon for rice cultivation. Lignin-rich wastewater from paper industry and nitrogen-rich effluent from a food industry at suitably lower concentrations were used at two levels of green manure to enhance the soil organic carbon fraction over time. Both the groups of soils with or without Sesbania were incubated under submerged condition at 25 degrees C for 15 days. Wastewaters from paper industry (WP), food industry (WS), and a combination of WP+WS were added separately to both the treatment groups in flasks. After 103 days of incubation, from all the three treatments and control, total organic carbon and alkali-soluble organic carbon fractions were analyzed. Results indicated that in all the three treatments containing green manure amended with industrial wastewaters, the organic carbon content increased significantly. The alkali-soluble organic carbon fraction was increased by 59% in the soil amended with green manure containing WS and by 31% in the treatment without green manure compared to control. The paper mill waste water namely, WP, increased the organic carbon only in the soil containing green manure by 63%. The combined treatment of WP+WS with green manure increased alkali-soluble organic carbon fraction by 90% compared to control, while in the treatment without green manure, the organic carbon increase was 71%. Overall, the combined treatment WP+WS with green manure could increase the alkali-soluble organic carbon fraction more than all other treatments. Hence, wastewater rich in organics from paper and food industries can be efficiently used to temporarily increase the soil organic carbon content. PMID:18262409

Lin, Chin-Ching; Arun, A B; Rekha, P D; Young, Chiu-Chung

2008-09-01

371

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOEpatents

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

Vo-Dinh, T.

1987-07-14

372

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOEpatents

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

1987-01-01

373

Determination of individual organic compounds in shale oil  

SciTech Connect

Several techniques have been investigated for quantitating individual organic compounds in shale oil. Acid-base extraction and high performance liquid chromatography were emphasized as independent methods of shale oil fractionation. Gas chromatography, gas chromatography-mass spectrometry, and high performance liquid chromatography were used for individual compound quantitation utilizing external and/or internal standards or standard addition techniques. The following compounds were measured in the shale oil: pyrene, fluoranthene, benzo(e)pyrene, benzo(a)pyrene, phenol, o-cresol, acridine, and 2,4,6-trimethylpyridine. Comparable results were obtained by the various methods for extraction and quantitation.

Hertz, H.S.; Brown, J.M.; Chesler,S.N.; Guenther, F.R.; Hilpert, L.R.; May, W.E.; Parris, R.M.; Wise, S.A.

1980-09-01

374

Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Wastewater Compounds by Polystyrene-Divinylbenzene Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry  

USGS Publications Warehouse

A method for the determination of 67 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals in wastewater on aquatic organisms. This method also may be useful for evaluating the impact of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are an indicator of wastewater or that have been chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclicaromatic hydrocarbons, and high-use domestic pesticides. Water samples are filtered to remove suspended particulate matter and then are extracted by vacuum through disposable solid-phase cartridges that contain polystyrene-divinylbenzene resin. Cartridges are dried with nitrogen gas, and then sorbed compounds are eluted with dichloromethane-diethyl ether (4:1) and determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 4 micrograms per liter averaged 74 percent ? 7 percent relative standard deviation for all method compounds. Initial method detection limits for single-component compounds (excluding hormones and sterols) averaged 0.15 microgram per liter. Samples are preserved by filtration, the addition of 60 grams NaCl, and storage at 4 degrees Celsius. The laboratory has established a sample-holding time (prior to sample extraction) of 14 days from the date of sample collection until a statistically accepted method can be used to determine the effectiveness of these sample-preservation procedures.

Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.; Barber, Larry B.; Burkhardt, Mark R.

2002-01-01

375

Raman scattering studies of organic semiconducting charge-transfer compounds  

NASA Astrophysics Data System (ADS)

Organic semiconductors offer the possibility of devices with greater mechanical flexibility and lower production costs compared to existing materials. Reports of carrier mobilities in monomolecular organic semiconductors in the 10-50 cm^2/V-s range and success in fabricating electronic devices from organic materials has increased the interest in their properties for electronic applications. However, the range of properties displayed by the monomolecular crystals is rather narrow. Charge-transfer compounds composed of two different organic molecules in which one acts as a donor and the other as an acceptor may represent the next generation of organic semiconductors. Control of their properties by modification of the molecules or changes in stoichiometry and crystalline structure makes them particularly attractive for a wide range of applications provided that the relationship between the structure and constituents of the compounds and their physical properties can be elucidated. Raman scattering studies of single crystals of two representative charge-transfer compounds, perylene-TCNQ and anthracene-TCNQ, will be presented. Theoretical calculations suggest that these materials have the potential for ambipolar charge transport, and so intermolecular interactions in these compounds are of particular interest.

McNeil, Laurie; Kloc, Christian

2011-03-01

376

Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance.  

PubMed

To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment. PMID:11944670

Kolpin, Dana W; Furlong, Edward T; Meyer, Michael T; Thurman, E Michael; Zaugg, Steven D; Barber, Larry B; Buxton, Herbert T

2002-03-15

377

A method for on-line measurement of wastewater organic substrate oxidation level during aerobic heterotrophic respiration.  

PubMed

A method for on-line measurement of the organic carbon oxidation level (OXC) during aerobic heterotrophic respiration in domestic wastewater was developed and tested. The method is based on batch incubation of sewer wastewater in an intermittently aerated respirometric reactor. Between aeration cycles, measured pH, dissolved oxygen (DO) and dissolved carbon dioxide (CO2) were used to calculate electron flow accepted by DO and the resulting production of dissolved inorganic carbon (DIC). The CO2 production was measured using a novel fiber-optic sensor based on luminescence quenching. The method was tested on domestic wastewater with a relatively high pH and alkalinity. From the DO and DIC measurements, it was possible to evaluate substrate oxidation levels with a temporal resolution of less than an hour. Addition of organic substrates during the experiments confirmed the method's applicability. The substrates tested included ethanol (OXC = -2), glucose (OXC = 0) and oxalic acid (OXC = 3). PMID:23579837

Rudelle, E A; Vollertsen, J; Hvitved-Jacobsen, T; Nielsen, A H

2013-01-01

378

Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation  

Microsoft Academic Search

The effective performance of electrocoagulation (EC) technique in the treatment of olive mill wastewater (OMW) has been investigated using sacrificial aluminium electrodes. The optimum working pH was found to be in the range 4–6, allowing OMW to be treated directly without pH adjustment. In addition, it is found that an increase in the current enhanced the speed of the treatment

Nafaâ Adhoum; Lotfi Monser

2004-01-01

379

Concentration of organic contaminants in fish and their biological effects in a wastewater-dominated urban stream.  

PubMed

Data are presented on the concentrations of alkylphenol and alkylphenol ethoxylates (APEs) and persistent organic compounds in largemouth bass collected from a waste-water dominated stream in downtown Chicago. The fish residue concentrations of APEs are compared to concentrations of the APEs in the water that were collected at weekly intervals over two months bracketing the fall (2006) and a spring (2007) fish collection. The concentrations of APEs were significantly higher in the spring-collected fish (5.42?g/g) versus the fall (0.99?g/g) tand these differences were shared by differences in the water concentrations (spring - 11.47 versus fall - 3.44?g/L). The differences in water concentration were negatively correlated with water temperatures observed over the two sampling times. Fish residue concentrations of persistent organic compounds (PCBs, PBDEs, toxaphene, and many legacy pesticides including the DDT family) did not vary from fall to spring. Some of these residue concentrations were comparable to the highest NPE (nonylphenol ethoxylate) homologue concentrations, e.g. NP1EO was 3.5?g/g in the bass for the spring, the PBDE-congener 47 and p,p'-DDE averaged 1.0?g/g and 0.5?g/g, respectively, over both seasons. All the other persistent single-analyte concentrations were lower. Biological endpoints for endocrine effects measured in the same fish showed that there was an apparent positive correlation for physiological effects based on increased vitellogenin levels in males versus concentration of NPEs; however there were no observable histological differences in fall versus spring fish samples. PMID:22341470

Lozano, Nuria; Rice, Clifford P; Pagano, James; Zintek, Larry; Barber, Larry B; Murphy, Elizabeth W; Nettesheim, Todd; Minarik, Tom; Schoenfuss, Heiko L

2012-03-15

380

Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.  

PubMed

The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK(a)) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na(6)Al(6)Si(10)O(32)·12H(2)O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Å × 4.5 Å [100] and 2.8 Å × 4.8 Å [101]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k(ow) value, suggesting that more hydrophobic organic contaminants are more easily retained by modified zeolite. Based on the different adsorption behavior, the uptake of non-ionizable pollutants was thought to be a single partitioning process into the surfactant bilayer. For ionizable compounds, however, interaction of the phenol group(s) with the positively charged "head" of surfactant additionally functions. PMID:22771348

Xie, Jie; Meng, Wenna; Wu, Deyi; Zhang, Zhenjia; Kong, Hainan

2012-09-15

381

A review of synergistic effect of photocatalysis and ozonation on wastewater treatment  

Microsoft Academic Search

For the treatment of wastewater that contain recalcitrant organic compounds, such as organo-halogens, organic pesticides, surfactants, and colouring matters, wastewater engineers are now required to develop advanced treatment processes. A promising way to perform the mineralization of this type of substance is the application of an advanced oxidation process (AOP).Photocatalytic oxidation and ozonation appear to be the most popular treatment

T. E. Agustina; H. M. Ang; V. K. Vareek

2005-01-01

382

Effects of organic pollutants from wastewater treatment plants on aquatic invertebrate communities.  

PubMed

Pesticides are a major stressor for stream ecosystem health. They enter surface waters from diffuse agricultural sources but also from point sources such as municipal wastewater treatment plants (WWTPs). However, to date, no studies have focused on the ecological effects of pesticide-contaminated WWTP effluent on macroinvertebrate communities. On the basis of governmental monitoring data of 328 sites in Hesse, Germany, we identified insecticidal long-term effects on the structure of the macroinvertebrate community up to 3 km downstream of WWTPs. The effects were quantified using the trait-based SPEAR(pesticides) index, which has been shown to be an effective tool for identifying community effects of pesticide contamination. In addition, based on the German Saprobic Index, we revealed that WWTPs are still an important source of oxygen-depleting organic pollution, despite the extensive technological improvements in wastewater management over several centuries. In general, our findings emphasize the need to take municipal WWTPs into consideration in the management of river basins under the EU Water Framework Directive to achieve good ecological and chemical status for European streams and rivers. PMID:23174534

Bunzel, Katja; Kattwinkel, Mira; Liess, Matthias

2013-02-01

383

The Differentiation of Biodegradable and Non-Biodegradable Dissolved Organic Matter in Wastewaters Using Fluorescence and Raman Scattering Data}  

NASA Astrophysics Data System (ADS)

The chemical and biochemical oxygen demand values of a number of synthetic and wastewater samples were determined using fluorescence spectroscopy. Treated and untreated wastewater samples were obtained from a local sewage treatment works while synthetic samples were treated via a rotating biodisc contactor. Fluorescence intensities were normalised using the water Raman signal as an internal standard and corrections applied to take into account the attenuation effects caused by the sample matrix. The fluorescence properties (? exc = 280nm) of synthetic and wastewater samples exhibited major similarities regarding their fluorescence response. Two main fluorescence bands centred around 350 nm and 440 nm were observed in all samples. Normalised fluorescence data, centred at 350 nm, correlate well with corresponding BOD, COD and TOC values (R2 values ranging between 0.93 and 0.98). Using BOD, COD and TOC data the fluorescence at 350nm and 440 nm can be apportioned to biodegradable and non-biodegradable dissolved organic matter respectively. The findings of this research show that fluorescence and Raman scattering data can be used to quantify chemical and biochemical oxygen demand values of wastewater. Furthermore the spectral data can be apportioned to biodegradable (BOD) and non-biodegradable (COD-BOD) dissolved organic matter. The potential of using fluorescence spectroscopy as a possible tool for real-time monitoring of sewage wastes is discussed. Key words - fluorescence, biodegradable, non-biodegradable, synthetic sewage, wastewater, monitoring

Reynolds, D. M.

2006-12-01

384

[Characteristics and chlorinated disinfection by-products formation potential of dissolved organic matter fractions in treated wastewater].  

PubMed

Dissolved organic matter (DOM) from a biological treated wastewater of municipal wastewater treated plant was isolated and fractionated using resin adsorption into four different fractions. These fractions are operationally categorized as hydrophilic substances (HIS), hydrophobic acids (HOA), hydrophobic neutrals (HON), and hydrophobic bases (HOB). The dissolved organic carbon (DOC) and specific UV absorbance, characteristics of three dimensional excitation emission matrix fluorescence spectroscopy (3DEEM) and disinfection byproducts formation potential of each fraction was investigated in this paper. The results showed that HIS and HOA were the main fractions and occupied 33% and 30% of DOC in the treated wastewater sample, respectively. The fraction of HIS contained more humus, which were predominately microbially derived, while the fraction of HOA contained more aromatic proteins and soluble microbial products by the analysis of 3DEEM. The chlorinated trihalomethane formation potential (THMFP) of HIS fraction was 630.4 microg x L(-1) and occupied 73.7% of that formed in wastewater sample. The chlorinated haloacetic acids formation potential (HAAFP) of HIS and HOA fractions were 644.6 microg x L(-1) and 123.2 microg x L(-1), which was found to be the most reactive precursor in the fractions of treated wastewater to the disinfection by-products formation. PMID:19799288

Sun, Ying-xue; Wu, Qian-yuan; Tian, Jie; Wang, Li-sha; Hu, Hong-ying

2009-08-15

385

Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment  

Microsoft Academic Search

Wastewater reuse is being increasingly emphasized as a strategy for conservation of limited resources of freshwater and as a mean of safeguarding the aquatic environment due to contaminants present in wastewater. Although secondary and tertiary treated wastewater is often discharged into surface waters, it cannot be reused without further treatment. One of the parameters of concern for human and environmental

H. K. Shon; S. Vigneswaran; S. A. Snyder

2006-01-01

386

Organic Compounds in Potomac River Water Used for Public Supply near Washington, D.C., 2003-05  

USGS Publications Warehouse

Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. A total of 85 of 277 compounds were detected at least once among the 25 samples collected approximately monthly during 2003-05 at the intake of the Washington Aqueduct, one of several community water systems on the Potomac River upstream from Washington, D.C. The diversity of compounds detected indicate a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including treated wastewater outfalls located upstream, overland runoff, and ground-water discharge) to drinking-water supplies. Seven compounds were detected year-round in source-water intake samples, including selected herbicide compounds commonly used in the Potomac River Basin and in other agricultural areas across the United States. Two-thirds of the 26 compounds detected most commonly in source water (in at least 20 percent of the samples) also were detected most commonly in finished water (after treatment but prior to distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds. On the basis of this screening-level assessment, adverse effects to human health are expected to be negligible (subject to limitations of available human-health benchmarks).

Brayton, Michael J.; Denver, Judith M.; Delzer, Gregory C.; Hamilton, Pixie A.

2008-01-01

387

Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong  

Microsoft Academic Search

Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they

Yunchun Li

2008-01-01

388

On the flux of oxygenated volatile organic compounds from organic aerosol oxidation  

Microsoft Academic Search

Previous laboratory and field studies suggest that oxidation of organic aerosols can be a source of oxygenated volatile organic compounds (OVOC). Using measurements of atmospheric oxidants and aerosol size distributions performed on the NASA DC-8 during the INTEX-NA campaign, we estimate the potential magnitude of the continental summertime OVOC flux from organic aerosol oxidation by OH to be as large

Alan J. Kwan; John D. Crounse; Antony D. Clarke; Yohei Shinozuka; Bruce E. Anderson; James H. Crawford; Melody A. Avery; Cameron S. McNaughton; William H. Brune; Hanwant B. Singh; Paul O. Wennberg

2006-01-01

389

INFRARED REMOTE SENSING OF ORGANIC COMPOUNDS IN THE UPPER TROPOSPHERE  

Microsoft Academic Search

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument measures the intensity of atmospheric radiation emitted in the infra-red spectral region at high spectral resolution in five bands ranging from 685 cm-1 to 2410 cm-1. The instrument has an excellent radiometric calibration, allowing the determination of weak features of organic compounds which are present and rather important in the upper

John J. Remedios; Grant Allen; H. Sembhi

2005-01-01

390

AERATION TO REMOVE VOLATILE ORGANIC COMPOUNDS FROM GROUND WATER  

EPA Science Inventory

The interim report presents general information on the use of aeration to remove volatile organic compounds from drinking water for public health reasons. The report illustrates the types of aerators, shows where they are being used, presents a means of estimating aeration perfor...

391

Problems in determining the water solubility of organic compounds  

Microsoft Academic Search

We have been concerned for some time about the reliability of published water solubility data for organic compounds with low solubility. The problem was illustrated by the results of our studies on the solubility of the liquid trichlorobenzene (TCB). We found that the apparent solubility is strongly dependent on the method of introducing the solute into the water (Orr 1980).

A. Bharath; C. Mallard; D. Orr; G. Ozburn; A. Smith

1984-01-01

392

PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF ORGANIC COMPOUNDS  

EPA Science Inventory

The results of thermal and photothermal destruction of the vapors of organic compounds were compared by conducting tests in a photothermal detoxification unit. enon are lamp was used as the irradiation source. he tests were conducted on trichlorethylene (TCE), 1,2-dichlorobenzene...

393

PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

The contamination of subsurface soil and groundwater by volatile organic compounds (VOCS) is a pervasive problem in the United States. n-situ soil vapor extraction (SVE) and ex-situ thermal desorption are the most adapted technologies for the remediation of contaminated soil whil...

394

Reductive amination of oxygen-containing organic compounds  

NASA Astrophysics Data System (ADS)

The data dealing with reductive amination of oxygen-containing organic compounds of different classes are systematised. New data on the amination agents and the catalysts used are presented. The dependence of the reactivity of reagents on their structures is considered. The bibliography includes 249 references.

Tarasevich, Vladimir A.; Kozlov, Nikolai G.

1999-01-01

395

Influence of Ozone on the Photocatalytic Oxidation of Organic Compounds  

Microsoft Academic Search

Heterogeneous photocatalytic oxidation processes using titanium oxide as a photocatalyst are widely discussed topics in research for water and waste water treatment. Oxygen fed into the systems is normally used as oxidizing agent. However few investigations exist concerning the use of ozone as an additional oxidant. In this work the influence of ozone on the photocatalytic degradation of organic compounds

E. Gilbert

2002-01-01

396

Source apportionment of volatile organic compounds in Hong Kong homes  

Microsoft Academic Search

Indoor volatile organic compound (VOC) data obtained in 100 Hong Kong homes were analyzed to investigate the nature of emission sources and their contributions to indoor concentrations. A principal component analysis (PCA) showed that off-gassing of building materials, household products, painted wood products, room freshener, mothballs and consumer products were the major sources of VOCs in Hong Kong homes. The

H. Guo

2011-01-01

397

Metabolism and effects of organic compounds in animals  

Microsoft Academic Search

The knowledge of the metabolism and effects of organic compounds in animals, specifically food-producing animals, are of paramount importance in assessing potential human health hazards. An intensive effort has been directed at detection of chemicals in the environment, determination of their physiological insult and cellular interaction; in particular their carcinogenic and mutagenic induction capability. The chemical exposure of food-producing animals

Eisele

1985-01-01

398

Assessment of volatile organic compound emissions from ecosystems of China  

Microsoft Academic Search

Isoprene, monoterpene, and other volatile organic compound (VOC) emissions from grasslands, shrublands, forests, and peatlands in China were characterized to estimate their regional magnitudes and to compare these emissions with those from landscapes of North America, Europe, and Africa. Ecological and VOC emission sampling was conducted at 52 sites centered in and around major research stations located in seven different

L. F. Klinger; Q.-J. Li; A. B. Guenther; J. P. Greenberg; B. Baker; J.-H. Bai

2002-01-01

399

Volatile organic compounds in ambient air of Mumbai—India  

Microsoft Academic Search

Volatile organic compounds (VOCs) are a major group of air pollutants which play a critical role in atmospheric chemistry. These contribute to toxic oxidants which are harmful to ecosystem, human health and atmosphere. The variability of pollutants is an important factor in determining human exposure to these chemicals. Data on levels of VOCs in developing countries, including India, are lacking.The

Anjali Srivastava; A. E. Joseph; S. Devotta

2006-01-01

400

Volatile organic compounds in some urban locations in United States  

Microsoft Academic Search

Volatile organic compounds (VOCs) have been determined to be human risk factors in urban environments, as well as primary contributors to the formation of photochemical oxidants. Ambient air quality measurements of 54 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in or near 13 urban locations in the United States during September 1996 to August 1997. Air samples were

Mahmoud F. Mohamed; Daiwen Kang; Viney P. Aneja

2002-01-01

401

VOLATILE ORGANIC COMPOUND MODEL (VERSION 1.8) (FOR MICROCOMPUTERS)  

EPA Science Inventory

Future emissions of volatile organic compounds (VOCs) and costs of their control can be estimated by applying growth factors, emission constraints, control cost functions, and capacity retirement rates to the base line estimates of VOC emissions and industrial VOC source capacity...

402

Catalytic oxidation of volatile organic compounds on supported noble metals  

Microsoft Academic Search

Volatile organic compounds (VOCs) are toxic and mainly contribute to the formation of photochemical smog with a consequent remarkable impact to the air quality. A few techniques are available to reduce VOC emission, among them catalytic oxidation is suitable especially for highly diluted VOCs. The development of noble metals and transition metal oxides as catalysts for VOCs oxidation has been

L. F. Liotta

2010-01-01

403

FIELD-DEPLOYABLE MONITORS FOR VOLATILE ORGANIC COMPOUNDS IN AIR  

EPA Science Inventory

Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

404

Biogeochemistry of Organic Nitrogen Compounds in Seawater and on Particles.  

National Technical Information Service (NTIS)

The goal of this research was to increase our understanding of the behavior of biogenic organic nitrogen compounds in the marine environment. Nitrogen is essential to the photosynthetic formation of life in natural waters and is one of the nutrients which...

C. Lee

1992-01-01

405

A global model of natural volatile organic compound emissions  

Microsoft Academic Search

Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly

Alex Guenther; C. Nicholas Hewitt; David Erickson; Ray Fall; Chris Geron; Tom Graedel; Peter Harley; Lee Klinger; Manuel Lerdau; W. A. McKay; Tom Pierce; Bob Scholes; Rainer Steinbrecher; Raja Tallamraju; John Taylor; Pat Zimmerman

1995-01-01

406

Screening of Volatile Organic Compounds in River Sediment  

Microsoft Academic Search

Volatile organic compounds (VOCs), such as trichloroethene, toluene and xylenes have been reported to be detected from river water and sediment, because a part of VOCs charged into river can be distributed to river sediment. Fifty-three common VOCs in water have been simultaneously determined with good accuracy and precision by gas chromatography - mass spectrometry (GC\\/MS) with headspace method as

K. Kawata; A. Tanabe; S. Saito; M. Sakai; A. Yasuhara

1997-01-01

407

Energies of organic compounds. [Polyoxygenated methanes, ketals, orthoesters, cyclopropane derivatives  

SciTech Connect

Automatic reaction calorimeters were developed. Enthalpies of hydration or hydrolysis were determined for polyoxygenated methanes, ketals, acetals, orthoesters, and alkenes. Trifluoroacetolysis of alkenes was carried out. Enthalpies of acetolysis and combustion of cyclopropane derivatives were also determined. Molecular mechanics calculations were carried out for ketones and ketals. Charge distribution in organic compounds were studied. 31 references. (DLC)

Wiberg, K. B.

1980-07-01

408

LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

409

NATIONAL AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS) DATA BASE UPDATE, DOCUMENTATION  

EPA Science Inventory

Data on the observed concentrations of three hundred twenty (320) volatile organic compounds (VOCs) were compiled, critically evaluated, and assembled into a relational data base. Ambient (i.e., outdoor) measurements, indoor data, and data collected with personal monitors are inc...

410

Portable acoustic wave sensors for volatile organic compounds  

Microsoft Academic Search

Portable acoustic wave sensor (PAWS) systems are being developed for real-time, on-line monitoring of volatile organic compounds (VOC's). These systems are built around acoustic wave (SAW) devices coated with viscoelastic polymers. Two independent responses of the SAW sensor, wave velocity and wave attenuation, are measured to provide information about the chemical species sorbed by the coating. Rapid, reversible detection of

G. C. Frye; R. W. Cernosek; S. J. Martin

1992-01-01

411

Characterization of total volatile organic compound emissions from paints  

Microsoft Academic Search

Recently, Homeswest in Western Australia and Murdoch University developed a project to construct low allergen houses (LAH) in a newly developed suburb. All potential volatile organic compound (VOC) emission materials used in LAH are required to be measured before the construction of LAH, to ensure they are low VOCs emission materials. To protect people sensitive to exposure to VOCs it

H. Guo; F. Murray

2000-01-01

412

OXYGENATED ORGANIC COMPOUND CONCENTRATIONS NEAR A ROADWAY IN LITHUANIA, SSR  

EPA Science Inventory

During the period June 1 to June 9, 1989, aldehyde and other oxygenated organic compound concentrations were examined at sites 3, 10, and 80 meters northeast of the Vilnius-Kaunas highway in Lithuania, SSR by collecting 120 liter (1 L/min for 120 min) samples on 2,4-dinitrophenyl...

413

Who Took Jerell's iPod? -- An Organic Compound Mystery  

NSDL National Science Digital Library

In this activity, students learn how to test for triglycerides, glucose, starch, and protein and then use these tests to solve a mystery. The activity reinforces students understanding of the biological functions and food sources of these different types of organic compounds.

Doherty, Jennifer; Waldron, Ingrid

414

Volatile organic compound (VOC) emissions from soil and litter samples  

Microsoft Academic Search

The production of nonmethane volatile organic compounds (VOCs) by soil microbes is likely to have an important influence on soil ecology and terrestrial biogeochemistry. However, soil VOC production has received relatively little attention, and we do not know how the emissions of microbially-produced VOCs vary across soil and litter types. We collected 40 root-free soil and litter samples from a

Jonathan W. Leff; Noah Fierer

2008-01-01

415

Sorption of Ionizable Organic Compounds to Sediments and Soils.  

National Technical Information Service (NTIS)

The sorption of ionizable organic compounds to sediments and saturated soils is examined. The sorption of pentachlorophenol to two sediment silt-clay fractions as a function of pH is described. Sorption of both the neutral and the ionic species was shown ...

C. T. Jafvert E. J. Weber

1991-01-01

416

Operation of a horizontal subsurface flow constructed wetland--microbial fuel cell treating wastewater under different organic loading rates.  

PubMed

The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the system was monitored. The installation consisted of a synthetic domestic wastewater-feeding system and a pilot-scale constructed wetland for wastewater treatment, which also included coupled devices necessary to function as an MFC. The wetland worked under continuous operation for 180 d, treating three types of synthetic wastewater with increasing organic loading rates: 13.9 g COD m(-2) d(-1), 31.1 g COD m(-2) d(-1), and 61.1 g COD m(-2) d(-1). The COD removal efficiencies and the cell voltage generation were continuously monitored. The wetland worked simultaneously as an MFC generating electric power. Under low organic loading rates, the wastewater organic matter was completely oxidised in the lower anaerobic compartment, and there were slight aerobic conditions in the upper cathodic compartment, thus causing an electrical current. Under high organic loading rates, the organic matter could not be completely oxidised in the anodic compartment and flowed to the cathodic one, which entered into anaerobic conditions and caused the MFC to stop working. The system developed in this work offered similar cell voltage, power density, and current density values compared with the ones obtained in previous studies using photosynthetic MFCs, sediment-type MFCs, and plant-type MFCs. The light/darkness changes caused voltage fluctuations due to the photosynthetic activity of the macrophytes used (Phragmites australis), which affected the conditions in the cathodic compartment. PMID:24074815

Villaseñor, J; Capilla, P; Rodrigo, M A; Cañizares, P; Fernández, F J

2013-11-01

417

Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater, Use of dynamic enrichment cultures  

Microsoft Academic Search

The removal of phosphorus from wastewater is already widely applied. In many cases use is made of micro organisms capable of accumulating phosphorus as polyphosphate inside the cell. The main characteristic providing the competitive advantage to these polyphosphate accumulating bacteria is the capability to use polyphosphate, in the absence of external electron acceptors, as energy source for the uptake and

M. C. M. van Loosdrecht; G. J. Smolders; T. Kuba; J. J. Heijnen

1997-01-01

418

Composition of volatile organic compounds in flowers of Astragalus sahendi.  

PubMed

A hydrodistillation sampling method, coupled to gas chromatography-mass spectrometry, was used in monitoring the volatile organic compounds in flowers of Astragalus sahendi. Accordingly, a total of 48 compounds were recognised, which were united by their terpenoid or aliphatic skeletons and low molecular weight. Above all, the significant presence of some insect-favoured terpenoid compounds, such as farnesol, cis- and trans-geraniol, alpha-bisabolol, nerolidol isomer, alpha-terpineol, alpha-terpinolene and thymol was significant. These findings confer a better understanding of pollination processes in the giant genus Astragalus. Furthermore, the results add to an increasing quantity of data corroborating the ecologic and evolutionary correlation between the floral bioactive compounds of plant species and their special types of pollinators. PMID:20803377

Movafeghi, A; Delazar, A; Amini, M; Asnaashari, S; Nazifi, E

2010-09-01

419

Simultaneous determination of selected endocrine disrupter compounds in wastewater samples in ultra trace levels using HPLC-ES-MS/MS.  

PubMed

An analytical procedure for the simultaneous determination of six selected endocrine disrupter compounds (EDCs: diltiazem, progesterone, benzyl butyl phthalate (BBP), estrone, carbamazepine (Cbz), acetaminophen) was developed by liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). All of the parameters for HPLC and ES-MS/MS systems including mobile phase composition, flow rate, and sample injection volume were optimized to obtain not only the best separation of species interested but also low detection limits. Reverse phase chromatography coupled to ES-MS/MS was used for the separation and detection of EDCs. Formic acid (0.10% ) and 5.0 mM ammonium formate were selected as mobile phase composition in gradient elution. Detection limits for diltiazem, progesterone, BBP, estrone, Cbz, and acetaminophen were found to be 0.13, 0.12, 0.04, 0.13, 0.12, and 0.05 ng/mL, respectively. Influent and effluents from three different wastewater treatment plants located in Ankara, i.e., rotating flat-sheet membrane unit, pilot type flat-sheet membrane unit located at METU Campus and samples from Ankara central wastewater treatment plant were analyzed for their EDCs contents under the optimum conditions. PMID:21912869

Komesli, Okan Tar?k; Bak?rdere, Sezgin; Bayören, Ceren; Gökçay, Celal Ferdi

2012-08-01

420

Analysis of organic compounds in returned comet nucleus samples  

NASA Technical Reports Server (NTRS)

Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

Cronin, J. R.

1989-01-01