Sample records for water absorption capacity

  1. Measurement of water absorption capacity in wheat flour by a headspace gas chromatographic technique.

    PubMed

    Xie, Wei-Qi; Yu, Kong-Xian; Gong, Yi-Xian

    2018-04-17

    The purpose of this work is to introduce a new method for quantitatively analyzing water absorption capacity in wheat flour by a headspace gas chromatographic technique. This headspace gas chromatographic technique was based on measuring the water vapor released from a series of wheat flour samples with different contents of water addition. According to the different trends between the vapor and wheat flour phase before and after the water absorption capacity in wheat flour, a turning point (corresponding to water absorption capacity in wheat flour) can be obtained by fitting the data of the water gas chromatography peak area from different wheat flour samples. The data showed that the phase equilibrium in the vial can be achieved in 25 min at desired temperature (35°C). The relative standard deviation of the reaction headspace gas chromatographic technique in water absorption capacity determination was within 3.48%, the relative differences has been determined by comparing the water absorption capacity obtained from this new analytical technique with the data from the reference technique (i.e., the filtration method), which are less than 8.92%. The new headspace gas chromatographic method is automated, accurate and be a reliable tool for quantifying water absorption capacity in wheat flour in both laboratory research and mill applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The river absorption capacity determination as a tool to evaluate state of surface water

    NASA Astrophysics Data System (ADS)

    Wilk, Paweł; Orlińska-Woźniak, Paulina; Gębala, Joanna

    2018-02-01

    In order to complete a thorough and systematic assessment of water quality, it is useful to measure the absorption capacity of a river. Absorption capacity is understood as a pollution load introduced into river water that will not cause permanent and irreversible changes in the aquatic ecosystem and will not cause a change in the classification of water quality in the river profile. In order to implement the method, the Macromodel DNS/SWAT basin for the Middle Warta pilot (central Poland) was used to simulate nutrient loads. This enabled detailed analysis of water quality in each water body and the assessment of the size of the absorption capacity parameter, which allows the determination of how much pollution can be added to the river without compromising its quality class. Positive values of the calculated absorption capacity parameter mean that it is assumed that the ecosystem is adjusted in such a way that it can eliminate pollution loads through a number of self-purification processes. Negative values indicate that the load limit has been exceeded, and too much pollution has been introduced into the ecosystem for it to be able to deal with through the processes of self-purification. Absorption capacity thus enables the connection of environmental standards of water quality and water quality management plans in order to meet these standards.

  3. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  4. Influence of particle size on water absorption capacity and mechanical properties of polyethylene-wood flour composites

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2015-10-01

    Biocomposites based on low density polyethylene (LDPE) and birch wood flour (WF) were investigated. The mechanical properties and water absorption capacity were examined depending on the particle size of a filler in biocomposites. The aim of the paper is the investigation of composite properties depending on the filler particle size. The filler particle sizes were 0-80 µm, 80-140 µm, 140-200 µm, and 0-200 µm. The tensile strength of composite samples varied within the range 5.7-8.2 MPa. Elongation at break of composites varied within the range 5.1-7.5%. Highest mechanical properties were found in composites with the lowest filler fraction. Highest water absorption was observed in composition with a complex fraction of the filler. The influence of the filler particle size on composite properties was shown. It was found that an increase of the filler particle size decreases mechanical parameters and increases water absorption.

  5. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  6. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    PubMed Central

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  7. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    PubMed

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  8. Effect of water absorption on the mechanical properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    NASA Astrophysics Data System (ADS)

    Marinho, Vithória A. D.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the effect of water absorption on the performance of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree.Water resistance is an important characteristic of structural composites, that may exposed to rain and humid environments. Both water absorption capacity (water solubility in the material) and the rate of water absorption (controlled by the diffusivity of water in the material) are important parameters. However, water absorption per se may not be the most important characteristic, insofar as the performance and applications of the compounds. It is the effect of the water content on the ultimate properties that determine the suitability of the material for applications that involve prolonged exposure to water.PHB/babassu composites with 0-20% load were prepared in an internal mixer. Two different types of babassu fibers having two different article size ranges were compounded with PHB and test specimens molded by compression. The water absorption capacity and the kinetic constant of water absorption were measured in triplicate. Mechanical properties under tension were measured for dry and moist specimens with different amounts of absorbed water.Results indicate that the performance of the composites is comparable to that of the pure matrix. Water absorption capacity increases from 0.7% (pure PHB) to 4% (PHB/20% babassu), but the water diffusivity (4.10□8 cm2/s) was found to be virtually independent of the water absorption level. Water absorption results in moderate drop in elastic modulus (10-30% at saturation, according to fiber content) but has little effect on tensile strength and elongation at break. Fiber type and initial particle size do not have a significant effect on water absorption or mechanical properties.

  9. Training and business performance: the mediating role of absorptive capacities.

    PubMed

    Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito

    2016-01-01

    Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.

  10. The Zone of Inertia: Absorptive Capacity and Organizational Change

    ERIC Educational Resources Information Center

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  11. Influences of neutralization of superabsorbent hydrogel from hydroxyethyl cellulose on water swelling capacities

    NASA Astrophysics Data System (ADS)

    Adair, Ajaman; Klinpituksa, Pairote; Kaesaman, Azizon

    2017-08-01

    In this research, superabsorbent hydrogels were synthesized by graft copolymerization of hydroxyethyl cellulose (HEC) and polyacrylamide (PAM) under the initiation of potassium persulfate (KPS). The polymer networks were constructed using N,N'-methylenebisacrylamide (MBA), and the reaction was performed in an aqueous solution. The extent of grafting products was evaluated form grafting efficiency (%GE) and percentage of add-ons at HEC/AM ratios of 1: 10. The water swelling capacities, in terms of swelling capacity and weight loss, of resultant superabsorbent polymers (SAPs) after solvent extraction were determined for swelling behaviors. The result showed that the SAP had poor water absorption of approximately up to 23 g/g. To enhance swelling capacity of SAPs, an alkaline hydrolysis was done by using two types of alkaline bases, i.e., 2 M NaOH and 2 M KOH solution. The obtained treatment SAPs were neutralized by washing with distilled water and 0.5 M HCl until the liquors pH was nearly 7. They were found that the treatment SAPs showed the highest water absorption up to 317 g/g. Influences of various fluids pH values ranging between 4 and 10, on water swelling capacities of SAPs were also investigated. Under optimal pH value, the highest water absorptions of SAP was 382 g/g. To confirm the grafting reaction of PAM onto HEC backbone, FT-IR analysis was used. The results revealed absorption bands of the HEC backbone and new absorption bands from the grafted copolymer. Furthermore, the FT-IR spectrum was proved that washing with distilled water can alter the chemical functional group of SAPs.

  12. Correlation between water absorption and mechanical properties of polyamide 6 filled with layered double hydroxides (LDH)

    NASA Astrophysics Data System (ADS)

    Botan, R.; Pinheiro, I. F.; Ferreira, F. V.; Lona, L. M. F.

    2018-06-01

    Polyamide 6 (PA6)/layered double hydroxide (LDH) nanocomposites were prepared by in situ polymerization with different amount (1, 2, 3 wt%) and type (Zn/Cr-L and Zn/Cr-P) of LDHs. The thermal and mechanical properties and water absorption capacity of PA6/LDH nanocomposites were investigated and have shown that the addition of LDHs increases the crystallinity of the polymer and improves their mechanical properties, while decreases the water absorption capacity due to a barrier effect of LDHs. A correlation between mechanical properties and water absorption capacity was observed and discussed. This study provides new strategies for tuning PA6-based nanocomposite properties, leading a progress in the development on the advanced polymer materials.

  13. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid.

    PubMed

    Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M

    2014-03-15

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored. Also, water retention under mechanical strain is usually not reported. Cassava starch was used since it has considerable economic potential in Asia. The gelatinized starch was grafted with acrylic acid and Fenton's initiator and crosslinked with N,N'-methylenebisacrylamide (MBAM). Besides a good initial absorption capacity, the product could retain up to 63 g H2O/g under severe suction. The material thus combines a good absorption capacity with sufficient gel strength. The mathematical analysis of the absorption kinetics shows that at conditions of practical interest, the rate of water penetration into the gel is determined by polymer chain relaxations and not by osmotic driven diffusion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    PubMed

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  15. Scaling-Up Aid to Education: Is Absorptive Capacity a Constraint?

    ERIC Educational Resources Information Center

    Rose, Pauline

    2009-01-01

    "Absorptive capacity" is a frequently used term amongst development practitioners in education. It is adopted by some as a reason for caution over scaling up aid. Others are of the view that absorptive capacity is an excuse by some donors for not delivering on their Education for All financing commitments. Drawing on interviews with…

  16. Capacity for absorption of water-soluble secondary metabolites greater in birds than in rodents.

    PubMed

    Karasov, William H; Caviedes-Vidal, Enrique; Bakken, Bradley Hartman; Izhaki, Ido; Samuni-Blank, Michal; Arad, Zeev

    2012-01-01

    Plant secondary metabolites (SMs) are pervasive in animal foods and potentially influence feeding behavior, interspecies interactions, and the distribution and abundance of animals. Some of the major classes of naturally occurring SMs in plants include many water-soluble compounds in the molecular size range that could cross the intestinal epithelium via the paracellular space by diffusion or solvent drag. There are differences among species in paracellular permeability. Using Middle Eastern rodent and avian consumers of fruits containing SMs, we tested the hypothesis that avian species would have significantly higher paracellular permeability than rodent species. Permeability in intact animals was assessed using standard pharmacological methodology to measure absorption of two radiolabeled, inert, neutral water-soluble probes that do not interact with intestinal nutrient transporters, L-arabinose (M(r) = 150.1 Da) and lactulose (M(r) = 342.3 Da). We also measured absorption of labeled 3-O-methyl-D-glucose (3OMD-glucose; M(r) = 194.2 Da), which is a nonmetabolized analogue of D-glucose that is passively absorbed through the paracellular space but also transported across the enterocyte membranes. Most glucose was absorbed by all species, but arabinose fractional absorption (f) was nearly three times higher in birds (1.03±0.17, n = 15 in two species) compared to rodents (0.37±0.06, n = 10 in two species) (P<0.001). Surprisingly, the apparent rates of absorption in birds of arabinose exceeded those of 3OMD-glucose. Our findings are in agreement with previous work showing that the paracellular pathway is more prominent in birds relative to nonflying mammals, and suggests that birds may be challenged by greater absorption of water-soluble, dietary SMs. The increased expression of the paracellular pathway in birds hints at a tradeoff: the free energy birds gain by absorbing water-soluble nutrients passively may be offset by the metabolic demands

  17. [Dust absorption capacities of eight evergreen broad-leaved plants in Beijing, China.

    PubMed

    Fan, Shu Xin; Cai, Yu; Dong, Li

    2017-02-01

    Aiming at selecting the evergreen broad-leaved plants with excellent dust capturing capacity that can be applied in Beijing area for improving the urban vegetation dust removal, this study selected 8 evergreen (including semi-evergreen) broad-leaved plants used in urban green-space in Beijing area to measure the dust absorption per unit leaf area by the elution-mass method during winter and early spring in 2014. The dust deposition per leaf and per plant of each species was further calculated for tested species. Based on the dust capturing capacity measured in different units, cluster analysis on the comprehensive dust absorption capacities of different plants was carried out from the corresponding aspect. Results showed that the dust absorption ability differed significantly among the 8 evergreen broad-leaved (including semi-evergreen) species including Buxus sinica, Euonymus japonicus, Ligustrum quihoui, L. vicaryi, E. kiautschovicus, Indocalamus tessellatus, Phyllostachys violascens and Ph. aureosulcata. E. japonicus was best in dust absorption per unit leaf area and per plant, with 1.36 g·m -2 and 59.63 g·plant -1 . I. tessellates (with 1.62 mg·leaf -1 ) had the strongest dust absorption ability per leaf. With different measurement units selected, the ranking changed. The cluster analysis based on the multi index comprehensive dust absorption capacities could roughly divided the 8 evergreen broad-leaved species into 4 categories representing different dust absorption capacity levels. E. japonicus and Ph. sviolascens had the outstanding comprehensive dust capturing capacity, while B. sinica, L. vicaryi and Ph. aureosulcata showed the weak performance.

  18. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  19. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  20. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  1. Protective Capacity and Absorptive Capacity: Managing the Balance between Retention and Creation of Knowledge-Based Resources

    ERIC Educational Resources Information Center

    Andersen, Jim

    2012-01-01

    Purpose: In order to understand the pros and cons of an open organization regarding the flow of knowledge between firms, this paper introduces the concept of "protective capacity". The purpose of the paper is to elaborate the concept of "protective capacity" especially in relation to absorptive capacity, by presenting a number of propositions.…

  2. Conditional Mediation of Absorptive Capacity and Environment in International Entrepreneurial Orientation of Family Businesses

    PubMed Central

    Hernández-Perlines, Felipe; Xu, Wenkai

    2018-01-01

    This study analyzes the effect of conditional mediation of environment-absorptive capacity in international entrepreneurial orientation of family businesses. Results involve data from 218 Spanish family businesses, analyzed with SmartPLS 3.2.7 software. This paper presents a relevant contribution both to the academic field and the performance of family firms, helping to understand the process of transforming international entrepreneurial orientation into a better international performance through absorptive capacity while family businesses invest their efforts in aligning international entrepreneurial orientation and absorptive capacity with international results, bearing in mind the positive moderator effect of environment. The most relevant contribution of this work is to integrate in the same model the mediating effect of the absorption capacity and the moderating effect of the environment: the effect of the international entrepreneurial orientation on the international performance of family businesses improves with the mediation of the absorptive capacity (the variability of international performance goes from 32.5 to 40.6%) and the moderation of the environment (to variability of international performance goes from 40.6 to 45.3%). PMID:29472881

  3. Conditional Mediation of Absorptive Capacity and Environment in International Entrepreneurial Orientation of Family Businesses.

    PubMed

    Hernández-Perlines, Felipe; Xu, Wenkai

    2018-01-01

    This study analyzes the effect of conditional mediation of environment-absorptive capacity in international entrepreneurial orientation of family businesses. Results involve data from 218 Spanish family businesses, analyzed with SmartPLS 3.2.7 software. This paper presents a relevant contribution both to the academic field and the performance of family firms, helping to understand the process of transforming international entrepreneurial orientation into a better international performance through absorptive capacity while family businesses invest their efforts in aligning international entrepreneurial orientation and absorptive capacity with international results, bearing in mind the positive moderator effect of environment. The most relevant contribution of this work is to integrate in the same model the mediating effect of the absorption capacity and the moderating effect of the environment: the effect of the international entrepreneurial orientation on the international performance of family businesses improves with the mediation of the absorptive capacity (the variability of international performance goes from 32.5 to 40.6%) and the moderation of the environment (to variability of international performance goes from 40.6 to 45.3%).

  4. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  5. Water absorption characteristic of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  6. Routines for change: how managers can use absorptive capacity to adopt and implement evidence-based practice.

    PubMed

    Innis, Jennifer; Berta, Whitney

    2016-09-01

    This paper uses the construct of absorptive capacity to understand how nurse managers can facilitate the adoption and use of evidence-based practice within health-care organisations. How health-care organisations adopt and implement innovations such as new evidence-based practices will depend on their absorptive, or learning, capacity. Absorptive capacity manifests as routines, which are the practices, procedures and customs that organisational members use to carry out work and to make work-related decisions. Using the construct of absorptive capacity as well as a recent literature review of how health-care organisations take on best practices, we illustrate how the uptake and use of new knowledge, such as evidence-based practices, can be facilitated through the use of routines. This paper highlights routines that nurse managers can use to foster environments where evidence-based practices can be readily identified, and strategies for facilitating their adoption and implementation. The construct of absorptive capacity and the use of routines can be used to examine the ways in which nurse managers can adopt, implement and evaluate the use of evidence-based practices. © 2016 John Wiley & Sons Ltd.

  7. Dynamics of water absorption through superabsorbent polymer

    NASA Astrophysics Data System (ADS)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  8. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    NASA Astrophysics Data System (ADS)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  9. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water.

    PubMed

    Choi, Sung-Jin; Kwon, Tae-Hong; Im, Hwon; Moon, Dong-Il; Baek, David J; Seol, Myeong-Lok; Duarte, Juan P; Choi, Yang-Kyu

    2011-12-01

    We present a sugar-templated polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. The process for fabricating the PDMS sponge does not require any intricate synthesis processes or equipment and it is not environmentally hazardous, thus promoting potential in environmental applications. The proposed PDMS sponge can be elastically deformed into any shape, and it can be compressed repeatedly in air or liquids without collapsing. Therefore, absorbed oils and organic solvents can be readily removed and reused by simply squeezing the PDMS sponge, enabling excellent recyclability. Furthermore, through appropriately combining various sugar particles, the absorption capacity of the PDMS sponge is favorably optimized. © 2011 American Chemical Society

  10. Physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption.

    PubMed

    Noda, Yasuhiro; Watanabe, Kazuya; Sanagawa, Akimasa; Sobajima, Yu; Fujii, Satoshi

    2011-10-31

    Pressure ulcers can form with excess pressure and shearing stress on skin tissue. Because pressure ulcer is often accompanies by exudates, selection of appropriate topical emulsion ointment is difficult. Blended ointments consisting of emulsion base and water-soluble base are clinically used for adjustment of wound moist environment. Because regulating the amount of wound exudates can enhance treatment efficacy, two new blended ointments were developed. LY-SL blended ointment consisted of lysozyme hydrochloride water-in-oil (w/o) emulsion (LY-cream) and sulfadiazine macrogol (polyethylene glycol) ointment (SL-pasta). TR-SL blended ointment consisted of tretinoin tocoferil oil-in-water (o/w) emulsion (TR-cream) and SL-pasta (TR-SL). LY-SL and TR-SL were applied to Franz diffusion cell with cellulose membranes for the evaluation of water absorption characteristics at 32 °C. Water absorption rate constants (mg/cm(2)/min(0.5)) were 12.5, 16.3 and 34.6 for LY-cream, TR-cream and SL-pasta, respectively. Water absorption rate constants for LY-SL and TR-SL (SL-pasta 70%) exhibited intermediate values of 21.2 and 27.2, as compared to each ointment alone, respectively. Because amount of water absorbed was linearly related to square root of time, it was suggested that water-absorbable macrogol was surrounded by oily ingredients forming matrix structure. This diffusion-limited structure may regulate water absorption capacity. This is the first report of physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption. The blended ointment can properly regulate amount of exudates in wounds and may be useful for treatment of pressure ulcers. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Poor diagnostic accuracy of a single fasting plasma citrulline concentration to assess intestinal energy absorption capacity.

    PubMed

    Peters, Job H C; Wierdsma, Nicolette J; Teerlink, Tom; van Leeuwen, Paul A M; Mulder, Chris J J; van Bodegraven, Ad A

    2007-12-01

    Our aim was to explore the diagnostic value of fasting citrulline concentrations to detect decreased intestinal energy absorption in patients with recently diagnosed celiac disease (CeD), refractory celiac disease (RCeD), and short bowel syndrome (SBS). Decreased intestinal energy absorption is regarded a marker of intestinal failure. Fasting plasma citrulline concentrations were determined by high performance liquid chromatography (HPLC) in a prospective study of 30 consecutive adult patients (15 CeD, 9 RCeD, and 16 SBS) and 21 healthy subjects. Intestinal energy absorption capacity using bomb calorimetry was determined in all patients and healthy subjects and was regarded as the gold standard for intestinal energy absorption function. The mean fasting plasma citrulline concentration was lower in RCeD patients than in healthy subjects (28.5+/-9.9 vs 38.1+/-8.0 micromol/L, P<0.05) and CeD patients (28.5+/-9.9 vs 38.1+/-6.4 micromol/L, P<0.05), however, clearly within reference values. The mean intestinal energy absorption capacity was lower in SBS patients than in healthy subjects (64.3+/-18.2 vs 90.3+/-3.5%, P<0.001), CeD patients (64.3+/-18.2 vs 89.2+/-3.4%, P<0.001), and the RCeD group (64.3+/-18.2 vs 82.3+/-11.7%, P<0.01). No relation was observed between fasting plasma citrulline concentration and intestinal energy absorption capacity (Pearson r=0.09, P=0.56). The area under the ROC curve for fasting plasma citrulline to detect decreased intestinal energy absorption capacity (i.e., <85%) was 0.50. Fasting plasma citrulline concentrations have poor test characteristics for detection of decreased intestinal energy absorption capacity in patients with enterocyte damage.

  12. Comparison of water absorption methods: testing the water absorption of recently quarried and weathered porous limestone on site and under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Rozgonyi-Boissinot, Nikoletta; Agárdi, Tamás; Karolina Cebula, Ágnes; Török, Ákos

    2017-04-01

    The water absorption of weathering sensitive stones is a critical parameter that influences durability. The current paper compares different methods of water absorption tests by using on site and laboratory tests. The aims of the tests were to assess the water absorption of un-weathered quarry stones and various weathering forms occurring on porous limestone monuments. For the tests a Miocene porous limestone was used that occurs in Central and Western Hungary and especially near and in Budapest. Besides the Hungarian occurrences the same or very similar porous limestones are found in Austria, Slovakia and in the Czech Republic. Several quarries were operating in these countries. Due to the high workability the stone have been intensively used as construction material from the Roman period onward. The most prominent monuments made of this stone were built in Vienna and in Budapest during the 18th -19th century and in the early 20th century. The high porosity and the micro-fabric of the stone make it prone to frost- and salt weathering. Three different limestone types were tested representing coarse-, medium- and fine grained lithologies. The test methods included Rilem tube (Karsten tube) tests and capillary water absorption tests. The latter methodology has been described in detail in EN 1925:2000. The test results of on-site tests of weathered porous limestone clearly show that the water absorption of dissolved limestone surfaces and crumbling or micro-cracked limestone is similar. The water absorption curves have similar inclinations marking high amount of absorbed water. To the contrary, the white weathering crusts covered stone blocks and black crusts have significantly lower water absorptions and many of these crusts are considered as very tight almost impermeable surfaces. Capillary water absorption tests in the laboratory allowed the determination of maximum water absorption of quarried porous limestone. Specimens were placed in 3 mm of water column and the

  13. Cognitive distance, absorptive capacity and group rationality: a simulation study.

    PubMed

    Curşeu, Petru Lucian; Krehel, Oleh; Evers, Joep H M; Muntean, Adrian

    2014-01-01

    We report the results of a simulation study in which we explore the joint effect of group absorptive capacity (as the average individual rationality of the group members) and cognitive distance (as the distance between the most rational group member and the rest of the group) on the emergence of collective rationality in groups. We start from empirical results reported in the literature on group rationality as collective group level competence and use data on real-life groups of four and five to validate a mathematical model. We then use this mathematical model to predict group level scores from a variety of possible group configurations (varying both in cognitive distance and average individual rationality). Our results show that both group competence and cognitive distance are necessary conditions for emergent group rationality. Group configurations, in which the groups become more rational than the most rational group member, are groups scoring low on cognitive distance and scoring high on absorptive capacity.

  14. Cognitive Distance, Absorptive Capacity and Group Rationality: A Simulation Study

    PubMed Central

    Curşeu, Petru Lucian; Krehel, Oleh; Evers, Joep H. M.; Muntean, Adrian

    2014-01-01

    We report the results of a simulation study in which we explore the joint effect of group absorptive capacity (as the average individual rationality of the group members) and cognitive distance (as the distance between the most rational group member and the rest of the group) on the emergence of collective rationality in groups. We start from empirical results reported in the literature on group rationality as collective group level competence and use data on real-life groups of four and five to validate a mathematical model. We then use this mathematical model to predict group level scores from a variety of possible group configurations (varying both in cognitive distance and average individual rationality). Our results show that both group competence and cognitive distance are necessary conditions for emergent group rationality. Group configurations, in which the groups become more rational than the most rational group member, are groups scoring low on cognitive distance and scoring high on absorptive capacity. PMID:25314132

  15. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    PubMed

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  16. From Training to Organizational Behavior: A Mediation Model through Absorptive and Innovative Capacities.

    PubMed

    Yáñez-Araque, Benito; Hernández-Perlines, Felipe; Moreno-Garcia, Juan

    2017-01-01

    The training of human resources improves business performance: myth or reality? While the literature has extensively addressed this issue, the transfer that occurs from training to performance still remains unresolved. The present study suggests an empirical solution to this gap, through a multiple mediation model of dynamic capabilities. Accordingly, the study makes a major contribution to the effectiveness of an organizational-level training: the "true" relationship between training and performance is mediated by absorptive and innovative capacities. It is difficult from training to directly affect the results: it must be done through a chain of intermediate variables. Training can be argued to be indirectly related to performance, through absorptive capacity in the first place, and innovative capacity in the second, sequentially in this order (three-path mediated effect). Of all immediate relationships received by performance, its explained variance is achieved partly via absorptive capacity and partly via innovation. The direct relationship through training is not significant and only explains a small percentage of the variance in performance. These results have been corroborated by combining two methods of analysis: PLS-SEM and fsQCA, using data from an online survey. This dual methodology in the study of the same phenomenon allows overcoming the limitations of each method, which would not have been possible with a single methodological approach, and confirming the findings obtained by any of them.

  17. From Training to Organizational Behavior: A Mediation Model through Absorptive and Innovative Capacities

    PubMed Central

    Yáñez-Araque, Benito; Hernández-Perlines, Felipe; Moreno-Garcia, Juan

    2017-01-01

    The training of human resources improves business performance: myth or reality? While the literature has extensively addressed this issue, the transfer that occurs from training to performance still remains unresolved. The present study suggests an empirical solution to this gap, through a multiple mediation model of dynamic capabilities. Accordingly, the study makes a major contribution to the effectiveness of an organizational-level training: the “true” relationship between training and performance is mediated by absorptive and innovative capacities. It is difficult from training to directly affect the results: it must be done through a chain of intermediate variables. Training can be argued to be indirectly related to performance, through absorptive capacity in the first place, and innovative capacity in the second, sequentially in this order (three-path mediated effect). Of all immediate relationships received by performance, its explained variance is achieved partly via absorptive capacity and partly via innovation. The direct relationship through training is not significant and only explains a small percentage of the variance in performance. These results have been corroborated by combining two methods of analysis: PLS-SEM and fsQCA, using data from an online survey. This dual methodology in the study of the same phenomenon allows overcoming the limitations of each method, which would not have been possible with a single methodological approach, and confirming the findings obtained by any of them. PMID:28966599

  18. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  19. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films.

    PubMed

    Bajpai, M; Bajpai, S K; Jyotishi, Pooja

    2016-03-01

    In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effect of expatriate knowledge transfer on subsidiaries’ performance: a moderating role of absorptive capacity

    NASA Astrophysics Data System (ADS)

    Arsawan, I. W. E.; Sanjaya, I. B.; Putra, I. K. M.; Sukarta, I. W.

    2018-01-01

    This study aims to examine the relationship between motivation and knowledge transfer to the subsidiaries performance and test the role of absorptive capacity as a moderating variable. The research uses quantitative design through questionnaires distribution with 5 Likert scales. The population frame is five-star hotel in Bali province, Indonesia which amounted to 63 units, the sample of research using proportional random sampling is 54 units and determined the distribution of questionnaires to 162 subsidiaries as the unit of analysis. The research model was built using the structural equation model and analyzed with smart pls- 3 software. The findings of the study revealed that subsidiaries motivation a significant effect on knowledge transfer, knowledge transfer a significant effect on subsidiaries performance, motivation a significant effect on subsidiaries performance and absorptive capacity moderated the relationship between knowledge transfer and subsidiaries performance. These findings suggest that subsidiaries and process of knowledge transfer through absorptive capacity play an important role, and that they have some impact on the subsidiaries performance.

  1. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.

    PubMed

    He, Yongqiang; Liu, Yue; Wu, Tao; Ma, Junkui; Wang, Xingrui; Gong, Qiaojuan; Kong, Weina; Xing, Fubao; Liu, Yu; Gao, Jianping

    2013-09-15

    Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g(-1) for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g(-1) for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g(-1), which is higher than that of most oil absorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. New constraints in absorptive capacity and the optimum rate of petroleum output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraintsmore » on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)« less

  3. Electromagnetic-radiation absorption by water.

    PubMed

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  4. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  5. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Water capacity marking. 179.201-10 Section 179.201... Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in...: water capacity 000000 Pounds (b) [Reserved] ...

  6. Microwave absorption in substances that form hydration layers with water

    NASA Astrophysics Data System (ADS)

    Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L.

    1990-12-01

    The microwave absorption of certain water soluble polymers (polyethylene glycol, polyvinyl pyrrolidone, proteins, and DNA) in solution is composed of three parts: absorption in the free water, absorption in the substance, and absorption in the hydration layer. Ethanol, sucrose, glycerol, and sodium acetate, which form weak hydrogen bonds or have an ionic nature in aqueous solutions, also have microwave absorption signatures similar to polymers that form hydration layers. The frequency-dependent absorption of the free water and of the hydration layer water is described by a simple Debye relaxation model. The absorption per unit sample volume attributable to the hydration layer is solute concentration dependent, and a simple model is used to describe the dependence. The hydration-layer relaxation time was found to vary from substance to substance and with solute concentration. The relaxation time was also found to be independent of solute length.

  7. CFCS and electric chillers: Selection of large-capacity water chillers in the 1990s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niess, R.C.

    1992-03-01

    This handbook offers a single source of useful information for understanding CFC and HCFC phaseout issues and selecting large-capacity water chillers for cooling commercial buildings. It evaluates the performance of electric, absorption, and natural-gas-engine driven water chillers. An economic evaluation checklist and example are included, using the EPRI COMTECH screening tool. Peak shaving with gas chillers and load shifting with chilled water storage are examined. The handbook, written for a diverse audience, covers chiller hardware, function, performance, and typical installed costs. It provides guidelines and checklists for chiller selection, economic comparison, and operation and maintenance.

  8. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Meechai, Nispa

    1997-06-01

    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch- g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 × 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency.

  9. Antecedents of Absorptive Capacity: A New Model for Developing Learning Processes

    ERIC Educational Resources Information Center

    Rezaei-Zadeh, Mohammad; Darwish, Tamer K.

    2016-01-01

    Purpose: The purpose of this paper is to provide an integrated framework to indicate which antecedents of absorptive capacity (AC) influence its learning processes, and to propose testing of this model in future work. Design/methodology/approach Relevant literature into the antecedents of AC was critically reviewed and analysed with the objective…

  10. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  11. Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay.

    PubMed

    Bisby, Roger H; Brooke, Rachel; Navaratnam, Suppiah

    2008-06-01

    The "oxygen radical absorption capacity" (ORAC) assay (Ou, B., Hampsch-Woodill, M., Prior, R.L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 49, 4619-4626) is widely employed to determine antioxidant content of foods and uses fluorescein as a probe for oxidation by peroxyl radicals. Kinetic modeling of the ORAC assay suggests that the lag phase for loss of fluorescence results from equilibrium between antioxidant and fluorescein radicals and the value of the equilibrium constant determines the shape of the lag phase. For an efficient antioxidant this constitutes a "repair" reaction for fluoresceinyl radicals and produces a well defined lag phase. The lag phase becomes less marked with increasing oxidation potential of the antioxidant. Pulse radiolysis confirms that fluoresceinyl radicals are rapidly (k∼10(9)dm(3)mol(-1)s(-1)) reduced by Trolox C, a water soluble vitamin E analogue. ORAC assays of phenols with varying oxidation potentials suggest that it might be employed to obtain an estimate of the redox potential of antioxidants within food materials. Copyright © 2007 Elsevier Ltd. All rights reserved.

  12. Water absorption characteristics and structural properties of rice for sake brewing.

    PubMed

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  13. The moderating role of absorptive capacity and the differential effects of acquisitions and alliances on Big Pharma firms' innovation performance.

    PubMed

    Fernald, K D S; Pennings, H P G; van den Bosch, J F; Commandeur, H R; Claassen, E

    2017-01-01

    In the context of increased pharmaceutical innovation deficits and Big Pharma blockbusters' patent expirations, this paper examines the moderating role of firms' absorptive capacity in external innovation activities of Big Pharma firms. The study indicates a rising interest of Big Pharma in acquisitions of and alliances with biotechnology companies. Unfortunately, this increased interest is not reflected in the number of new drugs generated by Big Pharma. We find that acquisitions of biotech companies have negatively affected Big Pharma firms' innovation performance on average but these acquisitions might have a positive effect at higher levels of acquiring firms' absorptive capacity. Moreover, also acquisitions of pharma companies and alliances with biotech companies only have a positive effect on innovation performance at sufficiently high levels of absorptive capacity. The moderating role of absorptive capacity implicates that a tight integration of internal R&D efforts and (unrelated) external knowledge is crucial for harnessing complementarity effects.

  14. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using

  15. Water storage capacity, stemflow and water funneling in Mediterranean shrubs

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J.

    2010-08-01

    SummaryTo predict water losses and other hydrological and ecological features of a given vegetation, its water storage capacity and stemflow need to be accurately determined. Vast areas of the Mediterranean region are occupied by shrublands yet there is scarce data available on their rainwater interception capacity. In this study, simulated rainfall tests were conducted in controlled conditions on nine Mediterranean shrubs of varying anatomic and morphological features to determine water storage capacity, stemflow and the funneling ratio. After assessing correlations between these hydrological variables and the biometric characteristics of the shrubs, we compared two methods of determining storage capacity: rainfall simulation and immersion. Mean water storage capacity was 1.02 mm (0.35-3.24 mm), stemflow was 16% (3.8-26.4%) and the funneling ratio was 104 (30-260). Per unit biomass, mean storage capacity was 0.66 ml g -1 and ranged from 0.23 ml g -1 for Cistus ladanifer to 2.26 ml g -1 for Lavandula latifolia. Despite their small size, shrubs may generate high water losses to the atmosphere when they form dense communities and this can have a significant impact in regions where water is scarce. When considered the whole shrubs in absolute terms (ml per plant), water storage capacity and stemflow were correlated to biomass and the dendrometric characteristics of the shrubs, yet in relative terms (expressed per surface area unit or as %), anatomic features such as pubescence, branch rigidity or leaf insertion angle emerged as determining factors. The use of a simple procedure to assess storage capacity was inefficient. The immersion method underestimated storage capacity to a different extent for each species. Some shrubs returned high stemflow values typical of their adaptation to the semiarid climate. In contrast, other shrubs seem to have structures that promote stemflow yet have developed other drought-adaptation mechanisms. In this report, we discuss the

  16. The inhibitory effect of milk on the absorption of dietary phenolic acids and the change in human plasma antioxidant capacity through a mechanism involving both milk proteins and fats.

    PubMed

    Zhang, Hao; Jiang, Lu; Guo, Huiyuan; Sun, Jing; Liu, Xianting; Liu, Ruihai; Ding, Qingbo; Ren, Fazheng

    2013-07-01

    We assessed the effects of milk proteins and fats, alone and in combination, on the absorption of phenolic acids and the change in plasma antioxidant capacity after jujube juice intake in humans. Twenty volunteers received the following four treatments each in a 4 × 4 Latin square design with a minimum 1 week interval: 200 mL of jujube juice plus 200 mL of (1) water; (2) whole milk; (3) skimmed milk; or (4) milk fat. The results showed that skimmed milk extended the time to reach maximum increase of plasma phenolic acids concentrations and plasma antioxidant capacity. However, neither the skimmed milk nor the milk fat had a significant effect on the absorption of phenolic acids. In contrast, whole milk significantly reduced the absorption of phenolic acids and the increase in plasma antioxidant capacity (p < 0.05). In vitro results suggested the formation of complexes during digestion that involved milk proteins, milk fats, and phenolic acids, which were responsible for the inhibitory effect of whole milk. Milk proteins and fats together, but not alone, are responsible for the inhibitory effect of milk on the absorption of phenolic acids and the change in plasma antioxidant capacity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    NASA Astrophysics Data System (ADS)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  18. The moderating role of absorptive capacity and the differential effects of acquisitions and alliances on Big Pharma firms' innovation performance

    PubMed Central

    Fernald, K. D. S.; Pennings, H. P. G.; van den Bosch, J. F.; Commandeur, H. R.; Claassen, E.

    2017-01-01

    In the context of increased pharmaceutical innovation deficits and Big Pharma blockbusters’ patent expirations, this paper examines the moderating role of firms’ absorptive capacity in external innovation activities of Big Pharma firms. The study indicates a rising interest of Big Pharma in acquisitions of and alliances with biotechnology companies. Unfortunately, this increased interest is not reflected in the number of new drugs generated by Big Pharma. We find that acquisitions of biotech companies have negatively affected Big Pharma firms’ innovation performance on average but these acquisitions might have a positive effect at higher levels of acquiring firms’ absorptive capacity. Moreover, also acquisitions of pharma companies and alliances with biotech companies only have a positive effect on innovation performance at sufficiently high levels of absorptive capacity. The moderating role of absorptive capacity implicates that a tight integration of internal R&D efforts and (unrelated) external knowledge is crucial for harnessing complementarity effects. PMID:28231332

  19. An effective way to reduce water absorption to terahertz

    NASA Astrophysics Data System (ADS)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  20. The implementation of a global fund grant in Lesotho: applying a framework on knowledge absorptive capacity.

    PubMed

    Biesma, Regien; Makoa, Elsie; Mpemi, Regina; Tsekoa, Lineo; Odonkor, Philip; Brugha, Ruairi

    2012-02-01

    One of the biggest challenges in scaling up health interventions in sub-Saharan Africa for government recipients is to effectively manage the rapid influx of aid from different donors, each with its own requirements and conditions. However, there is little empirical evidence on how governments absorb knowledge from new donors in order to satisfy their requirements. This case study applies Cuellar and Gallivan's (2006) framework on knowledge absorptive capacity (AC) to illustrate how recipient government organisations in Lesotho identified, assimilated and utilised knowledge on how to meet the disbursement and reporting requirements of Lesotho's Round 5 grant from the Global Fund to Fight AIDS, TB and Malaria (Global Fund). In-depth topic guided interviews with 22 respondents and document reviews were conducted between July 2008 and February 2009. Analysis focused on six organisational determinants that affect an organisation's absorptive capacity: prior-related knowledge, combinative capabilities, motivation, organisational structure, cultural match, and communication channels. Absorptive capacity was mostly evident at the level of the Principal Recipient, the Ministry of Finance, who established a new organisational unit to meet the requirements of Global Fund Grants, while the level of AC was less advanced among the Ministry of Health (Sub-Recipient) and district level implementers. Recipient organisations can increase their absorptive capacity, not only through prior knowledge of donor requirements, but also by deliberately changing their organisational form and through combinative capabilities. The study also revealed how vulnerable African governments are to loss of staff capacity. The application of organisational theory to analyse the interactions of donor agencies with public and non-public country stakeholders illustrates the complexity of the environment that aid recipient governments have to manage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  2. Multiband coherent perfect absorption in a water-based metasurface.

    PubMed

    Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Premaratne, Malin; Jin, Ronghong

    2017-07-10

    We design an ultrathin water-based metasurface capable of coherent perfect absorption (CPA) at radio frequencies. It is demonstrated that such a metasurface can almost completely absorb two symmetrically incident waves within four frequency bands, each having its own modulation depth of metasurface absorptivity. Specifically, the absorptivity at 557.2 MHz can be changed between 0.59% and 99.99% via the adjustment of the phase difference between the waves. The high angular tolerance of our metasurface is shown to enable strong CPA at oblique incidence, with the CPA frequency almost independent of the incident angle for TE waves and varying from 557.2 up to 584.2 MHz for TM waves. One can also reduce this frequency from 712.0 to 493.3 MHz while retaining strong coherent absorption by varying the water layer thickness. It is also show that the coherent absorption performance can be flexibly controlled by adjusting the temperature of water. The proposed metasurface is low-cost, biocompatible, and useful for electromagnetic modulation and switching.

  3. CFCS and electric chillers: Selection of large-capacity water chillers in the 1990s. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niess, R.C.

    1992-03-01

    This handbook offers a single source of useful information for understanding CFC and HCFC phaseout issues and selecting large-capacity water chillers for cooling commercial buildings. It evaluates the performance of electric, absorption, and natural-gas-engine driven water chillers. An economic evaluation checklist and example are included, using the EPRI COMTECH screening tool. Peak shaving with gas chillers and load shifting with chilled water storage are examined. The handbook, written for a diverse audience, covers chiller hardware, function, performance, and typical installed costs. It provides guidelines and checklists for chiller selection, economic comparison, and operation and maintenance.

  4. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  5. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  6. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures at...

  7. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures at...

  8. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Water capacity marking. 179.201-10 Section 179.201... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-10 Water capacity marking. (a) Water capacity of the tank in pounds stamped plainly and permanently in letters and figures at...

  9. The Effect of Absorptive Capacity Perceptions on the Context Aware Ubiquitous Learning Acceptance

    ERIC Educational Resources Information Center

    Lin, Hsiu-Fen

    2013-01-01

    Purpose: The purpose of this study is to examine the impact of absorptive capacity (understanding, assimilating and applying u-learning) perceptions on behavioral intention to use u-learning through path analysis and applies the technology acceptance model (TAM) as a theoretical foundation, simultaneously improving the model by adopting prior…

  10. Water Absorption Behavior of Hemp Hurds Composites

    PubMed Central

    Stevulova, Nadezda; Cigasova, Julia; Purcz, Pavol; Schwarzova, Ivana; Kacik, Frantisek; Geffert, Anton

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  11. Water absorption behaviour of hybrid interwoven cellulosic fibre composites

    NASA Astrophysics Data System (ADS)

    Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.

    2017-10-01

    The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.

  12. The role of education and training in absorptive capacity of international technology transfer in the aerospace sector

    NASA Astrophysics Data System (ADS)

    van der Heiden, Patrick; Pohl, Christine; Bin Mansor, Shuhaimi; van Genderen, John

    2015-07-01

    The role of education and training in the aerospace sector for establishing sufficient levels of absorptive capacity in newly industrialized countries is substantial and forms a fundamental part of a nation's ability to establish and cultivate absorptive capacity on a national or organization-specific level. Successful international technology transfer as well as absorption of aerospace technology and knowledge into recipient organizations, depends prodigiously on the types of policy adopted in education and training of all groups and individuals specifically outlined in this paper. The conducted literature review revealed surprisingly few papers that translate these vital issues from theoretical scrutiny into representations that have practical policy value. Through exploration of the seven key aspects of education and training, this paper provides a practical template for policy-makers and practitioners in Asian newly industrialized countries, which may be utilized as a prototype to coordinate relevant policy aspects of education and training in international technology transfer projects across a wide variety of actors and stakeholders in the aerospace realm. A pragmatic approach through tailored practical training for the identified groups and individuals identified in this paper may lead to an enhanced ability to establish and strengthen absorptive capacity in newly industrialized countries through the development of appropriate policy guidelines. The actual coordination between education and training efforts deserves increased research and subsequent translation into policies with practical content in the aerospace sector.

  13. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  14. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption

    NASA Astrophysics Data System (ADS)

    Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-01

    Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.

  15. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  16. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  17. Water absorption and method improvement concerning electrical conductivity testing Acacia mangium (Fabaceae) seeds.

    PubMed

    de Oliveira, Daniel Luiz; Smiderle, Oscar Jose; Paulino, Pollyana Priscila Schuertz; Souza, Aline das Graças

    2016-12-01

    Acacia is an important forest species of rapid growth whose seeds have tegument dormancy. In this work it was intended to characterize water absorption pattern after seed dormancy break, and to determine the amount of water, container size and the need of breaking the tegument dormancy, as to perform electrical conductivity test in small and large seeds of Acacia mangium (Fabaceae). The seeds were collected from 10, 8 and 6 years old trees established in poor yielding-capacity soils on savannah areas of Roraima, Brazil; seeds were classified in six lots concerning to seed size and tree age. Germination tests (50 seeds and four replications per lot) were carried out on germitest® paper maintained on gerbox at 25 °C. Imbibition was verified by seed weighing at different times (0, 2, 5, 8, 12, 16, 24, 36, 48, 60, 72, 84, 96 and 120 hours). The electrical conductivity test consisted of three experiments, distinguished by the amount of water used and by the container size in which seeds were immersed. Seeds of A. mangium coming from 10 years old trees presented increased germination percent and germination speed than seeds of six-year old trees. Small seeds presented increased in electrical conductivity and water absorption until 120 hours when compared to large seeds. The immersion of seeds of A. mangium in 40 mL of distilled water into 180 mL plastic containers, after dormancy break, it is indicated for the determination of electrical conductivity test. The ratio of electrolytes by seed mass, after 24 hours of immersion in water, turns electrical conductivity test more accurate concerning A. mangium seeds.

  18. Water metamaterial for ultra-broadband and wide-angle absorption.

    PubMed

    Xie, Jianwen; Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Jin, Ronghong; Premaratne, Malin

    2018-02-19

    A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

  19. The influence of water mixtures on the dermal absorption of glycol ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a correspondingmore » increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.« less

  20. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  1. Bacterial carbonate precipitation improves water absorption of interlocking compressed earth block (ICEB)

    NASA Astrophysics Data System (ADS)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2017-11-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. The addition of many alternative materials into interlocking block in order to improve the durability has been reported. However there are currently lack of report and evidence on the application of biocalcification or microbiologically induced calcite precipitation (MICP) in improving the engineering properties of ICEB. This paper evaluate the effect of UB in improving the water absorption properties of ICEB. This paper also provide the results on SEM analysis of addition of 1%, 3% and 5% UB in ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the reduction of 14.72% with 5% UB on initial water absorption followed by the results for water absorption by 24-hour soaking which also indicates reduction of 14.68% with 5% UB on 28th days of testing compared to control specimen. It was expected that the reduction of water absorption was due to the plugging of pores by the bacterial calcite which prevent ingression of water in ICEB samples. Therefore this study hopes that the positive results from the UB as improving in water absorption of ICEB will lead to improve others ICEB properties and others construction materials.

  2. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  3. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    NASA Astrophysics Data System (ADS)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  4. Predicting and mapping soil available water capacity in Korea.

    PubMed

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  5. Water holding capacities of fly ashes: Effect of size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by themore » one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.« less

  6. Steroids alter ion transport and absorptive capacity in proximal and distal colon.

    PubMed

    Sellin, J H; DeSoignie, R C

    1985-07-01

    Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Absorption spectra of deuterated water at DF laser wavelengths.

    PubMed

    Bruce, C W; Jelinek, A V

    1982-11-15

    Absorption coefficients for deuterated water have been measured at twenty-two deuterium fluoride (DF) laser wavelengths and presented for atmospheric conditions classified as midlatitude-summer (14.3 T water vapor, standard temperature, and pressure). The HDO vapor was produced from a liquid mixture of H(2)O and D(2)O. The proportions of the resulting equilibrium mixture involving these constituents and HDO were calculated using previously measured constants and produced strong HDO absorption at the 3.5-4.1-microm DF laser wavelengths relative to those of the H(2)O and D(2)O vapors. Predicted and measured pressure dependencies at constant mixing ratios are compared for several laser wavelengths having strong HDO absorption. Absorption coefficients are in fairly close agreement with those of the current Air Force Geophysical Laboratory line-by-line model for standard temperature and pressure conditions. At lower total pressures, the comparison is less satisfactory and suggests inaccurate line parameters in the predictive data base.

  8. Developing and Validating Field Measurement Scales for Absorptive Capacity and Experienced Community of Practice

    ERIC Educational Resources Information Center

    Cadiz, David; Sawyer, John E.; Griffith, Terri L.

    2009-01-01

    Research on knowledge transfer in organizations has been hampered by the lack of tools yielding valid scores for studying critical constructs in concert. The authors developed survey measures of absorptive capacity (the ability to transform new knowledge into usable knowledge) and experienced community of practice (the extent to which a person is…

  9. IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite

    NASA Astrophysics Data System (ADS)

    Thomas, Sylvia-Monique; Jacobsen, Steven D.; Bina, Craig R.; Smyth, Joseph R.; Frost, Daniel J.

    2010-05-01

    Raman spectroscopy, combined with the 'Comparator technique' has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the 'Comparator technique' to provide ɛ-values for a set of synthetic Fe-free (Fo100) and Fe-bearing (Fo90, Fo87, Fo83, Fo60) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth's lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth's deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3130, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3244 cm-1 (Fo60) and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3170 cm-1 an ɛ-value of 191500 ± 38300 L cm-2/ molH2O was determined. For the ringwoodites with Fo90, Fo87 and Fo83 composition and the mean wavenumbers of 3229 cm-1, 3252 cm-1 and 3163 cm-1 values of 123600 ± 24700 L cm-2/ molH2O, 176300 ± 52900 L cm-2/ molH2O and 155000 ± 46500 L cm-2/ molH2O were

  10. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  11. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    PubMed

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  12. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  13. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    NASA Astrophysics Data System (ADS)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  14. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  15. A novel procedure to assess the non-enzymatic hydrogen-peroxide antioxidant capacity of metabolites with high UV absorption.

    PubMed

    Csepregi, Kristóf; Hideg, Éva

    2016-12-01

    Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.

  16. Economic performance of water storage capacity expansion for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  17. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  18. Methods for analysis of selected metals in water by atomic absorption

    USGS Publications Warehouse

    Fishman, Marvin J.; Downs, Sanford C.

    1966-01-01

    This manual describes atomic-absorption-spectroscopy methods for determining calcium, copper, lithium, magnesium, manganese, potassium, sodium, strontium and zinc in atmospheric precipitation, fresh waters, and brines. The procedures are intended to be used by water quality laboratories of the Water Resources Division of the U.S. Geological Survey. Detailed procedures, calculations, and methods for the preparation of reagents are given for each element along with data on accuracy, precision, and sensitivity. Other topics discussed briefly are the principle of atomic absorption, instrumentation used, and special analytical techniques.

  19. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less

  20. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  1. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  2. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis.

    PubMed

    Shi, Xiaocai; Passe, Dennis H

    2010-10-01

    The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

  3. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    PubMed

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  4. Enhancing climate Adaptation Capacity for Drinking Water ...

    EPA Pesticide Factsheets

    Journal article This paper considers the adaptation capacity of conventional water treatment systems. A modeling framework is used to illustrate climate adaptation mechanisms that could enable conventional treatment systems to accommodate water quality impairments.

  5. Estimation of water absorption coefficient using the TDR method

    NASA Astrophysics Data System (ADS)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  6. Water-absorption rate equation of rice for brewing sake.

    PubMed

    Mizuma, Tomochika; Tomita, Akiko; Kitaoka, Atsushi; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2007-01-01

    This study was undertaken to analyze the kinetics of water absorption and to derive an equation for the rate at which water is absorbed by rice for brewing sake. We used two rice varieties: Gin-oumi, commonly used as a staple food, and Gohyakumangoku, a variety used particularly for brewing sake. The water-absorption rate equations of Gin-oumi and Gohyakumangoku were postulated based on the following equations. For Gin-oumi (water content, 11.5%), dx/dtheta=k(1-x)(n), n=1, k=(2 x 10(-9))exp(0.0604 x (t+273.15)). For Gohyakumangoku (11.5%), dx/dtheta=k(1-x)(n)(x+a), n=1, a=0.29, k=(2 x 10(-8))exp(0.0534 x (t+273.15)). Here, x, theta (min), and t ( degrees C) are the water absorbing ratio, time, and temperature, respectively. The result shows that the values of the temperature-dependence parameter k (min(-1)), as well as its curves, are different; a typical rice grain has a monotonically smooth curve, whereas that suitable for sake brewing has an S-shaped curve.

  7. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces.

    PubMed

    Samadi, Saman; Yazd, Shabnam Sharif; Abdoli, Hossein; Jafari, Pooya; Aliabadi, Majid

    2017-12-01

    In the present study, the chitosan (bottom layer)/polyacrylonitrile (top layer, PAN) nanofibers were coated on the sponge surface. The synthesized magnetic Fe 3 O 4 - ZSM-5 nanozeolites have been loaded into the chitosan/PAN nanofibers to increase the performance of nanofibers toward absorption of lubricating oil, motor oil and pump oil from water surfaces. Scanning electron microscope (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis were used to characterize the synthesized nanozeolites. The morphology and wettability of nanofibers were determined using SEM and water contact angle tests. The influence of Fe 3 O 4 - ZSM-5 nanozeolite content and chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofiber thickness was evaluated on the potential of sponges for oils absorption. The maximum capacity of the chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofibers coated sponges for absorption of motor oil, lubricating oil and pump oil was found to be 99.4, 95.3 and 88.1g/g, in Fe 3 O 4 - ZSM-5 2wt.% and nanofiber thickness of 12μm (chitosan layer of 2μm and PAN layer of 10μm). The reusability of nanofibrous sponges showed that the hydrophobic chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofibers coated sponges can be easily reused in water-oil separation for many cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    PubMed Central

    Ueno, Shigeaki; Shigematsu, Toru; Karo, Mineko; Hayashi, Mayumi; Fujii, Tomoyuki

    2015-01-01

    The effect of high hydrostatic pressure (HHP) treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa. PMID:28231195

  9. The Role of Cross-Cultural Absorptive Capacity in the Effectiveness of In-Country Cross-Cultural Training

    ERIC Educational Resources Information Center

    Tarique, Ibraiz; Caligiuri, Paula

    2009-01-01

    Based on the theory of absorptive capacity, this study examines the following question. In the context of cross-cultural training, can the amount of previously accumulated cultural knowledge affect the ability of a trainee to absorb further learning about a new culture, thus enhancing total knowledge and presumably cross-cultural adjustment?…

  10. Field demonstration of the combined effects of absorption and evapotranspiration on septic system drainfield capacity.

    PubMed

    Rainwater, Ken; Jackson, Andrew; Ingram, Wesley; Lee, Chang Yong; Thompson, David; Mollhagen, Tony; Ramsey, Heyward; Urban, Lloyd

    2005-01-01

    Drainfields for disposal of septic tank effluents are typically designed by considering the loss of water by either upward evapotranspiration into the atmosphere or lateral and downward absorption into the adjacent soil. While this approach is appropriate for evapotranspiration systems, absorption systems allow water loss by both mechanisms. It was proposed that, in areas where high evapotranspiration rates coincide with permeable soils, drainfield sizes could be substantially reduced by accounting for both mechanisms. A two-year field demonstration was conducted to determine appropriate design criteria for areas typical of the Texas High Plains. The study consisted of evaluating the long-term acceptance rates for three different drainfield configurations: evapotranspiration only, absorption only, and combined conditions. A second field demonstration repeated the experiments for additional observation of the combined evapotranspiration and absorption and achieved similar results as the first study. The field tests indicated that the current design loading criteria may be increased by at least a factor of two for the Texas High Plains region and other Texas areas with similar soil composition and evapotranspiration rates, while still retaining a factor of safety of two.

  11. Monitoring Telluric Water Absorption with CAMAL

    NASA Astrophysics Data System (ADS)

    Baker, Ashley; Blake, Cullen; Sliski, David

    2017-01-01

    Ground-based observations are severely limited by telluric water vapor absorption features, which are highly variable in time and significantly complicate both spectroscopy and photometry in the near-infrared (NIR). To achieve the stability required to study Earth-sized exoplanets, monitoring the precipitable water vapor (PWV) becomes necessary to mitigate the impact of telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive 6-inch aperture telescope dedicated to measuring PWV at the Whipple Observatory. CAMAL utilizes three NIR narrowband filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. We present the current design of CAMAL, discuss our calibration methods, and show PWV measurements taken with CAMAL compared to those of a nearby GPS water vapor monitor.

  12. Temporal Variations of Telluric Water Vapor Absorption at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Li, Dan; Blake, Cullen H.; Nidever, David; Halverson, Samuel P.

    2018-01-01

    Time-variable absorption by water vapor in Earth’s atmosphere presents an important source of systematic error for a wide range of ground-based astronomical measurements, particularly at near-infrared wavelengths. We present results from the first study on the temporal and spatial variability of water vapor absorption at Apache Point Observatory (APO). We analyze ∼400,000 high-resolution, near-infrared (H-band) spectra of hot stars collected as calibration data for the APO Galactic Evolution Experiment (APOGEE) survey. We fit for the optical depths of telluric water vapor absorption features in APOGEE spectra and convert these optical depths to Precipitable Water Vapor (PWV) using contemporaneous data from a GPS-based PWV monitoring station at APO. Based on simultaneous measurements obtained over a 3° field of view, we estimate that our PWV measurement precision is ±0.11 mm. We explore the statistics of PWV variations over a range of timescales from less than an hour to days. We find that the amplitude of PWV variations within an hour is less than 1 mm for most (96.5%) APOGEE field visits. By considering APOGEE observations that are close in time but separated by large distances on the sky, we find that PWV is homogeneous across the sky at a given epoch, with 90% of measurements taken up to 70° apart within 1.5 hr having ΔPWV < 1.0 mm. Our results can be used to help simulate the impact of water vapor absorption on upcoming surveys at continental observing sites like APO, and also to help plan for simultaneous water vapor metrology that may be carried out in support of upcoming photometric and spectroscopic surveys.

  13. The environmental actions of firms: examining the role of spillovers, networks and absorptive capacity.

    PubMed

    Albornoz, Facundo; Cole, Matthew A; Elliott, Robert J R; Ercolani, Marco G

    2014-12-15

    In the light of climate uncertainty and growing concern for the natural environment, an increasingly important aspect of global business is the environmental behaviour of firms. In this paper we consider the factors that influence firms' environmental actions (EAs). Our study of Argentinean firms concentrates on measures of environmental spillovers, informal and formal networks and absorptive capacity by testing four related hypotheses. We find that foreign-owned firms, large firms and those with a greater capacity to assimilate new environmental technologies are more likely to adopt EAs. We also show that formal and informal networks aid the adoption of EAs in the presence of traditional firm-level spillovers. Finally, we show that foreign-owned firms have different motives to domestic firms for undertaking EAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S. M.; Macknick, J.; Averyt, K.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact onmore » national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.« less

  15. Improvement of scattering correction for in situ coastal and inland water absorption measurement using exponential fitting approach

    NASA Astrophysics Data System (ADS)

    Ye, Huping; Li, Junsheng; Zhu, Jianhua; Shen, Qian; Li, Tongji; Zhang, Fangfang; Yue, Huanyin; Zhang, Bing; Liao, Xiaohan

    2017-10-01

    The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared (NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths (412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scattering-correction methods.

  16. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.

    PubMed

    Jung, Youngeui; Hwang, Jungseek

    2013-02-01

    We used near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in aqueous solutions in the near-infrared range (3800-7500 cm(-1)). Here we introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we were able to extract the water displacement coefficients of glucose, and this may offer a new general method using spectroscopy techniques applicable to other water-soluble materials. We also observed red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from the contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift gets larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on the concentration. We also performed the same measurements and analysis with sucrose instead of glucose as solute and compared.

  17. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  18. Site of water vapor absorption in the desert cockroach, Arenivaga investigata.

    PubMed Central

    O'Donnell, M J

    1977-01-01

    The desert cockroach, Arenivaga investigata, can gain weight by absorption of water-vapor from unsaturated atmospheres above 82.5% relative humidity. Blocking the anus or the dorsal surface with wax does not prevent water vapor uptake, but interference with movements of the mouthparts or blocking the mouth with wax-prevents such uptake. Weight gains are associated with the protrusion from the mouth of two bladder-like extensions of the hypopharynx. During absorption these structures are warmer than the surrounding mouthparts, their surface temperature increasing with relative humidity. This suggests that the surfaces of the bladder-like structures function at least as sites for condensation of water vapor, but the precise location of its transfer into the hemolymph has not yet been identified. Images PMID:266217

  19. Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density Functional Theory

    DTIC Science & Technology

    2013-08-20

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--13-9479 Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density...structure associated with Fe, Mn, and Mg water complexes using time-dependent density functional theory (TD-DFT). Calculation of excited state resonance

  20. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.

    PubMed

    Hogg, D C; Guiraud, F O

    1979-05-31

    MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.

  1. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Shen, Bo; Keinath, Chris

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less

  2. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  3. Water absorption tests for measuring permeability of field concrete.

    DOT National Transportation Integrated Search

    2013-09-01

    The research results from CFIRE Project 04-06 were communicated to engineers and researchers in this project. : Specifically, the water absorption of concrete samples (i.e., 2-in. thick, 4-in. diameter discs cut from concrete : cylinders) was found s...

  4. Kids in Space Water Absorption Flight Procedures #40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014988 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  5. Kids in Space Water Absorption Flight Procedures 40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014993 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  6. Vitamin B12 absorption capacity in healthy children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hjelt, K.; Krasilnikoff, P.A.

    1986-03-01

    B12 absorption was investigated in 47 healthy children aged 7 months to 15.8 years (median 4.9 years). The patients had either recovered from giardiasis, the post-gastroenteritis syndrome, or had celiac disease in remission (treated with a gluten-free diet). The B12 absorption was measured by a double-isotope technique using /sup 57/CoB12 and /sup 51/CrCl/sub 3/, the latter being the inabsorbable marker. The radiation dose was minimal. The results were presented as fractional absorption of B12 (FAB12). Within the different age groups, the absorption test was performed by means of the following oral amounts of B12: 0- less than 1 year, 0.5more » microgram; 1-3 years: 1.7 micrograms, 4-6 years, 2.5 micrograms; 7-10 years; 3.3 micrograms; and 11-15 years, 4.5 micrograms. When using these oral amounts of B12, the medians (and ranges) of FAB12 were found to be: 1-3 years (n = 18), 37% (16-80%); 4-6 years (n = 10), 27% (19-40%); 7-10 years (n = 9), 32% (21-44%); and 11-15 years (n = 8), 27% (19-59%). The FAB12 in two children aged 7 and 11 months was 31% and 32%, respectively. These results may be interpretated as reference values for B12 absorption in children. Further absorption tests were performed in seven children representing the four age groups from 1 to 15 years. When a high oral amount of B12 was given (i.e., three times the saturation dose), the FAB12 ranged from 0 to 20% (median 9%), whereas a low amount (i.e., one-ninth of the saturation dose) produced fractional absorptions from 65 to 82% (median 74%).« less

  7. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    PubMed Central

    López-Alba, Elías; Díaz, Francisco

    2018-01-01

    The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix. PMID

  8. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures.

    PubMed

    López-Alba, Elías; Schmeer, Sebastian; Díaz, Francisco

    2018-03-13

    The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix.

  9. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    NASA Astrophysics Data System (ADS)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  10. Dataset used to improve liquid water absorption models in the microwave

    DOE Data Explorer

    Turner, David

    2015-12-14

    Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.

  11. Acute effects of carprofen and meloxicam on canine gastrointestinal permeability and mucosal absorptive capacity.

    PubMed

    Craven, Melanie; Chandler, Marge L; Steiner, Jörg M; Farhadi, Ashkan; Welsh, Elizabeth; Pratschke, Kathryn; Shaw, Darren J; Williams, David A

    2007-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed to dogs for their analgesic, antipyretic, and anti-inflammatory properties. Their beneficial actions can be offset by gastrointestinal (GI) toxicosis. Endoscopy has traditionally been employed to detect GI lesions, but alterations in GI permeability precede the development of mucosal damage. Carprofen and meloxicam alter GI permeability and mucosal absorptive capacity of dogs. Twenty adult dogs treated with an NSAID for >7 days were evaluated by permeability tests while receiving either carprofen (10 dogs) or meloxicam (10 dogs). Prospective, longitudinal observational study. A 6-sugar permeability test (sucrose, lactulose, rhamnose, 3-O-methyl-D-glucose, D-xylose, and sucralose) was performed on the day before NSAID treatment, and after 3 and 8 days of treatment. There were no significant differences in the urinary recovery ratios of lactulose: rhamnose, D-xylose: 3-O-methyl-D-glucose, or sucralose recovery within either group at any time during the study. Sucrose permeability in the meloxicam group did not alter significantly over time. However, sucrose permeability in the carprofen group decreased significantly by day 3 (P = .049) and increased again by day 8 (P = .049), to a level that was not significantly different to permeability before treatment (P = .695). The absence of increased GI permeability and diminished mucosal absorptive capacity in this group of dogs does not support the development of acute GI toxicosis during treatment with either meloxicam or carprofen.

  12. Evidence for direct water absorption by shallow-rooted desert plants in desert-oasis ecotone, Northwest China

    NASA Astrophysics Data System (ADS)

    Fang, Jing

    2014-05-01

    Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.

  13. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    USGS Publications Warehouse

    Mann, L.T.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  14. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. Water absorption and biodegradation kinetics of highly filled EOC-FS biocomposites

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Platov, Yu. T.; Bobojonova, G. A.; Ramos, C. Chaverri; Popov, A. A.

    2017-12-01

    The paper analyzes the water absorption and biodegradation kinetics in highly filled biocomposites based on ethylene-octene copolymer (EOC) and oil flax straw (FS). It is shown that adding the filler to EOC increases the water absorption from 0 to 22%. The tendency can be explained both by the low interfacial adhesion of EOC to FS and by the hydrophilic nature of the filler. According to biodegradation tests (10 months), the mass of pure EOC remains unchanged, suggesting that it fails to biodegrade in the environment. Increasing the filler content increases the weight loss of the composites and the degree of microbiological contamination (fungi filaments, bacteria) as evidenced by optical microscopy.

  16. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.

  17. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels becomemore » possible.« less

  18. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  19. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  20. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  1. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude

  2. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  3. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  4. Carrying capacity of water resources in Bandung Basin

    NASA Astrophysics Data System (ADS)

    Marganingrum, D.

    2018-02-01

    The concept of carrying capacity is widely used in various sectors as a management tool for sustainable development processes. This idea has also been applied in watershed or basin scale. Bandung Basin is the upstream of Citarum watershed known as one of the national strategic areas. This area has developed into a metropolitan area loaded with various environmental problems. Therefore, research that is related to environmental carrying capacity in this area becomes a strategic issue. However, research on environmental carrying capacity that has been done in this area is still partial either in water balance terminology, land suitability, ecological footprint, or balance of supply and demand of resources. This paper describes the application of the concept of integrated environmental carrying capacity in order to overcome the increasing complexity and dynamic environmental problems. The sector that becomes the focus of attention is the issue of water resources. The approach method to be carried out is to combine the concept of maximum balance and system dynamics. The dynamics of the proposed system is the ecological dynamics and population that cannot be separated from one another as a unity of the Bandung Basin ecosystem.

  5. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  6. Airborne differential absorption lidar system for water vapor investigations

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  7. Technical, Managerial and Financial (TMF) Capacity Resources for Small Drinking Water Systems

    EPA Pesticide Factsheets

    Resources are available to help public water systems build the technical, managerial and financial (TMF) capacity. TMF capacity is necessary to achieve and maintain long-term sustainability and compliance with national safe drinking water regulations.

  8. Enhanced load-carrying capacity of hairy surfaces floating on water.

    PubMed

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  9. Enhanced load-carrying capacity of hairy surfaces floating on water

    PubMed Central

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-01-01

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin. PMID:24808757

  10. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    PubMed

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    PubMed

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  12. New in situ Aerosol Spectral Optical Measurements over 300-700 nm, Extinction and Total Absorption, Paired with Absorption from Water- and Methanol-soluble Aerosol Extracts

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.

    2017-12-01

    A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer

  13. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  14. Water dynamics of Ser-His-Glu-Cys-Asn powder and effects of moisture absorption on its chemical properties.

    PubMed

    Lin, Songyi; Xue, Peiyu; Yang, Shuailing; Li, Xingfang; Dong, Xiuping; Chen, Feng

    2017-08-01

    This study has elucidated moisture dynamics in the soybean peptide, Ser-His-Glu-Cys-Asn (SHECN) powder by using dynamic vapor sorption (DVS) and nuclear magnetic resonance (NMR). We also tried to investigate the effects of moisture absorption on the biological activity and chemical properties of SHECN with some effective methods such as mid-infrared (MIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). DVS results showed that the moisture absorption of SHECN could reach a maximum of 33%, and the SHECN powder after synthesis actually existed in a trihydrate state of SHECN.3H 2 O. Low-field NMR revealed that three water proportions including strong combined water, binding water and bulk water were involved in SHECN moisture absorption and absored water dominantly existed in the form of combined water. Magnetic resonance imaging (MRI) and MIR spectroscopy results indicated that moisture absorption could change the morphology and structure of SHECN. After moisture absorption at 50% and 75% relative humidity, 19 volatiles were identified by GC-MS analysis. Additionally, this study showed that a part of reductive groups in SHECN was oxidized and its antioxidant ability declined significantly (P < 0.05) after moisture absorption. Water absorbed into SHECN powder can significantly change its microstructure and cause its activity to decrease. We must prevent SHECN from absorbing moisture during storage because the water can accelerate the oxidation of samples and promote microbial reactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    NASA Astrophysics Data System (ADS)

    Liu, Jonathan T. C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-11-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34 1.47 μm spectral region (2v1 and v1+v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

  16. Poultry water holding capacity measurements using infrared spectroscopies correlated to traditional methods

    USDA-ARS?s Scientific Manuscript database

    Water holding capacity (WHC) in chicken meat is directly correlated with the quality of the meat. Lower water holding capacity is linked with decreased sensory qualities and therefore lower consumer satisfaction. Additionally, measurement of WHC is subject to wide variations which can depend on many...

  17. Fabrication of Functional Polyurethane/Rare Earth Nanocomposite Membranes by Electrospinning and Its VOCs Absorption Capacity from Air

    PubMed Central

    Ge, Jun Cong; Choi, Nag Jung

    2017-01-01

    Volatile organic compounds (VOCs) are a source of air pollution and are harmful to both human health and the environment. In this study, we fabricated polyurethane/rare earth (PU/RE) composite nanofibrous membranes via electrospinning with the aim of removing VOCs from air. The morphological structure of PU/RE nanofibrous mats was investigated using field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) experimental analyses. A certain amount of RE (up to 50 wt. % compared to PU pellets) nanoparticles (NPs) could be loaded on/into PU fibers. The tensile strength of PU/RE nanofibrous membranes decreased slightly with the increasing RE powder content. The PU nanofiber containing 50 wt. % RE powder had the smallest fiber diameter of 356 nm; it also showed the highest VOC absorption capacity compared with other composite membranes, having an absorption capacity about three times greater than pure PU nanofibers. In addition, all of the PU/RE nanofibrous membranes readily absorbed styrene the most, followed by xylene, toluene, benzene and chloroform. Therefore, the PU/RE nanofibrous membrane can play an important role in removing VOCs from the air, and its development prospects are impressive because they are emerging materials. PMID:28336894

  18. Control of pulmonary absorption of water-soluble compounds by various viscous vehicles.

    PubMed

    Yamamoto, Akira; Yamada, Keigo; Muramatsu, Hideaki; Nishinaka, Asako; Okumura, Shigeki; Okada, Naoki; Fujita, Takuya; Muranishi, Shozo

    2004-09-10

    Effects of various viscous vehicles on the pulmonary absorption of water-soluble drugs were examined by an in situ pulmonary absorption experiment. Gelatin, polyvinylacohol (PVA), hydroxypropylcellose (HPC), chondroitin sulfate A sodium salt (CS), polyacrylic acid (PAA), methylcellulose #400 (MC400) and hyaluronic acid sodium salt (HA) were used as models of viscous vehicles. 5(6)-Carboxyfluorescein (CF) and fluorescein isothiocayanate-labeled dextran with an average molecular weight of 4000 (FD4) were used as water-soluble drugs. The plasma concentration of CF was controlled and regulated in the presence of these viscous vehicles, especially gelatin (1-5%) and polyvinyl alcohol (PVA) 1%. In the pharmacokinetic analysis, the Cmax values of CF significantly decreased, and its Tmax values increased in the presence of these viscous vehicles compared with the control. The MRT and MAT values of CF with these vehicles were significantly higher than those without these vehicles. Therefore, these findings indicated that the viscous vehicles were effective to regulate the absorption rate of CF. On the other hand, the pulmonary absorption of FD4 was not so much affected even in the presence of gelatin and PVA, although PVA slightly decreased MRT value, and significantly decreased Tmax value. Furthermore, we examined the release rate of CF from the cellulose tube containing various concentrations of gelatin. The release rate of CF from the cellulose tube with gelatin was inversely related to the viscosity of gelatin. In addition, the release rate of CF was inversely related to DeltaMAT (DeltaMAT = MATgel(MAT with gelatin)-MATsol(MAT without gelatin)) in the presence of varying concentrations of gelatin. These findings indicated that these viscous vehicles were effective to control the pulmonary absorption of CF, a water-soluble drug with low molecular weight and they might be useful to increase the local concentration of drugs in the lung.

  19. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  20. ERP and Four Dimensions of Absorptive Capacity: Lessons from a Developing Country

    NASA Astrophysics Data System (ADS)

    Gil, María José Álvarez; Aksoy, Dilan; Kulcsar, Borbala

    Enterprise resource planning systems can grant crucial strategic, operational and information-based benefits to adopting firms when implemented successfully. However, a failed implementation can often result in financial losses rather than profits. Until now, the research on the failures and successes were focused on implementations in large manufacturing and service organizations firms located in western countries, particularly in USA. Nevertheless, IT has gained intense diffusion to developing countries through declining hardware costs and increasing benefits that merits attention as much as developed countries. The aim of this study is to examine the implications of knowledge transfer in a developing country, Turkey, as a paradigm in the knowledge society with a focus on the implementation activities that foster successful installations. We suggest that absorptive capacity is an important characteristic of a firm that explains the success level of such a knowledge transfer.

  1. The Use of Absorptive Capacity in Improving the New Product Development (NPD

    NASA Astrophysics Data System (ADS)

    Gunawan, W.; Gerardus, P.; Tji, B. J.; Richard, K.

    2017-01-01

    The term Absorptive Capacity (AC) refers to maximizing the external knowledge transfer into the organization in order to improve its performance. Since its introduction in year 1990, AC has been applied widely in many fields such as: economy, business, KM, HR, intellectual capital, IT, operation management, marketing, etc. Due to its wide application, nevertheless, The AC application in both Indonesian industry and higher education institutions (HEIs) are still rare to find. The Indonesian Directorate General of Higher Education (DGHE) has encouraged creating effective collaboration model that enables to link the HEIs with the industries in order to improve knowledge creation in improving product development that can be used by the firms. For this reason, the article examines the effective AC model that enables to assist in improving new product development (NPD) process in the polytechnic perspectives.

  2. Analysis and parameterization of absorption properties of northern Norwegian coastal water

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Stamnes, Jakob J.

    2017-02-01

    Coastal water bodies are generally classified as Case 2 water, in which non-algal particles (NAP) and colored dissolved organic matter (CDOM) contribute significantly to the optical properties in addition to phytoplankton. These three constituents vary independently in Case 2 water and tend to be highly variable in space and time. We present data from measurements and analyses of the spectral absorption due to CDOM, total suspended matter (TSM), phytoplankton, and NAP in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn.

  3. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    PubMed

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The isobaric heat capacity of liquid water at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Troncoso, Jacobo

    2017-08-01

    Isobaric heat capacity for water shows a rather strong anomalous behavior, especially at low temperature. However, almost all experimental studies supporting this statement have been carried out at low pressure; very few experimental data were reported above 100 MPa. In order to explore the behavior of this magnitude for water up to 500 MPa, a new heat flux calorimeter was developed. With the aim of testing the experimental methodology and comparing with water results, isobaric heat capacity was also measured for methanol and hexane. Good agreement with indirect heat capacity estimations from the literature was obtained for the three liquids. Experimental results show large anomalies in water heat capacity. This is especially true as regards its temperature dependence, qualitatively different from that observed for other liquids. Heat capacity versus temperature curves show minima for most studied isobars, whose location decreases with the pressure up to around 100 MPa but increases at higher pressures.

  5. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  6. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  7. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  8. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  9. Implications of water constraints for electricity capacity expansion in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.

    2017-12-01

    U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water

  10. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  11. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    NASA Astrophysics Data System (ADS)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  12. Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems

    NASA Astrophysics Data System (ADS)

    de Neufville, R.; Galelli, S.; Tian, X.

    2017-12-01

    This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.

  13. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  14. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    NASA Astrophysics Data System (ADS)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  15. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs.

    PubMed

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-04-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  16. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  17. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  18. Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound.

    PubMed

    Koga, Kenjiro; Takarada, Nobuo; Takada, Kanji

    2010-02-01

    Our goal was to develop safe and stable multilayer emulsions capable of enhancing intestinal absorption of biopharmaceutics classification system (BCS) class III drugs. First, w/o emulsions were prepared using calcein as a model BCS class III compound and condensed ricinoleic acid tetraglycerin ester as a hydrophobic emulsifier. Then water-in-oil-in-water (w/o/w) emulsions were prepared with shirasu porous glass (SPG) membranes. Particle size analyses and calcein leakage from oil droplets in w/o/w emulsions led us to select stearic acid hexaglycerin esters (HS-11) and Gelucire 44/14 as hydrophilic emulsifiers. Analyses of the absorption-enhancing effects of w/o/w emulsions on intestinal calcein absorption in rats showed that calcein bioavailability after intraduodenal (i.d.) administration of HS-11 or Gelucire 44/14+polyvinyl alcohol (PVA) w/o/w emulsions prepared with 0.1-microm pore-sized SPGs was significantly higher than that of the calcein control. However, serum calcein concentration vs. time profiles after i.d. administration of w/o/w emulsions prepared with 1.1-microm and 30-microm pore-sized SPGs and an emulsion prepared with a calcein-containing outer water phase were comparable to control profiles. These results suggested that HS-11 or Gelucire 44/14+PVA are safe outer water phase additives and that 0.1-microm pore-sized SPGs are important for preparing w/o/w emulsions that enhanced intestinal calcein absorption. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  20. Tensile strength and water absorption of alumina filled poly (methyl methacrylate) denture base material.

    PubMed

    Nizam, A; Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the tensile properties and water absorption of denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3) as particulate filler. Specimens for mechanical testing were prepared by adding composite powder to the monomer followed by hand mixing as in dental laboratory procedure. The tensile strength of the prepared denture base material was slightly higher than commercial denture base material, while the water absorption was almost the same for all formulation of denture base materials.

  1. Interaction between Bisphosphonates and Mineral Water: Study of Oral Risedronate Absorption in Rats.

    PubMed

    Itoh, Akihisa; Akagi, Yuuki; Shimomura, Hitoshi; Aoyama, Takao

    2016-01-01

    Bisphosphonates are antiosteoporotic agents prescribed for patients with osteoporosis. Drug package inserts for bisphosphonate supplements indicate that their bioavailability is reduced by high levels of metal cations (Ca(2+), Mg(2+), etc.). However, standards for these cations in water used for taking risedronate have not been defined. Here, we examined the effect of calcium and magnesium in mineral waters on the bioavailability of the third-generation bisphosphonate, risedronate, following oral administration in rats. As risedronate is unchanged and eliminated renally, risedronate absorption was estimated from the amount excreted in the urine. Risedronate was dissolved in mineral water samples and administered orally at 0.35 mg/kg. Urine samples were collected for 24 h after dosing. Risedronate was extracted from urine using ion-pair solid-phase cartridges and quantified by HPLC with UV detection (262 nm). Cumulative recovery of risedronate was calculated from the amount excreted in the urine. The 24-h recovery of risedronate from evian® (0.32±0.02% [mean±standard deviation (S.D.)], n=4) and Contrex(®) (0.22±0.05%) mineral waters was significantly lower than that from tap water (0.47±0.04%, p<0.01). Absorption of risedronate in calcium chloride and magnesium chloride aqueous solutions of the same hardness (822 mg/L) was 54% (0.27±0.04%) and 12% (0.51±0.08%) lower, respectively, compared with ultrapure water; suggesting that absorption of risedronate declines as the calcium concentration of mineral waters increases. Consumption of mineral waters containing high levels of calcium (80 mg/L or above), such as evian® and Contrex(®), is therefore not recommended when taking risedronate.

  2. Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.

    PubMed

    Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D

    2014-02-24

    Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off.

  3. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    NASA Astrophysics Data System (ADS)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  4. Enhancement of intestinal water absorption and sodium transport by glycerol in rats.

    PubMed

    Wapnir, R A; Sia, M C; Fisher, S E

    1996-12-01

    Glycerol (Gly) is a hydrophilic, absorbable, and energy-rich solute that could make water absorption more efficient. We investigated the use of Gly in a high-energy beverage containing corn syrup (CS) by using a small intestine perfusion procedure in the rat, an approach shown earlier to provide good preclinical information. The effectiveness of several formulations with Gly and CS was compared with commercial products and to experimental formulas where Gly substituted for glucose (Glc). The CS-Gly combination was more effective than preparations on the market containing sucrose and Glc-fructose syrups (G-P and G-L, respectively) in maintaining a net water absorption balance in the test jejunal segment [CS-Gly = 0.21 +/- 0.226, G-L = -1.516 +/- 0.467, and G-P = -0.299 +/- 0.106 (SE) microliter.min-1.cm-1 (P = 0.0113)] and in reducing sodium release into the lumen [CS-Gly = -133.2 +/- 16.2, G-L = -226.7 +/- 25.2, and G-P = -245.6 +/- 23.4 nmol.min-1.cm-1 (P = 0.0022)]. In other preparations, at equal CS concentrations (60 and 80 g/l, respectively), Gly clearly improved net water absorption over a comparable Glc-containing product [CS60-Gly = 0.422 +/- 0.136 and CS80-Gly = 0.666 +/- 0.378 vs. CS60-Glc = -0.282 +/- 0.200 and CS80-Glc = -1.046 +/- 0.480 microliters.min-1.cm-1 (P = 0.0019)]. On the basis of the data of this rat intestine perfusion model, Gly could be a useful ingredient in energy-rich beverages and might enhance fluid absorption in humans.

  5. Capacity factor analysis for evaluating water and sanitation infrastructure choices for developing communities.

    PubMed

    Bouabid, Ali; Louis, Garrick E

    2015-09-15

    40% of the world's population lacks access to adequate supplies of water and sanitation services to sustain human health. In fact, more than 780 million people lack access to safe water supplies and about 2.5 billion people lack access to basic sanitation. Appropriate technology for water supply and sanitation (Watsan) systems is critical for sustained access to these services. Current approaches for the selection of Watsan technologies in developing communities have a high failure rate. It is estimated that 30%-60% of Watsan installed infrastructures in developing countries are not operating. Inappropriate technology is a common explanation for the high rate of failure of Watsan infrastructure, particularly in lower-income communities (Palaniappan et al., 2008). This paper presents the capacity factor analysis (CFA) model, for the assessment of a community's capacity to manage and sustain access to water supply and sanitation services. The CFA model is used for the assessment of a community's capacity to operate, and maintain a municipal sanitation service (MSS) such as, drinking water supply, wastewater and sewage treatment, and management of solid waste. The assessment of the community's capacity is based on seven capacity factors that have been identified as playing a key role in the sustainability of municipal sanitation services in developing communities (Louis, 2002). These capacity factors and their constituents are defined for each municipal sanitation service. Benchmarks and international standards for the constituents of the CFs are used to assess the capacity factors. The assessment of the community's capacity factors leads to determine the overall community capacity level (CCL) to manage a MSS. The CCL can then be used to assist the community in the selection of appropriate Watsan technologies for their MSS needs. The selection is done from Watsan technologies that require a capacity level to operate them that matches the assessed CCL of the

  6. [Influence of mineral water on absorption of oral alendronate in rats].

    PubMed

    Akagi, Yuuki; Sakaue, Tomoyuki; Yoneyama, Eiji; Aoyama, Takao

    2011-01-01

    Alendronate, an oral bisphosphonate (e.g., Fosamax(®)), is effective in the treatment of osteoporosis, and the Fosamax(®) package insert advises that the bioavailability is reduced when taken with mineral water containing high levels of metal cations (Ca(2+), Mg(2+), etc.). However, standards regarding the water used when taking alendronate are unclear. In this study, the influence of mineral water on the absorption of oral alendronate was investigated based on urinary excretion of its unchanged form in rats. Alendronate was diluted in each water sample and administered orally (0.7 mg/kg) to male Wistar rats after 24-hour fast. Urine samples were collected until 24 h after dosing. Urine samples were alkalinized, and alendronate in urine was precipitated as a calcium salt, followed by loading on an anion exchange cartridge. Eluted alendronate was derivatized with 9-fluorenylmethoxycarbonyl (Fmoc) chloride and determined by HPLC with fluorescent detection. Cumulative urinary excretion recoveries of alendronate were calculated from the amounts of urinary excretion. Alendronate was rapidly excreted in the first 6 h, and similar elimination rate constants were seen (from 0.28 to 0.45 h(-1/2)) among the water samples. Cumulative urinary excretion recoveries with tap water, evian(®) and 100% deep ocean water were 0.98±0.17%, 0.80±0.18% and 1.01±0.16% (mean±S.E., n=4). Those with Contrex(®) (0.33±0.07%) were significantly lower when compared with ultrapure water (1.56±0.35%, p<0.01). These findings suggest that the absorption of alendronate decreases based on the calcium concentration of mineral water. In conclusion, mineral water containing high levels of calcium is not recommended when alendronate is taken.

  7. Determination of absorption coefficient of Chlorella vulgaris and Arthrospira maxima in water

    NASA Astrophysics Data System (ADS)

    Tekiner, Murat; Kurt, Mustafa; Ak, Ilknur; Kurt, Arzu

    2018-02-01

    Safe drinking water is crucial for human healthy, nowadays all drinking and irrigation water in developed country commonly come from dams. The water is transported to our usage area by several type of pipe or water-trench. The water can be infected some bacteria such as Chlorella vulgaris, Arthrospira maxima, during this transportation. In this study, we determine which wavelength effect to these green algae and cyanobacteria. For different concentration of these microorganisms in water, we determined uv-vis spectrum. By analyzing these spectrums, we determined absorption coefficient of these microorganisms for selected wavelength. The results show which wavelength can be used for destroy these microorganisms in affected water.

  8. [Actinobacteria and their odor-producing capacities in a surface water in Shanghai].

    PubMed

    Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi

    2014-10-01

    The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment.

  9. Modeling water resources as a constraint in electricity capacity expansion models

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs

  10. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  11. Estimation of the CO{sub 2} absorption capacities in aqueous 2-(2-aminoethylamino)ethanol and its blends with MDEA and TEA in the presence of SO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonenfant, D.; Minleault, M.; Hausler, R.

    2007-12-15

    A study of carbon dioxide (CO{sub 2}) and sulfur dioxide (SO{sub 2})/CO{sub 2} mixtures absorption has been carried out in aqueous 2-(2-aminoethylamino)ethanol (AEE) solution and its blends with N-methyldiethanolamine (MDEA) and triethanolamine (TEA) to estimate the influence of SO{sub 2}, MDEA, and TEA on the CO{sub 2} absorption capacity of the AEE. The CO{sub 2} absorption loading has been estimated in 15 wt % AEE alone and in the presence of either 5 and 10 wt % MDEA or 5 and 10 wt % TEA solutions with 100 vol % CO{sub 2} and 5.03 and 15.02 vol % SO{sub 2}/CO{submore » 2} mixtures at a starting temperature of 296 K and flow rates of 3.067, 3.229, and 3.605 L/min, respectively. The results revealed that the presence of SO{sub 2} in the gas decreases the CO{sub 2} absorption rate and loading in the AEE solution as a function of the concentration of SO{sub 2}. The additions of 5 and 10 wt % of MDEA and TEA do not seem to influence the CO{sub 2} absorption rate in the AEE solution. Moreover, the addition of MDEA increases slightly the CO{sub 2} absorption capacity of AEE, while TEA decreases the absorption capacity of AEE in the absence and presence Of SO{sub 2}. These effects were enhanced with increases of MDEA and TEA. Altogether, the results indicated that the blend of 15 wt % AEE + 10 wt % MDEA represents an interesting solvent which could be used as absorbent for the removal of CO{sub 2} from emission into the atmosphere by industries.« less

  12. Absorptive capacity of Libya: a constrained expenditure approach. [Policy of max-minimize oil exports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Jehaimi, T.

    This paper is concerned with estimating the absorptive capacity of Libya as it relates to the country's development objectives. Specifically, the paper will attempt, on the bases of analytical assumptions and a model of econometric relationships, to estimate the levels of oil exports which will be required in order to finance the economic development of Libya over the next ten years. By emphasizing the requirements of domestic development, the question of surplus will not arise and, unlike in some other works, the absorption problem will not be met. This approach, explained in detail, should give more realistic results since itmore » has been the policy of Libya to max-minimize oil exports since 1970, i.e., to export high enough to pay for imports and other foreign obligations such as foreign aid but low enough to not generate excess revenues. Excess revenues are revenues in excess of what is required to maintain the reserves/imports ratio at an optimum level. The conservation policy adopted by Libya has resulted in lowering production levels from a peak of 3.2 million barrels per day (mb/d) in 1970 to a little over 1 mb/d in 1975. This policy is expected to continue. (From Introduction)« less

  13. Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardono, B.; Nelson, R.M.

    The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less

  14. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration.

  15. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

    PubMed

    Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J

    2013-10-15

    This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    PubMed

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.

  17. Effect of water volume based on water absorption and mixing time on physical properties of tapioca starch – wheat composite bread

    NASA Astrophysics Data System (ADS)

    Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.

    2018-05-01

    Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.

  18. Construction of an evaluation index system of water resources bearing capacity: An empirical study in Xi’an, China

    NASA Astrophysics Data System (ADS)

    Qu, X. E.; Zhang, L. L.

    2017-08-01

    In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.

  19. 49 CFR 179.201-10 - Water capacity marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Water capacity marking. 179.201-10 Section 179.201-10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks ...

  20. Quantification of the dynamic changes in the absorption coefficient of liquid water at erbium:YAG and carbon dioxide laser wavelengths

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.

    The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second

  1. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  2. Direct Measurements of Water Canopy Storage Capacity of Broadleaf Shrubs under Different Temperature and Wetting Regimes

    NASA Astrophysics Data System (ADS)

    Yerk, W.

    2016-12-01

    It is generally agreed that canopy water storage capacity is one of the defining factors of rainfall interception. Multiple studies of storage capacity by shrubs have been published. However, only a fraction of species have been studied. In the presented study the storage capacity of five species (Aronia melanocarpa, Cornus sericea, Hydrangea quercifolia, Itea virginica, and Prunus laurocerasus) was directly measured in an indoor experiment. Effect of the water temperature on the amount of water stored by the canopy was also investigated. Five branches of each species (length 0.25-0.60 m, LAI 1.3-3.6) were selected. Methods of full submergence in water and a simulated rain of intensity of 187.5±9.9 mm/hr were applied. Water of two different temperatures of 30°C and 1.5°C was used for the submergence method. Weight of the branches fixated in a natural position was measured with a digital balance. Storage capacity was expressed as a depth of water retained by the entire branch divided by the one-sided area of all leaves. The storage capacity obtained by submergence was 0.45±0.5 mm for A. melanocarpa, 0.33±0.03 mm for C. sericea, 0.40±0.02 mm for H. quercifolia, 0.48±0.05 mm for I. virginica, and 0.67±0.09 mm for P. laurocerasus. Difference in the storage capacities obtained by both methods was inconsistent. Water temperature exerted a more pronounced effect on the capacity. The canopies stored 0.01 to 0.05 mm more water (p-value < 0.005 for all species except A. melanocarpa). Our findings correspond with the range of storage capacity reported for shrub species. The directly measured storage capacity exceeds the widely used in hydrological modeling value of 0.2 mm. We were able to detect an increase of capacity to store cold water; however, the increase was below the practical level.

  3. Correlation between octanol/water and liposome/water distribution coefficients and drug absorption of a set of pharmacologically active compounds.

    PubMed

    Esteves, Freddy; Moutinho, Carla; Matos, Carla

    2013-06-01

    Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.

  4. Does selection for gamete dispersal and capture lead to a sex difference in clump water-holding capacity?

    PubMed

    Moore, Jonathan D; Kollar, Leslie M; McLetchie, D Nicholas

    2016-08-01

    Differences in male and female reproductive function can lead to selection for sex-specific gamete dispersal and capture traits. These traits have been explored from shoot to whole plant levels in wind-pollinated species. While shoot traits have been explored in water-fertilized species, little is known about how whole plant morphology affects gamete dispersal and capture. We used the dioecious, water-fertilized plant Bryum argenteum to test for differences in clump morphology and water-holding characteristics consistent with divergent selection. We hypothesized that sex-specific clump morphology, arising at maturity, produces relatively low male water-holding capacity for gamete dispersal and high female capacity for gamete capture. We measured isolated young shoot and clump water-holding capacity and clump morphological characteristics on greenhouse-grown plants. Young shoot capacity was used to predict clump capacity, which was compared with actual clump capacity. Young male shoots held more water per unit length, and male clumps had higher shoot density, which extrapolated to higher clump water-holding capacity. However, female clumps held more water and were taller with more robust shoots. Actual clump capacity correlated positively with clump height and shoot cross-sectional area. The sex difference in actual clump capacity and its unpredictability from younger shoots are consistent with our hypothesis that males should hold less water than females to facilitate sexual reproduction. These results provide conceptual connections to other plant groups and implications for connecting divergent selection to female-biased sex ratios in B. argenteum and other bryophytes. © 2016 Botanical Society of America.

  5. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  6. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management.

    PubMed

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-12-07

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of COD(Cr) NH(3)-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH(3)-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making.

  7. Simulation of Water Environmental Capacity and Pollution Load Reduction Using QUAL2K for Water Environmental Management

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei

    2012-01-01

    In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making. PMID:23222206

  8. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Treesearch

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  9. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.

    PubMed

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2009-11-15

    Historic applications of arsenical pesticides to agricultural land have resulted in accumulation of residual arsenic (As) in such soils. In situ immobilization represents a cost-effective and least ecological disrupting treatment technology for soil As. Earlier work in our laboratory showed that drinking-water treatment residuals (WTRs), a low-cost, waste by-product of the drinking-water treatment process exhibit a high affinity for As. Wet chemical experiments (sorption kinetics and desorption) were coupled with X-ray absorption spectroscopy measurements to elucidate the bonding strength and type of As(V) and As(III) sorption by an aluminum-based WTR. A fast (1h), followed by a slower sorption stage resulted in As(V) and As(III) sorption capacities of 96% and 77%, respectively. Arsenic desorption with a 5mM oxalate from the WTR was minimal, being always <4%. X-ray absorption spectroscopy data showed inner-sphere complexation between As and surface hydroxyls. Reaction time (up to 48h) had no effect on the initial As oxidation state for sorbed As(V) and As(III). A combination of inner-sphere bonding types occurred between As and Al on the WTR surface because mixed surface geometries and interatomic distances were observed.

  10. The effect of canola meal tannins on the intestinal absorption capacity of broilers using a D-xylose test.

    PubMed

    Mansoori, B; Rogiewicz, A; Slominski, B A

    2015-12-01

    In three D-xylose absorption experiments, the effect of 1% HCl/methanol, 70% methanol or 70% acetone extracts of canola meal (CM) or 70% acetone extract of soybean meal (SBM) containing polyphenols, phenolic acids, tannins and phytic acid on intestinal absorption capacity of broilers was determined. In Exp. 1, the experimental groups received orally D-xylose solution alone or with methanol/HCl, methanol or acetone extracts of CM. In Exp. 2, the experimental groups received D-xylose alone or with acetone extracts of CM or SBM. In Exp. 3, the experimental groups received D-xylose plus sucrose solution or D-xylose plus acetone extracts of CM or SBM. In Exps. 2 and 3, the CM extracts contained 2.7 and 2.6, 2.4 and 2.3, 3.2 and 3.2, and 2.4 and 2.2 times higher polyphenols, phenolic acids, tannins and condensed tannins than the corresponding SBM extracts respectively. Blood samples were collected in 40-min intervals, and plasma D-xylose was measured. Compared to the Control, plasma D-xylose in Exp. 1 was lower (p < 0.001) by 81, 69 and 73% at 40-min, by 41, 44 and 37% at 80-min and by 22, 31, and 23% at 120-min post-ingestion of the HCl/methanol, methanol and acetone extracts respectively. In both Exps. 2 and 3, plasma D-xylose level was lower (p < 0.001) in groups dosed with CM extract or SBM extract at each time of blood collection, when compared to the respective Control group. However, in Exp. 3, birds dosed with SBM extract had higher plasma D-xylose than CM extract-dosed birds by 28, 8 and 21% at 40, 80 and 120 min respectively (p < 0.01). In conclusion, although CM extract caused a lower absorption of D-xylose, based on 5 to 10% of CM inclusion levels in practical broiler rations, the soluble bioactive components of CM will likely have minor impact on the absorption capacity of the chicken intestine. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Preparation and oil absorption properties of magnetic melamine sponge

    NASA Astrophysics Data System (ADS)

    Lei, LUO; Jia-qi, HU; Na, LV

    2017-12-01

    The magnetic melamine sponge (MS-Fe3O4) with magnetic response and high hydrophobicity was fabricated by two-step method. First, the magnetic nano-particles were fixed on the skeleton of melamine sponge (MS) using 3-hydroxytyramine hydrochloride and 1-dodecanethiol, then hydrophobicity modified with octadecyltrichlorosilane (OTS). The structures and chemical compositions of MS and MS-Fe3O4 were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wettability of the sample was obtained by using contact angle analysis system. MS-Fe3O4 endowed with outstanding selectivity and excellent oil absorption capacities, which can be widely used in absorbing various sorts of oil. The oil absorption capacities for crude oil, diesel oil, lubricating oil, soybean oil and peanut oil were 71g/g, 51g/g, 62g/g, 54g/g, 57g/g. In addition, MS-Fe3O4 showed excellent recyclability which can be forecasted as an ideal candidate for oil-water separation.

  12. High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids.

    PubMed

    Bhattacharyya, Shubhankar; Filippov, Andrei; Shah, Faiz Ullah

    2017-11-29

    The effect of CO 2 absorption on the aromaticity and hydrogen bonding in ionic liquids is investigated. Five different ionic liquids with choline based cations and aprotic N-heterocyclic anions were synthesized. Purity and structures of the synthesized ionic liquids were characterized by 1 H and 13 C NMR spectroscopy. CO 2 capture performance was studied at 20 °C and 40 °C under three different pressures (1, 3, 6 bar). The IL [N 1,1,6,2OH ][4-Triz] showed the highest CO 2 capture capacity (28.6 wt%, 1.57 mol of CO 2 per mol of the IL, 6.48 mol of CO 2 per kg of the ionic liquid) at 20 °C and 1 bar. The high CO 2 capture capacity of the [N 1,1,6,2OH ][4-Triz] IL is due to the formation of carbonic acid (-OCO 2 H) together with carbamate by participation of the -OH group of the [N 1,1,6,2OH ] + cation in the CO 2 capture process. The structure of the adduct formed by CO 2 reaction with the IL [N 1,1,6,2OH ][4-Triz] was probed by using IR, 13 C NMR and 1 H- 13 C HMBC NMR experiments utilizing 13 C labeled CO 2 gas. 1 H and 13 C PFG NMR studies were performed before and after CO 2 absorption to explore the effect of cation-anion structures on the microscopic ion dynamics in ILs. The ionic mobility was significantly increased after CO 2 reaction due to lowering of aromaticity in the case of ILs with aromatic N-heterocyclic anions.

  13. In-situ field capacity and soil water retention measurements in two contrasting soil textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  14. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  15. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide.

    PubMed

    Singh, Neetesh; Casas-Bedoya, Alvaro; Hudson, Darren D; Read, Andrew; Mägi, Eric; Eggleton, Benjamin J

    2016-12-15

    We demonstrate a compact silicon-on-sapphire (SOS) strip waveguide sensor for mid-IR absorption spectroscopy. This device can be used for gas and liquid sensing, especially to detect chemically similar molecules and precisely characterize extremely absorptive liquids that are difficult to detect by conventional infrared transmission techniques. We reliably measure concentrations up to 0.25% of heavy water (D2O) in a D2O-H2O mixture at its maximum absorption band at around 4 μm. This complementary metal-oxide-semiconductor (CMOS) compatible SOS D2O sensor is promising for applications such as measuring body fat content or detection of coolant leakage in nuclear reactors.

  16. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Gao, Qian; Zhu, Mingyue; Li, Xiumei

    2018-06-01

    Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  17. Psychological absorption. Affect investment in marijuana intoxication.

    PubMed

    Fabian, W D; Fishkin, S M

    1991-01-01

    Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.

  18. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest

    PubMed Central

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity. PMID:24883372

  19. Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest.

    PubMed

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.

  20. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  1. The effect of water absorption on the dielectric properties of polyethylene hexagonal boron nitride nanocomposites

    NASA Astrophysics Data System (ADS)

    Ayoob, Raed; Alhabill, Fuad N.; Andritsch, Thomas; Vaughan, Alun S.

    2018-02-01

    The effect of water absorption on the dielectric response of polyethylene/hexagonal boron nitride nanocomposites has been studied by dielectric spectroscopy. The nanocomposites have been prepared with hBN concentrations ranging from 2 wt% to 30 wt%. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed a very small amount of hydroxyl groups on the surface of hBN. Mass loss measurements showed that the nanocomposites did not absorb any water under ambient and dry conditions while there was some water absorption under wet conditions. The dielectric spectroscopy results showed a broad relaxation peak, indicative of different states of water with water shells of different thickness, which moved to higher frequencies with increasing water content. However, the dielectric losses were significantly lower than the losses reported in the literature of nanocomposites under wet conditions. In addition, all the absorbed water was successfully removed under vacuum conditions which demonstrated that the interactions between the water and the nanocomposites were very weak, due to the hydrophobic nature of the hBN surface. This is a highly useful property, when considering these materials for applications in electrical insulation.

  2. Causal Relationships among Technology Acquisition, Absorptive Capacity, and Innovation Performance: Evidence from the Pharmaceutical Industry.

    PubMed

    Jeon, Jieun; Hong, Suckchul; Ohm, Jay; Yang, Taeyong

    2015-01-01

    This paper discusses the importance of absorptive capacity in improving a firm's innovation performance. Specifically, we examine firm interaction with the knowledge and capabilities of outside organizations and the effect on the firm's bottom line. We use the impulse-response function of the vector auto-regressive model to gain insight into this relationship by estimating the time required for the effect of each activity level to reach outputs, the spillover effects. We apply this methodology to pharmaceutical firms, which we classify into two sub-groups--large firms and medium and small firms--based on sales. Our results show that the impact of an activity on any other activity is delayed by three years for large firms and by one to two years for small and medium firms.

  3. Light absorption coefficients by phytoplankton pigments, suspended particles and colored dissolved organic matter in the Crimea coastal water (the Black sea) in June 2016

    NASA Astrophysics Data System (ADS)

    Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.

    2017-11-01

    Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.

  4. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    NASA Astrophysics Data System (ADS)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  5. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.

    PubMed

    Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming

    2018-04-06

    To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.

  6. Preparation and Properties of C/C Hollow Spheres and the Energy Absorption Capacity of the Corresponding Aluminum Syntactic Foams.

    PubMed

    Yu, Qiyong; Zhao, Yan; Dong, Anqi; Li, Ye

    2018-06-12

    The present study focuses on the preparation and characterization of lab-scale aluminum syntactic foams (ASFs) filled with hollow carbon spheres (HCSs). A new and original process for the fabrication of HCSs was explored. Firstly, expanded polystyrene beads with an average diameter of 6 mm and coated with carbon fibers/thermoset phenolic resin were produced by the “rolling ball” method. In the next step, the spheres were cured and post-cured, and then carbonized at 1050 °C under vacuum to form the HCSs. The porosity in the shell of the HCSs was decreased by increasing the number of impregnation⁻carbonization cycles. The aluminum syntactic foams were fabricated by casting the molten aluminum into a crucible filled with HCSs. The morphology of the hollow spheres before and after carbonization was investigated by scanning electron microscope (SEM). The compressive properties of the ASF were tested and the energy absorption capacities were calculated according to stress⁻strain curves. The results showed that the ASF filled with HCSs which had been treated by more cycles of impregnation⁻carbonization had higher energy absorption capacity. The aluminum syntactic foam absorbed 34.9 MJ/m³ (28.8 KJ/Kg) at 60% strain, which was much higher than traditional closed cell aluminum foams without particles. The HCSs have a promising future in producing a novel family of metal matrix syntactic foams.

  7. Drought planning and water allocation: an assessment of local capacity in Minnesota.

    PubMed

    Pirie, Rebecca L; de Loë, Rob C; Kreutzwiser, Reid

    2004-10-01

    Water allocation systems are challenged by hydrologic droughts, which reduce available water supplies and can adversely affect human and environmental systems. To address this problem, drought management mechanisms have been instituted in jurisdictions around the world. Historically, these mechanisms have involved a crisis management or reactive approach. An important trend during the past decade in places such as the United States has been a shift to a more proactive approach, emphasizing drought preparedness and local involvement. Unfortunately, local capacity for drought planning is highly variable, with some local governments and organizations proving to be more capable than others of taking on new responsibilities. This paper reports on a study of drought planning and water allocation in the State of Minnesota. Factors facilitating and constraining local capacity for drought planning were identified using in-depth key informant interviews with state officials and members of two small Minnesota cities, combined with an analysis of pertinent documentation. A key factor contributing to the effectiveness of Minnesota's system is a water allocation system with explicit priorities during shortages, and provisions for restrictions. At the same time, the requirement that water suppliers create Public Water Supply Emergency Conservation Plans (PWSECP) clarifies the roles and responsibilities of key local actors. Unfortunately, the research revealed that mandated PWSECP are not always implemented, and that awareness of drought and drought planning measures in general may be poor at the local level. From the perspective of the two cities evaluated, factors that contributed to local capacity included sound financial and human resources, and (in some cases) effective vertical and horizontal linkages. This analysis of experiences in Minnesota highlights problems that can occur when senior governments establish policy frameworks that increase responsibilities at the local

  8. Real-time monitoring of corks' water absorption using laser speckle temporal correlation

    NASA Astrophysics Data System (ADS)

    Nassif, Rana; Abou Nader, Christelle; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie

    2015-08-01

    Physical and mechanical properties of cork allow it solving many types of problems and make it suitable for a wide range of applications. Our objective consists into studying cork's water absorption by analyzing the dynamic speckle field using the temporal correlation method. Experimental results show that the medium was inert at first with the absence of activity, and as the cap cork was more and more immersed into water, the presence of the activity becomes more significant. This temporal parameter revealed the sensibility of biospeckle method to monitor the amount of absorbed water by cork caps.

  9. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  10. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    PubMed

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  11. Easy preparation of dietary fiber with the high water-holding capacity from food sources.

    PubMed

    Yamazaki, Eiji; Murakami, Kazumi; Kurita, Osamu

    2005-03-01

    Dietary fibers were prepared as alkali- and acid-insoluble fractions with chemical phosphorylation from Tossa jute (Corchorus olitorius), defatted soybean (Glycine max), and Shiitake (Lentinula edodes). The dietary fiber fractions treated with alkaline solution containing sodium metaphosphate had the lower protein content and higher total dietary fiber content than those of the preparations without phosphorylation. Alkaline extraction followed by phosphorylation led to a 1.5-fold increase in the water holding capacity of dietary fiber compared with no phosphorylation, whereas the binding capacity to bile acids of dietary fiber was almost the same. The alkali- and acid-insoluble extraction with phosphorylation provided an efficient preparation of water-insoluble dietary fiber with high-water holding capacity from various food sources.

  12. TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption

    USDA-ARS?s Scientific Manuscript database

    Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch;-polycaprolactone (TPS/PCL) blend via extrusion processing and examined for their property, biodegradability and water-absorption. Scanning electron microscopy revealed wel...

  13. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    NASA Astrophysics Data System (ADS)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  14. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  15. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  16. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    NASA Astrophysics Data System (ADS)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  17. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity.

    PubMed

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira

    2018-02-01

    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Causal Relationships among Technology Acquisition, Absorptive Capacity, and Innovation Performance: Evidence from the Pharmaceutical Industry

    PubMed Central

    Jeon, Jieun; Hong, Suckchul; Ohm, Jay; Yang, Taeyong

    2015-01-01

    This paper discusses the importance of absorptive capacity in improving a firm’s innovation performance. Specifically, we examine firm interaction with the knowledge and capabilities of outside organizations and the effect on the firm’s bottom line. We use the impulse-response function of the vector auto-regressive model to gain insight into this relationship by estimating the time required for the effect of each activity level to reach outputs, the spillover effects. We apply this methodology to pharmaceutical firms, which we classify into two sub-groups – large firms and medium and small firms – based on sales. Our results show that the impact of an activity on any other activity is delayed by three years for large firms and by one to two years for small and medium firms. PMID:26181440

  19. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    PubMed Central

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  20. Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow.

    PubMed

    Hashemi Monfared, Seyed Arman; Dehghani Darmian, Mohsen; Snyder, Shane A; Azizyan, Gholamreza; Pirzadeh, Bahareh; Azhdary Moghaddam, Mehdi

    2017-11-01

    Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.

  1. The impacts of different expansion modes on performance of small solar energy firms: perspectives of absorptive capacity.

    PubMed

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-Long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance.

  2. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  3. Commercial Absorption Heat Pump Water Heater: Beta Prototype Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick; Ally, Moonis; Sharma, Vishaldeep

    2016-10-14

    The Beta version of the Commercial Absorption Heat Pump (CAHP) water heater was evaluated in the environmental chambers at Oak Ridge National Laboratory. Ambient air conditions ranged from 17 to 75 oF and inlet water temperatures ranged from 100 to 120oF in order to capture trends in performance. The unit was operated under full fire (100%) and partial fire (55%). The unit was found to perform at 90% of the project goal at the design conditions of 47oF ambient and 100oF water temperatures. The trends across the full range of environmental conditions were as expected for ambient air temperatures abovemore » 32oF. Below this temperature and for the full fire condition, frost accumulated on the evaporator coil. In future work a defrost strategy will be enabled, the unit will be thoroughly cleaned of an oil contamination and the rectifier will be reconfigured in order to meet the design goals and have a field test unit ready in early 2017.« less

  4. Moisture absorption of starch based biocomposites reinforced with water hyacinth fibers

    NASA Astrophysics Data System (ADS)

    Abral, H.; Hartono, J.

    2017-06-01

    Bioplastic based on tapioca starch (TSB) is very sensitive on moisture; meanwhile this substance may be used to replace synthetic plastic. This paper reports effect of Water Hyacinth Fibers (WHF) content on performance moisture absorption of starch based biocomposites. WHF content in the TSB matrix was varied in 1, 3, 5, and 10% respectively. The samples were placed in closed room with high relative humidity (RH) of 99% at 250C with different duration for 30 and 960 min respectively. The result showed that moisture absorption in the beginning was increased rapidly, and then achieved a level steady state. After that, significant swelling of the sample occurred for further duration in 960 min. Gradient of the swelling was decreased as increasing the fibers content in the TSB matrix.

  5. [Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China].

    PubMed

    Wei, Qiang; Ling, Lei; Zhang, Guang-zhong; Yan, Pei-bin; Tao, Ji-xin; Chai, Chun-shan; Xue, Rui

    2011-10-01

    By the methods of field survey and laboratory soaking extraction, an investigation was conducted on the accumulation amount, water-holding capacity, water-holding rate, and water-absorption rate of the litters under six main forests (Picea wilsonii forest, P. wilsonii - Betula platyphlla forest, Populus davidiana - B. platyphlla forest, Cotonester multiglorus - Rosa xanthina shrubs, Pinus tabulaeformis forest, and Larix principis-rupprechtii forest) in Xinglong Mountain of Gansu. The accumulation amount of the litters under the forests was 13.40-46.32 t hm(-2), and in the order of P. tabulaeformis forest > P. wilsonii - B. platyphlla forest > L. principis-rupprechtii forest > P. wilsonii forest > C. multiglorus-R. xanthina shrubs > P. davidiana - B. platyphlla forest. The litter storage of coniferous forests was greater than that of broadleaved forests, and the storage percentage of semi-decomposed litters was all higher than that of un-decomposed litters. The maximum water-holding rate of the litters was 185.5%-303.6%, being the highest for L. principis-rupprechtii forest and the lowest for P. tabulaeformis forest. The litters' water-holding capacity changed logarithmically with their soaking time. For coniferous forests, un-decomposed litters had a lower water-holding rate than semi-decomposed litters; whereas for broadleaved forests, it was in adverse. The maximum water-holding capacity of the litters varied from 3.94 mm to 8.59 mm, and was in the order of P. tabulaeformis forest > L. principis-rupprechtii forest > P. wilsonii - B. platyphlla forest > P. wilsonii forest > C. multiglorus - R. xanthina shrubs > P. davidiana - B. platyphlla forest. The litters' water-holding capacity also changed logarithmically with immersing time, and the half-decomposed litters had a larger water-holding capacity than un-decomposed litters. The water-absorption rate of the litters presented a power function with immersing time. Within the first one hour of immersed in water, the

  6. Absorption performance for CO2 capture process using MDEA-AMP aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Kou, Liqing; Li, Chao

    2017-03-01

    The absorption capacity and the absorption rate of CO2 in 2-amino-2-methyl-1-propanol (AMP)-N-methyldiethanolamine (MDEA) aqueous solution were measured. The temperatures ranged from 303.2K to 323.2K. The mass fractions of AMP and MDEA respectively ranged from 0 to 0.03 and 0.2 to 0.3. The influence of temperature and w AMP on the absorption capacity and absorption rate of CO2 was illustrated.

  7. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    PubMed

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  8. Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric

    2013-09-01

    Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The effect of a nanofilled resin-based coating on water absorption by teeth restored with glass ionomer.

    PubMed

    Hankins, Amanda D; Hatch, Robert H; Benson, Jarred H; Blen, Bernard J; Tantbirojn, Daranee; Versluis, Antheunis

    2014-04-01

    A nanofilled, resin-based light-cured coating (G-Coat Plus, GC America, Alsip, Ill.) may reduce water absorption by glass ionomers. The authors investigated this possibility by measuring cuspal flexure caused by swelling of glass ionomer-restored teeth. The authors cut large mesio-occlusodistal slots (4-millimeter wide, 4-mm deep) in 12 extracted premolars and restored them with a glass ionomer cement (Fuji IX GP Extra, GC America). Six teeth were coated, and the other six were uncoated controls. The authors digitized the teeth in three dimensions by using an optical scanner after preparation and restoration and during an eight-week storage in water. They calculated cuspal flexure and analyzed the results by using an analysis of variance and Student-Newman-Keuls post hoc tests (significance level .05). They used dye penetration along the interface to verify bonding. Inward cuspal flexure indicated restoration shrinkage. Coated restorations had significantly higher flexure (mean [standard deviation], -11.9 [3.5] micrometers) than did restorations without coating (-7.3 [1.5] μm). Flexure in both groups decreased significantly (P < .05) during water storage and, after eight weeks, it changed to expansion for uncoated control restorations. Dye penetration along the interfaces was not significant, which ruled out debonding as the cause of cuspal relaxation. Teeth restored with glass ionomer cement exhibited shrinkage, as seen by inward cuspal flexure. The effect of the protective coating on water absorption was evident in the slower shrinkage compensation. The study results show that teeth restored with glass ionomers exhibited setting shrinkage that deformed tooth cusps. Water absorption compensated for the shrinkage. Although the coating may be beneficial for reducing water absorption, it also slows the shrinkage compensation rate (that is, the rate that hygroscopic expansion compensates for cuspal flexure from shrinkage).

  10. Absorption of a linear (L2) and a cyclic (D4) siloxane using different oils: application to biogas treatment.

    PubMed

    Rojas Devia, Carolina; Subrenat, Albert

    2013-01-01

    Hydrophobic volatile methyl siloxanes (VMS), such as hexamethyldisiloxane (L2) and octamethylcyclotetrasiloxane (D4), present a low solubility in water. An alternative treatment by absorption into hydrophobic absorbents was therefore studied. For this purpose, three different absorbents, motor oil, cutting oil and a water-cutting oil mixture, were selected with the aim of re-using a waste product. The set of experiments was carried out in a bubble column, where parameters such as inlet concentration, residence time and temperature were studied. The best performance for the removal of both siloxanes, in terms of absorption capacity, was observed for motor oil, particularly for D4. In fact, motor oil removal efficiency for D 4 was 80%, whereas for L2 it was 60%, indicating that D 4 is more easily absorbed than L2. In the case of water-cutting oil, this showed a mass transfer enhancement from the gas phase to the liquid phase compared with water alone. Furthermore, a removal efficiency of 70% was observed for D 4, showing that the addition of an oil fraction to a water system improves the absorption of VMS. These results show that VMS absorption into oils could be a promising way to achieve their abatement.

  11. Toothbrush abrasion of paint-on resins for shade modification and crown resins: effect of water absorption.

    PubMed

    Fujii, Koichi; Arikawa, Hiroyuki; Kanie, Takahito; Ban, Seiji

    2004-06-01

    In order to investigate the clinical application of paint-on resins, the effect of water absorption on toothbrush abrasion and light transmittance of ten crown resins including three paint-on resins was examined. Water absorption into each material ranged from 0.29 to 0.89 mg/cm2 after storage in distilled-water for 6 weeks and their hardnesses decreased by 3.5-22.3%. Maximum surface roughness (Rmax) of the materials stored in distilled water for 6 weeks increased with an increasing number of toothbrush abrasion cycles and ranged from 1.9 to 10.5 microm after 100,000 cycles. Also, Maximum depth and weight loss as an indicator of the amount of each material lost by abrasion showed similar behaviors similar to Rmax. These results indicated that the abrasion resistance of paint-on resins was located in the middle among all materials examined.

  12. WVR-GPS comparison measurements and calibration of the 20-32 GHz tropospheric water vapor absorption model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keihm, S. J.; Bar-Server, Y.; Liljegren, J. C.

    2002-06-01

    Collocated measurements of opacity (from water vapor radiometer brightness temperatures) and wet path delay (from ground-based tracking of global positioning satellites) are used to constrain the model of atmospheric water vapor absorption in the 20-32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately five months of data was obtained from two experiment sites. At the Cloud and Radiation Testbed (CART)more » site near Lamont, Oklahoma, three independent water vapor radiometers (WVRs) provided near-continuous opacity measurements over the interval July-September 1998. At the NASA/Goldstone tracking station in the California desert two WVRs; obtained opacity data over the September-October 1997 interval. At both sites a Global Positioning Satellite (GPS) receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of four candidate absorption models referenced in the literature. With one exception, all three models provide agreement within 5% of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2-3% level. This absorption model accuracy level represents a significant improvement over that attainable using radiosondes.« less

  13. Leaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity

    PubMed Central

    Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin

    2014-01-01

    Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns. PMID:24416265

  14. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  15. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes

    NASA Astrophysics Data System (ADS)

    Klamerus-Iwan, Anna; Błońska, Ewa

    2018-04-01

    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  16. Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method Using a Microplate Reader.

    PubMed

    Takahashi, Shingo; Iwasaki-Kino, Yuko; Aizawa, Koichi; Terao, Junji; Mukai, Kazuo

    2016-01-01

    Recently, a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of natural antioxidants and food extracts was developed. The SOAC values were measured in ethanol-chloroform-D2O (50 + 50 + 1, v/v/v) solution at 35°C using a UV-Vis spectrophotometer equipped with a six-channel cell positioner and an electron-temperature control unit. In the present study, measurement of the SOAC values was performed for eight representative carotenoids and three vegetable extracts (tomato, carrot, and red paprika) using a versatile instrument, the microplate reader. A 24-well glass microplate was used for measurements because a plastic microplate, commonly used in the laboratory, dissolves in the ethanol-chloroform-D2O solution. The SOAC values of eight carotenoids and three vegetable extracts measured using a microplate reader were in good agreement with the corresponding values measured using a UV-Vis spectrophotometer, suggesting that the microplate reader is an applicable instrument for the measurement of reliable SOAC values for general antioxidants and food extracts in solution.

  17. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  18. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    NASA Astrophysics Data System (ADS)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  19. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong

    2017-11-01

    Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.

  20. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  1. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  2. Measurements of near-IR water vapor absorption at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Liu, X.; Li, H.; Jeffries, J. B.; Hanson, R. K.

    2007-03-01

    Tunable diode lasers (TDLs) are used to measure high resolution (0.1 cm-1), near-infrared (NIR) water vapor absorption spectra at 700 K and pressures up to 30 atm within a high-pressure and -temperature optical cell in a high-uniformity tube furnace. Both direct absorption and wavelength modulation with second harmonic detection (WMS-2f) spectra are obtained for 6 cm-1 regions near 7204 cm-1 and 7435 cm-1. Direct absorption measurements at 700 K and 10 atm are compared with simulations using spectral parameters from HITRAN and a hybrid database combining HITRAN with measured spectral constants for transitions in the two target spectral regions. The hybrid database reduces RMS error between the simulation and the measurements by 45% for the 7204 cm-1 region and 28% for the 7435 cm-1 region. At pressures above 10 atm, the breakdown of the impact approximation inherent to the Lorentzian line shape model becomes apparent in the direct absorption spectra, and measured results are in agreement with model results and trends at elevated temperatures reported in the literature. The wavelength-modulation spectra are shown to be less affected by the breakdown of the impact approximation and measurements agree well with the hybrid database predictions to higher pressures (30 atm).

  3. NASA's Contribution to Water Research, Applications and Capacity Building in the America's

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Searby, N. D.; Doorn, B.; Lawford, R. G.; Entin, J. K.; Mohr, K. I.; Lee, C.; NASA International Water Team

    2013-05-01

    NASA's water research, applications and capacity building activities use satellites and models to contribute to regional water information and solutions for the Americas. Free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). In addition, NASA's work in hydrologic predictions are valuable for: 1) short-term and hourly data that is critical for flood and landslide warnings; 2) mid-term predictions of days to weeks useful for reservoir planning and water allocation, and 3) long term seasonal to decadal forecasts helpful for agricultural and irrigation planning, land use planning, and water infrastructure development and planning. To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Through these data, policy and partnering activities, NASA addresses numerous water issues including water scarcity, the extreme events of drought and floods, and water quality so critical to the Americas. This presentation will outline and describe NASA's water related research, applications and capacity building programs' efforts to address the Americas' critical water challenges. This will specifically include water activities in NASA's programs in Terrestrial Hydrology (e.g., land-atmosphere feedbacks and improved stream flow estimation), Water Resources

  4. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  5. Cd-Resistant Strains of B. cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water

    PubMed Central

    Wu, Huiqing; Wu, Qingping; Wu, Guojie; Gu, Qihui; Wei, Linting

    2016-01-01

    The goal of this study was to identify Cd-resistant bacterial strains with endurance capacity and to evaluate their ability to remove cadmium ions from cadmium-polluted water. The Bacillus cereusS5 strain identified in this study had the closest genetic relationship with B. cereus sp. Cp1 and performed well in the removal of Cd2+ions from solution. The results showed that both the live and dead biomasses of the Cd2+-tolerant B. cereus S5 strain could absorb Cd2+ ions in solution but that the live biomass of the B. cereus S5 strain outperformed the dead biomass at lower Cd2+concentrations. An analysis of the cadmium tolerance genes of B. cereus S5 identified ATPase genes that were associated with cadmium tolerance and involved in the ATP pumping mechanism. The FTIR spectra revealed the presence of amino, carboxyl and hydroxyl groups on the pristine biomass and indicated that the cadmium ion removal ability was related to the structure of the strain. The maximum absorption capacity of the B. cereus S5 strain in viable spore biomass was 70.16 mg/g (dry weight) based on a pseudo-second-order kinetic model fit to the experimental data. The Langmuir and Langmuir-Freundlich isotherm adsorption models fit the cadmium ion adsorption data well, and the kinetic curves indicated that the adsorption rate was second-order. For Cd2+ concentrations (mg/L) of 1–109 mg/L, good removal efficiency (>80%) was achieved using approximately 3.48–10.3 g/L of active spore biomass of the B. cereus S5 strain. A cadmium-tolerant bacteria-activated carbon-immobilized column could be used for a longer duration and exhibited greater treatment efficacy than the control column in the treatment of cadmium-polluted water. In addition, a toxicity assessment using mice demonstrated that the biomass of the B. cereus S5 strain and its fermentation products were non-toxic. Thus, the isolated B. cereus S5 strain can be considered an alternative biological adsorbent for use in emergency responses to

  6. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    PubMed

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  7. The Impacts of Different Expansion Modes on Performance of Small Solar Energy Firms: Perspectives of Absorptive Capacity

    PubMed Central

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance. PMID:24453837

  8. Recrystallization and Water Absorption Properties of Vitrified Trehalose Near Room Temperature.

    PubMed

    Shirakashi, Ryo; Takano, Kiyoshi

    2018-05-10

    To provide the physicochemical properties of vitrified trehalose for predicting its recrystallization. Thin films of vitrified trehalose solutions were prepared at room temperature and exposed to various humid and temperature atmospheres. The in-situ amount of retained water in the vacuum-dried trehalose thin film during exposure was determined using its FTIR spectrum by quantifying the extremely infinitesimal amount of retained water in the trehalose solution. Recrystallization of the sample was also assessed by the FTIR spectrum of trehalose dihydrate. The effective water absorption coefficient, h meff , exponentially increased to the water activity of the trehalose sample, A w , at 25°C and 40°C at which the increasing rates are comparable. The surface energy of trehalose dihydrate, γ, was found to be lower than the value calculated from the reported equation, neglecting the effects of the activity of the solute and solvent water. The retained water in trehalose considerably increases its affinity for water vapor, and the change in this affinity with regard to the water activity is nearly independent of temperature. The dihydrate nucleation rate of trehalose-water system is maximal when trehalose weight ratio is ~0.8 at 25°C and is slightly higher (~0.85) at 40°C.

  9. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    PubMed

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  10. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  11. The thermodynamic water retention capacity of solutions and gels.

    PubMed

    Borchard, W; Jablonski, P

    2003-01-01

    The thermodynamic water retention capacity (WRC) has been defined and applied to different heterogeneous phase equilibria. This definition includes others known from the literature for testing heterogeneous systems. For the type of a real solution it is shown that at constant values of temperature and pressure the WRC is related to the difference of the chemical potential of water between the original state and the state after having applied a constraint. The dependence of WRC on concentration of a solute is predicted to be described by an e-function which has been experimentally confirmed in the literature.

  12. Impact of Chromophoric dissolved organic matter on light absorption in lake water on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Hamre, Børge; Frette, Øyvind; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Jakob J.

    2017-02-01

    Ground-based measurements of optical properties are rare for water in lakes on the Tibetan Plateau (TP). We analyzed the spectral absorption of Chromophoric Dissolved Organic Matter (CDOM) for water samples from Lake Namtso (LN) on the TP. The mean value of the spectral slope S280-500 for CDOM absorption was found to be 0.036 nm-1, whereas the corresponding mean value for S350-500 was found to be 0.015 nm-1, implying that when comparing spectral slope values with published values, the wavelength range used for deriving them should be considered.

  13. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    NASA Astrophysics Data System (ADS)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  14. Marination effects on water states and water-holding capacity of broiler pectoralis major muscle with different color lightness

    USDA-ARS?s Scientific Manuscript database

    Experiments were carried out to investigate the effect of marination on water states and water-holding capacity (WHC) of broiler pectoralis (p.) major muscle. Boneless, skinless p. major were collected 6-8 h postmortem from deboning lines at a commercial processing plant, and separated into light, ...

  15. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  16. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.

    2017-12-01

    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water

  17. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  18. Marination effects on water states and water-holding capacity of broiler pectoralis major muscle with different color lightness

    USDA-ARS?s Scientific Manuscript database

    A total of four experiments were carried out to investigate the effect of marination on water states and water-holding capacity (WHC) of broiler pectoralis (p.) major muscle selected based on raw muscle color lightness. Boneless, skinless p. major were collected at 6-8 h postmortem from deboning li...

  19. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    PubMed Central

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  20. Building Capacity to Use NASA Earth Observations in the Water Resource Sector

    NASA Astrophysics Data System (ADS)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Clayton, A.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.

    2017-12-01

    The NASA DEVELOP National Program builds capacity to use and apply NASA Earth observations to address environmental concerns around the globe. The DEVELOP model builds capacity in both participants (students, recent graduates, and early and transitioning career professionals) who conduct the projects and partners (decision and policy makers) who are recipients of project methodologies and results. Projects focus on a spectrum of thematic topics, including water resource management which made up 30% of the DEVELOP FY2017 portfolio. During this period, DEVELOP conducted water-focused feasibility studies in collaboration with 22 partners across 13 U.S. states and five countries. This presentation will provide an overview of needs identified, DEVELOP's response, data sources, challenges, and lessons learned.

  1. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited-State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited-state

  2. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    NASA Astrophysics Data System (ADS)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  3. Using SRμCT to define water transport capacity in Picea abies

    NASA Astrophysics Data System (ADS)

    Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix

    2017-10-01

    Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.

  4. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity.

    PubMed

    Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P

    1999-01-01

    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions

  5. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  6. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    PubMed

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  7. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    NASA Astrophysics Data System (ADS)

    Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  8. Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98

    USGS Publications Warehouse

    Yeung, Chiu Wang; Wong, Michael F.

    1999-01-01

    A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.

  9. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    NASA Astrophysics Data System (ADS)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  10. Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmore, Robert; Griffith, Craid; Liu, Zhu

    2009-07-01

    A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate Of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2- bearing capacity wasmore » evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2- bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2- bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability Of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 degrees C, with complete regeneration occurring at 100 degrees C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis Of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed. Published by Elsevier Ltd.« less

  11. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs.

    PubMed

    Iwanaga, Kazunori; Kushibiki, Toshihiro; Miyazaki, Makoto; Kakemi, Masawo

    2006-03-01

    Solvent Green 3 (SG), a model poorly water-soluble compound, was orally administered to rats with soybean oil emulsion or the Self-microemulsifying drug delivery system (SMEDDS) composed of Gelucire44/14. The bioavailability of SG after oral administration with SMEDDS was 1.7-fold higher than that with soybean oil emulsion. The intestinal absorption of lipid-based formulations themselves was evaluated by the in situ closed loop method. The effect of lipase and bile salt on their absorption was also evaluated. SMEDDS itself was rapidly absorbed in the intestine even in the absence of lipase and bile salt, and the absorption was increased by the addition of lipase and bile salt. On the other hand, no soybean oil emulsion was absorbed in the absence of lipase and bile salt. However, mixed micelle prepared from emulsion by incubating soybean oil emulsion with lipase and bile salt was rapidly absorbed through the intestine. Without lipase and bile salt, SG was not absorbed after administration with soybean oil emulsion. Therefore, we concluded that the degradation of soybean oil emulsion was needed for SG to be absorbed through the intestine. Furthermore, we investigated the intestinal absorption of SG after oral administration to rats whose chylomicron synthesis were inhibited by pretreatment with colchicine. Colchicine completely inhibited the intestinal absorption of SG after administration with each lipid-based formulation, suggesting that SG was absorbed from the intestine via a lymphatic route. Absorption of the dosage formulation should be paid attention when poorly water-soluble drugs are orally administered with lipid-based formulation.

  12. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  13. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    PubMed

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  14. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  15. Study of Water Absorption in Raffia vinifera Fibres from Bandjoun, Cameroon

    PubMed Central

    Sikame Tagne, N. R.; Njeugna, E.; Fogue, M.; Drean, J.-Y.; Nzeukou, A.; Fokwa, D.

    2014-01-01

    The study is focused on the water diffusion phenomenon through the Raffia vinifera fibre from the stem. The knowledge on the behavior of those fibres in presence of liquid during the realization of biocomposite, is necessary. The parameters like percentage of water gain at the point of saturation, modelling of the kinetic of water absorption, and the effective diffusion coefficient were the main objectives. Along a stem of raffia, twelve zones of sampling were defined. From Fick's 2nd law of diffusion, a new model was proposed and evaluated compared to four other models at a constant temperature of 23°C. From the proposed model, the effective diffusion coefficient was deduced. The percentage of water gain was in the range of 303–662%. The proposed model fitted better to the experimental data. The estimated diffusion coefficient was evaluated during the initial phase and at the final phase. In any cross section located along the stem of Raffia vinifera, it was found that the effective diffusion coefficient increases from the periphery to the centre during the initial and final phases. PMID:24592199

  16. Water-holding capacity and protein denatunation in broiler breast meat

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to investigate the impact of protein denaturation on water-holding capacity (WHC) in broiler breast meat. Breast fillets were collected at 2 h postmortem and segregated into two groups (low-WHC and high-WHC) based on pH and color. Protein solubility was measured at 6 and 24...

  17. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  18. A Two-stage Approach for Water Demand Prediction under Constrained total water use and Water Environmental Capacity

    NASA Astrophysics Data System (ADS)

    He, Y.; Xiaohong, C.; Lin, K.; Wang, Z.

    2016-12-01

    Water demand (WD) is the basis for water allocation (WA) because it can fully reflect the pressure on water resources from population and socioeconomic development. To deal with the great uncertainties and the absence of consideration of water environmental capacity (WEC) in traditional water demand prediction methods, e.g. Statistical models, System Dynamics and quota method, this study develops a two-stage approach to predict WD under constrained total water use from the perspective of ecological restraint. Regional total water demand (RTWD) is constrained by WEC, available water resources amount and total water use quota. Based on RTWD, WD is allocated in two stages according to the game theory, including predicting sub regional total water demand (SRWD) by calculating the sub region weights based on the selected indicators of socioeconomic development and predicting industrial water demand (IWD) according to the game theory. Taking the Dongjiang river basin, South China as an example of WD prediction, according to its constrained total water use quota and WEC, RTWD in 2020 is 9.83 billion m3, and IWD for agriculture, industry, service, ecology (off-stream), and domesticity are 2.32 billion m3, 3.79 billion m3, 0.75 billion m3 , 0.18 billion m3and 1.79 billion m3 respectively. The results from this study provide useful insights for effective water allocation under climate change and the strict policy of water resources management.

  19. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  20. Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics.

    PubMed

    Wiedemair, Verena; Mayr, Sophia; Wimmer, Daniel S; Köck, Eva Maria; Penner, Simon; Kerstan, Andreas; Steinmassl, Patricia-Anca; Dumfahrt, Herbert; Huck, Christian W

    2017-07-01

    Water absorbed to poly(methyl methacrylate) (PMMA)-based CAD/CAM (computer-assisted design/computer-assisted manufacturing) prosthodontics can alter their properties including hardness and stability. In the present contribution, water absorption and desorption kinetics under defined experimental conditions were monitored employing several supplementary and advanced Fourier transform infrared (FT-IR) spectroscopic techniques in combination with multivariate analysis (MVA). In this synergistic vibrational spectroscopic multimethod approach, first a novel near-infrared (NIR) diffuse fiber optic probe reflection spectroscopic method was established for time-resolved analysis of water uptake within seven days under controlled conditions. Near-infrared water absorbance spectra in a wavenumber range between 5288-5100 cm -1 (combination band) and 5424-5352 cm -1 (second overtone) were used establishing corresponding calibration and validation models to quantify the amount of water in the milligram range. Therefore, 14 well-defined samples exposed to prior optimized experimental conditions were taken into consideration. The average daily water uptake conducting reference analysis was calculated as 22 mg/day for one week. Additionally, in this study for the first time NIR two-dimensional correlation spectroscopy (2D-COS) was conducted to monitor and interpret the spectral dynamics of water absorption on the prosthodontics in a wavenumber range of 5100-5300 cm -1 . For sensitive time-resolved recording of water desorption, a recently developed high-temperature, high-pressure FT-IR reaction cell with water-free ultra-dry in situ and operando operation was applied. The reaction cell, as well as the sample holder, was fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high temperature zone. Applying a temperature gradient in the range of 25-150 ℃, mid-infrared (MIR) 2D-COS was successfully conducted to get insights into the dynamic

  1. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargent, B. A.; Forrest, W.; Watson, Dan M.

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seenmore » in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.« less

  2. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    PubMed

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.

  3. Comparison of absorption properties of colored dissolved organic matter in six different case 2 water bodies

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.

    2017-02-01

    Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.

  4. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation,more » sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.« less

  5. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  6. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    PubMed Central

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758

  7. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  8. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  9. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas-water interface

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.

  10. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1991-01-01

    The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.

  11. Effect of aminoalkyl methacrylate copolymer E/HCl on in vivo absorption of poorly water-soluble drug.

    PubMed

    Yoshida, Takatsune; Kurimoto, Ippei; Yoshihara, Keiichi; Umejima, Hiroyuki; Ito, Naoki; Watanabe, Shunsuke; Sako, Kazuhiro; Kikuchi, Akihiko

    2013-11-01

    This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.

  12. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    PubMed

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-05

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Absorption and resonance Raman characteristics of β-carotene in water-ethanol mixtures, emulsion and hydrogel

    NASA Astrophysics Data System (ADS)

    Meinhardt-Wollweber, Merve; Suhr, Christian; Kniggendorf, Ann-Kathrin; Roth, Bernhard

    2018-05-01

    Absorption or resonance Raman scattering are often used to identify and even quantify carotenoids in situ. We studied the absorption spectra, the Raman spectra and their resonance behavior of β-carotene in different molecular environments set up as mixtures from lipid (emulsion) and non-polar (ethanol) solvents and a polar component (water) with regard to their application as references for in situ measurement. We show how both absorption profiles and resonance spectra of β-carotene strongly depend on the molecular environment. Most notably, our data suggests that the characteristic bathochromic absorption peak of J-aggregates does not contribute to carotenoid resonance conditions, and show how the Raman shift of the C=C stretching mode is dependent on both, the molecular environment and the excitation wavelength. Overall, the spectroscopic data collected here is highly relevant for the interpretation of in situ spectroscopic data in terms of carotenoid identification and quantification by resonance Raman spectroscopy as well as the preparation of reference samples. In particular, our data promotes careful consideration of appropriate molecular environment for reference samples.

  14. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    NASA Astrophysics Data System (ADS)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  15. Contaminant transport from point source on water surface in open channel flow with bed absorption

    NASA Astrophysics Data System (ADS)

    Guo, Jinlan; Wu, Xudong; Jiang, Weiquan; Chen, Guoqian

    2018-06-01

    Studying solute dispersion in channel flows is of significance for environmental and industrial applications. Two-dimensional concentration distribution for a most typical case of a point source release on the free water surface in a channel flow with bed absorption is presented by means of Chatwin's long-time asymptotic technique. Five basic characteristics of Taylor dispersion and vertical mean concentration distribution with skewness and kurtosis modifications are also analyzed. The results reveal that bed absorption affects both the longitudinal and vertical concentration distributions and causes the contaminant cloud to concentrate in the upper layer. Additionally, the cross-sectional concentration distribution shows an asymptotic Gaussian distribution at large time which is unaffected by the bed absorption. The vertical concentration distribution is found to be nonuniform even at large time. The obtained results are essential for practical implements with strict environmental standards.

  16. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  17. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  19. Moisture-Absorption and Water Dynamics in the Powder of Egg Albumen Peptide, Met-Pro-Asp-Ala-His-Leu.

    PubMed

    Yang, Shuailing; Liu, Xuye; Zhang, Mingdi; Lin, Songyi; Chen, Feng

    2017-01-01

    Moisture absorbed into the powder of Met-Pro-Asp-Ala-His-Leu (MPDAHL)-a novel egg albumen antioxidant peptide-profoundly affects its properties. In this study, we elucidated water dynamics in MPDAHL using DVS, DSC, and low-field 1 H NMR. Based on the DVS data, we found that MPDAHL sorption kinetics obey a parallel exponential model. DSC results indicated that both water and heating could change the microstructure of MPDAHL. The T 2 parameters of NMR reflected the different phases of moisture absorption revealed that there were 4 categories of water with different states or mobility in the MPDAHL during the moisture absorption process. The fastest fraction T 2b mainly dominated the hygroscopicity of MPDAHL and the absorbed water significantly changed the proton distribution and structure of MPDAHL. Thus, this study shows that DVS, DSC, and low-field 1 H NMR are effective methods for monitoring water mobility and distribution in synthetic peptides. It can be used to improve the quality assurance of functional peptides. © 2016 Institute of Food Technologists®.

  20. Surface water storage capacity of twenty tree species in Davis, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  1. Influence of radiation absorption by environmental water vapor on radiation transfer in wildland fires

    Treesearch

    David Frankman; Brent W. Webb; Bret W. Butler

    2007-01-01

    Thermal radiation emission from a simulated black flame surface to a fuel bed is analyzed by a ray-tracing technique, tracking emission from points along the flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was adopted for treating the...

  2. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique.

    PubMed

    Tuğcu-Demiröz, Fatmanur; Gonzalez-Alvarez, Isabel; Gonzalez-Alvarez, Marta; Bermejo, Marival

    2014-10-01

    The aim of the present study was to develop a method for water flux reabsorption measurement in Doluisio's Perfusion Technique based on the use of phenol red as a non-absorbable marker and to validate it by comparison with gravimetric procedure. The compounds selected for the study were metoprolol, atenolol, cimetidine and cefadroxil in order to include low, intermediate and high permeability drugs absorbed by passive diffusion and by carrier mediated mechanism. The intestinal permeabilities (Peff) of the drugs were obtained in male and female Wistar rats and calculated using both methods of water flux correction. The absorption rate coefficients of all the assayed compounds did not show statistically significant differences between male and female rats consequently all the individual values were combined to compare between reabsorption methods. The absorption rate coefficients and permeability values did not show statistically significant differences between the two strategies of concentration correction. The apparent zero order water absorption coefficients were also similar in both correction procedures. In conclusion gravimetric and phenol red method for water reabsorption correction are accurate and interchangeable for permeability estimation in closed loop perfusion method. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    EPA Science Inventory

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  4. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    USGS Publications Warehouse

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  5. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  6. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water

    PubMed Central

    Hou, Yunnan; Cheng, Keke; Li, Zehua; Ma, Xiaohui; Wei, Yahong; Zhang, Lei; Wang, Yao

    2015-01-01

    In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II) and Mn(II) was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II) and Mn(II), respectively. Two models were investigated to compare the cells’ capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water. PMID:26505890

  7. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    NASA Technical Reports Server (NTRS)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  8. Absorptive capacity as a guiding concept for effective public sector management and conservation of freshwater ecosystems.

    PubMed

    Murray, K; Roux, D J; Nel, J L; Driver, A; Freimund, W

    2011-05-01

    The ability of an organisation to recognise the value of new external information, acquire it, assimilate it, transform, and exploit it, namely its absorptive capacity (AC), has been much researched in the context of commercial organisations and even applied to national innovation. This paper considers four key AC-related concepts and their relevance to public sector organisations with mandates to manage and conserve freshwater ecosystems for the common good. The concepts are the importance of in-house prior related knowledge, the importance of informal knowledge transfer, the need for motivation and intensity of effort, and the importance of gatekeepers. These concepts are used to synthesise guidance for a way forward in respect of such freshwater management and conservation, using the imminent release of a specific scientific conservation planning and management tool in South Africa as a case study. The tool comprises a comprehensive series of maps that depict national freshwater ecosystem priority areas for South Africa. Insights for implementing agencies relate to maintaining an internal science, rather than research capacity; making unpublished and especially tacit knowledge available through informal knowledge transfer; not underestimating the importance of intensity of effort required to create AC, driven by focussed motivation; and the potential use of a gatekeeper at national level (external to the implementing organisations), possibly playing a more general 'bridging' role, and multiple internal (organisational) gatekeepers playing the more limited role of 'knowledge translators'. The role of AC as a unifying framework is also proposed.

  9. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate ofmore » the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.« less

  10. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    PubMed

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE PAGES

    Ally, Moonis Raza; Sharma, Vishaldeep

    2017-11-02

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  12. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza; Sharma, Vishaldeep

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  13. Water storage capacities of soil under four different land uses in Hawaii

    Treesearch

    Teruo Yamamoto; Paul Duffy

    1963-01-01

    Soil pore volume and pore size were correlated with land use or vegetation cover type. The top foot of forest soils had more large pores and higher water-holding capacities than that of soils under cultivation, in pasture land, or in idle grassland.

  14. Irrigation scheduling as affected by field capacity and wilting point water content from different data sources

    USDA-ARS?s Scientific Manuscript database

    Soil water content at field capacity and wilting point water content is critical information for irrigation scheduling, regardless of soil water sensor-based method (SM) or evapotranspiration (ET)-based method. Both methods require knowledge on site-specific and soil-specific Management Allowable De...

  15. Utilization of red mud and bagasse for production of gas absorption materials

    NASA Astrophysics Data System (ADS)

    Thang, Nguyen Hoc; Quyen, Pham Vo Thi Ha; Nhung, Le Thuy; Phong, Dang Thanh; Tuyen, Nguyen Ngoc Kim

    2018-04-01

    Gas treatment or/and gas absorption is field which has more investigation from researchers. They are finding optimal solutions from catalyst or synthesized materials to obtain the best benefit for factories and community. This study would like to introduce a method to synthesis the gas absorption materials responding requirements for the process of gas treatment. More specially, raw materials used to produce the materials are industrial waste impacting negatively on the environment. In which, red mud is solid waste of Bayer process from bauxite mining which is being the hard problem to have solutions for its management and utilization, and bagasse is industrial waste of sugar factories. Both red mud and bagasse were dried, ground, and sieved and then mixed with bentonite and water for forming by wet pressing method. Continuously, the mixtures were passed processes of heat treatment at 400°C. The final samples were tested physic-chemical properties and characterized for microstructure. The productions were also tested for gas absorption capacity with data obtained very positive in comparison with others.

  16. Evaluation of elastic properties and study on water absorption behavior of alumina filled jute-epoxy composites

    NASA Astrophysics Data System (ADS)

    Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.

    2018-04-01

    In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.

  17. [Research on ecological population capacity based on food and water in Shandong province].

    PubMed

    Lin, C

    1991-02-01

    The population carrying capacity in Shandong Province, China, based on current food production and water supply is discusses. In 1988, the staple food production exceeded the amount needed for the minimum subsistence level of 300 kg/person. But if the food supply were to be kept at 500 kilos/person, the amount considered to be abundant, the province had a surplus population of 16.11 million. Based on a population projection of medium scenario, the projected level of food production would meet the needs for adequate food consumption. But if the level of abundant supply were to be kept, there would be 12.4 million surplus population. The shortage of water supply is a more acute problem. On the basis of the current water consumption of 514 cubic m/person, the water supply of the province could only meet the needs of 44.9 million. But the population in the province was already 80.6 million in 1988. If the water consumption was 1000 cubic m/person, which was the consumption level of the Soviet Union, the supply can only meet the needs of 23 million population. Even if the potential water resources were fully developed, the supply can only meet the needs of 65.4 million people at the end of the century. The 92.5 million projected population at the time would far exceed the water supply capacity. The severe shortage of water supply of the province would be the most serious ecological problem. Such constraint may also have considerable impact on the sustained socioeconomic development of the province.

  18. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows

    NASA Astrophysics Data System (ADS)

    Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.

    2017-11-01

    In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.

  19. Light absorption properties of colored dissolved organic matter (CDOM) in adjacent waters of the Changjiang Estuary during a flood season: implication for DOC estimation

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Shen, Fang; Li, Xiuzhen

    2014-11-01

    Light absorption properties of colored dissolved organic matter (CDOM) in adjacent waters of the Changjiang Estuary were investigated during the summer of 2013. CDOM absorption showed a substantial portion of the total absorption and clearly dominant among most investigation stations. It generally decreased from the northwest to the southeast, which controlled by physical mixing of fresh water and seawater as was indicated by a conservative behaviour of CDOM. CDOM absorption sharply increased during phytoplankton blooms. Similarly, dissolved organic carbon (DOC) also peaked during blooms period. However, DOC exhibited a more complex behavior relative to a simple conservative mixing, possibly attributed to multiple origins of DOC. CDOM absorption and DOC co-varied to some degree, implying a potential way of DOC estimation from CDOM absorption. However, more detailed information such as CDOM and DOC composition and more validation data were required to obtain a stable CDOM - DOC pattern. Lastly, empirical algorithms with limited data were developed to retrieve CDOM absorption. Further validation of the algorithms were needed when they were to be commonly applied.

  20. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoying; Ning, Zhiyuan; Liu, Yang; Xu, Tingting; Guo, Yao; Zak, Alla; Zhang, Zhiyong; Wang, Sheng; Tenne, Reshef; Chen, Qing

    2012-09-01

    The electrical properties of WS2 nanotubes (NTs) were studied through measuring 59 devices. Important electrical parameters, such as the carrier concentration, mobility, and effective barrier height at the contacts, were obtained through fitting experimental non-linear I-V curves using a metal-semiconductor-metal model. The carrier mobility was found to be several orders of magnitude higher than that have been reported previously for WS2 NTs. Water absorption was found to decrease the conductivity and carrier mobility of the NTs, and could be removed when the sample was dried. Oxygen absorption also slightly decreased the conductivity of WS2 NTs.

  1. High Efficiency Water Heating Technology Development Final Report, Part II: CO 2 and Absorption-Based Residential Heat Pump Water Heater Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  2. Effects of stretching and stirring on water and glucose absorption by canine mucosal membrane.

    PubMed Central

    Lee, J S

    1983-01-01

    A 'mini' canine mucosal membrane preparation permitting simultaneous determination of water (Jv) and glucose (Jg) absorption rates, microscopic examination or micropuncture of the villi was used in this study. The small membranes were more stretched than the large ones, with more than a one-fold increase in both Jv and Jg, apparently due to a change in architectural orientation between the villi and subvillous supporting tissue so as to facilitate water transport via the lymphatic system. During stirring of the bathing solution, the villi in the small membranes were widely separated from each other with more to-and-fro swaying movements than in the large ones. Stirring was seen to cause up-and-down movements of the loosely suspended large membranes but not the small ones. In the small membranes stirring caused no change in Jv but an increase in Jg due to the increase in glucose concentration in the absorbate, while in the large membranes both Jv and Jg were greatly increased. It is thus considered that the increase in absorption in the large membranes caused by stirring is mainly due to the increased membrane movements promoting lymph flow. PMID:6875881

  3. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite.

    PubMed

    Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li

    2018-05-07

    Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

  4. Evaluation of water conservation capacity of loess plateau typical mountain ecosystems based on InVEST model simulation

    NASA Astrophysics Data System (ADS)

    Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing

    2017-06-01

    With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.

  5. Health care administrators' perspectives on the role of absorptive capacity for strategic change initiatives: a qualitative study.

    PubMed

    Kash, Bita A; Spaulding, Aaron; Gamm, Larry; Johnson, Christopher E

    2013-01-01

    The dimensions of absorptive capacity (ACAP) are defined, and the importance of ACAP is established in the management literature, but the concept has not been applied to health care organizations attempting to implement multiple strategic initiatives. The aim of this study was to test the utility of ACAP by analyzing health care administrators' experiences with multiple strategic initiatives within two health systems. Results are drawn from administrators' assessments of multiple initiatives within two health systems using in-depth personal interviews with a total of 61 health care administrators. Data analysis was performed following deductive qualitative analysis guidelines. Interview transcripts were coded based on the four dimensions of ACAP: acquiring, assimilating, internalizing/transforming, and exploiting knowledge. Furthermore, we link results related to utilization of management resources, including number of key personnel involved and time consumption, to dimensions of ACAP. Participants' description of multiple strategic change initiatives confirmed the importance of the four ACAP dimensions. ACAP can be a useful framework to assess organizational capacity with respect to the organization's ability to concurrently implement multiple strategic initiatives. This capacity specifically revolves around human capital requirements from upper management based on the initiatives' location or stage within the ACAP framework. Strategic change initiatives in health care can be usefully viewed from an ACAP perspective. There is a tendency for those strategic initiatives ranking higher in priority and time consumption to reflect more advanced dimensions of ACAP (assimilate and transform), whereas few initiatives were identified in the ACAP "exploit" dimension. This may suggest that health care leaders tend to no longer identify as strategic initiatives those innovations that have moved to the exploitation stage or that less attention is given to the exploitation

  6. Multi-scale research of time and space differences about ecological footprint and ecological carrying capacity of the water resources

    NASA Astrophysics Data System (ADS)

    Li, Jiahong; Lei, Xiaohui; Fu, Qiang; Li, Tianxiao; Qiao, Yu; Chen, Lei; Liao, Weihong

    2018-03-01

    A multi-scale assessment framework for assessing and comparing the water resource sustainability based on the ecological footprint (EF) is introduced. The study aims to manage the water resource from different views in Heilongjiang Province. First of all, from the scale of each city, the water ecological carrying capacity (ECC) was calculated from 2000 to 2011, and map the spatial distribution of the recent 3 years which show that, the water ecological carrying capacity (ECC) is uneven and has a downward trend year by year. Then, from the perspective of the five secondary partition basins in Heilongjiang Province, the paper calculated the ecological carrying capacity (ECC), the ecological footprint (EF) and ecological surplus and deficit (S&D) situation of water resources from 2000 to 2011, which show that the ecological deficit situation is more prominent in Nenjiang and Suifenhe basins which are in an unsustainable development state. Finally, from the perspective of the province, the paper calculated the ecological carrying capacity (ECC), the ecological footprint (EF) and ecological S&D of water resources from 2000 to 2011 in Heilongjiang Province, which show that the ecological footprint (EF) is in the rising trend, and the correlation coefficient between the ecological carrying capacity (ECC) and the precipitation is 0.8. There are 5 years of unsustainable development state in Heilongjiang. The proposed multi-scale assessment of WEF aims to evaluate the complex relationship between water resource supply and consumption in different spatial scales and time series. It also provides more reasonable assessment result which can be used by managers and regulators.

  7. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns.

    PubMed

    Hu, Sen; Liu, Wei-wei; Zhao, Ying; Lin, Zhi-long; Luo, Hong-min; Bai, Xiao-dong; Sheng, Zhi-yong; Zhou, Fang-qiang

    2014-06-01

    To investigate alteration in intestinal absorption during enteral resuscitation with pyruvate-enriched oral rehydration solution (Pyr-ORS) in scalded rats. To compare pyruvate-enriched oral rehydration solution (Pyr-ORS) with World Health Organisation oral rehydration solution (WHO-ORS), 120 rats were randomly divided into 6 groups and 2 subgroups. At 1.5 and 4.5 h after a 35% TBSA scald, the intestinal absorption rate, mucosal blood flow (IMBF), Na(+)-K(+)-ATPase activity and aquaporin-1 (AQP-1) expression were determined (n = 10), respectively. The intestinal Na(+)-K(+)-ATPase activity, AQP-1 expression and IMBF were markedly decreased in scald groups, but they were profoundly preserved by enteral resuscitation with WHO-ORS and further improved significantly with Pyr-ORS at both time points. Na(+)-K+-ATPase activities remained higher in enteral resuscitation with Pyr-ORS (Group SP) than those with WHO-ORS (Group SW) at 4.5 h. AQP-1 and IMBF were significantly greater in Group SP than in Group SW at both time points. Intestinal absorption rates of water and sodium were obviously inhibited in scald groups; however, rates were also significantly preserved in Group SP than in Group SW with an over 20% increment at both time points. The Pyr-ORS may be superior to the standard WHO-ORS in the promotion of intestinal absorption of water and sodium during enteral resuscitation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  8. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures.

    PubMed

    Jensen, Peter Snoer; Bak, Jimmy; Andersson-Engels, Stefan

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm-1 were measured in the temperature range 30-42 degrees C in steps of 2 degrees C. Measurements were carried out with an FT-IR spectrometer and a variable pathlength transmission cell controlled within 0.02 degree C. Pathlengths of 50 microns and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37 degrees C water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between. On the basis of these spectra, prospects for and limitations on data analysis for infrared diagnostic methods are discussed. As an example, the absorptive properties of glucose were studied in the same temperature range in order to determine the effect of temperature on the spectral shape of glucose. The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans.

  9. Optimizing available water capacity using microwave satellite data for improving irrigation management

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into

  10. Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.

    PubMed

    Matvejev, V; Zizi, M; Stiens, J

    2012-12-06

    Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on

  11. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  12. Effect of intravenous ranitidine and omeprazole on intestinal absorption of water, sodium, and macronutrients in patients with intestinal resection

    PubMed Central

    Jeppesen, P; Staun, M; Tjellesen, L; Mortensen, P

    1998-01-01

    Background—H2 receptor blockers and proton pump inhibitors reduce intestinal output in patients with short bowel syndrome. 
Aims—To evaluate the effect of intravenous omeprazole and ranitidine on water, electrolyte, macronutrient, and energy absorption in patients with intestinal resection. 
Methods—Thirteen patients with a faecal weight above 1.5 kg/day (range 1.7-5.7 kg/day and a median small bowel length of 100cm were studied. Omeprazole 40 mg twice daily or ranitidine 150mg twice daily were administered for five days in a randomised, double blind, crossover design followed by a three day control period with no treatment. Two patients with a segment of colon in continuation were excluded from analysis which, however, had no influence on the results. 
Results—Omeprazole increased median intestinal wet weight absorption compared with no treatment and ranitidine (p<0.03). The effect of ranitidine was not significant. Four patients with faecal volumes below 2.6 kg/day did not respond to omeprazole; in two absorption increased by 0.5-1 kg/day; and in five absorption increased by 1−2 kg/day. Absorption of sodium, calcium, magnesium, nitrogen, carbohydrate, fat, and total energy was unchanged. Four high responders continued on omeprazole for 12-15 months, but none could be weaned from parenteral nutrition. 
Conclusion—Omeprazole increased water absorption in patients with faecal output above 2.50 kg/day. The effect varied significantly and was greater in patients with a high output, but did not allow parenteral nutrition to be discontinued. Absorption of energy, macronutrients, electrolytes, and divalent cations was not improved. The effect of ranitidine was not significant, possibly because the dose was too low. 

 Keywords: short bowel syndrome; human; diarrhoea; ranitidine; omeprazole PMID:9824602

  13. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  14. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments

    PubMed Central

    Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M. Zafi S.; Sheikh, Adil A.; Felemban, Emad; Qaisar, Saad Bin

    2016-01-01

    Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz. PMID:27322263

  16. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments.

    PubMed

    Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M Zafi S; Sheikh, Adil A; Felemban, Emad; Qaisar, Saad Bin

    2016-06-16

    Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  17. Evidencing the association between swimming capacities and performance indicators in water polo: a multiple regression study.

    PubMed

    Kontic, Dean; Zenic, Natasa; Uljevic, Ognjen; Sekulic, Damir; Lesnik, Blaz

    2017-06-01

    Swimming capacities are hypothesized to be important determinants of water polo performance but there is an evident lack of studies examining different swimming capacities in relation to specific offensive and defensive performance variables in this sport. The aim of this study was to determine the relationship between five swimming capacities and six performance determinants in water polo. The sample comprised 79 high-level youth water polo players (all males, 17-18 years of age). The variables included six performance-related variables (agility in offence and defense, efficacy in offence and defense, polyvalence in offence and defense), and five swimming-capacity tests (water polo sprint test [15 m], swimming sprint test [25 m], short-distance [100 m], aerobic endurance [400 m] and an anaerobic lactate endurance test [4× 50 m]). First, multiple regressions were calculated for one-half of the sample of subjects which were then validated with the remaining half of the sample. The 25-m swim was not included in the regression analyses due to the multicollinearity with other predictors. The originally calculated regression models were validated for defensive agility (R=0.67 and R=0.55 for the original regression calculation and validation subsample, respectively) offensive agility (R=0.59 and R=0.61), and offensive efficacy (R=0.64 and R=0.58). Anaerobic lactate endurance is a significant predictor of offensive and defensive agility, while 15 m sprint significantly contributes to offensive efficacy. Swimming capacities are not found to be related to the polyvalence of the players. The most superior offensive performance can be expected from those players with a high level of anaerobic lactate endurance and advanced sprinting capacity, while anaerobic lactate endurance is recognized as most important quality in defensive duties. Future studies should observe players' polyvalence in relation to (theoretical) knowledge of technical and tactical tasks. Results reinforce

  18. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    PubMed

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S

    2016-08-01

    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    PubMed

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  1. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  2. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    PubMed

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  3. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  4. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  5. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  6. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  8. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    NASA Astrophysics Data System (ADS)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  9. Quantification of water in majoritic garnet

    DOE PAGES

    Thomas, Sylvia -Monique; Wilson, Kathryn; Koch-Muller, Monika; ...

    2015-05-01

    Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H 2O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H 2O was synthesized at conditions ofmore » 18-19 GPa and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe) 3(Si,Mg,Fe,Al,Cr) 2[SiO4] 3. Furthermore, the IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10 470 ± 3100 Lmol-1cm-2 to 23 400 ± 2300 Lmol -1cm -2.« less

  10. Absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea and the waters off eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Zhou, Fengxia; Gao, Xuelu; Song, Jinming; Chen, Chen-Tung Arthur; Yuan, Huamao; Xing, Qianguo

    2018-05-01

    The absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea (ECS) and the waters off eastern Taiwan (WET) were studied during May 2014. CDOM absorption coefficient (a280) and spectral slope (S275-295) revealed considerable spatial variations. In the ECS, the values of a280 and S275-295 presented a reverse distribution pattern. In the WET, a280 values were generally low while S275-295 values were generally high. Vertical distributions of a280 and S275-295 also varied in different regions. Terrestrial input, phytoplankton production, sediment release or photobleaching may be responsible for the dynamics of CDOM. Relationships among CDOM related parameters could partly support this conclusion. a280 were also used to trace different water masses and the result showed that the influence of Changjiang Diluted Water could reach the outer shelf of the northern ECS, and that the Kuroshio Current had a strong influence on the middle shelf of the southern ECS.

  11. Substituting freshwater: Can ocean desalination and water recycling capacities substitute for groundwater depletion in California?

    PubMed

    Badiuzzaman, Pierre; McLaughlin, Eoin; McCauley, Darren

    2017-12-01

    While the sustainability of resource depletion is a longstanding environmental concern, wider attention has recently been given to growing water scarcity and groundwater depletion. This study seeks to test the substitutability assumption embedded in weak sustainability indicators using a case study of Californian water supply. The volume of groundwater depletion is used as a proxy for unsustainable water consumption, and defined by synthesising existing research estimates into low, medium and high depletion baselines. These are compared against projected water supply increases from ocean desalination and water recycling by 2035, to determine whether new, drought-proof water sources can substitute for currently unsustainable groundwater consumption. Results show that the maximum projected supply of new water, 2.47 million acre-feet per year (MAF/yr), is sufficient to meet low depletion estimates of 2.02 MAF/yr, but fails to come near the high depletion estimate of 3.44 MAF/yr. This does not necessarily indicate physical limitations of substitutability, but more so socio-economic limitations influenced by high comparative costs. By including capacities in demand-substitutability via urban water conservation, maximum predicted capacities reach 5.57 MAF/yr, indicating wide room for substitution. Based on these results, investment in social and institutional capital is an important factor to enhance demand-side substitutability of water and other natural resources, which has been somewhat neglected by the literature on the substitutability of natural resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. INFLUENCE OF AQUEOUS ALUMINUM AND ORGANIC ACIDS ON MEASUREMENT OF ACID NEUTRALIZING CAPACITY IN SURFACE WATERS

    EPA Science Inventory

    Acid neutralizing capacity (ANC) is used to quantify the acid-base status of surface waters. Acidic waters have bean defined as having ANC values less than zero, and acidification is often quantified by decreases in ANC. Measured and calculated values of ANC generally agree, exce...

  13. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  14. Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2007-05-01

    Quantitative near-infrared absorption spectroscopy of water-vapour overtone and combination bands at high pressures is complicated by pressure broadening and shifting of individual lines and the blending of neighbouring transitions. An experimental and computational methodology is developed to determine accurate high-pressure absorption spectra. This case study investigates two water-vapour transitions, one near 1388 nm (7203.9 cm-1) and the other near 1345 nm (7435.6 cm-1), for potential two-line absorption measurements of temperature in the range of 400-1050 K with a pressure varying from 5-25 atm. The required quantitative spectroscopy data (line strength, collisional broadening, and pressure-induced frequency shift) of the target transitions and their neighbours (a total of four H2O vapour transitions near 1388 nm and six transitions near 1345 nm) are measured in neat H2O vapour, H2O-air and H2O-CO2 mixtures as a function of temperature (296-1000 K) at low pressures (<800 Torr). Precise values of the line strength S(T), pressure-broadening coefficients γair(T) and \\gamma _{CO_2 } (T), and pressure-shift coefficients δair(T) and \\delta _{CO_2 } (T) for the ten transitions were inferred from the measured spectra and compared with data from HITRAN 2004. A hybrid spectroscopic database was constructed by modifying HITRAN 2004 to incorporate these values for simulation of water-vapour-absorption spectra at high pressures. Simulations using this hybrid database are in good agreement with high pressure experiments and demonstrate that data collected at modest pressures can be used to simulate high-pressure absorption spectra.

  15. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  16. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    USDA-ARS?s Scientific Manuscript database

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  17. Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation.

    PubMed

    Li, Lingxiao; Hu, Tao; Sun, Hanxue; Zhang, Junping; Wang, Aiqin

    2017-05-31

    Multifunctional carbon aerogels that are both highly compressible and conductive have broad potential applications in the range of sound insulator, sensor, oil absorption, and electronics. However, the preparation of such carbon aerogels has been proven to be very challenging. Here, we report fabrication of pressure-sensitive and conductive (PSC) carbon aerogels by pyrolysis of cellulose aerogels composed of poplars catkin (PC) microfibers with a tubular structure. The wet PC gels can be dried directly in an oven without any deformation, in marked contrast to the brittle nature of traditional carbon aerogels. The resultant PSC aerogels exhibit ultralow density (4.3 mg cm -3 ), high compressibility (80%), high electrical conductivity (0.47 S cm -1 ), and high absorbency (80-161 g g -1 ) for oils and organic liquids. The PSC aerogels have potential applications in various fields such as elastomeric conductors, absorption of oils from water and oil/water separation, as the PSC aerogels feature simple preparation process with low-cost biomass as the precursor.

  18. Self-assembly of defect-rich graphene oxide nanosheets with Na2Ti3O7 nanowires and their superior absorptive capacity to toxic dyes

    NASA Astrophysics Data System (ADS)

    Sun, Yibai; Fu, Wanlin; Dai, Yunqian; Huang, Yiyang; Zhou, Jie; Huang, Chengqian; Yang, Chongya; Huang, Meiyou; Ma, Rongwei; Lin, Baoping

    2017-06-01

    Graphene sheets, a flexible 2D material with excellent absorptive capacity, have great potential as absorbing materials. However, this material has always suffered from irreversible aggregation and thus loses the abundant active sites and large surface area. In this paper, large-scale graphene oxide (GO) sheets were cut and reduced to tiny reduced graphene oxide (RGO) sheets by a cell-break sonicator, for producing numerous defects, which are the center of chemisorption. Furthermore, sodium titanate nanowires functioned as a framework to help to disperse the tiny RGO sheets uniformly. And, in turn, the flexible tiny RGO sheets glued robust nanowires into a free-standing membrane. This novel composite membrane exhibited an ultra-high decoloration efficiency of 99.8% of rhodamine B in a continuous flow mode, and an outstanding absorptive capability of 1.30 × 10-2 mol g-1 correlated to RGO content in batch reaction, which is about two orders of magnitude higher than other reported graphene-based absorbents. In addition, an efficient and feasible method without any heat treatment for regenerating the membrane is illustrated, and the recycled membrane retains superior decoloration efficiency. The excellent absorptive performance indicates the framework-based disperse strategy has great potential for the construction and application of defect-rich graphene.

  19. Laser Atmospheric Absorption Studies.

    DTIC Science & Technology

    1977-05-01

    A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure

  20. Antioxidant Capacity, Phenolic Constituents and Toxicity of Hot Water Extract from Red Maple Buds.

    PubMed

    Meda, Naamwin R; Poubelle, Patrice E; Stevanovic, Tatjana

    2017-06-01

    The present study reports, for the first time, the results of the antioxidant capacity and the phenolic composition of a hot water extract from red maple buds (RMB), as well as its safety. In this regard and comparatively to antioxidant standards, this extract exhibits a significant antiradical capacity when tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) and anion superoxide trapping assays. High-resolution mass spectrometric and nuclear magnetic resonance analyses permitted to determine for the first time, in red maple species, cyanidin-3-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-arabinoside, and quercetin. Also, the quantification of individual phenolics by high-performance liquid chromatography method revealed that ginnalin A at 117.0 mg/g is the major compound of RMB hot water extract. Finally, using flow cytometry evaluation, the extract of RMB was determined to have no toxicity neither to cause significant modification of apoptosis process, up to concentration of 100 μg/ml, on human peripheral blood neutrophils. These results allow anticipating various fields of application of RMB water extract. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage.

    PubMed

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; Neuefeind, Joerg; Xu, Wenqian; Teng, Xiaowei

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because the large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate of 5 mV s -1 , corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full cells after 5,000 cycles at 10 C). The promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.

  2. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE PAGES

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; ...

    2017-05-23

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate ofmore » 5 mV s -1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  3. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g -1 in half-cells at a scan rate ofmore » 5 mV s -1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g -1 in full-cells after 5,000 cycles at 10 C). Finally, the promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.« less

  4. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.

    PubMed

    Cao, Min; Luo, Xiaomin; Ren, Huijun; Feng, Jianyan

    2018-02-15

    The leakage of oil or organic pollutants into the ocean arouses a global catastrophe. The superhydrophobic materials have offered a new idea for the efficient, thorough and automated oil/water separation. However, most of such materials lose superhydrophobicity when exposed to hot water (e.g. >55 °C). In this study, a hot water-repellent superhydrophobic mesh used for oil/water separation was prepared with one-step spray of modified polyurethane and hydrophobic silica nanoparticles on the copper mesh. The as-prepared superhydrophobic mesh could be applied as the effective materials for the separation of oil/water mixture with a temperature up to 100 °C. In addition, the obtained mesh could selectively remove a wide range of organic solvents from water with high absorption capacity and good recyclability. Moreover, the as-prepared superhydrophobic mesh shows excellent mechanical durability, which makes it a promising material for practical oil/water separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds

  6. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.)

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.

    2017-12-01

    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  7. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    NASA Astrophysics Data System (ADS)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  8. Application of multiobjective optimization to scheduling capacity expansion of urban water resource systems

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, Mohammad; Kuczera, George; Cui, Lijie

    2014-06-01

    Significant population increase in urban areas is likely to result in a deterioration of drought security and level of service provided by urban water resource systems. One way to cope with this is to optimally schedule the expansion of system resources. However, the high capital costs and environmental impacts associated with expanding or building major water infrastructure warrant the investigation of scheduling system operational options such as reservoir operating rules, demand reduction policies, and drought contingency plans, as a way of delaying or avoiding the expansion of water supply infrastructure. Traditionally, minimizing cost has been considered the primary objective in scheduling capacity expansion problems. In this paper, we consider some of the drawbacks of this approach. It is shown that there is no guarantee that the social burden of coping with drought emergencies is shared equitably across planning stages. In addition, it is shown that previous approaches do not adequately exploit the benefits of joint optimization of operational and infrastructure options and do not adequately address the need for the high level of drought security expected for urban systems. To address these shortcomings, a new multiobjective optimization approach to scheduling capacity expansion in an urban water resource system is presented and illustrated in a case study involving the bulk water supply system for Canberra. The results show that the multiobjective approach can address the temporal equity issue of sharing the burden of drought emergencies and that joint optimization of operational and infrastructure options can provide solutions superior to those just involving infrastructure options.

  9. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    PubMed

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Building leadership capacity to drive sustainable water management: the evaluation of a customised program.

    PubMed

    Taylor, A C

    2010-01-01

    This paper describes a customised, six-month, leadership development program (LDP) that was designed for emerging leaders in the Australian water industry who were promoting sustainable urban water management (SUWM). It also presents results from an evaluation of the program's benefits, costs and overall 'return on investment' (ROI). The program was designed to help build emergent leadership capacity in the water industry, given strong evidence that this form of leadership plays an important role in advancing SUWM. It involved '360-degree feedback' processes, training, individual leadership development plans, and coaching sessions. Its design was informed by a review of the literature, and its content was informed by local empirical research involving effective SUWM leaders. The evaluation used a seven-tier assessment framework that examined different dimensions of the program's performance using source and methodological triangulation. The results indicate that such LDPs can produce a range of positive outcomes, such as promoting desired leadership behaviours and generating a positive ROI estimate. Specifically, the program's estimated ROI was approximately 190% after only one year. The primary conclusion is that evidence-based LDPs which are highly customised for specific types of leaders in the water industry represent a promising type of intervention to build forms of leadership capacity which are needed to successfully promote SUWM.

  11. Intestinal absorption of copper: influence of carbohydrates.

    PubMed

    Wapnir, R A; Balkman, C

    1992-02-01

    Macronutrients can modulate the intestinal absorption of trace elements by binding the metal or altering mucosal function. We investigated whether certain simple and complex carbohydrates modify copper (Cu) absorption, using an in vivo perfusion technique in the rat. Corn syrup solids, which contain a mixture of glucose polymers of diverse length, added at either 20 or 50 mosm/kg enhanced Cu absorption from a 31.5 microM (2 mg/liter) Cu solution (128 +/- 11 and 130 +/- 11 pmol/min x cm, respectively, vs 101 +/- 4 pmol/min x cm, P less than 0.05, in the absence of carbohydrate). This was concomitant with a stimulation of net water absorption (1.05 +/- 0.08 and 0.84 +/- 0.08 microliter/min x cm, respectively, vs 0.63 +/- 0.02 microliter/min x cm with no carbohydrate, P less than 0.05). Glucose, fructose, lactose, or sucrose had no influence on Cu absorption, although they altered water exchanges, an effect attributable to a reduction of the outflow component of fluid recirculation. Low concentrations of lactose resulted in a greater accumulation of Cu in the intestinal mucosa (8.75 +/- 0.71 micrograms/g vs 5.77 +/- 0.68 micrograms/g for controls, P less than 0.05). Hence, solutes that moderately stimulate mucosa-to-serosa fluid influx in a progressive manner, such as glucose polymers, may contribute to functionally increase Cu absorption. Conversely, conditions which tend to reduce water inflow or increase water outflow across the small intestinal mucosa, as may occur with high lactose diets or in cases of chronic diarrhea, may have negative effects.

  12. Research Regarding Membrane Filtration Capacity of Water Collected from Siret River

    NASA Astrophysics Data System (ADS)

    Mihalache, I.; Pintilie, Ş. C.; Bîrsan, I. G.; Dănăila, E.; Baltă, Ş.

    2018-06-01

    In the past decade, the high demand and strict legislations regarding pure and potable water production and quality require finding new treatment technologies with higher effectiveness. When compared with conventional treatment technologies, membrane technology is a viable option in water and wastewater treatment due to high performance, ease in implementation, cost-efficiency among other advantages, also, leading to a rapid expansion in use in almost all areas of industry. Polymeric ultrafiltration membranes have been successfully used in various industries since 1969, and in later years they were studied in the water purification sector, mainly as a pre-treatment step to reduce severe fouling that could occur in reverse osmosis filtration stage. Polysulfone (PSf) was the polymer of choice in this study with two concentrations, 25 wt.% and 30 wt.%. Surface SEM morphology, roughness and water affinity were analyzed for the studied membranes. Water from Siret river was used in the permeation tests in order to analyze the retention capacity and anti-fouling ability. The present study revealed higher retention for the 30 wt.% PSf membranes, from the physico-chemical and microbiological point-of-view and lower fouling, also.

  13. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  14. Numerical study on the effects of absorptivity on performance of flat plate solar collector of a water heater

    NASA Astrophysics Data System (ADS)

    Tambunan, D. R. S.; Sibagariang, Y. P.; Ambarita, H.; Napitupulu, F. H.; Kawai, H.

    2018-03-01

    The characteristics of absorber plate of a flat plate solar collector play an important role in the improvement of the performance. In this work, a numerical analysis is carried out to explore the effect of absorptivity and emissivity of absorber plate to the performance of the solar collector of a solar water heater. For a results comparison, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. It is employed to heat water in a container by exposing to the solar radiation in Medan city of Indonesia. The transient governing equations are developed. The governing equations are discretized and solved using the forward time step marching technique. The results reveal that the experimental and numerical results show good agreement. The absorptivity of the plate absorber and emissivity of the glass cover strongly affect the performance of the solar collector.

  15. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure.more » The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.« less

  16. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms

    PubMed Central

    Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  17. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    PubMed

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  18. Assessing the link between chlorophyll concentration and absorption line height at 676 nm over a broad range of water types.

    PubMed

    Nardelli, Schuyler C; Twardowski, Michael S

    2016-10-31

    The relationship between absorption at 676 nm normalized to chlorophyll-a, i.e., specific absorption aph*(676), and various optical and environmental properties is examined in extensive data sets from Case I and Case II waters found globally to assess drivers of variability such as pigment packaging. A better understanding of this variability could lead to more accurate estimates of chlorophyll concentrations from in situ optical measurements that may be made autonomously. Values of aph*(676) ranged from 0.00006 to 0.0944 m2/mg Chl a across all sites studied, but converged on median and mean values (n = 563) of 0.0108 and 0.0139 m2/mg Chl a respectively, with no apparent relationship with various optical properties, latitude, coastal or open ocean environment, depth, temperature, salinity, photoadaptation, ecosystem health, or albedo. Relative consistency in aph* across such diverse water types and the full range in chlorophyll concentration suggests a single aph* may be used to estimate chlorophyll concentration from absorption measurements with better accuracy than currently thought.

  19. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  20. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    PubMed

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  1. UBXN1 polymorphism and its expression in porcine M. longissimus dorsi are associated with water holding capacity.

    PubMed

    Loan, Huynh Thi Phuong; Muráni, Eduard; Maak, Steffen; Ponsuksili, Siriluck; Wimmers, Klaus

    2014-03-01

    The UBX domain containing protein 1-like gene (UBXN1) promotes the protein degradation that affects meat quality, in particular traits related to water holding capacity. The aim of our study was to identify UBXN1 polymorphisms and to analyse their association with meat quality traits. Moreover, the relationship of UBXN1 polymorphisms and its transcript abundance as well as the link between UBXN1 expression and water holding capacity were addressed. Pigs of the breed German landrace (GL) and the commercial crossbreed of Pietrain × [German large white × GL] (PiF1) were used for this study. In GL, the novel SNP c.355 C > T showed significant association with conductivity and drip loss (P ≤ 0.05). Another SNP at nt 674 of the coding sequence [SNP c.674C>T (p.Thr225Ile)] was associated with drip loss (P ≤ 0.05) and pH1 (P ≤ 0.1). In PiF1, the SNP UBXN1 c.674C>T was associated with conductivity (P ≤ 0.01). Moreover, the haplotype combinations showed effects on conductivity within both commercial populations at P ≤ 0.1. In both populations, high expression of UBXN1 tended to decrease water holding capacity in the early post mortem period. The analysis of triangular relationship of UBXN1 polymorphism, transcript abundance, and water holding capacity evidences the existence of a causal polymorphism in cis-regulatory regions of UBXN1 that influences its expression.

  2. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere.

    PubMed

    Sargent, M R; Sayres, D S; Smith, J B; Witinski, M; Allen, N T; Demusz, J N; Rivero, M; Tuozzolo, C; Anderson, J G

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT∕LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT∕LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons

  3. Water-vapor foreign-continuum absorption in the 8-12 and 3-5 μm atmospheric windows

    NASA Astrophysics Data System (ADS)

    Klimeshina, T. E.; Rodimova, O. B.

    2015-08-01

    The frequency and temperature dependence of the water vapor-nitrogen continuum in the 8-12 and 3-5 μm spectral regions obtained experimentally by CAVIAR and NIST is described with the use of the line contour constructed on the basis of asymptotic line shape theory. The parameters of the theory found from fitting the calculated values of the absorption coefficient to the pertinent experimental data enter into the expression for the classical potential describing the center-of-mass motion of interacting molecules and into the expression for the quantum potential of two interacting molecules. The frequency behavior of the line wing contours appears to depend on the band the lines of which make a major contribution to the absorption in a given spectral interval. The absorption coefficients in the wings of the band in question calculated with the line contours obtained for other bands are outside of experimental errors. The distinction in the line wing behavior may be explained by the difference in the quantum energies of molecules interacting in different vibrational states.

  4. The maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Yurimoto, H.

    2012-12-01

    Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the

  5. Ditetraalkylammonium amino acid ionic liquids as CO₂ absorbents of high capacity.

    PubMed

    Ma, Jing-Wen; Zhou, Zheng; Zhang, Feng; Fang, Cheng-Gang; Wu, You-Ting; Zhang, Zhi-Bing; Li, Ai-Min

    2011-12-15

    By grafting butyl or ethyl onto tetramethylethylenediamine, quaternary ammonium salts with two positive charge centers were formed at the first step. Metathesis with Ag(2)O followed. Through neutralization with glycine, l-alanine, or valine, a series of new ditetraalkylammonium amino acid ionic liquids (DILs) for CO(2) capture were generated. The structures of DILs, as shown in Figure 1, were verified by using (1)H NMR and EA. These DILs were found to be of quite high viscosity which militated against their industrial application in CO(2) removal. Drawing on the experience of mixed amines' aqueous solutions, these DILs were blended with water or N-methyldiethanolamine (MDEA) aqueous solutions to act as special absorbents of CO(2). Using a Double-Tank Absorption System, the absorption performance of these DIL solutions was investigated in detail. The experimental results indicated that among the three aqueous solutions of DILs (20%, 40%, and 80 wt %), the solution of 40% DIL had a higher absorption rate of CO(2) than the other two, demonstrating the different effects of concentration and viscosity on the absorption. The solution of 40% DIL or the 15% DIL + 15% MDEA had much higher capacity for CO(2) than the corresponding monocation tetraalkylammonium AAILs, due to the special structure of the dication which could influence the solubility of CO(2) in the aqueous solution.

  6. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false General methods for water capacity and fill of containers. 130.12 Section 130.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.12 General...

  7. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    NASA Astrophysics Data System (ADS)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  8. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    PubMed

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in

  9. Water governance: learning by developing adaptive capacity to incorporate climate variability and change.

    PubMed

    Kashyap, A

    2004-01-01

    There is increasing evidence that global climate variability and change is affecting the quality and availability of water supplies. Integrated water resources development, use, and management strategies, represent an effective approach to achieve sustainable development of water resources in a changing environment with competing demands. It is also a key to achieving the Millennium Development Goals. It is critical that integrated water management strategies must incorporate the impacts of climate variability and change to reduce vulnerability of the poor, strengthen sustainable livelihoods and support national sustainable development. UNDP's strategy focuses on developing adaptation in the water governance sector as an entry point within the framework of poverty reduction and national sustainable development. This strategy aims to strengthen the capacity of governments and civil society organizations to have access to early warning systems, ability to assess the impact of climate variability and change on integrated water resources management, and developing adaptation intervention through hands-on learning by undertaking pilot activities.

  10. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  11. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    PubMed

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.

  12. Water holding capacity and evaporative loss from organic bedding materials used in livestock facilities

    USDA-ARS?s Scientific Manuscript database

    Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...

  13. Predicting water-holding capacity of intact chicken broiler breast fillets with Vis/NIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    The ability of using visible and near-infrared (Vis/NIR) spectroscopy to predict water-holding capacity (WHC) of intact chicken broiler breast fillets (pectoralis major) was assessed in this study. Boneless and skinless chicken fillets (214 in total) were procured from a commercial processing plant ...

  14. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  15. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate.

    PubMed

    Sunazuka, Yushi; Ueda, Keisuke; Higashi, Kenjirou; Tanaka, Yusuke; Moribe, Kunikazu

    2018-05-24

    We present the absorption improvement mechanism of fenofibrate (FFB), a Biopharmaceutics Classification System (BCS) class II drug, from self-microemulsifying drug delivery systems (SMEDDS), centered on improving the diffusion of FFB through the unstirred water layer (UWL). Four SMEDDS formulations containing Labrafac™ lipophile WL 1349 (WL1349) or Labrafil ® M 1944CS (M1944) oils and NIKKOL HCO-40 (HCO40) or NIKKOL HCO-60 (HCO60) surfactants were prepared. Every SMEDDS formulation formed microemulsion droplets of approximately 30 nm. In vitro tests showed that the microemulsion droplets containing M1944 had relatively small FFB solubilization capacities, causing larger amounts of FFB to be dissolved in the bulk water phase, compared to the droplets containing WL1349. The diffusivity of the microemulsion droplets through the mucin solution layer was enhanced when using HCO40 compared to HCO60. The oral absorption in rats was the highest when using the SMEDDS formulation containing M1944 and HCO40. High FFB distribution in the bulk water phase and fast diffusion of microemulsion droplets through the mucus layer contributed to the efficient delivery of FFB molecules through the UWL to the epithelial cells, leading to enhanced FFB absorption. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of wooden breast condition on water-holding capacity of broiler breast pectoralis major

    USDA-ARS?s Scientific Manuscript database

    Wooden breast condition (WBC) is an emerging muscle abnormality with broiler breast meat. Limited studies have shown that WBC significantly affects meat quality. The objective of this study was to evaluate the effects of WBC on water-holding capacity (WHC) of broiler breast pectoralis major. Broiler...

  17. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    PubMed

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p < 0.001), indicating that CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC <2 mg/L and total suspended matter (TSM) concentrations <15 mg/L. These results demonstrate that the CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  18. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    NASA Astrophysics Data System (ADS)

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine

    2017-03-01

    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC

  19. Heat Capacity of Hydrous Silicate Melts

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T capacity, which generally gets larger with increasing water content and with decreasing polymerization. The onset of the glass transition in hydrous samples also occurs below the Dulong-Petit limit of 3R/g atom. We see little change in liquid heat capacity with increasing water content; hydrous liquid heat capacities are within 3-6% of the dry liquid, at low temperatures just above the glass transition. However, dry liquids show a decrease in heat capacity with increasing temperature above the glass transition, from supercooled to superliquidus temperatures. Liquid heat capacity values just above the glass transition range between 95-100 J/mol K, whereas liquid heat capacity values at superliquidus temperatures are between 85-91 J/mol K. Comparison with other studies of the heat capacity of hydrous glasses and liquids shows that the liquid heat capacity of strongly depolymerized samples (NBO/T ≥ 0.8) increases with increasing water content, whereas depolymerized samples (0.4 ≤ NBO/T ≤ 0.8) or polymerized samples (NBO/T ≤ 0.4) generally show little change or a moderate decrease in liquid heat capacity with increasing water content.

  20. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.

    PubMed

    Oliver, Ian W; Grant, Cameron D; Murray, Robert S

    2011-03-01

    Water treatment residuals (WTRs) are the by-products of drinking water clarification processes, whereby chemical flocculants such as alum or ferric chloride are added to raw water to remove suspended clay particles, organic matter and other materials and impurities. Previous studies have identified a strong phosphorus (P) fixing capacity of WTRs which has led to experimentation with their use as P-sorbing materials for controlling P discharges from agricultural and forestry land. However, the P-fixing capacity of WTRs and its capacity to retain sorbed P under anaerobic conditions have yet to be fully demonstrated, which is an issue that must be addressed for WTR field applications. This study therefore examined the capacity of WTRs to retain sorbed P and sorb further additional P from aqueous solution under both aerobic and anaerobic conditions. An innovative, low cost apparatus was constructed and successfully used to rapidly establish anoxic conditions in anaerobic treatments. The results showed that even in treatments with initial solution P concentrations set at 100 mg l(-1), soluble reactive P concentrations rapidly fell to negligible levels (due to sorption by WTRs), while total P (i.e. dissolved + particulate and colloidal P) was less than 3 mg l(-1). This equated to an added P retention rate of >98% regardless of anaerobic or aerobic status, indicating that WTRs are able to sorb and retain P in both aerobic and anaerobic conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation.

    PubMed

    Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie

    2016-06-02

    Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery.

  2. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  3. Capacity building in water demand management as a key component for attaining millennium development goals

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Forster, Laura; Arntzen, Jaap

    Successful water demand management (WDM) implementation as a component of integrated water resource management (IWRM) can play a significant role in the alleviation of poverty through more efficient use of available water resources. The urban population in Southern African cities is characterised by so-called ‘water poor’ communities who typically expend a high percentage of their household income on poor quality water. Usually they have no access to an affordable alternative source. Although WDM as a component of IWRM is not a panacea for poverty, it can help alleviate poverty by facilitating water services management by municipal water supply agencies (MWSAs) in the region. WDM is a key strategy for achieving the millennium development goals (MDGs) and, as such, should be given due attention in the preparation of national IWRM and water efficiency plans. Various studies in the Southern African region have indicated that capacity building is necessary for nations to develop IWRM and water-use efficiency plans to meet the targets set out in the MDGs. WDM education and training of water professionals and end-users is particularly important in developing countries, which are resource and information-access poor. In response to these findings, The World Conservation Union (IUCN) and its consulting partners, the Training and Instructional Design Academy of South Africa (TIDASA), and Centre for Applied Research (CAR) designed, developed and presented a pilot WDM Guideline Training Module for MWSAs as part of Phase II of IUCN’s Southern Africa regional WDM project. Pilot training was conducted in July 2004 in Lusaka, Zambia for a group of 36 participants involved in municipal water supply from nine Southern African countries. This paper looks at the links between building the capacity of professionals, operational staff and other role-players in the municipal water supply chain to implement WDM as part of broader IWRM strategies, and the subsequent potential for

  4. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  5. Short-term changes in loblolly pine water conductance and photosynthetic capacity from fertilizer source and straw harvesting

    Treesearch

    Michael A. Blazier; Keith Ellum; Hal O. Liechty

    2012-01-01

    Organic matter removal associated with intensive straw harvesting in loblolly pine (Pinus taeda L.) plantations has the potential to alter tree water regimes and photosynthetic capacity. Fertilization done to remedy nutrient removals from straw harvesting, as well as the type of fertilizer, likewise has potential to change water regimes and...

  6. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  7. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    NASA Astrophysics Data System (ADS)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  8. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption.

    PubMed

    Zhang, Pei; Shi, Yao; Wei, Jianwen; Zhao, Wei; Ye, Qing

    2008-01-01

    To improve the efficiency of the carbon dioxide cycling process and to reduce the regeneration energy consumption, a sterically hindered amine of 2-amino-2-methyl-1-propranol (AMP) was investigated to determine its regeneration behavior as a CO2 absorbent. The CO2 absorption and amine regeneration characteristics were experimentally examined under various operating conditions. The regeneration efficiency increased from 86.2% to 98.3% during the temperature range of 358 to 403 K. The most suitable regeneration temperature for AMP was 383 K, in this experiment condition, and the regeneration efficiency of absorption/regenerationruns descended from 98.3% to 94.0%. A number of heat-stable salts (HSS) could cause a reduction in CO2 absorption capacity and regeneration efficiency. The results indicated that aqueous AMP was easier to regenerate with less loss of absorption capacity than other amines, such as, monoethanolamine (MEA), diethanolamine (DEA), diethylenetriamine (DETA), and N-methyldiethanolamine (MDEA).

  9. Impaired absorption of marked oligopeptide Glycine-I Tyrosine-Glycine after successful autologous-allotopic ileal mucosa transplantation in beagles.

    PubMed

    Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z

    2004-10-01

    After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.

  10. Water solubilization capacity of pharmaceutical microemulsions based on Peceol®, lecithin and ethanol.

    PubMed

    Mouri, Abdelkader; Diat, Olivier; Lerner, Dan Alain; El Ghzaoui, Abdeslam; Ajovalasit, Alessia; Dorandeu, Christophe; Maurel, Jean-Claude; Devoisselle, Jean-Marie; Legrand, Philippe

    2014-11-20

    Biocompatible microemulsions composed of Peceol(®), lecithin, ethanol and water developed for encapsulation of hydrophilic drugs were investigated. The binary mixture Peceol(®)/ethanol was studied first. It was shown that the addition of ethanol to pure Peceol(®) has a significant fluidifying and disordering effect on the Peceol(®) supramolecular structure with an enhancement in water solubilization. The water solubilization capacity was improved by adding lecithin as a third component. It was then demonstrated that the ethanol/lecithin weight ratio played an important role in determining the optimal composition in term of water solubilization efficiency, a necessary property for a nutraceutical or pharmaceutical application. The optimal ethanol/lecithin weight ratio in the Peceol(®) rich region was found to be 40/60. Combination different techniques such as SAXS, fluorimetry, rheology and conductivity, we analyzed the water uptake within the microemulsion taking into account the partitioning of ethanol between polar and apolar domains. This ethanol distribution quantified along a water dilution line has a major effect on microemulsion properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  12. Identifying Electricity Capacity at Risk to Changes in Climate and Water Resources in the United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Corsi, F.; Fekete, B. M.; Newmark, R. L.; Tidwell, V. C.; Cohen, S. M.

    2016-12-01

    Thermoelectric plants supply 85% of electricity generation in the United States. Under a warming climate, the performance of these power plants may be reduced, as thermoelectric generation is dependent upon cool ambient temperatures and sufficient water supplies at adequate temperatures. In this study, we assess the vulnerability and reliability of 1,100 operational power plants (2015) across the contiguous United States under a comprehensive set of climate scenarios (five Global Circulation Models each with four Representative Concentration Pathways). We model individual power plant capacities using the Thermoelectric Power and Thermal Pollution model (TP2M) coupled with the Water Balance Model (WBM) at a daily temporal resolution and 5x5 km spatial resolution. Together, these models calculate power plant capacity losses that account for geophysical constraints and river network dynamics. Potential losses at the single-plant level are put into a regional energy security context by assessing the collective system-level reliability at the North-American Electricity Reliability Corporation (NERC) regions. Results show that the thermoelectric sector at the national level has low vulnerability under the contemporary climate and that system-level reliability in terms of available thermoelectric resources relative to thermoelectric demand is sufficient. Under future climates scenarios, changes in water availability and warm ambient temperatures lead to constraints on operational capacity and increased vulnerability at individual power plant sites across all regions in the United States. However, there is a strong disparity in regional vulnerability trends and magnitudes that arise from each region's climate, hydrology and technology mix. Despite increases in vulnerabilities at the individual power plant level, regional energy systems may still be reliable (with no system failures) due to sufficient back-up reserve capacities.

  13. Annual variability in light absorption by particles and colored dissolved organic matter in the Crimean coastal waters (the Black Sea)

    NASA Astrophysics Data System (ADS)

    Churilova, T.; Moiseeva, N.; Efimova, T.; Suslin, V.; Krivenko, O.; Zemlianskaia, E.

    2017-11-01

    Bio-optical studies were carried out in coastal waters around the Crimea peninsula in different seasons 2016. It was shown that variability of chlorophyll a concentration (Chl-a), light absorption by suspended particles (ap(λ)), phytoplankton pigments (aph(λ)), non-algal particles (aNAP(λ)) and by colored dissolved organic matter (aCDOM(λ)) in the Crimea coastal water was high ( order of magnitudes) in all seasons 2016. Relationships between ap(440), aph(440) and Chl-a were obtained and their seasonal differences were analyzed. Spectral distribution of aNAP(λ) and aCDOM(λ) were parameterized. Seasonality in aCDOM(λ) parameterization was revealed, but - in aNAP(λ) parameterization was not revealed. The budget of light absorption by aph(λ), aNAP(λ) i aCDOM(λ) at 440 nm was assessed and its seasonal dynamics was analyzed.

  14. Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota

    USGS Publications Warehouse

    Ludden, A.P.; Frink, D.L.; Johnson, D.H.

    1983-01-01

    Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.

  15. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  16. Water security and adaptive capacity for climate: Learning lessons from drought decision making in U.S. urban contexts

    NASA Astrophysics Data System (ADS)

    Dilling, L.

    2017-12-01

    Cities in the U.S. have been adapting to drought for many years, implementing a combination of mechanisms to cope with climate and water variability and increasing population. Cities are also at the frontline for making decisions about adaptation to climate change. Are decisions made to cope with drought helping cities to build the adaptive capacity necessary for adapting to climate change? We examined this question by conducting interviews with practitioners involved in drought management at urban water utilities across the U.S. to understand responses to drought and perceptions of their effectiveness. We then drew on established criteria for evaluating successful adaptation (effectiveness, efficiency, equity and legitimacy) to analyze whether these drought policies would build adaptive capacity for climate change. We find that drought responses overall are seen as successful in helping cities balance the demand and supply of water, and maintain system reliability as well as improve water awareness, but can have unintended consequences and shift vulnerability in unexpected ways. For example, even though cities are successful at reducing water use when needed, some are concerned with the increasing difficulty of finding new water savings during a future drought. Secondly, water conservation can affect revenue, impacting the ability of cities to plan for maintenance and capital costs. Third, the social acceptability of policy options is critical and depends on perceived fairness and other factors. Water managers are also challenged by "no fail" expectations that make it difficult to experiment. Moreover some measures can shift vulnerability from one risk, such as running out of water, to another risk, such as water becoming too expensive, lowering quality, or not meeting other key infrastructure design requirements. These findings demonstrate that adaptation measures that seek to reduce exposure to water scarcity can impact aspects of adaptive capacity, and shift

  17. Heat Capacity, Body Temperature, and Hypothermia

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.

    1998-01-01

    Even when air and water are at the same temperature, water will "feel" distinctly colder to us. This difference is due to the much higher heat capacity of water than of air. Offered here is an interesting life science application of water's high heat capacity and its serious implications for the maintenance of body temperature and the prevention of hypothermia in warm-blooded animals.

  18. A method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry.

    PubMed

    Parkinson, I S; Ward, M K; Kerr, D N

    1982-10-27

    A simple but reliable method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry is described. No preparatory procedures are required for water samples, although serum is mixed with a wetting agent (Triton X-100) to allow complete combustion of the samples and to improve analytical precision. Precautions to prevent contamination during sample handling are discussed and instrumental parameters are defined. The method has a sensitivity of 35.5 pg and detection limits of 2.3 micrograms Al/l for serum and 1.3 micrograms Al/l for water. The method was used to determine the aluminium concentration in serum of 46 normal subjects. The mean aluminium content was 7.3 micrograms/l (range 2--15 micrograms/l.

  19. Estimating a Global Hydrological Carrying Capacity Using GRACE Observed Water Stress

    NASA Astrophysics Data System (ADS)

    An, K.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    Global population is expected to reach 9 billion people by the year 2050, causing increased demands for water and potential threats to human security. This study attempts to frame the overpopulation problem through a hydrological resources lens by hypothesizing that observed groundwater trends should be directly attributed to human water consumption. This study analyzes the relationships between available blue water, population, and cropland area on a global scale. Using satellite data from NASA's Gravity Recovery and Climate Experiment (GRACE) along with land surface model data from the Global Land Data Assimilation System (GLDAS), a global groundwater depletion trend is isolated, the validity of which has been verified in many regional studies. By using the inherent distributions of these relationships, we estimate the regional populations that have exceeded their local hydrological carrying capacity. Globally, these populations sum to ~3.5 billion people that are living in presently water-stressed or potentially water-scarce regions, and we estimate total cropland is exceeding a sustainable threshold by about 80 million km^2. Key study areas such as the North China Plain, northwest India, and Mexico City were qualitatively chosen for further analysis of regional water resources and policies, based on our distributions of water stress. These case studies are used to verify the groundwater level changes seen in the GRACE trend . Tfor the many populous, arid regions of the world that have already begun to experience the strains of high water demand.he many populous, arid regions of the world have already begun to experience the strains of high water demand. It will take a global cooperative effort of improving domestic and agricultural use efficiency, and summoning a political will to prioritize environmental issues to adapt to a thirstier planet. Global Groundwater Depletion Trend (Mar 2003-Dec 2011)

  20. Intestinal "bioavailability" of solutes and water: we know how but not why.

    PubMed Central

    Charney, A. N.

    1996-01-01

    Only minimal quantities of ingested and normally secreted solutes and water are excreted in the stool. This near 100% bioavailability means that the diet and kidneys are relatively more important determinants of solute, water and acid-base balance than the intestine. Intestinal bioavailability is based on excess transport capacity under normal conditions and the ability to adapt to altered or abnormal conditions. Indeed, the regulatory system of the intestine is as complex, segmented and multi factorial as in the kidney. Alterations in the rate and intestinal site of absorption reflect this regulation, and the diagnosis and treatment of various clinical abnormalities depend on the integrity of intestinal absorptive processes. However, the basis for this regulation an bioavailability are uncertain. Perhaps they had survival value for mammals, a phylogenic class that faced the twin threats of intestinal pathogens and shortages of solutes and water. PMID:9273987

  1. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2013-02-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  2. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    NASA Astrophysics Data System (ADS)

    Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain

    2018-04-01

    The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  3. The room temperature annealing peak in ionomers: Ionic crystallites or water absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, R.J.; Grady, B.P.; Cooper, S.L.

    1994-03-28

    A quaternized diol, 3-(trimethylammonio)-1,2-propanediol neutralized with either bromine or iodine, was used to produce a polyurethane cationomer with a poly(tetramethylene oxide) soft segment and a 4,4[prime]-diphenylmethane diisocyanate hard segment. If those cationomers were annealed at room temperature for a period of approximately 1 month in a desiccator filled with dry CaSO[sub 4], differential scanning calorimetry (DSC) studies showed an endotherm centered near 70 C which was not present in the unannealed polymer and did not reappear upon subsequent cooling and heating cycles in the DSC. Some authors have suggested that a very similar endotherm found in other ionomers, most notablymore » ethylene-methacrylic acid (E-MAA) copolymer ionomers, was due to an order-disorder transition within the ionic aggregates, i.e. ionic crystallite melting. In order to isolate the origin of this endotherm, the local environment around the anion in compression molded bromine neutralized samples was measured using the extended X-ray absorption fine-structure (EXAFS) technique. By measuring the change in the local environment over the temperature range corresponding to the DSC endotherm, it has been shown that this endotherm corresponds to water leaving the bromine coordination shell, rather than ionic crystallite melting. Other studies which include thoroughly drying the material in a vacuum oven below the transition temperature to remove the water suggest that the endotherm is due to the energetic change associated with water leaving the coordination environment of the anion in combination with water vaporization.« less

  4. Structural study of aggregated β-carotene by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  5. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  6. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less

  7. Studies on Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534

  8. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    PubMed

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  9. The potential water buffering capacity of urban green infrastructure in an arid environment

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Yang, J.

    2017-12-01

    Urban green infrastructure offers arid cities an attractive means of mitigation/adaptation to environmental challenges of elevated thermal stress, but imposes the requirement of outdoor irrigation that aggravates the stress of water resource management. Future development of cities is inevitably constrained by the limited availability of water resources, under challenges of emergent climate change and continuous population growth. This study used the Weather Research and Forecasting model with urban dynamics to assess the potential water buffering capacity of urban green infrastructure in arid environments and its implications for sustainable urban planning. The Phoenix metropolitan area, Arizona, United States, is adopted as a testbed with two hypothetical cases, viz. the water-saving and the fully-greening scenarios investigated. Modifications of the existing green infrastructure and irrigation practices are found to significantly influence the thermal environment of Phoenix. In addition, water saving by xeriscaping (0.77 ± 0.05 × 10^8 m^3) allows the region to support 19.8% of the annual water consumption by the projected 2.62 million population growth by 2050, at a cost of an increase in urban ambient temperature of about 1 o^C.

  10. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  11. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  12. Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Zhang, Xiaofang; Zhao, Jiangqi; Li, Qingye; Ao, Chenghong; Xia, Tian; Zhang, Wei; Lu, Canhui

    Sorbents derived from biomass provide a novel approach to settle issues of organic solvent and/or oil leakage. In this work, a novel carbon aerogel (CA) was prepared as sorbents using the cheap and abundant bamboo pulp fibers as precursors through the pyrolysis method. The CA displayed an ultra-low density (5.65 mg cm-3), high hydrophobicity (water contact angle of 135.9°) and a large specific surface area (379.39 m2 g-1) as well as great mechanical properties. The absorption capacities of CA for organic solvents/oils were extraordinary (50-150 g/g). Particularly, its absorption on organic solvents was superior to many other bio-based CAs. The reusability of CA was also found impressive. For over five absorption-desorption cycles, the CA still showed excellent absorption behaviors on organic solvents and oils. Importantly, the fabrication process of CA is quite simple and environmentally friendly, demonstrating high potentials for future water treatment applications.

  13. Bio-optical characterization of offshore NW Mediterranean waters: CDOM contribution to the absorption budget and diffuse attenuation of downwelling irradiance

    NASA Astrophysics Data System (ADS)

    Pérez, Gonzalo L.; Galí, Martí; Royer, Sarah-Jeanne; Sarmento, Hugo; Gasol, Josep M.; Marrasé, Cèlia; Simó, Rafel

    2016-08-01

    We investigated the peculiar bio-optical characteristics of the Mediterranean Sea focusing on the spectral diffuse attenuation coefficient [Kd (λ)] and its relationship with chlorophyll a concentration (Chl a), complemented with measurements of light absorption by chromophoric dissolved organic matter (CDOM) and the optical properties of particulate material. The non-water absorption budget showed that CDOM was the largest contributor in the 300-600 nm range (>60% of the absorption at 443 nm in the euphotic layer), increasing to 80% within the first optical depth (FOD). This translated into CDOM accounting for >50% of KdBio (λ) (the irradiance attenuation coefficient caused by all non-water absorptions) between 320 and 555 nm and throughout both layers (FOD and euphotic). Indeed, we tested three Chl a-based bio-optical models and all three underestimated Kd (λ), evidencing the importance of CDOM beside Chl a to fully account for light attenuation. The Morel & Maritorena (2001) model (M&M 01) underestimated Kd (λ) in the UV and blue spectral regions within the FOD layer, showing lower differences with increasing wavelengths. The Morel et al. (2007a) model (BGS 07) also underestimated Kd (λ) in the FOD layer, yet it performed much better in the 380-555 nm range. In the euphotic layer, the Morel (1988) model (JGR 88) underestimated Kd (λ) showing higher differences at 412 and 443 nm and also performed better at higher wavelengths. Observed euphotic layer depths (Z1%) were 28 m shallower than those predicted with the M&M 01 empirical relationship, further highlighting the role of CDOM in the bio-optical peculiarity of Mediterranean Sea. In situ measurements of the CDOM index (Φ), an indicator of the deviation of the CDOM-Chl a average relationship for Case 1 waters, gave a mean of 5.9 in the FOD, consistent with simultaneous estimates from MODIS (4.8±0.4). The implications of the bio-optical anomaly for ecological and biogeochemical inferences in the

  14. Sugarcane bagasse derivative-based superabsorbent containing phosphate rock with water-fertilizer integration.

    PubMed

    Zhong, Kang; Zheng, Xi-Liang; Mao, Xiao-Yun; Lin, Zuan-Tao; Jiang, Gang-Biao

    2012-10-01

    To improve the water-fertilizer utilization ratio and mitigate the environmental contamination, an eco-friendly superabsorbent polymer (SPA), modified sugarcane bagasse/poly (acrylic acid) embedding phosphate rock (MSB/PAA/PHR), was prepared. Ammonia, phosphate rock (PHR) and KOH were admixed in the presence of acrylic acid to provide nitrogen (N), phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent polymer (SAP) were investigated. The maximum swelling capacity in distilled water and 0.9 wt.% (weight percent) NaCl solution reached 414 gg(-1) and 55 gg(-1) (water/prepared SAP), respectively. The available NPK contents of the combination system were 15.13 mgg(-1), 6.93 mgg(-1) and 52.05 mgg(-1), respectively. Moreover, the release behaviors of NPK in the MSB/PAA/PHR were also studied. The results showed that the MSB/PAA/PHR has outstanding sustained-release plant nutrients property. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Evaluation of alkaline electrolyzed water to replace traditional phosphate enhancement solutions: Effects on water holding capacity, tenderness, and sensory characteristics.

    PubMed

    Rigdon, Macc; Hung, Yen-Con; Stelzleni, Alexander M

    2017-01-01

    Sixty-four pork loins were randomly assigned to one of four treatments to evaluate the use of alkaline electrolyzed reduced water as a replacement for traditional enhancement solutions. Treatments included: alkaline electrolyzed reduced water (EOH; pH≈11.5), EOH plus 2.5% potassium-lactate (EOK), industry standard (IS; 0.35% sodium tri-polyphosphate, 0.14% sodium chloride, 2.5% potassium-lactate), and no enhancement (CON). After enhancement (targeting 110%) and rest period, chops were cut (2.54-cm) to test treatment effects on water holding capacity, Warner-Bratzler shear force (WBSF), and sensory attributes. Despite its alkaline nature EOH chops exuded more water (P<0.05) than EOK, IS, or CON chops. Control chops were similar (P>0.05) to EOK, however CON and EOK both lost more moisture (P<0.05) than IS. The use of alkaline electrolyzed reduced water did not improve WBSF or sensory characteristics compared to IS treated chops. As a stand-alone enhancement solution alkaline electrolyzed reduced water was not a suitable replacement for industry standard solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Heat capacity anomaly in a self-aggregating system: Triblock copolymer 17R4 in water

    NASA Astrophysics Data System (ADS)

    Dumancas, Lorenzo V.; Simpson, David E.; Jacobs, D. T.

    2015-05-01

    The reverse Pluronic, triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14 - PEO24 - PPO14, where the number of monomers in each block is denoted by the subscripts. In water, 17R4 has a micellization line marking the transition from a unimer network to self-aggregated spherical micelles which is quite near a cloud point curve above which the system separates into copolymer-rich and copolymer-poor liquid phases. The phase separation has an Ising-like, lower consolute critical point with a well-determined critical temperature and composition. We have measured the heat capacity as a function of temperature using an adiabatic calorimeter for three compositions: (1) the critical composition where the anomaly at the critical point is analyzed, (2) a composition much less than the critical composition with a much smaller spike when the cloud point curve is crossed, and (3) a composition near where the micellization line intersects the cloud point curve that only shows micellization. For the critical composition, the heat capacity anomaly very near the critical point is observed for the first time in a Pluronic/water system and is described well as a second-order phase transition resulting from the copolymer-water interaction. For all compositions, the onset of micellization is clear, but the formation of micelles occurs over a broad range of temperatures and never becomes complete because micelles form differently in each phase above the cloud point curve. The integrated heat capacity gives an enthalpy that is smaller than the standard state enthalpy of micellization given by a van't Hoff plot, a typical result for Pluronic systems.

  17. UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY

    EPA Science Inventory

    Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...

  18. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture †

    PubMed Central

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-del Pozo, Julia Mª; Guerra-Romero, M. Ignacio

    2014-01-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique. PMID:28788188

  19. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  20. A Multi-Tiered Approach for Building Capacity in Hydrologic Modeling for Water Resource Management in Developing Regions

    NASA Astrophysics Data System (ADS)

    Markert, K. N.; Limaye, A. S.; Rushi, B. R.; Adams, E. C.; Anderson, E.; Ellenburg, W. L.; Mithieu, F.; Griffin, R.

    2017-12-01

    Water resource management is the process by which governments, businesses and/or individuals reach and implement decisions that are intended to address the future quantity and/or quality of water for societal benefit. The implementation of water resource management typically requires the understanding of the quantity and/or timing of a variety of hydrologic variables (e.g. discharge, soil moisture and evapotranspiration). Often times these variables for management are simulated using hydrologic models particularly in data sparse regions. However, there are several large barriers to entry in learning how to use models, applying best practices during the modeling process, and selecting and understanding the most appropriate model for diverse applications. This presentation focuses on a multi-tiered approach to bring the state-of-the-art hydrologic modeling capabilities and methods to developing regions through the SERVIR program, a joint NASA and USAID initiative that builds capacity of regional partners and their end users on the use of Earth observations for environmental decision making. The first tier is a series of trainings on the use of multiple hydrologic models, including the Variable Infiltration Capacity (VIC) and Ensemble Framework For Flash Flood Forecasting (EF5), which focus on model concepts and steps to successfully implement the models. We present a case study for this in a pilot area, the Nyando Basin in Kenya. The second tier is focused on building a community of practice on applied hydrology modeling aimed at creating a support network for hydrologists in SERVIR regions and promoting best practices. The third tier is a hydrologic inter-comparison project under development in the SERVIR regions. The objective of this step is to understand model performance under specific decision-making scenarios, and to share knowledge among hydrologists in SERVIR regions. The results of these efforts include computer programs, training materials, and new

  1. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    PubMed

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  2. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  3. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for Southern Beaufort Sea (Canadian Arctic) waters: application to deriving concentrations of dissolved organic carbon from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2012-10-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  4. A new device for acquiring ground truth on the absorption of light by turbid waters

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1974-01-01

    The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.

  5. Evaluation of Enthalpy Diagrams for NH3-H2O Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Saito, Kiyoshi; Kawai, Sunao

    The protection of environment is becoming a grave problem nowadays and an absorption refrigerator, which does not use fleon as a refrigerant, is acquiring a close attention. Among the absorption refrigerators, a number of ammonia-water absorption refrigerators are being used in realm such as refrigeration and ice accumulation, since this type of refrigerator can produce below zero degree products. It is essential to conduct an investigation on the characteristics of ammonia-water absorption refrigerator in detail by means of computer simulation in order to realize low cost, highly efficient operation. Unfortunately, there have been number of problems in order to conduct computer simulations. Firstly, Merkel's achievements of enthalpy diagram does not give the relational equations. And secondly, although relational equation are being proposed by Ziegler, simpler equations that can be applied to computer simulation are yet to be proposed. In this research, simper equations based on Ziegler's equations have been derived to make computer simulation concerning the performance of ammonia-water absorption refrigerator possible-Both results of computer simulations using simple equations and Merkel's enthalpy diagram respectively, have been compared with the actual experimental data of one staged ammonia-water absorption refrigerator. Consequently, it is clarified that the results from Ziegler's equations agree with experimental data better than those from Merkel's enthalpy diagram.

  6. Super water-absorbing new material from chitosan, EDTA and urea.

    PubMed

    Narayanan, Abathodharanan; Dhamodharan, Raghavachari

    2015-12-10

    A new, super water-absorbing, material is synthesized by the reaction between chitosan, EDTA and urea and named as CHEDUR. CHEDUR is probably formed through the crosslinking of chitosan molecules (CH) with the EDTA-urea (EDUR) adduct that is formed during the reaction. CHEDUR as well as the other products formed in control reactions are characterized extensively. CHEDUR exhibits a very high water uptake capacity when compared with chitosan, chitosan-EDTA adduct, as well as a commercial diaper material. A systematic study was done to find the optimum composition as well as reaction conditions for maximum water absorbing capacity. CHEDUR can play a vital role in applications that demand the rapid absorption and slow release of water such as agriculture, as a three in one new material for the slow release of urea, water and other metal ions that can be attached through the EDTA component. The other potential advantage of CHEDUR is that it can be expected to degrade in soil based on its chitosan backbone. The new material with rapid and high water uptake could also find potential applications as biodegradable active ingredient of the diaper material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Effects of Atmospheric Water Vapor Absorption on Infrared Laser Propagation in the 5 Micrometer Band.

    DTIC Science & Technology

    1983-05-01

    which allows for thermal linedr expansion of the structure. 32 1 I 2. Second Harmonic Generation The second harmonic generation was achieved by mounting a...filter unit and then to the reference channel lock-in amplifier. C. TESTS 1 . DC Amplifier and A/D Calibration The Ectron DC amplifiers and the Altair A/D...AD-A130 788 THE EFFECTS OF ATMOSPHERIC WATER VAPOR ABSORPTION ON 1 / INFRARED LASER PRUPA..(U) OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB L G WALTER

  8. Liquid for absorption of solar heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  9. Exploring the capacity of radar remote sensing to estimate wetland marshes water storage.

    PubMed

    Grings, F; Salvia, M; Karszenbaum, H; Ferrazzoli, P; Kandus, P; Perna, P

    2009-05-01

    This paper focuses on the use of radar remote sensing for water storage estimation in wetland marshes of the Paraná River Delta in Argentina. The approach followed is based on the analysis of a temporal set of ENVISAT ASAR data which includes images acquired under different polarizations and incidence angles as well as different environmental conditions (water level, precipitation, and vegetation condition). Two marsh species, named junco and cortadera, were monitored. This overall data set gave us the possibility of studying and understanding the basic interactions between the radar, the soil under different flood conditions, and the vegetation structure. The comprehension of the observed features was addressed through electromagnetic models developed for these ecosystems. The procedure used in this work to estimate water level within marshes combines a direct electromagnetic model, field work data specifically obtained to feed the model, the actual ASAR measurements and a well known retrieval scheme based on a cost function. Results are validated with water level evaluations at specific points. A map showing an estimation of the water storage capacity and its error in junco and cortadera areas for the date where the investigation was done is also presented.

  10. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    NASA Technical Reports Server (NTRS)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  11. Lignin-based hydrogels with "super-swelling" capacities for dye removal.

    PubMed

    Domínguez-Robles, Juan; Peresin, María Soledad; Tamminen, Tarja; Rodríguez, Alejandro; Larrañeta, Eneko; Jääskeläinen, Anna-Stiina

    2018-04-12

    Lignin is a complex natural polymer and it is one of the main constituent of the lignocellulosic biomass. Moreover, it is a bio-renewable material and it is available in large amounts as by-product from the forest industry. Lignin-based hydrogels with high swelling capabilities were prepared by crosslinking poly (methyl vinyl ether co-maleic acid) and different technical lignins in ammonium and sodium hydroxide solutions. The produced hydrogels showed a wide range of water absorption capacities varying from 13 to 130 g of water per 1 g of sample. It was observed that the higher the water uptake the poorer mechanical performance, as evaluated in terms of storage and loss modulus (G' and G″, respectively) of the materials. Methylene blue (MB) was used as a model dye to evaluate the adsorption and release capabilities of the lignin hydrogels. Results suggested that these hydrogels showed a high MB removal efficiency, which ranged from 12 to 96%. On the contrary, the percentages of MB released depended on the negative surface charge of the hydrogels, showing values which ranged from 0.06 to 0.35%. Thus, these materials have potential to be used as adsorbents for the removal of organic dyes from waste water. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Determination of the Self-organized Mesoporous Materials Sorption Capacity in Water Treatment Processes Using Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feklistov, D. Yu.; Filippov, V. P.; Kurchatov, I. M.; Laguntsov, N. I.

    Different approaches to water purification are considered. It is shown that for developing of effective purification methods in the different water treatment technologies special knowledge is necessary. This knowledge deals with physical-chemical processes of used reagents interaction with contaminating impurities. The obtaining of the necessary data on physics-chemical processes such as the formation of chemical compounds of iron, the change in valence state of iron, adsorption and absorption pollutants are analyzed. The usage of iron compounds as a cleaners and the water treatment from the iron pollutant are the events, in which Mössbauer spectroscopy allows to determine not only the chemical changes, but also to obtain quantitative data on the reaction products and on the sizes of reaction products and their quantities.

  13. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  14. Super-hydrophilicity of hydroxy modified poly(m-phenylenediamine) aerogel for separation of oil/water and biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Liu, Zhiduo; Zhang, Nan; Li, Jiurong; Xu, Anli; Xiang, Pengcheng; Hu, Xurui; Guo, Qinglei; Chen, Da

    2018-04-01

    We demonstrate the ultra-light weight and super-hydrophilic hydroxyl modified poly (m-phenylenediamine) (Hy-PmPD) aerogel by utilizing simple oxygen plasma treatment. The average pore size and specific surface area are obtained as 5.21 nm and 671 m2 g‑1, respectively. Due to the large amount of oxygen-containing groups (e.g., C–OH and N–OH), the contact angle of Hy-PmPD for water is about 7.2°, which indicates the super-hydrophilic ability of Hy-PmPD. The large surface area and super-hydrophilic nature of ultra- light weight Hy-PmPD aerogel conclusively certify that high absorption capacities and ultrafast absorption rate for water. As a result, the Hy-PmPD aerogel enables to separate crude oil and water. Additionally, the Hy-PmPD aerogel indicates good biocompatibility that can be implanted as the bio-platform for monitoring the cell culture behavior. This work may provide a facile and effective strategy for the applications in the absorption or removal of organics, particularly in environmental protection, pollution control, as well as noninvasive to the microflora.

  15. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects.

    PubMed

    Hurrell, Richard F; Reddy, Manju B; Juillerat, Marcel-A; Cook, James D

    2003-05-01

    Phytic acid in cereal-based and legume-based complementary foods inhibits iron absorption. Low iron absorption from cereal porridges contributes to the high prevalence of iron deficiency in infants from developing countries. The objective was to measure the influence of phytic acid degradation on iron absorption from cereal porridges. An exogenous phytase was used to fully degrade phytic acid during the manufacture of 9 roller-dried complementary foods based on rice, wheat, maize, oat, sorghum, and a wheat-soy blend. Iron absorption from the phytate-free and native phytate porridges prepared with water or milk (wheat only) was measured in adult humans with an extrinsic-label radioiron technique. Ascorbic acid was added to some porridges. When the foods were reconstituted with water, dephytinization increased iron absorption from rice porridge from 1.73% to 5.34% (P < 0.001), from oat from 0.33% to 2.79% (P < 0.0001), from maize from 1.80% to 8.92% (P < 0.0001), from wheat from 0.99% to 11.54% (P < 0.0001), from the wheat-soy blend without ascorbic acid from 1.15% to 3.75% (P < 0.005), and from the wheat-soy blend with ascorbic acid from 2.40% to 8.46% (P < 0.005). Reconstituting wheat porridge with milk instead of water markedly decreased or completely removed the enhancing effect of dephytinization on iron absorption in the presence and absence of ascorbic acid. Dephytinization did not increase iron absorption from high-tannin sorghum porridge reconstituted with water but increased iron absorption from low-tannin sorghum porridge by approximately 2-fold (P < 0.01). Phytate degradation improves iron absorption from cereal porridges prepared with water but not with milk, except from high-tannin sorghum.

  16. Altered intestinal absorption of L-thyroxine caused by coffee.

    PubMed

    Benvenga, Salvatore; Bartolone, Luigi; Pappalardo, Maria Angela; Russo, Antonia; Lapa, Daniela; Giorgianni, Grazia; Saraceno, Giovanna; Trimarchi, Francesco

    2008-03-01

    To report eight case histories, and in vivo and in vitro studies showing coffee's potential to impair thyroxine (T4) intestinal absorption. Of eight women with inappropriately high or nonsuppressed thyroid-stimulating hormone (TSH) when T4 was swallowed with coffee/espresso, six consented to the evaluation of their T4 intestinal absorption. This in vivo test was also administered to nine volunteers. In three separate tests, two 100 microg T4 tablets were swallowed with coffee, water, or water followed, 60 minutes later, by coffee. Serum T4 was assayed over the 4-hour period of the test. Two patients and two volunteers also agreed on having tested the intestinal absorption of T4 swallowed with solubilized dietary fibers. In the in vitro studies, classical recovery tests on known concentrations of T4 were performed in the presence of saline, coffee, or known T4 sequestrants (dietary fibers, aluminium hydroxide, and sucralfate). For the in vivo test, average and peak incremental rise of serum T4 (AIRST4 and PIRST4), time of maximal incremental rise of serum T4 (TMIRST4), and area under the curve (AUC) were determined. In patients and volunteers, the four outcome measures were similar in the water and water + coffee tests. In patients and volunteers, compared to water, coffee lowered AIRST4 (by 36% and 29%), PIRST4 (by 30% and 19%), and AUC (by 36% and 27%) and delayed TMIRST4 (by 38 and 43 minutes); bran was a superior interferer. In the in vitro studies, coffee was weaker than known T4 sequestrants. Coffee should be added to the list of interferers of T4 intestinal absorption, and T4 to the list of compounds whose absorption is affected by coffee.

  17. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  19. Terahertz Absorption and Circular Dichroism Spectroscopy of Solvated Biopolymers

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Plaxco, Kevin; Allen, S. James

    2006-03-01

    Biopolymers are expected to exhibit broad spectral features in the terahertz frequency range, corresponding to their functionally relevant, global and sub-global collective vibrational modes with ˜ picosecond timescale. Recent advances in terahertz technology have stimulated researchers to employ terahertz absorption spectroscopy to directly probe these postulated collective modes. However, these pioneering studies have been limited to dry and, at best, moist samples. Successful isolation of low frequency vibrational activities of solvated biopolymers in their natural water environment has remained elusive, due to the overwhelming attenuation of the terahertz radiation by water. Here we have developed a terahertz absorption and circular dichroism spectrometer suitable for studying biopolymers in biologically relevant water solutions. We have precisely isolated, for the first time, the terahertz absorption of solvated prototypical proteins, Bovine Serum Albumin and Lysozyme, and made important direct comparison to the existing molecular dynamic simulations and normal mode calculations. We have also successfully demonstrated the magnetic circular dichroism in semiconductors, and placed upper bounds on the terahertz circular dichroism signatures of prototypical proteins in water solution.

  20. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-06-01

    In soils, the isotopic composition of water (δ2H and δ18O) provides qualitative (e.g., location of the evaporation front) and quantitative (e.g., evaporation flux and root water uptake depths) information. However, the main disadvantage of the isotope methodology is that contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here we present a nondestructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8°C and 24°C, we demonstrate that our new method is capable of monitoring δ2H and δ18O in soils online with high precision and after calibration, also with high accuracy. Our sampling protocol enabled detecting changes of δ2H and δ18O following nonfractionating addition and removal of liquid water and water vapor of different isotopic compositions. Finally, the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.

  1. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    PubMed

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Water Resource Management Mechanisms for Intrastate Violent Conflict Resolution: the Capacity Gap and What To Do About It.

    NASA Astrophysics Data System (ADS)

    Workman, M.; Veilleux, J. C.

    2014-12-01

    Violent conflict and issues surrounding available water resources are both global problems and are connected. Violent conflict is increasingly intrastate in nature and coupled with increased hydrological variability as a function of climate change, there will be increased pressures on water resource use. The majority of mechanisms designed to secure water resources are often based on the presence of a governance framework or another type of institutional capacity, such as offered through a supra- or sub-national organization like the United Nations or a river basin organization. However, institutional frameworks are not present or loose functionality during violent conflict. Therefore, it will likely be extremely difficult to secure water resources for a significant proportion of populations in Fragile and Conflict Affected States. However, the capacity in Organisation for Economic Co-operation and Development nations for the appropriate interventions to address this problem is reduced by an increasing reluctance to participate in interventionist operations following a decade of expeditionary warfighting mainly in Iraq and Afghanistan, and related defence cuts. Therefore, future interventions in violent conflict and securing water resources may be more indirect in nature. This paper assesses the state of understanding key areas in the present literature and highlights the gap of securing water resources during violent conflict in the absence of institutional capacity. There is a need to close this gap as a matter of urgency by formulating frameworks to assess the lack of institutional oversight / framework for water resources in areas where violent conflict is prevalent; developing inclusive resource management platforms through transparency and reconciliation mechanisms; and developing endogenous confidence-building measures and evaluate how these may be encouraged by exogenous initiatives including those facilitated by the international community. This effort

  3. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change.

    PubMed

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2016-07-01

    Many tropical montane cloud forest (TMCF) trees are capable of foliar water uptake (FWU) during leaf-wetting events. In this study, we tested the hypothesis that maintenance of leaf turgor during periods of fog exposure and soil drought is related to species' FWU capacity. We conducted several experiments using apoplastic tracers, deuterium labeling and leaf immersion in water to evaluate differences in FWU among three common TMCF tree species. We also measured the effect of regular fog exposure on the leaf water potential of plants subjected to soil drought and used these data to model species' response to long-term drought. All species were able to absorb water through their leaf cuticles and/or trichomes, although the capacity to do so differed between species. During the drought experiment, the species with higher FWU capacity maintained leaf turgor for a longer period when exposed to fog, whereas the species with lower FWU exerted tighter stomatal regulation to maintain leaf turgor. Model results suggest that without fog, species with high FWU are more likely to lose turgor during seasonal droughts. We show that leaf-wetting events are essential for trees with high FWU, which tend to be more anisohydric, maintaining leaf turgor during seasonal droughts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Bridging the Water Policy and Management Silos: An Opportunity for Leveraged Capacity Building

    NASA Astrophysics Data System (ADS)

    Wegner, D. L.

    2017-12-01

    The global community is challenged by increasing demand and decreasing water supplies. Historically nations have focused on local or regional water development projects that meet specific needs, often without consideration of the impact on downstream transboundary water users or the watershed itself. Often these decisions have been based on small sets of project specific data with little assessment on river basin impacts. In the United States this disjointed approach to water has resulted in 26 federal agencies having roles in water management or regulation, 50 states addressing water rights and compliance, and a multitude of tribal and local entities intersecting the water process. This approach often manifests itself in a convoluted, disjointed and time-consuming approach. The last systematic and comprehensive review of nationwide water policy was the 1973 National Water Commission Report. A need exists for capacity building collaborative and integrative leadership and dialogue. NASA's Western Water Applications Office (WWAO) provides a unique opportunity to leverage water and terrain data with water agencies and policy makers. A supported WWAO can provide bridges between federal and state water agencies; provide consistent integrated hydrologic and terrain based data set acquired from multiple earth orbiting satellites and airborne platforms; provide data sets leveraged with academic and research based entities to develop specific integrative predictive tools; and evaluate hydrology information across multiple boundaries. It is the author's conclusion that the Western Water Applications Office can provide a value-added approach that will help translate transboundary water and earth terrain information to national policy decisions through education, increased efficiency, increased connectivity, improved coordination, and increased communication. To be effective the WWAO should embrace five objectives: (1) be technically and scientifically valid; (2

  5. Biochar impact on improving root growth and water retention capacity in Norfolk hard setting subsoil layer

    USDA-ARS?s Scientific Manuscript database

    The Norfolk soil series is a well-drained soil used commonly for agricultural production in the Eastern Carolinas. Certain profile features such as a hard setting subsoil layer with high bulk density, low water holding capacity and meager soil fertility characteristics makes this soil less producti...

  6. Optical absorption characteristics of brown carbon aerosols during the KORUS-AQ campaign at an urban site

    NASA Astrophysics Data System (ADS)

    Park, Seungshik; Yu, Geun-Hye; Lee, Sangil

    2018-05-01

    This study investigates the absorption characteristics of brown carbon (BrC) obtained from water and methanol extracts of fine particulate matter measured at an urban site in Gwangju, Korea during the KOREA U.S. - Air Quality campaign (May 2-June 11, 2016). The measurement period was classified into two intervals: biomass burning (BB) and non-BB periods. During the non-BB period, water-soluble organic carbon (WSOC) and humic-like substances (HULIS) primarily resulted from secondary organic aerosol (SOA) formation and primary vehicle emissions. Water-soluble organic aerosols during the BB period, meanwhile, were closely related to SOA formation and regionally transported BB emissions. The light absorption coefficient measured at 365 nm (babs,365) by methanol extracts was 2.6 and 6.1 times higher than the coefficients from the water and HULIS extracts, respectively, indicating the importance of BrC absorption by water-insoluble organic carbon. This was demonstrated by a good correlation between the water-insoluble BrC absorption and the elemental carbon concentration. A comparison of babs,365 between the methanol- and water-extracted BrC indicated that water-insoluble BrC accounted for approximately 61% (33-86%) of the total BrC absorption. The contributions of SOA, primary BB emissions, and traffic emissions to the water extract babs,365 were estimated using a stepwise multiple linear regression (MLR) analysis and found to be 1.17 ± 0.55, 0.65 ± 0.62, and 0.25 ± 0.09 Mm- 1, respectively, accounting for 59.6, 26.1, and 14.3% of the absorption coefficient by the water-soluble BrC. Further, it was determined that the contribution of the BB emissions to the water-soluble BrC absorption was approximately two times higher in the BB period than in the non-BB period. The average absorption Ångstrӧm exponent was 4.8 ± 0.3, 5.3 ± 0.7, and 6.8 ± 0.8 for the methanol, water, and HULIS extracts, respectively. The average mass absorption efficiency (MAE365) of methanol

  7. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States

    NASA Astrophysics Data System (ADS)

    Nelson, James R.; Guarda, Sonia

    1995-05-01

    Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from <0.03 m2 mg-1 in inner shelf waters to ˜0.1 m2 mg-1 at the most seaward stations in summer) and, for similar chlorophyll concentrations, was higher in summer than in the winter-spring. These spatial and seasonal patterns in phytoplankton chlorophyll-specific absorption can be attributed to a shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.

  8. In-situ liquid storage capacity measurement of subsurface wastewater absorption system products.

    PubMed

    Quisenberry, Virgil; Brown, Philip; Smith, Bill; Hallahan, Dennis F

    2006-11-01

    A method is presented for measuring the in-situ liquid storage capacity of subsurface wastewater infiltration system (SWIS) products. While these products vary in composition, geometry, and porosity, they all have the same function: to provide a conduit for the flow of effluent from a septic tank to and through a trench so that infiltration into the soil can occur. A functional SWIS must also provide temporary liquid storage. Storage is necessary for periods when discharge from the septic tank exceeds the infiltration rate of the soil. Storage is also important during times when the soil in and around the trench is saturated. Many states now have regulatory requirements pertaining to storage volume, and these requirements commonly establish the traditional gravel-pipe system as the standard for minimally acceptable volume. Raliable comparisons between various alternative products and gravel have been difficult or impossible, because there has been no standard method for measuring storage volume. Some products have been evaluated under realistic field conditions; others have been evaluated under theoretical or ideal conditions. The protocol developed by the study reported here can serve as a common, accurate basis for comparisons. A 3-foot-deep trench was excavated, and the bottom was leveled. Markers (nails or rods) were attached to the products to indicate the invert and full-volume heights. The products were then enclosed in plastic, placed in a trench, and covered with soil. A 4-inch-diameter pipe extended from the product to the surface to allow metered additions of water into the products and precise determinations when the systems had been filled to capacity. Four plastic chambers, three expanded polystyrene (ESP) products, two multipipe arrangements, and a standard gravel-pipe system were evaluated. The standard gravel-pipe system held 10.2 gal/ft Three of the four plastic chambers stored from 100 to 130 percent of what the standard system held. The

  9. Flavonol content in the water extract of the mulberry (Morus alba L.) leaf and their antioxidant capacities.

    PubMed

    Kim, Gyo-Nam; Jang, Hae-Dong

    2011-08-01

    The biological activities of the mulberry (Morus alba L.) leaf have been attributed to its flavonoid content. The water extract of the mulberry leaf (WEML) was prepared by autoclaving at 121 °C for 15 min, and the flavonol content of the WEML was determined by HPLC The WEML contained 4 flavonols in the following order: quercetin-3-β-D-glucose (QT-G) > quercetin-3-O-glucose-6″-acetate (QT-GA) > rutin (RT) > quercetin (QT). In the oxygen radical absorbance capacity (ORAC) assay, QT had the highest peroxyl radical-scavenging capacity and a similar hydroxyl radical-scavenging capacity as its glycosides (QT-G, QT-GA, and RT). QT exhibited a stronger cellular antioxidant capacity (CAC) against 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)- and Cu²⁺-induced oxidative stress in HepG2 cells compared to its glycosides, indicating that the intracellular antioxidant capacity of QT and its glycosides may depend upon both the permeability across the cell membrane and the peroxyl or hydroxyl radical-scavenging capacity. The information presented might be used for developing mulberry leaf-based functional foods. © 2011 Institute of Food Technologists®

  10. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventrillard, I.; Romanini, D.; Mondelain, D.

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the centermore » of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.« less

  11. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    USGS Publications Warehouse

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.

  12. Study and Optimization of Helicopter Subfloor Energy Absorption Structure with Foldcore Sandwich Structures

    NASA Astrophysics Data System (ADS)

    HuaZhi, Zhou; ZhiJin, Wang

    2017-11-01

    The intersection element is an important part of the helicopter subfloor structure. In order to improve the crashworthiness properties, the floor and the skin of the intersection element are replaced with foldcore sandwich structures. Foldcore is a kind of high-energy absorption structure. Compared with original structure, the new intersection element shows better buffering capacity and energy-absorption capacity. To reduce structure’s mass while maintaining the crashworthiness requirements satisfied, optimization of the intersection element geometric parameters is conducted. An optimization method using NSGA-II and Anisotropic Kriging is used. A significant CPU time saving can be obtained by replacing numerical model with Anisotropic Kriging surrogate model. The operation allows 17.15% reduce of the intersection element mass.

  13. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  14. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  15. Comparison of the shock absorption capacities of different mouthguards.

    PubMed

    Bochnig, Melina Simonetta; Oh, Min-Jung; Nagel, Theresa; Ziegler, Fred; Jost-Brinkmann, Paul-Georg

    2017-06-01

    In this in vitro study, the protective qualities of different mouthguard types were examined during small hard object collisions. The aim was to investigate inconclusive aspects of hard inserts, nylon nets, and air spaces as reinforcements in the anterior region and the protection qualities of ethylene vinyl acetate (EVA). Five different mouthguards with a labial thickness between 2 mm and 11 mm made of materials of varying stiffness were investigated. As a negative control, the same experiments were performed without a mouthguard. Different combinations of EVA and labial inserts ((polyethylene terephthalate glycol-modified [PETG]), nylon mesh, air space) were tested. Using a stainless steel pendulum device, blows of different energy (0.07-2.85 joules) were applied to the center of the crown of a pivoted tooth in a custom-built jaw model. A laser Doppler vibrometer measured the tooth deflection, while an acceleration sensor attached to the pendulum measured the braking accelerations. Tooth deflection was reduced up to 99.7% compared to no mouthguard, and the braking acceleration was reduced up to 72.2% by increasing the mouthguards' labial thickness in combination with labial inserts of different stiffness and a built-in air space between the front teeth and the mouthguard. The mouthguards made of soft materials (EVA with nylon mesh) showed slightly better protection qualities than the more rigid mouthguards of similar thickness (PETG; P<.05). However, with increasing impact energy, their protective capacities decreased to a greater extent than the stiffer mouthguards. The combination of increased labial thickness and labial inserts of varying stiffness and eventually an air space offers the best protection capacities for hard, small object collisions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  17. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  18. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model.

    PubMed

    Sutton, S C; Rinaldi, M T; Vukovinsky, K E

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods.

  19. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  20. Fluctuation of the Water Environmental Carrying Capacity in a Huge River-Connected Lake

    PubMed Central

    Wang, Hua; Zhou, Yiyi; Tang, Yang; Wu, Mengan; Deng, Yanqing

    2015-01-01

    A new method, with the non-fully mixed coefficient (NFMC) considered, was put forward to calculate the water environmental carrying capacity (WECC) for huge river-connected lakes, of which the hydrological conditions always vary widely during a year. Poyang Lake, the most typical river-connected lake and the largest freshwater lake in China, was selected as the research area. Based on field investigations and numerical simulation, the monthly pollutant degradation coefficients and non-fully mixed coefficients of different lake regions were determined to explore the WECCs of COD, TN and TP of Poyang Lake in a common water year. It was found that under the hydrological conditions of a common water year the total WECCs of COD, TN and TP in the lake were respectively 181.9 × 104 t, 33.3 × 104 t and 1.86 × 104 t. Due to the varied lake water volume and self-purification ability, an evident temporal fluctuation of WECCs in Poyang Lake was observed. The dry seasons were characterized by a higher NFMCs but lower WECCs owing to the lower water level and degradation ability. Variation coefficients of COD and TN WECC were close to each other, of which the average level was about 58.5%, a little higher than that of TP. PMID:25830284