Science.gov

Sample records for wastewater sludge treatments

  1. DESIGN HANDBOOK FOR AUTOMATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    This report is a systems engineering handbook for the automation of activated sludge wastewater treatment processes. Process control theory and application are discussed to acquaint the reader with terminology and fundamentals. Successful unit process control strategies currently...

  2. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment.

    PubMed

    Morgan-Sagastume, F; Valentino, F; Hjort, M; Cirne, D; Karabegovic, L; Gerardin, F; Johansson, P; Karlsson, A; Magnusson, P; Alexandersson, T; Bengtsson, S; Majone, M; Werker, A

    2014-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polyesters with comparable properties to some petroleum-based polyolefins. PHA production can be achieved in open, mixed microbial cultures and thereby coupled to wastewater and solid residual treatment. In this context, waste organic matter is utilised as a carbon source in activated sludge biological treatment for biopolymer synthesis. Within the EU project Routes, the feasibility of PHA production has been evaluated in processes for sludge treatment and volatile fatty acid (VFA) production and municipal wastewater treatment. This PHA production process is being investigated in four units: (i) wastewater treatment with enrichment and production of a functional biomass sustaining PHA storage capacity, (ii) acidogenic fermentation of sludge for VFA production, (iii) PHA accumulation from VFA-rich streams, and (iv) PHA recovery and characterisation. Laboratory- and pilot-scale studies demonstrated the feasibility of municipal wastewater and solid waste treatment alongside production of PHA-rich biomass. The PHA storage capacity of biomass selected under feast-famine with municipal wastewater has been increased up to 34% (g PHA g VSS(-1)) in batch accumulations with acetate during 20 h. VFAs obtained from waste activated sludge fermentation were found to be a suitable feedstock for PHA production. PMID:24434985

  3. BENEFICIAL DISPOSAL OF WATER PURIFICATION PLANT SLUDGES IN WASTEWATER TREATMENT

    EPA Science Inventory

    This report discusses the advantages and disadvantages of the disposal of waste alum sludge from a water treatment plant to a municipal wastewater treatment plant and is submitted in fulfillment of Grant No. 803336-01 by Novato Sanitary District and North Marin County Water Distr...

  4. Wastewater cleanup: Put activated-sludge treatment to work

    SciTech Connect

    Scroggins, D.; Deiters, S.

    1995-11-01

    Strict wastewater treatment and discharge limits continue to challenge wastewater treatment systems. For industrial wastewater, the selected system must not only meet regulatory requirements, but must also be flexible enough to handle the variations in volume, flowrate and pollutant load that typify industrial effluent streams. At existing industrial sites, the selection of a wastewater treatment system is also impacted by constraints, such as limited space or the desire to minimize downtime or process interruptions. Meanwhile, for municipalities, wastewater treatment requirements are often made or complicated by the need to add a disinfection step to destroy waterborne pathogens in the discharge stream. Biological treatment processes, based on the use of activated sludge, have long been used to degrade organic contaminants in municipal and industrial wastewater. For years, the sequencing batch reactor (SBR) has been used to treat wastewater using activated sludge. However, in recent years, the variable depth reactor (VDR) has emerged as an alternative system, by addressing some of the shortcomings of the SBR.

  5. Formation of aerobic granular sludge biofilms for sustainable wastewater treatment

    E-print Network

    Lenstra, Arjen K.

    ENAC/ Formation of aerobic granular sludge biofilms for sustainable wastewater treatment David G to aerobic granular microbial biofilms (Confocal laser scanning microscopy analysis) Floc viscous bulking) Exopolysaccharide-producing Zoogloea spp. form the early-stage aerobic granular biofilms, and then decline

  6. CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL

    E-print Network

    Diehl, Stefan

    CONTROL OF AN IDEAL ACTIVATED SLUDGE PROCESS IN WASTEWATER TREATMENT VIA AN ODE-PDE MODEL STEFAN DIEHL AND SEBASTIAN FAR°AS Abstract. The activated sludge process (ASP), found in most wastewater nutrients (substrate) in the incom- ing wastewater by means of activated sludge (microorganisms). The major

  7. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge.

    PubMed

    Marti, Erica J; Batista, Jacimaria R

    2014-02-01

    Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced with aerobic digestion for sludge that is intended for land application. PMID:24239827

  8. EFFECTS OF THERMAL TREATMENT OF SLUDGE ON MUNICIPAL WASTEWATER TREATMENT COSTS

    EPA Science Inventory

    Data for estimating average construction costs and operation and maintenance requirements are presented for thermal treatment of municipal wastewater sludges; for handling, treatment, and disposal of the strong liquor generated; and for controlling odors produced. Size ranges cov...

  9. Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production.

    PubMed

    Valentino, Francesco; Morgan-Sagastume, Fernando; Fraraccio, Serena; Corsi, Giovanna; Zanaroli, Giulio; Werker, Alan; Majone, Mauro

    2015-05-01

    An innovative approach has been recently proposed in order to link polyhydroxyalkanoates (PHA) production with sludge minimization in municipal wastewater treatment, where (1) a sequencing batch reactor (SBR) is used for the simultaneous municipal wastewater treatment and the selection/enrichment of biomass with storage ability and (2) the acidogenic fermentation of the primary sludge is used to produce a stream rich in volatile fatty acids (VFAs) as the carbon source for the following PHA accumulation stage. The reliability of the proposed process has been evaluated at lab scale by using substrate synthetic mixtures for both stages, simulating a low-strength municipal wastewater and the effluent from primary sludge fermentation, respectively. Six SBR runs were performed under the same operating conditions, each time starting from a new activated sludge inoculum. In every SBR run, despite the low VFA content (10% chemical oxygen demand, COD basis) of the substrate synthetic mixture, a stable feast-famine regime was established, ensuring the necessary selection/enrichment of the sludge and soluble COD removal to 89%. A good process reproducibility was observed, as also confirmed by denaturing gradient gel electrophoresis (DGGE) analysis of the microbial community, which showed that a high similarity after SBR steady-state had been reached. The main variation factors of the storage properties among different runs were uncontrolled changes of settling properties which in turn caused variations of both sludge retention time and specific organic loading rate. In the following accumulation batch tests, the selected/enriched consortium was able to accumulate PHA with good rate (63 mg CODPHA g CODXa(-1)?h(-1)) and yield (0.23 CODPHA COD?S(-1)) in spite that the feeding solution was different from the acclimation one. Even though the PHA production performance still requires optimization, the proposed process has a good potential especially if coupled to minimization of both primary sludge (by its use as the VFA source for the PHA accumulation, via previous fermentation) and excess secondary sludge (by its use as the biomass source for the PHA accumulation). PMID:24996948

  10. Treatment of refinery wastewaters using various modified activated sludge processes

    SciTech Connect

    Al-Muzaini, S.M.

    1987-01-01

    Biological processes for treating refinery industry wastewater for reuse were studied. A pilot-scale biological reactor was constructed to simulate the activated sludge treatment process. Actual refinery industry wastewater collected from a regional refinery and spiked with additions of selected priority organics was fed at a rate of 1.3 liters/hour into a 6-liter pilot plant having a hydraulic retention time of 4 hours. Activated sludge (AS) which was augmented by additions of powdered activated carbon (PAC) at dosages of 10, 50 and 120 mg/l was evaluated. The AS process removed 70-80% of the BOD, COD and TOC. With the addition of PAC, removal efficiencies of the indicator compounds rose to 80-95%. The sludge physical parameters and kinetic constants were determined with and without the addition of PAC to the AS. PAC additions to the AS increased the amount of biomass in the reactor. Volatile compounds (benzene, chloroform, ethylbenzene, toluene, m-xylene and o-xylene) were removed from the reactor by volatilization which occurred from air stripping. PAC alone (without AS) was primarily responsible for removing base and acid/neutral-extractable compounds (2,4-dimethylphenol, fluorene, naphthalene and pyrene).

  11. COMPUTER-AIDED SYNTHESIS OF WASTEWATER TREATMENT AND SLUDGE DISPOSAL SYSTEMS

    EPA Science Inventory

    A computer-aided design procedure for the preliminary synthesis of wastewater treatment and sludge disposal systems is developed. It selects the components in the wastewater treatment and sludge disposal trains from a list of candidate process units with fixed design characterist...

  12. Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor.

    PubMed

    Nacheva, P Mijalova; Pantoja, M Reyes; Serrano, E A Lomelí

    2011-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature (20.9-25.2°C) was analysed for the treatment of slaughterhouse wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 15 L effective volume. Four organic loads were applied and the process performance was evaluated. The COD removal rate increased with the load rise from 4 to 15 kg COD.m(-3).d(-1). Removal efficiencies of 90% were obtained with a load of 15 kg COD.m(-3).d(-1). The entrapment of suspended solids in the sludge blanket was greater in proportion during the first two stages due to the low upflow velocities used when loads of 4 and 7 kg COD.m(-3).d(-1) were evaluated. This phenomenon did not affect the structure of the biological grains or their methanogenic activity. More than 50% of the organic nitrogen was degraded, causing a 3% increase of ammonia concentration. The concentrations of the volatile fatty acids were not high and the wastewater alkalinity was enough to prevent acidification. The yield coefficient of methane production increased with the load rise, reaching 0.266 m(3)/kg COD(removed) at 15 kg COD.m(-3).d(-1) organic load. The UASB reactor is a good option for the biological treatment of pre-treated slaughterhouse wastewater. However, additional treatment is required in order to accomplish the water quality requirements in discharges to water bodies. PMID:21411936

  13. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  14. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  15. Application of vibration milling for advanced wastewater treatment and excess sludge reduction.

    PubMed

    Sano, Akira; Senga, Akira; Yamazaki, Hiroshi; Inoue, Hiroki; Xu, Kai-Qin; Inamori, Yuhei

    2012-01-01

    As a new sludge reduction technology with a phosphorus removal mechanism, a vibration milling technology that uses iron balls have been applied to the wastewater treatment process. Three anaerobic-aerobic cyclic activated sludge processes: one without sludge disintegration; one disintegrated sludge by ozonation; and the other disintegrated sludge with the vibrating ball mill were compared. Ozonation achieved the best sludge reduction performance, but milling had the best phosphorus removal. This is because iron was mixed into the wastewater treatment tank due to abrasion of the iron balls, leading to settling of iron phosphates. Thus, the simple means of using iron balls as the medium in a vibrating ball mill can achieve both a sludge reduction of half and excellent phosphorus removal. Material balances in the processes were calculated and it was found that carbon components in disintegrated sludge were more resistant to biological treatment than nitrogen. PMID:22173418

  16. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. PMID:26539712

  17. Bacterial Diversity of Active Sludge in Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Ma, Mingchao; Li, Jun; Lu, Anhuai; Zhong, Zuoshen

    A bacterial 16S rDNA gene clone library was constructed to analyze the bacterial diversity of active sludge in Gaobeidian Wastewater Treatment Plant, Beijing. The results indicated that the bacterial diversity of active sludge was very high, and the clones could be divided into 5 different groups. The dominant bacterial community was proteobacteria, which accounted for 76.7%. The dominant succession of bacterial community were as follows: the ?-proteobacteria (39.8%), the uncultured bacteria (22.33%), the ?-proteobacteria (20.15%), the ?-proteobacteria (6.79%), and the ?-proteobacteria (4.85%). Nitrosomonas-like and Nitrospira-like bacteria, such as Nitrosomonas sp. (1.94%) and uncultured Nitrospirae bacterium (11.65%) were also detected, which have played important roles in ammonia and nitrite oxidisers in the system. However, they were only a little amount because of their slow growth and less competitive advantage than heterotrophic bacteria. Denitrifying bacteria like Thauera sp. was at a high percentage, which implies a strong denitrification ability; Roseomonas sp. was also detected in the clone library, which could be related to the degradation of organophosphorus pesticide.

  18. LAND TREATMENT FIELD STUDIES. VOLUME 4. SECONDARY WASTEWATER TREATMENT PLANT SLUDGE FROM A SYNTHETIC MANUFACTURING PLANT

    EPA Science Inventory

    This report presents the results of field measurements and observations of a land treatment site for the management of secondary wastewater treatment sludge from a synthetics manufacturing plant. The waste, composed of 8.5% solids, contained a large concentration of cellulose and...

  19. Evaluation of thickening and dewatering characteristics of SRC-I wastewater treatment sludges. Final technical report

    SciTech Connect

    Not Available

    1984-05-01

    The SRC-I Demonstration Plant in Newman, Kentucky, will generate several different sludges as a result of providing extensive wastewater treatment. Because construction of this plant has been postponed indefinitely, there has been an opportunity to generate additional data pertinent to waste treatment. Accordingly, this report presents the results of a study on the thickening and dewatering characteristics of several of the wastewater treatment sludges. The study included: evaluation of chemical conditioning agents; aerobic digestion of biological sludges; gravity thickening; and the relative effectiveness of dewatering by centrifuge, vacuum filter, belt filter, and pressure filter. Sludges were tested individually and in combination. The results indicated that the biological sludge could be best dewatered by pressure filtration. The chemical sludges should be combined prior to dewatering, which should be provided by a belt filter. The tar acid sludge will be kept separate, due to its low pH, and ultimate disposal will be by incineration. The tar acid sludge was more concentrated than had been expected. As a result, thickening, rather than centrifuging, is the recommended treatment for this sludge. All sludges were tested for leachate toxicity by the extraction procedure method. The results were negative, indicating the sludges are non-hazardous in heavy metal concentrations, according to RCRA classification. The test results have identified design changes for the proposed wastewater treatment facilities.

  20. A CRITICAL REVIEW OF WASTEWATER TREATMENT PLANT SLUDGE DISPOSAL BY LANDFILLING

    EPA Science Inventory

    This report evaluates the landfilling of wastewater treatment plant sludge for purposes of describing current practices, determining environmental and public health impacts, describing available control technology, and evaluating management options. The potential environmental/pu...

  1. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics

    PubMed Central

    Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang

    2015-01-01

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process. PMID:26160685

  2. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  3. Evaluation of reed bed technology to dewater Army wastewater treatment plant sludge. Final report

    SciTech Connect

    Kim, B.J.; Cardenas, R.R.; Chennupati, S.P.

    1993-09-01

    As operator of over 100 small wastewater treatment plants (WWTPs), the Army has an interest in efficient and cost-effective sludge dewatering systems. Many Army wastewater treatment plants use conventional sand-drying beds to dewater sludge. However, sand drying involves costly regular removal of sludge, and sand-drying beds are vulnerable to operational problems with long drying periods during wet weather and sand media clogging. Successful new technologies for sludge treatment in small-scale WWTPs include wedgewater beds, vacuum-assisted beds, and reed-bed systems. This study builds on a previous USACERL evaluation of wedgewater and vacuum-assisted bed performance by compiling operational data from municipal and industrial WWTPs that have reed bed systems to evaluate their potential for Army use. The use of reeds speeds sludge dewatering because the root systems maintain natural drainage channels throughout the sludge volume, and because reeds complement air drying by drawing water into the plant for evapotranspiration. Reed beds were found to be easier to operate and maintain than sand-drying beds, and to virtually eliminate the need for regular sludge removal. Moreover, reed beds can be simply and efficiently retrofited to existing sand-drying beds. Because the Army has large-area drying beds that can be converted to reed beds economically, reed bed systems were found to have a good potential for use at Army WWTPS. Wastewater treatment plant, Sludge dewatering systems, Reed bed technology.

  4. [Microbial composition of the activated sludges of the Moscow wastewater treatment plants].

    PubMed

    Kallistova, A Iu; Pimenov, N V; Kozlov, M N; Nikolaev, Iu A; Dorofeev, A G; Aseeva, V G; Grachev, V A; Men'ko, E V; Berestovskaia, Iu Iu; Nozhevnikova, A N; Kevbrina, M V

    2014-01-01

    The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludges were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludge, with Nitrobacter spp. being the dominant nitrifier. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to differ in characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludges generally correlated with microbial activity, in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludges of the tanks operating according to the technologies developed in the universities of Hanover and Cape Town. The activated sludge from the Novokur yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity The group of foaming bacteria included Gordonia spp. and Acinetobacter spp., utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus 'Microthrix parvicella'. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment. PMID:25844473

  5. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill. PMID:19955642

  6. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  7. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation. PMID:22988641

  8. ENTEROVIRUSES IN SLUDGE: MULTIYEAR EXPERIENCE WITH FOUR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The authors describe their experience with the isolation of viruses from four treatment plants located in different geographic areas. Over a period of 3 years, 297 enteroviruses were isolated from 307 sludge samples. The highest frequency of viral isolation (92%), including multi...

  9. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    SciTech Connect

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  10. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    PubMed Central

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. Results The Archaea community was dominated by Methanosaeta-like species. During a 15?month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. Conclusions The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge. PMID:22784022

  11. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful. PMID:20571882

  12. Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants.

    PubMed

    Wang, Yi; Feng, Sha; Bai, Xiaojuan; Zhao, Jingchan; Xia, Siqing

    2016-01-01

    The main goal of this study was to compare the component and yield of biodiesel obtained by different methods from different sludge in a wastewater treatment plant. Biodiesel was produced by ex-situ and in-situ transesterification of scum, primary and secondary sludge respectively. Results showed that scum sludge had a higher calorific value and neutral lipid than that of primary and secondary sludge. The lipid yield accounted for one-third of the dried scum sludge and the maximum yield attained 22.7% under in-situ transesterification. Furthermore the gas chromatography analysis of fatty acid methyl esters (FAMEs) revealed that all sludge contained a significant amount of palmitic acid (C16:0) and oleic acid (C18:1) regardless of extraction solvents and sludge types used. However, the difference lay in that oleic acid methyl ester was the dominant component in FAMEs produced from scum sludge while palmitic acid methyl ester was the dominant component in FAMEs from primary and secondary sludge. In addition, the percentage of unsaturated fatty acid ester in FAMEs from scum sludge accounted for 57.5-64.1% of the total esters, which was higher than the equivalent derived from primary and secondary sludge. In brief, scum sludge is a potential feedstock for the production of biodiesel and more work is needed in the future. PMID:26145757

  13. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  14. Rheology measurements for online monitoring of solids in activated sludge reactors of municipal wastewater treatment plant.

    PubMed

    Piani, Luciano; Rizzardini, Claudia Bruna; Papo, Adriano; Goi, Daniele

    2014-01-01

    Rheological behaviour of recycled sludge from a secondary clarifier of a municipal wastewater treatment plant was studied by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device NV. The tests (hysteresis cycles) were performed under continuous flow conditions and following an ad hoc measurement protocol. Sludge shear stress versus shear rate curves were fitted very satisfactorily by rheological models. An experimental equation correlating the solid concentration of sludge to relative viscosity and fitting satisfactorily flow curves at different Total Suspended Solids (TTS%) was obtained. Application of the empirical correlation should allow the monitoring of the proper functioning of a wastewater treatment plant measuring viscosity of sludge. PMID:24550715

  15. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-?g/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. PMID:25222330

  16. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant.

    PubMed

    Yoshida, H; Christensen, T H; Guildal, T; Scheutz, C

    2015-11-01

    The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl and polycyclic aromatic hydrocarbons) in a conventional wastewater treatment plant were assessed. Mass balances showed reasonable closures for most of the elements. However, gaseous emissions were accompanied by large uncertainties and show the limitation of mass balance based substance flow analysis. Based on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while the organic pollutants were effectively destroyed by both biological and thermal processes. Side streams from the sludge treatment process (dewatering and incineration) back to the wastewater treatment represented less than 1% of the total volume entering the wastewater treatment processes, but represented significant substance flows. In contrast, the contribution by spent water from the flue gas treatment process was almost negligible. Screening of human and eco-toxicity by applying the consensus-based environmental impact assessment method USEtox addressing 15 inorganic constituents showed that removal of inorganic constituents by the wastewater treatment plant reduced the toxic impact potential by 87-92%. PMID:24231042

  17. Psychoactive pharmaceuticals in sludge and their emission from wastewater treatment facilities in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2013-01-01

    Concern over the occurrence of pharmaceuticals and their metabolites in the environment is mounting due to the potential adverse effects on nontarget organisms. This study draws upon a nationwide survey of psychoactive pharmaceuticals (i.e., antischizophrenics, anxiolytics, and antidepressants) in sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic, industrial, or mixed (domestic plus industrial) wastewaters in Korea. A total of 16 psychoactive pharmaceuticals (0.12-460 ng/g dry weight) and nine of their metabolites (0.97-276 ng/g dry weight) were determined in sludge. The median concentrations of psychoactive drugs in sludge from domestic WWTPs were 1.2-3.2 times higher than the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the psychoactive drugs analyzed, the median environmental emission rates of alprazolam (APZ) and carbamazepine (CBZ) through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be ? 15.5 ?g/capita/day, followed by quetiapine (QTP; 8.51 ?g/capita/day), citalopram (CLP; 5.45 ?g/capita/day), and venlafaxine (VLF; 3.59 ?g/capita/day). The per-capita emission rates of some of the metabolites of psychoactive drugs through WWTP discharges were higher than those calculated for parent compounds. Significant correlations (? = 0.432-0.780, p < 0.05) were found between the concentrations of typically coprescribed antischizophrenics and antidepressants in sludge. Multiple linear regression analysis of measured concentrations of drugs in sludge revealed that several WWTP parameters such as treatment capacity, population-served, sludge production rate, composition of wastewater (domestic versus industrial), and hydraulic retention time can affect the concentrations of psychoactive drugs in sludge. PMID:24164172

  18. EVALUATION OF THE HEALTH RISKS ASSOCIATED WITH THE TREATMENT AND DISPOSAL OF MUNICIPAL WASTEWATER AND SLUDGE

    EPA Science Inventory

    In this study, started in 1977, clinical and serologic evaluations of workers involved in composting of wastewater treatment plant sludge by the aerated pile method was initiated to evaluate the potential health effects of exposure to Aspergillus fumigatus and other viable and no...

  19. Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system.

    PubMed

    Keskes, Sajiâa; Bouallagui, Hassib; Godon, Jean Jacques; Abid, Sami; Hamdi, Moktar

    2013-01-01

    Excess sludge disposal during biological treatment of wastewater is subject to numerous constraints, including social, health and regulatory factors. To reduce the amount of excess sludge, coupled processes involving different biological technologies are currently under taken. This work presents a laboratory scale sequencing batch aerobic system included an anaerobic zone for biomass synchronization (SBAAS: sequencing batch aerobic anaerobic system). This system was adopted to reduce sludge production during abattoir wastewater (AW) treatment. The average chemical oxygen demand (COD) removal efficiency of 89% was obtained at a hydraulic retention time (HRT) and a sludge retention time (SRT) of 2 days and 15-20 days, respectively. The comparison of SBAAS performances with a conventional sequencing batch activated sludge system (SBASS) found that the observed biomass production yield (Y(obs)) were in the ranges of 0.26 and 0.7 g suspended solids g(-1) COD removed, respectively. A significant reduction in the excess biomass production of 63% was observed by using the SBAAS. In fact, in the anaerobic zone microorganisms consume the intracellular stocks of energy by endogenous metabolism, which limits biosynthesis and accelerates sludge decay. The single strand conformation polymorphism (SSCP) method was used to study the dynamic and the diversity of bacterial communities. Results showed a significant change in the population structure by including the anaerobic stage in the process, and revealed clearly that the sludge production yield can be correlated with the bacterial communities present in the system. PMID:23530347

  20. Temperature effect on shear flow and thixotropic behavior of residual sludge from wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Hammadi, L.; Ponton, A.; Belhadri, M.

    2013-08-01

    The temperature and shear rate effects on rheological behavior of residual sludge from wastewater treatment plant was investigated in this work. The model of Herschel-Bulkley was used to fit the shear rate dependence of the shear stress. The temperature increase induced not only an increase in the yield stress and the flow index of sludge but also a decrease of the consistency index of sludge. The temperature dependence of limit viscosity at high shear rate of the residual sludge was fitted by an Arrhenius equation. For constant shear rate applied on the sludge at 20 °C a thixotropic behavior was observed and analyzed using a modified model of Herschel-Bulkley in which a structural parameter ? was included in order to account for the time-dependent effect.

  1. Wastewater sludge management options for Honduras

    E-print Network

    Bhattacharya, Mahua, M. Eng. Massachusetts Institute of Technology.

    2009-01-01

    Sludge management is a fundamental area of concern across wastewater treatment systems in Honduras. The lack of timely sludge removal has led to declining plant performance in many facilities throughout the country. In ...

  2. Integrating BES in the wastewater and sludge

    E-print Network

    Angenent, Lars T.

    19 Integrating BES in the wastewater and sludge treatment line Miriam Rosenbaum, Matthew T. Agler, Jeffrey J. Fornero, Arvind Venkataraman and Largus T. Angenent 19.1 INTRODUCTION Traditionally, wastewater wastewater are typically low and the use of aerobic activated sludge systems has become a conventional

  3. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment

    PubMed Central

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-01-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  4. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    PubMed

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment. PMID:24777321

  5. Acidified and ultrafiltered recovered coagulants from water treatment works sludge for removal of phosphorus from wastewater.

    PubMed

    Keeley, James; Smith, Andrea D; Judd, Simon J; Jarvis, Peter

    2016-01-01

    This study used a range of treated water treatment works sludge options for the removal of phosphorus (P) from primary wastewater. These options included the application of ultrafiltration for recovery of the coagulant from the sludge. The treatment performance and whole life cost (WLC) of the various recovered coagulant (RC) configurations have been considered in relation to fresh ferric sulphate (FFS). Pre-treatment of the sludge with acid followed by removal of organic and particulate contaminants using a 2kD ultrafiltration membrane resulted in a reusable coagulant that closely matched the performance FFS. Unacidified RC showed 53% of the phosphorus removal efficiency of FFS, at a dose of 20 mg/L as Fe and a contact time of 90 min. A longer contact time of 8 h improved performance to 85% of FFS. P removal at the shorter contact time improved to 88% relative to FFS by pre-acidifying the sludge to pH 2, using an acid molar ratio of 5.2:1 mol H(+):Fe. Analysis of the removal of P showed that rapid phosphate precipitation accounted for >65% of removal with FFS. However, for the acidified RC a slower adsorption mechanism dominated; this was accelerated at a lower pH. A cost-benefit analysis showed that relative to dosing FFS and disposing waterworks sludge to land, the 20 year WLC was halved by transporting acidified or unacidified sludge up to 80 km for reuse in wastewater treatment. A maximum inter-site distance was determined to be 240 km above the current disposal route at current prices. Further savings could be made if longer contact times were available to allow greater P removal with unacidified RC. PMID:26517789

  6. LAND TREATMENT FIELD STUDIES. VOLUME 5. WASTEWATER TREATMENT SLUDGE FROM BATCH ORGANIC CHEMICAL SYNTHESIS

    EPA Science Inventory

    This report presents the results of field measurements and observations of a land treatment operation using a sludge generated from organic chemical manufacture. The sludge is applied to a turf farm which contains acidic soil; the sludge reduces the lime addition requirements for...

  7. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant.

    PubMed

    Hirooka, Kayako; Asano, Ryoki; Yokoyama, Atsushi; Okazaki, Masao; Sakamoto, Akira; Nakai, Yutaka

    2009-06-01

    Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated. On the basis of the efficiency of CODCr removal and the ammonia oxidation reaction, it was concluded that the nozzle-cavitation treatment did not have a negative impact on the performance of the MBR. The estimation of the inorganic material balance showed that when the mass of the excess sludge was decreased, the inorganic content of the activated sludge increased and some part of the inorganic material was simultaneously solubilized in the effluent. PMID:19246193

  8. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. PMID:26439861

  9. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale.

    PubMed

    Morgan-Sagastume, F; Hjort, M; Cirne, D; Gérardin, F; Lacroix, S; Gaval, G; Karabegovic, L; Alexandersson, T; Johansson, P; Karlsson, A; Bengtsson, S; Arcos-Hernández, M V; Magnusson, P; Werker, A

    2015-04-01

    A pilot-scale process was operated over 22 months at the Brussels North Wastewater Treatment Plant (WWTP) in order to evaluate polyhydroxyalkanoate (PHA) production integration with services of municipal wastewater and sludge management. Activated sludge was produced with PHA accumulation potential (PAP) by applying feast-famine selection while treating the readily biodegradable COD from influent wastewater (average removals of 70% COD, 60% CODsol, 24% nitrogen, and 46% phosphorus). The biomass PAP was evaluated to be in excess of 0.4gPHA/gVSS. Batch fermentation of full-scale WWTP sludge at selected temperatures (35, 42 and 55 °C) produced centrate (6-9.4 gCODVFA/L) of consistent VFA composition, with optimal fermentation performance at 42 °C. Centrate was used to accumulate PHA up to 0.39 gPHA/gVSS. The centrate nutrients are a challenge to the accumulation process but producing a biomass with 0.5 gPHA/gVSS is considered to be realistically achievable within the typically available carbon flows at municipal waste management facilities. PMID:25638407

  10. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. PMID:23831747

  11. Analysis of metals and EOX in sludge from municipal wastewater treatment plants: a case study.

    PubMed

    Goi, Daniele; Tubaro, Franco; Dolcetti, Giuliano

    2006-01-01

    The monitoring of extractable organic halogen (EOX) and heavy metal contents in sludge coming from 10 different municipal wastewater treatment plants (MWWTP) located in Friuli Venezia Giulia (Italy) is reported. In this work, sludge samples drawn from sludge treatment units have been digested and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for metal evaluation. Samples were also extracted and analyzed by microcoulometric titrations, following modified DIN 38414 T17 standard, for EOX analysis. Analytical results showed a slight enrichment of the contents of certain metals (Cd< 2mg/kg, Cr< 51.5mg/kg, Cu<105.8 mg/kg, Hg<1.4 mg/kg, Ni<35.9 mg/kg, Pb<58.7 mg/kg, Zn<410.1 mg/kg, Ba<317.1 mg/kg, Co<1 mg/kg, Mo< 5 mg/kg, Mn<106.7 mg/kg), so almost all of the sludge would be suitable for agricultural use following Italian and European regulations. The evaluation of EOX was carried out by using hexane and ethyl acetate as extraction solvents, and a measurable organic halogen content (ranging from 0.31 to 39.5 mg Cl/kg DM) was clearly detected in the sludge. The lowest concentrations of EOX were found in sludge coming from the smallest MWWTPs, which is to be considered more suitable for agricultural use. Additionally, analytical assays on composts, peat and soils were performed to compare EOX concentrations between these matrices and sludge. PMID:15905082

  12. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ay?en

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21L CH4/g VSadded, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VSadded. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30min microwave pre-treated wastewater sludges and olive pomace to be 0.46L/g VSadded and 0.32L CH4/g VSadded, respectively. PMID:26320815

  13. Treatment of low strength domestic wastewater by using upflow anaerobic sludge blanket process

    SciTech Connect

    Tang, N.H.; Torres, C.L.; Speece, R.E.

    1996-11-01

    The tropical environment of Puerto Rico offers great potential for using anaerobic treatment in place of conventional, aerobic activated sludge processes in the treatment of its warm, dilute municipal wastewaters. It will minimize the troublesome problem of land disposal of municipal sludges, achieve secondary effluent standards and not be an energy intensive form of treatment. When the infrastructure of sewage treatment needs to be improved, anaerobic sewage treatment may serve as one of the better alternatives. Anaerobic sewage treatment is a totally enclosed process. It has very little environmental impact on the surrounding areas of the treatment site. However, sometimes its effluent may cause serious odor problems. There are many small communities in Puerto Rico where the anaerobic process can be an ideal form of treatment for their sewage. This study is focused on using the upflow anaerobic sludge blanket (UASB) process for treating raw domestic sewage. The objectives of this study were to evaluate the performance and stability of the UASB process for treating raw sewage and to ascertain the effect on efficiency of hydraulic detention time of the UASB reactor. A further key objective was to evaluate the impact on process performance of a packed bed solids removals device following the UASB reactor.

  14. Variations of morphology of activated sludge flocs studied at full-scale wastewater treatment plants.

    PubMed

    Liwarska-Bizukojc, Ewa; Klepacz-Smó?ka, Anna; Andrzejczak, Olga

    2015-01-01

    Digital image analysis has been intensively developed over the last two decades including its application to describe morphology of activated sludge flocs. However, only few studies concerned the variation of flocs morphology with respect to the operational conditions, particularly oxido-reductive conditions, in a full-scale wastewater treatment plant (WWTP). In this work, morphology of activated sludge flocs was monitored over one year in two different full-scale WWTPs. The main aim of this study was to find the relationship between the operational parameters and morphology of sludge flocs. Simultaneously, the variations in floc size along activated sludge chamber were studied with respect to the oxido-reductive conditions. It was found that the sludge loading rate was one of the most important operational parameters influencing floc size. It was estimated that its values higher than 0.1?kg?BOD5?kg?TS(-1)?d(-1) contributed to the decrease in floc size. Also, the oxido-reductive conditions influenced the floc size. It was statistically proved that flocs from the anaerobic zone were usually smaller than flocs from the anoxic or aerobic zones. Distribution of floc size in a full-scale WWTP usually could be described by a log-normal model. PMID:25363823

  15. EVALUATION OF HEALTH RISKS ASSOCIATED WITH WASTEWATER TREATMENT AND SLUDGE COMPOSTING

    EPA Science Inventory

    The investigation included (1) a prospective study of wastewater sludge compost workers, (2) serologic analyses of wastewater-exposed workers, (3) a mortality study of former wastewater employees, and (4) chemical analyses of specimens from a population whose drinking water was c...

  16. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...wastewater treatment, solid waste. 721.10667 Section 721...PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...wastewater treatment, solid waste. (a) Chemical substance...wastewater treatment, solid waste (PMN P-12-560; CAS...

  17. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...wastewater treatment, solid waste. 721.10636 Section 721...PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...wastewater treatment, solid waste. (a) Chemical substance...wastewater treatment, solid waste (PMN P-12-501;...

  18. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...wastewater treatment, solid waste. 721.10636 Section 721...PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...wastewater treatment, solid waste. (a) Chemical substance...wastewater treatment, solid waste (PMN P-12-501;...

  19. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...wastewater treatment, solid waste. 721.10667 Section 721...PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...wastewater treatment, solid waste. (a) Chemical substance...wastewater treatment, solid waste (PMN P-12-560; CAS...

  20. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. PMID:26316402

  1. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    PubMed

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE?×?day) in reference plants to 14-49 g SS/(PE?×?day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE?×?year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios. PMID:25598155

  2. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  3. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review. PMID:20083294

  4. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.

    PubMed

    Ongen, Atakan; Ozcan, H Kurtulus; Aray?c?, Semiha

    2013-12-15

    This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. PMID:23608748

  5. Influence of wastewater treatment plants' operational conditions on activated sludge microbiological and morphological characteristics.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Tzelios, Dimitrios; Michailidis, Avraam

    2016-01-01

    The effect of wastewater composition and operating conditions in activated sludge (AS) microbiological and morphological characteristics was studied in three AS wastewater treatment plants (WWTPs): (a) a high organic load slaughterhouse AS WWTP, operating at complete solids retention, monitored from its start-up and for 425 days; (b) a seasonally operational, low nitrogen load fruit canning industry AS WWTP, operating at complete solids retention, monitored from its start-up and until the end of the season (87 days); (c) a municipal AS WWTP, treating wastewater from a semi-combined sewer system, monitored during the transitions from dry to rainy and again to dry periods of operation. The sludge microbiological and morphological characteristics were correlated to nutrients' availability, solids retention time, hydraulic retention time, dissolved oxygen, mixed liquor suspended solids (MLVSS), organic load (F/M) and substrate utilization rate. The AS WWTPs' operation was distinguished in periods based on biomass growth phase, characterized by different biological and morphological characteristics and on operational conditions. An anoxic/aerobic selector minimizes the readily biodegradable compounds in influent, inhibiting filamentous growth. Plant performance controlling is presented in a logic flowchart in which operational parameters are linked to microbial manipulation, resulting in a useful tool for researchers and engineers. PMID:26145184

  6. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment. PMID:23880131

  7. Effect of wastewater treatment processes on the pyrolysis properties of the pyrolysis tars from sewage sludges

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Xie, Li-Ping; Li, Xin-Yu; Dai, Xiao-Hong; Fei, Xue-Ning; Jiang, Yuan-Guang

    2011-06-01

    The pyrolysis properties of five different pyrolysis tars, which the tars from 1# to 5# are obtained by pyrolyzing the sewage sludges of anaerobic digestion and indigestion from the A2/O wastewater treatment process, those from the activated sludge process and the indigested sludge from the continuous SBR process respectively, were studied by thermal gravimetric analysis at a heating rate of 10 °C/min in the nitrogen atmosphere. The results show that the pyrolysis processes of the pyrolysis tars of 1#, 2#, 3# and 5# all can be divided into four stages: the stages of light organic compounds releasing, heavy polar organic compounds decomposition, heavy organic compounds decomposition and the residual organic compounds decomposition. However, the process of 4# pyrolysis tar is only divided into three stages: the stages of light organic compounds releasing, decomposition of heavy polar organic compounds and the residual heavy organic compounds respectively. Both the sludge anaerobic digestion and the "anaerobic" process in wastewater treatment processes make the content of light organic compounds in tars decrease, but make that of heavy organic compounds with complex structure increase. Besides, both make the pyrolysis properties of the tars become worse. The pyrolysis reaction mechanisms of the five pyrolysis tars have been studied with Coats-Redfern equation. It shows that there are the same mechanism functions in the first stage for the five tars and in the second and third stage for the tars of 1#, 2#, 3# and 5#, which is different with the function in the second stage for 4# tar. The five tars are easy to volatile.

  8. Study of hybrid vertical anaerobic sludge-aerobic biofilm membrane bioreactor for wastewater treatment.

    PubMed

    Phattaranawik, Jirachote; Leiknes, TorOve

    2010-03-01

    Alternative design of a hybrid biofilm reactor was developed and evaluated experimentally in this article, aimed to minimize a suspended solid in the effluent and to manage an excess sludge produced in a membrane bioreactor (MBR) system. A hybrid vertical anaerobic sludge-aerated biofilm reactor (HyVAB) was proposed and coupled with external submerged membrane filtration for wastewater treatment application. The HyVAB featured an upper chamber of aerobic biofilm, a lower chamber of anaerobic activated sludge, and a roof-shaped separator located between the chambers, to prevent diffusion of dissolved oxygen to the anaerobic chamber. The lower chamber was used for anaerobic digestion of aerobic sludge waste. The effects of hydraulic retention time in the HyVAB on effluent quality and on membrane fouling were studied. The average suspended solids concentration in the effluent was found to be lower than 15 mg/L. The optimum operating conditions for the HyVAB MBR were investigated. PMID:20369572

  9. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  10. Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery.

    PubMed

    Lacroix, Nicolas; Rousse, Daniel R; Hausler, Robert

    2014-06-27

    Sewage sludge management is an energy intensive process. Anaerobic digestion contributes to energy efficiency improvement but is limited by the biological process. A review has been conducted prior to experimentation in order to evaluate the mass and energy balances on anaerobic digestion followed by gasification of digested sludge. The purpose was to improve energy recovery and reuse. Calculations were based on design parameters and tests that are conducted with the anaerobic digester of a local wastewater treatment plant and a small commercial gasification system. Results showed a very significant potential of energy recovery. More than 90% of the energy content from sludge was extracted. Also, approximately the same amount of energy would be transferred in both directions between the digester (biogas) and the gasifier (thermal energy). This extraction resulted in the same use of biogas as the reference scenario but final product was a totally dry biochar, which represented a fraction of the initial mass. Phosphorus was concentrated and significantly preserved. This analysis suggests that anaerobic digestion followed by dehydration, drying and gasification could be a promising and viable option for energy and nutrient recovery from municipal sludge in replacement of conventional paths. PMID:24972600

  11. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. PMID:24140682

  12. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments.

    PubMed

    Tohidi, Fatemeh; Cai, Zongwei

    2015-08-01

    A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)-106(±7)%, 82(±3)-87(±4)%, 86(±6)-87(±8)%, and 88(±4)-105(±3)% in wastewater and 88(±5)-96(±8)%, 84(±2)-87(±3)%, 84(±7)-89(±4)%, and 88(±3)-97(±5)% in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7?±?3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw). PMID:25810102

  13. Metaproteomics of activated sludge from a wastewater treatment plant - A pilot study.

    PubMed

    Püttker, Sebastian; Kohrs, Fabian; Benndorf, Dirk; Heyer, Robert; Rapp, Erdmann; Reichl, Udo

    2015-10-01

    In this study, the impact of protein fractionation techniques prior to LC/MS analysis was investigated on activated sludge samples derived at winter and summer condition from a full-scale wastewater treatment plant (WWTP). For reduction of the sample complexity, different fractionation techniques including RP-LC (1D-approach), SDS-PAGE and RP-LC (2D-approach) as well as RP-LC, SDS-PAGE and liquid IEF (3D-approach) were carried out before subsequent ion trap MS analysis. The derived spectra were identified by MASCOT search using a combination of the public UniProtKB/Swiss-Prot protein database and metagenome data from a WWTP. The results showed a significant increase of identified spectra, enabled by applying IEF and SDS-PAGE to the proteomic workflow. Based on meta-proteins, a core metaproteome and a corresponding taxonomic profile of the wastewater activated sludge were described. Functional aspects were analyzed using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway library by plotting KEGG Orthology identifiers (KO numbers) of protein hits into pathway maps of the central carbon (map01200) and nitrogen metabolism (map00910). Using the 3D-approach, most proteins involved in glycolysis and citrate cycle and nearly all proteins of the nitrogen removal were identified, qualifying this approach as most promising for future studies. All MS data have been deposited in the ProteomeXchange with identifier PXD001547 (http://proteomecentral.proteomexchange.org/dataset/PXD001547). PMID:26201837

  14. Metagenomic analyses reveal phylogenetic diversity of carboxypeptidase gene sequences in activated sludge of a wastewater treatment plant in Shanghai, China.

    PubMed

    Jin, Hao; Li, Bailin; Peng, Xu; Chen, Lanming

    2014-01-01

    Activated sludge of wastewater treatment plants carries a diverse microflora. However, up to 80-90 % of microorganisms in activated sludge cannot be cultured by current laboratory techniques, leaving an enzyme reservoir largely unexplored. In this study, we investigated carboxypeptidase diversity in activated sludge of a wastewater treatment plant in Shanghai, China, by a culture-independent metagenomic approach. Three sets of consensus degenerate hybrid oligonucleotide primers (CODEHOPs) targeting conserved domains of public carboxypeptidases have been designed to amplify carboxypeptidase gene sequences in the metagenomic DNA of activated sludge by PCR. The desired amplicons were evaluated by carboxypeptidase sequence clone libraries and phylogenetic analyses. We uncovered a significant diversity of carboxypeptidases present in the activated sludge. Deduced carboxypeptidase amino acid sequences (127-208 amino acids) were classified into three distinct clusters, ?, ?, and ?. Sequences belonging to clusters ? and ? shared 58-97 % identity to known carboxypeptidase sequences from diverse species, whereas sequences in the cluster ? were remarkably less related to public carboxypeptidase homologous in the GenBank database, strongly suggesting that novel carboxypeptidase families or microbial niches exist in the activated sludge. We also observed numerous carboxypeptidase sequences that were much closer to those from representative strains present in industrial and sewage treatment and bioremediation. Thermostable and halotolerant carboxypeptidase sequences were also detected in clusters ? and ?. Coexistence of various carboxypeptidases is evidence of a diverse microflora in the activated sludge, a feature suggesting a valuable gene resource to be further explored for biotechnology application. PMID:24860282

  15. [Determination of kinetic parameters of activated sludge in an MBR wastewater treatment plant].

    PubMed

    Xue, Tao; Yu, Kai-Chang; Guan, Jing; Huang, Xia; Wen, Xiang-Hua; Miao, Xue-Na; Cui, Zhi-Guang

    2011-04-01

    One of the main problems in application of MBR technology is lack of reliable kinetic parameters for process design. The activated sludge in the aerobic tank of an MBR municipal wastewater treatment plant was investigated therefore. Using oxygen utilization rate method, following kinetic parameters were measured: heterotrophic yield coefficient YH = 0.693, autotrophic yield coefficient Y(A) = 0.263, heterotrophic decay coefficient KdH, = 0.108 d(-1), autotrophic yield coefficient KdA = 0.089 d(-1), specific maximum COD removal rate v(mS), = 1.94 mg x (mg x d)(-1), half saturation constant for COD removal K(S) = 34.6 mg x L(-1), specific maximum ammonia removal rate vmN = 0.18 mg x (mg x d)(-1), half saturation constant for ammonia removal K(N) = 1.06 mg x L(-1). Compared with the normal reported data of conventional activated sludge process (CAS), Y(H), KdH obtained are higher and vmS, vmN are lower. The high sludge concentration condition of MBR process may account for those differences. PMID:21717743

  16. Essence of disposing the excess sludge and optimizing the operation of wastewater treatment: rheological behavior and microbial ecosystem.

    PubMed

    Tang, Bing; Zhang, Zi

    2014-06-01

    Proper disposal of excess sludge and steady maintenance of the high bioactivity of activated sludge in bioreactors are essential for the successful operation of wastewater treatment plants (WWTPs). Since sludge is a non-Newtonian fluid, the rheological behavior of sludge can therefore have a significant impact on various processes in a WWTP, such as fluid transportation, mixing, oxygen diffusion, mass transfer, anaerobic digestion, chemical conditioning and mechanical dewatering. These are key factors affecting the operation efficiency and the energy consumption of the entire process. In the past decade-due to the production of large quantities of excess sludge associated with the extensive construction of WWTPs and the emergence of some newly-developed techniques for wastewater purification characterized by high biomass concentrations-investigations into the rheology of sludge are increasingly important and this topic has aroused considerable interests. We reviewed a number of investigations into the rheology of sludge, with the purpose of providing systematic and detailed analyses on the related aspects of the rheological behavior of sludge. It is clear that, even though considerable research has focused on the rheology of sludge over a long time period, there is still a need for further thorough investigation into this field. Due to the complex process of bio-treatment in all WWTPs, biological factors have a major influence on the properties of sludge. These influences are however still poorly understood, particularly with respect to the mechanisms involved and magnitude of such impacts. When taking note of the conspicuous biological characteristics of sludge, it becomes important that biological factors, such as the species composition and relative abundance of various microorganisms, as well as the microbial community characteristics that affect relevant operating processes, should be considered. PMID:24462086

  17. FRACTIONATION OF MUTAGENS FROM MUNICIPAL SLUDGE AND WASTEWATER

    EPA Science Inventory

    There are potential environmental concerns from the disposal of municipal wastewater effluents and sewage treatment plant sludges. This report summarizes the microbial mutagenic evaluation and chemical analysis of 13 sewage sludge samples from various sewage treatment plants loca...

  18. EFFECT OF AN ACTIVATED SLUDGE WASTEWATER TREATMENT PLANT ON AMBIENT AIR DENSITIES OF AEROSOLS CONTAINING BACTERIA AND VIRUSES

    EPA Science Inventory

    Bacteria and virus-containing aerosols were studied during late summer and fall in a U.S. midwestern suburb before and during the start up and operation of an unenclosed activated sludge wastewater treatment plant. The air in this suburban area contained low-level densities of in...

  19. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 ?g/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 ?g/kg dm (aerobically-digested sludge), 63 ?g/kg dm (lagoon sludge), 12 ?g/kg dm (composted sludge) and 8 ?g/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 ?g/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17?-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non-effect concentration, were lower than 1 for all the pharmaceutically active compounds so no significant risks are expected to occur due to the application of sewage sludge onto soils, except for 17?-ethinylestradiol when chronic toxicity was considered. PMID:24909712

  20. Dairy wastewater treatment using an activated sludge-microalgae system at different light intensities.

    PubMed

    Tricolici, O; Bumbac, C; Patroescu, V; Postolache, C

    2014-01-01

    A microalgae-bacteria system was used for dairy industry wastewater treatment in sequenced batch mode in a photobioreactor. The research investigated the influence of two light intensities: 360 and 820 ?mol m(-2)s(-1) on treatment performances, microalgal cell recovery and dynamics of the protozoan community. Results showed that the light intensity of 360 ?mol m(-2)s(-1) was found to be insufficient to support photosynthetic activity after the increase of bacterial biomass leading to the decrease of organic matter and ammonium removal efficiencies from 95 to 78% and 95 to 41%, respectively. Maximum microalgal cells recovery was about 63%. Continuous modification in the protozoan community was also noticed during this test. Increasing the light intensity to 820 ?mol m(-2)s(-1) led to better microalgal cells recovery (up to 88%) and improved treatment performances. However, the decrease of protozoan richness to small flagellates and free-swimming ciliates was noticed. Moreover, the developed protozoan trophic network was found to be different from that identified in the conventional activated sludge system. The study emphasized that high increase of bacterial biomass promoted in nutrient- and organic matter-rich wastewater can strongly affect the treatment performances as a result of the shadow effect produced on the photoautotrophic microalgae aggregates. PMID:24759517

  1. [Nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants in Beijing region].

    PubMed

    Bai, Li-Ping; Qi, Hong-Tao; Fu, Ya-Ping; Li, Ping

    2014-12-01

    Changes of nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants (as represented by CSS-A and CSS-B, respectively) in Beijing region were investigated. The results showed that the pH values, nutrient contents, trace elements and heavy metals in CSS-A and CSS-B depended on the sludge resources and particular years. The average of organic matter content in different years (203 338.0 mg x kg(-1)) from CSS-A met both the requirement of sludge quality standard for agricultural use (CJ/T 309-2009) and land improvement (GB/T 24600-2009) in China except the permitted limit of sludge quality standards for garden or park use (GB/T 23486-2009) in China. Moreover, the average of organic matter in different years (298531.5 mg x kg(-1)) from CSS-B and the averages of pH values (7.1 and 7.2, respectively) and NPK concentrations (41 111.7 mg x kg(-1) and 65 901.5 mg x kg(-1), respectively) in different years from CSS-A and CSS-B all met the requirements of sludge quality standards for the above-mentioned disposal types of sewage sludge from municipal wastewater treatment plants. The contents of heavy metals in CSS-A and CSS-B except Hg and Ni were below the permitted limits of the A-class sludge quality standard for agricultural use (CJ/T 309-2009) , being the most stringent standards in China. It was suggested that composted sewage sludge from different municipal wastewater treatment plants in Beijing region use as a fertilizer in agriculture, land improvement, and garden or park, but the top concern about potential environmental pollution of Hg and Ni should be considered. PMID:25826937

  2. Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China.

    PubMed

    Liu, Nannan; Shi, Yali; Li, Wenhui; Xu, Lin; Cai, Yaqi

    2014-04-01

    In this study, we assessed the occurrence and distribution patterns of seven synthetic musks (SMs) and 17 siloxanes in anaerobic digested sludge samples collected at the dewatering process from 42 wastewater treatment plants (WWTPs) in China. SMs in sludge from different WWTPs exhibited similar composition profiles, and their total concentrations ranged from 47.3 ng/g to 68.2 ?g/g dry weight (dw). On average, galaxolide (HHCB, 63.8%) and tonalide (AHTN, 31.7%) accounted for 95.5% of ?SMs. The total concentrations of cyclic siloxanes ranged from sludge indicated that both of them were widely used in China. Among the sludge samples from 42 WWTPs, the concentrations of both ?SMs and ?siloxanes had considerable variations. We investigated the influence of potential factors (wastewater and sludge characteristics, the treatment capacity, serving population, and the treatment techniques of WWTPs) on the levels of target compounds in sludge, and found that SMs were significantly (p<0.05) correlated with the total organic carbon (TOC) of the sludge and the serving population of WWTP. There were also strong correlations (p<0.05) between the treatment capacity of WWTPs and cyclic siloxanes, as well as between the TOC of the sludge and linear siloxanes. In addition, the ecological risks of SMs and siloxanes in sewage sludge addressed to land application were assessed, which suggested that there was a low risk to the soil environment. PMID:24463026

  3. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    van Hullenbusch, Eric; Farges, François; Lenz, Markus; Lens, Piet; Brown, Gordon E.

    2007-02-01

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinc red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  4. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    SciTech Connect

    Hullenbusch, Eric van; Farges, Francois; Lenz, Markus; Lens, Piet; Brown, Gordon E. Jr.

    2007-02-02

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinc red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  5. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    SciTech Connect

    van Hullenbusch, Eric; Farges, Francois; Lenz, Markus; Lens, Piet; Brown, Gordon E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinic red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  6. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect

    Ragsdale, R.G., Jr

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  7. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2014-07-01

    Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 ?g/capita/day, followed by sucralose (117 ?g/capita/day), acesulfame (90 ?g/capita/day), and saccharin (66?g/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 ?g/capita/day) and analgesics (acetaminophen: 59 ?g/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge. PMID:24695211

  8. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  9. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  10. Horizontal-flow anaerobic immobilized sludge (HAIS) reactor for paper industry wastewater treatment

    SciTech Connect

    Foresti, E.; Cabral, A.K.A.; Zaiat, M.; Del Nery, V.

    1996-11-01

    Immobilized cell reactors are known to permit the continuous operation without biomass washout and also for increasing the time available for cells` catalytic function in a reaction or in a series of reactions. Several cell immobilization supports have been used in different reactors for anaerobic wastewater treatment, such as: agar gel, acrylamide, porous ceramic, and polyurethane foam besides the self-immobilized biomass from UASB reactors. However, the results are not conclusive as to the advantages of these different reactors with different supports as compared to other anaerobic reactor configurations. This paper describes a new anaerobic attached growth reactor configuration, herein referred as horizontal-flow anaerobic immobilized sludge (HAIS) reactor and presents the results of its performance test treating kraft paper industry wastewater. The reactor configuration was conceived aiming to increase the ratio useful volume/total volume by lowering the volume for gas separation. The HAIS reactor conception would permit also to incorporate the reactor hydrodynamic characteristics in its design criteria if the flow pattern could be approximated as plug-flow.

  11. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow. PMID:23073101

  12. Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, the Netherlands.

    PubMed

    Oosterhuis, Mathijs; Ringoot, Davy; Hendriks, Alexander; Roeleveld, Paul

    2014-01-01

    The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved. PMID:25026572

  13. Limitation of sludge biotic index application for control of a wastewater treatment plant working with shock organic and ammonium loadings.

    PubMed

    Drzewicki, Adam; Kulikowska, Dorota

    2011-11-01

    This study aimed to determine the relationship between activated sludge microfauna, the sludge biotic index (SBI) and the effluent quality of a full-scale municipal wastewater treatment plant (WWTP) working with shock organic and ammonium loadings caused by periodic wastewater delivery from septic tanks. Irrespective of high/low effluent quality in terms of COD, BOD5, ammonium and suspended solids, high SBI values (8-10), which correspond to the first quality class of sludge, were observed. High SBI values were connected with abundant taxonomic composition and the domination of crawling ciliates with shelled amoebae and attached ciliates. High SBI values, even at a low effluent quality, limit the usefulness of the index for monitoring the status of an activated sludge system and the effluent quality in municipal WWTP-treated wastewater from septic tanks. It was shown that a more sensitive indicator of effluent quality was a change in the abundance of attached ciliates with a narrow peristome (Vorticella infusionum and Opercularia coarctata), small flagellates and crawling ciliates (Acineria uncinata) feeding on flagellates. PMID:21802913

  14. Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective

    E-print Network

    Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective t The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces Elsevier Ltd. All rights reserved. 1. Introduction Wastewater treatment sludge is a dilute mixture of micro

  15. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters

    SciTech Connect

    Kato, M.T.; Field, J.A.; Versteeg, P.; Lettinga, G. . Dept. of Environmental Technology)

    1994-08-05

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30 C. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to 12 g COD/L [center dot] d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGSB reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V[sub up]) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K[sub s] value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V[sub up] lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A more important restriction of the EGSB reactor was the sludge washout occurring at V[sub up] higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L [center dot] d due to buoyancy forces from the gas production.

  16. A comparative study of freeze-thaw processes for conditioning wastewater and water treatment sludges

    SciTech Connect

    Trahern, P.G.

    1989-01-01

    This research effort involved the application of indirect- and direct-contact, freeze-thaw conditioning techniques for improving the dewatering characteristics of both waste water and water treatment sludges. Sludges tested included waste activated sludge, primary sewage sludge, waste activated/primary sewage sludge mixtures and alum sludge. The direct-freeze methods examined were the use of a secondary refrigerant (butane) evaporated in the sludge and the use of gas hydrate or clathrate formation by addition of Freon 12 under appropriate temperature and pressure conditions. Sludges were also frozen solid using indirect freezing methods, thawed and tested for comparative purposes. Particle size distribution and floc density measurements were used to determine changes in particle characteristics; specific resistance values and dewatered dry solids concentration were used to assess dewatering characteristics. Results of direct and indirect-contact, freeze-thaw conditioning were compared to the effects of polymer conditioning. The results indicated that direct-freeze methods do not appear technically or economically competitive with currently accepted conditioning methods. The superior results obtained with the indirect-contact, freeze-thaw process when compared to the direct-contact processes suggested that the extent and rate of freezing may greatly influence the particle characteristics of the conditioned sludge, and thus its dewatering characteristics.

  17. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.

    PubMed

    Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2014-11-01

    Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks. PMID:24856588

  18. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    SciTech Connect

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G.

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  19. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Song, Geum-Ju; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2014-02-01

    Studies on the occurrence of polybrominated diphenyl ethers (PBDEs) and other alternative brominated flame retardants in the environment are scarce. In this study, PBDEs and non-PBDE brominated flame retardants (NBFRs), including decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were measured in sludge collected from three types of wastewater treatment plants (WWTPs) in Korea. Total concentrations of PBDEs (?PBDE) in sludge ranged from 298 to 48,000 (mean: 3240) ng/g dry weight. Among 10 NBFRs analyzed, DBDPE and BTBPE were the only ones detected in sludge samples. Concentrations of DBDPE and BTBPE ranged from sludge were higher than those reported in other countries. The highest concentrations of ?PBDE and DBDPE were found in sludge samples originated from industrial-WWTPs (I-WWTPs), suggesting that industrial activities are a major source of these contaminants. Non-parametric multidimensional scaling ordination showed that congener profiles of PBDEs in sludge are dependent on the types of WWTPs. Almost all sludge samples contained a low ratio (mean: 0.18) of DBDPE/BDE 209, indicating an on-going contamination by PBDEs in Korea. However, the high ratios (>1) of DBDPE/BDE 209 were found in sludge from I-WWTPs, reflecting a shift in the usage pattern of BFRs by the Korean industry. The nationwide annual emission fluxes of ?PBDE, DBDPE and BTBPE via WWTPs to the environment were estimated to be 7400, 480, and 3.7 kg/year, respectively. This is the first study on the occurrence of alternative brominated flame retardants in sludge from Korea. PMID:23993837

  20. Thermal oxidation kinetics and mechanism of sludge from a wastewater treatment plant.

    PubMed

    Tettamanti, M; Lasagni, M; Collina, E; Sancassani, M; Pitea, D; Fermo, P; Cariati, F

    2001-10-01

    The organic fraction of a sludge from a wastewater biological treatment plant is characterized by the total organic carbon, TOC, content, cyclohexane and toluene extractions, and thermal desorptions in nitrogen and air flow at different temperatures. The inorganic fraction is characterized by water extraction, FT-IR spectroscopy, thermogravimetric analysis, and scanning electron microscopy/energy dispersion X-ray analysis. The thermal degradation rate of organic carbon is studied in batch experiments in air, in the 250-500 degrees C temperature range. The sample TOC is used to measure the decrease of reagent concentration with time. The TOC vs time data are well fitted by a generalized kinetic model, previously proposed for the MSWIs fly ash thermal degradation. The rate constants of the immediate carbon gasification, k2, and of the dissociative oxygen chemisorption, k1, followed by C(O) intermediate gasification, k3, together with activation and thermodynamic parameters are calculated. The rate determining step is the C(O) oxidation. The influence of desorbed or extracted organic compounds on kinetics and the role of the C(O) formation in explaining the reaction mechanism as well as the comparison with fly ash kinetics are discussed. PMID:11642466

  1. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  2. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    PubMed Central

    Nourmohammadi, Davood; Esmaeeli, Mir-Bager; Akbarian, Hossein; Ghasemian, Mohammad

    2013-01-01

    During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF) was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8?mg/L to 0.29?mg/L in TF, and NO3-N concentration increased from 8.8?mg/L to 27?mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple. PMID:23710197

  3. Nitrogen removal in a full-scale domestic wastewater treatment plant with activated sludge and trickling filter.

    PubMed

    Nourmohammadi, Davood; Esmaeeli, Mir-Bager; Akbarian, Hossein; Ghasemian, Mohammad

    2013-01-01

    During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF) was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8?mg/L to 0.29?mg/L in TF, and NO3-N concentration increased from 8.8?mg/L to 27?mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple. PMID:23710197

  4. DESIGN MANUAL: DEWATERING MUNICIPAL WASTEWATER SLUDGES

    EPA Science Inventory

    This manual discusses the many factors involved in selecting and designing dewatering equipment for organic sludges produced during primary and secondary municipal wastewater treatment. ive-step approach is outlined for the selection and design of the dewatering equipment for eit...

  5. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  6. Determination of azoles in sewage sludge from Spanish wastewater treatment plants by liquid chromatography-tandem mass spectrometry.

    PubMed

    García-Valcárcel, Ana I; Tadeo, José L

    2011-06-01

    A simple and rapid analytical method for the determination of 16 azoles in sewage sludge has been developed and validated. The method was based on ultrasound-assisted extraction followed by dispersive solid-phase extraction cleanup and liquid chromatography-electrospray tandem mass spectrometric detection. The azoles were selected by their intensive usage as biocides (tebuconazole, propiconazole, cyproconazole and thiabendazole), antimycotic pharmaceuticals (ketoconazole, econazole, fluconazole and clotrimazole) or fungicides in agriculture (difenoconazole, flusilazole, hexaconazole, prochloraz, bromuconazole, epoxiconazole and triticonazole). The recoveries of these compounds through the method were between 71.9 and 115.8%, with relative standard deviations lower than 20%. Detection limits were in the range of 0.5-5.0 ng/g. The developed method was applied to the analysis of azoles in sewage sludge samples collected from 19 Spanish wastewater treatment plants. Although azoles used as biocides or agriculture fungicides were present in a few sludge samples, the pharmaceuticals ketoconazole, econazole and clotrimazole were present in all of the analyzed sludge samples, being ketoconazole the one found at the highest level, representing the 68.6% of the total azole content found in the 19 sludge samples studied. PMID:21491590

  7. Biomethanization of mixtures of fruits and vegetables solid wastes and sludge from a municipal wastewater treatment plant.

    PubMed

    Gomez-Lahoz, C; Fernández-Giménez, B; Garcia-Herruzo, F; Rodriguez-Maroto, J M; Vereda-Alonso, C

    2007-03-01

    The possible management of Fruit and Vegetable Solid Wastes (FVSWs) through their simultaneous digestion with the primary sludge of Municipal Wastewater Treatment plants is investigated. This alternative allows the recovery of energy and a solid product that can be used as an amendment for soils that generated the residue, while is not expensive. Results indicate that the ratio of FVSWs to sludge and the pH control are the main variables determining the methane production and concentration. NaHCO3 was selected to achieve the pH control. The results for a ratio of 50% sludge together with 10 g NaHCO3/kg of residue are among the best obtained, with a methane yield of about 90 L per kg of volatile solids, and a methane concentration of 40% (v/v) of the biogas. A 50% reduction of the total solids; 21% reduction of the volatile solids (in terms of total solids); and a pH value of the sludge, which is 6.9 indicate that the digested sludge can be a good material for soil amendment. PMID:17365318

  8. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

    PubMed Central

    2012-01-01

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation. PMID:22452812

  9. Sludge Treatment, Utilization, and Disposal.

    ERIC Educational Resources Information Center

    Dick, Richard I.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers such areas: (1) industrial and hazardous sludges; (2) chemical sludges; (3) stabilization and combustion; (4) ocean disposal; and (5) land application. A list of 411 references is also presented. (HM)

  10. Enhanced nitrogen removal in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.

    PubMed

    Jobbágy, A; Tardy, G M; Literáthy, B

    2004-01-01

    In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems. PMID:15553452

  11. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    PubMed

    Radovanovi?, Dragana ?; Kamberovi?, Željko J; Kora?, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure. PMID:26457922

  12. Wastewater sludge conditioning by fly ash

    SciTech Connect

    Wang, X.; Viraraghavan, T.

    1998-09-01

    Conditioning wastewater sludge from the City of Regina Wastewater Treatment Plant by fly ash from Boundary Dam Power Station, Saskatchewan, Canada, was studied. Toxicity characteristic leaching procedure (TCLP), equilibrium leach test (ELT), and long-term leaching test (LTLT) were used to investigate the leachability of heavy metals. Results from these leaching tests indicated that, on the basis of concentrations of microorganisms and heavy metals (Cd, Cr, Cu, Ni and Zn), the sludge produced at the Regina Wastewater Treatment Plant conditioned by the locally available fly ash can be disposed of in landfills and used as a soil conditioner for land application. Sorption, and silicate and hydroxide precipitations were considered to be the three important mechanisms in fixation of heavy metals. High pH conditions were considered to be the predominant mechanism in killing microorganisms.

  13. Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge.

    PubMed

    Corsino, Santo Fabio; Capodici, Marco; Morici, Claudia; Torregrossa, Michele; Viviani, Gaspare

    2016-01-01

    Fish processing industries produce wastewater containing high amounts of salt, organic matter and nitrogen. Biological treatment of such wastewaters could be problematic due to inhibitory effects exerted by high salinity levels. In detail, high salt concentrations lead to the accumulation of nitrite due to the inhibition of nitrite-oxidizing bacteria. The feasibility of performing simultaneous nitritation and denitritation in the treatment of fish canning wastewater by aerobic granular sludge was evaluated, and simultaneous nitritation-denitritation was successfully sustained at salinities up to 50 gNaCl L(-1), with a yield of over 90%. The total nitrogen concentration in the effluent was less than 10 mg L(-1) at salinities up to 50 gNaCl L(-1). Nitritation collapsed above 50 gNaCl L(-1), and then, the only nitrogen removal mechanism was represented by heterotrophic synthesis. In contrast, organic matter removal was not affected by salinity but was instead affected by the organic loading rate (OLR). Both COD and BOD removal efficiencies were over 90%. The COD fractionation analysis indicated that aerobic granules were able to remove more than 95% of the particulate organic matter. Finally, results obtained in this work noted that aerobic granular sludge had an excellent ability to adapt under adverse environmental conditions. PMID:26512811

  14. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Moon, Hyo-Bang; Song, Geum-Ju; Ra, Kongtae; Lee, Won-Chan; Kannan, Kurunthachalam

    2014-11-01

    Siloxanes are widely used in various industrial applications as well as in personal care products. Despite their widespread use and potential toxic effects, few studies have reported on the occurrence of siloxanes in the environment. In this study, we determined the concentrations of 5 cyclic and 15 linear siloxanes in sludge collected from 40 representative wastewater treatment plants (WWTPs) in Korea. Total concentrations of 20 siloxanes (?siloxane) in sludge ranged from 0.05 to 142 (mean: 45.7) ?g/g dry weight, similar to the concentrations reported in European countries but higher than those reported in China. The concentrations of siloxanes in sludge from domestic WWTPs were significantly (p<0.01) higher than those from industrial WWTPs, indicating higher consumption of siloxanes in various personal care products (e.g. shampoos and conditioners). The major siloxane compounds found in sludge were decamethylcyclopentasilane (D5), docosamethyldecasiloxane (L10) and dodecamethylcyclohexasilane (D6), which collectively accounted for, on average, 62% of the ?siloxane concentrations. Non-parametric multidimensional scaling ordination of the profiles of siloxanes indicated the existence of different usage patterns of siloxanes between industrial and household activities. Multiple linear regression analysis of siloxane concentrations and WWTP characteristics suggested that D5, D6 and linear siloxane concentrations in sludge were positively correlated with population served by a WWTP. Environmental emission fluxes of cyclic and linear siloxanes through sludge disposal in Korea were 14,800 and 18,500 kg/year, respectively. This is the first report describing occurrence and environmental emission of siloxanes through sludge in Korea. PMID:25127445

  15. Distributions of polycyclic musk fragrance in wastewater treatment plant (WWTP) effluents and sludges in the United States.

    PubMed

    Sun, Ping; Casteel, Kenneth; Dai, Hongjian; Wehmeyer, Kenneth R; Kiel, Brian; Federle, Thomas

    2014-09-15

    The polycyclic musks, AHTN and HHCB are fragrance ingredients widely used in consumer products. A monitoring campaign was conducted and collected grab effluent and sludge samples at 40 wastewater treatment plants (WWTP) across the United States to understand their occurrence and statistical distribution in these matrices. AHTN concentration in effluent ranged from <0.05 ?g/L (LOQ) to 0.44 ?g/L with a mean and standard deviation of 0.18 ± 0.11 ?g/L. HHCB concentrations in effluent ranged from 0.45 to 4.79 ?g/L with a mean of 1.86 ± 1.01 ?g/L. AHTN concentrations in sludge ranged from 0.65 to 15.0mg/kg dw (dry weight) with a mean and standard deviation being 3.69 ± 2.57 mg/kg dw, while HHCB sludge concentrations were between 4.1 and 91 mg/kg with a mean of 34.0 ± 23.1mg/kg dw. Measured concentrations of AHTN and HHCB were significantly correlated with each other in both effluent and sludge. The concentrations of HHCB in both effluent and sludge were approximately an order of magnitude higher than those for AHTN, consistent with 2011 usage levels. The highest measured effluent concentrations for both AHTN and HHCB were below their respective freshwater PNECs (predicted no effect concentrations), indicating a negligible risk to biological communities below WWTPs, even in the absence of upstream dilution. Moreover, the large number of effluents and sludges sampled provides a statistical distribution of loadings that can be used to develop more extensive probabilistic exposure assessments for WWTP mixing zones and sludge amended soils. PMID:24792690

  16. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    SciTech Connect

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-03-15

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  17. Land treatment field studies. Volume 5. Wastewater treatment sludge from batch organic chemical synthesis. Final report Sep 77-Feb 81

    SciTech Connect

    Berkowitz, J.B.; Bysshe, S.E.; Goodwin, B.E.; Harris, J.C.; Land, D.B.

    1983-07-01

    This report presents the results of field measurements and observations of a land treatment operation using a sludge generated from organic chemical manufacture. The sludge is applied to a turf farm which contains acidic soil; the sludge reduces the lime addition requirements for pH adjustment. The sub-soils are porous and the quality of the groundwater located at 20-30' below the ground surface is pristine.

  18. DEVELOPMENT OF METHODS AND TECHNIQUES FOR FINAL TREATMENT OF COMBINED MUNICIPAL AND TEXTILE WASTEWATER INCLUDING SLUDGE UTILIZATION AND DISPOSAL

    EPA Science Inventory

    The investigations were carried out on laboratory scale, employing various mixtures of dyeing and municipal wastewaters. The processes studied were: coagulation, ozonization, chlorination, activated carbon, activated sludge, and anaerobic digestion. Lime appeared to be the best c...

  19. POLISH/U.S. SYMPOSIUM ON WASTEWATER TREATMENT AND SLUDGE DISPOSAL HELD AT CINCINNATI, OHIO ON FEBRUARY 10-12, 1976. VOLUME II

    EPA Science Inventory

    The publication comprises the proceedings of the Polish/U.S. Symposium on Wastewater Treatment and Sludge Disposal, held in Cincinnati, Ohio, February 10 through 12, 1976. Topics included both research work, notably in biodegradability and toxicity, and treatment and disposal met...

  20. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions. PMID:25837566

  1. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  2. SOLIDIFICATION/STABILIZATION OF SLUDGE AND ASH FROM WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Tests were performed to determine the physical properties and chemical leaching characteristics of the residuals and the stabilized/solidified products from two publicly-owned wastewater treatment works (POTW). The two POTW waste products included in this study were an anaerobic ...

  3. IDENTIFICATION OF MUTAGENIC COMPONENTS IN WASTEWATER EFFLUENTS AND SLUDGES

    EPA Science Inventory

    Both industrially-impacted and domestic municipal sewage treatment plant wastewaters and sludges have been studied to isolate the residue organics for the characterization of their mutagenic properties and for the isolation/identification of the mutagenic components. ethods were ...

  4. Investigation of nonylphenol and nonylphenol ethoxylates in sewage sludge samples from a metropolitan wastewater treatment plant in Turkey.

    PubMed

    Ömero?lu, Seçil; Murdoch, Fadime Kara; Sanin, F Dilek

    2015-01-01

    Nonylphenol ethoxylates (NPEOs) have drawn significant attention within the last decade for both scientific and legislative reasons. In Turkey, the Regulation Regarding the Use of Domestic and Urban Sludges on Land states a limit value for the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) as NPE (NPE=NP+NP1EO+NP2EO). Unfortunately a standard method for the determination of these chemicals has not been yet set by the authorities and no data exists about the concentrations of NP and NPEOs in sewage sludge in Turkey. The aim of this study is to propose simple and easily applicable extraction and measurement techniques for 4-n-nonylphenol (4-n-NP), NP, NP1EO and NP2EO in sewage sludge samples and investigate the year round concentrations in a Metropolitan Wastewater Treatment Plant (WWTP) in Turkey. Different extraction techniques and GC/MS methods for sewage sludge were tested. The best extraction method for these compounds was found to be ultrasonication (5 min) using acetone as the solvent with acceptable recovery of analytes suggested by USEPA and other studies. The optimized extraction method showed good repeatability with relative standard deviations (RSDs) less than 6%. The recovery of analytes were within acceptable limits suggested by USEPA and other studies. The limits of detection (LODs) were 6 µg kg(-1) for NP and NP1EO, 12 µg kg(-1) for NP2EO and 0.03 µg kg(-1) for 4-n-NP. The developed method was applied to sewage sludge samples obtained from the Central WWTP in Ankara, Turkey. The sum NPE (NP+NP1EO+NP2EO) was found to be in between 5.5 µg kg(-1) and 19.5 µg kg(-1), values which are in compliance with Turkish and European regulations. PMID:25281154

  5. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area.

    PubMed

    Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

    2014-02-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from "negative removal" to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment. PMID:24176710

  6. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    PubMed

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N. PMID:19540753

  7. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  8. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs).

    PubMed

    Fatone, Francesco; Di Fabio, Silvia; Bolzonella, David; Cecchi, Franco

    2011-01-01

    We studied the occurrence, removal, and fate of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 volatile organic compounds (VOCs) in Italian municipal wastewater treatment systems in terms of their common contents and forms, and their apparent and actual removal in both conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). We studied five representative full-scale CASP treatment plants (design capacities of 12,000 to 700,000 population-equivalent), three of which included MBR systems (one full-scale and two pilot-scale) operating in parallel with the conventional systems. We studied the solid-liquid partitioning and fates of these substances using both conventional samples and a novel membrane-equipped automatic sampler. Among the VOCs, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, and 4-chlorotoluene were ubiquitous, whereas naphthalene, acenaphthene, fluorene, and phenanthrene were the most common PAHs. Both PAHs and aromatic VOCs had removal efficiencies of 40-60% in the headworks, even in plants without primary sedimentation. Mainly due to volatilization, aromatic VOCs had comparable removal efficiencies in CASP and MBRs, even for different sludge ages. MBRs did not enhance the retention of PAHs sorbed to suspended particulates compared with CASPs. On the other hand, the specific daily accumulation of PAHs in the MBR's activated sludge decreased logarithmically with increasing sludge age, indicating enhanced biodegradation of PAHs. The PAH and aromatic VOC contents in the final effluent are not a major driver for widespread municipal adoption of MBRs, but MBRs may enhance the biodegradation of PAHs and their removal from the environment. PMID:20804998

  9. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment.

    PubMed

    González, Susana; Petrovic, Mira; Barceló, Damià

    2007-02-01

    Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters. PMID:17123581

  10. UNITED STATES PRACTICE IN SLUDGE TREATMENT AND DISPOSAL

    EPA Science Inventory

    Sludge treatment and disposal problems and costs grow with increased concern about the quality of wastewater treatment. As standards for effluent quality in the United States have become stricter, the problems of sludge treatment and disposal have grown disproportionately. Today ...

  11. Study of the viscosity behaviour of glasses obtained from urban wastewater treatment sludges from Egypt using hot stage microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Valles, M.

    2012-04-01

    The volume of sludge produced in wastewater treatment plants in Egypt is becoming more important; this paper studied the chemical composition of sludge from four treatment plants located around Nile delta and valley: El-Sadat City (E-01), Alexandria (E-02), Abo-Rawash (E-03) and Minufiya (E-04), and is suggested as a possible solution, the vitrification of these sludges. Another important objective for obtaining correct this glass is to know the viscosity temperature curve, including developing a prototype of hot stage microscopy (HSM) and development of software suitable for the analysis of images. Each image has different morphology related to different viscosity, can that way determine the viscosity at the temperature of heating. The chemical composition of these sludges is close to a basalt rock except that the phosphorus content is higher, and sometimes with a certain proportion of heavy metals. Cr, Zn and Pb exceeds the limit allowed to be used in agriculture, this is one of the solutions actually used. In general, major oxides to sludges ranging from: SiO2 (36-48 wt %), Al2O3 (9-16 wt %), CaO (5-25 wt %), P2O5 (1.5-11 wt %) and Fe2O3 (~ 9 wt %), this composition. Since of them are formulated and prepared by four different glasses, in some cases being necessary to incorporate a quantity of raw materials. The sludge combustion heat, the thermal evolution, vitreous transition temperature (Tg) and crystal growth temperature of the glasses were obtained by carrying out a differential thermal analysis. Tg of the four glasses vary between 650 and 725 °C and the growth occurs between 938 and 1033 °C. The vitreous transition temperature was also determined with a dilatometer. Each original glass has been characterized mineralogically by X-ray diffraction: quartz, plagioclase, K-feldspar and calcite. Two samples contained gypsum and some clay mineral traces. We also obtained the viscosity - temperature curves with the aid of the hot stage microscopy that has allowed us to determine the working temperatures of the four glasses, ranging from 926 and to 1419 °C, depending on the type of forming process used. In all glass samples the viscosity-temperature curves have similar characteristics, but for higher viscosities a separation among the different viscosity-temperature curves occurs. This different behaviour is associated to chemical composition: Ca-rich silica aluminum melt, present low viscosity at low temperatures, > P2O5 content, the nucleation of a more refractory phosphate phase occurs. In order to obtain the original glasses working conditions (necessary for possible industrial applications) are used the Vogel-Fulcher-Tammann equation: a) upper and lower annealing temperatures of the samples are similar for the different glasses and ranging between 595-641 °C and 671-701 °C respectively; b) working temperature range from 917-1307 °C for the sample E-02, and 925-1503 °C for the sample E-04, depending on the conformation system used. Finally, the forming and melting temperatures of the samples vary between 1307-1403 °C (E-02) and 1503-1550 °C (E-04). The results confirm that HSM is a good technique for studying the sludge vitrification process, and could provide important information for the possible industrial application. Acknowledgements This study is a contribution of the bilateral project A/030032/10 and CICYT TIN2008-02903. The analytical work was conducted at Research Consolidated Groups 2009SGR-0044 (Mineral Resources). Wastewater treatment plants at El-Sadat City, Alexandria, Abo-Rawash and Minufiya are acknowledged for sampling authorization and facilities. We express our acknowledgement to the technical support of the Scientific-Technical Service Unit of the University of Barcelona and the additional support of the Institute for Bioengineering of Catalonia (IBEC).

  12. Effects of dried wastewater-treatment sludge application on ground-water quality in South Dade County, Florida

    USGS Publications Warehouse

    Howie, Barbara

    1992-01-01

    Four test fields in the south Dade agricultural area were studied to determine the effects of sludge application on ground-water quality. Two fields had been cultivated for 10 years or more, and two had not been farmed for at least 10 years. The fields were representative of the area's two soil types (Rockdale and Perrine marl) and two major crop types (row crops and groves). Before the application of sludge, wells upgradient of, within, and downgradient of each field were sampled for possible sludge contaminants at the end of wet and dry seasons. Municipal wastewater treatment sludge from the Dade County Water and Sewe Authority Department was then applied to the fields at varying application rates. The wells at each field were sampled over a 2-year period under different hydrologic conditions for possible sludge-related constituents (specific conductance, pH, alkalinity, nitrogen, phosphorus, total organic carbon, copper, iron, magnesium, manganese, potassium, zinc, arsenic, cadmium, chloride, chromium, lead, mercury, nickel, and sodium). Comparisons were made between water quality in the vicinity of the test fields and Florida Department of Environmental Regulation primary and secondary drinking-water regulations, an between water quality upgradient of, beneath, and downgradient of the fields. Comparisons between presludge and postsludge water quality did not indicate any improvement because of retention of agrichemicals by the sludge nor did they indicate any deterioration because of leaching from the sludge. Comparisons of water quality upgradient of the fields to water quality beneath and downgradient of the fields also did not indicate any changes related to sludge. Florida Department of Environmental Regulation primary and secondary drinking-water regulations wer exceeded at the Rockdale maximum-application field by mercury (9.5 ug/L (micrograms per liter)), and the Perrine marl maximum-application field by manganese (60 ug/L) and lead (85 ug/L), and at the Perrine marl row-crop field by mercury (5.2 ug/L). All other exceedances were either in presludge or upgradient samples, or they were for constituents or properties, such as iron and color, which typically exceed standards in native ground water. Acid-extractable and base-neutral compounds, volatile organic compounds, chlorophenoxy herbicides, organophosphorus insecticides, and organochlorine compounds were analyzed for one shallow well at each field twice annually. Those compounds that equaled or exceeded the detection limit after sludge was applied included benzene (0.3 and 1.2 ug/L), chloroform (0.2 and 0.3 ug/L), bis(2-Ethylhexyl)phthalate (29 and 42 ug/L), methylene chloride (14 ug/L), tolulene (0.2, 0.4, 0.5, 1.3, and 4.4 ug/L), 1, 1,1-trichloroethana (0.6 ug/L), trichloroethylene (0.3 ug/L), 2.4-D (0.01 ug/L), and xylene (0.3 ug/L). It ws not possible to ascertain the origin of these compounds becuase they are available from sources other than sludge.

  13. Treatment of cane sugar mill wastewater in an upflow anaerobic sludge bed reactor.

    PubMed

    Nacheva, P Mijaylova; Chávez, G Moeller; Chacón, J Matías; Chuil, A Canul

    2009-01-01

    The performance of a mesophilic UASB reactor was studied for the treatment of sugar cane mill wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 80 L total volume. Four organic loads were applied and the process performance was evaluated during two months for each experimental stage. Removal efficiencies higher than 90% were obtained with organic loads up to 16 kg COD m(-3) d(-1). Stable process performance and high biogas production were obtained. The COD removal rate increased substantially with the load increase to 24 kg COD m(-3) d(-1). However, the obtained removal was of only 78-82%, which can be attributed to the accumulation of volatile organic acids. The kinetic coefficients were obtained using first order model for the substrate removal rate and Monod's equation for bacteria specific growth rate. The UASB reactor is a good option for the biological treatment of pre-treated sugar cane mill wastewaters. The discharge requirements for COD concentration can be accomplished if the reactor is operated at a low organic load of 4 kg COD m(-3) d(-1). At higher loads, an additional biological treatment stage is needed. PMID:19717923

  14. The re-use of Waste-Activated Sludge as part of a "zero-sludge" strategy for wastewater treatments in the pulp and paper industry.

    PubMed

    Kaluža, Leon; Suštarši?, Matej; Rutar, Vera; Zupan?i?, Gregor D

    2014-01-01

    The possibility of introducing the thermo-alkali hydrolysis of Waste-Activated Sludge (WAS) was investigated, in order to enable the use of its solid residue as a raw material in cardboard production and the use of its liquid portion for anaerobic digestion in an UASB reactor. The evaluation of the hydrolysis at pH>12 and T=70°C showed that the microbe cells were disrupted with more than 90% efficiency in less than 2h. The solid portion was hygienised, therefore making it possible to integrate it into the cardboard production as a raw material for less demanding cardboards. Up to 6% addition of the liquid portion of hydrolysed WAS to wastewater decreased the specific biogas production in a pilot-scale UASB from 0.236 to 0.212 m(3)/kg(COD), while the efficiency of the COD removal decreased from 80.4% to 76.5%. These values still guarantee an adequate treatment of the wastewater and an increased biogas production by 16%. PMID:24215770

  15. Kinetics of wet oxidation of biological sludges from coal-conversion wastewater treatment

    SciTech Connect

    Helling, R.K.; Strobel, M.K.; Torres, R.J.

    1981-09-01

    Combustible organics in aqueous solutions or suspensions, which are characteristic of waste treatment effluent from coal liquefaction, may be treatable by wet oxidation. The wet oxidation of model compounds (phenol in water or phenol in municipal waste sludge) in a batch autoclave reactor was found to proceed rapidly to 99% conversion in less than 15 min for temperatures between 185 and 230/sup 0/C, oxygen pressures between 2000 and 1300 psig, and initial phenol concentrations of 2.5, 10, and 50 g/L. At 10 g/L initial concentration, the reaction rate was independent of the stirring rate, indicating that mass-transfer limitations were unimportant. The reaction occurs in three phases: a slow induction period, a fast first-order reaction with a low activation energy of 4.9 kcal/gmol, followed by a slow first-order reaction. During the reaction a variety of colored intermediates (catechol, succinic acid, hydroquinine) form. It is postulated that the fast portion of the reaction sequence follows free-radical mechanism. Solids settling and turbidity prevented accurate analytical analysis of the phenol in sludge samples, although qualitative results indicate that the disappearance of phenol follows a path similar to that in the phenol-water system.

  16. Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass.

    PubMed

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-05-01

    This study evaluated the feasibility of using microalgae biomass as feedstock for anaerobic digestion together with other biomasses (primary and secondary sludge) normally generated in WWTP. Raw microalgae biomass anaerobic biodegradability (33%) was higher than that of secondary sludge (23%). Thermal pretreatment enhanced 62% and 16% methane yield for Chlorellavulgaris and secondary sludge, respectively. When both substrates were codigested, methane yields remained low. On the other hand, primary sludge supported the highest anaerobic biodegradability (97%) and when combined with thermally pretreated C. vulgaris, methane yields were higher (13-17%) than the ones expected theoretically. Despite the high protein content of those substrates and the high nitrogen mineralization, no ammonia inhibition was detected. Thereby, this study showed that algae biomass is a potential cosubstrate for biogas production together with municipal wastewater sludge. PMID:25451781

  17. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  18. [Evaluation of bacterial and polluting loads of effluent from activated sludge wastewater treatment plants in Yaounde, Cameroon].

    PubMed

    Njiné, T; Monkiédjé, A; Nola, M; Foko, V S

    2001-01-01

    Activated sludge wastewater treatment plants in Yaounde are plagued by failures in their operation. A microbiological and physico-chemical study was carried out on wastewater effluent of an hospital, university campus, and two residential areas made up of more than 2,000 apartments connected to two collective sewase systems. Wastewater sampling was performed in the form of daily cycles during which composite samples were made every two hours with samples collected every half hour. Variables measured included incoming flow rates, suspended solids, pH, electrical conductivity, ammonia nitrogen, total Kjeldahl nitrogen (combination of ammonia and organic nitrogen) and total reactive phosphorus, BOD5 and COD. Microorganisms were isolated on selective culture media using membrane filter procedures. The results obtained show that effluent discharged in receiving waters are, in general, not treated. The suspended solids contents of raw sewage range from 120 to 2,600 mg/l. In General Hospital a mean value of suspended solids of 31.8 mg/l was obtained for treated wastewater. pH values of both raw and treated sewage range from 6 to 8.5 units. Mean values of the conductivity of treated and raw wastewater range from 449.7 to 1,038.3 microseconds/cm. The TKN contents of untreated wastewater are comprised between 36 and 259.2 mg/l. These values range from 5 to 20 mg/l for treated effluent in the General Hospital plant. Large amounts of total hydrolysable phosphorus varying from 3.8 to 27.9 mg/l are present in wastewater from the plants. Influent BOD5 of Grand Messa, Cite Verte and university campus wastewater range from 110 to 530 mgO2/l. Values recorded indicate an important input of organic matter to receiving waters. In the case of biotic components, test germs densities registered in the influent of Grand Messa and those of Cite Verte are comprised between 9 x 106 and 88 x 107 CFU/100 ml for fecal coliforms, and between 9 x 105 and 74 x 107 CFU/100 ml for fecal streptococci. The densities of Aeromonas hydrophila in Grand Messa and Cite Verte influent fluctuate between 30 x 106 and 65 x 108 CFU/100 ml. Influent of university campus harbour 10 x 105. Densities of Pseudomonas aeruginosa remain below 70 x 105 CFU/100 ml. Treated effluent BOD5 values range from 48 to 150 mgO2/l. Such values indicate an inefficient treatment. The decrease in bacterial densities is limited to 2 logarithmic units. Treated effluent still harbour 10 x 103 to 10 x 105 CFU/100 ml for fecal coliforms, and 20 x 102 to 12 x 104 CFU/100 ml for fecal streptococci. These values range from 10 x 104 to 50 x 105 CFU/100 ml for Aeromonas hydrophila. Pseudomonas aeruginosa densities remain in general below 40 x 104 CFU/100 ml. Discharges from these wastewater treatment plants are responsible for the permanent fecal contamination of the environment and a lack of proper hygiene. Furthermore, they produce overfertilization of receiving waters. PMID:11440881

  19. Probabilistic assessment of environmental exposure to the polycyclic musk, HHCB and associated risks in wastewater treatment plant mixing zones and sludge amended soils in the United States.

    PubMed

    Federle, Thomas; Sun, Ping; Dyer, Scott; Kiel, Brian

    2014-09-15

    The objective of this work was to conduct an environmental risk assessment for the consumer use of the polycyclic musk, HHCB (CAS No. 1222-05-5) in the U.S. focusing on mixing zones downstream from municipal wastewater treatment plants (WWTPs) and sludge amended soils. A probabilistic exposure approach was utilized combining statistical distributions of effluent and sludge concentrations for the U.S. WWTPs with distributions of mixing zone dilution factors and sludge loading rates to soil to estimate HHCB concentrations in surface waters and sediments below WWTPs and sludge amended soils. These concentrations were then compared to various toxicity values. Measured concentrations of HHCB in effluent and sludge from a monitoring program of 40 WWTPs across the U.S. formed the basis for estimating environmental loadings. Based upon a Monte Carlo analysis, the probability of HHCB concentrations being below the PNEC (predicted no effect concentration) for pelagic freshwater organisms was greater than or equal to 99.87% under both mean and low flow regimes. Similarly, the probability of HHCB concentrations being less than the PNEC for freshwater sediment organisms was greater than or equal to 99.98%. Concentrations of HHCB in sludge amended soils were estimated for single and repeated annual sludge applications with tilling of the sludge into the soil, surface application without tilling and a combination reflecting current practice. The probability of soil HHCB concentrations being below the PNEC for soil organisms after repeated sludge applications was 94.35% with current sludge practice. Probabilistic estimates of HHCB exposures in surface waters, sediments and sludge amended soils are consistent with the published values for the U.S. In addition, the results of these analyses indicate that HHCB entering the environment in WWTP effluent and sludge poses negligible risk to aquatic and terrestrial organisms in nearly all exposure scenarios. PMID:24802072

  20. Phosphine production potential of various wastewater and sewage sludge sources

    SciTech Connect

    Devai, I.; DeLaune, R.D.; Patrick, W.H. Jr.; Devai, G.; Czegeny, I.

    1999-05-01

    A laboratory incubation procedure followed by gas chromatographic detection was used to measure phosphine production potential in representative wastewater and sewage sludge sources. Phosphine production potential was determined by measuring the rate of phosphine formation in samples incubated under laboratory conditions over a seven day period when both electron donors and the targeted electron acceptor were not limiting factors. Results of their experiments showed that except the primary effluent and secondary effluent wastewater samples all other samples studied (influent wastewater, various type of sludge and sediment sources) produced phosphine. The minimum phosphine production potential value (0.39 pg/ml wastewater/day) was measured in composite influent wastewater samples while the maximum (268 pg/g wet sludge/day) was measured in sediment samples collected from an open-air sewage treatment plant.

  1. Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the PhATE™ model.

    PubMed

    Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J

    2012-07-01

    This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids. PMID:22162313

  2. Basis for the development of sustainable optimisation indicators for activated sludge wastewater treatment plants in the Republic of Ireland.

    PubMed

    Gordon, G T; McCann, B P

    2015-01-01

    This paper describes the basis of a stakeholder-based sustainable optimisation indicator (SOI) system to be developed for small-to-medium sized activated sludge (AS) wastewater treatment plants (WwTPs) in the Republic of Ireland (ROI). Key technical publications relating to best practice plant operation, performance audits and optimisation, and indicator and benchmarking systems for wastewater services are identified. Optimisation studies were developed at a number of Irish AS WwTPs and key findings are presented. A national AS WwTP manager/operator survey was carried out to verify the applied operational findings and identify the key operator stakeholder requirements for this proposed SOI system. It was found that most plants require more consistent operational data-based decision-making, monitoring and communication structures to facilitate optimised, sustainable and continuous performance improvement. The applied optimisation and stakeholder consultation phases form the basis of the proposed stakeholder-based SOI system. This system will allow for continuous monitoring and rating of plant performance, facilitate optimised operation and encourage the prioritisation of performance improvement through tracking key operational metrics. Plant optimisation has become a major focus due to the transfer of all ROI water services to a national water utility from individual local authorities and the implementation of the EU Water Framework Directive. PMID:25607680

  3. EVALUATION OF PROCESS SYSTEMS FOR EFFECTIVE MANAGEMENT OF ALUMINUM FINISHING WASTEWATERS AND SLUDGES

    EPA Science Inventory

    Innovative processes for use in treatment of wastewaters and sludges produced in anodizing, etching and painting extruded aluminum were investigated. Results of the research can be immediately implemented at many aluminum-finishing plants where sludge disposal restrictions and co...

  4. TECHNOLOGY TRANSFER ENVIRONMENTAL REGULATIONS AND TECHNOLOGY : CONTROL OF PATHOGENS IN MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This 71 - page Technology Transfer Environmental Regulations and echnology publication describes the Federal requirements promulgated in 1979 for reducing pathogens n wastewater sludge and provides guidance in determining whether individual sludge treatment andated or particular ...

  5. ENGINEERING ASSESSMENT OF VERMICOMPOSTING MUNICIPAL WASTEWATER SLUDGES

    EPA Science Inventory

    Vermicomposting -- the biological degradation of organic matter that occurs as earthworms feed on waste materials -- has been advocated by some as a means of stabilizing and disposing of municipal wastewater sludges. Vermicomposting is being attempted on an experimental scale, th...

  6. An integrated approach for monitoring efficiency and investments of activated sludge-based wastewater treatment plants at large spatial scale.

    PubMed

    De Gisi, Sabino; Sabia, Gianpaolo; Casella, Patrizia; Farina, Roberto

    2015-08-01

    WISE, the Water Information System for Europe, is the web-portal of the European Commission (EU) that disseminates the quality state of the receiving water bodies and the efficiency of the municipal wastewater treatment plants (WWTPs) in order to monitor advances in the application of both the Water Framework Directive (WFD) as well as the Urban Wastewater Treatment Directive (UWWTD). With the intention to develop WISE applications, the aim of the work was to define and apply an integrated approach capable of monitoring the efficiency and investments of activated sludge-based WWTPs located in a large spatial area, providing the following outcomes useful to the decision-makers: (i) the identification of critical facilities and their critical processes by means of a Performance Assessment System (PAS), (ii) the choice of the most suitable upgrading actions, through a scenario analysis. (iii) the assessment of the investment costs to upgrade the critical WWTPs and (iv) the prioritization of the critical facilities by means of a multi-criteria approach which includes the stakeholders involvement, along with the integration of some technical, environmental, economic and health aspects. The implementation of the proposed approach to a high number of municipal WWTPs highlighted how the PAS developed was able to identify critical processes with a particular effectiveness in identifying the critical nutrient removal ones. In addition, a simplified approach that considers the cost related to a basic-configuration and those for the WWTP integration, allowed to link the critical processes identified and the investment costs. Finally, the questionnaire for the acquisition of data such as that provided by the Italian Institute of Statistics, the PAS defined and the database on the costs, if properly adapted, may allow for the extension of the integrated approach on an EU-scale by providing useful information to water utilities as well as institutions. PMID:25863511

  7. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    PubMed

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  8. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process. PMID:25735007

  9. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling.

    PubMed

    Su, Xinying; Tian, Yu; Sun, Zhicai; Lu, Yaobin; Li, Zhipeng

    2013-11-15

    A novel combined system of sludge microbial fuel cell (S-MFC) stack and membrane bioreactor (MBR) was proposed in this study. The non-consumed sludge in the MBR sludge-fed S-MFC was recycled to the MBR. In the combined system, the COD and ammonia treatment efficiencies were more than 90% and the sludge reduction was 5.1% higher than that of the conventional MBR. It's worth noting that the energy recovery and fouling mitigation were observed in the combined system. In the single S-MFC, about 75 mg L(-1) COD could be translated to electricity during one cycle. The average voltage and maximum power production of the single S-MFC were 430 mV and 51 mWm(-2), respectively. Additionally, the combined system was able to mitigate membrane fouling by the sludge modification. Except for the content decrease (22%), S-MFC destroyed simple aromatic proteins and tryptophan protein-like substances in loosely bound extracellular polymeric substances (LB-EPS). These results indicated that effective wastewater treatment, sludge reduction, energy recovery and membrane fouling mitigation could be obtained in the combined system. PMID:23722047

  10. Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Yue, Qinyan; Gao, Baoyu; Gao, Yue; Fan, Chunzhen; He, Shengbing

    2015-02-11

    Dehydrated sewage sludge (DSS) and clay used as raw materials for preparation of novel media-sludge ceramic filler (SCF) and SCF employed in a lab-scale up-flow biological aerated filter (BAF) were investigated for soy protein secondary wastewater treatment. Single factor experiments were designed to investigate the preparation of SCF, and the characteristics (microstructure properties, toxic metal leaching property and other physical properties) of SCF prepared under the optimum conditions were examined. The influences of media height, hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODcr) and ammonia nitrogen (NH4(+)-N) removal rate were studied. The results showed that the optimum addition of DSS was approximately 25.0 wt% according to the physical properties of SCF (expansion ratio of 53.0%, v/v, water absorption of 8.24 wt%, bulk density of 350.4 kg m(-3) and grain density of 931.5 kg m(-3)), and the optimum conditions of BAF system were media height of 75.0 cm, HRT of 10.0 h and A/L of 15:1 in terms of CODcr and NH4(+)-N removal rate (91.02% and 90.48%, respectively). Additionally, CODcr and NH4(+)-N (81.6 and 15.3 mg L(-1), respectively) in the final effluent of BAF system met the national standard (CODcr ? 100 mg L(-1), NH4(+)-N ? 25.0 mg L(-1), GB 18918-2002, secondary standard). PMID:25464302

  11. PUBLIC ACCEPTANCE OF WASTEWATER SLUDGE ON LAND

    EPA Science Inventory

    The objective of this paper is to discuss the acceptance of municipal wastewater sludge on land in the United States. Application to land has been an economical disposal method for cities and a means of increasing soil productivity. Use of land for sludge disposal is increasing. ...

  12. Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry

    E-print Network

    Scampini, Amanda C

    2010-01-01

    Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

  13. Bacteriophage-based biocontrol of biological sludge bulking in wastewater.

    PubMed

    Choi, Jeongdong; Kotay, Shireen Meher; Goel, Ramesh

    2011-01-01

    In a previous paper, the first ever application of lytic bacteriophage (virus)-mediated biocontrol of biomass bulking in the activated sludge process using Haliscomenobacter hydrossis as a model filamentous bacterium was demonstrated. In this work we extended the biocontrol application to another predominant filamentous bacterium, Sphaerotilus natans, notoriously known to cause filamentous bulking in wastewater treatment systems. Very similar to previous study, one lytic bacteriophage was isolated from wastewater that could infect S. natans and cause lysis. Significant reduction in sludge volume index and turbidity of the supernatant was observed in batches containing S. natans biomass following addition of lytic phages. Microscopic examination confirmed that the isolated lytic phage can trigger the bacteriolysis of S. natans. This extended finding further strengthens our hypothesis of bacteriophage-based biocontrol of overgrowth of filamentous bacteria and the possibility of phage application in activated sludge processes, the world's widely used wastewater treatment processes. PMID:21829092

  14. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment.

    PubMed

    Mu, Hui; Zheng, Xiong; Chen, Yinguang; Chen, Hong; Liu, Kun

    2012-06-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) in consumer and industrial products highlights a need to understand their potential environmental impacts. In this study, the response of anaerobic granular sludge (AGS) to a shock load of ZnO NPs during anaerobic biological wastewater treatment was reported. It was observed that the extracellular polymeric substances (EPS) of AGS and the methane production were not significantly influenced at ZnO NPs of 10 and 50 mg per gram of total suspended solids (mg/g-TSS), but they were decreased when the dosage of ZnO NPs was greater than 100 mg/g-TSS. The visualization of EPS structure with multiple fluorescence labeling and confocal laser scanning microscope revealed that ZnO NPs mainly caused the decrease of proteins by 69.6%. The Fourier transform infrared spectroscopy analysis further indicated that the C-O-C group of polysaccharides and carboxyl group of proteins in EPS were also changed in the presence of ZnO NPs. The decline of EPS induced by ZnO NPs resulted in their deteriorating protective role on the inner microorganisms of AGS, which was in correspondence with the observed lower general physiological activity of AGS and the death of microorganisms. Further investigation showed that the negative influence of ZnO NPs on methane production was due to their severe inhibition on the methanization step. PMID:22587556

  15. DEWATERING WASTEWATER TREATMENT SLUDGE BY CLATHRATE FREEZING: A BENCH-SCALE FEASIBILITY STUDY

    EPA Science Inventory

    Laboratory studies were performed to prove the concept and feasibility for a novel technology to dewater sludges. This involves the formation of solid hydrate crystals of water and specific clathrate-forming agents followed by separation of the hydrate crystal solids from the slu...

  16. Psychrophilic (6--15 {degree}C) high-rate anaerobic treatment of malting wastewater in a two-module expanded granular sludge bed system

    SciTech Connect

    Rebac, S.; Lier, J.B. van; Lens, P.; Cappellen, J. van; Vermeulen, M.; Stams, A.J.M.; Lettinga, G.; Dekkers, F.; Swinkels, K.T.M.

    1998-11-01

    Psychrophilic (6--15 C) anaerobic treatment of malting wastewater was investigated. A two-module expanded granular sludge bed reactor system with a total volume of 140 dm{sup 3} was used to treat malting wastewater having a soluble and total chemical oxygen demand (COD) between 233 and 1778 mg dm{sup {minus}3} and between 317 and 4422 mg dm{sup {minus}3}, respectively. The removal efficiencies at 6 C were 47 and 71% of the soluble and volatile fatty acids (VFA) COD, at organic loading rates (OLR) ranging between 3.3 and 5.8 kg of COD m{sup {minus}3} day{sup {minus}1}. The removal efficiencies at 10--15 C were 67--78 and 90--96% of the soluble and VFA COD at an OLR between 2.8 and 12.3 kg of COD m{sup {minus}3} day{sup {minus}1}. The specific methanogenic activity of the sludge present in each module increased 2--3-fold during system operation for 400 days. The relatively high concentration of suspended solids in the influent (25% of the total COD) caused a deterioration of the sludge bed in the first reactor module. This was aggravated by excessive growth of acidifying biomass, which persisted in the first module sludge bed and resulted in granular sludge flotation. However, the second module could accommodate the increased OLR, this providing a very high effluent quality (soluble COD < 200 mg dm{sup {minus}3}) of the total system. The stability of module 1 concerning suspended solids could be restored by presettling the wastewater.

  17. Alum recovery and wastewater sludge stabilization with sulfuric acid.

    PubMed

    Jiménez, B; Martínez, M; Vaca, M

    2007-01-01

    Coagulation-flocculation is used to remove helminth ova from wastewater intended for agricultural reuse. Nevertheless, it has the drawback of producing a large amount of sludge which together with the chemicals used to treat the wastewater increases the operating cost. This can be overcome by recovering and recycling the aluminium contained in the sludge. This paper presents how an acid recovery process was applied to an Advanced Primary Treatment (APT) sludge to partially treat it and to reduce its quantity. This is a method applied several decades ago in water sludge that has not been used in secondary wastewater sludge to recover aluminium and to inactivate microorganisms. By adding sulphuric acid to a 6%TS sludge, more than 70% of the aluminium added during the coagulation flocculation process was recovered when a pH of 2 was maintained during 30 minutes and at 300 rpm of mixing conditions. This way the sludge was reduced by 45% in volume and by 63% by mass, inactivating 5 logs of faecal coliforms and 68% of helminth ova. Due to the lower alum consumption, the operating cost of the APT is reduced by 3.78 US$/1,000 m(3). PMID:17978441

  18. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    PubMed

    Li, Yuan; Qu, Xiaoyan; Yu, Ruoren; Ikehata, Keisuke

    2015-10-01

    A review of the literature published in 2014 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater reuse, wastewater treatment plants, wastewater disposal, and sludge and biosolids. PMID:26420105

  19. DECENTRALIZED WASTEWATER TREATMENT

    E-print Network

    Walter, M.Todd

    DECENTRALIZED WASTEWATER TREATMENT: A SENSIBLE SOLUTION Many communities are considering decentralized wastewater treatment and the economic and environmental advantages these types of systems can-scale treatment, and can also offer many additional benefits to communities. WHAT IS DECENTRALIZED WASTEWATER

  20. Restoring a sludge holding tank at a wastewater treatment plant using high-performance coatings

    SciTech Connect

    O'Dea, V.

    2005-11-01

    Faced with a serious hydrogen sulfide (H{sub 2}S) corrosion problem in two sludge holding tanks in 1993, the city of Concord, New Hampshire, repaired the deteriorating substrate by using a conventional acrylic-modified cementitious resurfacer and a coal tar epoxy (CTE) coating system. CTE failure occurred within 2 years, leading to more severe coating delamination. Restoration was delayed for 10 years, which caused extensive chemical attack on the concrete substrate-upwards of 2 in. (50 mm) of concrete loss. This article explains how one of these tanks was restored and prepared for another 15+ years of service.

  1. MUNICIPAL WASTEWATER SLUDGE COMBUSTION TECHNOLOGY

    EPA Science Inventory

    The publication describes and evaluates the various municipal sludge combustion systems. It also emphasizes the necessity for considering and evaluating the costs involved in the total sludge management train, including dewatering, combustion, air pollution control, and ash dispo...

  2. METHOD FOR STABILIZING AND CONDITIONING URBAN AND INDUSTRIAL WASTEWATER SLUDGE

    E-print Network

    METHOD FOR STABILIZING AND CONDITIONING URBAN AND INDUSTRIAL WASTEWATER SLUDGE PROCÉDÉ DE wastewater sludge. The invention is characterized in that it consists in treating sludge in an acid between 5 and 40 kg of Fe per ton of dry sludge; the hydrogen peroxide is used in such an amount

  3. Brevibacterium ammoniilyticum sp. nov., an ammonia-degrading bacterium isolated from sludge of a wastewater treatment plant.

    PubMed

    Kim, Jinsoo; Srinivasan, Sathiyaraj; You, Taek; Bang, John J; Park, Sujeong; Lee, Sang-Seob

    2013-03-01

    A Gram-stain-positive, non-motile, chemo-organotrophic, mesophilic, aerobic bacterium, designated A1(T), was isolated from sludge of a wastewater treatment plant. Strain A1(T) showed good ability to degrade ammonia and grew well on media amended with methanol and ammonia. Strain A1(T) grew with 0-11?% (w/v) NaCl, at 20-42 °C, but not <15 or >45 °C and at pH 6-10 (optimum pH 8.0-9.0). The isolate was catalase-positive and oxidase-negative. The DNA G+C content was 70.7 mol%. A comparative analysis of 16S rRNA gene sequences revealed that strain A1(T) formed a distinct phyletic lineage in the genus Brevibacterium and showed high sequence similarity with Brevibacterium casei NCDO 2048(T) (96.9?%), Brevibacterium celere KMM 3637(T) (96.9?%) and Brevibacterium sanguinis CF63(T) (96.4?%). DNA-DNA hybridization revealed <43?% DNA-DNA relatedness between the isolate and its closest phylogenetic relatives. The affiliation of strain A1(T) with the genus Brevibacterium was supported by the chemotaxonomic data: predominant quinone menaquinone MK-7(H2); polar lipid profile containing diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid; characteristic cell-wall diamino acid meso-diaminopimelic acid; whole-cell sugars galactose, xylose and ribose; absence of mycolic acids; and major fatty acids iso-C15?:?0, anteiso-C15?:?0 and anteiso-C17?:?0. The results of physiological and biochemical tests allowed phenotypic differentiation of strain A1(T) from members of the genus Brevibacterium. On the basis of the results in this study, a novel species, Brevibacterium ammoniilyticum sp. nov., is proposed. The type strain is A1(T) (?=?KEMC 41-098(T) ?=?JCM 17537(T) ?=?KACC 15558(T)). PMID:22729022

  4. BIOLOGICAL TREATMENT OF HIGH STRENGTH PETROCHEMICAL WASTEWATER

    EPA Science Inventory

    The biological treatment of a complex petrochemical wastewater containing high concentrations of organic chlorides, nitrates, and amines was initially studied using a sequence of anaerobic methanogenesis and oxygen activated sludge. Bench-scale and pilot-plant treatability studie...

  5. Harvesting biogas from wastewater sludge and food waste

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Cheah, W. L.; Tan, C. F.; Leong, Y. P.

    2013-06-01

    Wastewater sludge and food waste are good source of biogas. Anaerobic treatment of slude and food waste able to produce biogas which is a potential renewable energy source. This study looks into the potential biogas generation and the effects of temperature on biogas generation. A lab scale reactor was used to simulate the biogas generation. The results show that wastewater sludge able to produced upto 44.82 ml biogas/kg of sludge. When mixed with food waste at a ratio of 30:70 (food waste), the biogas generated were 219.07 ml/kg of waste. Anaerobic of food waste alone produced biogas amount to 59.75 ml/kg of food waste. Anaerobic treatment also reduces the volume of waste. The effect of temperature shows that higher temperature produces more biogas than lower temperature.

  6. Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China.

    PubMed

    Zeng, Lixi; Yang, Ruiqiang; Zhang, Qinghua; Zhang, Haidong; Xiao, Ke; Zhang, Haiyan; Wang, Yawei; Lam, Paul K S; Jiang, Guibin

    2014-11-01

    Occurrence of new toxic chemicals in sludge from wastewater treatment plants (WWTPs) is of concern for the environment and human health. Alternative halogenated flame retardants (HFRs) are a group of potentially harmful organic contaminants in the environment. In this study, a nationwide survey was carried out to identify the occurrence of HFRs and their potential dehalogenated products in sewage sludge from 62 WWTPs in China. Of all 20 target chemicals analyzed, decabromodiphenyl ethane (DBDPE), hexabromocyclododecane (HBCD) and 1, 2-bis (2,4,6-tribromophenoxy)-ethane (BTBPE) were detected in all sludge samples, and the concentrations were in the range of 0.82-215, 0.09-65.8, and 0.10-2.26 ng g(-1) d.w., respectively. Dechlorane Plus (DP) was found in 60 of 62 samples, and the concentration ranged from nd-298 ng g(-1) with a mean of 18.9 ng g(-1) d.w. The anti-DP fractional abundance fanti (0.79) in the samples was much higher than the commercial DP composition (fanti=0.59), indicating a stereoselective degradation. Comparison with global sludge concentrations of HFRs indicate that China is at the medium pollution level in the world. Principal components analysis revealed that strong correlations existed between ln-transformed concentrations (natural logarithm) of the dominant BFRs and total organic carbon (TOC) as well as industrial wastewater proportion, influent volume and serving population. Significant linear relationships (R=0.360-0.893, p<0.01) were found among emerging brominated flame retardants (BFRs), suggesting their common commercial applications and release sources to the environment. Two kinds of dehalogenated products, pentabromocyclododecane (PBCD) and undecachloropentacyclooctadecadiene (Cl11-DP), derived from HBCD and DP, were also identified in sewage sludge for the first time. PMID:25286358

  7. Processed wastewater sludge for improvement of mechanical properties of concretes.

    PubMed

    Barrera-Díaz, Carlos; Martínez-Barrera, Gonzalo; Gencel, Osman; Bernal-Martínez, Lina A; Brostow, Witold

    2011-08-15

    Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete. PMID:21616593

  8. Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 degrees C) wastewater treatment bioreactors.

    PubMed

    Enright, Anne-Marie; Collins, Gavin; O'Flaherty, Vincent

    2007-09-01

    Anaerobic sludge granules were obtained from laboratory-scale anaerobic bioreactors used to treat pharmaceutical-like (methanol-, acetone- and propanol-contaminated) wastewater under low-temperature conditions (15 degrees C). The microbial diversity and diversity changes of the sludge samples were ascertained by applying 16S rRNA gene cloning and terminal restriction fragment length polymorphism (TRFLP) analyses, respectively, and using sludge samples from the inoculum, throughout and at the conclusion of the bioreactor trial. Data from genetic fingerprinting correlated well with those from physiological activity assays of the reactor biomass. Specifically, for example, TRFLP profiles indicated the dominance of hydrogenotrophic methanogens within the archaeal community, thus supporting the findings of specific methanogenic activity measurements. TRFLP data supported the hypothesis that the deviation between the replicated reactors, in terms of treatment efficiency, was associated with succession within the microbial communities present, and indicated that community development was linked to both operating temperature and wastewater composition. Fluorescence in situ hybridization (FISH) was also applied, to quantitatively assess the abundance of selected microbial groups, and revealed the underestimation of the abundance Methanosarcina by gene cloning analysis and demonstrated the spatial arrangement of these organisms within the architecture of the low-temperature solvent-degrading anaerobic biofilms. PMID:17475432

  9. Biotechnology to separate and treat metals in sludge and wastewater: A literature review. Final report

    SciTech Connect

    Kim, B.; Cha, D.K.; Song, J.S.

    1995-09-01

    Army industrial sludge may be classified as a hazardous waste when it contains oil and grease, metals, and energetic compounds. Biologic separation/treatment of metals from industrial sludge has been identified as a possible alternative to conventional technologies for treating industrial sludge. Biologic treatment of sludge uses naturally occurring biochemical reactions in which pollutants can be used as resources. The process offers a low-cost, highly efficient alternative to existing sludge treatment methods. This report summarizes a literature review that examined the development and status of biotechnology to separate and treat metals in sludge and wastewater.

  10. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  11. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  12. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    PubMed

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly from those calculated with the AD models. Therefore in plant wide wastewater treatment models the characterization of PS and WAS as defined by the AS models can be applied without modification in AD models. The observed rate limiting hydrolysis/acidogenesis rates of the sludges are listed. PMID:24699419

  13. FEASIBILITY STUDY OF OPEN TANK OXYGEN-ACTIVATED SLUDGE WASTEWATER TREATMENT

    EPA Science Inventory

    The pilot plant for this study consisted of one oxygenation basin and two clarifiers. The system treated primary clarifier effluent from the Englewood, Colorado, treatment facility. The influent flow rate was adjusted to attain average aeration reactor detention times ranging fro...

  14. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater.

    PubMed

    Rajagopal, Rajinikanth; Rousseau, Pierre; Bernet, Nicolas; Béline, Fabrice

    2011-02-01

    A process combining anaerobic digestion and anoxic/oxic treatment was developed to treat pig slurry in-order-to partially convert organic matter (OM) into a valuable energy and simultaneously to comply with the environmental constraints as regards to nitrogen removal. However, OM content of digested pig slurry is insufficient to allow a further complete denitrification of the mineral nitrogen content. Hence, four different configurations were designed and evaluated to manage the OM requirements and achieve denitrification. Partial nitrification (PN) of ammonium to nitrite was also applied by regulating oxygen inflow time. Thus, the combined process could remove 38-52% of CODt, 79-88% of CODs, 66-75% of TN and 98-99% of NH(4)(+)N concentrations depending on the slurry characteristics. Anaerobic digestion was able to produce 5.9 Nm(3) of CH(4)/m(slurry added)(3). PN allowed a reduction in the oxygen and OM requirements respectively for nitrification and denitrification. Thus, this process trims-down the energy costs at the farm scale. PMID:21050751

  15. High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis.

    PubMed

    Liao, Runhua; Shen, Ke; Li, Ai-Min; Shi, Peng; Li, Yan; Shi, Qianqian; Wang, Zhu

    2013-04-01

    Denitrification of high concentration of nitrate wastewater was investigated in expanded granular sludge bed (EGSB) reactor with sodium acetate as the carbon source. The optimal parameters were achieved with C/N mole ratio of 2.0, liquid up-flow velocity (Vup) of 3.0 m/h and pH of 6.2-8.2. Complete denitrification can be achieved even with nitrate nitrogen concentration as high as 14000 mg/L. Furthermore, 454-pyrosequencing technology was used to analyze bacterial diversity. Results showed that a total of 5573 sequences were obtained which could be affiliated to 6 phylogenetic groups, including Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Chloroflexi and unclassified phylum. Proteobacteria (84.53%) was the dominant microbial population, followed by Firmicutes (13.24%) and Actinobacteria (0.38%). The dominate phylum was different from that in other anaerobic system. PMID:23500551

  16. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    PubMed

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community. PMID:19539465

  17. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  18. Transformation of Four Silver/Silver Chloride Nanoparticles during Anaerobic Treatment of Wastewater and Post-processing of Sewage Sludge

    EPA Science Inventory

    The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-...

  19. Mainstream wastewater treatment in integrated fixed film activated sludge (IFAS) reactor by partial nitritation/anammox process.

    PubMed

    Malovanyy, Andriy; Trela, Jozef; Plaza, Elzbieta

    2015-12-01

    In this study the system based on the combination of biofilm and activated sludge (IFAS - integrated fixed film activated sludge) was tested and compared with a system that relies only on biofilm (MBBR - moving bed biofilm reactor) for nitrogen removal from municipal wastewater by deammonification process. By introduction of suspended biomass into MBBR the nitrogen removal efficiency increased from 36±3% to 70±4% with simultaneous 3-fold increase of nitrogen removal rate. Results of batch tests and continuous reactor operation showed that organotrophic nitrate reduction to nitrite, followed by anammox reaction contributed to this high removal efficiency. After sCOD/NH4-N ratio decreased from 1.8±0.2 to 1.3±0.1 removal efficiency decreased to 52±4%, while still maintaining 150% higher removal rate, comparing to MBBR. Activity tests revealed that affinity of NOB to oxygen is higher than affinity of AOB with half-saturation constants of 0.05 and 0.41mg/L, respectively. PMID:26425997

  20. Treatment of sewage sludge using electrokinetic geosynthetics.

    PubMed

    Glendinning, Stephanie; Lamont-Black, John; Jones, Colin J F P

    2007-01-31

    The treatment and disposal of sewage sludge is one of the most problematical issues affecting wastewater treatment in the developed world. The traditional outlets for sewage sludge are to spread it on agricultural land, or to form a cake for deposit to landfill or incineration. In order to create a sludge cake, water must be removed. Existing dewatering technology based on pressure can only remove a very limited amount of this water because of the way in which water is bound to the sludge particles or flocs. Several researchers have shown that electrokinetic dewatering of sludge is more efficient than conventional hydraulically driven methods. This involves the application of a dc voltage across the sludge, driving water under an electrical gradient from positive (anode) electrode to negative (cathode) electrode. However, there have been several reasons why this technique has not been adopted in practice, not least because the, normally metallic, anode rapidly dissolves due to the acidic environment created by the electrolysis of water. This paper will describe experimentation using electrokinetic geosynthetics (EKG): polymer-based materials containing conducting elements. These have been used to minimise the problem of electrode corrosion and create a sludge treatment system that can produce dry solids contents in excess of 30%. It will suggest different options for the treatment of sludges both in situ in sludge lagoons and windrows, and ex situ as a treatment process. PMID:16635546

  1. Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica

    E-print Network

    Vogel, Richard M.

    for wastewater treatment. Fecal sludge FS is defined as the sludge of variable consistency collected from onOptimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica Ana Martha for rural wastewater treatment. However, there are serious environmental and human health effects associ

  2. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos

    2015-02-01

    Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ? 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. PMID:25463928

  3. Author's personal copy Effectiveness of domestic wastewater treatment using microbial fuel cells

    E-print Network

    processes, such as activated sludge, are energy demanding processes. Energy use for wastewater aeration canAuthor's personal copy Effectiveness of domestic wastewater treatment using microbial fuel cells 2009 Available online 5 September 2009 Keywords: Domestic wastewater treatment Energy recovery

  4. Quantification of wastewater sludge dewatering.

    PubMed

    Skinner, Samuel J; Studer, Lindsay J; Dixon, David R; Hillis, Peter; Rees, Catherine A; Wall, Rachael C; Cavalida, Raul G; Usher, Shane P; Stickland, Anthony D; Scales, Peter J

    2015-10-01

    Quantification and comparison of the dewatering characteristics of fifteen sewage sludges from a range of digestion scenarios are described. The method proposed uses laboratory dewatering measurements and integrity analysis of the extracted material properties. These properties were used as inputs into a model of filtration, the output of which provides the dewatering comparison. This method is shown to be necessary for quantification and comparison of dewaterability as the permeability and compressibility of the sludges varies by up to ten orders of magnitude in the range of solids concentration of interest to industry. This causes a high sensitivity of the dewaterability comparison to the starting concentration of laboratory tests, thus simple dewaterability comparison based on parameters such as the specific resistance to filtration is difficult. The new approach is demonstrated to be robust relative to traditional methods such as specific resistance to filtration analysis and has an in-built integrity check. Comparison of the quantified dewaterability of the fifteen sludges to the relative volatile solids content showed a very strong correlation in the volatile solids range from 40 to 80%. The data indicate that the volatile solids parameter is a strong indicator of the dewatering behaviour of sewage sludges. PMID:26003332

  5. Aerobic versus anaerobic wastewater treatment

    SciTech Connect

    Robinson, D.G.; White, J.E.; Callier, A.J.

    1997-04-01

    Biological wastewater treatment facilities are designed to emulate the purification process that occurs naturally in rivers, lakes and streams. In the simulated environment, conditions are carefully manipulated to spur the degradation of organic contaminants and stabilize the residual sludge. Whether the treatment process is aerobic or anaerobic is determined by a number of factors, including the composition of the wastewater, the degree of stabilization required for environmental compliance and economic viability. Because anaerobic digestion is accomplished without oxygen in a closed system, it is economical for pretreatment of high-strength organic sludge. Before the effluent can be discharged, however, followup treatment using an aerobic process is required. Though it has the drawback of being energy intensive, aerobic processing, the aeration of organic sludges in an open tank, is the primary method for treatment of industrial and municipal wastewater. Aerobic processes are more stable than anaerobic approaches and can be done rather simply, particularly with trickling filters. Gradually, the commercialization of modular systems that are capable of aerobic and anaerobic digestion will blur the distinctions between the two processes. Systems that boast those capabilities are available now.

  6. Sludge treatment studies

    SciTech Connect

    Beahm, E.C.; Weber, C.F.; Dillow, T.A.; Bush, S.A.; Lee, S.Y.; Hunt, R.D.

    1997-06-01

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na{sub 7}(PO{sub 4}){sub 2}F{center_dot}19H{sub 2}O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO{sub 2}-H{sub 2}O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO{sub 3} sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth.

  7. PARASITES IN SOUTHERN SLUDGES AND DISINFECTION BY STANDARD SLUDGE TREATMENT

    EPA Science Inventory

    Major objectives were to: (a) assess types and densities of parasites in municipal wastewater sludges in the southern United States, (b) investigate the inactivation of parasites by lime stabilization of sewage sludges seeded with selected intestinal parasites, (c) assess convent...

  8. Effect of sludge-fly ash ceramic particles (SFCP) on synthetic wastewater treatment in an A/O combined biological aerated filter.

    PubMed

    Han, Shuxin; Yue, Qinyan; Yue, Min; Gao, Baoyu; Zhao, Yaqin; Cheng, Wenjing

    2009-02-01

    Novel media-sludge-fly ash ceramic particles (SFCP) employed in an upflow lab-scale A/O BAF were investigated for synthetic wastewater treatment. The influences of hydraulic retention time (HRT), air-liquid ratio (A/L) and recirculation on the removals of chemical oxygen demand (CODcr), ammonia (NH(4)(+)-N) and total nitrogen (TN) were discussed. The optimum operation conditions were obtained as HRT of 2.0 h, A/L of 15:1 and 200% recirculation. Under the optimal conditions, 90% CODcr, more than 98% NH(3)-N and approximately 70% TN were removed. The average consumed volumetric loading rates for CODcr, NH(4)(+)-N and TN with 200% recirculation were 4.06, 0.36 and 0.29 kg(m(3)d)(-1), respectively. The CODcr and TN removal mainly occurred in the anoxic zone, while nitrification was completed at the height of 70 cm from the inlet of the bottom due to a suitable column layout of biological aerated filter (BAF). The characteristics of wastewater and backwashing affected TN removal to a large degree. In addition, the features of media (SFCP) and synthetic wastewater contributed to a strong buffer capacity in the BAF system so that the effluent pH at different media height fluctuated slightly and was insensitive to recirculation. PMID:18828988

  9. Preparation of ultra-lightweight sludge ceramics (ULSC) and application for pharmaceutical advanced wastewater treatment in a biological aerobic filter (BAF).

    PubMed

    Wu, Suqing; Yue, Qinyan; Qi, Yuanfeng; Gao, Baoyu; Han, Shuxin; Yue, Min

    2011-02-01

    Novel media-ultra-lightweight sludge ceramics (ULSC) employed in an upflow lab-scale biological aerobic filter (BAF) were investigated for pharmaceutical advanced wastewater treatment. The influences of the volume ratio of pharmaceutical wastewater to domestic wastewater (PW/DW), hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODCr) and ammonium (NH(4)(+)-N) of the effluent were investigated. When PW/DW of 4:1, HRT of 6 h, and A/L of 5:1 were applied, the mean effluent concentration of NH(4)(+)-N was 6.2 mg L(-1), and the maximum CODCr concentration in the effluent was 96 mg L(-1). Both NH(4)(+)-N and CODCr did not exceed the limits of the national discharge standards (NH(4)(+)-N ? 15 mg L(-1), CODCr ? 100 mg L(-1)). In addition, the BAF system showed a strong capacity of further removal from NH(4)(+)-N of the effluent. PMID:21055922

  10. ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS

    E-print Network

    Boucherie, Richard J.

    ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS Arie de Niet1 , Maartje van de Vrugt2.j.boucherie@utwente.nl Abstract In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce

  11. Analysis of the usefulness of biological parameters for the control of activated sludge wastewater treatment plants in an interlaboratory study context.

    PubMed

    Arregui, Lucía; Liébana, Raquel; Rodríguez, Eva; Murciano, Antonio; Conejero, Francisco; Pérez-Uz, Blanca; Serrano, Susana

    2012-05-01

    The quality of the sludge in Wastewater Treatment Plants (WWTPs) depends on the suitable colonization of the flocs by microorganisms. Due to the functional importance of these biological constituents, several biological or biological-related parameters have been commonly used for the control of depuration efficiency. According to national and international water regulation recommendations, interlaboratory studies have a great relevance to determine which parameters are more reliable for their extensive application in routine control. However, these studies are also very useful to demonstrate consistency in results from multiple laboratories and to develop reliable and reproducible methodologies which might be necessary for protocol validation and also for accreditation issues to meet regulatory environmental requirements. The main purpose of this work was to assess the results obtained in consecutive interlaboratory assays in order to determine the concordance degree in the application of biological parameters by participating laboratories. Following the international recommendations about these studies, a common working protocol was proposed. Statistical tests indicated that Sludge Index and several routine physical-chemical analyses [V30, Mixed Liquor Suspended Solids (MLSS), Mixed Liquor Volatile Solids (MLVS) and Sludge Volumetric Index (SVI)] show low variability and therefore are suitable tools for laboratory control. Shannon Index and Sludge Biotic Index also presented low variability although a more precise protocol would be necessary, in particular the methodology to count small flagellates. The abundance and identification of protist species showed low concordance among laboratories and three factors were responsible for the low reliability of data: population density, size and morphological distinguishable characters of the specimens. PMID:22481149

  12. LAND APPLICATION AND SLUDGE TREATMENT

    EPA Science Inventory

    Fecal matter potentially containing pathogenic microorganisms and chemical contaminants enters community wastewater collection systems from hospitals, funeral homes, animal slaughtering operations, and dwellings. While these wastewaters are cleansed in the wastewater treatment p...

  13. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated sludge) and primary sludge is still in its infancy. Current research is mainly focused on developing efficient pretreatment methods that enable fast hydrolysis of complex organic matter, shorter sludge residence times and as a consequence, smaller sludge digesters. Previous experimental studies indicate that the anaerobic digestibility of non-pretreated biosludge from pulp and paper mills varies widely, with volatile solids (VS) removal rates of 21-55% and specific methane yields ranging between 40 and 200 mL g(-1) VS fed. Pretreatment can increase the digestibility to some extent, however in almost all reported cases, the specific methane yield of pretreated biosludge did not exceed 200 mL g(-1) VS fed. Increases in specific methane yield mostly range between 0 and 90% compared to non-pretreated biosludge, whereas larger improvements were usually achieved with more difficult-to-digest biosludge. Thermal treatment and microwave treatment are two of the more effective methods. The heat required for the elevated temperatures applied in both methods may be provided from surplus heat that is often available at pulp and paper mills. Given the large variability in specific methane yield of non-pretreated biosludge, future research should focus on the links between anaerobic digestibility and sludge properties. Research should also involve mill-derived primary sludge. Although biosludge has been the main target in previous studies, primary sludge often constitutes the bulk of mill-generated sludge, and co-digestion of a mixture between both types of sludge may become practical. The few laboratory studies that have included mill primary sludge indicate that, similar to biosludge, the digestibility can range widely. Long-term studies should be conducted to explore the potential of microbial adaptation to lignocellulosic material which can constitute more than half of the organic matter in pulp and paper mill sludge. PMID:25150519

  14. SLUDGE TREATMENT AND DISPOSAL. VOLUME 1. SLUDGE TREATMENT

    EPA Science Inventory

    This two volume set presents in detail technical design information for the following sludge treatment and disposal processes: lime stabilization, anaerobic digestion, aerobic digestion, thermal sludge conditioning, thickening, dewatering, and landfilling. The discussion of each ...

  15. IMPACT OF INFLUENT MICROORGANISMS UPON POOR SOLIDS SEPARATION IN THE QUIESCENT ZONE OF AN INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...

  16. Dewatering in biological wastewater treatment: A review.

    PubMed

    Christensen, Morten Lykkegaard; Keiding, Kristian; Nielsen, Per Halkjær; Jørgensen, Mads Koustrup

    2015-10-01

    Biological wastewater treatment removes organic materials, nitrogen, and phosphorus from wastewater using microbial biomass (activated sludge, biofilm, granules) which is separated from the liquid in a clarifier or by a membrane. Part of this biomass (excess sludge) is transported to digesters for bioenergy production and then dewatered, it is dewatered directly, often by using belt filters or decanter centrifuges before further handling, or it is dewatered by sludge mineralization beds. Sludge is generally difficult to dewater, but great variations in dewaterability are observed for sludges from different wastewater treatment plants as a consequence of differences in plant design and physical-chemical factors. This review gives an overview of key parameters affecting sludge dewatering, i.e. filtration and consolidation. The best dewaterability is observed for activated sludge that contains strong, compact flocs without single cells and dissolved extracellular polymeric substances. Polyvalent ions such as calcium ions improve floc strength and dewaterability, whereas sodium ions (e.g. from road salt, sea water intrusion, and industry) reduce dewaterability because flocs disintegrate at high conductivity. Dewaterability dramatically decreases at high pH due to floc disintegration. Storage under anaerobic conditions lowers dewaterability. High shear levels destroy the flocs and reduce dewaterability. Thus, pumping and mixing should be gentle and in pipes without sharp bends. PMID:25959073

  17. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  18. Filtration properties of activated sludge in municipal MBR wastewater treatment plants are related to microbial community structure.

    PubMed

    Bugge, Thomas V; Larsen, Poul; Saunders, Aaron M; Kragelund, Caroline; Wybrandt, Lisbeth; Keiding, Kristian; Christensen, Morten L; Nielsen, Per H

    2013-11-01

    In the conventional activated sludge process, a number of important parameters determining the efficiency of settling and dewatering are often linked to specific groups of bacteria in the sludge--namely floc size, residual turbidity, shear sensitivity and composition of extracellular polymeric substances (EPS). In membrane bioreactors (MBRs) the nature of solids separation at the membrane has much in common with sludge dewaterability but less is known about the effect of specific microbial groups on the sludge characteristics that affect this process. In this study, six full-scale MBR plants were investigated to identify correlations between sludge filterability, sludge characteristics, and microbial community structure. The microbial community structure was described by quantitative fluorescence in situ hybridization and sludge filterability by a low-pressure filtration method. A strong correlation between the degree of flocculation (ratio between floc size and residual turbidity) and sludge filterability at low pressure was found. A good balance between EPS and cations in the sludge correlated with good flocculation, relatively large sludge flocs, and low amounts of small particles and single cells in the bulk phase (measured as residual turbidity), all leading to a good filterability. Floc properties could also be linked to the microbial community structure. Bacterial species forming strong microcolonies such as Nitrospira and Accumulibacter were present in plants with good flocculation and filtration properties, while few strong microcolonies and many filamentous bacteria in the plants correlated with poor flocculation and filtration problems. In conclusion this study extends the hitherto accepted perception that plant operation affects floc properties which affects fouling. Additionally, plant operation also affects species composition, which affects floc properties and in the end fouling propensity. PMID:24094729

  19. Sludge recycle and reuse in acid mine drainage treatment

    SciTech Connect

    Keefer, G.B.; Sack, W.A.

    1983-03-01

    Neutralization of acid mine drainage produces vast quantities of iron-rich sludge, and large quantities of unused lime remain in the sludge after treatment. In a study in which sludge was recycled to increase lime utilization, sludge was mixed with raw acid mine drainage and settled out in an intermediate clarifier. The clarifier supernatant was then treated by lime addition, aeration and sedimentation. The low-pH sludge was withdrawn from the intermediate clarifier. The iron was recovered by acidification and used as wastewater coagulant. The recycle scheme resulted in a 30% decrease in lime requirements, and the resultant coagulant performed well when compared with stock iron coagulant solutions.

  20. Wastewater treatment plant cogeneration options

    SciTech Connect

    Stringfield, J.G.

    1995-12-31

    This paper reviews municipal sewage cogeneration and digester gas utilization options available to wastewater treatment plants, and will focus on utilizing the digester gas in combustion turbines and engine-generator systems. Defining the digestion and gas generation process is crucial to understanding the best gas utilization system. In municipal wastewater treatment plants biosolids (sludge) reduction is accomplished using aerobic or anaerobic digestion. The basic process of treating sewage solids with digestion is not new and has been practiced as far back as the nineteenth century. High energy usage consumed by aerobic blow systems supplying air to the process and the potential ``free`` energy generated by anaerobic digesters sometimes sways designers to select anaerobic over aerobic digestion. The following areas will be covered in this paper: gas utilization and cogeneration; definition of digestion process; sizing the cogeneration system and reviewing the systems components; emissions requirements and options; and capital, and O and M cost analysis.

  1. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance. PMID:25502931

  2. Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge.

    PubMed

    Ni, Shou-Qing; Wang, Zhibin; Lv, Lu; Liang, Xueyou; Ren, Longfei; Zhou, Qingxin

    2015-04-01

    Facilities adopting anaerobic granular sludge are widely used for the treatment of high strength wastewater, and hence collect many polybrominated diphenyl ethers (PBDEs), especially decabromodiphenyl ether (BDE-209). We initiated a detailed investigation to gain insight into the bioremoval of BDE-209 by anaerobic granules. Influenced by solution pH, ionic strength and temperature, the equilibrium time was ?6 h and the biosorption amount increased from 0.099 to 1.25 mg/g suspended sludge with the increase of BDE-209 concentrations. Kinetic studies indicate that BDE-209 biosorption on anaerobic granules follows the pseudo second-order kinetic model. Isotherm analysis exhibits that the Langmuir model fits the data at low temperature, while the Freundlich model is appropriate at room temperature. Thermodynamic analysis shows that biosorption followed an endothermic path and was nonspontaneous with negative value of ?G0. XPS and FTIR spectra confirmed that oxygen and nitrogen atoms notably contributed to BDE-209 binding. PMID:25784301

  3. Treatment of biomass-gasification wastewater

    SciTech Connect

    Maxham, J.V.

    1981-03-01

    One way of utilizing biomass as a renewable energy resource is to thermochemically convert it into a gaseous fuel. During conversion, wastewaters are generated that will require treatment prior to reuse in the production process or discharge to the environment. Development of cost-effective wastewater treatment technologies is necessary at the pilot plant stage of production technology development. The principal task of this research effort has been to assess the technical feasibility and cost effectiveness of several promising process technologies for the treatment of biomass gasification wastewaters (BGW) by conducting bench-scale treatability studies. In addition to conventional treatment process options, innovative process technologies have been investigated that promise to dramatically reduce treatment time, cost, energy consumption, and/or sludge production while preserving the simplicity of operation and mechanical reliability of conventional treatment process options. This paper reports results obtained recently in innovative biological wastewater treatment process studies.

  4. UPGRADING FOUNDRY WASTEWATER TREATMENT

    EPA Science Inventory

    The paper summarizes findings of a 10-week pilot plant study of gray iron foundry wastewater treatment. Treatment technologies studied included lime softening, lime/soda ash softening, polymer addition, flocculation/sedimentation, and dual media filtration. Results indicate that ...

  5. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64t/m(3) (simply poured) to 0.74t/m(3) (tapped) and finally to 0.82t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. PMID:26337963

  6. METALS REMOVALS AND PARTITIONING IN CONVENTIONAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Metals removal and partitioning to primary and secondary sludge during treatment of domestic wastewater by conventional sewage treatment processes was studied. Raw wastewater entering the Mill Creek Sewage Treatment Plant, Cincinnati, Ohio, was fed to a 0.1 l/s (1.6 gpm) pilot tr...

  7. MATERIALS FOR OXYGENATED WASTEWATER TREATMENT PLANT CONSTRUCTION

    EPA Science Inventory

    This research study was initiated to identify resistant materials for construction of wastewater treatment plants using the oxygen activated sludge process. In this investigation, samples of a broad range of construction materials were exposed for periods up to 28 months in the a...

  8. HEALTH EFFECTS OF A WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    Data obtained as part of a comprehensive community health study conducted during 1965-1971 were utilized to examine the incidence of acute illness in a population surrounding an activated sludge wastewater treatment plant and a control location in Tecumseh, Michigan. Study partic...

  9. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian

    2009-10-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems. PMID:19695661

  10. Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities 

    E-print Network

    Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

    2009-01-01

    % of the electrical power in Northern and Central California. Activated sludge is the most common method for wastewater treatment, and at the same time the most energy intensive process. New energy efficient technologies can help reduce energy consumption...

  11. Start-up of a granular sludge sequencing batch reactor for the treatment of 2,4-dichlorophenol-contaminated wastewater.

    PubMed

    Milia, S; Porcu, R; Rossetti, S; Carucci, A

    2013-01-01

    In this study, a granular sludge sequencing batch reactor (GSBR) was started-up for the biological aerobic treatment of wastewater containing highly toxic 2,4-dichlorophenol (2,4-DCP), in presence of readily biodegradable sodium acetate (NaAc) as the growth substrate. Different influent concentrations of NaAc (420-800 mg/L) and 2,4-DCP (0-20 mg/L), as well as different operating conditions (i.e. cycle length), were tested in order to determine the optimal strategy for successful GSBR start-up: stable granulation and complete 2,4-DCP removal were achieved only when high NaAc influent concentration and volumetric organic loading rates (800 mg/L and 1.9 kgCOD/(m(3)·d), respectively), prolonged reaction phase (cycle time of 4 hours) and gradual increase of 2,4-DCP concentration in the influent were applied, thus providing useful information for process optimization in view of future scale-up. Granules were initially colonized by fungi which progressively disappeared during the start-up process, and complete 2,4-DCP removal was mostly due to bacterial activity, in particular Betaproteobacteria, as shown by fluorescence in situ hybridization (FISH). PMID:24292461

  12. Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide.

    PubMed

    Westerhoff, Paul; Lee, Sungyun; Yang, Yu; Gordon, Gwyneth W; Hristovski, Kiril; Halden, Rolf U; Herckes, Pierre

    2015-08-18

    U.S. sewage sludges were analyzed for 58 regulated and nonregulated elements by ICP-MS and electron microscopy to explore opportunities for removal and recovery. Sludge/water distribution coefficients (KD, L/kg dry weight) spanned 5 orders of magnitude, indicating significant metal accumulation in biosolids. Rare-earth elements and minor metals (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) detected in sludges showed enrichment factors (EFs) near unity, suggesting dust or soils as likely dominant sources. In contrast, most platinum group elements (i.e., Ru, Rh, Pd, Pt) showed high EF and KD values, indicating anthropogenic sources. Numerous metallic and metal oxide colloids (<100-500 nm diameter) were detected; the morphology of abundant aggregates of primary particles measuring <100 nm provided clues to their origin. For a community of 1 million people, metals in biosolids were valued at up to US$13 million annually. A model incorporating a parameter (KD × EF × $Value) to capture the relative potential for economic value from biosolids revealed the identity of the 13 most lucrative elements (Ag, Cu, Au, P, Fe, Pd, Mn, Zn, Ir, Al, Cd, Ti, Ga, and Cr) with a combined value of US $280/ton of sludge. PMID:25581264

  13. EVALUATION OF THE FULL-SCALE APPLICATION OF ANAEROBIC SLUDGE DIGESTION AT THE BLUE PLAINS WASTEWATER TREATMENT FACILITY, WASHINGTON, DC

    EPA Science Inventory

    The mesophilic-thermophilic digestion process is a new two-step concept for treating municipal wasterwater sludges. The first step operates under mesophilic process conditions (digestion with anaerobic microorganisms that thrive at 90 to 100F). The second step operates under ther...

  14. SEPARATION OF METALS IN WASTEWATER SLUDGE BY CENTRIFUGAL CLASSIFICATION

    EPA Science Inventory

    Municipal wastewater sludges frequently contain undesirably high concentrations of heavy metals and/or organic pollutants which interfere with beneficial use of sludge on farmland and with some disposal practices such as ocean disposal. Centrifugal classification is a low-cost pr...

  15. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  16. Priority and emerging pollutants in sewage sludge and fate during sludge treatment.

    PubMed

    Mailler, R; Gasperi, J; Chebbo, G; Rocher, V

    2014-07-01

    This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n=117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM - dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols - except NP - BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). PMID:24797622

  17. BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous

    E-print Network

    assembly . Continuous flow . Domestic wastewater Introduction Activated sludge processes typically require energy from wastewater and they generate much less sludge (Rabaey and Verstraete 2005). MFCs are devicesBIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs

  18. COLLECTION, TREATMENT, AND DISPOSAL OF SLUDGE FROM SMALL COMMUNITIES: U.S. EXPERIENCE

    EPA Science Inventory

    Sludge treatment represents almost half the cost of wastewater treatment at many facilities in the U.S. Although sludge problems are of serious concern everywhere, they are different for different locations. The approach to sludge handling and the solution to problems depends on ...

  19. Novel technique for internal structure and elemental distribution analyses of granular sludge from reactors for wastewater treatment.

    PubMed

    Cao, Xiaolei; Cao, Hongbin; Sheng, Yuxing; You, Haixia; Zhang, Yi

    2013-03-01

    A novel technique for internal structure and elemental distribution analyses of granular sludge is presented. Sludge samples were freeze-dried and embedded in epoxy resin to form a module, which were then ground and polished to obtain sequential cross-sections. The cross-sections were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). SEM observations showed that one granule was formed having several cores with different inorganic minerals, rather than a single core. EDX results indicate that the main elements of the granules are O, Ca, Mg, and P. In addition, the distribution areas of calcium and magnesium in the granule do not coincide. PMID:23160739

  20. Genotoxicity testing of wastewater sludge using the Allium cepa anaphase-telophase chromosome aberration assay.

    PubMed

    Rank, J; Nielsen, M H

    1998-10-12

    Wastewater sludges were analysed in the Allium cepa genotoxicity test. They were sampled during three winter periods from three Danish municipal wastewater treatment plants differing in size and industrial load. The toxicity of the sludge was tested in the Allium root inhibition assay, and the results expressed as EC30 and EC50 values showed that the toxicity could be positive correlated to the industrial load. However, when genotoxicity was tested at concentrations corresponding to the EC30 and EC50 values in the A. cepa anaphase-telophase assay, only two sludge samples from the smallest plant with the lowest industrial load induced significant chromosome aberrations. Concentrations of the heavy metal's Pb, Ni, Cr, Zn, Cu, and Cd were also determined and could partly be correlated with the toxicity of the sludge and the industrial load of the treatment plants. PMID:9757013

  1. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    USGS Publications Warehouse

    Sibrell, P.L.; Cravotta, C.A., III; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  2. Capital and Operating Costs of Full-Scale Fecal Sludge Management and Wastewater Treatment Systems in Dakar, Senegal

    PubMed Central

    2012-01-01

    A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita–1 year–1) was ten times higher than the FSM ($4.05 capita–1 year–1), the annual operating cost for the SB ($11.98 capita–1 year–1) was 1.5 times higher than the FSM ($7.58 capita–1 year–1), and the combined capital and operating for the SB ($54.64 capita–1 year–1) was five times higher than FSM ($11.63 capita–1 year–1). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive. PMID:22413875

  3. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  4. Harvesting Energy from Wastewater Treatment

    E-print Network

    Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health Issues 1 Billion people lack #12;Energy content of Wastewaters · Electricity "lost" to water and wastewater treatment= 0.6 quad

  5. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    PubMed

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment. PMID:26584344

  6. U.S. EPA (ENVIRONMENTAL PROTECTION AGENCY)-SPONSORED EPIDEMIOLOGICAL STUDIES OF HEALTH EFFECTS ASSOCIATED WITH THE TREATMENT AND DISPOSAL OF WASTEWATER AND SEWAGE SLUDGE

    EPA Science Inventory

    Since 1975 the U.S. Environmental Protection Agency has sponsored 11 epidemiological studies of the potential health effects associated with the treatment and disposal of sewage and sewage sludge. Three of these have been occupational exposure studies: One of sewage treatment pla...

  7. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    ERIC Educational Resources Information Center

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  8. Bioflocculant from pre-treated sludge and its applications in sludge dewatering and swine wastewater pretreatment.

    PubMed

    Guo, Junyuan; Ma, Jing

    2015-11-01

    Potentials of alkaline-thermal (ALT) pre-treated sludge as a bioflocculant were studied in sludge dewatering and swine wastewater pretreatment. When incubated with this ALT pre-treated sludge, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 22.5% and 3.4×10(12)m/kg, respectively, which were much better than that obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyaluminum chloride (PAC) were used simultaneously. Charge neutralization and inter-particle bridging were proposed as the reasons for the enhanced performance in the case of the combined use. With swine wastewater, the bioflocculant could remove COD, ammonium and turbidity by 45.2%, 41.8% and 74.6% when incubated with 20mg/L at pH 8.0. This study suggested that the ALT pre-treated sludge has a great potential as an alternative bioflocculant to conventional flocculants in sludge dewatering and swine wastewater pretreatment. PMID:26259686

  9. SLUDGE TREATMENT AND DISPOSAL

    EPA Science Inventory

    The purpose of this manual is to present a contemporary review of sludge processing technology and the specific procedures to be considered, modified, and applied to meet unique conditions. he manual emphasizes the operational considerations and interrelationships of the various ...

  10. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Huang, Xia; Ball, Andrew S; Price, William E; Nghiem, Long D

    2015-12-30

    This paper critically reviews the fate of trace organic contaminants (TrOCs) in biosolids, with emphasis on identifying operation conditions that impact the accumulation of TrOCs in sludge during conventional wastewater and sludge treatment and assessing the technologies available for TrOC removal from biosolids. The fate of TrOCs during sludge thickening, stabilisation (e.g. aerobic digestion, anaerobic digestion, alkaline stabilisation, and composting), conditioning, and dewatering is elucidated. Operation pH, sludge retention time (SRT), and temperature have significant impact on the sorption and biodegradation of TrOCs in activated sludge that ends up in the sludge treatment line. Anaerobic digestion may exacerbate the estrogenicity of sludge due to bioconversion to more potent metabolites. Application of advanced oxidation or thermal pre-treatment may minimise TrOCs in biosolids by increasing the bioavailability of TrOCs, converting TrOCs into more biodegradable products, or inducing complete mineralisation of TrOCs. Treatment of sludge by bioaugmentation using various bacteria, yeast, or fungus has the potential to reduce TrOC levels in biosolids. PMID:26151380

  11. Harvesting Energy from Wastewater Treatment

    E-print Network

    Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health IssuesGlobal Energy & Health content of WastewatersEnergy content of Wastewaters ·· ElectricityElectricity ""lostlost"" to water

  12. Microalgae and wastewater treatment

    PubMed Central

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  13. Integrating anaerobic processes into wastewater treatment.

    PubMed

    McAdam, E J; Lüffler, D; Martin-Garcia, N; Eusebi, A L; Lester, J N; Jefferson, B; Cartmell, E

    2011-01-01

    Over the past decade, the concept of anaerobic processes for the treatment of low temperature domestic wastewater has been introduced. This paper uses a developed wastewater flowsheet model and experimental data from several pilot scale studies to establish the impact of integrating anaerobic process into the wastewater flowsheet. The results demonstrate that, by integrating an expanded granular sludge blanket reactor to treat settled wastewater upstream of the activated sludge process, an immediate reduction in imported electricity of 62.5% may be achieved for a treated flow of c. 10,000 m(3) d(-1). This proposed modification to the flowsheet offers potential synergies with novel unit processes including physico-chemical ammonia removal and dissolved methane recovery. Incorporating either of these unit operations can potentially further improve the flowsheet net energy balance to between +0.037 and +0.078 kWh m(-3) of produced water. The impact of these secondary unit operations is significant as it is this contribution to the net energy balance that facilitates the shift from energy negative to energy positive wastewater treatment. PMID:21508551

  14. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    ERIC Educational Resources Information Center

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  15. Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

    E-print Network

    Florida, University of

    treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identifiedOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed@mail.ifas.ufl.edu; acwilkie@mail.ifas.ufl.edu) Abstract Eighteen wastewater treatment systems were operated for one year

  16. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge.

    PubMed

    Fuerhacker, Maria; Haile, Tadele Measho; Kogelnig, Daniel; Stojanovic, Anja; Keppler, Bernhard

    2012-01-01

    This paper presents the results of adsorption studies on the removal of heavy metals (Cr, Cu, Cd, Ni, Pb and Zn) from standard solutions, real wastewater samples and activated sewage sludge using a new technique of liquid-liquid extraction using quaternary ammonium and phosphonium ionic liquids (ILs). Batch sorption experiments were conducted using the ILs [PR4][TS], [PR4][MTBA], [A336][TS] and [A336][MTBA]. Removal of these heavy metals from standard solutions were not effective, however removal of heavy metals from the industrial effluents/wastewater treatment plants were satisfactory, indicating that the removal depends mainly on the composition of the wastewater and cannot be predicted with standard solutions. Removal of heavy metals from activated sludge proved to be more successful than conventional methods such as incineration, acid extraction, thermal treatment, etc. For the heavy metals Cu, Ni and Zn, ?90% removal was achieved. PMID:22546790

  17. Packaged wastewater treatment: An overview

    SciTech Connect

    Johnson, D.

    1993-06-17

    The paper presents an overview of wastewater treatment problems and solutions for industrial plants which discharge their wastewater to a publicly-owned treatment works (POTW). Since POTWs have limitations on the amount and type of wastes they can effectively treat, many require that their industrial customers limit concentrations of some effluent wastes and eliminate others. Characterizing plant wastewater becomes very important in the selection process for packaged wastewater treatment. Other considerations are also discussed.

  18. Prevalence and fate of Giardia cysts in wastewater treatment plants.

    PubMed

    Nasser, A M; Vaizel-Ohayon, D; Aharoni, A; Revhun, M

    2012-09-01

    The present study was conducted to review factors affecting the prevalence and concentration of Giardia in raw wastewater. The removal and inactivation efficiency of Giardia by wastewater treatment technologies was also reviewed. Data published for the prevalence of Giardia in wastewater and the removal by wastewater treatment plants was reviewed. Giardia cysts are highly prevalent in wastewater in various parts of the world, which may reflect the infection rate in the population. In 23 of 30 (76.6%) studies, all of the tested raw wastewater samples were positive for Giardia cysts at concentrations ranging from 0.23 to 100 000 cysts l(-1). The concentration of Giardia in raw wastewater was not affected by the geographical region or the socio-economic status of the community. Discharge of raw wastewater or the application of raw wastewater for irrigation may result in Giardia transmission. Activated sludge treatment resulted in a one to two orders of magnitude reduction in Giardia, whereas a stabilization pond with a high retention time removed up to 100% of the cysts from wastewater. High-rate sand filtration, ultrafiltration and UV disinfection were reported as the most efficient wastewater treatment methods for removal and disinfection of Giardia cysts. Wastewater treatment may not totally prevent the environmental transmission of Giardia cysts. The reviewed data show that a combination of wastewater treatment methods may results in efficient removal of Giardia cysts and prevent their environmental transmission. PMID:22564037

  19. Treatment and reuse of coal conversion wastewaters

    SciTech Connect

    Luthy, R.G.

    1980-01-01

    This paper presents a synopsis of recent experimental activities to evaluate processing characteristics of coal conversion wastewaters. Treatment studies have been performed with high-BTU coal gasification process quench waters to assess enhanced removal of organic compounds via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing by ammonia removal, biological oxidation, lime-soda softening, granular activated carbon adsorption, and reverse osmosis. In addition, treatment studies are in progress to evaluate solvent extraction of gasification process wastewater to recover phenolics and to reduce wastewater loading of priority organic pollutants. Biological oxidation of coal gasification wastewater has shown excellent removal efficiencies of major and trace organic contaminants at moderate loadings, addition of powdered activated carbon provides lower effluent COD and color. Gasification process wastewater treated through biological oxidation, lime-soda softening and activated carbon adsorption appears suitable for reuse as cooling tower make-up water. Solvent extraction is an effective means to reduce organic loadings to downstream processing units. In addition, preliminary results have shown that solvent extraction removes chromatographable organic contaminants to low levels.

  20. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  1. ORGANIC CHEMICAL FATE PREDICTION IN ACTIVATED SLUDGE TREATMENT PROCESSES

    EPA Science Inventory

    The report describes results from a broadly-based effort to determine the feasibility of predicting the fates of organic chemicals in diffused air, activated sludge wastewater treatment processes. The three conversion/removal mechanisms emphasized in the work were stripping, sorp...

  2. Two Devices for Removing Sludge From Bioreactor Wastewater

    NASA Technical Reports Server (NTRS)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  3. EMISSIONS OF METALS AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    Emissions of metals and organics from a series of four wastewater sludge incinerators were determined. hree multiple hearth units and one fluidized bed combustor were tested. missions were controlled with a combination of venturi and/or tray impingement scrubbers. ne site incorpo...

  4. Wastewater and sludge control-technology options for synfuels industries

    SciTech Connect

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  5. Characterization of Domestic Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternative Reuse Applications

    PubMed Central

    BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.

    2014-01-01

    Abstract Background There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Methods Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Results Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. Conclusion The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26060740

  6. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76?kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43?kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  7. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76?kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43?kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  8. Occurrence of selected polybrominated diphenyl ethers and 2,2',4,4',5,5'-hexabromobiphenyl (BB-153) in sewage sludge and effluent samples of a wastewater-treatment plant in Cape Town, South Africa.

    PubMed

    Daso, Adegbenro P; Fatoki, Olalekan S; Odendaal, James P; Olujimi, Olanrewaju O

    2012-04-01

    The reuse of treated effluent from wastewater treatment plants (WWTPs) as alternative water source for sport-field or landscape irrigation, agricultural, and other industrial purposes is growing significantly. Similarly, the application of treated sludge (biosolid) to agricultural soils is now being considered globally as the most economic means of sludge disposal. However, the presence of emerging organic contaminants in these matrices, including polybrominated diphenyl ethers (PBDEs), which are potential endocrine disruptors, portends a high health risk to humans and the environment in general. In this study, effluent and sewage sludge samples collected from a WWTP were analysed for some selected PBDE congeners (BDE congeners 28, 47, 99 100 153 154 183, and 209) as well as BB-153 using a high-capillary gas chromatograph equipped with an electron capture detector. The sum of the eight PBDE congeners ranged from 369 to 4370, 19.2 to 2640, and 90.4 to 15,100 ng/l for raw water, secondary effluent, and final effluent, respectively. A similar result was observed for sewage sludge samples, which ranged between 13.1 and 652 ng/g dry weight (dw). The results obtained for BB-153 were generally lower compared with those found for most PBDE congeners. These ranged from ND to 18.4 ng/l and ND to 9.97 ng/g dw for effluents and sewage sludge, respectively. In both matrices, BDE 47 and 209 congeners were found to contribute significantly to the overall sum of PBDEs. The reuse of the treated effluent, particularly for agricultural purposes, could enhance the possibility of these contaminants entering into the food chain, thus causing undesirable health problems in exposed subjects. PMID:22002787

  9. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  10. Devising wastewater treatment strategies

    SciTech Connect

    Hornby, L.E.

    1993-05-01

    Troubleshooting a waste water treatment system takes basic knowledge of how the process is designed to work, tools, and a few resources. This paper describes a Seven Steps Program employed fopr troubleshooting. A well-designed troubleshooting program should be comprehensive, thoroughly tested and constantly revisited to maintain a reliable and efficient wastewater treatment system. Such a method includes each of the integral components including biological, human, mechanical, and chemical. This total systems approach can result in improved system operation and better bottom line results.

  11. Chemical stability of acid rock drainage treatment sludge and implications for sludge management

    SciTech Connect

    Danny M. McDonald; John A. Webb; Jeff Taylor

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by {approximately} 1 pH unit with each test, until the final pH is {approximately}2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, {approximately}4.5, {approximately}5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. 26 refs., 5 figs., 2 tabs.

  12. Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater.

    PubMed

    Carvalho, Pedro N; Pirra, António; Basto, M Clara P; Almeida, C Marisa R

    2013-12-01

    The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 ?g/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment. PMID:23740304

  13. Onsite Wastewater Treatment Systems: Aerobic Treatment Unit 

    E-print Network

    Lesikar, Bruce J.

    2008-10-31

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  14. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  15. EPA (ENVIRONMENTAL PROTECTION AGENCY) DESIGN INFORMATION REPORT: SIDESTREAMS IN WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Performance problems at publicly-owned treatment works are often attributed to the recycling of sidestreams generated in the wastewater treatment and sludge handling systems. Although the volumes of these sidestreams are generally small compared to plant influent flows, sidestrea...

  16. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor.

    PubMed

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N

    2016-02-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of 'fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10-17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids - SS, BOD, nitrogen - N and phosphorus - P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  17. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  18. Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)

    SciTech Connect

    Basu, S.K.

    1996-11-01

    Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

  19. Metagenomic analysis of phosphorus removing sludge communities

    E-print Network

    2008-01-01

    activated sludge process for the treatment of wastewater.sludge mixed liquor from the Madison, WI, USA Nine Springs Wastewatersludge was obtained from a pilot scale treatment plant fed municipal wastewater (

  20. DENSITY LEVELS OF PATHOGENIC ORGANISMS IN MUNICIPAL WASTEWATER SLUDGE: A LITERATURE REVIEW

    EPA Science Inventory

    This report presents a critical review of the literature from laboratory and full scale studies regarding density levels of indicator and pathogenic organisms in municipal wastewater sludges and septage. The effectiveness of conventional municipal sludge stabilization processes (...

  1. Characterization of a bioflocculant from potato starch wastewater and its application in sludge dewatering.

    PubMed

    Guo, Junyuan; Zhang, Yuzhe; Zhao, Jing; Zhang, Yu; Xiao, Xiao; Wang, Bin; Shu, Bi

    2015-07-01

    A bioflocculant was produced by using potato starch wastewater; its potential in sludge dewatering and potato starch wastewater treatment was investigated. Production of this bioflocculant was positively associated with cell growth, and a highest value of 0.81 g/L was obtained. When incubated with this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 20.8% and 3.9?×?10(12) m/kg, respectively, which were much better than the ones obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyacrylamide (PAM) were used simultaneously. With potato starch wastewater, chemical oxygen demand (COD) and turbidity removal rates could reach 52.4 and 81.7%, respectively, at pH value of 7.5 when the bioflocculant dose was adjusted to 30 mg/L; from a practical standpoint, the removal of COD and turbidity reached 48.3 and 72.5%, respectively, without pH value adjustment. PMID:25851719

  2. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example.

    PubMed

    Liu, Xian-Wei; Wang, Yong-Peng; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Zeng, Raymond J; Li, Feng; Dong, Fang; Wang, Shu-Guang; Tong, Zhong-Hua; Yu, Han-Qing

    2011-06-01

    In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen demand (COD) removal. The membrane-less biocathode MFC is integrated with the SBR to recover energy from the aeration in the form of electricity and thus reduce the SBR operation costs. In a lab-scale integrated SBR-MFC system, the maximum power production of the MFC was 2.34 W/m(3) for one typical cycle and the current density reached up to 14 A/m(3) . As a result, the MFC contributed to the 18.7% COD consumption of the integrated system and also recovered energy from the aeration tank with a volume fraction of only 12% of the SBR. Our strategy provides a feasible and effective energy-saving and -recovering solution to upgrade the existing activated sludge processes. PMID:21290383

  3. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment Plants."…

  4. SLUDGE DEWATERING AND DRYING ON SAND BEDS

    EPA Science Inventory

    Dewatering of water and wastewater treatment sludges was examined through mathematical modeling and experimental work. The various components of the research include: (1) chemical analyses of water treatment sludges, (2) drainage and drying studies of sludges, (3) a mathematical ...

  5. AMMONIUM-CARBONATE LEACHING OF METAL VALUES FROM WATER-TREATMENT SLUDGES

    EPA Science Inventory

    This project was undertaken to explore and develop processes based on ammoniacal leaching to recover metal values from metal-finishing wastewater treatment sludges. The objective was to eliminate or to reduce sufficiently the heavy metal content of the sludge so that it would no ...

  6. REVIEW OF TECHNIQUES FOR TREATMENT AND DISPOSAL OF PHOSPHORUS-LADEN CHEMICAL SLUDGES

    EPA Science Inventory

    The report summarizes the effects of phosphorus removal by chemical addition on sludge handling and disposal options at full-scale wastewater treatment plants. American and Canadian plants which generate phosphorus-laden chemical sludges were surveyed by questionnaire, and 174 re...

  7. Design of automated oil sludge treatment unit

    NASA Astrophysics Data System (ADS)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  8. PAPERMILL WASTEWATER TREATMENT BY MICROSTRAINING

    EPA Science Inventory

    An original treatment system was designed, constructed, and operated for removal of suspended solids, turbidity, color, and BOD from the wastewaters of two paper mills which produce technical and other fine papers. The treatment process involves coagulation and flocculation follo...

  9. SLUDGE TREATMENT AND DISPOSAL. VOLUME 2. SLUDGE DISPOSAL

    EPA Science Inventory

    This two volume set presents in detail technical design information for the following sludge treatment and disposal processes: incineration, pyrolysis, composting, land utilization, and landfilling. The discussion of each process includes, where possible, a presentation of perfor...

  10. Wastewater treatment with microalgae

    SciTech Connect

    Oswald, W.J. )

    1992-01-01

    In locations where total solar energy inputs average 400 langeleys or more, microscopic algae, grown in properly designed ponds, can contribute significantly and economically to wastewater treatment. While growing, microalgae produce an abundance of oxygen for microbial and biochemical oxidation of organics and other reduced compounds and for odor control. Microalgae also accelerate the inactivation of disease bacteria and parasitic ova by increasing water temperature and pH. Microalgae remove significant amounts of nitrogen and phosphorus and adsorb most polyvalent metals, including those that are toxic. After growth in properly designed paddle wheel mixed high rate ponds, microalgae settle readily, leaving a supernatant free of most pollutants. Such effluents are suitable for irrigation of ornamental plants, crops not eaten raw, aquaculture, and grounwater recharge. The settled and concentrated microalgae may be used for fertilizer, for fermentation to methane, or, assuming no toxicity, for fish, bivalve, or animal feed.

  11. Optimization of a biological wastewater treatment process at a petrochemical plant using process simulation

    SciTech Connect

    Jones, R.M.; Dold, P.L.; Baker, A.J.; Briggs, T.

    1996-12-31

    A research study was conducted on the activated sludge process treating the wastewater from a petrochemical manufacturing facility in Ontario, Canada. The objective of the study was to improve the level of understanding of the process and to evaluate the use of model-based simulation tools as an aid in the optimization of the wastewater treatment facility. Models such as the IAWQ Activated Sludge Model No. 1 (ASM1) have previously been developed and applied to assist in designing new systems and to assist in the optimization of existing systems for the treatment of municipal wastewaters, However, due to significant differences between the characteristics of the petrochemical plant wastewater and municipal wastewaters, this study required the development of a mechanistic model specifically to describe the behavior of the activated sludge treatment of the petrochemical wastewater. This paper outlines the development of the mechanistic model and gives examples of how plant performance issues were investigated through process simulation.

  12. SAFETY MANUAL FOR WASTEWATER TREATMENT WITH OXYGEN AERATION

    EPA Science Inventory

    This safety manual provides design, operating, and safety personnel of municipal wastewater treatment plants which use oxygen aeration of activated sludge systems with the knowledge to prevent hazards due to the interaction of the oxygen with combustibles and other hazardous mate...

  13. WASTEWATER TREATMENT BY ARTIFICIAL WETLANDS

    EPA Science Inventory

    Studies of artificial wetlands at Santee, California demonstrated the capacity of wetlands systems for integrated secondary and advanced treatment of municipal wastewaters. When receiving a blend of primary and secondary wastewaters at a blend ratio of 1:2 (6 cm per day: 12 cm pe...

  14. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  15. RECOMMENDED PRACTICE FOR THE USE OF ELECTROMAGNETIC FLOWMETERS IN WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Electromagnetic flowmeters that conform to the guidelines described in this document can be used to measure the volumetric flowrate of all liquids and sludges normally encountered in wastewater treatment plants, provided that adequate inspection and maintenance are performed as r...

  16. EVALUATION OF THE TWO-ZONE WASTEWATER TREATMENT PROCESS AT NORRISTOWN, PENNSYLVANIA

    EPA Science Inventory

    Economic and practical considerations compel today's designers to investigate alternatives to conventional strategies for wastewater treatment systems. One such alternative is the Two-Zone process, a novel activated sludge process which combines the aerobic biological reactor and...

  17. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    PubMed

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen. PMID:25192669

  18. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  19. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    PubMed

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal. PMID:24727699

  20. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain

    SciTech Connect

    Alonso, E.

    2006-07-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the Standard, Measurements and Testing Programme of the European Commission was applied to sludge samples collected from ten anaerobic wastewater stabilization ponds (WSPs) located in southern Spain. Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes, none of the metal concentrations exceeded maximum permitted levels. Overall, heavy metals were mainly associated with the two less-available fractions (34% oxidizable metal and 55% residual metal). Only Mn and Zn showed the highest share of the available (exchangeable and reducible) fractions (25-48%)

  1. Is your wastewater toxic to the municipal treatment plant?

    SciTech Connect

    Havash, J.; Oster, J.

    1998-03-01

    For many reasons, it is beneficial to know whether or not wastewater generated from a manufacturing process is toxic or can inhibit the microorganisms in a municipal wastewater treatment plant. One simple way to test the wastewater is by using a laboratory respirometer, which can evaluate both toxicity and treatability. In some cases, respirometer use may save an industry thousands or even millions of dollars by proving that certain chemicals previously perceived to be detrimental are actually treatable in the municipal wastewater treatment plant. Because these chemicals will not cause any harm, the cost of a pretreatment plant is avoided. Of course, the reverse could be true when a municipality suspects wastewater discharged from an industry is causing an upset condition to its activated sludge wastewater treatment plant. Because toxicity and treatability are both functions of the respiration rate of microbial cells, a method that measures the respiration rate of microbial cells also can be used to measure toxicity. This article discusses several situations in which a respirometer was used to measure the toxicity and treatability of wastewater suspected to have a toxic effect on the municipal activated sludge plant.

  2. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  3. CHLORINATED ORGANIC COMPOUNDS IN DIGESTED, HEAT-CONDITIONED, AND PURIFAX-TREATED SLUDGES

    EPA Science Inventory

    Wastewater sludges were stabilized by Purifax treatment, anaerobic digestion and heat conditioning. The processed sludges from the Purifax process at chlorine dosages normally used in processing wastewater sludges contained 2 to > 14 times the total organic chlorine content of th...

  4. Prevalence of antiviral antibodies in workers handling wastewater and sludge.

    PubMed

    Iftimovici, R; Iacobescu, V; Copelovici, Y; Dinc?, A; Iordan, L; Niculescu, R; Telegu??, L; Chelaru, M

    1980-01-01

    Serological investigations were performed between 1977-1978 with 972 serum samples from 243 subjects having either direct (group A) or sporadic (group B) occupational contact with wastewater or sludge. the control group (C) was represented by 100 persons having no contact with such material. The sera were tested against influenza, parainfluenza, adeno-, herpes, coronavirus, rickettsial and chlamydial antigens, as well as for the presence of HBsAg and anti-HBs. Statistically significant differences between group A and groups B and C were found as regards the prevalence of antibodies to adenovirus and parainfluenza virus type 1 antigens. PMID:7434563

  5. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  6. Biological treatment of a seafood processing wastewater

    SciTech Connect

    Mines, R.O. Jr.; Robertson, R.R. II

    1998-07-01

    The seafood industry in Tampa is a multi-million dollar-per-year industry which heavily impacts the environment with large volumes of wastewater containing high concentrations of suspended solids and nitrogen. A 10 liter per day, bench-scale, wastewater treatment facility was designed, constructed, and operated for approximately eight (8) months to collect treat ability data on a seafood-processing wastewater. The bench-scale reactor consisted of a single-sludge, extended aeration, modified Ludzack-Ettinger (MLE) process for biologically removing carbon, nitrogen, and phosphorus from the wastewater. Influent and effluent data collected on the system included: chemical oxygen demand (COD), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total nitrogen (TN), pH, total phosphorus (TP), dissolved oxygen (DO), alkalinity, and temperature. All analyses were performed in accordance with Standard Methods (1992). Typical influent characteristics were: 900--4,000 mg/L COD, 45--110 mg/L TKN, 150--2,000 mg/L TSS, and 40--80 mg/L TP. Solids residence time (SRT) served as the primary control parameter with average STR's of 4.5, 6.4, 8.5, and 30.9 days observed during the study. The following biokinetic constants were determined from the data: a yield coefficient (Y) of 0.49 mg TSS/mg COD and an endogenous decay coefficient (k{sub e}) of 0.11 days{sup {minus}1}.

  7. Energy-saving through remote control of a wastewater treatment plant

    E-print Network

    Energy-saving through remote control of a wastewater treatment plant S. Marsili-Libelli *, G an energy-saving project being implemented on a conventional wastewater treatment plant, where several. Keywords: Activated sludge process, Internet systems, Remote control, Automation INTRODUCTION Energy saving

  8. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant

    E-print Network

    wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

  9. Design concepts for biological treatment of industrial wastewater

    SciTech Connect

    Capps, R.W.; Mantelli, G.N.; Bradford, M.L.

    1995-02-01

    Wastewater treatment systems have an operating envelope bounded by upper and lower operating limits. The design criteria should therefore include upper and lower operating limits. Upper limits are generally dictated by the effluent permit, whereas lower limits are the result of design. The design challenge for an industrial wastewater treatment system is to create a process which is capable of responding to extreme variations in flow and pollutant concentration, yet maintain the effluent within permit limitations. Industrial wastewater is contaminated with oil, aromatics, ammonia, phenols, sulfide, and heavy metals. Because the operating loads (flow, pollutant concentration, toxics, pH, and salinity) are largely unpredictable, maximum flexibility and controllability should be incorporated into the design. Since the heart of the wastewater treating system is the biological oxidation process, particular attention should be given to its specifications. A biological oxidation system that is too large can cause as many problems as one that is too small. This paper focuses on design considerations for the activated sludge process for industrial wastewater. Case Study 1 is an example of how to design a grass roots wastewater treatment plant for a new refinery. This design provides for the maximum efficiency and operability within permit limits. However, Case Study 2 is an example of how not to design an industrial wastewater treatment plant. Typically wastewater treatment systems like Case Study 2 are over-designed, which causes many operability problems that lead to permit excursions. 12 refs., 8 figs., 2 tabs.

  10. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas).

    PubMed

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, ?-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h(-1), from 0 to 7.78 × 10(-1)h(-1), from 0 to 7.86 × 10(-1)h(-1) and from 0 to 1.07 × 10(-1)h(-1) for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase could be attributed to de-conjugation or formation from other metabolites. PMID:26057543

  11. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents. PMID:24691135

  12. Removal of phosphorus from wastewater using ferroxysorb sorption media produced from amd sludge

    USGS Publications Warehouse

    Sibrell, P.L.; Tucker, T.W.; Kehler, T.; Fletcher, J.W.

    2008-01-01

    Treatment of acid mine drainage (AMD), whether with lime, limestone, caustic or simple aeration, nearly always results in generation of a metal hydroxide sludge. Disposal of the sludge often constitutes a significant fraction of the operating cost for the AMD treatment plant. Research at the USGS - Leetown Science Center has shown that AMD sludge, with its high content of aluminum and iron oxides, has a high affinity of phosphorus (P). Anthropogenic sources of P are associated with eutrophication and degradation of aquatic environments, resulting in anoxic dead zones in certain sensitive waterways. In this paper, we describe a method of converting the AMD sludge from a liability into an asset - Ferroxysorb P removal media - which can be used to remove excess P from wastewater. Three different Ferroxysorb media samples were produced from differing AMD sources and tested for P removal. Adsorption isotherms confirmed that the media had a high sorption capacity for P, as high as 19,000 mg/kg. The technology was demonstrated at an active fish hatchery, where the media remained in service for over three months without stripping or regeneration. Over that period of time, the calculated P removal was 50%, even at a very low influent P concentration of 60 parts per billion. In summary, use of the AMD-derived Ferroxysorb sorption media will reduce AMD treatment costs while at the same time helping to resolve the pressing environmental issue of eutrophication and degradation of sensitive waterways.

  13. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    PubMed

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process. PMID:26180919

  14. Anaerobic wastewater treatment: Final report

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhla, G.F.; Fraser, J.; Klepp, B.E.; Mueller, P.A.

    1987-11-01

    This project was undertaken to evaluate the effects of wastewater dilution, GAC (granular activated carbon) replacement rate, GAC particle size, operating temperature, and reactor configuration on the treatment of coal gasification wastewater with the expanded-bed GAC anaerobic bioreactor. Coal gasification wastewater used was generated in a low BTU, elevated pressure, stirred fixed-bed, gasifier operated by Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The treatability of another wastewater generated in a full-scale, slagging fixed-bed modification of a conventional dry-ash, pressurized gasifier located at the Great Plains gasification Association (GPGA) facility in North Dakota was also evaluated. Full-strength METC wastewater was found to be effectively treated at chemical oxygen demand (COD) loading rates as high as 19.4 g/kg GAC-day. At this rate, an excess of 50% of the applied COD was converted to methane, and a carbon utilization rate of 10 g GAC per liter of wastewater treated was employed. At these operating conditions, COD removal efficiencies across the treatment system exceeded 95%. Good COD removal and efficient COD conversion to methane were attainable at loading rates exceeding 70 g COD/kg GAC-day. Wastewater generated at the GPGA facility was found to be treatable at full-strength in the expanded-bed GAC anaerobic reactor at COD loading rates as high as 48 g COD/kg GAC-day. COD removal efficiencies at this loading rate exceeded 90%. Coal gasification wastewater was found to resist treatment under thermophilic anaerobic conditions. The thermophilic expanded-bed GAC anaerobic reactor affected very poor conversion efficiencies of phenol, even when fed a synthetically prepared phenol bearing wastewater. 29 refs., 77 figs., 16 tabs.

  15. Land Application of Treated Sewage Sludge in the United States: Regulatory Considerations for Risk Reduction and Determining Treatment Process Equivalency

    EPA Science Inventory

    In the United States, municipal wastewater includes discharges from households, commercial businesses and various industries. Microorganisms associated with these wastes can be concentrated in the solids (sludge) which are removed during treatment operations. Beneficial reuse a...

  16. Extracellular polymeric substances production kinetics of 13 sludge isolates using wastewater sludge as raw material and its flocculation potential.

    PubMed

    More, Tanaji; Mahmoudi, Amine; Yan, Song; Tyagi, Rajeshwar Dayal

    2015-12-01

    The kinetics of batch fermentation of 13 extracellular polymeric substances (EPS) producing bacterial strains (9 Bacillus, 2 Serratia and 2 Yersinia) were carried out using sterilized sludge as a raw material. The most of Bacillus (µmax: 0.11-0.27?h(-1)), Serratia (µmax: 0.23-0.27?h(-1)) and Yersinia (µmax: 0.18-0.19?h(-1)) strains had capability to grow and produce EPS (1.36-2.12?g/L) in the sterilized sludge. In general, EPS production was mixed growth associated for all the bacterial strains cultivated independently. Bacillus sp. 7, Serratia sp. 2 and Yersinia sp. 2 produced higher concentration (1.95-2.12?g/L) of EPS than the other remaining bacterial strains. Protein and carbohydrate contents of EPS remained constant during fermentation. Broth EPS (B-EPS) exhibited high kaolin flocculation activity (?75%) in most of the cases except Bacillus sp. 1, Bacillus sp. 5 and Bacillus sp. 9, respectively. In general, high flocculation activities (FAs) (?75%), were attained using 1.31-1.70?mg B-EPS/g kaolin, 0.45-0.97?mg protein/g kaolin and 0.11-0.21?mg carbohydrates/g kaolin. The study suggests that further systematic exploration is required for optimizing the process of EPS production. EPS produced in the sludge can potentially be used for different water and wastewater treatments. PMID:25196662

  17. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and disinfection to remove microorganisms from municipal wastewaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor activated-sludge (MBR) and two conventional secondary activated-sludge municipal wastewater treatment plants during three disinfection seasons (May–Oct.). In total, 73 regular samples were ...

  18. MATERIAL BALANCES OF ESTROGENIC EDCS IN PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS.

    EPA Science Inventory

    A pair of pilot scale conventional wastewater treatment plants have been constructed and are online. These plants differ only in the sludge digestion step. One uses aerobic and the other uses anaerobic sludge digestion. Estrogenic EDCs are being measured in the liquid stream at e...

  19. Characterization of Industrial Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternate Reuse Applications

    PubMed Central

    BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.

    2015-01-01

    Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 ?S/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.

  20. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    PubMed

    Lopez-Vazquez, C M; Kubare, M; Saroj, D P; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2014-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams. PMID:23657583

  1. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    PubMed

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China. PMID:25996525

  2. Using wastewater for cooling: Increasing water reuse poses treatment challenges

    SciTech Connect

    Lutey, R.W.

    1996-04-01

    Technologies for control of biofouling, scale, corrosion and microbiologically influenced corrosion (MIC) in cooling water systems are discussed. Techniques involving water reuse and using wastewater as makeup are emphasized, and associated problems are identified. Appropriate chemical treatments, including biocides and biostats, biodispersants, sludge dispersants, corrosion inhibitors, and supplementary chemical treatments, are outlined. New and developing technologies reviewed include microorganism control based on biodispersants and on enzymes.

  3. Extending the use of dewatered alum sludge as a P-trapping material in effluent purification: Study on two separate water treatment sludges.

    PubMed

    Zhao, Y Q; Yang, Y

    2010-08-01

    The generation of alum sludge from drinking water purification process remains inevitable when aluminium sulphate is used as primary coagulant for raw water coagulation. Sustainable managing such the sludge becomes an increasing concern in water industry. Its beneficial reuse is therefore highly desirable and has attracted considerable research efforts. In view of the novel development of alum sludge as a value-added raw material for beneficial reuse for wastewater treatment, this study examined the maximum phosphorus-adsorption capacity of two dewatered alum sludges sampled from two largest water treatment works in Dublin, Ireland. The objective lies in clarifying the change of alum sludge characteristics and its P-adsorption capacity over the location of the alum sludge produced and the raw water being treated. Experiments have demonstrated that the two alum sludges have the similar P adsorption capacity (14.3 mg P/g sludge for Ballymore-Eustace sludge and 13.1 mg P/g sludge for Leixlip sludge at pH 7.0). However, the study supports that alum sludge beneficial reuse as a low cost adsorbent for P immobilization should study its P-adsorption capacity before any decision of large application is made since the raw water quality will affect the sludge characteristics and therefore influence its adsorption ability. PMID:20623402

  4. BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT

    E-print Network

    of activated sludge samples it is possible to introduce a further biological parameter apart from treatment plants. It is reported that different parameters have certain influences on the activated sludge floc and on the developing biozenosis. An automatical image analysis of activated sludge floc pictures

  5. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  6. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells

    E-print Network

    Impact of electrode configurations on retention time and domestic wastewater treatment efficiency wastewater under continuous flow conditions using microbial fuel cells (MFCs) requires hydraulic retention times (HRTs) that are similar to or less than those of conventional methods such as activated sludge

  7. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  8. Use of sanitary sewers as wastewater pre-treatment systems

    SciTech Connect

    Warith, M.A.; Kennedy, K.; Reitsma, R.

    1998-12-31

    As wastewater travels through a sewer system it undergoes changes in composition. The changes in composition may be caused by chemical, physical and/or biological processes. At present engineers do not take into consideration the impacts of these processes on the wastewater quality when designing wastewater treatment systems. However, the impact of these processes on the chemical oxygen demand, biochemical oxygen demand, nitrogen and phosphorus content of the wastewater can be significant. In the case of the biological processes, microorganisms present in the water as it travels through the sewer system are similar to those found in an activated sludge process. Given that the microorganism population and the hydraulic retention time often resembles that of an activated sludge process, it would seem only reasonable to look further into the possibility of using sewers as wastewater treatment systems. Furthermore, the plug flow regime of a sanitary sewer is inherently beneficial in terms of wastewater treatment as it is not subject to short-circuiting. The first part of this paper provides a technical review of the processes which take place in a sewer system and the resulting degradation of some of the more significant substances found in wastewater. The contribution of both the suspended biomass and the attached biomass to the degradation of substrate is also examined. The second part of this paper examines the use of the Toxchem computer model to predict the processes which are taking place in the sewer under a variety of conditions. The goal being to determine the magnitude of the degradation of substrate and dissolved oxygen depletion in a sewer system. In obtaining a better understanding of the processes that are taking place in sewer systems, engineers will be able to more accurately predict the degradation of substrates in sanitary sewer systems. This will result in a reduction in the size of wastewater treatment facilities (WWTFs).

  9. Sludge quality after 10-20 years of treatment in reed bed systems.

    PubMed

    Nielsen, Steen; Bruun, Esben Wilson

    2015-09-01

    The effect on the environment of the operation of sludge treatment in reed beds (STRB) system is seen as quite limited compared to traditional sludge treatment systems such as mechanical dewatering, drying and incineration with their accompanying use of chemicals and energy consumption. There are several STRB systems in Denmark receiving sludge from urban wastewater treatment plants. Stabilization and mineralization of the sludge in the STRB systems occur during a period between 10 and 20 years, where after the basins are emptied and the sludge residue typically is spread on agricultural land. In the present study, the sludge residue quality after treatment periods of 10-20 years from four Danish STRBs is presented. After reduction, dewatering and mineralization of the feed sludge (dry solid content of 0.5-3 %) in the STRB systems, the sludge residue achieved up to 26 % dry solid, depending on the sludge quality and dimensioning of the STRB system. The concentration of heavy metals and hazardous organic compounds in the sludge residue that are listed in the Danish and EU legislation for farmland application of sludge was below the limit values. The nitrogen and phosphorus concentrations as an average in the sludge residue were 28 and 36 g/kg dry solid (DS), respectively. In addition, mineralization on average across the four STRB systems removed up to 27 % of the organic solids in the sludge. The investigation showed that the sludge residue qualities of the four STRBs after a full treatment period all complied with the Danish and European Union legal limits for agricultural land disposal. PMID:25422113

  10. Membrane bioreactors and their uses in wastewater treatments.

    PubMed

    Le-Clech, Pierre

    2010-12-01

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. PMID:20865255

  11. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  12. EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

  13. Land Application of Wastewater Sludges: A National Science Foundation Student-Originated Studies Project.

    ERIC Educational Resources Information Center

    Bender, Timothy J.; Barnard, Walther M.

    1981-01-01

    Summarizes a student-originated studies project, funded by the National Science Foundation, on land application of wastewater sludges. Describes the students' proposal, research methods, and evaluation of the project. (DS)

  14. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This document describes a promising technology — autothermal thermophilic aerobic digestion — for meeting the current and proposed U.S. federal requirements for pathogen controJ and land application of municipal wastewater sludge. Autothermal thermophilic aerobic digestion, or AT...

  15. Use of wastewater sludge as a raw material for production of L-lactic acid

    SciTech Connect

    Nakasaki, Kiyohiko; Akakura, Naoki; Adachi, Tomohiko; Akiyama, Tetsuo

    1999-01-01

    This study utilizes wastewater sludges to produce L-lactic acid, a precursor of biodegradable plastic. The high concentrations of cellulose contained in the sludge, derived from a paper manufacturing facility, have been found to be convertible to L-lactic acid at a rate as high as 6.91 g/L. To achieve such a high conversion rate, the sludge must be pretreated with cellulase. This pretreatment includes inoculation of the sludge with lactic acid bacteria, strain LA1, after the sludge has been subjected to enzymatic hydrolysis.

  16. Occurrence of polycyclic musks in wastewater and receiving water bodies and fate during wastewater treatment.

    PubMed

    Clara, M; Gans, O; Windhofer, G; Krenn, U; Hartl, W; Braun, K; Scharf, S; Scheffknecht, C

    2011-02-01

    The occurrence of cashmerane (DPMI), celestolide, phantolide, traesolide (ATII), galaxolide (HHCB) and tonalide (AHTN) in sewage and surface waters and their fate during wastewater treatment and anaerobic sludge digestion is investigated. AHTN and HHCB are the most important representatives and influent concentrations of 0.41-1.8 and 0.9-13 ?gL(-1) are observed. DPMI is detected in influent and effluent samples but in notably lower concentrations than AHTN and HHCB. Major sources of polycyclic musks are households, whereas industrial emitters seem to be of minor importance. This conclusion is supported by the analysis of selected industrial wastewaters (metal, textile and paper industry). Specific emissions of 0.36 ± 0.19 and 1.6 ± 1.0 mg cap(-1)d(-1) for AHTN and HHCB are calculated. Overall removal efficiencies between approx 50% and more than 95% are observed during biological wastewater treatment and removal with the excess sludge is the major removal pathway. Log K(D) values of 3.73-4.3 for AHTN, 3.87-4.34 for HHCB and 2.42-3.22 for DPMI are observed in secondary sludge. During sludge digestion no or only slight removal occurred. Mean polycyclic musk concentrations in digested sludge amounted to 1.9 ± 0.9 (AHTN), 14.2 ± 5.8 (HHCB), 0.8 ± 0.4 (ATII) and 0.2 ± 0.09 (DPMI) mgkg(-1) dry matter. In the receiving water systems a comparable distribution as during wastewater treatment is observed. AHTN, HHCB and DPMI are detected in surface waters (ND (not detected) - <0.04, ND - 0.32 and ND - 0.02 ?g L(-1)) as well as AHTN and HHCB in sediments (ND - 20, ND - 120 ?g kg(-1)). For HHCB an apparent K(OC) value of 4.1-4.4 is calculated for sediments. Major source for polycyclic musks in surface waters are discharges from wastewater treatment plants. For HHCB and DPMI 100% of the load observed in the sampled surface waters derive from discharges of treated wastewater. PMID:21144551

  17. Full scale performance of the aerobic granular sludge process for sewage treatment.

    PubMed

    Pronk, M; de Kreuk, M K; de Bruin, B; Kamminga, P; Kleerebezem, R; van Loosdrecht, M C M

    2015-11-01

    Recently, aerobic granular sludge technology has been scaled-up and implemented for industrial and municipal wastewater treatment under the trade name Nereda(®). With full-scale references for industrial treatment application since 2006 and domestic sewage since 2009 only limited operating data have been presented in scientific literature so far. In this study performance, granulation and design considerations of an aerobic granular sludge plant on domestic wastewater at the WWTP Garmerwolde, the Netherlands were analysed. After a start-up period of approximately 5 months, a robust and stable granule bed (>8 g L(-1)) was formed and could be maintained thereafter, with a sludge volume index after 5 min settling of 45 mL g(-1). The granular sludge consisted for more than 80% of granules larger than 0.2 mm and more than 60% larger than 1 mm. Effluent requirements (7 mg N L(-1) and 1 mg P L(-1)) were easily met during summer and winter. Maximum volumetric conversion rates for nitrogen and phosphorus were respectively 0.17 and 0.24 kg (m(3) d)(-1). The energy usage was 13.9 kWh (PE150·year)(-1) which is 58-63 % lower than the average conventional activated sludge treatment plant in the Netherlands. Finally, this study demonstrated that aerobic granular sludge technology can effectively be implemented for the treatment of domestic wastewater. PMID:26233660

  18. Real-time optical monitoring of the wastewater treatment process.

    PubMed

    Tomperi, Jani; Koivuranta, Elisa; Kuokkanen, Anna; Juuso, Esko; Leiviskä, Kauko

    2016-02-01

    One activated sludge process line was optically monitored in situ by a novel image analysis equipment. The results of the image analysis were studied to find out dependencies to the process variables of the wastewater treatment plant (WWTP) and to the quality of the treated wastewater. The quality parameter of the treated wastewater, suspended solids, was modelled using the image analysis results. The model can be used for evaluating the performance of the WWTP and for the better control for stable effluent quality. It was shown that the results of the online optical monitoring reveal useful information from the process and can be used in forecasting the quality of biologically treated wastewater. The optical monitoring method together with process measurements has an important role in keeping the process in stable operating conditions and avoiding environmental risks. PMID:26238162

  19. Imprinted Polymers in Wastewater Treatment

    SciTech Connect

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  20. Wastewater Treatment I. Student's Guide.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  1. Cogeneration at wastewater treatment plant

    SciTech Connect

    Oyler, A. . Wastewater Utilities Dept.); Klem, E.

    1993-11-01

    This article describes an energy saving wastewater treatment plant incorporating cogeneration through powering of gas driven engine-generators by methane collected from the plants anaerobic digester system. The topics of the article include a description of the plant, gas storage and explosion protection, generating electricity, and energy expense savings.

  2. Application of the SCADA system in wastewater treatment plants.

    PubMed

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs. PMID:11515944

  3. MUTAGENIC POTENTIAL OF MUNICIPAL SEWAGE SLUDGE AND SLUDGE AMENDED SOIL

    EPA Science Inventory

    Twelve municipal wastewater treatment plant sludges were collected and extracted by sequential extraction with methylene chloride and methanol on a Soxhlet apparatus. Each of three sludge fractions, i.e., methylene chloride, methanol, and a combined fraction (36 fractions total) ...

  4. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    NASA Astrophysics Data System (ADS)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  5. ENZYME ADDITION TO THE ANAEROBIC DIGESTION OF MUNICIPAL WASTEWATER PRIMARY SLUDGE

    EPA Science Inventory

    The study evaluates the effects of enzyme augmentation on municipal wastewater (MWW) sludge anaerobic digestion. The primary objective was to examine the impact of using enzymes to enhance the degradation of the cellulosic and the oil- and grease-rich sludge fractions. The additi...

  6. Efficiency of the Activated Sludge Model no. 3 for German wastewater on six different WWTPs.

    PubMed

    Wichern, M; Lübken, M; Blömer, R; Rosenwinkel, K H

    2003-01-01

    In 1999, the Activated Sludge Model No. 3 by the IWA Task Group on Mathematical Modelling for the Design and Operation of Biological Wastewater Treatment was presented. The model is used for the simulation of nitrogen removal. The simulations in this paper were done on the basis of a new calibration of the ASM 3 by Koch et al., with the easily degradable COD measured by respiration. For modelling of EBPR the BioP-Module of Rieger et al., was used. Six German wastewater treatment plants were simulated during this research to test the existing set of parameters of the models on various large scale plants. It was shown that changes for nitrification and enhanced biological phosphorus removal in the set of biological parameters were necessary. Sensible parameters and recommended values are presented in this article. Apart from the values of the changed biological parameters, we will in our examination discuss the modelling of the different activated sludge systems and the influent fractioning of the COD. Two plants with simultaneous denitrification in the recirculation ditch (EBPR) are simulated, one with preliminary dentrification, one with intermittent denitrification (EBPR), one with cascade denitrification (EBPR), and one pilot plant according to the Johannesburg-process (EBPR) which was simulated over a period of three months. PMID:12906292

  7. Biocrude production by activated sludge microbial cultures using pulp and paper wastewaters as fermentation substrate.

    PubMed

    Upadhyaya, Kamal Lamichhane; Mondala, Andro; Hernandez, Rafael; French, Todd; Green, Magan; McFarland, Linda; Holmes, William

    2013-01-01

    Municipal wastewater activated sludge contains a mixed microbial community, which can be manipulated to produce biocrude, a lipid feedstock for biodiesel production. In this study, the potential of biocrude production by activated sludge microorganisms grown in three different types of pulp and paper mill wastewaters was investigated. A 20% (v/v) activated sludge was inoculated into pulp and paper wastewater, supplemented with glucose (60 g/L) and nutrients (nitrogen and phosphorus) to obtain a high carbon to nitrogen ratio (70:1). The culture was incubated aerobically for seven days. The results showed that the activated sludge microorganisms were able to grow and accumulate lipids when cultivated in amended wastewaters. Microorganisms growing in anaerobic settling pond effluent water showed the highest lipid accumulation of up to 40.6% cell dry weight (CDW) after five days of cultivation compared with pulp wash wastewater (PuWW) (11.7% CDW) and mixed wastewater (MWW) (8.2% CDW) after seven days of cultivation. The lipids mostly contained C16-C18 fatty acids groups with oleic acid and palmitic acid being the dominant fatty acids. The maximum biodiesel yield was about 6-8% CDW for all the wastewaters. The results showed the potential of utilizing pulp and paper mill effluents and other waste streams, such as activated sludge for the sustainable production of lipids for biofuel production. PMID:24350471

  8. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  9. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 ?g L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes. PMID:25865172

  10. A simple empirical model for the clarification-thickening process in wastewater treatment plants.

    PubMed

    Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T

    2015-01-01

    In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p < 0.001). The model requires application of only one parameter, the sludge volume index (SVI), which is readily incorporated into routine analysis. By combining this model with the conservation of mass equation, an empirical model for compression settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer. PMID:25714635

  11. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  12. Wet oxidation of phenol and naphthalene (as a surrogate PAH) in aqueous and sludge solution: application to coal-conversion wastewater and sludge treatment. [In autoclaves: 130 to 250/sup 0/C; 6 to 11 MPa oxygen; in water solution

    SciTech Connect

    Harris, M.T.; Jolley, R.L.; Oswald, G.E.; Rose, J.C.

    1983-05-01

    The wet oxidation of phenol and naphthalene in distilled water and municipal sludge has been investigated in a 1-L autoclave at temperatures from 130 to 250/sup 0/C, oxygen presures of 6 to 11.2 MPa, and initial phenol and naphthalene concentrations of 10 mg/L to 16 g/L and 10 mg/L to 420 mg/L, respectively. The reaction of phenol in water is rapid; 95% of the phenol degrades in less than 15 min at operating temperatures above 175/sup 0/C. The oxidation of phenol in sludge is mass-transfer limited and therefore yields lower rate-constant values. The reaction of phenol in water or sludge is postulated to involve a free-radical mechanism and proceeds in three steps: an induction step, a rapid first-order step, and a slower first-order step. The rapid first-order step for the phenol-water study is temperature dependent and follows the Arrhenius expression given. The slower first-order step is due to an inhibition of the rate of phenol oxidation by organic intermediates. The major organic intermediates formed during the wet oxidation of phenol are hydroquinone, catechol, succinic acid, and glycolic acid. Greater than 98% oxidation of naphthalene at milligram-per-liter concentrations in water was observed in less than 10 min. The rate of oxidation of naphthalene in sludge is inhibited by either mass transfer and/or oxidizable organics. A pseudo-first-order reaction was observed for the oxidation of naphthalene in water and sludge. The first-order rate constants are given. Essentially none of the naphthalene is completely oxidized to carbon dioxide and phthalic anhydride is the principal product for the wet oxidation of naphthalene.

  13. Sorption behavior of a synthetic antioxidant, polycyclic musk, and an organophosphate insecticide in wastewater sludge.

    PubMed

    Thomas, S M; Bodour, A A; Murray, K E; Inniss, E C

    2009-01-01

    Emerging contaminants (ECs) are chemicals that are currently unregulated due to limited understanding of health effects and limited data regarding occurrence. Wastewater treatment plants (WWTP) receive many ECs as components of influent waste and the removal of organic contaminants, such as ECs, occurs primarily by sorption to sludge. Therefore, it is important to develop measures of sorption behavior by ECs to sludge. This study evaluates sorption of three ECs: 3-tert-butyl-4-hydroxyanisole (BHA) a synthetic antioxidant, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta(g)-2-benzopyrane (HHCB) a polycyclic musk, and chlorpyrifos a organophosphate insecticide. Twenty-four hour laboratory-scale sorption experiments were conducted for each compound individually and then in combination, which allowed the quantification of sorption onto wastewater sludge and the affects of multiple compounds. ECs in both the liquid and solid phases were analyzed using a gas chromatograph with flame ionization detector (GC/FID). Isotherms of individual sorption behavior followed a linear trend (R2 > 0.9) for individual ECs, while K(d) averaged 2,689 L kg(-1), 27,786 L kg(-1) and 31,402 L kg(-1) for BHA, chlorpyrifos and HHCB, respectively. Sorption behavior for BHA was linear during combined studies with K(d) of 1,766 L kg(-1) or a decrease of 34%, while HHCB and chlorpyrifos followed non-linear isotherm models. Synergistic effects were observed with spike concentrations > or =25 mg L(-1) for HHCB and > or =20 mg L(-1) for chlorpyrifos. K(d) values ranged from 16,984-6,000,000 L kg(-1) for HHCB and 19,536-3,000,000 L kg(-1) for chlorpyrifos. These distribution coefficients differed substantially from previously published values, mainly because few studies used sludge as the sorption media. Results suggest that HHCB and chlorpyrifos may be contained in the sludge unlike BHA, which is more available in the aqueous phase. Future investigations should evaluate WWTP processes for degrading ECs to harmless products and releases of ECs from sludge. PMID:19587412

  14. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  15. Optimization of Ozonation Process for the Reduction of Excess Sludge Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    PubMed Central

    Subha, B.; Muthukumar, M.

    2012-01-01

    Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666

  16. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 ?g L(-1), except for TDWTP-F (2.12 ?g L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. PMID:25930124

  17. Physical-chemical treatment of tar-sand processing wastewater

    SciTech Connect

    King, P.H.

    1982-07-01

    This final report for Phase I summarizes work done to determine the ability of several coagulants to contribute significantly in the treatment of selected tar sand wastewaters. The coagulation process must be considered as one possible step in a treatment scheme to reduce pollutants in these wastewaters and lead to a water quality acceptable for reuse or disposal. Two wastewaters were provided by the Laramie Energy Technology Center (LETC). The primary emphasis in this study was focused on a representative steam flooding wastewater designated in the report as TARSAND 1S. The coagulation study in which treatment of this wastewater was the prime goal is described in full detail in the thesis entitled Chemical Coagulation of Steam Flooding Tar Sand Wastewaters. This thesis, written by Mr. Omar Akad, is included as Appendix A in this report. A representative combustion wastewater, designated as TARSAND 2C, was also provided by LETC. This wastewater was characteristically low in suspended solids and after initial screening experiments were conducted, it was concluded that coagulation was relatively ineffective in the treatment of TARSAND 2C. Hence, efforts were concentrated on the parametric evaluation of coagulation of TARSAND 1S. The objectives for the research conducted under Phase I were: (1) to compare the effectiveness of lime, alum, ferric chloride and representative synthetic organic polymers in reducing suspended solids and total organic carbon (TOC) from TARSAND 1S wastewater; (2) to determine the effects of pH, coagulant aids, and mixing conditions on the coagulation process; (3) to determine the relative volume of sludge produced from each selected coagulation process.

  18. Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection 

    E-print Network

    Lesikar, Bruce J.

    2008-10-02

    Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

  19. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    PubMed

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation. PMID:15974272

  20. Use of wastewater ER sludges for the immobilization of heavy metals

    SciTech Connect

    Macha, S.; Murray, D.; Urasa, I.T.

    1996-10-01

    The distribution, mobility, and bioavailability of heavy metals in soils, surface water, and ground water have been of major interest and concern from both environmental and geochemical standpoints. Wastewater sludges represent an important anthropogenic factor whose impact on these processes is not fully understood. In the past, incineration and landfilling were common practices for discarding wastewater sludges. However, as local and state laws governing the disposal of these materials have become more stringent, land application has been used as an alternative. Reported studies have shown that the impact of land application of sludges can vary widely and is influenced by a number of factors, including the source of the sludge; the organic matter content of the sludge; the form in which the sludge is applied; and the prevailing conditions of the receiving soils. It has also been shown that sewage sludge can have solubilizing effects on solid-phase heavy metals, thereby causing geochemical shifts of the insoluble fractions of metals to the more soluble forms. The work presented in this paper utilized synthetic minerals, standard solutions, sludges, and agricultural soils obtained from different sources to determine the mechanisms involved in the mineralization of heavy metals by sludge; the influence of soil conditions; interelemental effects; the influence of natural organic matter; and possible microbial activity that may come into play. Several types of sludge were evaluated for lead binding capacity.

  1. Wastewater treatment with biomass carriers made from steelmaking by-product

    SciTech Connect

    Aritome, Kiyoshi; Miki, Osamu; Okuno, Yoshio

    1995-07-01

    It is economical to use microorganisms in wastewater treatment. In steelmaking, ammonia liquor from coke-oven plant, for example, is treated using microorganisms. To treat wastewater efficiently in biological processes, the following conditions are necessary: appropriate conditions for activities of microorganisms; proper concentration of microorganisms in reactor; effective contact of wastewater and microorganisms; and reliable separation of treated wastewater and microorganisms. Three types of biomass carriers made from granulated slag to satisfy these conditions have been developed. Research efforts have been under way to apply these carriers in reduction of COD (chemical oxygen demand) in wastewater. Developed biomass carriers can reduce the volume of COD oxidation reactor and promise easy operation compared with the conventional activated sludge processes. This result has been substantialized in sewage treatment facilities, factory wastewater treatment facilities and deodorization facilities. For the future, nitrate reduction in stainless pickling wastewater with fixed-bed biomass carriers will be also investigated.

  2. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  3. Bilateral wastewater land treatment research

    SciTech Connect

    Leach, L.E.; Bledsoe, B.E. ); Duan Zhenbo; Wang Shaotang )

    1990-12-01

    Because of increased population and industrial growth in China, water shortages are commonplace. In addition, wastewater has been released to area streams or diverted for irrigation purposes resulting in severe contamination problems in surface waters and groundwater. A cooperative effort between Beijing Municipal Research Institute of Environmental Protection and the EPA's Robert S. Kerr Environmental Research Laboratory has resulted in the testing of the rapid infiltration method of land treatment as a partial solution to wastewater treatment and reuse for the 0.45 billion m{sup 3}/a (15.75 bil. cu ft/yr) of safe irrigation water needed by the year 2000. Project objectives, design, and research conclusions are presented in detail.

  4. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  5. Activated-sludge process: Waste treatment. (Latest citations from the biobusiness database). Published Search

    SciTech Connect

    Not Available

    1992-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  6. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  7. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. HANFORD K BASINS SLUDGE RETREIVAL & TREATMENT

    SciTech Connect

    VASQUEZ, D.A.

    2005-07-05

    This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the US and the UK to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, thus removing the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building is described, and the uranium-corrosion and grout encapsulation processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. The grout process to produce the final waste form is backed by BNG America's 20 years experience of grouting radioactive waste at Sellafield and elsewhere. The use of transportable and re-usable equipment is emphasized and its role noted in avoiding new plant build that itself will require cleanup. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup worldwide.

  9. Occurrence of benzothiazoles in municipal wastewater and their fate in biological treatment.

    PubMed

    Kloepfer, A; Gnirss, R; Jekel, M; Reemtsma, T

    2004-01-01

    A number of 2-substituted benzothiazoles that are known to be used as fungicides, corrosion inhibitors and vulcanization accelerators in industry have been analyzed in municipal wastewater and the effluents of activated sludge and membrane bioreactor (MBR) treatment over a three month period. All six analytes were regularly detected in the municipal wastewater by liquid chromatography-mass spectrometry and amount to a total concentration of 3.4 microg/L. Of these compounds benzothiazole-2-sulfonic acid (1,700 ng/L), benzothiazole (850 ng/L) and 2-hydroxybenzothiazole (500 ng/L) were most prominent. The source of the benzothiazole emission is yet unknown. Activated sludge treatment did not reduce total benzothiazole concentration significantly. Removals of the individual compounds ranged from 90% for 2-mercaptobenzothiazole and 70% for hydroxybenzothiazole to 40% for benzothiazole. The concentration of benzothiazole-2-sulfonic acid increased by 20%, whereas 2-methylthiobenzothiazole increased by 160% during activated sludge treatment, likely due to the methylation of mercaptobenzothiazole. Total benzothiazole removal in two parallely operated MBRs was significantly better (43%) than in the conventional activated sludge treatment. Namely benzothiazole and benzothiazole-2-sulfonic acid were more effectively removed. This first systematic study on the occurrence of benzothiazoles in municipal wastewater has shown that this is a relevant class of trace contaminants in municipal wastewater which is only incompletely removed in biological wastewater treatment. Emission from sewage treatment is dominated by the most polar benzothiazole-2-sulfonic acid. MBR treatment may reduce but cannot avoid this emission. PMID:15497849

  10. CO2-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    PubMed

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. PMID:26260540

  11. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    PubMed

    Cervantes, Francisco J; Gómez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on ?-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7 mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5 mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12 h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400 mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others. PMID:26002687

  12. Combination of alkaline and microwave pretreatment for disintegration of meat processing wastewater sludge.

    PubMed

    Erden, G

    2013-01-01

    Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability. PMID:23837322

  13. Steel industry wastes. [Wastewater treatment

    SciTech Connect

    Vachon, D.T.; Schmidt, J.W.; Schmidtke, N.W.

    1982-06-01

    A literature review dealing with waste processing of steel industry wastes is presented. The costs for the U.S. steel industry to comply with environmental standards are such that water reuse and recycling may be necessary. The review examines conventional coke plant wastewater treatments such as flotation, phenol extraction, ammonia stripping, and biological nitrification, and alternative treatment processes for blast furnace scrubber blowdown such as alkaline chlorination, ozonation, and reverse osmosis. A review of pickling operations and finishing processes is also included with their appropriate waste methods highlighted.

  14. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    PubMed

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed. PMID:25768429

  15. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  16. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  17. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-01-01

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H(+)-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts. PMID:25322701

  18. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor

    PubMed Central

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-01-01

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H+-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts. PMID:25322701

  19. Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system.

    PubMed

    Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Nielsen, Steen; Laugen, Maria Mølmer; Brix, Hans

    2012-08-01

    The Sludge Treatment Reed Bed (STRB) technology is a cost-efficient and environmentally friendly technology to dewater and mineralize surplus sludge from conventional wastewater treatment systems. Primary and secondary liquid sludge is loaded onto the surface of the bed over several years, where it is dewatered, mineralized and turned into a biosolid with a high dry matter content for use as an organic fertilizer on agricultural land. We analysed the concentrations of five organic micropollutants (galaxolide, tonalide, cashmeran, celestolide and DEHP) and six heavy metals (Pb, Ni, Cu, Cd, Zn and Cr) in the accumulated sludge in a 20-year old STRB in Denmark in order to assess the degradation and fate of these contaminants in a STRB and the relation to sludge composition. The results showed that the deposited sludge was dewatered to reach a dry matter content of 29%, and that up to a third of the organic content of the sludge was mineralized. The concentrations of heavy metals generally increased with depth in the vertical sludge profile due to the dewatering and mineralization of organic matter, but in all cases the concentrations were below the European Union legal limits for agricultural land disposal. The concentrations of fragrances and DEHP ranged from 10 to 9000 ng g(-1) dry mass. The attenuation of hydrophobic micropollutants from the top to the bottom layer of the reed bed ranged from 40 to 98%, except for tonalide which increased significantly with sludge depth, and consequently showed an unusual depth distribution of the galaxolide/tonalide ratio. This unexpected pattern may reflect changes imposed by a long storage time and/or different composition of the fresh sludge in the past. The lack of a significant decreasing DEHP concentration with sludge age might indicate that this compound is very persistent in STRBs. In conclusion the STRB was a feasible technology for sludge treatment before its land disposal. PMID:22608611

  20. ONSITE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS (1980 EDITION) AND ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL (2002 EDITION)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) first issued detailed guidance on the design, construction, and operation of onsite wastewater treatment systems (OWTSs) in 1980. Design Manual: Onsite Wastewater Treatment and Disposal Systems (USEPA.1980) was the most comprehens...

  1. Treatment of Refractory Industrial Wastewater Using Chemical Oxidation and

    E-print Network

    Das, Suman

    Treatment of Refractory Industrial Wastewater Using Chemical Oxidation and Biological Treatment and Wastewater Technologies May 30 ­ June 3, 2015 Hong Kong, China #12;Oxidation and Biological Treatment

  2. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  3. LIME STABILIZATION AND ULTIMATE DISPOSAL OF MUNICIPAL WASTEWATER SLUDGES

    EPA Science Inventory

    Twenty-eight lime stabilization facilities were visited. None of these plants were originally designed for sludge lime stabilization. Lime stabilization was instituted either as a permanent sludge handling mechanism to replace a more costly process, as an interim sludge handling ...

  4. Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge.

    PubMed

    ?ebkowska, Maria; Naro?niak-Rutkowska, Anna; Pajor, El?bieta

    2013-03-01

    The goal of this study was to assess the efficiency of treating industrial urea-formaldehyde wastewater by activated sludge in a static magnetic field (MF) of 7 mT and the efficiency of treating the wastewater in a bioreactor not exposed to an MF. Exposure to the MF increased formaldehyde (FA) removal from industrial wastewater with an FA concentration of 1600 mg/l by 20%. The MF had also a positive effect on the efficiency of chemical oxygen demand (COD) removal, and bacteria and activated sludge biomass growth, especially when the COD loading increased rapidly. Industrial wastewater may contain up to 13000 mg FA/l. Therefore, its treatment can require the application of more than one method to ensure that the final FA concentration will be within the permissible limit. The application of an MF to enhance the biological processes may be favourable solution to this problem. PMID:23395758

  5. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  6. Thermal pre-treatment of aerobic granular sludge: impact on anaerobic biodegradability.

    PubMed

    Val del Río, A; Morales, N; Isanta, E; Mosquera-Corral, A; Campos, J L; Steyer, J P; Carrère, H

    2011-11-15

    The aerobic granular systems are a good alternative to the conventional activated sludge (AS) ones to reduce the production of sludge generated in wastewater treatment plants (WWTP). Although the quantity of produced sludge is low its post-treatment is still necessary. In the present work the application of the anaerobic digestion combined with a thermal pre-treatment was studied to treat two different aerobic granular biomasses: one from a reactor fed with pig manure (G1) and another from a reactor fed with a synthetic medium to simulate an urban wastewater (G2). The results obtained with the untreated aerobic granular biomasses showed that their anaerobic biodegradability (BD) (33% for G1 and 49% for G2) was similar to that obtained for an activated sludge (30-50%) and demonstrate the feasibility of their anaerobic digestion. The thermal pre-treatment before the anaerobic digestion was proposed as a good option to enhance the BD when this was initially low (33% G1) with an enhancement between 20% at 60 °C and 88% at 170 °C with respect to the untreated sludge. However when the initial BD was higher (49% G2) the thermal pre-treatment produced a slight improvement in the methane production (14% and 18%) and at high temperatures (190 and 210 °C) which did not justify the application of such a treatment. PMID:21924756

  7. Swine wastewater treatment in constructed wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the passive technologies being used for animal wastewater treatment is constructed wetlands. We have investigated swine lagoon wastewater treatment in both continuous marsh and marsh-pond-marsh (MPM) type constructed wetlands for their nitrogen treatment efficiency, ammonia volatilization, de...

  8. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  9. EFFECTS ON TOXICITY OF VOLATILE PRIORITY POLLUTANTS ADDED TO A CONVENTIONAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    Static acute, unaerated, toxicity tests using fathead minnows and Daphnia magna and a bacterial toxicity assay, Microtox(TM), were conducted on samples of influent and effluent from two conventional activated sludge pilot wastewater treatment systems. The two pilot treatment syst...

  10. A Guide to the Selection of Cost-Effective Wastewater Treatment Systems. Technical Report.

    ERIC Educational Resources Information Center

    Van Note, Robert H.; And Others

    The data within this publication provide guidelines for planners, engineers and decision-makers at all governmental levels to evaluate cost-effectiveness of alternative wastewater treatment proposals. The processes described include conventional and advanced treatment units as well as most sludge handling and processing units. Flow sheets, cost…

  11. Impacts of Multiwalled Carbon Nanotubes on Nutrient Removal from Wastewater and Bacterial Community Structure in Activated Sludge

    PubMed Central

    Hai, Reti; Wang, Yulin; Wang, Xiaohui; Du, Zhize; Li, Yuan

    2014-01-01

    Background The increasing use of multiwalled carbon nanotubes (MWCNTs) will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. Aims To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. Methods Three triplicate sequencing batch reactors (SBR) were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. Results Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day) impact on nutrient removal from wastewater. After long-term (180 days) exposure to 1 mg/L MWCNTs, the average total nitrogen (TN) removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs) was increased after long-term exposure to 1 mg/L MWCNTs. Conclusion MWCNTs have adverse effects on biological wastewater nutrient removal, and altered the diversity and structure of bacterial community in activated sludge. PMID:25238404

  12. LAND TREATMENT OF PETROLEUM REFINERY SLUDGES

    EPA Science Inventory

    Petroleum API Separator sludge was applied to field plots to evaluate optimization of loading rates and frequencies for waste disposal by land treatment. Loading rates 3 to 13 weight percent and frequencies 1 to 12, respectively, per year were studied over an 18 month period. Tot...

  13. Large area radiation source for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  14. Recovering and recycling Hg from chlor-alkali plant wastewater sludge

    NASA Astrophysics Data System (ADS)

    Twidwell, L. G.; Thompson, R. J.

    2001-01-01

    Montana Tech of the University of Montana and Universal Dynamics of British Columbia have developed a hydrometallurgical process for recovering and recycling mercury from chlorine plant wastewater sludge materials (U.S. Environmental Protection Agency [EPA]hazardous-waste classification K106). The hydrometallurgical process is also applicable for the treatment of mercury-contaminated soils (EPA hazardous waste classification D009) and other mercury-bearing waste materials. The process, which is capable of lowering the mercury content in the K106 solids from 10% to <50 mg/kg Hg, has been commercialized and utilized at three U.S. plants. This paper describes the fundamental chemistry of the process, the flowsheet being used, and operating plant case histories.

  15. Onsite Wastewater Treatment Systems: Constructed Wetlands 

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    A constructed wetland system for domestic wastewater treatment is designed to mimic the natural wetland treatment process of Mother Nature. This publication explains the treatment, design, operation and maintenance of constructed wetlands....

  16. Quantitative mapping of suspended solids in wastewater sludge plumes in the New York Bight apex

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Duedall, I. W.; Glasgow, R. M.; Proni, J. R.; Nelsen, T. A.

    1977-01-01

    The purpose of this investigation was to apply the previously reported methodology to remotely sensed data that were collected over wastewater sludge plumes in the New York Bight apex on September 22, 1975. Spectral signatures were also determined during this study. These signatures may be useful in the specific identification of sludge plumes, as opposed to other plumes such as those created by the disposal of industrial acid wastes.

  17. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  18. Integrated treatment of molasses distillery wastewater using microfiltration (MF).

    PubMed

    Basu, Subhankar; Mukherjee, Sangeeta; Kaushik, Ankita; Batra, Vidya S; Balakrishnan, Malini

    2015-08-01

    To achieve zero-liquid discharge, high pressure reverse osmosis (RO) of effluent is being employed by molasses based alcohol distilleries. Low pressure and thus less energy intensive microfiltration (MF) is well established for particulate separation but is not suitable for removal of dissolved organics and color. This work investigates two schemes incorporating MF for molasses distillery wastewater (a) chemical coagulation followed by treatment in a membrane bioreactor (MBR) using MF and (b) electrocoagulation followed by MF. The performance was assessed in terms of COD and color reduction; the conversion of the generated sludge into a zeolite desiccant was also examined. A comparison of the schemes indicates electrocoagulation followed by MF through a 0.1 ?m membrane to be most effective. By hydrothermal treatment, electrocoagulated sludge can be transformed into a porous NaX zeolite with a surface area of 86 m(2)/g, which is comparable to commercial desiccants. PMID:25956444

  19. Long-Term Performance of Liter-Scale Microbial Fuel Cells Treating Primary Effluent Installed in a Municipal Wastewater Treatment

    E-print Network

    in a Municipal Wastewater Treatment Facility Fei Zhang, Zheng Ge, Julien Grimaud, Jim Hurst, and Zhen He Information ABSTRACT: Two 4 L tubular microbial fuel cells (MFCs) were installed in a municipal wastewater, low sludge production, and energy recovery from wastes. INTRODUCTION Microbial fuel cells (MFCs) have

  20. Radiofrequency-oxidation treatment of sewage sludge.

    PubMed

    Srinivasan, Asha; Young, Chris; Liao, Ping H; Lo, Kwang V

    2015-12-01

    A novel thermal-chemical treatment technology using radiofrequency heating and oxidants (hydrogen peroxide, ozone and a combination of both) was used for the treatment of sewage sludge. This was to evaluate the process effectiveness on cell disintegration and nutrient release of sludge, physical property changes such as particle size distribution, dewaterability and settleability, and their inter-relationships. The effectiveness of treatment processes was in the following order, from the most to least: thermal-oxidation process, oxidation process and thermal process. The thermal-oxidation process greatly increased cell disintegration and nutrient release, improved settleability, and decreased particle sizes. The treatment scheme involving ozone addition followed by hydrogen peroxide and radiofrequency heating yielded the highest soluble chemical oxygen demand, volatile fatty acids, ammonia and metals, while proffering the shortest capillary suction time and excellent settling properties. PMID:26233925

  1. Innovative sludge stabilization method

    SciTech Connect

    Riggenbach, J.D.

    1995-06-01

    Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

  2. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel Rehim, F.

    2002-11-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD.

  3. APPLIED ISSUES Effects of stream restoration and wastewater treatment

    E-print Network

    Hershey, Anne

    APPLIED ISSUES Effects of stream restoration and wastewater treatment plant effluent on fish downstream of urbanisation, which was impacted by effluent from a wastewater treatment plant (WWTP). Stream, terrestrial versus aquatic food resources, urban streams, wastewater treatment plant influences Introduction

  4. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge.

    PubMed

    Pulicharla, Rama; Das, Ratul Kumar; Brar, Satinder Kaur; Drogui, Patrick; Sarma, Saurabh Jyoti; Verma, Mausam; Surampalli, Rao Y; Valero, Jose R

    2015-11-01

    Complexation of antibiotics with metals is a well-known phenomenon. Wastewater treatment plants contain metals and antibiotics, thus it is essential to know the effect of these complexes on toxicity towards microorganisms, typically present in secondary treatment processes. In this study, stability constants and toxicity of chlortetracycline (CTC) and metal (Ca, Mg, Cu and Cr) complexes were investigated. The calculated stability constants of CTC-metal complexes followed the order: Mg-CTC>Ca-CTC>Cu-CTC>Cr-CTC. Gram positive Bacillus thuringiensis (Bt) and Gram negative Enterobacter aerogenes (Ea) bacteria were used as model microorganisms to evaluate the toxicity of CTC and its metal complexes. CTC-metal complexes were more toxic than the CTC itself for Bt whereas for Ea, CTC and its metal complexes showed similar toxicity. In contrast, CTC spiked wastewater sludge (WWS) did not show any toxic effect compared to synthetic sewage. This study provides evidence that CTC and its metal complexes are toxic to bacteria when they are biologically available. As for WWS, CTC was adsorbed to solid part and was not biologically available to show measurable toxic effects. PMID:26119381

  5. Wastewater Treatment and Reuse Treatment Technology Evaluation and Development

    EPA Science Inventory

    This project will assess the effectiveness of a Biomass Concentrator Reactor (BCR) to remove endocrine disrupting chemicals (EDCs) from wastewater. This technology could provide an alternative to traditional wastewater treatment methods.

  6. On-Site Wastewater Treatment Systems: Aerobic Treatment Unit (Spanish) 

    E-print Network

    Lesikar, Bruce J.; Enciso, Juan

    2000-08-29

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  7. Simultaneous wastewater treatment and biological electricity generation

    E-print Network

    accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize; hydrogen; microbial fuel cell; wastewater Introduction Aerobic treatment technologies continue that electricity could be generated using bacteria in a microbial fuel cell (MFC) (Kim et al., 1999). A MFC

  8. SWINE WASTEWATER TREATMENT IN CONSTRUCTED WETLANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been used extensively around the globe for over three decades to provide municipal and industrial wastewater treatment. Recently, constructed wetland technology has been used to provide more effective and socially acceptable methods for treatment of swine wastewater. They h...

  9. Microwave oxidation treatment of sewage sludge.

    PubMed

    Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam

    2015-01-01

    Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols. PMID:26030695

  10. Primary Treatment and Sludge Digestion Workshop.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to upgrade the knowledge of experienced wastewater treatment plant operators. Each of the sixteen lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: sewage characteristics;…

  11. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  12. Onsite Wastewater Treatment Systems: Understanding and Maintaining your Septic System 

    E-print Network

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23

    your septic system L-5491 9-08 Figure 1: Components of an on-site wastewater treatment system. Onsite wastewater treatment systems Well 1. Wastewater source 2. Collection and storage 3. Pretreatment Groundwater 4. Final treatment and dispersal P... roper operation and maintenance of your wastewater treatment system is critical for its performance. Taking proper care of your system also: components; and final treatment and dispersal components. Wastewater source The wastewater source...

  13. Treatment of coke plant wastewaters in packed bed reactors

    SciTech Connect

    Olthof, M.; Oleszkiewicz, J.; O'Donnell, W.R.

    1982-01-01

    The work presented in this paper describes the results of a treatability study of wastewaters originating from a benzol plant in an upflow biotower (UBT). The wastewater constituents are the same as for coke oven wastewater, except that most of the constituents are present in some-what lower concentrations. The biotower used in this study is a biological treatment process developed by the Leopold Company and operates more or less like a reversed flow trickling filter. The tower is packed with random plastic medium, the influent flows upward and air is supplied by aeration through a filter underdrain system. This paper will present the results of the treatability of benzol plant wastewater in this reactor. The main purpose of this study was to determine the loading at which the phenol was virtually completely removed from the influent. The data obtained in this study will be compared with studies performed by other researchers with similar wastewater in activated sludge and with other types of fixed film reactors.

  14. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges.

    PubMed

    Boyle, N J; Evans, G M

    2013-01-01

    The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2-4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be sourced for a low cost. PMID:23656957

  15. Treatment of a steel works effluent with a conventional single-sludge system built in cascades

    SciTech Connect

    Zacharias, B.; Kayser, R.

    1996-11-01

    Wastewater from steel producing plants or from cokery facilities contains a lot of substances like phenols or cyanides which need to be degraded. The requirements on the effluent quality have increased during the last years. Besides the elimination of the organic pollutants, of free cyanide, and of heavy metals, low concentrations of inorganic nitrogen in the effluent are required. Besides the elimination of the pollutants, the security in performance is an important requirement for a wastewater treatment plant treating steel works effluent. In this study, the authors concentrated on the treatment of the complete wastewater stream of a steel work instead of cleaning single streams in order to minimize high peak concentrations of inhibitory substances in the influent. Moreover, wastewater from diffuse sources is gathered and lead to the complete stream and these pollutants are treated as well. Treatment was achieved in a single-sludge system built in cascades. Because of the very low nitrogen concentrations in the effluent required by the controlling authorities, a post-denitrification step was mandatory. The only choices were a single-sludge or at least a three-sludge system. Of these, the first one was favored.

  16. Metagenomic Profiling of Antibiotic Resistance Genes and Mobile Genetic Elements in a Tannery Wastewater Treatment Plant

    PubMed Central

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns. PMID:24098424

  17. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of organic molecules that may cause changes in the physical structure or the surface characteristic of the material.

  18. Petroleum refinery stripped sour water treatment using the activated sludge process.

    PubMed

    Merlo, Rion; Gerhardt, Matthew B; Burlingham, Fran; De Las Casas, Carla; Gill, Everett; Flippin, T Houston

    2011-11-01

    A pilot study was performed over 91 days to determine if the activated sludge process could treat a segregated stripped sour water (SSW) stream from a petroleum refinery. The study was performed in two periods. The first period was terminated after 19 days, as a result of excessive sludge bulking. The elimination of sludge bulking during the 70-day second period is attributed to operational changes, which included aerating the influent to oxidize reduced sulfur, adjusting the influent pH, and adding micronutrients to satisfy biological requirements. The pilot plant provided a chemical oxygen demand (COD) removal of up to 93%. Nitrification was achieved, with effluent ammonia values < 1 mg-N/L. These results indicate that direct treatment of SSW with the activated sludge process is possible and has direct application to full-scale petroleum refinery wastewater plant upgrades. PMID:22195429

  19. EMISSION OF METALS AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS - VOLUME I: SUMMARY REPORT

    EPA Science Inventory

    Emissions of metals and organics from a series of four wastewater sludge incinerators were determined. hree multiple hearth units and one fluidized bed combustor were tested. missions were controlled with a combination of venturi and/or tray impingement scrubbers. ne site incorpo...

  20. THERMAL CONVERSION OF MUNICIPAL WASTEWATER SLUDGE, PHASE II: STUDY OF HEAVY METAL EMISSIONS

    EPA Science Inventory

    The object of this work was to compare and analyze heavy metal emissions associated with the thermal conversion (incineration) processes which can be conducted in a multiple-hearth furnace to dry municipal wastewater (sewage) sludge and reduce its volume by forming an ash or char...

  1. Wastewater Treatment and Energy Production in Environmental Engineering

    E-print Network

    Zhou, Chongwu

    Wastewater Treatment and Energy Production in Environmental Engineering Introduction Management of domestic wastewater and other high-strength waste streams (e.g., food waste) is critical for environmental · environmental pollution Civil Engineering: · municipal wastewater treatment · water recycling Physics

  2. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  3. Environmental and cost life cycle assessment of disinfection options for municipal wastewater treatment

    EPA Science Inventory

    This document summarizes the data collection, analysis, and results for a base case wastewater treatment (WWT) plant reference model. The base case is modeled after the Metropolitan Sewer District of Greater Cincinnati (MSDGC) Mill Creek Plant. The plant has an activated sludge s...

  4. Jar Test. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    The jar test is used to determine the proper chemical dosage required for good coagulation and flocculation of water. The test is commonly used in potable water, secondary effluent prior to advanced wastewater treatment, secondary clarifier influent, and sludge conditioning practice. Designed for individuals who have completed National Pollutant…

  5. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; R?ziciková, H; Vránová, A

    2003-01-01

    The study is focused on the comparison of autothermal thermophilic aerobic digestion, thermophilic and mesophilic anaerobic digestion, based on long-term monitoring of all processes in full-scale wastewater treatment plants, with an emphasis on the efficiency in destroying pathogens. The hygienisation effect was evaluated as a removal of counts of indicator bacteria, thermotolerant coliforms and enterococci as CFU/g total sludge solids and a frequency of a positive Salmonella spp. detection. Both thermophilic technologies of municipal wastewater sludge stabilisation had the capability of producing sludge A biosolids suitable for agricultural land application when all operational parameters (mainly temperature, mixing and retention time) were stable and maintained at an appropriate level. PMID:12639021

  6. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. PMID:20570506

  7. When Research Turns to Sludge

    ERIC Educational Resources Information Center

    Wing, Steve

    2010-01-01

    Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as bacteria and…

  8. Biodegradation of phytosanitary products in biological wastewater treatment.

    PubMed

    Massot, A; Estève, K; Noilet, P; Méoule, C; Poupot, C; Mietton-Peuchot, M

    2012-04-15

    Agricultural activity generates two types of waste: firstly, biodegradable organic effluents generally treated by biological processes and, secondly, phytosanitary effluents which contain residues of plant protection products. The latter are collected and treated. Current technological solutions are essentially based on concentration or physical-chemical processes. However, recent improvements in the biodegradability of pesticides open the way to the consideration of alternative, biological, treatment using mixed liquor from wastewater plant activated sludge. The feasibility of the biological treatment of viticultural effluents has been evaluated by the application of pesticides to activated sludge. The necessity for selection of a pesticide-resistant biomass has been highlighted. The elimination of the phytosanitary products shows the potential of a resistant biomass in the treatment of pesticides. The aerated biological storage ponds at three wineries, followed by a sand or reed-bed filter, were used for the treatment of the total annual volume of the viticulture effluents and validate the laboratory experiments. The results show that the biological purification of pesticides by activated sludge is possible by allowing approximately 8 days for biomass adaptation. Stability of purification occurs between 20 and 30 days. PMID:22284913

  9. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent. PMID:26362530

  10. TOTAL ENERGY CONSUMPTION FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    Quantities of all forms of energy consumed for collection and treatment of municipal wastewater are estimated. Heat energy is equated to electrical energy by a conversion factor of 10,500 Btu/kwh. Total energy consumption, expressed as kwh/mg of wastewater treated, ranges from 23...

  11. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  12. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl? as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. PMID:24907577

  13. Overcoming the toxicity effects of municipal wastewater sludge and biosolid extracts in the Yeast Estrogen Screen (YES) assay.

    PubMed

    Citulski, Joel; Farahbakhsh, Khosrow

    2012-04-01

    For nearly two decades, the Yeast Estrogen Screen (YES) has been used as a valuable tool for determining the total estrogenic potency of various environmental samples, including influent and effluent streams at municipal wastewater plants. However, applying the YES assay to wastewater sludges and stabilized biosolids has been problematic. This is due to co-extracted compounds from the solids either proving toxic to the yeast or masking the presence of estrogenic substances. The present research describes the development and validation of sample preparation steps that mitigate the toxicity effects of municipal wastewater sludge and biosolid samples in the YES assay, while allowing for reliable dose-dependent expression of estrogenic activity. A copper work-up for sulfur removal and chromatographic cleanup with silica and alumina were required in addition to solid-phase extraction to adequately remove interfering compounds. Sample stabilization methods such as autoclaving, lyophilization and formaldehyde treatment were found to be detrimental to the assay. Hence, heat-drying is recommended to prevent cytotoxicity and the degradation of estrogenic substances. PMID:22277884

  14. Short Communication Electricity generation from fermented primary sludge using single-chamber

    E-print Network

    significantly reduce the total costs for wastewater treatment. Sludge collected from WWTPs often contains high levels of organics, with $66% of the energy content of the wastewater stored in the primary sludge (Ting wastewater sludge too low to be practical (Min et al., 2005; Ting and Lee, 2007). Anaerobic digestion

  15. INACTIVATION OF ENTERIC PATHOGENS DURING AEROBIC DIGESTION OF WASTEWATER SLUDGE

    EPA Science Inventory

    The effects of aerobic and anaerobic digestion on enteric viruses, enteric bacteria, total aerobic bacteria, and intestinal parasites were studied under laboratory and field conditions. Under laboratory conditions, the temperature of the sludge digestion was the major factor infl...

  16. Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics.

    PubMed

    Meerburg, Francis A; Boon, Nico; Van Winckel, Tim; Vercamer, Jensen A R; Nopens, Ingmar; Vlaeminck, Siegfried E

    2015-03-01

    The conventional activated sludge process is widely used for wastewater treatment, but to progress toward energy self-sufficiency, the wastewater treatment scheme needs to radically improve energy balances. We developed a high-rate contact stabilization (HiCS) reactor system at high sludge-specific loading rates (>2 kg bCOD kg(-1)TSS d(-1)) and low sludge retention times (<1.2 d) and demonstrate that it is able to recover more chemical energy from wastewater organics than high-rate conventional activated sludge (HiCAS) and the low-rate variants of HiCS and HiCAS. The best HiCS system recovered 36% of the influent chemical energy as methane, due to the combined effects of low production of CO2, high sludge yield, and high methane yield of the produced sludge. The HiCS system imposed a feast-famine cycle and a putative selection pressure on the sludge micro-organisms toward substrate adsorption and storage. Given further optimization, it is a promising process for energy recovery from wastewater. PMID:25553568

  17. OCCURRENCE OF PATHOGENS IN MUNICIPAL WASTEWATER AND THEIR SURVIVAL DURING WASTEWATER TREATMENT

    EPA Science Inventory

    Pathogens can enter municipal wastewaters from several sources including homes, hospitals and slaughter houses. They are identified, typical levels found in sludges are given along with infectious doses, and their survival on crops and in the soil presented. As wastewater is clea...

  18. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  19. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. PMID:25616115

  20. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  1. Onsite Wastewater Treatment Systems: Sand Filters 

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  2. RAPID INFILTRATION WASTEWATER TREATMENT FOR SMALL COMMUNITIES

    EPA Science Inventory

    Rapid infiltration treatment performance of three infiltration basins receiving primary treated municipal wastewater is evaluated for optimum total nitrogen control using a series of manual operational techniques and by remote control computer operation of a sprinkler system. Thr...

  3. Influence of wastewater-treatment effluent on

    E-print Network

    of treated effluents from wastewater-treatment plants (WWTPs) will increasingly affect the chemical EAR-0139135 and EAR-0116487 from the National Science Foundation, and funds from Furman University. We

  4. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  5. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  6. NITRIFICATION AND DENITRIFICATION FACILITIES: WASTEWATER TREATMENT

    EPA Science Inventory

    The publication explains the phenomenon of nitrification and denitrification in wastewater treatment. Studies on the significance of nitrogenous oxidation (NOD) in creating oxygen sag in receiving streams and other studies showing the role of ammonia and nitrogen compounds in sti...

  7. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  8. Wastewater treatment: Dye and pigment industry. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning treatment of wastewater containing dyes and pigments. The citations discuss the of dyes and pigments in wastewater treatment systems, biodegradation of dyes, absorption and adsorption processes to remove dyes from wastewater, environmental effects from the disposal of dye-containing wastes, and methods of analysis for dyes in waste streams. Treatment methods such as ozonation, reverse osmosis, activated charcoal filtration, activated sludge, electrochemical treatments, thermal treatments, simple filtration, and absorption media are included. (Contains a minimum of 112 citations and includes a subject term index and title list.)

  9. Carbon footprint of four different wastewater treatment scenarios

    NASA Astrophysics Data System (ADS)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are 97% lower compared to other anthropogenic sources like the public transport sector. The innovative sanitation scenarios were found to cause less environmental burden in terms of energy and GHGs. Nevertheless, to ensure a positive impact of these treatment systems, an optimum biogas reuse (for the production of electricity and heat), the source separation of human excreta (to disburden the wastewater treatment processes) should be introduced to reduce their GHG emissions. Keywords: Carbon dioxide, greenhouse gases, methane, wastewater treatment technologies.

  10. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Micha?; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. PMID:25113994

  11. Response of a sludge-minimizing lab-scale BNR reactor when the operation is changed to real primary effluent from synthetic wastewater.

    PubMed

    Huang, Pei; Goel, Ramesh

    2015-09-15

    The activated sludge process is the most widely used treatment method for municipal wastewater. However, the excessive amount of biomass generated during the process is a major drawback. Earlier studies using the activated sludge process running in a biomass fasting and feasting mode demonstrated both nutrient removal and a minimization of biomass production. However, these studies were conducted using synthetic wastewater. In this study, we report findings from a lab-scale sludge-minimizing biological nutrient removing (BNR) reactor when its operation was changed from synthetic to real wastewater (primary effluent). Two lab-scale sequencing batch reactors, one in sludge minimization mode (hereafter called modified-SBR), and the other in conventional activated sludge mode (referred as control-SBR), were operated for more than 300 days. Both reactors were started and operated with synthetic feed. Gradually the feed to both reactors was changed to 100% primary effluent collected from a local full-scale wastewater treatment plant. Irrespective of the feed composition, more than 98% NH3-N removal was recorded in both SBRs. However, while 89% of the total dissolved phosphorus was removed from the 100% synthetic feed, only 80% of the total dissolved phosphorus was removed from the 100% primary effluent in both SBRs. The overall observed sludge reduction in the modified-SBR as compared to the control-SBR also decreased from 65% to 39% when the feed was changed from 100% synthetic to 100% primary effluent. The specific oxygen uptake rate for the modified-SBR was 80% higher than that for the control-SBR when the SBRs were fed with primary effluent wastewater. The modified-SBR showed a greater diversity of ammonia-oxidizing bacteria (AOBs) with synthetic wastewater as well as during the transition period than the control-SBR. Yet when the reactors were running on 100% real wastewater, only Nitrosomonas europaea/eutropha were identified in both SBRs. The nitrite-oxidizing bacterial community and the polyphosphate accumulating organisms (PAOs) responded in a similar way in both SBRs. PMID:26086148

  12. Effects of wastewater sludge and its detergents on the stability of rotavirus

    SciTech Connect

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus. The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus were greatly altered by changes in the pH of the medium.

  13. Treatment and Disposal of Unanticipated 'Scavenger' Wastewater

    SciTech Connect

    Payne, W.L.

    2003-09-15

    The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

  14. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities.

    PubMed

    Oshita, Kazuyuki; Okumura, Takuya; Takaoka, Masaki; Fujimori, Takashi; Appels, Lise; Dewil, Raf

    2014-11-01

    Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509±72 mg/m(3)-influent (wastewater) and 7.1±2.6 mg/m(3)-influent, respectively. These values accounted for 22.4±3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant. PMID:25194911

  15. Treatment of Wood Preserving Wastewater 

    E-print Network

    Reynolds, T. D.; Shack, P. A.

    1976-01-01

    The wastewater produced by the wood preserving industry presents a difficult problem to treat economically. A review of the literature indicates the size of the industry has limited the pursuit of an orderly and economic solution. Atmospheric...

  16. Biological flocculation treatment on distillery wastewater and recirculation of wastewater.

    PubMed

    Zhang, Wen; Xiong, Rongchun; Wei, Gang

    2009-12-30

    In the present study, a wastewater treatment system for the ethanol fermentation industry was developed by recycling distillery wastewater. The waste was able to be recycled for the next fermentation after being treated with bio-flocculation process. The bio-flocculation process contains three steps: screening, treatment with polyaspartic acid and filtration. When the filtrate from this process was recycled, the average ethanol production yield was very close to that in the conventional process using tap water. In contrast, the recycle of wastewater without flocculation and with chemical flocculation showed negative effects on ethanol yield as recycling was repeated. This new process was confirmed to have stable operation over ten recycles. Hazardous materials influencing distillery wastewater recycles on fermentation were also considered. It was found that the content of suspended solids (SS), volatile acid and Fe ions inhibited fermentation and resulted in a decreased ethanol yield. Bio-flocculation was shown to be an effective way to diminish the content of inhibitory compounds drastically when the waste was recirculated. PMID:19717237

  17. Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment

    PubMed Central

    2008-01-01

    Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (?), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol?water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, ? and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497

  18. 40 CFR 268.40 - Applicability of treatment standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...0566.0 1,2,4-Trichlorobenzene120-82-10.05519K151 Wastewater treatment sludges, excluding neutralization and biological sludges, generated during the treatment of wastewaters from the production of alpha- or...

  19. Giardia Cysts in Wastewater Treatment Plants in Italy

    PubMed Central

    Cacciò, Simone M.; De Giacomo, Marzia; Aulicino, Francesca A.; Pozio, Edoardo

    2003-01-01

    Reductions in annual rainfall in some regions and increased human consumption have caused a shortage of water resources at the global level. The recycling of treated wastewaters has been suggested for certain domestic, industrial, and agricultural activities. The importance of microbiological and parasitological criteria for recycled water has been repeatedly emphasized. Among water-borne pathogens, protozoa of the genera Giardia and Cryptosporidium are known to be highly resistant to water treatment procedures and to cause outbreaks through contaminated raw or treated water. We conducted an investigation in four wastewater treatment plants in Italy by sampling wastewater at each stage of the treatment process over the course of 1 year. The presence of the parasites was assessed by immunofluorescence with monoclonal antibodies. While Cryptosporidium oocysts were rarely observed, Giardia cysts were detected in all samples throughout the year, with peaks observed in autumn and winter. The overall removal efficiency of cysts in the treatment plants ranged from 87.0 to 98.4%. The removal efficiency in the number of cysts was significantly higher when the secondary treatment consisted of active oxidation with O2 and sedimentation instead of activated sludge and sedimentation (94.5% versus 72.1 to 88.0%; P = 0.05, analysis of variance). To characterize the cysts at the molecular level, the ?-giardin gene was PCR amplified, and the products were sequenced or analyzed by restriction. Cysts were typed as assemblage A or B, both of which are human pathogens, stressing the potential risk associated with the reuse of wastewater. PMID:12788741

  20. SUMMARY REPORT: IN-VESSEL COMPOSTING OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This 177-page Technology Transfer Summary Report highlights design and operating considerations for possible incorporation into future in-vessel and other sludge composting systems. It is not meant to single out one design as superior to another. The document also aims to heighte...

  1. Sludge Treatment Evaluation: 1992 Technical progress

    SciTech Connect

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  2. Membrane bioreactors for winery wastewater treatment: case-studies at full scale.

    PubMed

    Guglielmi, G; Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The membrane bioreactor technology (MBR) is nowadays a suitable alternative for winery wastewater treatment, thanks to low footprint, complete suspended solids removal, high efficiency in COD abatement and quick start-up. In this paper, data from two full-scale MBRs equipped with flat-sheet membranes (plant A and plant B) are presented and discussed. COD characterisation by respirometry pointed out the high biodegradability degree of both wastewater, with a strong prevalence of the readily biodegradable fraction. An extended version of Activated Sludge Model No. 3 was used to fit the experimental OUR profiles and to assess the maximum growth rate of heterotrophic biomass on sludge samples collected at both sites; the stoichiometric yield coefficients were also calculated. Sludge filterability and dewaterability were investigated with batch tests; laboratory results confirmed the field observations. Finally, some considerations are listed, aimed at defining possible key-issues for optimal process design and operation. PMID:19717906

  3. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    SciTech Connect

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-26

    Technologies are being developed by the US Department of Energy`s (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory`s (ORNL) West End Treatment Facility`s (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid.

  4. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    PubMed

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-06-29

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint. PMID:24980032

  5. Oxidation pond for municipal wastewater treatment

    NASA Astrophysics Data System (ADS)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2015-04-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  6. A review of organic UV-filters in wastewater treatment plants.

    PubMed

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2016-01-01

    UV-filters are a group of compounds which have been massively used in the past years due to the recent concerns with sunburns, premature skin ageing and the risk of developing skin cancer, related to sun exposure. At the moment, these compounds have been identified by the scientific community as emerging pollutants, due to their persistence in the environment, potential to accumulate in biota and potential threat as endocrine disruptors. At some point, the majority of sunscreens will find their way into wastewater (due to bathing and washing activities) and because wastewater treatment plants (WWTPs) are not able to remove and/or degrade them, consequently they find their way into rivers, lakes and ocean, so it is not surprising that UV-filters are found in the environment. Therefore, wastewater treatment plants should be the focus of the scientific community aiming to better understand the fate of the UV-filters and develop new technologies to remove them from wastewater and sludge. This review, aims to provide the current state of the art in the occurrence and fate of UV-filters in wastewater treatment plants and how the technologies that are being used are successfully removing these compounds from both wastewater and sludge. PMID:26479831

  7. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  8. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  9. Sludge Lagoons. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson describes three different types of sludge lagoons: (1) drying lagoons; (2) facultative lagoons; and (3) anaerobic lagoons. Normal operating sequence and equipment are also described. The lesson is designed to be used in sequence with the complete Sludge Treatment and Disposal Course #166 or as an independent lesson. The instructor's…

  10. Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxidation

    SciTech Connect

    Goto, Motonobu; Nada, Takatsugu; Kodama, Akio; Hirose, Tsutomu

    1999-05-01

    Supercritical water oxidation was applied to the destruction of municipal excess sewage sludge and alcohol distillery wastewater of molasses. The reaction was carried out in a batch reactor with hydrogen peroxide as an oxidant in the temperature range 673--773 K. Total organic carbon was measured as a function of reaction time. The dynamic data were analyzed by a first-order reaction model. The reaction rate constant coincides with those reported in the literature.

  11. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-01

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 ?g/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents. PMID:25850668

  12. Thermal conversion of municipal wastewater sludge. Phase 2: Study of heavy metal emissions

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Heavy metal emissions associated with the thermal conversion (incineration) processes which can be conducted in a multiple hearth furnace to dry municipal wastewater (sewage) sludge and reduce its volume by forming an ash or char were analyzed. Sludge for this project was obtained from Jersey City, New Jersey. It contains about 8 percent solids which were increased to between 40 and 50 percent solid by adding polymer as a filter aid and filtering it in a 16 sp ft pilot filter press having expandable rubber diaphragm plates. A pilot scale multiple hearth furnace was used for the thermal conversion process. Sludge was subjected to thermal conversion of the conditions: incineration at 900 C (1625 F); low temperature conversion at 700 C (1290 F) (starved combustion for pyrolysis; and high temperature conversion at 900 C (1290 F) (starved combustion or pyrolysis).

  13. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  14. Spatial changes in carbon and nitrogen stable isotope ratios of sludge and associated organisms in a biological sewage treatment system.

    PubMed

    Onodera, Takashi; Kanaya, Gen; Syutsubo, Kazuaki; Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    Carbon and nitrogen stable isotope ratios (?¹³C and ?¹?N) have been utilized as powerful tools for tracing energy or material flows within food webs in a range of environmental studies. However, the techniques have rarely been applied to the study of biological wastewater treatment technologies. We report on the spatial changes in ?¹³C and ?¹?N in sludge and its associated biotic community in a wastewater treatment system. This system consisted of an upflow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) which is a novel type of trickling filter. The results showed clear spatial changes in the ?¹³C and ?¹?N of suspended solids (SS), retained sludge, and macrofauna (oligochaetes and fly larvae) in the system. The ?¹³C and ?¹?N was used as a natural tracer to determine the SS dynamic throughout the system. The results imply that SS in the DHS effluent was mainly eluted from the retained sludge in the lower section of the DHS reactor. The ?¹?N of the retained sludge in the DHS reactor increased drastically from the inlet towards to the outlet, from -0.7‰ to 10.3‰. This phenomenon may be attributed to nitrogen conversion processes (i.e. nitrification and denitrification). The ?¹?N of oligochaetes also increased from the inlet to the outlet, which corresponded well to that of the retained sludge. Thus, the ?¹?N of the oligochaetes might simply mirror the ?¹?N of the retained sludge. On the other hand, the ?¹³C and ?¹?N of sympatric fly larvae differed from those of the oligochaetes sampled, indicating dietary differences between the taxa. Therefore ?¹³C and ?¹?N reflected both treatment and dietary characteristics. We concluded that ?¹³C and ?¹?N values are potentially useful as alternative indicators for investigating microbial ecosystems and treatment characteristics of biological wastewater treatment systems. PMID:25462745

  15. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    PubMed Central

    2013-01-01

    Background Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities. PMID:23497481

  16. Wastewater treatment gallons of success

    SciTech Connect

    Lindstrom, K.

    1993-03-01

    It has been over 20 years since the enactment of the Clean Water Act. Billions of dollars have been spent to upgrade sewer and wastewater management systems by industry and local governments to abate and prevent water pollution problems. Several accomplishments on remediation and pollution control activities are discussed.

  17. Emergency Planning for Municipal Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  18. The reuse of biosludge as an adsorbent from a petrochemical wastewater treatment plant.

    PubMed

    Chiang, Hung-Lung; Choa, Ching-Guan; Chen, Shih-Yu; Tsai, Mu-Chuan

    2003-09-01

    Biosludge was obtained from a petrochemical industry's biological wastewater treatment plant. Zinc chloride (ZnCl2) was used as a sludge activation agent during the pyrolytic process. Scanning electron microscope (SEM) image photographs, element composition, surface functional group, and pore structure were analyzed for the sludge adsorbent characteristics. Results indicated the proper ZnCl2-immersed concentration, pyrolytic temperature, and time could produce adsorbent from the biosludge. The optimal conditions for a larger surface area adsorbent were 3 M ZnCl2-immersed sludge pyrolyzed at 600 degrees C for 30 min and washed with 3 N hydrochloric acid (HCl) solution and distilled water. The predominant pore size of the sludge adsorbent was the mesopore. PMID:13678362

  19. Biological treatment of full-strength coke plant wastewater at Geneva Steel

    SciTech Connect

    Shaw, K.C. )

    1993-08-01

    Removal of ammonia from wastewater is fast becoming a major issue for both industrial and municipal dischargers. Geneva Steel, spurred by changes in both air and water regulations, recently installed an innovative biological wastewater treatment plant for high-strength coke plant wastewater. Wastewater containing ammonia concentrations over 3,000 ppm, chemical oxygen demand (COD) of 8,000 ppm and high cyanide, thiocyanate, phenol and other organic compounds is biologically treated to comply with EPA's Best Available Treatment (BAT) standards. Start-up and operation of the plant showed that proper influent equalization as well as careful control of reactor temperature, dissolved oxygen, pH and solids inventory will result in an effluent with ammonia concentrations below 10 ppm, COD's below 600 ppm, negligible phenol and thiocyanate concentrations, and organic loadings well below BAT requirements. It was also shown that nitrification and denitrification can take place in a single continuous flow reactor with only one sludge. This single-sludge treatment process has significant economic and operational benefits over conventional coke plant wastewater treatment processes.

  20. Industrial wastewater treatment with water reuse at a coal-fired generating station

    SciTech Connect

    Wagner, J.F.; Kertell, C.R.; Strittmatter, T.E.

    1984-08-01

    This is a case history of an industrial wastewater treatment system at a 200 MW coal-fired generating station built in the early 1920's. Wastewater treatment facilities were constructed in 1979 to treat low volume wastes, coal pile runoff, and ash handling wastes to comply with existing and proposed regulatory requirements. A new ash handling system was constructed simultaneously and included fly ash handling, bottom ash dewatering binds, and bottom ash recycling from the waste treatment system effluent. Collecting and combining various wastewater streams and clarifier sludge handling are discussed. The treatment systems include neutralization with lime slurry, polymer addition, and clarification. The treatment system has been operating in compliance with regulatory criteria since September 1980. 4 figures, 4 tables.

  1. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

  2. Heavy metal immobilization during the codisposal of municipal solid waste bottom ash and wastewater sludges

    SciTech Connect

    Eighmy, T.T.; Guay, M.A.; McHugh, S.; Kinner, N.E.; Ballestero, T.P. )

    1988-01-01

    One of the problems attendant to the incineration of municipal solid waste (MSW) is the siting and design of secure landfills to receive combustion residues from the incineration process. The authors have completed a study for a solid waste cooperative that was interested in codisposing MSW bottom ash and wastewater sludges. This codisposal scheme was initiated to address severe ash disposal problems within the Lamprey Regional Solid Waste Cooperative, and a severe sludge disposal problem in the City of Somersworth, NH, a member of the Cooperative and host city to the proposed codisposal site. The design of the landfill indicated that mixtures of bottom ash and combined sludges would range between 10:1 and 5:1 (by volume). An assessment of the leachate characteristics over time was required to address issues of pretreatment requirements, groundwater monitoring, and the potential sequestration and mobilization of heavy metals from the ash by organic ligands present in the sludge. This paper focuses on the biogeochemical conditions in the ash/sludge matrix that are conductive to the immobilization of heavy metals within the matrix via sulfide or polysulfide precipitation.

  3. Applications of nanotechnology in water and wastewater treatment

    E-print Network

    Alvarez, Pedro J.

    Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez and wastewater treatment Water reuse Sorption Membrane processes Photocatalysis Disinfection Microbial control. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

  4. NUMERICAL SIMULATION OF AERATED SLUDGE COMPOSTING

    EPA Science Inventory

    This report describes development of a time-dependent computerized model for composting of wastewater treatment plant sludge with forced aeration of the pile. The work was undertaken because, in the past, development of the composting process for wastewater sludge has been almost...

  5. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewater treatment

    SciTech Connect

    Bishop, P.L.; Wu, Q.; Keener, T.; Zhuang, L.A.; Gurusamy, R.; Pehkonen, S.

    1999-07-01

    Magnesium hydroxide, reclaimed from the flue gas desulfurization system (FGD) at the Zimmer Power Plant, Cincinnati, Ohio, is a weak base, in the form of either a slurry or powder. It has many potential applications for wastewater treatment. The objectives of this research are (1) to characterize the reclaimed magnesium hydroxide, e.g., purity, particle size distribution, dissolution kinetics; (2) to evaluate neutralization capacity and buffering intensity of the reclaimed magnesium hydroxide; (3) to study the efficacy of the reclaimed magnesium hydroxide for nutrient removal in wastewater treatment processes; (4) to investigate whether and how the magnesium hydroxide influences the characteristics of the activated sludge floc; (5) to determine whether magnesium hydroxide improves the anaerobic sludge digestion process and associated mechanisms; and (6) to conduct a cost-benefit analysis for the application of the reclaimed magnesium hydroxide in wastewater treatment and the possibility of marketing this product. Research results to date show that the purity of the reclaimed magnesium hydroxide depends largely on the recovery hydroxide slurry. This product proved to be very effective for wastewater neutralization, compared with other commonly used chemicals, both for its neutralization capacity and its buffering intensity. Due to its relatively low solubility in water and its particle size distribution characteristics, magnesium hydroxide behaves like a weak base, which will be very beneficial for process control. The authors also found that nitrogen and phosphorus could be removed from the wastewater using magnesium hydroxide due to their complexation and precipitation as magnesium ammonium phosphate (struvite). Magnesium hydroxide also greatly enhanced the settleability of the activated sludge. Intensive research on the mechanisms associated with these phenomena reveals that sweep flocculation and magnesium ion bridging between exopolymeric substances (EPS) of the microorganisms are the major contributing factors. Extensive research on the effects of magnesium hydroxide on anaerobic sludge digestion is still underway.

  6. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal.

    PubMed

    Zhang, Chao; Chen, Yinguang

    2009-08-15

    Recently, waste activated sludge (WAS) fermentation for short-chain fatty acids (SCFAs) production has drawn much attention because the waste biosolids produced in wastewater treatment plants (WWTP) can be reused, and the produced SCFAs can be applied to promote biological nutrient removal (BNR). Usually, after WAS fermentation, the fermentation liquid is separated and then the recovery of ammonium and phosphorus, which are released during WAS fermentation, is conducted to prevent the increase of nitrogen and phosphorus loadings to WWTP. As an alternative to the traditional process, this paper investigated the recovery of ammonium and phosphorus in the formation of struvite before sludge-liquid separation, and its positive effecton the following sludge-liquid filtration separation. First, the conditions for ammonium and phosphorus recovery from the WAS fermentation mixture were optimized by response surface methodology (RSM). Then, the effect of ammonium and phosphorus recovery on sludge filtration dewatering was investigated. With ammonium and phosphorus recovery, it was observed that the specific resistance to filtration (SRF), the capillary suction time (CST), and the sludge volume after filtration reduced by 96.9, 99.6, and 88.7%, respectively, compared with no ammonium and phosphorus recovered sludge. Third, the mechanisms for ammonium and phosphorus recovery significantly enhancing sludge dewatering capacity were investigated. The formation of struvite, the neutralization of 5 potential, the increase of magnesium ion, which was added during ammonium and phosphorus recovery, and the decrease of sludge polymeric substance caused the improvement of sludge dewatering. Finally, the fermentation liquid was used as the additional carbon source of BNR, and the nutrient removal efficiency was obviously enhanced. PMID:19746708

  7. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    PubMed

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China. PMID:25929069

  8. Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing

    NASA Technical Reports Server (NTRS)

    Pagoria, P. S.; Kuo, C. Y.

    1979-01-01

    Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features.

  9. Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed 

    E-print Network

    Forbis-Stokes, Aaron

    2012-10-19

    Onsite wastewater treatment systems (OWTSs) are a commonly used means of wastewater treatment in the Dickinson Bayou watershed which is located between Houston and Galveston. The Dickinson Bayou is classified as "impaired" by the Texas Commission...

  10. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67µgL(-1) to 150µgL(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980ngg(-1)dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. PMID:26540311

  11. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    SciTech Connect

    Cline, J.E.; Sullivan, P.F.; Lovejoy, M.A.; Collier, J.; Adams, C.D.

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  12. Energy efficiency in municipal wastewater treatment plants: Technology assessment

    SciTech Connect

    1995-11-01

    The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

  13. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment.

    PubMed

    Arvaniti, Olga S; Stasinakis, Athanasios S

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4-C14, C16, C18 carboxylates; C4-C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and anaerobic bioreactors and result to PFCs formation and on the application of advanced treatment technologies under conditions commonly found in STPs. PMID:25889547

  14. Anaerobic treatment of an electronics manufacturing glycol solvent wastewater

    SciTech Connect

    Morris, J.W.; Vegt, A.L. de; Burke, M.A.

    1996-11-01

    Sprague Sanford, Inc. is a manufacturer of electronic components in southern Maine. Part of their process requires the use of ethylene glycol. Sprague wanted a new system to dependably address this waste stream while avoiding the high costs and uncertainty they were facing. A characterization study revealed that approximately 100 gallons per day at 350,000 mg COD/L needed to be handled by the new system. Nearly all of the COD present was as waste ethylene glycol solvent. However, product quality concerns made recovery and reuse of this waste stream too difficult. A wastewater treatment technology screening and economic analysis indicated that the upflow anaerobic sludge blanket process (UASB) was well suited for this application. This paper describes the UASB system, initial start-up, initial results and problems, potential causes, corrective actions, restart of the system, and current performance results.

  15. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant?

    PubMed Central

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  16. Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge.

    PubMed

    Huang, Rixiang; Tang, Yuanzhi

    2015-12-15

    (Hydro)thermal treatments of sewage sludge from wastewater treatment process can significantly reduce waste volume and transform sludge into valuable products such as pyrochar and hydrochar. Given the global concern with phosphorus (P) resource depletion, P recycling/reclamation from or direct soil application of the derived chars can be potential P recycling practices. In order to evaluate P recyclability as well as the selection and optimization of treatment techniques, it is critical to understand the effects of different treatment techniques and conditions on P speciation and distribution. In the present study, we systematically characterized P speciation in chars derived from thermal (i.e., pyrolysis) and hydrothermal treatments of municipal sewage sludge using complementary chemical extraction and nuclear magnetic resonance (NMR) spectroscopy methods. P species in the raw activated sludge was dominated by orthophosphate and long-chain polyphosphates, whereas increased amounts of pyrophosphate and short-chain polyphosphates formed after pyrolysis at 250-600 °C. In contrast, hydrothermal treatments resulted in the production of only inorganic orthophosphate in the hydrochar. In addition to the change of molecular speciation, thermal treatments also altered the physical state and extractability of different P species in the pyrochars from pyrolysis, with both total P and polyphosphate being less extractable with increasing pyrolysis temperature. Results from this study suggest that P speciation and availability in sludge-derived chars are tunable by varying treatment techniques and conditions, and provide fundamental knowledge basis for the design and selection of waste management strategies for better nutrient (re)cycling and reclamation. PMID:26633236

  17. Performance of activated sludge diffusion for biological treatment of hydrogen sulphide gas emissions.

    PubMed

    Barbosa, Vera L; Stuetz, Richard M

    2013-01-01

    Odours from wastewater treatment plants are comprised of a mixture of various gases with hydrogen sulphide (H(2)S) often being the dominant constituent. Activated sludge diffusion (ASD) as a biotreatment system for odour abatement has been conducted for over 30 years but has limited broad application due to disagreement in the literature regarding the effect that ASD may have on wastewater treatment performance. The effects of continuous H(2)S diffusion at 25 ppmv, with weekly peaks of approximately 100 ppmv, on H(2)S removal efficiency and wastewater treatment performance was evaluated over a 2-month period using an activated sludge pilot plant. H(2)S removal averaged 100% during diffusion at 25 ppmv, and 98.9% during the 100 ppmv peak periods. A significant increase in mixed liquor volatile suspended solids concentration (P < 0.01) was observed during H(2)S diffusion, which may be due to an increase in H(2)S-degrading microorganisms. There was no adverse effect of H(2)S on nitrification throughout the ASD trials. Ammonia (NH(3)) removal was slightly better in the test receiving H(2)S diffusion (87.6%) than in the control (85.4%). H(2)S diffusion appeared to improve robustness of the AS biomass to operational upsets. PMID:24225092

  18. Onsite Wastewater Treatment Systems: Responding to Electrical Power Outages

    E-print Network

    1 Onsite Wastewater Treatment Systems: Responding to Electrical Power Outages and Floods Bruce onsite wastewater treatment (septic) system. The appropriate response to a disaster depends upon the type the components of an onsite wastewater treatment system and the potential hazards associated with electrical

  19. Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore

    E-print Network

    Foley, Kevin John

    2010-01-01

    Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

  20. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    PubMed

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (?PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520?±?80 ng L(-1) in plant A and 89.2?±?12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ?PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ?PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors. PMID:23933955

  1. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. PMID:25037928

  2. Biological denitrification in wastewater treatment. (Latest citations from pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning the biological removal of nitrogen-containing compounds from wastewater. Activated sludge processes for industrial and municipal wastewater treatment are discussed. The citations examine processes to identify the most effective microorganisms for biological degradation and the factors which can accelerate or inhibit decomposition. The results of pilot-plant studies, and the experiences derived from full-scale industrial installations are presented.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Two years of the operation of a domestic MBR wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Pikorová, Tina

    2012-06-01

    The paper evaluates the results of data obtained from two years of observing an actual domestic wastewater treatment plant (WWTP) with an immersed membrane module. The domestic MBR (membrane bioreactor) WWTP was linked to a dwelling with four residents. Two different commercial flat sheet membrane modules were investigated. The membrane modules, as well as the whole WWTP, were tested with different fluxes as well as the response of the membrane and activated sludge to different conditions, such as actual peak wastewater flows, extremes temperatures (a winter below 5 °C), and high pH values.

  4. Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique.

    PubMed

    Hossain Molla, Abul; Fakhru'l-Razi, Ahmadun; Zahangir Alam, Md

    2004-11-01

    Natural and environmental-friendly disposal of wastewater sludge is a great concern. Recently, biological treatment has played prominent roles in bioremediation of complex hydrocarbon- rich contaminants. Composting is quite an old biological-based process that is being practiced but it could not create a great impact in the minds of concerned researchers. The present study was conducted to evaluate the feasibility of the solid-state bioconversion (SSB) processes in the biodegradation of wastewater sludge by exploiting this promising technique to rejuvenate the conventional process. The Indah Water Konsortium (IWK) domestic wastewater treatment plant (DWTP) sludge was considered for evaluation of SSB by monitoring the microbial growth and its subsequent roles in biodegradation under two conditions: (i) flask (F) and (ii) composting bin (CB) cultures. Sterile and semi-sterile environments were allowed in the F and the CB, respectively, using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 (T/P) and T. harzianum with Mucor hiemalis (T/M) and two bulking materials, sawdust (SD) and rice straw (RS). The significant growth and multiplication of both the mixed fungal cultures were reflected in soluble protein, glucosamine and color intensity measurement of the water extract. The color intensity and pH of the water extract significantly increased and supported the higher growth of microbes and bioconversion. The most encouraging results of microbial growth and subsequent bioconversion were exhibited in the RS than the SD. A comparatively higher decrease of organic matter (OM) % and C/N ratio were attained in the CB than the F, which implied a higher bioconversion. But the measurement of soluble protein, glucosamine and color intensity exhibited higher values in the F than the CB. The final pH drop was higher in the CB than the F, which implied that a higher nitrification occurred in the CB associated with a higher release of H+ ions. Both the mixed cultures performed almost equal roles in all cases except the changes in moisture content. PMID:15491662

  5. Wastewater treatment using flocculation, coagulation, and flotation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning the design, development, and evaluation of flocculation coagulation and flotation processes for the treatment of sewage and industrial wastes. Citations examine technology requirements and limitations, activated sludge and anaerobic processes, chlorination, runoff pollution control, wastewater recycling and reuse, and materials recovery.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Wastewater treatment using flocculation, coagulation, and flotation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-11-01

    The bibliography contains citations concerning the design, development, and evaluation of flocculation coagulation and flotation processes for the treatment of sewage and industrial wastes. Citations examine technology requirements and limitations, activated sludge and anaerobic processes, chlorination, runoff pollution control, wastewater recycling and reuse, and materials recovery.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  8. A Novel Protocol for Model Calibration in Biological Wastewater Treatment

    PubMed Central

    Zhu, Ao; Guo, Jianhua; Ni, Bing-Jie; Wang, Shuying; Yang, Qing; Peng, Yongzhen

    2015-01-01

    Activated sludge models (ASMs) have been widely used for process design, operation and optimization in wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e. Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing; ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of a parameter subset through an estimation by using genetic algorithm. The validity and applicability are confirmed using experimental data obtained from two independent wastewater treatment systems, including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the NOAP can effectively determine the optimal parameter subset and successfully perform model calibration and validation for these two different systems. The proposed NOAP is expected to use for automatic calibration of ASMs and be applied potentially to other ordinary differential equations models. PMID:25682959

  9. A Novel Protocol for Model Calibration in Biological Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Zhu, Ao; Guo, Jianhua; Ni, Bing-Jie; Wang, Shuying; Yang, Qing; Peng, Yongzhen

    2015-02-01

    Activated sludge models (ASMs) have been widely used for process design, operation and optimization in wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e. Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing; ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of a parameter subset through an estimation by using genetic algorithm. The validity and applicability are confirmed using experimental data obtained from two independent wastewater treatment systems, including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the NOAP can effectively determine the optimal parameter subset and successfully perform model calibration and validation for these two different systems. The proposed NOAP is expected to use for automatic calibration of ASMs and be applied potentially to other ordinary differential equations models.

  10. A novel protocol for model calibration in biological wastewater treatment.

    PubMed

    Zhu, Ao; Guo, Jianhua; Ni, Bing-Jie; Wang, Shuying; Yang, Qing; Peng, Yongzhen

    2015-01-01

    Activated sludge models (ASMs) have been widely used for process design, operation and optimization in wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e. Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing; ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of a parameter subset through an estimation by using genetic algorithm. The validity and applicability are confirmed using experimental data obtained from two independent wastewater treatment systems, including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the NOAP can effectively determine the optimal parameter subset and successfully perform model calibration and validation for these two different systems. The proposed NOAP is expected to use for automatic calibration of ASMs and be applied potentially to other ordinary differential equations models. PMID:25682959

  11. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    PubMed

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa. PMID:26038930

  12. Wastewater treatment using flocculation, coagulation, and flotation. (Latest citations from the NTIS bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the design, development, and evaluation of flocculation coagulation and flotation processes for the treatment of sewage and industrial wastes. Citations examine technology requirements and limitations, activated sludge and anaerobic processes, chlorination, runoff pollution control, wastewater recycling and reuse, and materials recovery. (Contains 250 citations and includes a subject term index and title list.)

  13. Properties and potential uses of water treatment sludge from the Neches River of southeast Texas 

    E-print Network

    Kan, Weiqun

    1995-01-01

    Land application of water treatment plant (WTP) sludge has been an unsolved problem. The objectives of this study were (1) to investigate characteristics of organic polymer sludge, and (2) to determine the effects of the sludge on soil properties...

  14. UASB treatment of wastewater containing concentrated benzoate

    SciTech Connect

    Li, Y.Y.; Fang, H.H.P.; Chen, T.; Chui, H.K.

    1995-10-01

    The upflow anaerobic sludge blanket (UASB) process removed 97--99% of soluble chemical oxygen demand (COD) from wastewater containing concentrated benzoate at 37 C, pH 7.5, a hydraulic retention time of 9.8 h, and loading rates up to 30.6 g-COD/(L {center_dot} day) based on the reactor volume. About 95.2% of the total COD removed was converted to methane; 0.034 g of volatile suspended solids (VSS) was yielded for each gram of COD removed. The highly settleable granules were 1--3 mm in size with a layered microstructure and were composed in abundance of bacteria resembling the benzoate-degrading Syntrophus buswellii. Two interesting observations have led to the postulation that the degradation of benzoate into acetate was probably conducted completely inside the cell of Syntrophus buswellii-like bacteria: (1) no fatty acids except acetate were found in the effluent; and (2) the granules showed very limited butyrate-degrading capability and could not degrade propionate. This study demonstrated the feasibility of removing aromatic pollutants in wastewater by anaerobic processes.

  15. Municipal wastewater treatment in Mexico: current status and opportunities for employing ecological treatment systems.

    PubMed

    Zurita, Florentina; Roy, Eric D; White, John R

    2012-06-01

    The aim of this paper is to evaluate the current status of municipal wastewater (MWW) treatment in Mexico, as well as to assess opportunities for using ecological treatment systems, such as constructed wetlands. In 2008, Mexico had 2101 MWW treatment plants that treated only 84 m3/s of wastewater (208 m3/s ofMWW were collected in sewer systems). Unfortunately, most treatment plants operate below capacity owing to a lack of maintenance and paucity of properly trained personnel. The main types of treatment systems applied in Mexico are activated sludge and waste stabilization ponds, which treat 44.3% and 18% of the MWW collected, respectively. As in many other developing nations around the world, there is a great need in Mexico for low-cost, low-maintenance wastewater treatment systems that are both economically and environmentally sustainable. In 2005, 24.3 million Mexicans lived in villages of less than 2500 inhabitants and 14.1 million lived in towns with 2500-15,000 inhabitants. An opportunity exists to extend the use of ecological treatment systems to these low population density areas and considerably increase the percentage of MWW that is treated in Mexico. Small-scale and medium-size constructed wetlands have been built successfully in some states, primarily during the past five years. Several barriers need to be overcome to increase the adoption and utilization of ecological wastewater technology in Mexico, including: a lack of knowledge about this technology, scarce technical information in Spanish, and the government's concentration on constructing MWW treatment plants solely in urban areas. PMID:22856284

  16. Effects of wastewater sludge and its detergents on the stability of rotavirus.

    PubMed Central

    Ward, R L; Ashley, C S

    1980-01-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus (R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol 36:889-897, 1978). The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus were greatly altered by changes in the pH of the medium. PMID:6250475

  17. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems.

    PubMed

    Mazioti, Aikaterini A; Stasinakis, Athanasios S; Pantazi, Ypapanti; Andersen, Henrik R

    2015-09-01

    Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The activated sludge system was operated under low organic loading conditions. The moving bed biofilm reactor (MBBR) system consisted of two serially connected reactors filled with K3-biocarriers. It was either operated under low or high organic loading conditions. Target compounds were removed partially and with different rates in tested systems. For MBBR, increased loading resulted in significantly lower biodegradation for 4 out of 6 examined compounds. Calculation of specific removal rates (normalized to biomass) revealed that attached biomass had higher biodegradation potential for target compounds comparing to suspended biomass. Clear differences in the biodegradation ability of attached biomass grown in different bioreactors of MBBR systems were also observed. Batch experiments showed that micropollutants biodegradation by both types of biomass is co-metabolic. PMID:26093257

  18. Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge.

    PubMed

    Giri, Sib Sankar; Harshiny, M; Sen, Shib Sankar; Sukumaran, V; Park, Se Chang

    2015-11-01

    A bacterium isolated from wastewater sludge, identified as Bacillus subtilis F9, was confirmed to produce bioflocculant with excellent flocculation activity. The effects of culture conditions such as initial pH, temperature, carbon source, nitrogen source, and inoculum size on bioflocculant production were studied here. The results indicated that 2.32g/L of purified bioflocculant could be extracted with the following optimized conditions: 20gL(-1) sucrose as the carbon source, 3.5gL(-1) peptone as the nitrogen source, an initial pH of 7.0, and a temperature of 40°C. The purified bioflocculant consisted of 10.1% protein and 88.3% sugar, including 38.4% neutral sugar, 2.86% uronic acid, and 2.1% amino sugar. The neutral sugar consisted of sucrose, glucose, lactose, galactose, and mannose at a molar ratio of 2.7:4.7:3.2:9.1:0.8. Elemental analysis of the purified bioflocculant revealed that the weight fractions of carbon, hydrogen, oxygen, nitrogen, and sulfur were 30.8%, 5.3%, 54.7%, 6.4%, and 2.9%, respectively. Furthermore, the purified bioflocculant was pH tolerant within the range of 2-8 and thermotolerant from 10°C to 100°C, with optimal activity at pH 7.0 and at a temperature of 40°C. The purified bioflocculant showed industrial potential for the treatment of drinking water. Considering these properties, especially its low molecular weight (5.3×10(4)Da), this bioflocculant with excellent solubility and favorable flocculation activity is particularly suited for flocculating small particles. PMID:26091955

  19. Investigation and assessment of sludge pre-treatment processes.

    PubMed

    Müller, J A; Winter, A; Strünkmann, G

    2004-01-01

    The pre-treatment of sludges by disintegration will result in a number of changes in sludge properties. Floc destruction as well as cell disintegration will occur. This leads to an increase of soluble substances and fine particles. Furthermore, biochemical reactions may appear during or immediately after disintegration. The influence of disintegration of excess sludge on anaerobic digestion was studied in full scale. A stirred ball mill, an ultrasound disintegrator, a lysate centrifuge and ozone treatment were used. The results of the degradation process were compared to a reference system without pre-treatment. An enhancement of the degree of degradation of 7.4% to 20% was observed. The pollution of sludge water as well as the dewatering properties of the digested sludge were investigated. COD and ammonia in the sludge water were increased and a higher polymer demand was observed while the solid content after dewatering stayed almost unchanged. Based on these results the cost effectiveness has been assessed taking into account different conditions (size of WWTP, cost for disposal, etc.). Capital and energy costs are the main factors while the decrease in disposal costs due to the reduced amount of sludge is the main profit factor. PMID:15259943

  20. Does carbon reduction increase sustainability? A study in wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2015-12-15

    This study investigates the relationships between carbon reduction and sustainability in the context of wastewater treatment, focussing on the impacts of control adjustments, and demonstrates that reducing energy use and/or increasing energy recovery to reduce net energy can be detrimental to sustainability. Factorial sampling is used to derive 315 control options, containing two different control strategies and a range of sludge wastage flow rates and dissolved oxygen setpoints, for evaluation. For each, sustainability indicators including operational costs, net energy and multiple environmental performance measures are calculated. This enables identification of trade-offs between different components of sustainability which must be considered before implementing energy reduction measures. In particular, it is found that the impacts of energy reduction measures on sludge production and nitrogen removal must be considered, as these are worsened in the lowest energy solutions. It also demonstrates that a sufficiently large range of indicators need to be assessed to capture trade-offs present within the environmental component of sustainability. This is because no solutions provided a move towards sustainability with respect to every indicator. Lastly, it is highlighted that improving the energy balance (as may be considered an approach to achieving carbon reduction) is not a reliable means of reducing total greenhouse gas emissions. PMID:26152903