Science.gov

Sample records for water absorption capacity

  1. Determination of water absorption and water holding capacities of different soil mixtures with MINIDRAIN system to enhance the plant growth

    NASA Astrophysics Data System (ADS)

    Sudan Acharya, Madhu; Rauchecker, Markus; Wu, Wei

    2014-05-01

    Soil water holding capacity is the amount of water that a given soil can hold against the force of gravity. Soil texture and organic matter are the key components that determine soil water holding capacity. Soils with smaller particle sizes, such as silt and clay have larger surface area can hold more water compared to sand which has large particle sizes which results in smaller surface area. A study report showed that 1% increase in soil humus will result in a 4% increase in stored soil water (Morris, 2004) and 1 part humus holds 4 parts of water (Wheeler and Ward, 1998). Therefore, the more humus that can be added to the soil, the greater the water holding capacity of the soil. As the level of organic matter increases in a soil, the water holding capacity also increases due to the affinity of organic matter for water. The water holding capacity of the soil is determined by the amount of water held in the soil sample vs. the dry weight of the sample. MINIDRAIN is a patented system made of geo-fabric (fleece) or combination of geosynthetics and humus. MINIDRAIN and vegetation nets developed by the company ÖKO-TEX (Linz, Austria) will improve the distribution of water and air in the soils, increase the growth of vegetation and reduce the soil erosion. Depending on the physical configuration, there are four different combinations of MINIDRAIN systems developed by ÖKO-TEX. a) Geotextile (fleece) strips of different sizes (e.g. 5x10x250 mm) b) Net formed strips (drainage nets) of different sizes c) Multilayer geotextile mats with humus, seeds or compost of different sizes (e.g. 10x30x200 mm) d) Multilayer geotextile net formed mats with humus, seeds or compost This paper describes the experimental results of the water absorption and water holding capacity of different forms of MINIDRAIN under different soil mixes. In this experiment, potting soil, coarse sand and LECA (Light weight clay aggregates) balls are mixed with different proportion of MINIDRAIN systems and

  2. Modeling the performance of small capacity lithium bromide-water absorption chiller operated by solar energy

    SciTech Connect

    Saman, N.F.; Sa`id, W.A.D.K.

    1996-12-31

    An analysis of the performance of a solar operated small capacity (two-ton) Lithium Bromide-Water (LiBr-H{sub 2}O) absorption system is conducted. The analysis is based on the first law of thermodynamics with lithium bromide as the absorbent and water as the refrigerant. The effect of various parameters affecting the machine coefficient of performance under various operating conditions is reported. Coefficient of performance of up to 0.8 can be obtained using flat plate solar collectors with generator temperatures in the range of 80--95 C (176--203 F). Liquid heat exchangers with effectiveness based on an NTU of the order of one would be a good design choice. The chiller can save approximately 3,456 kWh/yr per a two-ton unit, and it will reduce emissions by 19 lb of NO{sub x}, 5,870 lb of CO{sub 2}, and 16 lb of SO{sub x} per year per machine.

  3. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-12-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  4. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    PubMed Central

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  5. Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability.

    PubMed

    Jin, Yangxin; Jiang, Peng; Ke, Qingping; Cheng, Feihuan; Zhu, Yinshengnan; Zhang, Yixiang

    2015-12-30

    Developing functional porous materials with highly efficient oil-water separation ability are of great importance due to the global scale of severe water pollution arising from oil spillage and chemical leakage. A solution immersion process was used to fabricate polydimethylsiloxane (PDMS)-coated cotton, which exhibited superhydrophobic and superoleophilic properties. The water contact angle of ∼ 157° and mass of ∼ 1.49 g were retained after 1000 compression cycles, indicating that the PDMS was strongly attached to the cotton fibres. The PDMS-coated cotton absorbed various oils and organic solvents with high selectivity, high absorption capacity (up to 7080 wt.%), and good recyclability (exceeding 500 cycles). Notably, the loading capacity of the PDMS-coated cotton against water exhibited a similar trend to its oil absorption capacity. These findings will further the application of superhydrophobic and superoleophilic porous materials in oil/water separation. PMID:26184799

  6. Modification of water absorption capacity of a plastic based on bean protein using gamma irradiated starches as additives

    NASA Astrophysics Data System (ADS)

    Köber, E.; Gonzalez, M. E.; Gavioli, N.; Salmoral, E. M.

    2007-01-01

    Some properties of a bean protein-starch plastic were modified by irradiation of the starch. Two kinds of starch from bean and cassava were irradiated with doses until 50 kGy before their inclusion in the composite. Water absorption of the resultant product was reduced by 36% and 60% in materials containing bean and cassava starch, respectively. A large decline in the elongation is observed till 10 kGy in both materials, while tensile strength diminished by 11% in the cassava composite.

  7. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  8. Absorptive Capacity: A New Perspective on Learning and Innovation.

    ERIC Educational Resources Information Center

    Cohen, Wesley M.; Levinthal, Daniel A.

    1990-01-01

    Argues that ability of a firm to recognize value of new, external information, assimilate it, and apply it to commercial ends is critical to its innovative capabilities. A firm's absorptive capacity is largely a function of its level of prior knowledge. A research and development investment model that contributes to a firm's absorptive capacity is…

  9. The Zone of Inertia: Absorptive Capacity and Organizational Change

    ERIC Educational Resources Information Center

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  10. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption. PMID:26658415

  11. Capacity sharing of water reservoirs

    NASA Astrophysics Data System (ADS)

    Dudley, Norman J.; Musgrave, Warren F.

    1988-05-01

    The concept of a water use property right is developed which does not apply to water volumes as such but to a share of the capacity (not contents) of river storage reservoirs and their inflows. The shareholders can withdraw water from their share over time in accordance with their preferences for stability of water deliveries. The reservoir authority does not manage reservoir releases but keeps record of individual shareholder's withdrawals and net inflows to monitor the quantity of water in each shareholder's capacity share. A surplus of total reservoir contents over the sum of the contents of the individual shareholder's capacity shares will accrue over time. Two different criteria for its periodic distribution among shareholders are compared. A previous paper Dudley (this issue(b)) noted a loss of short-run economic efficiency as reservoir and farm management decision making become separated. This is largely overcome by capacity sharing which allows each user to integrate the management of their portion of the reservoir and their farming operations. The nonattenuated nature of the capacity sharing water rights also promotes long-run economic efficiency.

  12. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  13. Achieving high energy absorption capacity in cellular bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-05-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed.

  14. Cognitive Distance, Absorptive Capacity and Group Rationality: A Simulation Study

    PubMed Central

    Curşeu, Petru Lucian; Krehel, Oleh; Evers, Joep H. M.; Muntean, Adrian

    2014-01-01

    We report the results of a simulation study in which we explore the joint effect of group absorptive capacity (as the average individual rationality of the group members) and cognitive distance (as the distance between the most rational group member and the rest of the group) on the emergence of collective rationality in groups. We start from empirical results reported in the literature on group rationality as collective group level competence and use data on real-life groups of four and five to validate a mathematical model. We then use this mathematical model to predict group level scores from a variety of possible group configurations (varying both in cognitive distance and average individual rationality). Our results show that both group competence and cognitive distance are necessary conditions for emergent group rationality. Group configurations, in which the groups become more rational than the most rational group member, are groups scoring low on cognitive distance and scoring high on absorptive capacity. PMID:25314132

  15. Water-lithium bromide double-effect absorption cooling analysis

    NASA Astrophysics Data System (ADS)

    Vliet, G. C.; Lawson, M. B.; Lithgow, R. A.

    1980-12-01

    A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine and was used to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The variables considered include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicates that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

  16. Protective Capacity and Absorptive Capacity: Managing the Balance between Retention and Creation of Knowledge-Based Resources

    ERIC Educational Resources Information Center

    Andersen, Jim

    2012-01-01

    Purpose: In order to understand the pros and cons of an open organization regarding the flow of knowledge between firms, this paper introduces the concept of "protective capacity". The purpose of the paper is to elaborate the concept of "protective capacity" especially in relation to absorptive capacity, by presenting a number of propositions.…

  17. Absorption type water chiller fired directly by waste heat

    NASA Astrophysics Data System (ADS)

    Sauer, K. L.; Kalwar, K.

    1982-08-01

    The direct use of waste heat as heating element in a water chiller of the absorption type was studied. The chilled water is used as cooling element in the industrial process, producing the waste heat or for conditioning the workplace or further located places. The heat source is gaseous or liquid. The cooling capacity is in the range from 10 to 120 kW. After reviewing the different absorption systems, LiBr/H20 proved to be the most suitable. The process retained for experimenting was the manufacturing of synthetic materials polymer industry and was tested in two different factories. It is proved that the use of absorption type water chillers is practicable with an efficiency of 10% to 25% of the waste heat energy, but that the existing chillers need extensive conversion for obtaining economical operation when using a low temperature heating source.

  18. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  19. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  20. Scaling-Up Aid to Education: Is Absorptive Capacity a Constraint?

    ERIC Educational Resources Information Center

    Rose, Pauline

    2009-01-01

    "Absorptive capacity" is a frequently used term amongst development practitioners in education. It is adopted by some as a reason for caution over scaling up aid. Others are of the view that absorptive capacity is an excuse by some donors for not delivering on their Education for All financing commitments. Drawing on interviews with…

  1. Absorptive Capacity at the Individual Level: Linking Creativity to Innovation in Academia

    ERIC Educational Resources Information Center

    Da Silva, Nancy; Davis, Ashley R.

    2011-01-01

    The absorptive capacity construct has been examined across various country, interorganization, and organizational level phenomena. This paper presents a framework that adopts the absorptive capacity framework to explain the relationship between creative and innovative performance at the individual level. The framework is illustrated by predicting…

  2. Effect of water absorption on the mechanical properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    NASA Astrophysics Data System (ADS)

    Marinho, Vithória A. D.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the effect of water absorption on the performance of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree.Water resistance is an important characteristic of structural composites, that may exposed to rain and humid environments. Both water absorption capacity (water solubility in the material) and the rate of water absorption (controlled by the diffusivity of water in the material) are important parameters. However, water absorption per se may not be the most important characteristic, insofar as the performance and applications of the compounds. It is the effect of the water content on the ultimate properties that determine the suitability of the material for applications that involve prolonged exposure to water.PHB/babassu composites with 0-20% load were prepared in an internal mixer. Two different types of babassu fibers having two different article size ranges were compounded with PHB and test specimens molded by compression. The water absorption capacity and the kinetic constant of water absorption were measured in triplicate. Mechanical properties under tension were measured for dry and moist specimens with different amounts of absorbed water.Results indicate that the performance of the composites is comparable to that of the pure matrix. Water absorption capacity increases from 0.7% (pure PHB) to 4% (PHB/20% babassu), but the water diffusivity (4.10□8 cm2/s) was found to be virtually independent of the water absorption level. Water absorption results in moderate drop in elastic modulus (10-30% at saturation, according to fiber content) but has little effect on tensile strength and elongation at break. Fiber type and initial particle size do not have a significant effect on water absorption or mechanical properties.

  3. Preparation of hydrophilic luffa sponges and their water absorption performance.

    PubMed

    Liu, Zhi; Pan, Yanxiong; Shi, Kai; Wang, Weicai; Peng, Chao; Li, Wei; Sha, Di; Wang, Zhe; Ji, Xiangling

    2016-08-20

    Hydrophilic luffa sponges are prepared by grafting polymerization of acrylamide (AM) on luffa cylindrica and subsequent partial hydrolysis under alkaline conditions. Attenuated total reflection infrared spectroscopy is used to verify the composition of the grafted (luffa-g-PAM) and hydrolyzed (luffa-g-(PAM-co-PAANa)) samples. Alkalization conditions, including aqueous NaOH concentrations, alkalization temperature, and time, are studied extensively. Optimized conditions are then obtained. The grafting percentage (GP) of polyacrylamide increases with the feed ratios of [AM]/[OH] and [Ce]/[OH], reaction temperature, and time. Furthermore, the GP can reach up to 160%. Pristine, alkalized, grafted, and hydrolyzed luffa sponges show rapid absorption kinetics, and the pseudo second-order rate equation is applied to describe their kinetic procedure. Reaction conditions, such as [AM]/[OH], [Ce]/[OH], reaction temperature and time, influence the water absorption capacities of grafted and hydrolyzed samples. The hydrolyzed luffa sponges particularly exhibit high water absorption capacities of 75gg(-1). The absorption mechanism is also discussed. PMID:27178923

  4. Vitamin B12 absorption capacity in healthy children

    SciTech Connect

    Hjelt, K.; Krasilnikoff, P.A.

    1986-03-01

    B12 absorption was investigated in 47 healthy children aged 7 months to 15.8 years (median 4.9 years). The patients had either recovered from giardiasis, the post-gastroenteritis syndrome, or had celiac disease in remission (treated with a gluten-free diet). The B12 absorption was measured by a double-isotope technique using /sup 57/CoB12 and /sup 51/CrCl/sub 3/, the latter being the inabsorbable marker. The radiation dose was minimal. The results were presented as fractional absorption of B12 (FAB12). Within the different age groups, the absorption test was performed by means of the following oral amounts of B12: 0- less than 1 year, 0.5 microgram; 1-3 years: 1.7 micrograms, 4-6 years, 2.5 micrograms; 7-10 years; 3.3 micrograms; and 11-15 years, 4.5 micrograms. When using these oral amounts of B12, the medians (and ranges) of FAB12 were found to be: 1-3 years (n = 18), 37% (16-80%); 4-6 years (n = 10), 27% (19-40%); 7-10 years (n = 9), 32% (21-44%); and 11-15 years (n = 8), 27% (19-59%). The FAB12 in two children aged 7 and 11 months was 31% and 32%, respectively. These results may be interpretated as reference values for B12 absorption in children. Further absorption tests were performed in seven children representing the four age groups from 1 to 15 years. When a high oral amount of B12 was given (i.e., three times the saturation dose), the FAB12 ranged from 0 to 20% (median 9%), whereas a low amount (i.e., one-ninth of the saturation dose) produced fractional absorptions from 65 to 82% (median 74%).

  5. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Water capacity marking. 179.201-10 Section 179.201... Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in...: water capacity 000000 Pounds (b)...

  6. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  7. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures...

  8. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures...

  9. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures...

  10. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures...

  11. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. PMID:26367067

  12. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  13. Antecedents of Absorptive Capacity: A New Model for Developing Learning Processes

    ERIC Educational Resources Information Center

    Rezaei-Zadeh, Mohammad; Darwish, Tamer K.

    2016-01-01

    Purpose: The purpose of this paper is to provide an integrated framework to indicate which antecedents of absorptive capacity (AC) influence its learning processes, and to propose testing of this model in future work. Design/methodology/approach Relevant literature into the antecedents of AC was critically reviewed and analysed with the objective…

  14. Toward improving global estimates of field soil water capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field capacity or field water capacity (FC) is defined as the water content of a soil after having been wetted with water and after free drainage is negligible. Different recommendations exist world-wide on which, if any, pressure head should be used in laboratory measurements to approximate the FC ...

  15. Effect of water absorption on pollen adhesion.

    PubMed

    Lin, Haisheng; Lizarraga, Leonardo; Bottomley, Lawrence A; Carson Meredith, J

    2015-03-15

    Pollens possess a thin liquid coating, pollenkitt, which plays a major role in adhesion by forming capillary menisci at interfaces. Unfortunately, the influence of humidity on pollenkitt properties and capillary adhesion is unknown. Because humidity varies widely in the environment, the answers have important implications for better understanding plant reproduction, allergy and asthma, and pollen as atmospheric condensation nuclei. Here, pollenkitt-mediated adhesion of sunflower pollen to hydrophilic and hydrophobic surfaces was measured as a function of humidity. The results quantify for the first time the significant water absorption of pollenkitt and the resulting complex dependence of adhesion on humidity. On hydrophilic Si, adhesion increased with increasing RH for pollens with or without pollenkitt, up to 200nN at 70% RH. In contrast, on hydrophobic PS, adhesion of pollenkitt-free pollen is independent of RH. Surprisingly, when pollenkitt was present adhesion forces on hydrophobic PS first increased with RH up to a maximum value at 35% RH (∼160nN), and then decreased with further increases in RH. Independent measurement of pollenkitt properties is used with models of capillary adhesion to show that humidity-dependent changes in pollenkitt wetting and viscosity are responsible for this complex adhesion behavior. PMID:25524008

  16. Water-lithium bromide double-effect absorption cooling analysis. Final report

    SciTech Connect

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01

    This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

  17. The implementation of a global fund grant in Lesotho: applying a framework on knowledge absorptive capacity.

    PubMed

    Biesma, Regien; Makoa, Elsie; Mpemi, Regina; Tsekoa, Lineo; Odonkor, Philip; Brugha, Ruairi

    2012-02-01

    One of the biggest challenges in scaling up health interventions in sub-Saharan Africa for government recipients is to effectively manage the rapid influx of aid from different donors, each with its own requirements and conditions. However, there is little empirical evidence on how governments absorb knowledge from new donors in order to satisfy their requirements. This case study applies Cuellar and Gallivan's (2006) framework on knowledge absorptive capacity (AC) to illustrate how recipient government organisations in Lesotho identified, assimilated and utilised knowledge on how to meet the disbursement and reporting requirements of Lesotho's Round 5 grant from the Global Fund to Fight AIDS, TB and Malaria (Global Fund). In-depth topic guided interviews with 22 respondents and document reviews were conducted between July 2008 and February 2009. Analysis focused on six organisational determinants that affect an organisation's absorptive capacity: prior-related knowledge, combinative capabilities, motivation, organisational structure, cultural match, and communication channels. Absorptive capacity was mostly evident at the level of the Principal Recipient, the Ministry of Finance, who established a new organisational unit to meet the requirements of Global Fund Grants, while the level of AC was less advanced among the Ministry of Health (Sub-Recipient) and district level implementers. Recipient organisations can increase their absorptive capacity, not only through prior knowledge of donor requirements, but also by deliberately changing their organisational form and through combinative capabilities. The study also revealed how vulnerable African governments are to loss of staff capacity. The application of organisational theory to analyse the interactions of donor agencies with public and non-public country stakeholders illustrates the complexity of the environment that aid recipient governments have to manage. PMID:21907474

  18. Water absorption properties of ultrasonic treated brown rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the effect of ultrasonic treated on brown rice, it is important to research the water absorption processing of brown rice before and after ultrasonic treatment. The objective of this study was investigate and modeling water absorption characteristics of brown rice using Peleg’s equatio...

  19. Low temperature heat capacity of water clusters

    NASA Astrophysics Data System (ADS)

    Chen, Hongshan; Hansen, Klavs

    2014-08-01

    Geometry optimization and vibrational frequency calculation are carried out at the MP2/6-31G(d,p) level for 35 low-energy isomers of (H2O)n clusters in the size range n = 6-21. The heat capacities of the clusters are calculated using quantum statistical theories based on the harmonic approximation. The specific heat capacity increases with the cluster size but the difference diminishes gradually with increasing size. The heat capacities divided by the number of intermolecular vibrational modes are very close for all the clusters. The overall picture of the heat capacity of the clusters is bulk-like and it agrees well with the experimental results of size-selected clusters.

  20. New constraints in absorptive capacity and the optimum rate of petroleum output

    SciTech Connect

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

  1. The heat capacity of water near solid surfaces

    NASA Astrophysics Data System (ADS)

    Vučelić, V.; Vučelić, D.

    1983-11-01

    Anomalous heat capacities of water at solid/water interfaces have been obtained. The solids vary from inorganic (zeolites, porous class, silica gel, activated carbon) to biological (protein lysozyme and adrenal gland). Water heat capacities at all interfaces exhibit the same pattern. At room temperature the small values are close to ice and increase with temperature, reaching the value of free water between 380 and 440 K.

  2. Economic performance of water storage capacity expansion for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  3. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate...

  4. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not be less than the following: Type of equipment Water in gallons (1) Cutting machines 36 (2... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices...

  5. Leaf water absorption and desorption functions for three turfgrasses

    NASA Astrophysics Data System (ADS)

    Liang, Xi; Su, Derong; Yin, Shuxia; Wang, Zhi

    2009-09-01

    SummaryPlant leaf can absorb water when the leaf is in contact with water. This happens when the rainfall is intercepted by plant leaves, where the intercepted part of rain remains on the leaf surface. When the intercepted water is either absorbed or subsequently evaporated into the atmosphere, the plant leaves can dissipate water through the desorption process until the plant is dry or rewatered. In this paper, two symptomatic models in the form of exponential functions for leaf water absorption and leaf water desorption were derived and validated by experimental data using leaves of three turfgrasses (Tall fescue, Perennial ryegrass and Kentucky bluegrass). Both the models and measured data showed that the rate of leaf water absorption was high at the low initial leaf water content and then gradually leveled off toward the saturated leaf water content. The rate of leaf water desorption was high at the high initial leaf water content then decreased drastically over time toward zero. The different plant leaves showed different exponents and other parameters of the functions which indicate the difference of plant species. Both the absorption and desorption rates were relatively higher for the Kentucky bluegrass and lower for the Tall fescue and Perennial ryegrass. The concept of specific leaf area ( SLA) was used to understand the saturated leaf water content ( C s) of the three turfgrasses. Linear relationships were found between C s and SLA. The leaf water absorption and desorption functions are useful for deriving physiological parameters of the plant such as permanent wilting leaf water content, naturally irreducible leaf water content, exponential leaf water absorption coefficient, and exponential leaf desorption coefficient, as well as for evaluating the effects of rainfall interception on plant growth and water use efficiency.

  6. Quantification of Water Absorption and Transport in Parchment

    NASA Astrophysics Data System (ADS)

    Herringer, Susan N.; Bilheux, Hassina Z.; Bearman, Greg

    Neutron radiography was utilized to quantify water absorption and desorption in parchment at the High Flux Isotope Reactor CG-1D imaging facility at Oak Ridge National Laboratory (ORNL). Sequential 60s radiographs of sections of a 15th century parchment were taken as the parchment underwent wetting and drying cycles. This provided time-resolved visualization and quantification of water absorption and transport in parchment.

  7. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  8. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  9. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  10. Predicting and mapping soil available water capacity in Korea

    PubMed Central

    Hong, Suk Young; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils. PMID:23646290

  11. Predicting and mapping soil available water capacity in Korea.

    PubMed

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils. PMID:23646290

  12. Heat exchange model in absorption chamber of water-direct-absorption-typed laser energy meter

    NASA Astrophysics Data System (ADS)

    Feng Wei, Ji; Qun Sun, Li; Zhang, Kai; Hu, XiaoYang; Zhou, Shan

    2015-04-01

    The interaction between laser and water flow is very complicated in the absorption chamber of a high energy laser (HEL) energy meter which directly uses water as an absorbing medium. Therefore, the heat exchange model cannot be studied through traditional methods, but it is the most important factor to improve heat exchange efficiency in the absorption chamber. After the exchanges of heat and mass were deeply analyzed, experimental study and numerical fitting were brought out. The original testing data of laser power and water flow temperature at one moment were utilized to calculate those at the next moment, and then the calculated temperature curve was compared with the measured one. If the two curves matched well, the corresponding coefficient was obtained. Meanwhile, numerous experiments were performed to study the effects of laser power, duration, focal spot scale, and water flow rate on heat exchange coefficient. In addition, the relationship between water phase change and heat exchange was analyzed. The heat exchange coefficient was increased by optimizing the construction of the absorption chamber or increasing water flow rate. The results provide the reference for design of water-direct-absorption-typed HEL energy meters, as well as for analysis of the interaction between other similar lasers and water flow.

  13. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  14. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  15. Heat capacity of water: A signature of nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Vega, C.; Conde, M. M.; McBride, C.; Abascal, J. L. F.; Noya, E. G.; Ramirez, R.; Sesé, L. M.

    2010-01-01

    In this note we present results for the heat capacity at constant pressure for the TIP4PQ/2005 model, as obtained from path-integral simulations. The model does a rather good job of describing both the heat capacity of ice Ih and of liquid water. Classical simulations using the TIP4P/2005, TIP3P, TIP4P, TIP4P-Ew, simple point charge/extended, and TIP5P models are unable to reproduce the heat capacity of water. Given that classical simulations do not satisfy the third law of thermodynamics, one would expect such a failure at low temperatures. However, it seems that for water, nuclear quantum effects influence the heat capacities all the way up to room temperature. The failure of classical simulations to reproduce Cp points to the necessity of incorporating nuclear quantum effects to describe this property accurately.

  16. Proposed human stratum corneum water domain in chemical absorption.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Compounds with varying physical and chemical properties may have different affinities to the stratum corneum (SC) and/or its intercellular lipids, keratin protein, and possible water domains. To better understand the mechanism of percutaneous absorption, we utilized 21 carbon-14 labeled chemicals, with wide hydrophilicity (log P = -0.05 to 6.17), and quantified their absorption/adsorption properties for a short incubation time (15 min) with regards to intact SC membrane, delipidized SC membrane and SC lipid. A facile method was developed for SC/lipid absorption, providing a more equivalent procedure and comparable data. SC lipid absorption of chemical solutes positively correlated with the octanol/water partition coefficient (log P). Differences between the percent dose of chemical absorption to intact SC and the total percent dose contributed by the protein and lipid domains suggest the possibility and significance of a water domain. Absorption rate experiments showed a longer lag time for intact SC than for delipidized SC or SC lipid, suggesting that the water domain may delay chemical binding to protein and lipid domains, and may be a factor in the resistance of many chemicals to current decontamination methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26206725

  17. Characteristics of Nasal-Associated Lymphoid Tissue (NALT) and Nasal Absorption Capacity in Chicken

    PubMed Central

    Kang, Haihong; Yan, Mengfei; Yu, Qinghua; Yang, Qian

    2013-01-01

    As the main mucosal immune inductive site of nasal cavity, nasal-associated lymphoid tissue (NALT) plays an important role in both antigen recognition and immune activation after intranasal immunization. However, the efficiency of intranasal vaccines is commonly restricted by the insufficient intake of antigen by the nasal mucosa, resulting from the nasal mucosal barrier and the nasal mucociliary clearance. The distribution of NALT and the characteristic of nasal cavity have already been described in humans and many laboratory rodents, while data about poultry are scarce. For this purpose, histological sections of the chicken nasal cavities were used to examine the anatomical structure and histological characteristics of nasal cavity. Besides, the absorptive capacity of chicken nasal mucosa was also studied using the materials with different particle size. Results showed that the NALT of chicken was located on the bottom of nasal septum and both sides of choanal cleft, which mainly consisted of second lymphoid follicle. A large number of lymphocytes were distributed under the mucosal epithelium of inferior nasal meatus. In addition, there were also diffuse lymphoid tissues located under the epithelium of the concha nasalis media and the walls of nasal cavity. The results of absorption experiment showed that the chicken nasal mucosa was capable to absorb trypan blue, OVA, and fluorescent latex particles. Inactivated avian influenza virus (IAIV) could be taken up by chicken nasal mucosa except for the stratified squamous epithelium sites located on the forepart of nasal cavity. The intake of IAIV by NALT was greater than that of the nasal mucosa covering on non-lymphoid tissue, which could be further enhanced after intranasal inoculation combined with sodium cholate or CpG DNA. The study on NALT and nasal absorptive capacity will be benefit for further understanding of immune mechanisms after nasal vaccination and development of nasal vaccines for poultry. PMID

  18. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  19. Absorption of impinging water droplet in porous stones.

    PubMed

    Lee, J B; Radu, A I; Vontobel, P; Derome, D; Carmeliet, J

    2016-06-01

    This paper presents an experimental investigation and numerical analysis of the absorption of water droplets impacting porous stones. The absorption process of an impinging droplet is here fully characterized from spreading to evaporation in terms of absorbed mass during droplet depletion and moisture content distribution in a time-resolved manner for three different natural stones. High-speed imaging and neutron radiography are used to quantify moisture absorption in porous stones of varying moisture properties from deposition until depletion. During impact and spreading, the droplet exhibits a dynamic non-wetting behavior. At maximum spreading, the droplet undergoes pinning, resulting into the contact radius remaining constant until droplet depletion. Absorption undergoes two phases: initially, absorption is hindered due a contact resistance attributed to entrapped air; afterwards, a more perfect capillary contact occurs and absorption goes on until depletion, concurrently with evaporation and further redistribution. A finite-element numerical model for isothermal unsaturated moisture transport in porous media captures the phases of mass absorption in good agreement with the experimental data. Droplet spreading and absorption are highly determined by the impact velocity of the droplet, while moisture content redistribution after depletion is much less dependent on impact conditions. PMID:26975034

  20. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  1. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  2. Determination of fixed water in rocks by infrared absorption

    USGS Publications Warehouse

    Breger, I.A.; Chandler, J.C.

    1969-01-01

    An infrared absorption technique has been developed for the quantitative determination of "fixed water" (H2O+) in rocks. Potassium bromide disks containing 2-mg samples are scanned in the 3-??m spectral region and absorption at 2.96 ??m is determined. Although the exact nature of this peak is not known, other than that it is caused by an interaction between the potassium bromide and hydroxyl groups and water, it can be used for quantitative analysis. Rock samples, other than those containing significant percentages of clay minerals, can be analyzed with a standard deviation of 0.26%.

  3. Measurement of krypton-85 in water by absorption in polycarbonates

    NASA Astrophysics Data System (ADS)

    Mitev, K.; Pressyanov, D.; Dimitrova, I.; Georgiev, S.; Boshkova, T.; Zhivkova, V.

    2009-05-01

    This article describes a method for quantitative measurements of Kr85 in water by absorption in polycarbonates. The method is based on exposure of polycarbonate samples in water and uses the high absorption ability to noble gases of some polycarbonates like Makrofol® and Makrolon® for sampling Kr85 from the water. After the exposure, the radiation emitted from the samples is measured by gross beta counting or gamma spectrometry. The results from the conducted experiments demonstrate a very good linear correlation between the measured signal and the activity concentration of Kr85 in the water. A possible practical application of the method is to monitor Kr85 concentration in water in at-reactor pools and wet spent fuel storage facilities.

  4. ERP and Four Dimensions of Absorptive Capacity: Lessons from a Developing Country

    NASA Astrophysics Data System (ADS)

    Gil, María José Álvarez; Aksoy, Dilan; Kulcsar, Borbala

    Enterprise resource planning systems can grant crucial strategic, operational and information-based benefits to adopting firms when implemented successfully. However, a failed implementation can often result in financial losses rather than profits. Until now, the research on the failures and successes were focused on implementations in large manufacturing and service organizations firms located in western countries, particularly in USA. Nevertheless, IT has gained intense diffusion to developing countries through declining hardware costs and increasing benefits that merits attention as much as developed countries. The aim of this study is to examine the implications of knowledge transfer in a developing country, Turkey, as a paradigm in the knowledge society with a focus on the implementation activities that foster successful installations. We suggest that absorptive capacity is an important characteristic of a firm that explains the success level of such a knowledge transfer.

  5. Causal Relationships among Technology Acquisition, Absorptive Capacity, and Innovation Performance: Evidence from the Pharmaceutical Industry

    PubMed Central

    Jeon, Jieun; Hong, Suckchul; Ohm, Jay; Yang, Taeyong

    2015-01-01

    This paper discusses the importance of absorptive capacity in improving a firm’s innovation performance. Specifically, we examine firm interaction with the knowledge and capabilities of outside organizations and the effect on the firm’s bottom line. We use the impulse-response function of the vector auto-regressive model to gain insight into this relationship by estimating the time required for the effect of each activity level to reach outputs, the spillover effects. We apply this methodology to pharmaceutical firms, which we classify into two sub-groups – large firms and medium and small firms – based on sales. Our results show that the impact of an activity on any other activity is delayed by three years for large firms and by one to two years for small and medium firms. PMID:26181440

  6. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  7. Absorption of Water Vapor into Aqueous Solutions of Lithium Bromide

    NASA Astrophysics Data System (ADS)

    Takahara, Tsutomu; Hayashida, Atsushi; Yabase, Hajime; Hihara, Eiji; Saito, Takamoto

    Heat and mass transfer processes are experimentally investigated for the case of water absorption into aqueous solutions of lithium bromide flowing over a flat plate. Variables considered are inlet solution flow rate,concentration of an additive,and inclination angle of the plate. The use of 2-ethyl-1-hexanol as an additive results in about a four to five fold improvement in absorption rate. The occurrence of surface distrbances dose not has a direct connection with the solubility limit of the additive. The cause of the surface disturbances in the presence of additives is investigated through experiments for pool absorption By regulating the flow of water vapor,the form of the Marangoni convection can be controlled. A qualitative discussion of addictives in the role of inducing surface disturbances is presented.

  8. Relating water absorption features to soil moisture characteristics

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Philpot, William D.

    2015-09-01

    The spectral reflectance of a sample of quartz sand was monitored as the sample progressed from air-dry to fully saturated, and then back to air-dry. Wetting was accomplished by spraying small amounts of water on the surface of the sample, and collecting spectra whenever change occurred. Drying was passive, driven by evaporation from the sand surface, with spectra collected every 5 minutes until the sample was air dry. Water content was determined by monitoring the weight of the sample through both wetting and drying. There was a pronounced difference in the pattern of change in reflectance during wetting and drying, with the differences being apparent both in spectral details (i.e., the depth of absorption bands) and in the magnitude of the reflectance for a particular water content. The differences are attributable to the disposition of water in the sample. During wetting, water initially occurred only on the surface, primarily as water adsorbed onto sand particles. With increased wetting the water infiltrated deeper into the sample, gradually covering all particles and filling the pore spaces. During drying, water and air were distributed throughout the sample for most of the drying period. The differences in water distribution are assumed to be the cause of the differences in reflectance and to the differences in the depths of four strong water absorption bands.

  9. Water cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    A broad line of absorption chillers designed to operate with hot fluids at as low a temperature as practical while rejecting heat to a stream of water was developed. A packaging concept for solar application in which controls, pumps, valves and other system components could be factor assembled into a unitary solar module was investigated.

  10. Modeling sulfur dioxide absorption by fine water spray

    SciTech Connect

    Cheng-Hsiung Huang

    2005-07-01

    A novel theoretical model was developed to determine the removal efficiency of sulfur dioxide using fine water spray. The droplet pH, diameter, S(IV) concentration, sulfur dioxide concentration, and liquid-to-gas ratio are found to influence the absorption of sulfur dioxide by the fine water spray. The results demonstrate that the absorption of sulfur dioxide by the fine water spray increases as the droplet diameter falls. The concentration gradient between the interface of the gaseous and liquid phases causes the absorption of sulfur dioxide by the droplets to increase as the initial S(IV) concentration decreases or the sulfur dioxide concentration increases. The results indicate that the performance of the fine water spray in removing sulfur dioxide is generally improved by reducing the droplet diameter or the initial S(IV) concentration, or by increasing the sulfur dioxide concentration, the droplet pH or the liquid-to-gas ratio. The proposed model reveals the parameters that should be controlled in using a fine water spray device and a method for improving its performance in removing sulfur dioxide.

  11. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  12. Absorption characteristics of optically complex inland waters: Implications for water optical classification

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Li, Yunmei; Li, Lin; Lu, Heng

    2013-06-01

    Multiple bio-optical measurements were conducted in inland waters of China, including Lake Taihu [spring and autumn], Lake Chaohu, Lake Dianchi, and Three Gorges Reservoirs. The variations in the absorption characteristics of chromophoric dissolved organic matter (CDOM), phytoplankton, and non-algal particles (NAP) and their relative contributions to total absorption among these waters were analyzed. The obtained results indicated that these areas are representative of the optically complex inland waters characterized by strong regional variations of their absorption properties. By means of the relative contributions of NAP and phytoplankton to the total water absorption at 550 and 675 nm, these waters were classified into three optical water types, each one having specific biogeochemical and optical properties. Two of the types were distinct and corresponded to waters that are optically controlled by NAP (Type I) and dominated by phytoplankton (Type III). Type II was related to relatively optically mixed waters where the absorption properties are controlled by NAP and phytoplankton. Additionally, the differences in remote-sensing reflectance (Rrs) spectra among the three classified water types were clarified to establish optical criteria for identifying these water types. On this basis, the classification criteria for MERIS images were developed, which allowed one to cluster every Rrs spectrum into one of the three water types by comparing the values from band 6, band 8, and band 9 of MERIS images. The proposed criteria were subsequently conducted to map the water types of Lake Taihu using MERIS images.

  13. [Fog water absorption by the leaves of epiphytes and non - epiphytes in Xishuangbanna].

    PubMed

    Zheng, Yulong; Feng, Yulong

    2006-06-01

    Xishuangbanna is located at the northern margin of tropics. Its climate is different from that of typical tropics, but the rainforest there is not very different from that of the typical tropics in Southeast Asia. The main problems in Xishuangbanna are seasonal drought and low temperature. Fog may contribute to the development of rainforest here, but related studies are few. This study is aimed to know whether the leaves of epiphytes and non - epiphytes in Xishuangbanna can directly absorb fog water and contribute to their water status recovery, and whether epiphytes are more competent than non - epiphytes in their leaf fog water absorption. The study was conducted in dry season, and four species of epiphytes and six species of non - epiphytes were investigated. The effect of fog was imitated by spraying leaves with distilled water. For epiphytes and non - epiphytes, their leaf water potential (phi), relative water content (RWC), and amount of absorbed water increased gradually with the time of spraying, but the phi of epiphytes increased more quickly than that of non - epiphytes. The leaves of epiphytes Bolbitis scandens and Rhaphidophora decursiva could absorb fog water more quickly, and increase their RWC more greatly than those of non - epiphytes, indicating that these epiphytes were more competent than non - epiphytes in their leaf fog water absorption. The fog water absorption capacity of the leaves in epiphytic orchid Coelogyne occultata and Staurochilus dawsonianus was lower than that in Amischotolype hispida and Mananthus patentflora, but higher than that in other four non - epiphytes. The phi of epiphytes at early evening when no fog was formed was significantly lower than that at early morning, suggesting that fog water was absorbed by epiphytes at night to improve their leaf water status. Non - epiphytes did not need to absorb fog water directly through leaves, and they could recover their leaf water status through absorbing soil water by root system

  14. A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems

    SciTech Connect

    Horuz, I.

    1998-07-01

    A Vapor Absorption Refrigeration (VAR) System is similar to a Vapor Compression Refrigeration (VCR) System. In both systems the required refrigeration is provided by refrigerants vaporizing in the evaporator. However, in the VAR System, a physico-chemical process replaces the mechanical process of the VCR system and heat rather than a mechanical and electrical energy is used. The advantages of this system lie in the possibility of utilizing of waste energy from industrial plants as well as of using solar energy. The study included an investigation to analyze the Vapor Absorption Refrigeration systems using ammonia-water and water-lithium bromide solutions. A fundamental VAR system is described and the operating sequence is explained. Since the most common VAR systems use ammonia-water solution with ammonia as the refrigerant and water-lithium bromide solution with water as the refrigerant, the comparison of the two is presented in respect of the coefficient of performance (COP), the cooling capacity and the maximum and minimum system pressures. It is concluded that the VAR system using water-lithium bromide solution provided better performance than the system using ammonia-water solution. However, there are some points to be considered such as: the danger of crystallization and impossibility of operating in very low temperatures because of the use of water as the refrigerant.

  15. Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method Using a Microplate Reader.

    PubMed

    Takahashi, Shingo; Iwasaki-Kino, Yuko; Aizawa, Koichi; Terao, Junji; Mukai, Kazuo

    2016-01-01

    Recently, a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of natural antioxidants and food extracts was developed. The SOAC values were measured in ethanol-chloroform-D2O (50 + 50 + 1, v/v/v) solution at 35°C using a UV-Vis spectrophotometer equipped with a six-channel cell positioner and an electron-temperature control unit. In the present study, measurement of the SOAC values was performed for eight representative carotenoids and three vegetable extracts (tomato, carrot, and red paprika) using a versatile instrument, the microplate reader. A 24-well glass microplate was used for measurements because a plastic microplate, commonly used in the laboratory, dissolves in the ethanol-chloroform-D2O solution. The SOAC values of eight carotenoids and three vegetable extracts measured using a microplate reader were in good agreement with the corresponding values measured using a UV-Vis spectrophotometer, suggesting that the microplate reader is an applicable instrument for the measurement of reliable SOAC values for general antioxidants and food extracts in solution. PMID:26822807

  16. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  17. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate...

  18. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  19. The Role of Cross-Cultural Absorptive Capacity in the Effectiveness of In-Country Cross-Cultural Training

    ERIC Educational Resources Information Center

    Tarique, Ibraiz; Caligiuri, Paula

    2009-01-01

    Based on the theory of absorptive capacity, this study examines the following question. In the context of cross-cultural training, can the amount of previously accumulated cultural knowledge affect the ability of a trainee to absorb further learning about a new culture, thus enhancing total knowledge and presumably cross-cultural adjustment?…

  20. A water vapor monitor using differential infrared absorption

    NASA Astrophysics Data System (ADS)

    Burch, D. E.; Goodsell, D. S.

    1981-09-01

    A water vapor monitor was developed with adequate sensitivity and versatility for a variety of applications. Two applications are the continuous monitoring of water in ambient air and the measuring of the mass of water desorbed from aerosol filters. The sample gas may be held static, or flow continuously through the 56 cc sample cell, temperature controlled at 45 C. Infrared energy from a tungsten-iodide bulb passes through a rotating filter wheel and the sample cell to a PbS detector. The infrared beam passes through the sample gas twice to produce a total optical path of 40 cm. The infrared beam passes alternately through two semicircular narrow bandpass filters. Absorption by the water vapor in the sample produces a 30-Hz modulation of the detector signal that is proportional to the water concentration. The maximum concentration that can be measured accurately is approximately 5%.

  1. Water vapor continuum: Whether collision-induced absorption is involved?

    NASA Astrophysics Data System (ADS)

    Vigasin, A. A.

    2014-11-01

    In a series of recent publications, the idea is pursued to shed a new light on the theory of the water vapor continuum absorption invoking the mechanism of collision-induced absorption. In the opinion of the present author, a portion of theoretical suggestions on this subject is biased and may thus lead to untenable conclusions about the nature of the continuum. The most typical drawback consists of improper consideration of statistics in the ensemble of interacting monomers that lead to embedding incorrect statistical weights to various types of molecular pairs which can form. The current note aims at clarifying the term “collision-induced absorption” in order to avoid incongruity in understanding the nature of the water vapor continuum.

  2. Ground water applications of the heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1981-01-01

    The paper discusses the ground water portion of a hydrologic investigation of eastern South Dakota using data from the Heat Capacity Mapping Mission (HCMM) satellite. The satellite carries a two-channel radiometer (0.5-1.1 and 10.5-12.5 microns) in a sun synchronous orbit and collects data at approximately 0230 and 1330 local standard time with repeat coverage of 5 to 16 days depending on latitude. It is shown that HCMM data acquired at appropriate periods of the diurnal and annual temperature cycle can provide useful information on shallow ground water.

  3. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  4. The role of education and training in absorptive capacity of international technology transfer in the aerospace sector

    NASA Astrophysics Data System (ADS)

    van der Heiden, Patrick; Pohl, Christine; Bin Mansor, Shuhaimi; van Genderen, John

    2015-07-01

    The role of education and training in the aerospace sector for establishing sufficient levels of absorptive capacity in newly industrialized countries is substantial and forms a fundamental part of a nation's ability to establish and cultivate absorptive capacity on a national or organization-specific level. Successful international technology transfer as well as absorption of aerospace technology and knowledge into recipient organizations, depends prodigiously on the types of policy adopted in education and training of all groups and individuals specifically outlined in this paper. The conducted literature review revealed surprisingly few papers that translate these vital issues from theoretical scrutiny into representations that have practical policy value. Through exploration of the seven key aspects of education and training, this paper provides a practical template for policy-makers and practitioners in Asian newly industrialized countries, which may be utilized as a prototype to coordinate relevant policy aspects of education and training in international technology transfer projects across a wide variety of actors and stakeholders in the aerospace realm. A pragmatic approach through tailored practical training for the identified groups and individuals identified in this paper may lead to an enhanced ability to establish and strengthen absorptive capacity in newly industrialized countries through the development of appropriate policy guidelines. The actual coordination between education and training efforts deserves increased research and subsequent translation into policies with practical content in the aerospace sector.

  5. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  6. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude

  7. Water vapor differential absorption lidar development and evaluation.

    PubMed

    Browell, E V; Wilkerson, T D; McIlrath, T J

    1979-10-15

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements. PMID:20216627

  8. Effect of cecectomy on water and nutrient absorption of birds.

    PubMed

    Chaplin, S B

    1989-01-01

    The effect of the removal of the avian digestive ceca on osmoregulation and on absorption of certain nutrients is reviewed. While data indicate that the ceca have the potential for absorption of a significant quantity of water, several studies have demonstrated that effects of cecectomy on water intake and output are transitory and that compensatory adjustments made within 2 to 3 weeks postsurgery allow cecectomized birds to eat and gain weight normally. However, cecectomized great horned owls exposed to 27 degrees C turned over their body water 1.6 times faster than intact owls under the same conditions, suggesting that the ceca do have a vital role in water balance of thermally stressed horned owls. Cecectomy resulted in slightly lower metabolizability of food, lower digestibility of crude fiber in low fiber diets, and greater loss of certain amino acids in cecectomized birds that were fasted or fed a protein-free diet. The latter suggests that the ceca are important in recovery of amino acids endogenous protein degradation. Loss of cecal function also resulted in higher energy intake and excretion in Japanese quail, amounting to 5.7% of the total daily energy requirement. PMID:2575133

  9. Water vapor differential absorption lidar development and evaluation

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  10. Heat capacities of freely evaporating charged water clusters.

    PubMed

    Sundén, A E K; Støchkel, K; Panja, S; Kadhane, U; Hvelplund, P; Nielsen, S Brøndsted; Zettergren, H; Dynefors, B; Hansen, K

    2009-06-14

    We report on evaporation studies on positively charged water clusters (H(+)(H(2)O)(N)) and negatively charged mixed clusters (X(-)(H(2)O)(N)) with a small core ion X (X=O(2), CO(3), or NO(3)), in the size range N=5-300. The clusters were produced by corona discharge in ambient air, accelerated to 50 keV and mass selected by an electromagnet. The loss of monomers during the subsequent 3.4 m free flight was recorded. The average losses are proportional to the clusters' heat capacities and this allowed the determination of size-dependent heat capacities. The values are found to increase almost linearly with clusters size for both species, with a rate of 6k(B)-8k(B) per added molecule. For clusters with N<21 the heat capacities per molecule are lower but the incremental increase higher. For N>21 the values are intermediate between the bulk liquid and the solid water 0 degrees C values. PMID:19530769

  11. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  12. Photodissociation of vibrationally excited water in the first absorption band

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Hennig, Steffen; Schinke, Reinhard

    1989-12-01

    We investigate the photodissociation of highly excited vibrational states of water in the first absorption band. The calculation includes an ab initio potential energy surface for the Östate and an ab initio X˜→Ã transition dipole function. The bending angle is fixed at the equilibrium value within the ground electronic state. Most interesting is the high sensitivity of the final vibrational distribution of OH on the initially prepared vibrational state of H2 O. At wavelengths near the onset of the absorption spectrum the vibrational state distribution can be qualitatively understood as a Franck-Condon mapping of the initial H2 O wave function. At smaller wavelengths final state interaction in the excited state becomes stronger and the distributions become successively broader. Our calculations are in satisfactory accord with recent measurements of Vander Wal and Crim.

  13. Organic-inorganic hybrid gels for the selective absorption of oils from water.

    PubMed

    Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal

    2016-06-01

    Organic-inorganic hybrid gels were synthesized by the condensation of a linear aliphatic diol (1,8-octanediol) and altering the chain length of the alkyltriethoxysilanes (from ethyltriethoxysilane to hexadecyltrimethoxysilane) through a bulk polymerization process without using any initiator, activator, catalyst, or solvent for the selective removal of oils from water. Fourier transform infrared spectroscopy (FTIR) and solid-state (13)C and (29)Si cross-polarization magic-angle spinning nuclear magnetic resonance (CPMAS NMR) were used for the structural analysis of hybrid gels. Thermal properties of the hybrid gels were determined by thermogravimetric analysis (TGA). Oil absorbency of organic-inorganic hybrid gels was determined by oil absorption tests. The results showed that hybrid gels have high and fast absorption capacities and excellent reusability. Good selectivity, high thermal stability, low density, and excellent recyclability for the oil removal give the material potential applications. PMID:26939691

  14. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  15. The water absorption effect on the hardness of composites polyester

    NASA Astrophysics Data System (ADS)

    Mohammed, A. A.; Issa, T. T.

    2016-04-01

    Unsaturated polyester resin (UPE) was used as the matrix .The iron woven wire and E-glass fiber type (0 - 9°), were used as a reinforcements additives of weight percentage (5, 10, 15) respectively. Samples were prepared by the hand lay-up method for (UPE), (UPE -Fe) and (UPE- Glass). Chemical analysis was used to identify the composition of Fe wire. Water immersing at room temperature for all samples were done at (2, 5, 7, 9, 12) days. Hardness test (Brinell) showed decreasing with increasing in immersion time for (UPE) from (67) HB to (95) HP after adding the reinforcement Fe fibers, with increasing in the water absorbed content especially in the days (2, 5). The water content of absorption was found to be either decreasing or increasing depending on the number of reinforcing layers added.

  16. Experimental Investigations on the Characteristics of the Ammonia-Water Absorption Refrigerator for Low Temperature Solution Cycle

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Kimijima, Shinji; Saito, Kiyoshi; Kawai, Sunao

    This report refers to some static characteristics of the ammonia-water absorption refrigerator for low temperature refrigerating process which needs the temperature below the freezing point. Especially, the influence of evaporating temperature and cooling water temperature is clarified by the experimental investigation. In addition to this, the validity of constructed simulation model of this absorption refrigerator is mentioned. The validity of simulation model is verified by the comparison of experimental results and calculation. To examine the characteristics, we conducted the performance test using the trial product of which the standard cooling capacity is 175kW. The performance is estimated according to cooling capacity and COP. As a result, the effects of the evaporating temperature and cooling water temperature on the cooling performance are clarified by the experimental research. Furthermore, the calculation of the static characteristics predicted by the simulation model is in good agreements with the experimental results.

  17. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    PubMed

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation. PMID:26683766

  18. Human skin binding and absorption of contaminants from ground and surface water during swimming and bathing

    SciTech Connect

    Wester, R.C.; Maibach, H.I. )

    1989-10-01

    Contaminants exist in ground and surface water. Human skin has the capacity to bind and then absorb these contaminants into the body during swimming and bathing. Powdered human stratum corneum will bind both lipid-soluble (alachlor, polychlorinated biphenyls (PCBs), benzene) and water-soluble (nitroaniline) chemicals. In vitro (Human skin) and in vivo (Rhesus monkey) studies show that these chemicals readily distribute into skin, and then some of the chemical is absorbed into the body. Linearity in binding and absorption exists for nitroaniline over a 10-fold concentration range. Multiple exposure to benzene is at least cumulative. Binding and adsorption can be significant for exposures as short as 30 minutes, and will increase with time. Adsorption with water dilution increased for alachlor, but not for dinoseb. Soap reversed the partitioning of alachlor between human stratum corneum and water. The PCBs could be removed from skin by soap and water for up to 3 hours and the decontamination potential decreased, due to continuing skin absorption. The model that in vitro and in vivo systems used should permit easy estimation of this area of extensive human exposure effect on risk assessment. 5 refs., 9 tabs.

  19. Energy analysis of an ammonia-water absorption refrigeration system

    SciTech Connect

    Dincer, I.; Dost, S.

    1996-09-01

    Absorption refrigeration systems (ARSs) are run on heat-operated cycles. In these systems a secondary fluid (i.e., absorbent) is used to absorb the primary fluid (i.e., refrigerant) vaporized in the evaporator. ARSs for industrial and domestic applications have been attracting increasing interest throughout the world. A simple energy analysis technique for ammonia-water refrigeration systems is presented and verified with actual experimental data taken from the literature. Comparison was made in terms of the coefficient of performance, and very good agreement was found.

  20. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  1. The x-ray absorption spectra of water and ice

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Wu, Xifan; Car, Roberto

    2012-02-01

    We calculate the x-ray absorption spectra of liquid water at STP, hexagonal ice and amorphous low- and high-density ice at T=269K, using the static Coulomb-hole and screened exchange self energy approach ootnotetextW. Chen, X. Wu and R. Car, PRL 105, 017802 (2008) . We take the nuclear quantum effects into account by averaging over the Feynman path-integral replicas. We find that quantum disorder is particularly important in liquid water where it substantially improves the structure ootnotetextJ. Morrone and R. Car, PRL 101, 017801 (2008) Compared to Ref. 2, we use an improved screening model that includes the approximate local field correction ootnotetextM. Hybertsen and S. G. Louie, PRB 37, 2733 (1988). The resulting spectra are in significantly better agreement with experiments than in previous calculations.

  2. A nonisothermal emissivity and absorptivity formulation for water vapor

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  3. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices...

  4. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films.

    PubMed

    Bajpai, M; Bajpai, S K; Jyotishi, Pooja

    2016-03-01

    In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day. PMID:26658228

  5. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  6. Water absorption in a refractive index model for bacterial spores

    NASA Astrophysics Data System (ADS)

    Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

    2009-05-01

    The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

  7. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  8. Microclimate in ski boots--temperature, relative humidity, and water absorption.

    PubMed

    Hofer, Patrick; Hasler, Michael; Fauland, Gulnara; Bechtold, Thomas; Nachbauer, Werner

    2014-05-01

    Ski boot quality is determined by mechanical properties and comfort. Comfort is strongly affected by cold feet. The purpose of this study was to determine the microclimate in ski boots. Climate chamber tests with five male subjects and field tests with two male subjects were conducted. Temperature and relative humidity were measured using four sensors placed on the foot and one on the liner. Absorbed water in liners and socks was measured with a precision balance. The subjects gave subjective ratings for comfort. The toe sensor temperature dropped below 20 °C at an ambient temperature of 0 °C, -10 °C, and -20 °C. Relative humidity values at the foot were as high as 78% in the climate chamber and 93% in the field. Water absorption in socks and liners ranged from 4 to 10 g in the climate chamber and 19 to 45.5 g in the field. The results reveal the importance of keeping the feet and in particular the toes warm during skiing. One possible improvement may be to construct the liner so that sweat and melted snow are kept as far away as possible from the foot. Liner material with high water absorption capacity and hydrophobic socks were suggested to prevent wet feet. PMID:23932378

  9. Social Networks, Social Media and Absorptive Capacity in Regional Small and Medium Enterprises (SMES) in Australia

    ERIC Educational Resources Information Center

    Bosua, Rachelle; Evans, Nina; Sawyer, Janet

    2013-01-01

    Small and Medium Enterprises (SMEs) are major sources of prosperity and employment and are viewed as critical to regional development in Australia. A key factor to foster productivity and growth in SMEs is their ability to identify, acquire, transform and exploit external knowledge. This ability, referred to as the "absorptive capacity…

  10. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    USGS Publications Warehouse

    Mann, L.T., Jr.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  11. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption.

    PubMed

    Bai, Chan; Zhang, Sufen; Huang, Lei; Wang, Haiyan; Wang, Wei; Ye, Qingfu

    2015-07-10

    Starch, with properties of eco-friendliness and abundance, is one of the most important natural polymers. Starch-based hydrogels were investigated as carriers of carbendazim to combine controlled-release and water absorption (WA). Three carbendazim-loaded hydrogels (CLHs) with different WA capacities were prepared by solution polymerization. The CLHs were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and liquid-chromatography mass-spectrometry (LC-MS/MS). Release kinetics of CLHs was investigated using (14)C-labeling method. The diffusion parameters of CLHs were 0.47, 0.57 and 0.81 in deionized H2O (ddH2O). WA affected release profile significantly, the release longevity reaching 240 h when WA was 800 g/g in ddH2O. Solution pH influenced release profiles and the lowest release rate occurred in the lowest pH. Addition of CLH (1.3g/kg soil) markedly increased water-holding capacity (WHC) of soil by 8.2%. The study indicated that starch-based CLH was a good controlled-release agent for carbendazim and water absorbent for soil. PMID:25857995

  12. The Impacts of Different Expansion Modes on Performance of Small Solar Energy Firms: Perspectives of Absorptive Capacity

    PubMed Central

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance. PMID:24453837

  13. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  14. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  15. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  16. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system. PMID:23187280

  17. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Meechai, Nispa

    1997-06-01

    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch- g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 × 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency.

  18. Experimental study of the light absorption in sea water by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A.; Sira, E.; Silva, S.; Cabrera, H.

    2016-01-01

    Thermal lens spectroscopy is well known as highly sensitive technique enabling measurements of low absorption and concentration determination of various compounds. The optical absorption coefficients of doubly distilled water and samples of water from different places of the open Ocean and different coastal regions have been measured at 532.8 nm wavelength using this technique. The method enables sensitive, rapid and reproducible determination of small variations of the absorption coefficient which are related with small trace contaminations in sea water.

  19. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    SciTech Connect

    Patridge, Christopher J.; Swider-Lyons, Karen E.; Twigg, Mark E.; Ramaker, David E.

    2013-07-15

    The local structure of nanoscale (∼10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple

  20. Estimation of Concentration and Bonding Environment of Water Dissolved in Common Solvents Using Near Infrared Absorptivity

    PubMed Central

    Dickens, Brian; Dickens, Sabine H.

    1999-01-01

    Integrated near infrared (NIR) absorbance has been used to determine the absorptivity of the υ2 + υ3 combination band of the asymmetric stretch (υ2) and the bending vibration (υ3) for water in several organic solvents. Absorptivity measured in this way is essentially constant across the absorption envelope and is found to be 336 L mol−1 cm−1 with a standard deviation of 4 L mol−1 cm−1 as estimated from a least squares fit of a straight line to data from water concentrations between 0.01 mol/L and 0.06 mol/L. Absorptivity measured from the peak maximum of the υ2 + υ3 combination band of water varies with the type of hydrogen bonding of the water molecule because the shape of the NIR absorption envelope changes with the hydrogen bonding. Because the integrated NIR absorptivity of the υ2 + υ3 combination band of water is essentially constant across the absorption envelope, the NIR absorption envelope reflects the distribution of hydrogen bonding of the water. The shape and location of the absorption envelope appear to be governed mostly by the number of hydrogen bonds from the water molecules to easily polarized atoms. Water that is a donor in hydrogen bonds to atoms which are not easily polarized (such as the oxygen of a typical carbonyl group) absorbs near 5240 cm−1 to 5260 cm−1. Water that donates one hydrogen bond to an easily polarized atom (such as a water molecule oxygen) absorbs near 5130 cm−1 to 5175 cm−1, and water that donates two hydrogen bonds to easily polarized atoms is estimated to absorb near 5000 cm−1 to 5020 cm−1. Water donating two hydrogen bonds to other water molecules may be said to be in a water-like environment. In no case does a small amount of water absorbed in a host material appear to have a water-like environment.

  1. Water-holding capacity of broiler breast muscle during the first 24 h postmortem.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-holding capacity of poultry muscle influences both the sensory appeal for consumers and the product yield for processors. The underlying mechanisms that control water-holding capacity in poultry are not fully understood. The objective of this study was to determine the evolution of water-hol...

  2. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container... 21 Food and Drugs 2 2014-04-01 2014-04-01 false General methods for water capacity and fill of... methods for water capacity and fill of containers. For the purposes of regulations promulgated...

  3. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  4. Pore-size dependent THz absorption of nano-confined water.

    PubMed

    Sun, Chi-Kuang; You, Borwen; Huang, Yu-Ru; Liu, Kao-Hsiang; Sato, Shusaku; Irisawa, Akiyoshi; Imamura, Motoki; Mou, Chung-Yuan

    2015-06-15

    We performed a THz absorption spectroscopy study on liquid water confined in mesoporous silica materials, MCM-41-S-18 and MCM-41-S-21, of two different pore sizes at room temperatures. We found that stronger confinement with a smaller pore size causes reduced THz absorption, indicating reduced water mobility due to confinement. Combined with recent theoretical studies showing that the microscopic structure of water inside the nanopores can be separated into a core water region and an interfacial water region, our spectroscopy analysis further reveals a bulk-water-like THz absorption behavior in the core water region and a solid-like THz absorption behavior in the interfacial water region. PMID:26076248

  5. The effect of canola meal tannins on the intestinal absorption capacity of broilers using a D-xylose test.

    PubMed

    Mansoori, B; Rogiewicz, A; Slominski, B A

    2015-12-01

    In three D-xylose absorption experiments, the effect of 1% HCl/methanol, 70% methanol or 70% acetone extracts of canola meal (CM) or 70% acetone extract of soybean meal (SBM) containing polyphenols, phenolic acids, tannins and phytic acid on intestinal absorption capacity of broilers was determined. In Exp. 1, the experimental groups received orally D-xylose solution alone or with methanol/HCl, methanol or acetone extracts of CM. In Exp. 2, the experimental groups received D-xylose alone or with acetone extracts of CM or SBM. In Exp. 3, the experimental groups received D-xylose plus sucrose solution or D-xylose plus acetone extracts of CM or SBM. In Exps. 2 and 3, the CM extracts contained 2.7 and 2.6, 2.4 and 2.3, 3.2 and 3.2, and 2.4 and 2.2 times higher polyphenols, phenolic acids, tannins and condensed tannins than the corresponding SBM extracts respectively. Blood samples were collected in 40-min intervals, and plasma D-xylose was measured. Compared to the Control, plasma D-xylose in Exp. 1 was lower (p < 0.001) by 81, 69 and 73% at 40-min, by 41, 44 and 37% at 80-min and by 22, 31, and 23% at 120-min post-ingestion of the HCl/methanol, methanol and acetone extracts respectively. In both Exps. 2 and 3, plasma D-xylose level was lower (p < 0.001) in groups dosed with CM extract or SBM extract at each time of blood collection, when compared to the respective Control group. However, in Exp. 3, birds dosed with SBM extract had higher plasma D-xylose than CM extract-dosed birds by 28, 8 and 21% at 40, 80 and 120 min respectively (p < 0.01). In conclusion, although CM extract caused a lower absorption of D-xylose, based on 5 to 10% of CM inclusion levels in practical broiler rations, the soluble bioactive components of CM will likely have minor impact on the absorption capacity of the chicken intestine. PMID:25865561

  6. Enhanced Water Vapor Absorption within Tropospheric Clouds: A Partial Explanation for Anomalous Absorption

    NASA Technical Reports Server (NTRS)

    Crisp, David; Zuffada, Cinzia

    1996-01-01

    Comparisons between solar flux measurements and predictions obtained from theoretical radiative transfer models indicate that most of these models underestimate the globally averaged solar energy absorbed by cloudy atmospheres by up to 25Wm&sup-2;.The origin of this anomalous absorption has not yet been established, but it has been attributed to a variety of sources including oversimplified or missing physical processes in the existing models, uncertainties in the input data, and even measurement errors. We used a sophisticated atmospheric radiative transfer model to provide improved constraints on the physical processes that contribute to the absorption of solar radiation by Earth's atmosphere. The results are described herein.

  7. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  8. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    SciTech Connect

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate of the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.

  9. Tracking Drug Loading Capacities of Calcium Silicate Hydrate Carrier: A Comparative X-ray Absorption Near Edge Structures Study.

    PubMed

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Yiu, Yun-Mui; Hu, Yongfeng; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-08-01

    Mesoporous spheres of calcium silicate hydrate (MS-CSH) have been prepared by an ultrasonic method. Following an earlier work in which we have revealed the interactions between ibuprofen (IBU) and CSH carriers with different morphologies by X-ray absorption near edge structures (XANES) analysis. In the present investigation, two new drug molecules, alendronate sodium (ALN) and gentamicin sulfate (GS), were incorporated into MS-CSH, and their drug loading capacities (DLCs) were measured using thermogravimetric analysis to establish the relationship between drug-carrier interactions and DLCs. The XANES spectra clearly indicate that acidic functional groups of the drug molecules linked to the active sites (Ca-OH and Si-OH groups) of MS-CSH on the surface by electrostatic interactions. In addition, it is found that the stoichiometric ratio of Ca(2+) ions of CSH carriers and the functional groups of drug molecules may significantly influence the DLCs. PMID:26162602

  10. Influence of soil water stress on evaporation, root absorption, and internal water status of cotton.

    PubMed

    Jordan, W R; Ritchie, J T

    1971-12-01

    Diurnal variations in leaf water potential, diffusion resistance, relative water content, stem diameter, leaf temperature, and energy balance components were measured in cotton (Gossypium hirsutum L. var. Lankart 57) during drought stress under field conditions. A plot of leaf water potential against either relative water content or stem diameter during the 24-hour period yielded a closed hysteresis loop. The relation between cell hydration and evaporation is discussed.Despite low soil water potential in the main root zone, significant plant evaporation rates were maintained. Root absorption rates as a function of soil depth were calculated from water content profiles measured with a neutron probe. The maximal root absorption rate of 3.5 x 10(-3) day(-1) occurred at the 75-centimeter depth, well below the main root zone.Stomatal resistance of individual leaves during the daylight hours remained nearly constant at 2.5 seconds centimeter(-1) even though leaf water potentials approached -30 bars. A growth chamber study indicated stomatal closure occurred at potentials near -16 bars. Possible implications of high soil water stress in relation to stomatal function and growth are discussed. Based on an energy balance method, the actual to potential plant evapotranspiration ratio was 0.43 for the 24-hour period, indicating partial stomatal closure. A surface resistance, r(s), of 4.0 seconds centimeter(-1) was calculated for the incomplete canopy with the use of the energy balance data. Alternatively, a canopy resistance of 1.3 seconds centimeter(-1) was attained from a relationship between leaf area and stomatal resistance of individual leaves. If the soil resistance was assumed to be very large and the canopy resistance was weighted for the fractional ground cover of the crop, the calculated surface resistance was 4.3 seconds centimeter(-1). Under these conditions, the two independent estimates of r(s) were in essential agreement. PMID:16657880

  11. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  12. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  13. Tree invasion effects on peat water storage capacity (La Guette peatland, France)

    NASA Astrophysics Data System (ADS)

    Binet, Stephane; Viel, Emelie; Gogo, Sebastien; Le Moing, Franck; Laggoun-Defarge, Fatima

    2015-04-01

    In peatlands, carbon fluxes are mainly controlled by peat water saturation state, and this saturation state is an equilibrium between recharge/drainage fluxes and the peat storage capacity. The invasion of Sphagnum peatlands by vascular plants is a current problem in many peat-accumulating systems, raising the question of the relationships between vegetation changes and water storage capacity of peat horizons. To investigate this question, the water storage capacity of the "La Guette" peatland (France), invaded by Betula spp was monitored at the watershed scale since 2008 using a water balance approach and was estimated during the 20th century using historical photographs showing the drainage network and the land cover change. During this period, the site clearly experienced a vegetation change as the site was treeless in 1944. Two main results arise from this experimental device: (1) In this disturbed peatland, tree consumption amplifies the summer drought and the resulting water table drawdown allows an increase of air entrapment in the peat. Even if runoff flows occurred after this drought, the water storage capacity is affected, with about 30% of air that remains trapped in the peat porosity 6 months after the drought period. The effects of a single drought on peat water storage capacity are observed over more than a single hydrological cycle, suggesting a possible cumulative effect of droughts decreasing the peat water storage capacity. (2) Tree invasion is found to drive the drainage network morphology. Hydrological model calibrated for the study site suggested that the development of drainage network had reduced the water storage capacity of the peatland. These observations evidenced a positive feedback between vegetation dynamics and water storage capacity: tree invasion changes the drainage network geometry that decreases the peat water storage capacity, which in return may favor tree development. These two results highlight that the peat water storage

  14. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror. PMID:26368258

  15. Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature

    NASA Astrophysics Data System (ADS)

    Xin, X.; Altan, H.; Saint, A.; Matten, D.; Alfano, R. R.

    2006-11-01

    Terahertz time-domain spectroscopy has been used to measure the absorption of water vapor in 0.2-2.4THz range from low to high humidity at room temperature. The observed absorption lines are due to the water molecular rotations in the ground vibrational state. We find that the absorption strength of para transitions increases as humidity increases, while the absorption strength of ortho transitions increases and then decreases in intensity with increasing humidity. We explain this difference based on the nuclear spin statistics based ratio of ortho to para water monomer populations at room temperature. The preferential adsorption on the solid surfaces of para water leads to an ortho dominated vapor cloud whose monomer rotational absorption intensity decreases due to the effects of dimerization, molecular collisions, clustering, and interactions with liquid droplets at high concentrations.

  16. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false General methods for water capacity and fill of... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.12 General methods for water capacity and fill of containers. For the purposes of regulations promulgated...

  17. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false General methods for water capacity and fill of containers. 130.12 Section 130.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.12 General methods for water capacity and...

  18. Poultry water holding capacity measurements using infrared spectroscopies correlated to traditional methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water holding capacity (WHC) in chicken meat is directly correlated with the quality of the meat. Lower water holding capacity is linked with decreased sensory qualities and therefore lower consumer satisfaction. Additionally, measurement of WHC is subject to wide variations which can depend on many...

  19. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  20. Impact of a lowered water table on water holding capacity of high elevation meadow soils

    NASA Astrophysics Data System (ADS)

    Arnold, C. L.

    2011-12-01

    Meadow degradation, as a product of overgrazing or disruption of hydrologic regime, is a critical problem facing a variety of environments, including high elevation ecosystems of the Sierra Nevada, California and has become a focus of major research and restoration efforts. Within the historic range of water level in a meadow, it is hypothesized that a meadow will retain its water holding capacity and resiliency. However, if the water table drops below a historic level, due to climate change and/or management practices, the process of soil consolidation will influence the resiliency of the meadow through the irreversible plastic deformation of the soil pores. The subsequent change in soil structure results in decreased porosity, increased bulk density, and a reduction in permeability of the meadow. Such changes can adversely impact the overall water holding capacity of the meadow. This study utilizes a modified triaxial system combined with a multiphysics modeling approach to quantify the historic limit of dryness experienced in a high elevation meadow and degree of consolidation the meadow would experience if that limit was exceeded.

  1. Upper limits for absorption by water vapor in the near-UV

    NASA Astrophysics Data System (ADS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-02-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10-26 cm2 molecule-1 at our instrument resolution. For a typical, indicative slant column density of 4×1023 cm2, we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths.

  2. The influence of water mixtures on the dermal absorption of glycol ethers

    SciTech Connect

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M. . E-mail: F.M.Williams@ncl.ac.uk

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.

  3. Jejunal water and electrolyte absorption from two proprietary enteral feeds in man: importance of sodium content.

    PubMed

    Spiller, R C; Jones, B J; Silk, D B

    1987-06-01

    Jejunostomy losses of Na+ and water during enteral nutrition after massive intestinal resection may be severe. We have attempted to analyse this practical problem by using an in vivo perfusion technique in healthy volunteers to study Na+, water and nutrient absorption from a short (25 cm) segment of jejunum during perfusion of an isotonic solution of the elemental diet Vivonex. Further solutions made from the amino acid and carbohydrate components of Vivonex were also perfused in part I of the study in order to determine the causes of the marked Na+ and water secretion seen during Vivonex perfusion. Low initial Na+ concentration was found to be the major determinant of net Na+ secretion, initial Na+ concentration correlating significantly with Na+ absorption (r = 0.95, n = 7 p less than 0.001). Water absorption correlated with net absorption of NaCl (r = 0.82, n = 7 p less than 0.01). There was, however, a better correlation with total absorption of NaCl plus amino acids (r = 0.99, n = 7, p less than 0.01). In part II of the study separate isotonic solutions of NaCl, glucose, and the polymeric diet, Ensure were also studied. Net sodium secretion occurred during glucose and Ensure perfusion, as predicted from their low Na+ concentration. Owing to rapid sucrose absorption from Ensure there was substantial luminal disappearance of osmotically active particles and hence marked water absorption, which was accurately predicted using the regression equation for water absorption derived in part I, substituting sucrose absorption for amino acid absorption. We conclude that the marked Na+ and water secretion observed during Vivonex perfusion is not a unique property of this amino acid based diet but is due to its low Na+ content. PMID:3114056

  4. EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER

    EPA Science Inventory

    Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...

  5. Effect of water-soluble oxalates in Amaranthus spp. leaves on the absorption of milk calcium.

    PubMed

    Pingle, U; Ramasastri, B V

    1978-11-01

    1. Amaranthus spp. leaves contain high amounts of oxalates which affect the calcium absorption. This study was done to determine whether removal of the water-soluble oxalates from the leaves by cooking would reduce this deleterious effect. 2. Experimental work done with two types of basal diets on six adult male subjects has shown that the milk Ca absorption was low when leaves cooked without draining away the water were included in the diet. However when the soluble oxalates were removed by throwing away the water after cooking the leaves, the absorption of milk Ca was unaffected. PMID:568935

  6. Water absorption and desorption in shuttle ablator and insulation materials

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  7. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption.

    PubMed

    Leforestier, C; Tipping, R H; Ma, Q

    2010-04-28

    We investigated the magnitude and temperature dependence (T dependence) of the dimer absorption in the region of 0-600 cm(-1) and the collision-induced absorption (CIA) in the region of 0-1150 cm(-1). Together with our previous study of the self water-vapor continuum contributions resulting from far-wing line shapes of the allowed H(2)O lines in the infrared window between 800 and 1150 cm(-1), we find that the three mechanisms have completely different T dependence behaviors. The dimer absorption has the strongest negative T dependence and the continuum absorption from far wings of the allowed lines has a moderately strong negative one. Meanwhile, the CIA exhibits a mild T dependence. In addition, their T dependence patterns are quite different. The T dependence of the far-wing theory varies significantly as the frequency of interest omega varies. For CIA, in general, its T dependence is mildly negative, but becomes slightly positive in the window region between the H(2)O bands. In contrast, the T dependence of the dimer absorption varies slightly as omega varies. In the microwave and submillimeter region, its T dependence becomes uniform. Concerning the relative importance for each of these three mechanisms, we find that in the infrared widow, the far-wing contributions are the dominant source of the self-continuum. Within the band, its contributions are definitely responsible for the measured continuum data. But, it is impossible to draw quantitatively conclusions on its relative importance unless one is able to improve the accuracy of the local line calculations significantly. On the other hand, within the pure rotational band, the dimer absorptions are a minor contributor to the self-continuum measurements, and its role becomes more important in the microwave and submillimeter regions. Finally, based on our study we conclude that contributions to the self-continuum from CIA in the frequency region of 0-1150 cm(-1) are negligible. PMID:20441270

  8. Dataset used to improve liquid water absorption models in the microwave

    SciTech Connect

    Turner, David

    2015-12-14

    Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.

  9. Evaluating Beijing's human carrying capacity from the perspective of water resource constraints.

    PubMed

    Zhang, Yingxuan; Chen, Min; Zhou, Wenhua; Zhuang, Changwei; Ouyang, Zhiyun

    2010-01-01

    As the demands on limited water resources intensify, concerns are being raised about the human carrying capacity of these resources. However, few researchers have studied the carrying capacity of regional water resources. Beijing, the second-largest city in China, faces a critical water shortage that will limit the city's future development. We developed a method to quantify the carrying capacity of Beijing's water resources by considering water-use structures based on the proportions of water used for agricultural, industrial, and domestic purposes. We defined a reference structure as 45:22:33 (% of total, respectively), an optimized structure as 40:20:40, and an ideal structure as 50:15:35. We also considered four domestic water quotas: 55, 75, 95, and 115 m3/(person x yr). The urban carrying capacity of 10-12 million was closest to Beijing's actual 2003 population for all three water-use structures with urban domestic water use of 75 m3/(person x yr). However, after accounting for our underlying assumptions, the adjusted carrying capacity is closer to 5-6 million. Thus, Beijing's population in 2003 was almost twice the adjusted carrying capacity. Based on this result, we discussed the ecological and environmental problems created by Beijing's excessive population and propose measures to mitigate these problems. PMID:21179972

  10. Effect of water on the heat capacity of polymerized aluminosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Bouhifd, M. Ali; Whittington, Alan; Roux, Jacques; Richet, Pascal

    2006-02-01

    The effect of water on heat capacity has been determined for four series of hydrated synthetic aluminosilicate glasses and supercooled liquids close to albite, phonolite, trachyte, and leucogranite compositions. Heat capacities were measured at atmospheric pressure by differential scanning calorimetry for water contents between 0 and 4.9 wt % from 300 K to about 100 K above the glass transition temperature ( Tg). The partial molar heat capacity of water in polymerized aluminosilicate glasses, which can be considered as independent of composition, is =-122.319+341.631×10-3T+63.4426×105/T2 (J/mol K). In liquids containing at least 1 wt % H 2O, the partial molar heat capacity of water is about 85 J/mol K. From speciation data, the effects of water as hydroxyl groups and as molecular water have tentatively been estimated, with partial molar heat capacities of 153 ± 18 and 41 ± 14 J/mol K, respectively. In all cases, water strongly increases the configurational heat capacity at Tg and exerts a marked depressing effect on Tg, in close agreement with the results of viscosity experiments on the same series of glasses. Consistent with the Adam and Gibbs theory of relaxation processes, the departure of the viscosity of hydrous melts from Arrhenian variations correlates with the magnitude of configurational heat capacities.

  11. The high water-holding capacity of petrocalcic horizons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Petrocalcic soil horizons occur in most arid and semi-arid ecosystems around the world, often within the plant rooting zone. Little is known, however, about the water holding characteristic of soils indurated with calcium carbonate. We conducted a replicated experiment to define the soil-water relea...

  12. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  13. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  14. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  15. A WATER VAPOR MONITOR USING DIFFERENTIAL INFRARED ABSORPTION

    EPA Science Inventory

    A water vapor monitor has been developed with adequate sensitivity and versatility for a variety of applications. Two applications for which the instrument has been designed are the continuous monitoring of water in ambient air and the measuring of the mass of water desorbed from...

  16. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  17. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  18. Experimentally determined water storage capacity in the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ferot, A.; Bolfan-Casanova, N.

    2010-12-01

    Trace amounts of hydrogen dissolved as defects in nominally anhydrous minerals (NAMs) in the mantle are believed to play a key role in physical and chemical processes in the Earth’s upper mantle. Hence, the estimation of water storage in mantle phases and solubility mechanisms are important in order to better understand the effect of water. Experimental data on water solubility in NAMs are available for upper mantle minerals such as olivine, pyroxenes and garnet. However, the majority of studies are based on the study of single phases, and at temperatures or pressures that are too low for the Earth’s upper mantle. The aim of this study is to constrain the combined effects of pressure, temperature and composition on water solubility in olivine and orthopyroxene under upper mantle conditions. The solubility of water in coexisting orthopyroxene and olivine was investigated by simultaneously synthesizing the two phases at high pressure and high temperature in a multi-anvil press. Experiments were performed under water-saturated conditions in the MSH systems with Fe and Al at 2.5, 5, 7.5 and 9 GPa and temperatures between 1175 and 1400°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on doubly polished thin sections of randomly oriented crystals. Water solubility in olivine increases with pressure and decreases with temperature as has been described previously (Bali et al., 2008). The aluminum content strongly decreases in olivine with pressure from 0.09 wt% at 2.5 GPa and 1250°C to 0.04 wt% at 9 GPa and 1175°C. The incorporation of this trivalent cation in the system enhances water solubility in olivine even if present in trace amounts, however this behavior appears to reverse at high pressure. The effect of temperature on water solubility follows a bell-shaped curve with a maximum solubility in olivine and orthopyroxene at 1250°C. Aluminum is incorporated in orthopyroxene following the Tschermak substitution and strongly

  19. Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.

    PubMed

    Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D

    2014-02-24

    Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off. PMID:24663762

  20. Development of singlet oxygen absorption capacity (SOAC) assay method. 2. Measurements of the SOAC values for carotenoids and food extracts.

    PubMed

    Aizawa, Koichi; Iwasaki, Yuko; Ouchi, Aya; Inakuma, Takahiro; Nagaoka, Shin-ichi; Terao, Junji; Mukai, Kazuo

    2011-04-27

    Recently a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of antioxidants was proposed. In the present work, kinetic study of the reaction of singlet oxygen ((1)O(2)) with carotenoids and vegetable extracts has been performed in ethanol/chloroform/D(2)O (50:50:1, v/v/v) solution at 35 °C. Measurements of the second-order rate constants (k(Q)(S)) and the SOAC values were performed for eight kinds of carotenoids and three kinds of vegetable extracts (red paprika, carrot, and tomato). Furthermore, measurements of the concentrations of the carotenoids included in vegetable extracts were performed, using a HPLC technique. From the results, it has been clarified that the total (1)O(2)-quenching activity (that is, the SOAC value) for vegetable extracts may be explained as the sum of the product {Σ k(Q)(Car-i)(S) [Car-i](i)} of the rate constant (k(Q)(Car-i)(S)) and the concentration ([Car (i)]) of carotenoids included in vegetable extracts. PMID:21395214

  1. Development of singlet oxygen absorption capacity (SOAC) assay method. 4. Measurements of the SOAC values for vegetable and fruit extracts.

    PubMed

    Iwasaki, Yuko; Takahashi, Shingo; Aizawa, Koichi; Mukai, Kazuo

    2015-01-01

    Measurements of the second-order rate constants and the singlet oxygen absorption capacity (SOAC) values for the reaction of singlet oxygen ((1)O2) with 23 kinds of food extracts were performed in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 35 °C. It has been clarified that the SOAC method is useful to evaluate the (1)O2-quenching activity (i.e. the SOAC value) of food extracts having two orders of magnitude different rate constants from 3.18 × 10(4) L g(-1) s(-1) for tomato to 1.55 × 10(2) for green melon. Furthermore, comparison of the observed rate constants for the above food extracts with the calculated ones based on the concentrations of seven kinds of carotenoids included in the food extracts and the rate constants reported for each carotenoids was performed, in order to ascertain the validity of the SOAC assay method developed and to clarify the ratio of the contribution of principal carotenoids to the SOAC value. PMID:25359604

  2. Irrigation scheduling as affected by field capacity and wilting point water content from different data sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at field capacity and wilting point water content is critical information for irrigation scheduling, regardless of soil water sensor-based method (SM) or evapotranspiration (ET)-based method. Both methods require knowledge on site-specific and soil-specific Management Allowable De...

  3. Estimating In-situ Soil-Water Retention and Field Water Capacity in Two Contrasting Soil Textures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A priori knowledge of the in-situ soil field water capacity (FWC) and the soil-water retention curve for soils is important for the effective irrigation management and scheduling of many crops. The primary objective of this study was to estimate the in-situ FWC using the soil-water retention curve d...

  4. ESTIMATES OF PLANT-AVAILABLE WATER CAPACITY FOR CLAYPAN LANDSCAPES USING SOIL ELECTRICAL CONDUCTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape variability of plant available water (PAW) capacity is useful information for site-specific management, but is expensive to assess using traditional measurements. In this study, we hypothesized that for claypan soils, profile PAW capacity can be approximated by assuming a two-layer soil bo...

  5. Interrelation between the crystallinity of polysaccharides and water absorption

    NASA Astrophysics Data System (ADS)

    Prusov, A. N.; Prusova, S. M.; Radugin, M. V.; Zakharov, A. G.

    2014-05-01

    The maximum sorption of water and its vapors is calculated using experimental data from calorimetric and effusion studies of flax, wood, and cotton cellulose. X-day diffraction is used to determine the crystallinity of cellulose samples. The equations relating crystallinity ( X) with maximum sorption and the enthalpy of interaction between cellulose and water are presented. Experimental results and the literature data on water sorption by chitin, chitosan and other polysaccharides show that our equations for calculating crystallinity are correct.

  6. Influence of meal composition on canine jejunal water and electrolyte absorption.

    PubMed

    Bastidas, J A; Zinner, M J; Bastidas, J A; Orandle, M S; Yeo, C J

    1992-02-01

    The absorption of water and electrolytes from the proximal jejunal lumen increases immediately after a meal. This meal-induced jejunal absorption occurs in jejunal segments out of normal gastrointestinal continuity. This study was designed to characterize the jejunal absorptive response to a series of isovolumetric gavage-delivered stimuli. Twenty-five-centimeter canine proximal jejunal Thiry-Vella fistulas were constructed, and jejunal absorption studies (n = 66) were performed by luminal perfusion of the jejunal segments with an isotonic buffer containing 14C-labeled polyethylene glycol. Each study consisted of a 1-hour basal period, followed by a 3-hour experimental period. Nine groups were studied, each receiving one of the following isovolumetric stimuli delivered via the gavage route: water, 0.9% saline, mixed meal, protein, lipid, carbohydrate, and mannitol (150 mmol/L, 300 mmol/L, and 600 mmol/L). The water and 0.9% saline gavage groups showed no significant changes in integrated postprandial water and electrolyte absorption above basal. The isocaloric mixed meal, protein, lipid, carbohydrate, and mannitol groups all had significantly increased integrated postprandial jejunal water and electrolyte absorption above basal (P less than 0.05). These results indicate that a proabsorptive signal for meal-induced jejunal absorption originates from or distal to the stomach. Meal-induced jejunal absorption occurs in response to nutrients of diverse composition and is also responsive to nonnutritive solutes such as mannitol. These findings support a new role for gastric or intestinal chemo- or osmo-receptors in stimulating the neurohumoral mechanisms that mediate meal-induced jejunal absorption. PMID:1732119

  7. Whey protein hydrolysates enhance water absorption in the perfused small intestine of anesthetized rats.

    PubMed

    Ito, Kentaro; Yamaguchi, Makoto; Noma, Teruyuki; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2016-08-01

    We evaluated the effect of whey protein hydrolysates (WPH) on the water absorption rate in the small intestine using a rat small intestine perfusion model. The rate was significantly higher with 5 g/L WPH than with 5 g/L soy protein hydrolysates or physiological saline (p < 0.05). WPH dose-dependently increased the water absorption rate in the range of 1.25-10.0 g/L. WPH showed a significantly higher rate than an amino acid mixture whose composition was equal to that of WPH (p < 0.05). The addition of 4-aminomethylbenzoic acid, an inhibitor of PepT1, significantly suppressed WPH's enhancement of water absorption (p < 0.05). The rate of water absorption was significantly correlated with that of peptides/amino acids absorption in WPH (r = 0.82, p < 0.01). These data suggest that WPH have a high water absorption-promoting effect, to which PepT1 contributes. PMID:27055721

  8. Liquid water absorption and scattering effects in DOAS retrievals over oceans

    NASA Astrophysics Data System (ADS)

    Peters, E.; Wittrock, F.; Richter, A.; Alvarado, L. M. A.; Rozanov, V. V.; Burrows, J. P.

    2014-12-01

    Spectral effects of liquid water are present in absorption (differential optical absorption spectroscopy - DOAS) measurements above the ocean and, if insufficiently removed, may interfere with trace gas absorptions, leading to wrong results. Currently available literature cross sections of liquid water absorption are provided in coarser resolution than DOAS applications require, and vibrational Raman scattering (VRS) is mostly not considered, or is compensated for using simulated pseudo cross sections from radiative transfer modeling. During the ship-based TransBrom campaign across the western Pacific in October 2009, MAX-DOAS (Multi-AXis differential optical absorption spectroscopy) measurements of light penetrating very clear natural waters were performed, achieving average underwater light paths of up to 50 m. From these measurements, the retrieval of a correction spectrum (H2Ocorr) is presented, compensating simultaneously for insufficiencies in the liquid water absorption cross section and broad-banded VRS structures. Small-banded structures caused by VRS were found to be very efficiently compensated for by the intensity offset correction included in the DOAS fit. No interference between the H2Ocorr spectrum and phytoplankton absorption was found. In the MAX-DOAS tropospheric NO2 retrieval, this method was able to compensate entirely for all liquid water effects that decrease the fit quality, and performed better than using a liquid water cross section in combination with a simulated VRS spectrum. The decrease in the residual root mean square (rms) of the DOAS fit depends on the measurement's contamination with liquid water structures, and ranges from ≈ 30% for measurements slightly towards the water surface to several percent in small angles above the horizon. Furthermore, the H2Ocorr spectrum was found to prevent misfits of NO2 slant columns, especially for very low NO2 scenarios, and thus increases the reliability of the fit. In test fits on OMI satellite

  9. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.

    PubMed

    Seet, Katrina Y T; Hanlon, Peta M; Charles, Paul H

    2011-12-01

    The measurement of absorbed dose to water in a solid-phantom may require a conversion factor because it may not be radiologically equivalent to water. One phantom developed for the use of dosimetry is a solid water, RW3 white-polystyrene material by IBA. This has a lower mass-energy absorption coefficient than water due to high bremsstrahlung yield, which affects the accuracy of absolute dosimetry measurements. In this paper, we demonstrate the calculation of mass-energy absorption coefficient ratios, relative to water, from measurements in plastic water and RW3 with an Elekta Synergy linear accelerator (6 and 10 MV photon beams) as well as Monte Carlo modeling in BEAMnrc and DOSXYZnrc. From this, the solid-phantom-to-water correction factor was determined for plastic water and RW3. PMID:21960410

  10. Capacity factor analysis for evaluating water and sanitation infrastructure choices for developing communities.

    PubMed

    Bouabid, Ali; Louis, Garrick E

    2015-09-15

    40% of the world's population lacks access to adequate supplies of water and sanitation services to sustain human health. In fact, more than 780 million people lack access to safe water supplies and about 2.5 billion people lack access to basic sanitation. Appropriate technology for water supply and sanitation (Watsan) systems is critical for sustained access to these services. Current approaches for the selection of Watsan technologies in developing communities have a high failure rate. It is estimated that 30%-60% of Watsan installed infrastructures in developing countries are not operating. Inappropriate technology is a common explanation for the high rate of failure of Watsan infrastructure, particularly in lower-income communities (Palaniappan et al., 2008). This paper presents the capacity factor analysis (CFA) model, for the assessment of a community's capacity to manage and sustain access to water supply and sanitation services. The CFA model is used for the assessment of a community's capacity to operate, and maintain a municipal sanitation service (MSS) such as, drinking water supply, wastewater and sewage treatment, and management of solid waste. The assessment of the community's capacity is based on seven capacity factors that have been identified as playing a key role in the sustainability of municipal sanitation services in developing communities (Louis, 2002). These capacity factors and their constituents are defined for each municipal sanitation service. Benchmarks and international standards for the constituents of the CFs are used to assess the capacity factors. The assessment of the community's capacity factors leads to determine the overall community capacity level (CCL) to manage a MSS. The CCL can then be used to assist the community in the selection of appropriate Watsan technologies for their MSS needs. The selection is done from Watsan technologies that require a capacity level to operate them that matches the assessed CCL of the

  11. [Water storage capacity of qinghai spruce (Picea crassifolia) forest canopy in Qilian Mountains].

    PubMed

    Peng, Huan-hua; Zhao, Chuan-yan; Xu, Zhong-lin; Peng, Shou-zhang; Wang, Yao

    2011-09-01

    By the methods of direct measurement and regression analysis, this paper estimated the water storage capacity of Picea crassifolia forest canopy in Guantan in Qilianshan Mountains, based on the observed throughfall and the laboratory experimental data about the water storage capacity of various canopy components in 2008. Due to the impacts of various factors, differences existed in the canopy water storage capacity estimated by the two methods. The regression analysis was mainly impacted by the measurement approaches of the throughfall, the maximum water storage capacity estimated being 0.69 mm, whereas the direct measurement was mainly impacted by tree height, diameter at breast height, plant density, and leaf area index, with the estimated maximum water storage capacity being 0.77 mm. The direct measurement showed that the maximum water storage capacity per unit area of the canopy components of the forest was in the order of barks (0.31 mm) > branches (0.28 mm) > leaves (0.08 mm). PMID:22126029

  12. Grapevine water absorption in different soils. A spatio-temporal analysis.

    NASA Astrophysics Data System (ADS)

    Brillante, Luca; Bois, Benjamin; Lévêque, Jean; Mathieu, Olivier

    2015-04-01

    Hillslope vineyards show complex water dynamics between soil and plants. To gain further insight of this relationship, 8 grapevine plots were monitored during two vintages (2011-2013), on Corton Hill, Burgundy, France. Grapevine water status was monitored weekly by surveying water potential, and at harvest, using δ13C analysis of grape juice. Soil volumetric humidity was also measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Tomography (ERT) into Soil Volume Water and therefore to spatialise and describe variations in space and time in the Fraction of Transpirable Soil Water (FTSW). During the two years of monitoring, grapevines experienced great variation in water status, which ranged from low to substantial water deficit. With this freshly developed method, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. Great heterogeneity was observed, both laterally and vertically in grapevine water absorption. The contribution of each soil region to plant water status varies according to grapevine water status. It is different between day and night and depends from soil characteristics. It is to our knowledge the first time that water absorption by grapevine is revealed in space (2D) and time, and has therefore allowed a deeper comprehension of plant and soil dynamics in grapevine.

  13. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    PubMed

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. PMID:23941894

  14. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  15. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    NASA Technical Reports Server (NTRS)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  16. Methods for analysis of selected metals in water by atomic absorption

    USGS Publications Warehouse

    Fishman, Marvin J.; Downs, Sanford C.

    1966-01-01

    This manual describes atomic-absorption-spectroscopy methods for determining calcium, copper, lithium, magnesium, manganese, potassium, sodium, strontium and zinc in atmospheric precipitation, fresh waters, and brines. The procedures are intended to be used by water quality laboratories of the Water Resources Division of the U.S. Geological Survey. Detailed procedures, calculations, and methods for the preparation of reagents are given for each element along with data on accuracy, precision, and sensitivity. Other topics discussed briefly are the principle of atomic absorption, instrumentation used, and special analytical techniques.

  17. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  18. Analytical simulation of water system capacity reliability, 1. Modified frequency-duration analysis

    NASA Astrophysics Data System (ADS)

    Hobbs, Benjamin F.; Beim, Gina K.

    1988-09-01

    The problem addressed is the computation of the unavailability and expected unserved demand of a water supply system having random demand, finished water storage, and unreliable capacity components. Examples of such components include pumps, treatment plants, and aqueducts. Modified frequency-duration analysis estimates these reliability statistics by, first, calculating how often demand exceeds available capacity and, second, comparing the amount of water in storage with how long such capacity deficits last. This approach builds upon frequency-duration methods developed by the power industry for analyzing generation capacity deficits. Three versions of the frequency-duration approach are presented. Two yield bounds to system unavailability and unserved demand and the third gives an estimate of their true values between those bounds.

  19. Conformational Contribution to the Heat Capacity of Starch and Starch-Water

    NASA Astrophysics Data System (ADS)

    Pyda, Marek; Wunderlich, Bernhard

    2000-03-01

    The heat capacities of starch and starch-water have been measured using adiabatic calorimetry, and standard differential scanning calorimetry (DSC) and are reported from 5 K to 510 K. The amorphous starch containing 10 wt water shows a glass transition around 350 K. The heat capacities of the solid of amorphous, dry starch is linked to an approximate group vibrational spectrum, and the Tarasov equation is used to estimate the heat capacity contribution due to skeletal vibrations ( theta1 = 830 K and theta2 = 85 K theta3 = 85 K, Nskeletal = 17). The calculated and experimental heat capacities agree to better than ±3between 5 and 250 K. The experimental heat capacities of starch-water and dry starch are compared over the whole range of temperatures. Above the glass transition the differences are interpreted as contributions of different conformational heat capacities from interacting chain of carbohydrate with water. The conformational part is evaluated from a fit of the experimental Cp of starch-water, decreased by the vibrational and the external Cp to a one-dimensional Ising model with two discrete states and stiffness, cooperativity, and degeneracy parameters. NSF, Polymers Program, DMR-9703692, and the Div. of Mat. Sci., BES, DOE at ORNL, managed by Lockheed Martin Energy Research Corp., DE-AC05-96OR22464.

  20. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NASA Astrophysics Data System (ADS)

    Wisser, Dominik; Frolking, Steve; Hagen, Stephen; Bierkens, Marc F. P.

    2013-09-01

    Water storage is an important way to cope with temporal variation in water supply and demand. The storage capacity and the lifetime of water storage reservoirs can be significantly reduced by the inflow of sediments. A global, spatially explicit assessment of reservoir storage loss in conjunction with vulnerability to storage loss has not been done. We estimated the loss in reservoir capacity for a global data set of large reservoirs from 1901 to 2010, using modeled sediment flux data. We use spatially explicit population data sets as a proxy for storage demand and calculate storage capacity for all river basins globally. Simulations suggest that the net reservoir capacity is declining as a result of sedimentation (˜5% compared to the installed capacity). Combined with increasing need for storage, these losses challenge the sustainable management of reservoir operation and water resources management in many regions. River basins that are most vulnerable include those with a strong seasonal flow pattern and high population growth rates such as the major river basins in India and China. Decreasing storage capacity globally suggests that the role of reservoir water storage in offsetting sea-level rise is likely weakening and may be changing sign.

  1. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  2. Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters

    NASA Astrophysics Data System (ADS)

    Oliver, Matthew J.; Schofield, Oscar; Bergmann, Trisha; Glenn, Scott; Orrico, Cristina; Moline, Mark

    2004-07-01

    As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high-resolution hydrographic and bio-optical data set was collected from two cabled profilers at the Long-Term Ecosystem Observatory (LEO). Upwelling- and downwelling-favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine-wavelength absorption/attenuation meter (ac-9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac-9. Derived mean spectral absorption of phytoplankton was used in a bio-optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio-optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light-saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water-column-integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio-optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.

  3. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    PubMed

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%. PMID:24701379

  4. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  5. ABSORPTION OF LEAD FROM DRINKING WATER WITH VARYING MINERAL CONTENT

    EPA Science Inventory

    Lead (Pb) (200 ppm) was administered via drinking water to rats for nine weeks. In addition, the rats were grouped so that they received 75, 100, 150 and 250% of the minimum daily requirements (MDR) of calcium (Ca), iron (Fe), and magnesium (Mg) as required for normal growth. The...

  6. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    SciTech Connect

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  7. Foliar absorption of intercepted rainfall improves woody plant water status most during drought.

    PubMed

    Breshears, David D; McDowell, Nathan G; Goddard, Kelly L; Dayem, Katherine E; Martens, Scott N; Meyer, Clifton W; Brown, Karen M

    2008-01-01

    A large proportion of rainfall in dryland ecosystems is intercepted by plant foliage and is generally assumed to evaporate to the atmosphere or drip onto the soil surface without being absorbed. We demonstrate foliar absorption of intercepted rainfall in a widely distributed, continental dryland, woody-plant genus: Juniperus. We observed substantial improvement in plant water status, exceeding 1.0 MPa water potential for drought-stressed plants, following precipitation on an experimental plot that excluded soil water infiltration. Experiments that wetted shoots with unlabeled and with isotopically labeled water confirmed that water potential responded substantially to foliar wetting, that these responses were not attributable to re-equilibration with other portions of the xylem, and that magnitude of response increased with water stress. Foliar absorption is not included in most ecological, hydrological, and atmospheric models; has implications for interpreting plant isotopic signatures; and not only supplements water acquisition associated with increases in soil moisture that follow large or repeated precipitation events, but also enables plants to bypass soil water uptake and benefit from the majority of precipitation events, which wet foliage but do not increase soil moisture substantially. Foliar absorption of intercepted water could be more important than previously appreciated, especially during drought when water stress is greatest. PMID:18376545

  8. INFLUENCE OF AQUEOUS ALUMINUM AND ORGANIC ACIDS ON MEASUREMENT OF ACID NEUTRALIZING CAPACITY IN SURFACE WATERS

    EPA Science Inventory

    Acid neutralizing capacity (ANC) is used to quantify the acid-base status of surface waters. Acidic waters have bean defined as having ANC values less than zero, and acidification is often quantified by decreases in ANC. Measured and calculated values of ANC generally agree, exce...

  9. Impact of MIE-Resonances on the Atmospheric Absorption of Water Clouds

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Kinne, S.; Nussenzveig, H.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Clouds strongly modulate radiative transfer processes in the Earth's atmosphere. Studies, which simulate bulk properties of clouds, such as absorption, require methods that accurately account for multiple scattering among individual cloud particles. Multiple scattering processes are well described by MIE-theory, if interacting particles have a spherical shape. This is a good assumption for water droplets. Thus, simulations for water clouds (especially for interactions with solar radiation) usually apply readily available MIE-codes. The presence of different drop-sizes, however, necessitates repetitive calculations for many sizes. The usual representation by a few sizes is likely to miss contributions from densely distributed, sharp resonances. Despite their usually narrow width, integrated over the entire size-spectrum of a cloud droplet distribution, the impact of missed resonances could add up. The consideration of these resonances tends to increase cloud extinction and cloud absorption. This mechanism for a larger (than by MIE-methods predicted) solar absorption has the potential to explain observational evidence of larger than predicted cloud absorption at solar wavelengths. The presentation will address the absorption impact of added resonances for typical properties of water clouds (e.g. drop size distributions, drop concentrations and cloud geometry). Special attention will be given to scenarios with observational evidence of law than simulated solar absorption; particularly if simultaneous measurements of cloud micro- and macrophysical properties are available.

  10. Marination effects on water states and water-holding capacity of broiler pectoralis major muscle with different color lightness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of four experiments were carried out to investigate the effect of marination on water states and water-holding capacity (WHC) of broiler pectoralis (p.) major muscle selected based on raw muscle color lightness. Boneless, skinless p. major were collected at 6-8 h postmortem from deboning li...

  11. Marination effects on water states and water-holding capacity of broiler pectoralis major muscle with different color lightness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were carried out to investigate the effect of marination on water states and water-holding capacity (WHC) of broiler pectoralis (p.) major muscle. Boneless, skinless p. major were collected 6-8 h postmortem from deboning lines at a commercial processing plant, and separated into light, ...

  12. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup.

    PubMed

    Wu, Daxiong; Fang, Linlin; Qin, Yanmin; Wu, Wenjuan; Mao, Changming; Zhu, Haitao

    2014-07-15

    A sorbent for oil spill cleanup was prepared through a novel strategy by treating polyurethane sponges with silica sol and gasoline successively. The oil sorption capacity, oil/water selectivity, reusability and sorption mechanism of prepared sorbent were studied. The results showed that the prepared sorbent exhibited high sorption capacity and excellent oil/water selectivity. 1g of the prepared sorbent could adsorb more than 100 g of motor oil, while it only picks up less than 0.1 g of water from an oil-water interface under both static and dynamic conditions. More than 70% of the sorption capacity remained after 15 successive sorption-squeezing cycles, which suggests an extraordinary high reusability. The prepared sorbent is a better alternative of the commercial polypropylene sorbent which are being used nowadays. PMID:24856092

  13. Induced Potential in Porous Carbon Films through Water Vapor Absorption.

    PubMed

    Liu, Kang; Yang, Peihua; Li, Song; Li, Jia; Ding, Tianpeng; Xue, Guobin; Chen, Qian; Feng, Guang; Zhou, Jun

    2016-07-01

    Sustainable electrical potential of tens of millivolts can be induced by water vapor adsorption on a piece of porous carbon film that has two sides with different functional group contents. Integrated experiments, and Monte Carlo and ab initio molecular dynamics simulations reveal that the induced potential originates from the nonhomogeneous distribution of functional groups along the film, especially carboxy groups. Sufficient adsorbed water molecules in porous carbon facilitate the release of protons from the carboxy groups, resulting in a potential drop across the carbon film because of the concentration difference of the released free protons on the two sides. The potential utilization of such a phenomenon is also demonstrated by a self-powered humidity sensor. PMID:27159427

  14. Effect of glucose on jejunal water and solute absorption in the presence of glycodeoxycholate and oleate in man.

    PubMed

    Brown, B D; Ammon, H V

    1981-08-01

    Jejunal perfusion studies were performed in 12 healthy volunteers to study the effects of 14 and 56 mM glucose on fluid secretion induced by 5 mM glycodeoxycholate on 7 mM oleate. Glucose enhanced water absorption under control conditions and reduced water secretion induced by glycodeoxycholate or oleate (P less than 0.01). As has been observed previously, glycodeoxycholate and oleate inhibited glucose absorption (P less than 0.001) and significant linear relationships existed between net water movement and glucose absorption. Glycodeoxycholate also reduced the absorption of 14 mM arabinose (P less than 0.05) and oleate reduced the absorption of 56 mM mannitol (P less than 0.05). Reduced solute absorption in the presence of glycodeoxycholate and oleate, therefore, cannot be attributed to an effect on active transport alone. The relationships between sodium transport and water absorption varied with the glucose concentration in the perfusion solutions. Similarly, the relationships between glucose absorption and sodium absorption varied with glucose concentration. The data suggest that a significant amount of glucose can be absorbed without concomitant absorption of sodium. The data indicate that glucose absorption can stimulate water absorption directly without the mediation of sodium and that water movement follows glucose at a rate which maintains isotonicity. PMID:7261835

  15. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  16. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  17. Low-Dimensional Water on Ru(0001)Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    SciTech Connect

    Nordlund, D

    2012-02-14

    We present an x-ray absorption spectroscopy results for fully broken to a complete H-bond network of water molecules on Ru(0001) by varying the morphology from isolated water molecules via two-dimensional clusters to a fully covered monolayer as probed by scanning tunneling microscopy. The sensitivity of x-ray absorption to the symmetry of H-bonding is further elucidated for the amino (-NH{sub 2}) group in glycine adsorbed on Cu(110) where the E-vector is parallel either to the NH donating an H-bond or to the non-H-bonded NH. The results give further evidence for the interpretation of the various spectral features of liquid water and for the general applicability of x-ray absorption spectroscopy to analyze H-bonded systems.

  18. Low-Dimensional Water on Ru(0001); Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    SciTech Connect

    Nordlund, D.; Ogasawara, H.; Andersson, K.J.; Tatarkhanov, M.; Salmeron, M.; Pettersson, L. G. M.; Nilsson, A.

    2009-05-11

    We present an x-ray absorption spectroscopy results for fully broken to a complete H-bond network of water molecules on Ru(0001) by varying the morphology from isolated water molecules via two-dimensional clusters to a fully covered monolayer as probed by scanning tunneling microscopy. The sensitivity of x-ray absorption to the symmetry of H-bonding is further elucidated for the amino (-NH{sub 2}) group in glycine adsorbed on Cu(110) where the E-vector is parallel either to the NH donating an H-bond or to the non-H-bonded NH. The results give further evidence for the interpretation of the various spectral features of liquid water and for the general applicability of x-ray absorption spectroscopy to analyze H-bonded systems.

  19. Intergrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water

    NASA Astrophysics Data System (ADS)

    Pope, Robin M.; Weidemann, Alan D.; Fry, Edward S.

    2000-01-01

    We have developed a new device to measure the separate contributions to the spectral absorption coefficient due to a pure liquid, due to the particles suspended in it, and due to the substances dissolved in it. This device, the Integrating Cavity Absorption Meter (ICAM), is essentially independent of scattering effects in the sample. In April 1993, a prototype of the ICAM was field tested on board the research vessel USNS Bartlett. A major part of the cruise track included criss-crossing the area where the Mississippi flows into the Gulf of Mexico at various ranges from the mouth of the river; thus samples were collected from areas of blue, green, and brown/black water. We evaluated 35 seawater samples collected with 5-l Niskin bottles from 22 locations to determine absorption spectra (380-700 nm) of suspended particles and dissolved substances (gelbstoff). Results validate the ICAM as a viable tool for marine optical absorption research. Gelbstoff absorption at 432.5 nm ranged from 0.024 to 0.603 m -1. Over the spectral region 380→560 nm, gelbstoff absorption by each of the samples could be accurately fit to a decaying exponential. The particle absorption spectra are generally characteristic of those of phytoplankton and exhibit a local maximum at 430-440 nm. Absorption values at 432.5 nm ranged from ˜zero to ˜1.0 m -1. Some samples with moderate particulate absorption, however, did not show the characteristic local maximum of phytoplankton in the blue and instead resembled the characteristic decaying exponential of detritus with a shape similar to that observed in the gelbstoff. The ratio of gelbstoff to particulate absorption at 432.5 nm ranged from 0.46 to 152.

  20. The Effect of Heat on Structural Characteristics and Water Absorption Behavior of Agave Fibers

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2008-04-01

    The structural characteristics and water absorptions behavior agave fibers were investigated over a range of temperature by using XRD, IR, TG and gravimetric methods. Three distinct thermal processes were observed during heating the fiber in the temperature range 310-760 K in air, oxygen and nitrogen invariably. The cellulose structures of the fibers were unaffected on heating up to 450 K. The samples showed thermal decomposition processes beyond 500 K. Fibers displayed a two-stage diffusion behavior. The structural parameters and kinetic of water absorption of the fibers at specific temperatures were analyzed.

  1. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    PubMed

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions. PMID:27390059

  2. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system.

    PubMed

    Tay, W H; Lau, K K; Shariff, A M

    2016-11-01

    Physical absorption process is always nullified by the presence of cavitation under low frequency ultrasonic irradiation. In the present study, high frequency ultrasonic of 1.7MHz was used for the physical absorption of CO2 in a water batch system under elevated pressure. The parameters including ultrasonic power and initial feed pressure for the system have been varied from 0 to 18W and 6 to 41bar, respectively. The mass transfer coefficient has been determined via the dynamic pressure-step method. Besides, the actual ultrasonic power that transmitted to the liquid was measured based on calorimetric method prior to the absorption study. Subsequently, desorption study was conducted as a comparison with the absorption process. The mechanism for the ultrasonic assisted absorption has also been discussed. Based on the results, the mass transfer coefficient has increased with the increasing of ultrasonic power. It means that, the presence of streaming effect and the formation of liquid fountain is more favorable under high frequency ultrasonic irradiation for the absorption process. Therefore, high frequency ultrasonic irradiation is suggested to be one of the potential alternatives for the gas separation process with its promising absorption enhancement and compact design. PMID:27245970

  3. Enhanced load-carrying capacity of hairy surfaces floating on water.

    PubMed

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-01

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin. PMID:24808757

  4. Enhanced load-carrying capacity of hairy surfaces floating on water

    PubMed Central

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-01-01

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin. PMID:24808757

  5. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  6. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  7. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  8. Modeling water resources as a constraint in electricity capacity expansion models

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs

  9. Thermodynamic optimization of a solar system for cogeneration of water heating/purification and absorption cooling

    NASA Astrophysics Data System (ADS)

    Hovsapian, Zohrob O.

    This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate; mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce water heating/purification and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. An experimental setup was built to adjust and validate the numerical results obtained with the mathematical model. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the three way maximized system second law efficiency, etaII,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e., (Psisps , Psiwxwx, PsiHs)opt ≅ (1.43, 0.17, 0.19). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation.

  10. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    SciTech Connect

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-21

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F{sup -} and a Na{sup +} ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na{sup +} and F{sup -} ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity {Delta}C{sub p} stays positive and even increases slightly upon charging the Na{sup +} ion, it decreases upon charging the F{sup -} ion and becomes negative beyond an ion charge of q=-0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  11. Liquid water absorption and scattering effects in DOAS retrievals over oceans

    NASA Astrophysics Data System (ADS)

    Peters, E.; Wittrock, F.; Richter, A.; Alvarado, L. M. A.; Rozanov, V. V.; Burrows, J. P.

    2014-05-01

    It is well-known that spectral effects of liquid water are present in absorption (DOAS) measurements above the ocean and insufficiently removed liquid water structures may interfere with trace gas absorptions leading to wrong (sometimes even non-physical) results. Currently available literature cross-sections of liquid water absorption are provided in coarser resolution than hyperspectral DOAS applications require and Vibrational Raman Scattering (VRS) is mostly unconsidered or compensated for using simulated pseudo cross-sections from radiative transfer modelling. During the ship-based TransBrom campaign across the western Pacific in October 2009, MAX-DOAS measurements were performed into very clear natural waters achieving underwater light paths of up to 50 m. From these measurements, the retrieval of a residual (H2Ores) spectrum is presented compensating simultaneously for insufficiencies of the liquid water absorption cross-section and broad-banded VRS structures. Small-banded (Ring) structures caused by VRS were found to be very efficiently compensated for by the intensity offset (straylight) correction included in the DOAS fit. In the MAX-DOAS tropospheric NO2 retrieval, this method was able to compensate entirely for all liquid water effects that decrease the fit quality. This was not achieved using a liquid water cross-section in combination with a simulated VRS spectrum. Typical values of improvement depend on the measurement's contamination with liquid water structures and range from ≈ 30% for measurements slightly towards the water surface to several percent in small angles above the horizon. Furthermore, the H2Ores spectrum was found to prevent misfits of NO2 slant columns especially for very low NO2 scenarios and thus increase the reliability of the fit. In test fits on OMI satellite data, the H2Ores spectrum was found selectively above ocean surfaces where it leads to fit quality improvements of up to 6-18%.

  12. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  13. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles

    NASA Astrophysics Data System (ADS)

    Liu, I.-Hung; Chang, Ching-Yuan; Liu, Su-Chin; Chang, I.-Cheng; Shih, Shin-Min

    An experimental analysis of the absorption removal of sulfur dioxide by the free falling water droplets containing the inert solid particles is presented. The wheat flour powder is introduced as the inert solid particles. Tests with and without the flour powder in the water droplets are examined. The mass fluxes and mass transfer coefficients of SO 2 for the cases with and without the flour powder are compared to elucidate the effects of the inert solid particles contained in the water droplets on the gas absorption. The results indicate aignificant difference between the two cases for the concentrations of the flour powder in the absorbent droplets ( Cs) within the ranges of the experimental conditions, namely 0.1 to 10 wt% flour powder in the absorbent droplets. In general, the inert solid particles of the flour powder as the impurities in the water droplets tend to decrease the SO 2 absorption rate for the experimental absorption system under investigation. Various values of Cs cause various levels of the interfacial resistance and affect the gas absorption rate. The interfacial resistance is recognized by introducing an interfacial mass transfer coefficient ks with its reciprocal being proportional to the magnitude of the interfacial resistance. The values of 1/ ks may be computed by the use of the equation 1/ ks=(1/ KOLs-1/ KOL), where KOLs and KOL are the overall liquid-phase mass transfer coefficients with and without the inert solid particles, respectively. The values of ks with Cs of 0.1 to 10 wt% are about 0.295-0.032 cms -1 for absorbing 1000-3000 ppmv SO 2 with the water droplets. This kind of information is useful for the SO 2 removal and the information of acid rain that the impurities of the inert solid particles contaminate the water droplets.

  14. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions. PMID:27236436

  15. Conformational Contribution to the Heat Capacity of Interacting System of Carbohydrate Polymer - Water.

    NASA Astrophysics Data System (ADS)

    Pyda, Marek; Wunderlich, Bernhard

    2001-03-01

    Based on the measured heat capacities of amorphous, dry starch and starch with low concentration of water above the partial glass transition of starch, the calculated Cp has been estimated from its vibrational, external, and conformational contributions. The conformational part is evaluated from a fit of the experimental Cp of starch and starch-water, decreased by the vibrational and the external Cp to a one-dimensional Ising-type model for two discrete states, and stiffness, cooperativity, and degeneracy parameters. These differences above the glass transition are interpreted as contributions of different conformational heat capacities from interacting chains of carbohydrate with water. The vibrational contribution was calculated as the heat capacity contributions from group and skeletal vibrations. The external contribution was computed based on thermal expansivity and compressibility as a function of temperature from experimental data of the partial liquid state of both dry starch and starch-water. The calculated and experimental heat capacities of starch-water and dry starch are compared over the whole range of temperatures measurements from 8 to 490 K. NSF, Polymers Program, DMR-9703692, and the Div. of Mat. Sci., BES, DOE at ORNL, managed UT-Batelle, LLC, for the U.S. Department of Energy, under contract number DOE- AC05-00OR22725.

  16. Conformational Heat Capacity of Liquid Biodegradable Polymers in the Absence and Presence Water

    NASA Astrophysics Data System (ADS)

    Pyda, Marek; Nowak-Pyda, Elzbieta

    2007-03-01

    The conformational heat capacity of biodegradable polymers such as amorphous poly(lactic acid) PLA and starch with and without water have been evaluated from a fit of experimental data to a one-dimensional Ising-like model for two discrete states, characterized by parameters linked to stiffness, cooperativity, and degeneracy. For the starch-water system the additional changes in the conformational heat capacity arise from the interaction of the carbohydrate chains with water. The liquid heat capacities at constant pressure Cp, of amorphous PLA and partially liquid state of starch, starch-water have been computed as the sum of vibrational, external, and conformational contributions. The vibrational contribution was calculated as the heat capacity arising from group and skeletal vibrations. The external contribution was estimated from experimental data of the thermal expansivity and compressibility in the liquid state. The experimental liquid Cp agrees with these calculations to better than ±3%. The calculated liquid Cp with the solid Cp was employed in the quantitative thermal analysis of the experimental Cp of biodegradable polymer PLA, starch, and starch-water. Supported by European Union, grant (MIRG-CT-2006-036558), Cargill Dow LLC

  17. Water absorption in PEEK and PEI matrices. Contribution to the understanding of water-polar group interactions

    NASA Astrophysics Data System (ADS)

    Courvoisier, E.; Bicaba, Y.; Colin, X.

    2016-05-01

    The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.

  18. Ultraviolet-visible absorptive features of water extractable and humic fractions of animal manure and compost

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UV-vis spectroscopy is a useful tool for characterizing water extractable or humic fractions of natural organic matter (WEOM). Whereas the whole UV-visible spectra of these fractions are more or less featureless, the specific UV absorptivity at 254 and 280 nm as well as spectral E2/E3 and E4/E6 rat...

  19. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  20. TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch;-polycaprolactone (TPS/PCL) blend via extrusion processing and examined for their property, biodegradability and water-absorption. Scanning electron microscopy revealed wel...

  1. Dependence of Brillouin frequency shift on water absorption ratio in polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Minakawa, Kazunari; Koike, Kotaro; Hayashi, Neisei; Koike, Yasuhiro; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We studied the dependence of the Brillouin frequency shift (BFS) on the water-absorption ratio in poly(methyl methacrylate)-based polymer optical fibers (POFs) to clarify the effect of the humidity on POF-based Brillouin sensors. The BFS, deduced indirectly using an ultrasonic pulse-echo technique, decreased monotonically as the water absorption ratio increased, mainly because of the decrease in the Young's modulus. For the same water absorption ratio, the BFS change was larger at a higher temperature. The maximal BFS changes (absolute values) at 40, 60, and 80 °C were 158, 285, and 510 MHz, respectively (corresponding to the temperature changes of ˜9 °C, ˜16 °C, and ˜30 °C). Thus, some countermeasure against the humidity is indispensable in implementing strain/temperature sensors based on Brillouin scattering in POFs, especially at a higher temperature. On the other hand, Brillouin-based distributed humidity sensors might be developed by exploiting the BFS dependence on water absorption in POFs.

  2. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Chomsaksakul, Wararuk; Sonsuk, Manit

    2000-10-01

    Graft copolymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h -1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the superabsorbent properties are found to be pH sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted superabsorbent polymers.

  3. Time-resolved refractive index and absorption mapping of light-plasma filaments in water.

    PubMed

    Minardi, Stefano; Gopal, Amrutha; Tatarakis, Michael; Couairon, Arnaud; Tamosauskas, Gintaras; Piskarskas, Rimtautas; Dubietis, Audrius; Di Trapani, Paolo

    2008-01-01

    By means of a quantitative shadowgraphic method, we performed a space-time characterization of the refractive index variation and transient absorption induced by a light-plasma filament generated by a 120 fs laser pulse in water. The formation and evolution of the plasma channel in the proximity of the nonlinear focus were observed with a 23 fs time resolution. PMID:18157267

  4. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S

    2016-08-01

    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO. PMID:27116372

  5. State-of-the-Art Review on Crystallization Control Technologies for water/LiBr Absorption Heat Pumps

    SciTech Connect

    Wang, Kai; Abdelaziz, Omar; Kisari, Padmaja; Vineyard, Edward Allan

    2011-01-01

    The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in aircooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heatpump systems.

  6. On determining field water capacity and available water in uniform and layered soil profiles: Critical accounts and Proposals

    NASA Astrophysics Data System (ADS)

    Ceres, F.; Chirico, G. B.; Romano, N.

    2009-04-01

    Field water capacity and available water concepts are major agronomic parameters widely used for irrigation management, especially in Mediterranean zones facing with shortage of water. However, their definitions are still under discussion among scientists and practitioners. Field water capacity is often determined using empirical relationships (e.g. pedotransfer functions) or from water retention points obtained in the laboratory, thus underplaying or even ignoring the important role exerted by the actual evolution of water redistribution processes in a soil profile, especially if it is a layered one. An objective and replicable method for determining the field water capacity requires monitoring a water redistribution process evolving in a soil profile thoroughly wetted by a preliminary infiltration phase. Accordingly, in this study free drainage processes in soil profiles have been simulated by applying the numerical model developed by Romano et al. (1998) and verified by Brunone et al. (2003). This model solves Richards' equation by applying the Crank-Nicolson finite difference technique and uses a numerical algorithm specifically designed in case of layered soils for calculating the hydraulic conductivity between soil layers. In addition, to ensure a good correspondence between the analyses performed and actual situations, an extensive database of uniform and layered soil profiles have been employed. Outcome from the scenarios on uniform soils have shown that soil water content values under the condition of field capacity do not match water content values obtained from water retention point measured at preselected matric pressure head. Similar results have been obtained when using retention data points retrieved from the use of well-established pedotransfer functions (such as the HYPRES-PTF). In case of layered soil profiles, which actually represent the rule rather than an exception, the layer sequence and reciprocal differences in the soil hydraulic properties

  7. Cd-Resistant Strains of B. cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water

    PubMed Central

    Wu, Huiqing; Wu, Qingping; Wu, Guojie; Gu, Qihui; Wei, Linting

    2016-01-01

    The goal of this study was to identify Cd-resistant bacterial strains with endurance capacity and to evaluate their ability to remove cadmium ions from cadmium-polluted water. The Bacillus cereusS5 strain identified in this study had the closest genetic relationship with B. cereus sp. Cp1 and performed well in the removal of Cd2+ions from solution. The results showed that both the live and dead biomasses of the Cd2+-tolerant B. cereus S5 strain could absorb Cd2+ ions in solution but that the live biomass of the B. cereus S5 strain outperformed the dead biomass at lower Cd2+concentrations. An analysis of the cadmium tolerance genes of B. cereus S5 identified ATPase genes that were associated with cadmium tolerance and involved in the ATP pumping mechanism. The FTIR spectra revealed the presence of amino, carboxyl and hydroxyl groups on the pristine biomass and indicated that the cadmium ion removal ability was related to the structure of the strain. The maximum absorption capacity of the B. cereus S5 strain in viable spore biomass was 70.16 mg/g (dry weight) based on a pseudo-second-order kinetic model fit to the experimental data. The Langmuir and Langmuir-Freundlich isotherm adsorption models fit the cadmium ion adsorption data well, and the kinetic curves indicated that the adsorption rate was second-order. For Cd2+ concentrations (mg/L) of 1–109 mg/L, good removal efficiency (>80%) was achieved using approximately 3.48–10.3 g/L of active spore biomass of the B. cereus S5 strain. A cadmium-tolerant bacteria-activated carbon-immobilized column could be used for a longer duration and exhibited greater treatment efficacy than the control column in the treatment of cadmium-polluted water. In addition, a toxicity assessment using mice demonstrated that the biomass of the B. cereus S5 strain and its fermentation products were non-toxic. Thus, the isolated B. cereus S5 strain can be considered an alternative biological adsorbent for use in emergency responses to

  8. Effect of absorption of D-glucose and water on paracellular transport in rat duodenum-jejunum.

    PubMed

    O'Rourke, M; Shi, X; Gisolfi, C; Schedl, H

    1995-03-01

    Paracellular transport is thought to be a major absorptive pathway for small nutrient molecules. The authors used in vivo in situ perfusion of rat duodenum-proximal jejunum to examine paracellular transport using lactulose as a probe. They perfused solutions with a constant lactulose concentration but varied initial D-glucose concentration (range 12-176 mM) to open paracellular pathways and to increase water absorption, thereby optimizing potential for paracellular transport of lactulose and other solutes in its molecular weight range. All solutions contained sodium chloride to approach isotonicity. Water absorption was measured as the difference in weight of solution perfused and sample collected. Absorption of D-glucose increased with mean luminal D-glucose concentration, and water absorption more than doubled (from 0.12 +/- 0.03 to 0.26 +/- 0.05 mL/min per g dry wt of segment) as mean luminal glucose concentration was increased from 10 to 80 mM. Lactulose absorption was at the threshold of detection and did not correlate with D-glucose or water absorption. Expressed as percent per segment, D-glucose absorption ranged from 29-50%, and the lactulose absorption rate was 4-5%. The fraction of D-glucose absorption that could be attributed to lactulose absorptive pathways was 12% at the highest rate of water absorption. In conclusion, based on lactulose as a probe, under conditions of opening tight junctions by D-glucose, the paracellular component of D-glucose absorption was of the order of 1/10 of total D-glucose absorption (ie, not a major absorptive pathway. PMID:7879819

  9. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model. PMID:22547232

  10. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    PubMed Central

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  11. Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Šafařík, Pavel

    2016-03-01

    The fundamental base for the calculation of the thermodynamic properties of substances is the thermal equation of state and the dependence of some of the basic specific heat capacities on temperature. Dependence of isobaric specific heat capacity on the pressure can already be deduced from these relations. International standards of the properties of water and steam are based on the new scientific formulation IAPWS-95. The equation is in the form of Helmholtz dimensionless function with very much parameters. The aim of this paper is to design the simple dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature in the range in which the steam occurs in the atmospheric moist air.

  12. Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-01-01

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making. PMID:23222206

  13. [Actinobacteria and their odor-producing capacities in a surface water in Shanghai].

    PubMed

    Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi

    2014-10-01

    The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment. PMID:25693381

  14. Effect of deboning time and cold storage on water-holding capacity of chicken breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-holding capacity (WHC) is a very important qualitative characteristic of meat and directly affects the yield of further processed meat and consumer acceptance of bagged pre-packaged fresh meat. Boneless skinless chicken breast meat for further processing and consumer usage is commonly deboned...

  15. ESTIMATING PLANT-AVAILABLE WATER CAPACITY FOR CLAYPAN LANDSCAPES USING APPARENT ELECTRICAL CONDUCTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within-field variability of plant available water (PAW) capacity is useful information for site-specific management, but is expensive to assess using traditional measurements. For Missouri claypan soils, relationships between soil apparent electrical conductivity (ECa) and topsoil thickness have bee...

  16. Water holding capacity and evaporative loss from organic bedding materials used in livestock facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...

  17. Evaluation of the purification capacity of nine portable, small-scale water purification devices.

    PubMed

    Hörman, A; Rimhanen-Finne, R; Maunula, L; von Bonsdorff, C H; Rapala, J; Lahti, K; Hänninen, M L

    2004-01-01

    A test was performed to evaluate the microbial and chemical purification capacity of nine portable, small-scale water purification filter devices with production capacity less than 100 L/h. The devices were tested for simultaneous removal capacity of bacteria (cultured Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae and Enterobacter cloacae), enteric protozoans (formalin-stored Cryptosporidium parvum oocysts), viral markers (F-RNA bacteriophages) and microcystins produced by toxic cyanobacterial cultures. In general, the devices tested were able to remove bacterial contaminants by 3.6-6.9 log10 units from raw water. Those devices based only on filtration through pores 0.2-0.4 microm or larger failed in viral and chemical purification. Only one device, based on reverse osmosis, was capable of removing F-RNA phages at concentrations under the detection limit and microcystins by 2.5 log10. The present study emphasised the need for evaluation tests of water purification devices from the public safety and HACCP (Hazard Analysis and Critical Control Point) points of view. Simultaneous testing for various pathogenic/indicator microbes and microcystins was shown to be a useful and practical way to obtain essential data on actual purification capacity of commercial small-scale drinking-water filters. PMID:15318506

  18. Effect of wooden breast condition on water-holding capacity of broiler breast pectoralis major

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wooden breast condition (WBC) is an emerging muscle abnormality with broiler breast meat. Limited studies have shown that WBC significantly affects meat quality. The objective of this study was to evaluate the effects of WBC on water-holding capacity (WHC) of broiler breast pectoralis major. Broiler...

  19. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  20. Landscape influences on soil nitrogen supply and water holding capacity for irrigated corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water and nitrogen (N) supply to a crop can interact throughout the growing season to influence yield potential. The increasing availability of variable rate irrigation systems to growers in irrigated regions, along with existing capacity for variable rate fertilization, provides the opportunity for...

  1. Role of protein solubility in water-holding capacity of broiler breast meat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role muscle protein denaturation plays in determining water-holding capacity (WHC) in broiler breast meat is not well understood. Alterations in muscle protein solubility due to postmortem pH and temperature decline can be used as indicators of protein denaturation. In order to determine the i...

  2. Water-holding capacity and protein denatunation in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to investigate the impact of protein denaturation on water-holding capacity (WHC) in broiler breast meat. Breast fillets were collected at 2 h postmortem and segregated into two groups (low-WHC and high-WHC) based on pH and color. Protein solubility was measured at 6 and 24...

  3. Relationship between water-holding capacity and protein denaturation in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the relationship between protein denaturation and water-holding capacity (WHC) attributes in broiler breast meat. Boneless skinless breast fillets (n=72) were collected from a commercial processing plant at 2 h postmortem and segregated into low-WHC and ...

  4. Absorption properties of high-latitude Norwegian coastal water: The impact of CDOM and particulate matter

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Stamnes, Jakob J.

    2016-09-01

    We present data from measurements and analyses of the spectral absorption due to colored dissolved organic matter (CDOM), total suspended matter (TSM), phytoplankton, and non-algal particles (NAP) in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn. The Chlorophyll-a (Chl-a) concentration was found to vary significantly with season, whereas regardless of season CDOM was found to be the dominant absorber for wavelengths shorter than 600 nm. The absorption spectral slope S350-500 for CDOM varied between 0.011 and 0.022 nm-1 with mean value and standard deviation given by (0.015 ± 0.002) nm-1. The absorption spectral slope was found to be strongly dependent on the wavelength interval used for fitting. On average, S280-500 was found to be 43% higher than S350-500. A linear relationship was found between the base 10 logarithm of the absorption coefficient at 440 nm [log(ag(440))] and S350-500. Regardless of season, phytoplankton were the dominant component of the TSM absorption indicating little influence from land drainage. The mean values of the Chl-a specific absorption coefficient of phytoplankton aph*(λ) at 440 nm and 676 nm were 0.052 m2 mg-1 and 0.023 m2 mg-1, respectively, and aph*(λ) was found to vary with season, being higher in summer and autumn than in spring. The absorption spectral slope SNAP, which is the spectral slope of absorption spectrum for non-algal particles, was lower than that for European coastal water in general. It varied between 0.0048 and 0.022 nm-1 with mean value and standard deviation given by (0.0083-1 ± 0.003) nm-1. Comparisons of absorption coefficients measured in situ using an ac-9 instrument with those measured in the laboratory from water samples show a good agreement.

  5. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoying; Ning, Zhiyuan; Liu, Yang; Xu, Tingting; Guo, Yao; Zak, Alla; Zhang, Zhiyong; Wang, Sheng; Tenne, Reshef; Chen, Qing

    2012-09-01

    The electrical properties of WS2 nanotubes (NTs) were studied through measuring 59 devices. Important electrical parameters, such as the carrier concentration, mobility, and effective barrier height at the contacts, were obtained through fitting experimental non-linear I-V curves using a metal-semiconductor-metal model. The carrier mobility was found to be several orders of magnitude higher than that have been reported previously for WS2 NTs. Water absorption was found to decrease the conductivity and carrier mobility of the NTs, and could be removed when the sample was dried. Oxygen absorption also slightly decreased the conductivity of WS2 NTs.

  6. Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo.

    PubMed

    Ivanov, Alexander G; Krol, Marianna; Sveshnikov, Dmitry; Selstam, Eva; Sandström, Stefan; Koochek, Maryam; Park, Youn-Il; Vasil'ev, Sergej; Bruce, Doug; Oquist, Gunnar; Huner, Norman P A

    2006-08-01

    The induction of the isiA (CP43') protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43' proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43'-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43' does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43' as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo. PMID:16798943

  7. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  8. Finite element analysis and modeling of water absorption by date pits during a soaking process.

    PubMed

    Waezi-Zadeh, Motahareh; Ghazanfari, Ahmad; Noorbakhsh, Shahin

    2010-07-01

    Date pits for feed preparation or oil extraction are soaked in water to soften before milling or extrusion. Knowledge of water absorption by the date pits helps in better managing the soaking duration. In this research, the process of water absorption by date pits was modeled and analyzed using Fick's second law of diffusion, finite element approach, and Peleg model. The moisture content of the pits reached to its saturation level of 41.5% (wet basis) after 10 d. The estimated coefficient of diffusion was 9.89x10(-12) m(2)/s. The finite element model with a proposed ellipsoid geometry for a single date pit and the analytical model fitted better to the experimental data with R(2) of 0.98. The former model slightly overestimated the moisture content of the pits during the initial stages of the soaking and the latter model generally underestimated this variable through the entire stages of soaking process. PMID:20593512

  9. Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98

    USGS Publications Warehouse

    Yeung, Chiu Wang; Wong, Michael F.

    1999-01-01

    A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.

  10. Capacity building in water demand management as a key component for attaining millennium development goals

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Forster, Laura; Arntzen, Jaap

    Successful water demand management (WDM) implementation as a component of integrated water resource management (IWRM) can play a significant role in the alleviation of poverty through more efficient use of available water resources. The urban population in Southern African cities is characterised by so-called ‘water poor’ communities who typically expend a high percentage of their household income on poor quality water. Usually they have no access to an affordable alternative source. Although WDM as a component of IWRM is not a panacea for poverty, it can help alleviate poverty by facilitating water services management by municipal water supply agencies (MWSAs) in the region. WDM is a key strategy for achieving the millennium development goals (MDGs) and, as such, should be given due attention in the preparation of national IWRM and water efficiency plans. Various studies in the Southern African region have indicated that capacity building is necessary for nations to develop IWRM and water-use efficiency plans to meet the targets set out in the MDGs. WDM education and training of water professionals and end-users is particularly important in developing countries, which are resource and information-access poor. In response to these findings, The World Conservation Union (IUCN) and its consulting partners, the Training and Instructional Design Academy of South Africa (TIDASA), and Centre for Applied Research (CAR) designed, developed and presented a pilot WDM Guideline Training Module for MWSAs as part of Phase II of IUCN’s Southern Africa regional WDM project. Pilot training was conducted in July 2004 in Lusaka, Zambia for a group of 36 participants involved in municipal water supply from nine Southern African countries. This paper looks at the links between building the capacity of professionals, operational staff and other role-players in the municipal water supply chain to implement WDM as part of broader IWRM strategies, and the subsequent potential for