Science.gov

Sample records for water by salt content

  1. Temperature resistance of Salmonella in low-water activity whey protein powder as influenced by salt content.

    PubMed

    Santillana Farakos, S M; Hicks, J W; Frank, J F

    2014-04-01

    Salmonella can survive in low-water activity (a(w)) foods for long periods of time. Water activity and the presence of solutes may affect its survival during heating. Low-a(w) products that contain sodium levels above 0.1 % (wt/wt) and that have been involved in major Salmonella outbreaks include peanut products and salty snacks. Reduced a(w) protects against thermal inactivation. There is conflicting information regarding the role of salt. The aim of this study was to determine whether NaCl influences the survival of Salmonella in low-a(w) whey protein powder independent of a(w) at 70 and 80 °C. Whey protein powders of differing NaCl concentrations (0, 8, and 17 % [wt/wt]) were equilibrated to target a(w) levels 0.23, 0.33, and 0.58. Powders were inoculated with Salmonella, vacuum sealed, and stored at 70 and 80 °C for 48 h. Cells were recovered on nonselective differential media. Survival data were fit with the Weibull model, and first decimal reduction times (δ) (measured in minutes) and shape factor values (β) were estimated. The influence of temperature, a(w), and salinity on Weibull model parameters (δ and β) was analyzed using multiple linear regression. Results showed that a(w) significantly influenced the survival of Salmonella at both temperatures, increasing resistance at decreasing a(w). Sodium chloride did not provide additional protection or inactivation of Salmonella at any temperature beyond that attributed to a(w). The Weibull model described the survival kinetics of Salmonella well, with R2 adj and root mean square error values ranging from 0.59 to 0.97 and 0.27 to 1.07, respectively. Temperature and a(w) influenced δ values (P < 0.05), whereas no significant differences were found between 70 and 80 °C among the different salt concentrations (P > 0.05). β values were not significantly influenced by temperature, a(w), or % NaCl (P > 0.05). This study indicates that information on salt content in food may not help improve predictions on the

  2. [Benz(a)pyrene content in the salt samples obtained from the borehole waters of the Krasnodar deposit].

    PubMed

    Ruchkovskiĭ, B S; Tsapenko, V F; Smirnov, I A; Samel'zon, R M

    1980-01-01

    Benz(a)pyrene content in the samples of salt obtained from water ground of the Krasnodar field was assayed by means of the spectral fluorescent method. The table salt "Extra" manufactured by the Slavyansk salt-works supplying the trade network (GOST 13830-68) served as control. 15 samples (60 reference standards) were examined. It was established that 3 of 5 tested samples obtained from purified concentrated brine of water ground of the Krasnodar field contained benz(a)pyrene in an amount of 0.0351 microgram/kg up to 0.16 microgram/kg. Benz(a)pyrene (0.104 microgram/kg) was detected in 1 of 4 tested samples of the salt "Extra". It is concluded that tested salt samples obtained from concentrated brine of water ground of the Krasnodar field contain an insignificant amount of benz(a)pyrene. PMID:6445646

  3. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by (1)H and (23)Na MRI, (23)Na NMR, low-field NMR and physicochemical analysis.

    PubMed

    Gudjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn; Karlsdóttir, Magnea Gudrún; Arason, Sigurjón

    2015-12-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pickle salting had the least heterogeneous salt distribution. Fillets from all treatments contained spots with unsaturated brine, increasing the risk of microbial denaturation of the fillets during storage. Since a homogeneous water and salt distribution was not achieved with the studied pre-salting methods, further optimizations of the salting process, including the pre-salting and dry salting steps, must be made in the future. PMID:26041245

  4. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content.

    PubMed

    Hamouda, I; Badri, M; Mejri, M; Cruz, C; Siddique, K H M; Hessini, K

    2016-05-01

    The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment. PMID:26588061

  5. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  6. Optimizing the salt-induced activation of enzymes in organic solvents: effects of lyophilization time and water content.

    PubMed

    Ru, M T; Dordick, J S; Reimer, J A; Clark, D S

    1999-04-20

    The addition of simple inorganic salts to aqueous enzyme solutions prior to lyophilization results in a dramatic activation of the dried powder in organic media relative to enzyme with no added salt. Activation of both the serine protease subtilisin Carlsberg and lipase from Mucor javanicus resulting from lyophilization in the presence of KCl was highly sensitive to the lyophilization time and water content of the sample. Specifically, for a preparation containing 98% (w/w) KCl, 1% (w/w) phosphate buffer, and 1% (w/w) enzyme, varying the lyophilization time showed a direct correlation between water content and activity up to an optimum, beyond which the activity decreased with increasing lyophilization time. The catalytic efficiency in hexane varied as much as 13-fold for subtilisin Carlsberg and 11-fold for lipase depending on the lyophilization time. This dependence was apparently a consequence of including the salt, as a similar result was not observed for the enzyme freeze-dried without KCl. In the case of subtilisin Carlsberg, the salt-induced optimum value of kcat/Km for transesterification in hexane was over 20,000-fold higher than that for salt-free enzyme, a substantial improvement over the previously reported enhancement of 3750-fold (Khmelnitsky, 1994). As was found previously for pure enzyme, the salt-activated enzyme exhibited greatest activity when lyophilized from a solution of pH equal to the pH for optimal activity in water. The active-site content of the lyophilized enzyme samples also depended upon lyophilization time and inclusion of salt, with opposite trends in this dependence observed for the solvents hexane and tetrahydrofuran. Finally, substrate selectivity experiments suggested that mechanism(s) other than selective partitioning of substrate into the enzyme-salt matrix are responsible for salt-induced activation of enzymes in organic solvents. PMID:10099600

  7. Optimizing the salt-induced activation of enzymes in organic solvents: Effects of lyophilization time and water content

    SciTech Connect

    Ru, M.T.; Reimer, J.A.; Clark, D.S.; Dordick, J.S.

    1999-04-20

    The addition of simple inorganic salts to aqueous enzyme solutions prior to lyophilization results in a dramatic activation of the dried powder in organic media relative to enzyme with no added salt. Activation of both the serine protease subtilisin Carlsberg and lipase from Mucor javanicus resulting from lyophilization in the presence of KCl was highly sensitive to the lyophilization time and water content of the sample. Specifically, for a preparation containing 98% (w/w) KCl, 1% (w/w) phosphate buffer, and 1% (w/w) enzyme, varying the lyophilization time showed a direct correlation between water content and activity up to an optimum, beyond which the activity decreased with increasing lyophilization time. The catalytic efficiency in hexane varied as much as 13-fold for subtilisin Carlsberg and 11-fold for lipase depending on the lyophilization time. This dependence was apparently a consequence of including the salt, as a similar result was not observed for the enzyme freeze-dried without KCl. In the case of subtilisin Carlsberg, the salt-induced optimum value of k{sub cat}/K{sub m} for transesterification in hexane was over 20,000-fold higher than that for salt-free enzyme, a substantial improvement over the previously reported enhancement of 3750-fold. As was found previously for pure enzyme, the salt-activated enzyme exhibited greatest activity when lyophilized from a solution of pH equal to the pH for optimal activity in water. The active-site content of the lyophilized enzyme samples also depended upon lyophilization time and inclusion of salt, with opposite trends in this dependence observed for the solvents hexane and tetrahydrofuran. Finally, substrate selectivity experiments suggested that mechanism(s) other than selective partitioning of substrate into the enzyme-salt matrix are responsible for salt-induced activation of enzymes in organic solvents.

  8. Measurement of leaf relative water content by infrared reflectance

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Rock, Barrett N.; Nobel, Park S.

    1987-01-01

    From basic considerations and Beer's law, a leaf water content index incorporating reflectances of wavelengths from 0.76 to 0.90 microns and from 1.55 to 1.75 microns was developed that relates leaf reflectance to leaf relative water content. For the leaf succulent, Agave deserti, the leaf water content index was not significantly different from the relative water content for either individual leaves or an entire plant. Also, the relative water contents of intact plants of Encelia farinosa and Hilaria rigida in the field were estimated by the leaf water content index; variations in the proportion of living to dead leaf area could cause large errors in the estimate of relative water content. Thus, the leaf water content index may be able to estimate average relative water content of canopies when TM4 and TM5 are measured at a known relative water content and fraction of dead leaf material.

  9. Laboratory testing of salt samples for water content/loss of weight on heating, thermal fracture, insoluble residue, and clay and bulk mineralogy: Revision 1

    SciTech Connect

    Owen, L.B.; Schwendiman, L.

    1987-07-01

    This report presents the results of laboratory testing on salt samples from the Palo Duro Basin of the Texas Panhandle. Laboratory specimens were tested to determine water content by loss of weight on heating, temperature of thermal fracture, the amount of insoluble residue, and clay and bulk mineralogy. 7 refs., 3 figs., 8 tabs.

  10. Determination of salt content in various depth of pork chop by electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaltenecker, P.; Szöllösi, D.; Friedrich, L.; Vozáry, E.

    2013-04-01

    The salt concentration was determined inside of pork chop both by electrical impedance spectroscopy and by a conventional chemical method (according to Mohr). The pork chop in various depths (4 mm, 10 mm, 20 mm and 25 mm) was punctured with two stainless steel electrodes. The length of electrodes was 60 mm, and they were insulated along the length except 1 cm section on the end, so the measurement of impedance was realized in various depths. The magnitude and phase angle of impedance were measured with a HP 4284A and a HP 4285A LCR meters from 30 Hz up to 1 MHz and from 75 kHz up to 30 MHz frequency range, respectively at 1 V voltage. The distance between the electrodes was 1 cm. The impedance magnitude decreased as the salt concentration increased. The magnitude of open-short corrected impedance values at various frequencies (10 kHz, 100 kHz, 125 kHz, 1.1 MHz and 8 MHz) showed a good correlation with salt content determined by chemical procedure. The electrical impedance spectroscopy seems a prospective method for determination the salt concentration inside the meat in various depths during the curing procedure.

  11. Effect of water phase salt content and storage temperature on Listeria monocytogenes survival in chum salmon (Oncorhynchus keta) roe and caviar (ikura).

    PubMed

    Shin, Joong-Han; Rasco, Barbara A

    2007-06-01

    Salmon caviar, or ikura, is a ready-to-eat food prepared by curing the salmon roe in a brine solution. Other seasonings or flavorants may be added, depending upon the characteristics of the product desired. Listeria monocytogenes growth is a potential risk, since it can grow at high salt concentrations (>10%) and in some products at temperatures as low as 3 degrees C. Ikura was prepared from chum salmon (Oncorhynchus keta) roe by adding food-grade NaCl to yield water phase salt contents (WPS) of 0.22% (no added salt), 2.39%+/- 0.18%, 3.50%+/- 0.19%, and 4.36%+/- 0.36%. A cocktail containing L. monocytogenes (ATCC 19114, 7644, 19113) was incorporated into the ikura at 2 inoculum levels (log 2.4 and 4.2 CFU/g), and stored at 3 or 7 degrees C for up to 30 d. L. monocytogenes was recovered by plating onto modified Oxford media. Aerobic microflora were analyzed on plate count agar. Samples were tested at 0, 5, 10, 20, and 30 d. L. monocytogenes did not grow in chum salmon ikura held at 3 degrees C during 30 d at any salt level tested; however, the addition of salt at these levels did little to inhibit Listeria growth at 7 degrees C and counts reached 5 to 6 logs CFU/g. Components in the salmon egg intracellular fluid appear to inhibit the growth of L. monocytogenes. Total aerobic microflora levels were slightly lower in products with higher salt contents. These results indicate that temperature control is critical for ikura and similar products, but that products with lower salt contents can be safe, as long as good refrigeration is maintained. PMID:17995738

  12. Determining soil water content of salt-affected soil using far-infrared spectra: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Wang, Zhichun; Nyongesah, Maina John; Liu, Gang

    2015-01-01

    Rapid determination of soil water content is urgently needed for monitoring and modeling ecosystem processes and improving agricultural practices, especially in arid landscapes. Far-infrared band application in soil water measurement is still limited. Various samples were arranged to simulate complex field condition and emissivity was obtained from a Fourier transform infrared spectrometer. Four spectral forms (including raw spectra, logarithm of reciprocal spectra, first-order derivate, and second-order derivate) were employed to develop a partial least squares regression model. The results indicate that the model with first-order derivate spectral form was identified with the highest performance (R2=0.87 and root mean square error=1.88%) at the range of 8.309 to 10.771 μm. Judging from the contribution of the bands to each principal component, the band region from 8.27 to 9.112 μm holds a great promise for soil water content estimation. Several channels of ASTER and MODIS correspond to the involved band domain, which show the potential of predicting and mapping soil water content on large scales. However, there are still constraints due to the differences in spectral resolution between instrument and sensors and the influence of complex factors under field conditions, which are still challenges for forthcoming studies.

  13. Relative water content of Spruce needles determined by the leaf water content index

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Wong, Sam K. S.; Rock, Barrett N.

    1987-01-01

    Leaf relative water content (RWC) is defined as the volume of water in a leaf divided by the volume at full turgor. Using reflectance factors of wavelengths 0.83 micron and 1.6 microns, a Leaf Water Content Index (LWCI) was derived from the Lambert-Beer Law such that LWCI should equal RWC; LWCI was equal to RWC for Picea pungens, Picea rubens, Liquidambar styraciflua, and Quercus agrifolia. Algebraic manipulation shows that R(1.6)/R(0.83) termed the Moisture Stress Index (MSI), is near-linearly correlated to RWC and to the Equivalent Water Thickness (EWT). Five species tested so far had the same relationship between MSI and EWT, but EWT is not a measure of plant water status.

  14. Determining salt concentrations for equivalent water activity in reduced-sodium cheese by use of a model system.

    PubMed

    Grummer, J; Schoenfuss, T C

    2011-09-01

    The range of sodium chloride (salt)-to-moisture ratio is critical in producing high-quality cheese products. The salt-to-moisture ratio has numerous effects on cheese quality, including controlling water activity (a(w)). Therefore, when attempting to decrease the sodium content of natural cheese it is important to calculate the amount of replacement salts necessary to create the same a(w) as the full-sodium target (when using the same cheese making procedure). Most attempts to decrease sodium using replacement salts have used concentrations too low to create the equivalent a(w) due to the differences in the molecular weight of the replacers compared with salt. This could be because of the desire to minimize off-flavors inherent in the replacement salts, but it complicates the ability to conclude that the replacement salts are the cause of off-flavors such as bitter. The objective of this study was to develop a model system that could be used to measure a(w) directly, without manufacturing cheese, to allow cheese makers to determine the salt and salt replacer concentrations needed to achieve the equivalent a(w) for their existing full-sodium control formulas. All-purpose flour, salt, and salt replacers (potassium chloride, modified potassium chloride, magnesium chloride, and calcium chloride) were blended with butter and water at concentrations that approximated the solids, fat, and moisture contents of typical Cheddar cheese. Salt and salt replacers were applied to the model systems at concentrations predicted by Raoult's law. The a(w) of the model samples was measured on a water activity meter, and concentrations were adjusted using Raoult's law if they differed from those of the full-sodium model. Based on the results determined using the model system, stirred-curd pilot-scale batches of reduced- and full-sodium Cheddar cheese were manufactured in duplicate. Water activity, pH, and gross composition were measured and evaluated statistically by linear mixed model

  15. Limitations of amorphous content quantification by isothermal calorimetry using saturated salt solutions to control relative humidity: alternative methods.

    PubMed

    Khalef, Nawel; Pinal, Rodolfo; Bakri, Aziz

    2010-04-01

    Despite the high sensitivity of isothermal calorimetry (IC), reported measurements of amorphous content by this technique show significant variability even for the same compound. An investigation into the reasons behind such variability is presented using amorphous lactose and salbutamol sulfate as model compounds. An analysis was carried out on the heat evolved as a result of the exchange of water vapor between the solid sample during crystallization and the saline solution reservoir. The use of saturated salt solutions as means of control of the vapor pressure of water within sealed ampoules bears inherent limitations that lead in turn to the variability associated with the IC technique. We present an alternative IC method, based on an open cell configuration that effectively addresses the limitations encountered with the sealed ampoule system. The proposed approach yields an integral whose value is proportional to the amorphous content in the sample, thus enabling reliable and consistent quantifications. PMID:19774655

  16. Salt preferences of honey bee water foragers.

    PubMed

    Lau, Pierre W; Nieh, James C

    2016-03-01

    The importance of dietary salt may explain why bees are often observed collecting brackish water, a habit that may expose them to harmful xenobiotics. However, the individual salt preferences of water-collecting bees were not known. We measured the proboscis extension reflex (PER) response of Apis mellifera water foragers to 0-10% w/w solutions of Na, Mg and K, ions that provide essential nutrients. We also tested phosphate, which can deter foraging. Bees exhibited significant preferences, with the most PER responses for 1.5-3% Na and 1.5% Mg. However, K and phosphate were largely aversive and elicited PER responses only for the lowest concentrations, suggesting a way to deter bees from visiting contaminated water. We then analyzed the salt content of water sources that bees collected in urban and semi-urban environments. Bees collected water with a wide range of salt concentrations, but most collected water sources had relatively low salt concentrations, with the exception of seawater and swimming pools, which had >0.6% Na. The high levels of PER responsiveness elicited by 1.5-3% Na may explain why bees are willing to collect such salty water. Interestingly, bees exhibited high individual variation in salt preferences: individual identity accounted for 32% of variation in PER responses. Salt specialization may therefore occur in water foragers. PMID:26823100

  17. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. PMID:23871020

  18. Pearson’s correlations between moisture content, drip loss, expressible fluid and salt-induced water gain of broiler pectoralis major muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...

  19. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    PubMed Central

    Wang, Shiwen; Liu, Peng; Chen, Daoqian; Yin, Lina; Li, Hongbing; Deng, Xiping

    2015-01-01

    Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp), but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation. PMID:26442072

  20. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  1. Specific ion effects induced by mono-valent salts in like charged aggregates in water.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Liu, Jun; Wei, Shenghui; Li, Liangbin; Wu, Ziyu

    2014-06-28

    While salt mediated association between similarly charged poly-electrolytes occurs in a broad range of biological and colloidal systems, the effects of mono-valent salts remains little known experimentally. In this communication we systematically study influences of assorted mono-valent salts on structures of and interactions in two dimensional ordered bundles of charged fibrils assembled in water using Small Angle X-ray Scattering (SAXS). By quantitatively analyzing the scattering peak features, we discern two competing effects with opposite influences due to partitioning of salts in the aqueous complex. While electrostatic effects from salts residing between the fibrils suppress attraction between fibrils and expand the bundles, it is compensated by external osmotic pressure from peripheral salts in the aqueous media. The balance between the two effects varies for different salts and gives rise to ion-specific equilibrium behavior as well as structure of ordered bundles in salty water. The specific ions effects in like charged aggregates can be attributed to preferential distribution of ions inside or outside the bundles, correlated to the ranking of ions in Hofmeister series for macromolecules. Unlike conventional studies on Hofmeister effects by thermodynamic measurements relying on modeling for data interpretation, our study is based directly on structural analysis and is model-insensitive. PMID:24828119

  2. Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274

    SciTech Connect

    Lee, Keun-Young; Chung, Dong-Yong; Kim, Kwang-Wook; Lee, Eil-Hee; Moon, Jei-Kwon

    2013-07-01

    Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

  3. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    PubMed

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes. PMID:18976747

  4. Monitoring soil water content by vertical temperature variations.

    PubMed

    Bechkit, Mohamed Amine; Flageul, Sébastien; Guerin, Roger; Tabbagh, Alain

    2014-01-01

    The availability of high sensitivity temperature sensors (0.001 K sensitivity platinum resistors), which can be positioned at intervals of a few centimeters along a vertical profile in the unsaturated zone, allows short-term in situ determinations-one day or even less-of the thermal diffusivity. The development of high data storage capabilities also makes this possible over long periods and the relative variations in thermal diffusivity allow the monitoring of the variations in water content. The processing of temperature measurements recorded at different depths is achieved by solving the heat equation, using the finite elements method, with both conductive and convective heat transfers. A first set of measurements has allowed this approach to be validated. Water content variations derived from thermal diffusivity values are in excellent agreement with TDR measurements carried out on the experimental site at Boissy-le-Châtel (Seine et Marne, France). PMID:23834312

  5. Analysis of the juice and water losses in salted and unsalted pork samples heated in water bath. Consequences for the prediction of weight loss by transfer models.

    PubMed

    Bombrun, Laure; Gatellier, Philippe; Portanguen, Stéphane; Kondjoyan, Alain

    2015-01-01

    This study has analyzed the effect of different factors on variation of meat weight due to juice loss, and variation of water content of pork samples heated in a water bath. The weight loss (WL) was influenced by initial water content of raw meat which can be connected to meat pH, muscle type, and by pre-salting. WL was also influenced by sample thickness and by nature of the surrounding fluid. These effects were significant at 50°C and in thinner samples but decreased as meat temperature and sample thickness increased. WL showed no significant difference in response to prior freezing, applying a surface constraint during heating or varying meat salt content from 0.8 to 2.0%. The results were interpreted from literature knowledge on protein denaturation, contraction and, transport phenomena. Reliably predicting WL from water content variation during heating hinges on taking into account the loss of dry matter and the possible effects of meat pH, sample size or surrounding fluid. PMID:25443971

  6. The practical application of remediating soil impacted by salt from produced water

    SciTech Connect

    Cresswell, G.A.; Williams, O.W.

    1995-12-31

    In many geographical areas where crude oil is produced, saltwater is a natural by-product of the oil production stream. The dissolved solids of this produced saltwater varies significantly with geography. Often the higher salinity values are associated with produced water at secondary crude oil recovery waterfloods and on occasion with depletion-drive and water drive primary crude oil recovery. Secondary recovery methods, waterfloods, typically follow many years of primary crude oil production thereby extending the producing life another 20 to 40 years. Many of the major fields producing today have been on stream for more than 50 years. The historical actions associated with these operations, high salt concentrations of the water and the cumulative volumes of saltwater handled all combine to increase the environmental risk of adversely impacting surface. This paper shares some of the experiences one company has encountered in an effort to assess and reduce the economic and environmental risks associated with salt impacted soils at waterfloods. The focus of this paper is on the practical aspects of identifying soil areas impacted before the nationwide improvements in environmental requirements in the mid 1970s and improving the productivity of surface soils. It summarizes how successful remediation approaches have been aligned with soil characteristics and intended surface uses. Remediation approaches have included calcium/sodium exchange, fresh water flushing, and organic additives. Also presented are the precautions used to make sure potential adverse impacts from the salt are not passed from the soil to other media.

  7. Water ingestion by rats fed a high-salt diet may be mediated, in part, by visceral osmoreceptors.

    PubMed

    Manesh, Reza; Hoffmann, Myriam L; Stricker, Edward M

    2006-06-01

    After surgical removal of all salivary secretions ("desalivation"), rats increase their consumption of water while eating dry laboratory chow. In the present experiments, desalivated rats drank even more water while they ate "powdered" high-salt food (i.e., <15-mg food particles). The Na+ concentration of systemic plasma in these animals was not elevated during or immediately after the meal, which suggests that cerebral osmoreceptors were not involved in mediating the increased water intake. A presystemic osmoregulatory signal likely stimulated thirst because the Na+ and water contents of the gastric chyme computed to a solution approximately 150 mM NaCl. In contrast, desalivated rats drank much smaller volumes of water while eating "pulverized" high-salt food (i.e., 60-140-mg food particles), and the fluid mixture in the gastric chyme computed to approximately 280 mM NaCl solution. These and other findings suggest that the NaCl ingested in the powdered high-salt diet was dissolved in the gastric fluid and that duodenal osmoreceptors (or Na+-receptors) detected when the concentration of fluid leaving the stomach was elevated after each feeding bout, and promptly stimulated thirst, whereupon rats drank water until the gastric fluid was diluted back to isotonicity. However, when rats ate the pulverized high-salt diet, much of the NaCl ingested may have been embedded in the gastric chyme and therefore was not accessible to visceral osmoreceptors once it emptied from the stomach. Consistent with that hypothesis, fluid intakes were increased considerably when desalivated rats drank 0.10 M NaCl instead of water while eating either powdered or pulverized high-salt food. PMID:16455760

  8. Salt, Water, and Athletes.

    ERIC Educational Resources Information Center

    Smith, Nathan J.

    Good nutrition for athletes demands plenty of water, since water is essential to such vital functions as muscle reactions. Dehydration can result from jet travel as well as from exercise and heat, making it a danger to traveling athletic teams. To avoid dehydration, water needs should be monitored by frequent weighing, and a clean water supply…

  9. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers

    NASA Astrophysics Data System (ADS)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-01

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na+, Cl-, Mg2+, K+ and Ca2+, at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ˜98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  10. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    PubMed

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems. PMID:24285308

  11. Quaternary diffusion coefficients in a protein-polymer-salt-water system determined by rayleigh interferometry.

    PubMed

    Annunziata, Onofrio; Vergara, Alessandro; Paduano, Luigi; Sartorio, Roberto; Miller, Donald G; Albright, John G

    2009-10-01

    We have experimentally investigated multicomponent diffusion in a protein-polymer-salt-water quaternary system. Specifically, we have measured the nine multicomponent diffusion coefficients, D(ij), for the lysozyme-poly(ethylene glycol)-NaCl-water system at pH 4.5 and 25 degrees C using precision Rayleigh interferometry. Lysozyme is a model protein for protein-crystallization and enzymology studies. We find that the protein diffusion coefficient, D(11), decreases as polymer concentration increases at a given salt concentration. This behavior can be quantitatively related to the corresponding increase in fluid viscosity only at low polymer concentration. However, at high polymer concentration (250 g/L), protein diffusion is enhanced compared to the corresponding viscosity prediction. We also find that a protein concentration gradient induces salt diffusion from high to low protein concentration. This effect increases in the presence of poly(ethylene glycol). Finally, we have evaluated systematic errors associated with measurements of protein diffusion coefficients by dynamic light scattering. This work overall helps characterize protein diffusion in crowded environments and may provide guidance for further theoretical developments in the field of protein crystallization and protein diffusion in such crowded systems, such as the cytoplasm of living cells. PMID:19746957

  12. Inhibition of salt water survival and Na-K-ATPase elevation in steelhead trout (Salmo gairdneri) by moderate water temperatures

    USGS Publications Warehouse

    Adams, B. L.; Zaugg, W.S.; McLain, L. R.

    1975-01-01

    The steelhead trout metamorphosis from a freshwater parr to a sea water-tolerant smolt possessing the migration tendency was evaluated at six different growth temperatures ranging from 6 to 15 C during January through July. The highest temperature where a transformation was indicated was 11.3 C. By April fish reared at 6 C had elevated ATPase levels typical of smolts or migratory animals and showed 92% survival in sea water. Ten and 11.3 C-reared fish showed a short-lived elevation in ATPase in mid-April alone concurrently with 100% sea water survival at that time. Only in 6 C-reared animals did the salt water survival ability continue into May. High ATPase levels likewise were prolonged into May and June only in the 6 C-reared group. The data indicate that metamorphosis (and therefore successful migration) of juvenile steelhead trout is directly controlled by water temperature.

  13. Complex polyion-surfactant ion salts in equilibrium with water: changing aggregate shape and size by adding oil.

    PubMed

    Bernardes, Juliana S; Norrman, Jens; Piculell, Lennart; Loh, Watson

    2006-11-23

    The phase behavior of ternary mixtures containing an alkyltrimethylammonium polyacrylate complex salt, water, and a nonpolar "oil" (n-decanol, p-xylene or cyclohexane) is investigated. The complex salts were prepared with short or long polyacrylates (30 or 6000 repeating units) and with hexadecyltrimethylammonium or dodecyltrimethylammonium surfactant ions. Phase diagrams and structures were determined by visual inspection and small-angle X-ray scattering analyses. Systems containing decanol display a predominance of lamellar phases, while hexagonal phases prevail in systems containing p-xylene or cyclohexane. The difference is interpreted as a result of the different locations of the oils within the surfactant aggregates. Decanol is incorporated at the aggregate interface, leading to a decrease in its curvature, which favors the appearance of lamellar structures. p-Xylene and cyclohexane, on the other hand, are mostly incorporated in the interior of the cylindrical aggregate, as reflected by its swelling as the oil content increases. The comparison of these results with those reported for similar systems with monovalent (bromide) counterions indicates a much more limited swelling of the lamellar phases with polymeric counterions by water. This limited swelling behavior is predominantly ascribed to bridging due to the polyions. PMID:17107195

  14. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of...

  15. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of...

  16. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of...

  17. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of...

  18. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of...

  19. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  20. [Development of salt concentrates for mineralization of recycled water aboard the space station].

    PubMed

    Skliar, E F; Amiragov, M S; Bobe, L S; Gavrilov, L I; Kurochkin, M G; Solntseva, D P; Krasnov, M S; Skuratov, V M

    2006-01-01

    Recycled water can be brought up to the potable grade by adding minimal quantities of three soluble concentrates with the maximal content of inorganic salts. The authors present results of 3-year storage of potable water mineralized with makeup concentrates and analysis of potable water prepared with the use of the salt concentrates stored over this period of time. A water mineralization unit has been designed based on the principle of cyclic duty to produce physiologically healthy potable water with a preset salt content. PMID:17193977

  1. Salt content in canteen and fast food meals in Denmark

    PubMed Central

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten; Knuthsen, Pia; Saxholt, Erling; Fagt, Sisse

    2010-01-01

    Background A high salt (=NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective To determine the salt content in worksite canteen meals and fast food. Design For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in-house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus) and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results The salt content in lunch meals in worksite canteens were 3.8±1.8 g per meal and 14.7±5.1 g per 10 MJ for men (n=109), and 2.8±1.2 g per meal and 14.4±6.2 g per 10 MJ for women (n=71). Salt content in fast food ranged from 11.8±2.5 g per 10 MJ (burgers) to 16.3±4.4 g per 10 MJ (sausages) with a mean content of 13.8±3.8 g per 10 MJ. Conclusion Salt content in both fast food and in worksite canteen meals is high and should be decreased. PMID:20305749

  2. Water Uptake by Mars Salt Analogs: An Investigation of Stable Aqueous Solutions Using Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Nuding, Danielle L.

    -day conditions. To investigate complex brine mixtures, a salt analog, deemed 'Instant Mars,' was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory instrument at the Phoenix landing site. 'Instant Mars' was developed to fully encompass and closely replicate correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Here we use two separate techniques, Raman microscopy and particle levitation, to study the water uptake and loss properties of individual Instant Mars analog particles. Raman microscope experiments reveal that Instant Mars particles can form stable, aqueous solutions at 56 +/- 5% RH at 243 K and persist as a metastable, aqueous solution down to 13 +/- 5% RH. The results presented in this thesis demonstrate that a salt analog that closely replicates in-situ measurements from the Phoenix landing site can take up water vapor from the surrounding environment and transition into a stable, aqueous solution. Furthermore, this aqueous Instant Mars solution can persist as a metastable, supersaturated solution in RH conditions much lower than the deliquescent RH. Finally, laboratory experiments presented here examine the interaction of B. subtilis spores (B-168) with liquid water in Mars relevant temperatures and RH conditions. In addition, Ca(ClO4)2 was mixed with the B. subtilis spores and exposed to the same diurnal cycle conditions to quantify the effects of Ca(ClO4)2 on the spores. A combination of Raman microscopy and an environmental cell allows us to visually and spectrally analyze the changes of the individual B. subtilis spores and Ca(ClO4)2 mixtures as they experience present-day martian diurnal cycle conditions. Results suggest that B-168 spores can survive the arid conditions and martian temperatures, even when exposed to Ca(ClO 4)2 in the crystalline or aqueous phase. The extreme hygroscopic nature of Ca(ClO4)2 allows for direct interaction of B

  3. When do water-insoluble polyion-surfactant ion complex salts "redissolve" by added excess surfactant?

    PubMed

    dos Santos, Salomé; Gustavsson, Charlotte; Gudmundsson, Christian; Linse, Per; Piculell, Lennart

    2011-01-18

    The redissolution of water-insoluble polyion-surfactant ion complexes by added excess of surfactant has systematically been investigated in experimental and theoretical phase equilibrium studies. A number of stoichiometric polyion-surfactant ion "complex salts" were synthesized and they consisted of akyltrimethylammonium surfactant ions of two different alkyl chain lengths (C(12)TA(+) and C(16)TA(+)) combined with homopolyions of polyacrylate of two different lengths (PA(-)(25) and PA(-)(6000)) or copolyions of acrylate and the slightly hydrophobic nonionic comonomers N-isopropylacrylamide (PA(-)-co-NIPAM) or N,N-dimethylacrylamide (PA(-)-co-DAM). The complex salts were mixed with water and excess alkyltrimethylammonium surfactant with either bromide or acetate counterions (C(n)TABr or C(n)TAAc). Factors promoting efficient redissolution were (i) very short polyions, (ii) a large fraction of NIPAM or DAM comonomers, and (iii) acetate, rather than bromide, as the surfactant counterion. Added C(12)TAAc gave an efficient redissolution of C(12)TAPA(25) but virtually no redissolution of C(12)TAPA(6000). A very efficient redissolution by added C(12)TAAc was obtained for PA(-)-co-NIPAM with 82 mol % of NIPAM. The C(12)TAPA-co-NIPAM/C(12)TAAc/H(2)O ternary phase diagram closely resembled the corresponding diagram for the much-studied pair cationic hydroxyethyl cellulose-(sodium) dodecyl sulfate. The simple Flory-Huggins theory adopted for polyelectrolyte systems successfully reproduced the main features of the experimental phase diagrams for the homopolyion systems, including the effect of the surfactant counterion. The efficient redissolution found for certain copolyion systems was explained by the formation of soluble polyion-surfactant ion complexes carrying an excess of surfactant ions through an additional hydrophobic attraction. PMID:21166446

  4. Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila.

    PubMed

    St Denis, C H; Pinheiro, M D O; Power, M E; Bols, Niels C

    2010-02-01

    The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory. PMID:19786315

  5. Visualization by light transmission of oil and water contents in transient two-phase flow fields

    NASA Astrophysics Data System (ADS)

    Darnault, Christophe J. G.; Throop, James A.; DiCarlo, David A.; Rimmer, Alon; Steenhuis, Tammo S.; Parlange, J.-Yves

    1998-06-01

    The difficulty of determining transient fluid contents in a soil-oil-water system is hampering an understanding of the system's flow characteristics. In this paper, we describe a light transmission method (LTM) which can rapidly obtain oil and water contents throughout a large two-dimensional flow field of silica sand. By appropriately coloring the water with 0.005% FD&C blue #1, the hue of the transmitted light is found to be directly related to the water content within the porous media. The hue provides a high resolution measurement of the water and oil contents in transient flow fields (such as unstable flow). Evaluation of the reliability of LTM was assessed by checking the mass balance for a known water injection and its utility in visualizing a whole flow field was exemplified for unstable fingered flow by comparing fluid contents to those obtained with synchrotron X-ray radiation.

  6. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  7. Water dynamics and salt-activation of enzymes in organic media: mechanistic implications revealed by NMR spectroscopy.

    PubMed

    Eppler, Ross K; Komor, Russell S; Huynh, Joyce; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2006-04-11

    Deuterium spin relaxation was used to examine the motion of enzyme-bound water on subtilisin Carlsberg co-lyophilized with inorganic salts for activation in different organic solvents. Spectral editing was used to ensure that the relaxation times were associated with relatively mobile deuterons, which were contributed almost entirely by D(2)O rather than hydrogen-deuteron exchange on the protein. The results indicate that the timescale of motion for residual water molecules on the biocatalyst, (tau(c))(D(2)O), in hexane decreased from 65 ns (salt-free) to 0.58 ns (98% CsF) as (k(cat)/K(M))(app) of the biocatalyst preparation increased from 0.092 s(-1) x M(-1) (salt-free) to 1,140 s(-1) x M(-1) (98% CsF). A similar effect was apparent in acetone; the timescale decreased from 24 ns (salt-free) to 2.87 ns (98% KF), with a corresponding increase in (k(cat)/K(M))(app) of 0.140 s(-1) x M(-1) (salt-free) to 12.8 s(-1) x M(-1) (98% KF). Although a global correlation between water mobility and enzyme activity was not evident, linear correlations between ln[(k(cat)/K(M))(app)] and (tau(c))(D(2)O) were obtained for salt-activated enzyme preparations in both hexane and acetone. Furthermore, a direct correlation was evident between (k(cat)/K(M))(app) and the total amount of mobile water per mass of enzyme. These results suggest that increases in enzyme-bound water mobility mediated by the presence of salt act as a molecular lubricant and enhance enzyme flexibility in a manner functionally similar to temperature. Greater flexibility may permit a larger degree of local transition-state mobility, reflected by a more positive entropy of activation, for the salt-activated enzyme compared with the salt-free enzyme. This increased mobility may contribute to the dramatic increases in biocatalyst activity. PMID:16585507

  8. Structure Evolution of Ordered Mesoporous Carbons Induced by Water Content of Mixed Solvents Water/Ethanol.

    PubMed

    Li, Peng; Liang, Shujun; Li, Zhenzhong; Zhai, Yan; Song, Yan

    2016-12-01

    In this work, mesostructure evolution of ordered mesoporous carbons (OMCs) from the 2-D hexagonal (space group p6mm) to the discontinuous cubic [Formula: see text], then towards the face-centered cubic lattice [Formula: see text], and finally, to the simple cubic Pm3n is achieved by simply adjusting the cosolvent water content of the mixed solvents water/ethanol in the presence of a reverse nonionic triblock copolymer and low molecular resin by evaporation-induced self-assembly method. Experimental results demonstrate that both the cosolvent and the reverse triblock copolymer play a key role in the mesophase transitions of OMCs. Furthermore, the OMCs with Pm3n symmetry are reported for the first time. Finally, the mechanism of mesostructure transition was discussed and proposed. PMID:27518232

  9. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  10. Recovery of mineral salts and potable water from desalting plant effluents by evaporation. Part II. Proposed simulation system for salt recovery

    SciTech Connect

    Abdel-Aal, H.K.; Ba-Lubaid, K.M.; Shaikh, A.A.; Al-Harbi, D.K. )

    1990-04-01

    Salt recovery from rejected brines of the Al-Khobar Water Desalination Plant, Saudi Arabia, is studied through the simulation of a modified MSF system. Two phases of concentrations are planned: Phase I will concentrate the main effluent from 6.4 wt% total salt to 28.8%, while Phase II will use the effluents from Phase I as a feed to undergo further evaporation and cooling. NaCl and water are produced throughout this phase, while the end residue product will be essentially MgCl{sub 2}, since it is the most soluble. A mathematical model is developed and used to perform stage-to-stage material and heat balance calculations. Concentrations of NaCl and MgCl{sub 2} in the streams entering and leaving a stage are determined by using the solubility correlation developed in Part I. Simulation results show that by using 5,210 tons/h brine as a feed for Phase I, they can recover 4,430 tons/h fresh water, 277 tons/h NaCl, and 502 tons/h bittern (in which the ratio of MgCl{sub 2}/NaCl is increased to 12) as the very final products of the integrated scheme. This bittern provides 30 tons/h MgCl{sub 2} as an end product.

  11. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  12. Water Imbibition into Rock as Affected by Sample Shape, Pore, Conductivity, and Antecedent Water Content

    SciTech Connect

    R.P. Ewing

    2005-08-29

    Infiltration is often presumed to follow Philip's equation, I = st{sup 1/2}, where I is cumulative infiltration, s is sorptivity, and t is time. This form of the equation is appropriate for short times, and/or for negligible gravitational effects. For a uniform soil, this equation describes a plot of log(mass imbibed) versus log(time), with a slope (imbibition exponent) of 1/2. The equation has also been applied to low-porosity rocks, where the extremely small pores render gravitational forces negligible. Experiments recently performed on a wide variety of rocks produced imbibition exponents from 0.2 to 0.5. Many rock types showed initial imbibition proceeding as I {approx} t{sup 1/4}, then later switched to ''normal'' (t{sup 1/2}) behavior. The distance to the wetting front that corresponds to this cross-over behavior was found to be related to the sample shape: tall thin samples are more likely to exhibit the exponent 1/4, and to cross over to 1/2-type behavior later, while short, squat samples are less likely to display the 1/4-type behavior at all. Additionally, the exponents are sensitive to antecedent water content, with initially wetter samples having smaller values. In this study, we present the experimental data, and provide a consistent and physically-based explanation using percolation theory. The analogy between imbibition and diffusion is used to model imbibition into samples with low pore connectivity, with the exponents and their crossover behavior emerging from a random walk process. All laboratory phenomena--different exponents, crossover behavior, and effects of sample shape and antecedent water content--are reproduced by the model, with similar patterns across experiment and simulation. We conclude both that diffusion is a useful and powerful conceptual model for understanding imbibition, and also that imbibition experiments, being simpler than diffusion measurements, can be used to examine diffusive behavior in rock.

  13. Hot water, fresh beer, and salt

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  14. Effects of de-icing salt on ground water characteristics.

    PubMed

    O'Brien, J E; Majewski, J C

    1975-01-01

    The effect of "road salt" on the characteristics of Massachusetts drinking water supplies has been significant and cumulative rather than transient or seasonal. De-icing salt is essentially all sodium chloride. Calcium chloride accounted for only three percent of the total salt used. However, hardness content, as well as sodium ion concentration, has increased greatly in ground waters in the past decade. The changing composition of our water supplies has agricultural, economic, and public health implications. This study attempts to quantify the stoichiometry of these changes in concentration, which are in part due to an ion-exchange mechanism in the soil. PMID:238830

  15. SALT WATER INTRUSION IN THE UNITED STATES

    EPA Science Inventory

    Salt water intrusion, from one or more sources outlined in this report, has resulted in degradation of subsurface fresh water aquifers in 43 States. Numerous case histories delineating current problems exist, providing adequate documentation of the seriousness of salt water intru...

  16. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  17. Municipal water reuse for urban agriculture in Namibia: Modeling nutrient and salt flows as impacted by sanitation user behavior.

    PubMed

    Woltersdorf, L; Scheidegger, R; Liehr, S; Döll, P

    2016-03-15

    Adequate sanitation, wastewater treatment and irrigation infrastructure often lacks in urban areas of developing countries. While treated, nutrient-rich reuse water is a precious resource for crop production in dry regions, excessive salinity might harm the crops. The aim of this study was to quantify, from a system perspective, the nutrient and salt flows a new infrastructure connecting water supply, sanitation, wastewater treatment and nutrient-rich water reuse for the irrigation of agriculture, from a system perspective. For this, we developed and applied a quantitative assessment method to understand the benefits and to support the management of the new water infrastructure in an urban area in semi-arid Namibia. The nutrient and salt flows, as affected by sanitation user behavior, were quantified by mathematical material flow analysis that accounts for the low availability of suitable and certain data in developing countries, by including data ranges and by assessing the effects of different assumptions in cases. Also the nutrient and leaching requirements of a crop scheme were calculated. We found that, with ideal sanitation use, 100% of nutrients and salts are reclaimed and the slightly saline reuse water is sufficient to fertigate 10 m(2)/cap/yr (90% uncertainty interval 7-12 m(2)/cap/yr). However, only 50% of the P contained in human excreta could be finally used for crop nutrition. During the pilot phase fewer sanitation users than expected used slightly more water per capita, used the toilets less frequently and practiced open defecation more frequently. Therefore, it was only possible to reclaim about 85% of nutrients from human excreta, the reuse water was non-saline and contained less nutrient so that the P was the limiting factor for crop fertigation. To reclaim all nutrients from human excreta and fertigate a larger agricultural area, sanitation user behavior needs to be improved. The results and the methodology of this study can be generalized and

  18. Temporal stability of soil water contents as affected by weather patterns: a simulation study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) is a natural phenomenon that recently attracts attention and finds multiple applications. Large variations in the interannual and interseasonal TS SWC have been encountered among locations studied by various authors. The objective of this work was ...

  19. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  20. Determination of water content by capillary gas chromatography coupled with thermal conductivity detection.

    PubMed

    Lodi, A; Bellini, M S; Clavel, A; Pijnenburg, N

    2011-11-01

    This article presents some experience obtained by applying capillary gas chromatography coupled with thermal conductivity detection (GC/TCD) to the determination of water in substances for pharmaceutical use. This technique represents a useful, orthogonal tool complementary to water determination methods based on volumetric or coulometric titration. It can also represent an alternative technique when such titrations are not applicable. This article presents the preliminary results obtained in a number of case studies where a GC/TCD procedure was applied in comparison with pharmacopoeial methods to substances with different water contents. PMID:22225767

  1. Irrigation scheduling as affected by field capacity and wilting point water content from different data sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at field capacity and wilting point water content is critical information for irrigation scheduling, regardless of soil water sensor-based method (SM) or evapotranspiration (ET)-based method. Both methods require knowledge on site-specific and soil-specific Management Allowable De...

  2. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    NASA Astrophysics Data System (ADS)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  3. Increase of urban lake salinity by road deicing salt.

    PubMed

    Novotny, Eric V; Murphy, Dan; Stefan, Heinz G

    2008-11-15

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds. PMID:18762321

  4. Effect of hydration on the water content of human erythrocytes.

    PubMed

    Levin, R L; Cravalho, E G; Huggins, C E

    1976-12-01

    An ideal, hydrated, nondilute pseudobinary salt-protein-water solution model of the RBC intracellular solution has been developed to describe the osmotic behavior of human erythrocytes during freezing and thawing. Because of the hydration of intracellular solutes (mostly cell proteins), our analytical results predict that at least 16.65% of the isotonic cell water content will be retained within RBCs placed in hypertonic solutions. These findings are consistent not only with the experimental measurements of the amount of isotonic cell water retained within RBCs subjected to nonisotonic extracellular solutions (20-32%) but also with the experimental evidence that all of the water within RBCs is solvent water. By modeling the RBC intracellular solution as a hydrated salt-protein-water solution, no anomalous osmotic behavior is apparent. PMID:990394

  5. Hot water, fresh beer, and salt

    SciTech Connect

    Crawford, F.S. Physics Department, University of California, Berkeley, CA )

    1990-11-01

    In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Do ionizing particles produce bubbles in fresh beer '' is answered experimentally.

  6. Hormonal activity in detached lettuce leaves as affected by leaf water content.

    PubMed

    Aharoni, N; Blumenfeld, A; Richmond, A E

    1977-06-01

    The interrelationship between water deficiency and hormonal makeup in plants was investigated in detached leaves of romaine lettuce (Lactuca sativa L. cv. ;Hazera Yellow'). Water stress was imposed by desiccating the leaves for several hours in light or darkness at different air temperatures and relative humidity. In the course of desiccation, a rise in abscisic acid content and a decline in gibberellin and cytokinin activity were observed by gas-liquid chromatography, by both the barley endosperm bioassay and radioimmunoassay and by the soybean callus bioassay. Gibberellin activity began to decline in the stressed leaves before the rise in abscisic acid, the rate of this decline being positively correlated with the rate of increase in leaf water saturation deficit. Recovery from water stress was effected by immersing the leaf petioles in water while exposing the blades to high relative humidity. This resulted in a decrease in leaf water saturation deficit, a reduction in abscisic acid content, and an increase in gibberellin and cytokinin activity.Application of abscisic acid to the leaves caused partial stomatal closure in turgid lettuce leaves, whereas treatment with gibberellic acid and kinetin of such leaves had no effect on the stomatal aperture. In desiccating leaves, however, gibberellic acid and kinetin treatment considerably retarded stomatal closure, thus enhancing the increase in leaf water saturation deficit. These results suggest that the effect of desiccation in changing leaf hormonal make-up, i.e. a rapid increase in abscisic acid and a decrease in both cytokinin and gibberellin activity, is related to a mechanism designed to curtail water loss under conditions inducing water deficiency. PMID:16660015

  7. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  8. Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study

    NASA Astrophysics Data System (ADS)

    Mangel, Adam R.; Moysey, Stephen M. J.; van der Kruk, Jan

    2015-06-01

    Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem-van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20 cm, i.e., twice the average wavelength, for a 900 MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches.

  9. Climatology of cloud water content associated with different cloud types observed by A-Train satellites

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Jiang, Jonathan H.; Wang, Zhien; Su, Hui; Deng, Min; Massie, Steven

    2015-05-01

    This study investigates the climatology of vertical distributions of cloud liquid water content, ice water content, and cloud fraction (CFR) associated with eight different cloud types, by utilizing the combined CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar measurements. The geographical and seasonal variations of these cloud properties for each cloud type are also analyzed. The cloud water content (CWC) of each cloud type is sorted by three parameters obtained from colocated satellite observations to investigate the relationships between large-scale conditions and the vertical structure of clouds. Results show that different cloud types have different altitudes of CWC and CFR peaks, and the altitude of CFR peak does not always overlap with that of CWC peak. Each type of cloud shows a clear asymmetric pattern of spatial distribution between Northern Hemisphere (NH) and Southern Hemisphere (SH). Stratocumulus and stratus clouds make the greatest contribution to the liquid water path, while the ice water path is mostly contributed by deep convective cloud over the tropics and nimbostratus over the middle and high latitudes. Over both middle and high latitudes, clouds have larger seasonal variation in the NH than in the SH. Over ocean, large CWCs of deep convective cloud, cirrus, and altostratus are above 7 km, and are associated with high convective available potential energy (>2000 J/kg), warm sea surface temperature (>303 K), and relatively high precipitation (>1 mm/h). Over land, most of the middle and high clouds have similar CWC distributions compared to those over ocean, but altocumulus and low clouds are quite different from those over ocean.

  10. Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon.

    PubMed

    Alonso, Francisco; Moglie, Yanina; Radivoy, Gabriel; Yus, Miguel

    2011-09-21

    An easy-to-prepare, reusable and versatile catalyst consisting of oxidised copper nanoparticles on activated carbon has been fully characterised and found to effectively promote the multicomponent synthesis of 1,2,3-triazoles from organic halides, diazonium salts, and aromatic amines in water at a low copper loading. PMID:21789331

  11. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  12. Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance.

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Jia; Sun, Guohua; Li, Hongmei

    2012-10-15

    Certified reference materials (CRMs) of water content are widely used in the calibration and validation of Karl Fischer coulometry and volumetry. In this study, the water content of the water saturated 1-octanol (WSO) CRM was certified by Karl Fischer coulometry, volumetry and quantitative nuclear magnetic resonance (Q NMR). The water content recovery by coulometry was 99.76% with a diaphragm-less electrode and Coulomat AG anolyte. The relative bias between the coulometry and volumetry results was 0.06%. In Q NMR, the water content of WSO is traceable to the International System (SI) of units through the purity of internal standard. The relative bias of water content in WSO between Q NMR and volumetry was 0.50%. The consistency of results for these three independent methods improves the accuracy of the certification of the RM. The certified water content of the WSO CRM was 4.76% with an expanded uncertainty of 0.09%. PMID:23442697

  13. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    USGS Publications Warehouse

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R., Jr.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  14. Swelling of phospholipids by monovalent salt

    PubMed Central

    Petrache, Horia I.; Tristram-Nagle, Stephanie; Harries, Daniel; Kučerka, Norbert; Nagle, John F.; Parsegian, V. Adrian

    2009-01-01

    Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility that swelling is an equilibration artifact. Although both attractive and repulsive forces could be modified by salt, we show experimentally that swelling is driven primarily by weakening of the van der Waals attraction. To isolate the effect of salt on van der Waals interactions, we focus on high salt concentrations at which any possible electrostatic interactions are screened. By analysis of X-ray diffraction data, we show that salt does not alter membrane structure or bending rigidity, eliminating the possibility that repulsive fluctuation forces change with salt. By measuring changes in interbilayer separation with applied osmotic stress, we have determined, using the standard paradigm for bilayer interactions, that 1 M concentrations of KBr or KCl decrease the van der Waals strength by 50%. By weakening van der Waals attractions, salt increases energy barriers to membrane contact, possibly affecting cellular communication and biological signaling. PMID:16267342

  15. Scattering by solutions of major sea salts.

    PubMed

    Zhang, Xiaodong; Hu, Lianbo; Twardowski, Michael S; Sullivan, James M

    2009-10-26

    Increased scattering by seawater relative to that by pure water is primarily due to additional fluctuation of the refractive index contributed by sea salts. Salts with different ionic weight and sizes, while barely affecting the scattering that is due to density fluctuations, have a significant effect on the scattering that is due to concentration fluctuations. And this explains the major differences of their total scattering that would be observed. Scattering by solutions of NaCl, the major sea salt, is consistently about 6.7% and 4% lower than seawater of the same mass concentration and of the same refractive index, respectively. Because of ionic interactions, the molecular scattering does not follow the simple addition rule that applies to bulk inherent optical properties, with the total less than the summation of the parts. The possible values of scattering by waters of, such as, Dead Sea or Orca Basin, which have different salt composition from seawater, are discussed. PMID:19997177

  16. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the supercritical region (Hovland et al., 2006). During the various stages of planet Mars’ development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the supercritical water zone during the down-going leg (the recharge leg) of the convective cell. The zones with supercritical out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal ‘hydrothermal salt model’, which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth. Hovland, et al., 2006. Salt formation by supercritical seawater and submerged boiling. Marine and Petrol. Geol. 23, 855-69

  17. Exploring the use of Low-intensity Ultrasonics as a Tool for Assessing the Salt Content in Pork Meat Products

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; de Prados, M.; Martínez-Escrivá, G.; González, R.; Mulet, A.; Benedito, J.

    Meat industry demands non-destructive techniques for the control of the salting process to achieve a homogeneous final salt content in salted meat products. The feasibility of using low-intensity ultrasound for characterizing the salting process of pork meat products was evaluated. The ultrasonic velocity (V) and time of flight (TF) were measured by through-transmission and pulse-echo methods, respectively, in salted meat products. Salting involved an increase of the V in meat muscles and a decrease of the time of flight in whole hams. Measuring the V before and after salting, the salt content could be estimated. Moreover, online monitoring of the salting process by computing the TF could be considered a reliable tool for quality control purposes.

  18. Laboratory experiments of salt water intrusion

    NASA Astrophysics Data System (ADS)

    Crestani, Elena; Camporese, Matteo; Salandin, Paolo

    2015-04-01

    The problem of saltwater intrusion in coastal aquifers is dealt with by the proper setup of a sand-box device to develop laboratory experiments in a controlled environment. Saline intrusion is a problem of fundamental importance and affects the quality of both surface water and groundwater in coastal areas. In both cases the phenomenon may be linked to anthropogenic (construction of reservoirs, withdrawals, etc.) and/or natural (sea-level excursions, variability of river flows, etc.) changes. In recent years, the escalation of this problem has led to the development of specific projects and studies to identify possible countermeasures, typically consisting of underground barriers. Physical models are fundamental to study the saltwater intrusion problem, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of solutions to contain the salt wedge. In order to study and describe the evolution of the salt wedge, the effectiveness of underground barriers, and the distance from the coast of a withdrawal that guarantees a continuous supply of fresh water, a physical model has been realized at the University of Padova to represent the terminal part of a coastal aquifer. It consists of a laboratory flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 45 cm with glass beads with a d50 of 0.6 mm and a uniformity coefficient d60/d10~= 1.5. The material is homogeneous and characterized by a porosity of about 0.37 and by an hydraulic conductivity of about 1.8×10-3 m/s. Upstream from the sand-box, a tank, continuously supplied by a pump, provides fresh water to recharge the aquifer, while the downstream tank, filled with salt water, simulates the sea. The volume of the downstream tank (~= 2 m3) is about five times the upstream one, so that density variations due to the incoming fresh water flow are negligible. The water level in the two tanks is continuously monitored by means of two level probes and is

  19. Eating quality of UK-style sausages varying in price, meat content, fat level and salt content.

    PubMed

    Sheard, P R; Hope, E; Hughes, S I; Baker, A; Nute, G R

    2010-05-01

    Thirty-six brands of pork sausage were purchased from a total of 10 retailers over a 4 months period and assessed for eating quality. The brands included 5 of the 10 most popular sausages in the UK, 4 basic, 14 standard, 10 premium and 8 healthy eating brands. The average price, meat content, fat content and salt content was 3.31 pounds/kg, 62%, 17% and 1.6%, respectively, but there were wide differences in price (1.08 pound/kg-5.23 pounds/kg), meat content (32-97%), fat content (2.1-29.1%) and salt content (0.5-2.5%). Sausages were assessed by a trained sensory panel using 100mm unstructured line scales and 14 descriptors (skin toughness, firmness, juiciness, pork flavour, fattiness, meatiness, particle size, cohesiveness, saltiness, sweet, acidic, bitter and metallic) including overall liking. The declared meat content was positively correlated with price, skin toughness, firmness, pork flavour, meatiness, particle size and perceived saltiness (r=0.5 or better). The declared fat content was positively correlated with fattiness and sweetness (r=0.42 or better) but not juiciness. There was no significant correlation between declared salt content and perceived saltiness. A principal component analysis showed that the first two principal components accounted for 51% of the variability in the data. Products could be separated into four quadrants according to their price, meat content, fat content and their associated eating quality attributes. PMID:20374862

  20. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  1. Temporal stability of soil water content as affected by climate: a simulation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) is a natural phenomenon that recently attracts attention and finds multiple applications. Weather and climate are usually mentioned as a factor of TS SWC, but its effect is far from clear. The objective of this work was to use soil water modeling to ...

  2. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress.

    PubMed

    Jahantigh, Omolbanin; Najafi, Farzaneh; Badi, Hassanali Naghdi; Khavari-Nejad, Ramazan Ali; Sanjarian, Forough

    2016-06-01

    The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm(-1) of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions. PMID:27165530

  3. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline

    PubMed Central

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-01-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope–energy dispersive spectrometry (SEM-EDS), inductively coupled plasma–mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition. PMID:26608736

  4. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-11-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition.

  5. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline.

    PubMed

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-01-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition. PMID:26608736

  6. Estimating canopy water content from spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...

  7. New parametric implementation of metamorphic reactions limited by water content, impact on exhumation along detachment faults

    NASA Astrophysics Data System (ADS)

    Mezri, L.; Le Pourhiet, L.; Wolf, S.; Burov, E.

    2015-11-01

    Metamorphic phase changes have a strong impact on the physical and mechanical properties of rocks including buoyancy (body forces) and rheology (interface forces). As such, they exert important dynamic control on tectonic processes. It is generally assumed that phase changes are mainly controlled by pressure (P) and temperature (T) conditions. Yet, in reality, whatever the PT conditions are, phase changes cannot take place without an adequate amount of the main reactant - water. In present day geodynamic models, the influence of water content is neglected. It is generally assumed that water is always available in quantities sufficient for thermodynamic reactions to take place at minimal Gibbs energy for given P and T conditions and a constant chemical composition. If this assumption was correct, no high-grade metamorphic rocks could to be found on the Earth's surface, since they would be retro-morphed to low-grade state during their exhumation. Indeed, petrologic studies point out that water, as a limiting reactant, is responsible for the lack of retrograde metamorphic reactions observed in the rocks exhumed in typical MCC contexts. In order to study the impact of fluid content on the structure of metamorphic core complexes, we have coupled a geodynamic thermo-mechanical code Flamar with a fluid-transport and water-limited thermodynamic phase transition algorithm. We have introduced a new parameterization of Darcy flow that is able to capture source/sink and transport aspects of fluid transport at the scale of the whole crust with a minimum of complexity. Within this model, phase transitions are controlled by pressure temperature and the local amount of free fluid that comes from both external (meteoric) and local (dehydration) sources. The numerical experiments suggest a strong positive feedback between the asymmetry of the tectonic structures and the depth of penetration of meteoric fluids. In particular, bending-stress distribution in asymmetric detachment zones

  8. WATER, SALT AND CLIMATE CHANGE

    EPA Science Inventory

    The application of synchrotron based research for understanding the fate of contaminants in water, soil, and atmosphere is proving to be beneficial for scientists and regulators. Drawing the connection of a contaminated site to knowledge of metal speciation provides direct eviden...

  9. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water...

  10. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water...

  11. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water...

  12. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water...

  13. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water...

  14. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  15. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    EPA Science Inventory

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  16. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  17. Mineralogical and geochemical characteristics of drinking water salt deposits

    NASA Astrophysics Data System (ADS)

    Soktoev, B. R.; Rikhvanov, L. P.; Matveenko, I. A.

    2015-11-01

    The article presents the research results on the features of element and mineral composition of salt deposits (limescale) formed in household conditions in heat exchanging equipment. The major part of limescale is represented by two species of calcium carbonate - calcite and aragonite. We have shown that high concentrations of chemical elements in the limescale promote the formation of their own mineral forms (sulphates, silicates, native forms) in salt deposits. Detecting such mineral formations suggests the salt deposits of drinking water to be a long-term storage media which can be used in the course of eco-geochemical and metallogenic studies.

  18. Salt water cooling tower retrofit experience

    SciTech Connect

    Rittenhouse, R.C.

    1994-06-01

    This article describes the experience of engineers at Atlantic Electric Co. with a recent cooling tower fill retrofit at the company's B.L. England Station, Unit 3. Note that this tower is unique. It is the first natural draft salt water tower to be built in the United States. Unit 3's closed-loop saltwater cooling system features a double condenser and two 50% capacity horizontal circulating water pumps. A natural draft cooling tower rejects heat to the atmosphere through evaporation and sensible heat transfer. The tower is 180 ft in diameter at the base and 208 ft high, and features a counterflow design. It was designed to cool 63,500 gpm of circulating salt water through a range of 26 F with an approach of 19.2 degrees at an ambient wet bulb temperature of 76 F and 60% relative humidity. A drift rate of 0.002% of circulating water flow was specified to avoid excessive salt water carryover.

  19. Soil water content and soil disaggregation by disking affects PM10 emissions.

    PubMed

    Madden, Nicholaus M; Southard, Randal J; Mitchell, Jeff P

    2009-01-01

    Row crop agriculture in California's San Joaquin Valley is a major contributor of particulate matter <10 microm in aerodynamic diameter (PM10). The California Air Resources Board uses fixed PM10 emission values for various tillage operations to monitor and design attainment strategies. However, fixed emission values do not reflect emissions produced by a single implement operating under different soil conditions. This 2-yr study evaluated how PM10 mass concentrations (microg L(-1)) from disking change as a function of gravimetric soil water content (GWC), number of sequential diskings (D1, D2, D3), and the soil's weighted mean ped diameter (WMPD). Results showed PM10 increased logarithmically as the soil dried from a GWC of 14 to 4%. Average PM10 values at the lower GWCs were six to eight times greater than at the higher GWCs. Number of diskings also increased PM10, especially in drier soil. Below a GWC of 7%, PM10 for D3 was about twice that for D1. Despite strong correlations between more disking and lower WMPD, a lower WMPD did not always result in an increase in PM10. This underscored the role soil water plays in reducing PM10 at high GWCs despite low WMPDs from multiple diskings. Three-way interactions between GWC, disking, and PM10 showed, on average, that the magnitude of PM10 produced by D1 was 1.3 to 1.6 times lower than by D3, despite having insignificantly different GWC. Therefore, a disking operation can yield two different PM10 values under similar GWCs if the amount of soil disaggregation is different. Our results show that inclusion of soil parameters in PM10 emission estimates is essential to describing agriculture's role in air quality violations and to assess the value of proposed mitigation measures, such as conservation tillage. PMID:19141793

  20. Airborne endotoxin associated with particles of different sizes and affected by water content in handled straw.

    PubMed

    Madsen, A M; Nielsen, S H

    2010-07-01

    High exposures to endotoxin are observed in environments where organic materials are handled and lower exposures are found in e.g. indoor air. Inhaled endotoxin contributes significantly to the induction of airway inflammation and dysfunction. The size of an inhaled particle influences the deposition in the airways and the following health symptoms. The objective is to characterise the distribution of endotoxin on airborne particles of different sizes in straw storage halls with high exposure and in other environments with lower exposure levels to endotoxin. Furthermore we have studied the influence of water content of handled straw on the size distribution of endotoxin containing particles. Total, inhalable, thoracic and respirable endotoxin and particles have each been quantified in aerosols from boiler rooms and straw storage halls at 24 power plants, including 21 biofuel plants. Inhalable, thoracic and respirable endotoxin have been quantified in aerosols from offices and outdoor air. The endotoxin concentration was higher in airborne thoracic dust than in airborne 'total dust'. The median respirable fraction in the straw storage halls, boiler rooms at biofuel plants, boiler rooms at conventional plants, offices and outdoors was respectively 42%, 9%, 19%, 24% and 34%. Thoracic endotoxin per number of thoracic particles was higher than respirable endotoxin per number of respirable particles at the biofuel plants. In straw storage halls the fraction of endotoxin of respirable size was highest on the days with lowest water content in the received straw. Furthermore the exposures to all endotoxin fractions were highest on days with the lowest water content in the received straw. In conclusion the highest exposures and concentrations of endotoxin occur or tend to occur from thoracic dust. A high variation in endotoxin concentrations and in fractions of respirable or thoracic size is found in the different working areas. This is important in the risk assessment and

  1. Water Content of Earth's Continental Mantle Is Controlled by the Circulation of Fluids or Melts

    NASA Technical Reports Server (NTRS)

    Peslier, Anne; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.

    2014-01-01

    A key mission of the ARES Directorate at JSC is to constrain models of the formation and geological history of terrestrial planets. Water is a crucial parameter to be measured with the aim to determine its amount and distribution in the interior of Earth, Mars, and the Moon. Most of that "water" is not liquid water per se, but rather hydrogen dissolved as a trace element in the minerals of the rocks at depth. Even so, the middle layer of differentiated planets, the mantle, occupies such a large volume and mass of each planet that when it is added at the planetary scale, oceans worth of water could be stored in its interior. The mantle is where magmas originate. Moreover, on Earth, the mantle is where the boundary between tectonic plates and the underlying asthenosphere is located. Even if mantle rocks in Earth typically contain less than 200 ppm H2O, such small quantities have tremendous influence on how easily they melt (i.e., the more water there is, the more magma is produced) and deform (the more water there is, the less viscous they are). These two properties alone emphasize that to understand the distribution of volcanism and the mechanism of plate tectonics, the water content of the mantle must be determined - Earth being a template to which all other terrestrial planets can be compared.

  2. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis

    SciTech Connect

    Penuelas, J.; Llusia, J.

    1997-04-01

    Rosmarinus officinalis L. plants were grown under carbon dioxide concentrations of 350 and 700 {mu}mol (atmospheric CO{sub 2} and elevated CO{sub 2}) and under two levels of irrigation (high water and low water) from October 1, 1994 to May 31, 1996. Elevated CO{sub 2} led on increasingly larger monthly growth rates than the atmospheric CO{sub 2} treatments. The increase was 9.5% in spring 1995, 23% in summer 1995, and 53% in spring 1996 in the high-water treatments, whereas in low-water treatments the growth response to elevated CO{sub 2} was constrained until the second year spring, when there was a 47% increase. The terpene concentrations was slightly larger in the elevated CO{sub 2} treatments than in atmospheric CO{sub 2} treatments and reached a maximum 37% difference in spring 1996. There was no significant effect of water treatment, likely as a result of a mild low water treatment for a Mediterranean plant. Terpene concentrations increased throughout the period of study, indicating possible age effects. The most abundant terpenes were {alpha}-pinene, cineole, camphor, borneol, and verbenone, which represented about 75% of the total. No significant differences were found in the terpene composition of the plants in the different treatments or seasons. The emission of volatile terpenes was much larger in spring (about 75 {mu}g/dry wt/hr) than in autumn (about 10 {mu}g/dry wt/hr), partly because of higher temperature and partly because of seasonal effect, but no significant differences was found because of CO{sub 2} or water treatment. The main terpene emitted was {alpha}-pinene, which represented about 50% of the total. There was no clear correlation between content and emission, either quantitatively or qualitatively. More volatile terpenes were proportionally more important in the total emission than in total content and in autumn than in spring.

  3. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni.

    PubMed

    Zeng, Jianwei; Chen, Aimeng; Li, Dandan; Yi, Bin; Wu, Wei

    2013-06-19

    This study examined the effects of three different NaCl concentrations (60, 90, and 120 mM) on the growth, physiological responses, and steviol glycoside composition of Stevia rebaudiana Bertoni for 4 weeks. The results showed that the total dry weight decreased by 40% at 120 mM NaCl but remained the same at 60 and 90 mM NaCl. As salt concentration increased, chlorophyll contents decreased markedly by 10-70%, whereas the increments of the antioxidant enzyme activities were 1.0-1.6, 1.2-1.3, and 2.0-4.0 times, respectively, for superoxide dismutase, peroxidase, and catalase. The proline contents in salt-treated plants were 17-42 times higher than that in control. Moreover, leaf possessed significantly higher K⁺ content and K⁺/Na⁺ ratio than stem and root for all salt treatments. In addition, 90-120 mM NaCl treatment notably decreased the content of rebaudioside A (RA) and stevioside (ST) by 16.2-38.2%, whereas the increment of the ratio of RA/ST of salt-treated plants was 1.1-1.4 times. These results indicate that S. rebaudiana is moderately tolerant to salt stress. Hypohaline soil can be utilized in the plantation of S. rebaudiana and may be profitable for optimizing the steviol glycoside composition. PMID:23711229

  4. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing; Alexander, John; Gove, Brita; Koch, Manfred

    2015-09-01

    Water geochemistry data from complexly designed salt-solution injection experiments in the laboratory, coastal aquifers of Bangladesh and Italy, taken from the literature, and two salted watersheds of New Jersey, US were collected and analyzed to study the geochemical mechanisms that mobilize As, Pb, and Hg under varied salting conditions. Overall, increased NaCl-concentrations in aquifers and soil are found to increase the release of Pb and Hg into the water. Reducing environments and possible soil dispersion by hydrated Na+ are found to lead to an increase of As-concentration in water. However, the application of a pure NaCl salt solution in the column injection experiment was found to release less As, Pb, and Hg initially from the soil and delay their concentration increase, when compared to the application of CaCl2 and NaCl mixed salts (at 6:4 weight ratio). The concentration correlation dendrogram statistical analyses of the experimental and field data suggest that the release of As, Hg, and Pb into groundwater and the soil solution depends not only on the salt level and content, but also on the redox condition, dissolved organic matter contents, competitiveness of other ions for exchange sites, and source minerals. With the ongoing over-exploration of coastal aquifers from increased pumping, continued sea-level rise, and increased winter deicing salt applications in salted watersheds of many inland regions, the results of this study will help understand the complex relation between the concentrations of As, Pb, and Hg and increased salt level in a coastal aquifer and in soils of a salted watershed.

  5. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application.

    PubMed

    Sun, Hongbing; Alexander, John; Gove, Brita; Koch, Manfred

    2015-09-01

    Water geochemistry data from complexly designed salt-solution injection experiments in the laboratory, coastal aquifers of Bangladesh and Italy, taken from the literature, and two salted watersheds of New Jersey, US were collected and analyzed to study the geochemical mechanisms that mobilize As, Pb, and Hg under varied salting conditions. Overall, increased NaCl-concentrations in aquifers and soil are found to increase the release of Pb and Hg into the water. Reducing environments and possible soil dispersion by hydrated Na(+) are found to lead to an increase of As-concentration in water. However, the application of a pure NaCl salt solution in the column injection experiment was found to release less As, Pb, and Hg initially from the soil and delay their concentration increase, when compared to the application of CaCl2 and NaCl mixed salts (at 6:4 weight ratio). The concentration correlation dendrogram statistical analyses of the experimental and field data suggest that the release of As, Hg, and Pb into groundwater and the soil solution depends not only on the salt level and content, but also on the redox condition, dissolved organic matter contents, competitiveness of other ions for exchange sites, and source minerals. With the ongoing over-exploration of coastal aquifers from increased pumping, continued sea-level rise, and increased winter deicing salt applications in salted watersheds of many inland regions, the results of this study will help understand the complex relation between the concentrations of As, Pb, and Hg and increased salt level in a coastal aquifer and in soils of a salted watershed. PMID:26210297

  6. Evaluating climate change effects on water and salt resources in Salt Lake, Turkey using multitemporal SPOT imagery.

    PubMed

    Ekercin, Semih; Ormeci, Cankut

    2010-04-01

    The main goal of this study is to investigate the dimension of climate change effects in Salt Lake and its vicinity in Turkey using satellite remote sensing data. The first stage of the study includes evaluation of the multitemporal climatic data on the Salt Lake Basin Area, Turkey for a period of 35 years (1970-2005). The changes in mean temperature and precipitation are evaluated for the study area by comparing two periods, 1970-1992 and 1993-2005. In the second stage, the effects of climate changes in the Salt Lake are investigated by evaluating water and salt reserve changes through seasonal and multitemporal SPOT imagery collected in 1987 and 2005. The climatic data and remotely sensed and treated satellite images show that water and salt reserve in Salt Lake has decreased between 1987 and 2005 due to drought and uncontrolled water usage. It is suggested that the use of water supplies, especially underground waters, around the Salt Lake should be controlled and the lake should regularly be monitored by current remote sensing data for an effective management of water and salt resources in the region. PMID:19267206

  7. Cardiac content of brain natriuretic peptide in DOCA-salt hypertensive rats

    SciTech Connect

    Yokota, Naoto; Aburaya, Masahito; Yamamoto, Yoshitaka; Kato, Johji; Kitamura, Kazuo; Kida, Osamu; Eto, Tanenao; Kangawa, Kenji; Tanaka, Kenjiro ); Minamino, Naoto; Matsuo, Hisayuki )

    1991-01-01

    The cardiac content of immunoreactive rat brain natriuretic peptide (ir-rBNP) in deoxycorticosterone acetate (DOCA)-salt hypertensive rats was measured by radioimmunoassay (RIA). The atrial content of ir-rBNP was significantly lower in the DOCA-salt group than in the control group. However, the ventricular content of ir-rBNP was markedly increased in the DOCA-salt group as compared to the other groups. Ir-rBNP level in the atria was negatively correlated with blood pressure, while that in the ventricle was positively correlated with blood pressure. A significant correlation was observed between tissue levels of ir-rBNP and ir-rat atrial natriuretic peptide (rANP) both in atrium and ventricle. These results raise the possibility that rBNP as well as rANP functions as a cardiac hormone, the production of which probably changes in response to increased of body fluid and blood pressure.

  8. Water vapor content in the polar atmosphere measured by Lyman-alpha/OH fluorescence method

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Saitoh, S.; Ono, A.

    1985-01-01

    The water vapor of the polar stratosphere possibly plays an important role in various aeronomical processes; for example, OH radical formation through photodissociation of H2O, formation of water cluster ions, radiative energy transfer in the lower stratosphere, condensation onto particulate matter, and so on. In addition to these, it has been speculated, from the viewpoint of global transport and/or budget of water vapor, that the polar stratosphere functions as an active sink. STANFORD (1973) emphasized the existence of the stratospheric Cist cloud in the polar stratosphere which brought a large loss rate of stratospheric water vapor through a so-called freeze-out of cloud particles from the stratosphere into the troposphere. However, these geophysically interesting problems unfortunately remain to be solved, owing to the lack of measurements on water vapor distribution and its temporal variation in the polar stratosphere. The water vapor content measured at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica using a balloon-borne hygrometer (Lyman - alpha/OH fluorescence type) is discussed.

  9. Vertical Distributions of Cloud Water Content Associated with Different Cloud Types as Observed by A-Train Satellites

    NASA Astrophysics Data System (ADS)

    Huang, L.; Jiang, J. H.; Wang, Z.; Su, H.; Deng, M.; Massie, S. T.

    2014-12-01

    This study presents a detailed global climatology of vertical distributions of cloud liquid water content (LWC), ice water content (IWC) and cloud fraction (CF) associated with 8 different cloud types, by utilizing the combined CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar measurements. The geographical and seasonal variations of these cloud properties for each cloud type are also analyzed and quantified. The cloud water contents (CWC = IWC + LWC) of each cloud type are further sorted by a number of large-scale parameters obtained from co-located satellite observations to investigate how large-scale environmental conditions affect the formation and distribution of different types of clouds. This study provides useful results for many future studies, such as how aerosols interact with different types of clouds. It can also serve as a baseline observation to evaluate clouds simulated by global climate models.

  10. Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM

    NASA Astrophysics Data System (ADS)

    Terryn, C.; Michel, J.; Kilian, L.; Bonhomme, P.; Balossier, G.

    2000-09-01

    Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0-30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.

  11. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    SciTech Connect

    Franks, C.; Quach, A.; Birnie III, D.; Ela, W.; Saez, A.E.; Zelinski, B.; Smith, H.; Smith, G.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing wastewater residuals that minimize waste volume, water content and the long-term environmental risk from related by-products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 °C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hour. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  12. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.

    PubMed

    Hancer, M.; Celik, M. S.; Miller, J. D.

    2001-03-01

    Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press. PMID:11237454

  13. Validation of spot-testing kits to determine iodine content in salt.

    PubMed Central

    Pandav, C. S.; Arora, N. K.; Krishnan, A.; Sankar, R.; Pandav, S.; Karmarkar, M. G.

    2000-01-01

    Iodine deficiency disorders are a major public health problem, and salt iodization is the most widely practised intervention for their elimination. For the intervention to be successful and sustainable, it is vital to monitor the iodine content of salt regularly. Iodometric titration, the traditional method for measuring iodine content, has problems related to accessibility and cost. The newer spot-testing kits are inexpensive, require minimal training, and provide immediate results. Using data from surveys to assess the availability of iodized salt in two states in India, Madhya Pradesh and the National Capital Territory of Delhi, we tested the suitability of such a kit in field situations. Salt samples from Delhi were collected from 30 schools, chosen using the Expanded Programme on Immunization (EPI) cluster sampling technique. A single observer made the measurement for iodine content using the kit. Salt samples from Madhya Pradesh were from 30 rural and 30 urban clusters, identified by using census data and the EPI cluster sampling technique. In each cluster, salt samples were collected from 10 randomly selected households and all retailers. The 15 investigators performing the survey estimated the iodine content of salt samples in the field using the kit. All the samples were brought to the central laboratory in Delhi, where iodine content was estimated using iodometric titration as a reference method. The agreement between the kit and titration values decreased as the number of observers increased. Although sensitivity was not much affected by the increase in the number of observers (93.3% for a single observer and 93.9% for multiple observers), specificity decreased sharply (90.4% for a single observer and 40.4% for multiple observers). Due to the low specificity and resulting high numbers of false-positives for the kit when used by multiple observers ("real-life situations"), kits were likely to consistently overestimate the availability of iodized salt

  14. 61. VIEW OF SALT RIVER PROJECT WELL DISCHARGING WATER INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. VIEW OF SALT RIVER PROJECT WELL DISCHARGING WATER INTO THE ARIZONA CANAL NEAR 47TH AVENUE, LOOKING SOUTH Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  15. The estimation of total petroleum hydrocarbons content in waste water by IR spectrometry with multivariate calibrations.

    PubMed

    Vershinin, Viacheslav I; Petrov, Sergey V

    2016-02-01

    Alkanes, cycloalkanes and arenes have rather different sensitivities to IR-spectrometric determination, leading to high relative uncertainty (δc) for the total petroleum hydrocarbon index (TPH) in natural and waste waters. Another source of TPH uncertainty is the mismatch of group composition of the hydrocarbon mixture in the sample and in the standard substance used for one-dimensional calibration. Increasing the number of wavelengths and using of multivariate calibrations permit the reduction of δc to <10% rel. These calibrations may be constructed from IR-spectra and findings of extracts from aqueous solutions with known content of hydrocarbons. The method takes into account the losses of hydrocarbons during sample preparation. The accuracy of TPH estimations for this method is much better than for standard methods based on one-dimensional calibration with Simard mixture. This new method is useful in produced waste water analysis. PMID:26653437

  16. Elucidating the mechanism by which Gypsum fibrosum, a traditional Chinese medicine, maintains cutaneous water content.

    PubMed

    Ikarashi, Nobutomo; Ogiue, Naoki; Toyoda, Eri; Nakamura, Marina; Kon, Risako; Kusunoki, Yoshiki; Aburada, Takashi; Ishii, Makoto; Tanaka, Yoshikazu; Machida, Yoshiaki; Ochiai, Wataru; Sugiyama, Kiyoshi

    2013-01-01

    Aquaporin-3 (AQP3) plays an important role in maintaining the normal water content of the skin. Previously, we revealed that the expression of cutaneous AQP3 increased following oral administration of Gypsum fibrosum (main component: CaSO₄) to mice. The purpose of this study is to elucidate the mechanism by which Gypsum fibrosum increases the expression of cutaneous AQP3 in a keratinocyte cell line. Gypsum fibrosum or CaSO₄ was added to keratinocytes, and the expression level of AQP3, the Ca concentration, the activity of protein kinase C (PKC), and the degrees of phosphorylation of both extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) were measured. The mRNA and protein expression levels of AQP3 increased significantly 6 h-post addition of Gypsum fibrosum. In keratinocytes treated with Gypsum fibrosum, increases in the concentration of intracellular Ca, PKC activity, and the phosphorylation of ERK and CREB were observed. Pre-treatment with GF109203X, a PKC inhibitor, suppressed the mRNA expression levels of AQP3. Similarly to treatment with Gypsum fibrosum, the addition of CaSO₄ led to the same observations in keratinocytes. It is hypothesized that Gypsum fibrosum causes an increase in the intracellular Ca concentration, PKC activity, and the phosphorylation levels of ERK and CREB, resulting in increased AQP3 expression in keratinocytes. In addition, it is possible that the effect of Gypsum fibrosum is attributable to CaSO₄, based on the results demonstrating that the mechanisms of action of Gypsum fibrosum and CaSO₄ were nearly identical. PMID:23912684

  17. Salt effects on the picosecond dynamics of lysozyme hydration water investigated by terahertz time-domain spectroscopy and an insight into the Hofmeister series for protein stability and solubility.

    PubMed

    Aoki, Katsuyoshi; Shiraki, Kentaro; Hattori, Toshiaki

    2016-06-01

    The addition of salts into protein aqueous solutions causes changes in protein solubility and stability, whose ability is known to be ordered in the Hofmeister series. We investigated the effects of Hofmeister salts on the picosecond dynamics of water around a lysozyme molecule using terahertz time-domain spectroscopy. The change in the absorption coefficient for 200 mg mL(-1) lysozyme aqueous solution by the addition of salts was found to depend on the salts used, whereas that for pure water was almost independent of salts. From the difference in the salt concentration dependence for various salts, it has been found that chaotropic anions make the dynamics of water around the lysozyme molecule slower, whereas kosmotropic anions make the dynamics faster. The ability of an anion to slow down the water dynamics was found to have the following order: SCN(-) > Cl(-) > H2PO4(-) > NO3(-) ≈ SO4(2-). This result indicates that the effects of anions on the dynamics of water around the lysozyme molecule are the opposite of those for bulk water. This finding agrees with a prediction from a molecular model proposed by Collins [K. D. Collins, Methods, 2004, 34, 300]. The results presented here are compared with the results from preferential interaction studies and the results from sum frequency generation spectroscopy. These discussions have led to the conclusion that the picosecond dynamics of protein hydration water strongly contributes to protein stability, whereas electrostatic interactions between protein molecules contribute to protein solubility. PMID:27193313

  18. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    SciTech Connect

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  19. Errors in determination of soil water content using time domain reflectometry caused by soil compaction around waveguides

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat A.

    2008-08-01

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  20. Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter.

    PubMed

    Gómez-López, Vicente M; Gil, María I; Pupunat, Laurent; Allende, Ana

    2015-04-01

    Water can be a vector for foodborne pathogen cross-contamination during washing of vegetables if an efficient method of water disinfection is not used. Chlorination is the disinfection method most widely used, but it generates disinfection by-products such as trihalomethanes (THMs). Therefore, alternative disinfection methods are sought. In this study, a dynamic system was used to simulate the commercial conditions of a washing tank. Organic matter and the inoculum of Escherichia coli O157:H7 were progressively added to the wash water in the washing tank. We evaluated the effectiveness of the electrolyzed water (EW) when combining with the addition of salt (1, 0.5 and 0.15 g/L NaCl) on the pathogenic inactivation, organic matter depletion and THM generation. Results indicated that electrolysis of vegetable wash water with addition of salt (0.5 g/L NaCl) was able to eliminate E. coli O157:H7 population build-up and decrease COD accumulation while low levels of THMs were produced. PMID:25475317

  1. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  2. Effect of initial hydrogen content of a titanium alloy on susceptibility to hot salt stress corrosion.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    The influence of the initial hydrogen content of a titanium alloy on subsequent resistance to hot salt stress corrosion embrittlement and cracking was investigated. A Ti-8Al-1Mo-1V alloy was tested in four conditions: mill annealed (70 ppm H), duplex annealed (70 ppm H), vacuum annealed to an intermediate (36 ppm H) and a low (9 ppm H) hydrogen level. Material annealed at 650 C (duplex condition) exhibited resistance to hot salt stress corrosion superior to that exhibited by material in the mill annealed condition. Reduction of the alloy hydrogen content from 70 to as low as 9 ppm did not influence resistance to hot salt stress corrosion embrittlement or cracking.

  3. Surfactant enhanced wetting and salt leaching of soil contaminated by crude oil and brine

    SciTech Connect

    Guo, I.; McNabb, D.H.; Johnson, R.L.

    1995-12-31

    As a pre-treatment of bioremediation, leaching of salts from an agriculture top soil contaminated with crude oil and brine was inhibited by severe water repellency resulting from the large difference in surface tension between water and soil aggregates coated by crude oil. Surfactant solutions were found effective in reducing soil water repellency and improving salt leaching. An intermittent leaching procedure further improved leaching efficiency by allowing diffusion of salt from soil interpores to aggregate surface. As a result, electric conductivity (EC) of the contaminated soil was reduced from 11.8 dS cm{sup -1} to 2.6 dS cm{sup -1} when the soil was leached with a non-ionic surfactant (0.05 N, SN-70, Witco Inc.) using 1.6 L kg{sup -1} water. Dissolved hydrocarbons into the leachate was 106 mg L{sup -1} counting for 3.5% of total oil content.

  4. The Receptacle Model of Salting-In by Tetramethylammonium Ions

    PubMed Central

    Hribar–Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2010-01-01

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the MB + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series’ as atomic ions do. PMID:21028768

  5. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do. PMID:21028768

  6. Stability of salt in the Permian salt basin of Kansas, Oklahoma, Texas and New Mexico, with a section on dissolved salts in surface water

    USGS Publications Warehouse

    Bachman, George Odell; Johnson, Ross Byron

    1973-01-01

    bedded salt from subsurface dissolution depends chiefly on the isolation of the salt from moving ground water that is not completely saturated with salt. Karst topography is a major criterion for recognizing areas where subsurface dissolution has been active in the past; therefore, the age of the karst development is needed to provide the most accurate estimate of the dissolution rate. The Ogallala Formation-of Pliocene age is probably the most widespread deposit in the Permian salt basin that can be used as a point of reference for dating the development of recent topography. It is estimated that salt has been dissolved laterally in the vicinity of Carlsbad, New Mexico, at an average rate of about 6-8 miles per million years. Estimates of future rates of salt dissolution and the resulting lateral retreat of the underground dissolution front can be projected with reasonable confidence for southeastern New Mexico on the assumption that the climatic changes there in the past 4 million years are representative of climatic changes that may be expected in the near future of geologic time. Large amounts of salt are carried by present-day rivers in the Permian salt basin; some of the salt is derived from subsurface salt beds, but dissolution is relatively slow. Ground-water movement through the Permian salt basin is also relatively slow.

  7. Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas

    SciTech Connect

    Knauth, L.P.; Beeunas, M.A.

    1985-07-01

    Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The /sup 18/O//sup 16/O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines.

  8. Atrazine and alachlor transport in claypan soils as influenced by differential antecedent soil water content.

    PubMed

    Kazemi, H V; Anderson, S H; Goyne, K W; Gantzer, C J

    2008-01-01

    Increased attention to ground water contamination has encouraged an interest in mechanisms of solute transport through soils. Few studies have investigated the effect of the initial soil water content on the transport and degradation of herbicides for claypan soils. We investigated the effect of claypan soils at initial field capacity vs. permanent wilting level on atrazine and alachlor transport. The soil studied was Mexico silt loam (fine, smectitic, mesic Aeric Vertic Epiaqualf) with a subsoil clay content, primarily montmorillonite, of >40%. Strontium bromide, atrazine, and alachlor were applied to plots; half were at field capacity (Wet treatment), and half were near the permanent wilting point (Dry treatment). Soil cores were removed at selected depths and times, and cores were analyzed for bromide and herbicide concentrations. Bromide, atrazine, and alachlor were detected at the 0.90-m depth in dry plots within 15 d after experiment initiation. Bromide was detected 0.15 m deeper (P < 0.05) in the Dry compared with the Wet treatment at 1, 7, and 60 d after application and >0.30 m deeper (P < 0.01) in the Dry treatment at 15 and 30 d after application; similar treatment results were found for atrazine and alachlor, although on fewer dates with significant differences. The mobility order of the applied chemicals was bromide > atrazine > alachlor. The atrazine apparent half-life was significantly longer in the Dry plots compared with the Wet plots. The retardation factor determined from the relative velocity of each herbicide to that of bromide was higher for alachlor than for atrazine. This study identifies the impact that shrinkage cracks have for different moisture conditions on preferential transport of herbicides in claypan soils. PMID:18574193

  9. A validation of a thermal inertia approach to map soil water content on soils characterized by low fractional cover

    NASA Astrophysics Data System (ADS)

    Maltese, Antonino; Capodici, Fulvio; La Loggia, Goffredo; Corbari, Chiara; Mancini, Marco

    2013-10-01

    The assessment of the spatial distribution of soil water content could improve the effectiveness of agro-hydrological models. Although it is possible to retrieve the spatial distribution of the soil water content using thermal inertia, the main limit is its applicability to bare soils only. Recently, a variation of the thermal inertia approach has been setup also on vegetated soils characterized by low fractional cover. In particular, the methodology proposes to attenuate the solar radiation at the top of the canopy to the one reaching the soil trough an extinction factor. In situ data were acquired in June 2011 and July 2012 over two fields of maize and sunflowers; both were at their early growing stages. An airborneplatform provided images in the visible/near infrared and thermal infrared, both in day and night time. Results of the 2011 experiment demonstrated that the vegetation cover correction is required even with low fractional cover; indeed, not applying this correction would results in strong overestimation. The 2012 experiment (REFLEX) further validates the model on an independent dataset, thus, confirming the reliability of the methodology. Furthermore, a spatial resolution analysis highlighted that retrievals at low spatial resolution best compares with in situsoil water content than those obtained at high-resolution. Finally, the availability of a thermal image acquired after irrigating demonstrated the unreliability of the method when soil water content significantly changes between the two thermal acquisitions.

  10. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.

    2007-12-01

    Application of time-domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed with peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR wave guides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this presentation, we introduce a combined mechanical-hydrological method that estimates the measurement error. Our analysis indicates that soil compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention characteristics of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature show that the measurement errors of using a standard three-prong TDR wave guide could be up to 10 percent. We also show that the error scales linearly with the ratio of rod radius to the inter- radius spacing.

  11. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect

    Bahrami, Davood; Danko, George; Walton, John

    2007-07-01

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  12. Dynamics of Confined Water Molecules in Aqueous Salt Hydrates

    SciTech Connect

    Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

    2011-04-01

    The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

  13. [Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling].

    PubMed

    Yastreb, T O; Kolupaev, Yu E; Lugovaya, A A; Dmitriev, A P

    2016-01-01

    The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 µM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Leaf treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress. PMID:27266252

  14. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents.

    PubMed

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H; de Jonge, Lis W

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20cm in height and 20cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08kgkg(-1), respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤50μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass

  15. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    NASA Astrophysics Data System (ADS)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer

  16. Detection of Plant Water Content with Needle-Type In-Situ Water Content Sensor

    NASA Astrophysics Data System (ADS)

    Katayanagi, Hitoshi; Miki, Norihisa

    A needle-type water content sensor with a polyethersulfone (PES) polymer membrane was developed for the low-invasive, direct in-situ measurement of plant water content (PWC) in prior work. In this paper we demonstrate a measurement of plant water stress that represents the demand for water of the plant and greatly affects its sweetness. We inserted the sensor into a stalk of strawberry (Fragaria×ananassa) and soil. The variation in both the plant and the soil water content were successfully detected, which revealed the delay between variation in the plant water stress and soil water content after irrigation. Such delay could only be detected by the proposed sensor that could directly measure the variation of PWC in situ and continuously. The experiments also showed the variation in the signals as a function of detection sites and suggested that the detection sites of plant water stress need to be considered when the sensor is applied to irrigation culture.

  17. Effect of high salt concentrations on water structure

    NASA Astrophysics Data System (ADS)

    Leberman, R.; Soper, A. K.

    1995-11-01

    THE characteristic tetrahedral structure of water is known to be disrupted by changes in pressure and temperature1-3. It has been suggested that ions in solution may have a similar perturbing effect4,5. Here we use neutron diffraction to compare the effects of applied pressure and high salt concentrations on the hydrogen-bonded network of water. We find that the ions induce a change in structure equivalent to the application of high pressures, and that the size of the effect is ion-specific. Ionic concentrations of a few moles per litre have equivalent pressures that can exceed a thousand atmospheres. We propose that these changes may be understood in terms of the partial molar volume of the ions, relative to those of water molecules. The equivalent induced pressure of a particular ion species is correlated with its efficacy in precipitating, or salting-out, proteins from solution6.

  18. Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein.

    PubMed

    Marunde, Matthew R; Samarajeewa, Dilini A; Anderson, John; Li, Shumin; Hand, Steven C; Menze, Michael A

    2013-04-01

    Mechanisms that govern anhydrobiosis involve the accumulation of highly hydrophilic macromolecules, such as late embryogenesis abundant (LEA) proteins. Group 1 LEA proteins comprised of 181 (AfLEA1.1) and 197 (AfLEA1.3) amino acids were cloned from embryos of Artemia franciscana and expressed in Drosophila melanogaster cells (Kc167). Confocal microscopy revealed a construct composed of green fluorescent protein (GFP) and AfLEA1.3 accumulates in the mitochondria (AfLEA1.3-GFP), while AfLEA1.1-GFP was found in the cytoplasm. In the presence of mixed substrates, oxygen consumption was statistically identical for permeabilized Kc167 control and Kc167-AfLEA1.3 cells. Acute titrations of permeabilized cells with NaCl up to 500 mM led to successive drops in oxygen flux, which were significantly ameliorated by 18% in Kc167-AfLEA1.3 cells compared to Kc167 controls. Mitochondria were isolated from both cell types and resuspended in a sucrose-based buffer solution. The purified mitochondria from Kc167 control cells showed significantly larger reductions in respiratory capacities after one freeze-thaw cycle (-80°C) compared to mitochondria isolated from Kc167-AfLEA1.3 cells. When cultured in the presence of a non-permeant osmolyte (50-200 mM sucrose) cells expressing AfLEA1.3 showed significantly improved viability (10-15%) during this hyperosmotic challenge as compared to Kc167 controls. Furthermore, Kc167-AfLEA1.3 cells survived desiccation by convective air drying in presence of 200 mM extracellular trehalose to lower final moisture contents than did control Kc167 cells (0.36 g H2O/g DW vs.1.02 g H2O/g DW). Thus, AfLEA1.3 exerts a protective influence on mitochondrial function and increases viability of Kc167 cells during water stress. PMID:23376561

  19. Hemodynamics and Salt-and-Water Balance Link Sodium Storage and Vascular Dysfunction in Salt-Sensitive Subjects.

    PubMed

    Laffer, Cheryl L; Scott, Robert C; Titze, Jens M; Luft, Friedrich C; Elijovich, Fernando

    2016-07-01

    We investigated 24-hour hemodynamic changes produced by salt loading and depletion in 8 salt-sensitive (SS) and 13 salt-resistant (SR) normotensive volunteers. After salt loading, mean arterial pressure was higher in SS (96.5±2.8) than in SR (84.2±2.7 mm Hg), P<0.01, owing to higher total peripheral resistance in SS (1791±148) than in SR (1549±66 dyn*cm(-5)*s), P=0.05, whereas cardiac output was not different between groups (SS 4.5±0.3 versus SR 4.4±0.2 L/min, not significant). Following salt depletion, cardiac output was equally reduced in both groups. Total peripheral resistance increased 24±6% (P<0.001) in SR, whose mean arterial pressure remained unchanged. In contrast, total peripheral resistance did not change in SS (1±6%, not significant). Thus, their mean arterial pressure was reduced, abolishing the mean arterial pressure difference between groups. SS had higher E/e' ratios than SR in both phases of the protocol. In these 21 subjects and in 32 hypertensive patients, Na(+) balance was similar in SR and SS during salt loading or depletion. However, SR did not gain weight during salt retention (-158±250 g), whereas SS did (819±204), commensurate to iso-osmolar water retention. During salt depletion, SR lost the expected amount of weight for iso-osmolar Na(+) excretion, whereas SS lost a greater amount that failed to fully correct the fluid retention from the previous day. We conclude that SS are unable to modulate total peripheral resistance in response to salt depletion, mirroring their inability to vasodilate in response to salt loading. We suggest that differences in water balance between SS and SR indicate differences in salt-and-water storage in the interstitial compartment that may relate to vascular dysfunction in SS. PMID:27160204

  20. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.

    PubMed

    Verslues, Paul E; Agarwal, Manu; Katiyar-Agarwal, Surekha; Zhu, Jianhua; Zhu, Jian-Kang

    2006-02-01

    The abiotic stresses of drought, salinity and freezing are linked by the fact that they all decrease the availability of water to plant cells. This decreased availability of water is quantified as a decrease in water potential. Plants resist low water potential and related stresses by modifying water uptake and loss to avoid low water potential, accumulating solutes and modifying the properties of cell walls to avoid the dehydration induced by low water potential and using protective proteins and mechanisms to tolerate reduced water content by preventing or repairing cell damage. Salt stress also alters plant ion homeostasis, and under many conditions this may be the predominant factor affecting plant performance. Our emphasis is on experiments that quantify resistance to realistic and reproducible low water potential (drought), salt and freezing stresses while being suitable for genetic studies where a large number of lines must be analyzed. Detailed protocols for the use of polyethylene glycol-infused agar plates to impose low water potential stress, assay of salt tolerance based on root elongation, quantification of freezing tolerance and the use of electrolyte leakage experiments to quantify cellular damage induced by freezing and low water potential are also presented. PMID:16441347

  1. Correlation between salt-induced change in water structure and lipid structure of multi-lamellar vesicles observed by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Choi, Da-Hye; Son, Heyjin; Jeong, Jin-Young; Park, Gun-Sik

    2016-08-01

    Salt-induced change in the structure of water molecules inside multi-lamellar vesicles is experimentally studied with terahertz time-domain spectroscopy. The complex dielectric constant of 1, 2-ditetradecanoyl-sn-glycero-3-phosphocholine model membranes dispersed in NaCl solution with different salt concentrations are measured. Structure of water molecules in the solution is characterized from the measured dielectric constant using Debye relaxation model. Combined with small-angle X-ray scattering observation, it is found that salt-induced change of water structure, especially fast water fraction, show strong correlation with the increase in nanometer-scale multi-lamellar repeat space. This suggests that water could be critical in nanometer-scale membrane-membrane communications.

  2. Dependence of seismoelectric amplitudes on water content

    NASA Astrophysics Data System (ADS)

    Strahser, Matthias; Jouniaux, Laurence; Sailhac, Pascal; Matthey, Pierre-Daniel; Zillmer, Matthias

    2011-12-01

    The expectation behind seismoelectric field measurements is to achieve a combination of the sensitivity of electrical properties to water content and permeability and the high spatial resolution of seismic surveys. A better understanding of the physical processes and a reliable quantification of the conversion between seismic energy and electric energy are necessary, and need to take into account the effect of water content, especially for shallow subsurface investigations. We performed a field survey to quantify the seismoelectric signals as the water content changed. We measured seismoelectric signals induced by seismic wave propagation, by repeating the observations on the same two profiles during several months. The electrical resistivity was monitored to take into account the water content variations. We show that the horizontal component of the seismoelectric field, normalized with respect to the horizontal component of the seismic acceleration is inversely proportional to the electrical resistivity ρ0.42 ± 0.25. Assuming that the observed resistivity changes depend only on the water content, this result implies that the electrokinetic coefficient should increase with increasing water saturation. Taking into account the water saturation and combining our results with the Archie law for the resistivity in non-saturated conditions, the normalized seismoelectric field is a power-law of the effective saturation with the exponent (0.42 ± 0.25)n where n is Archie's saturation exponent.

  3. Effect of a beating process, as a means of reducing salt content in Chinese-style meatballs (kung-wan): a dynamic rheological and Raman spectroscopy study.

    PubMed

    Kang, Zhuang-Li; Wang, Peng; Xu, Xing-Lian; Zhu, Chao-Zhi; Zou, Yu-Feng; Li, Ke; Zhou, Guang-Hong

    2014-02-01

    Chopping and beating processes were used as meat-cutting methods in preparing kung-wan to produce low-salt products while retaining or improving the emulsion stability, sensory evaluation, and physico-chemical properties of the standard high-salt formulation. Increased salt content improved emulsion stability and dynamic rheology. However, 3% salt content decreased the overall acceptance of kung-wan. Compared with the chopping process, beating resulted in higher emulsion stability, overall acceptance, and β-sheet content (P<0.05). Additionally, the beating process formed more compact and continuous structures at the same salt content. Kung-wan produced by beating with 1% and 2% salt had similar emulsion stabilities, sensory evaluation, and secondary structures (P>0.05). Therefore, this process allows reduction of salt content, suggesting that the kung-wan produced in this manner is healthier and has better texture. PMID:24200556

  4. Simultaneous analysis of silicon and boron dissolved in water by combination of electrodialytic salt removal and ion-exclusion chromatography with corona charged aerosol detection.

    PubMed

    Mori, Masanobu; Sagara, Katsuya; Arai, Kaori; Nakatani, Nobutake; Ohira, Shin-Ichi; Toda, Kei; Itabashi, Hideyuki; Kozaki, Daisuke; Sugo, Yumi; Watanabe, Shigeki; Ishioka, Noriko S; Tanaka, Kazuhiko

    2016-01-29

    Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB. PMID:26755416

  5. Cross-sectional survey of salt content in cheese: a major contributor to salt intake in the UK

    PubMed Central

    Hashem, Kawther M; He, Feng J; Jenner, Katharine H; MacGregor, Graham A

    2014-01-01

    Objective To investigate the salt (sodium chloride) content in cheese sold in UK supermarkets. Study design We carried out a cross-sectional survey in 2012, including 612 cheeses available in UK supermarkets. Methods The salt content (g/100 g) was collected from product packaging and nutrient information panels of cheeses available in the top seven retailers. Results Salt content in cheese was high with a mean (±SD) of 1.7±0.58 g/100 g. There was a large variation in salt content between different types of cheeses and within the same type of cheese. On average, halloumi (2.71±0.34 g/100 g) and imported blue cheese (2.71±0.83 g/100 g) contained the highest amounts of salt and cottage cheese (0.55±0.14 g/100 g) contained the lowest amount of salt. Overall, among the 394 cheeses that had salt reduction targets, 84.5% have already met their respective Department of Health 2012 salt targets. Cheddar and cheddar-style cheese is the most popular/biggest selling cheese in the UK and has the highest number of products in the analysis (N=250). On average, salt level was higher in branded compared with supermarket own brand cheddar and cheddar-style products (1.78±0.13 vs 1.72±0.14 g/100 g, p<0.01). Ninety per cent of supermarket own brand products met the 2012 target for cheddar and cheddar-style cheese compared with 73% of branded products (p=0.001). Conclusions Salt content in cheese in the UK is high. There is a wide variation in the salt content of different types of cheeses and even within the same type of cheese. Despite this, 84.5% of cheeses have already met their respective 2012 targets. These findings demonstrate that much larger reductions in the amount of salt added to cheese could be made and more challenging targets need to be set, so that the UK can continue to lead the world in salt reduction. PMID:25099933

  6. The dependence of the electrical conductivity measured by time domain reflectometry on the water content of a sand

    NASA Astrophysics Data System (ADS)

    Ferré, P. A.; Redman, J. D.; Rudolph, D. L.; Kachanoski, R. G.

    1998-05-01

    We present paired measurements of the water content and electrical conductivity collected in a laboratory column packed with a homogeneous, clean sand over a wide range of water content and pore water electrical conductivity (EC) conditions. The EC was determined using the method of Nadler et al. [1991] from waveforms collected with two-rod time domain reflectometry (TDR) probes with and without baluns and with three-rod probes without baluns. Following Heimovaara et al. [1995], we calibrated the probes in saline solutions to account for the series resistance of the cable and connectors. The calibrated EC shows a nonlinear dependence on the water content that is well described by a simple power relationship [Archie, 1942]. Recognizing that calibration in saline solutions is impractical for some TDR probes, we demonstrate that the EC response can be calibrated directly using the results of drainage events, incorporating only a separate calibration of the cable resistance. None of the probe designs shows any clear advantage for EC measurement.

  7. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  8. The salt content of products from popular fast-food chains in Costa Rica.

    PubMed

    Heredia-Blonval, Katrina; Blanco-Metzler, Adriana; Montero-Campos, Marielos; Dunford, Elizabeth K

    2014-12-01

    Salt is a major determinant of population blood pressure levels. Salt intake in Costa Rica is above levels required for good health. With an increasing number of Costa Ricans visiting fast food restaurants, it is likely that fast-food is contributing to daily salt intake. Salt content data from seven popular fast food chains in Costa Rica were collected in January 2013. Products were classified into 10 categories. Mean salt content was compared between chains and categories. Statistical analysis was performed using Welch ANOVA and Tukey-Kramer HSD tests. Significant differences were found between companies; Subway products had lowest mean salt content (0.97 g/100 g; p < 0.05) while Popeye's and KFC had the highest (1.57 g/100 g; p < 0.05). Significant variations in mean salt content were observed between categories. Salads had a mean salt content of 0.45 g/100 g while sauces had 2.16 g/100 g (p < 0.05). Wide variation in salt content was also seen within food categories. Salt content in sandwiches ranged from 0.5 to 2.1 g/100 g. The high levels and wide variation in salt content of fast food products in Costa Rica suggest that salt reduction is likely to be technically feasible in many cases. With an increasing number of consumers purchasing fast foods, even small improvements in salt levels could produce important health gains. PMID:25171851

  9. Integral Quantification of Soil Water Content at the Intermediate Catchment Scale by Ground Albedo Neutron Sensing (GANS)

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2012-04-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology for integral quantifications of mean areal soil water content at the intermediate catchment scale is the aboveground sensing of cosmic-ray neutrons, more precisely ground albedo neutron sensing (GANS). Ground albedo natural neutrons, are generated by collisions of secondary cosmic rays with land surface materials (soil, water, biomass, snow, etc). Neutrons measured at the air/ground interface correlate with soil moisture contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters. This correlation is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. The present study performed ground albedo neutron sensing in different locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam (Brandenburg, Germany) cropped with corn in 2010 and sunflowers in 2011, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains, Germany) in 2011. In order to test this method, classical soil moisture devices and meteorological data were used for comparison. Moreover, calibration approach, and transferability of calibration parameters to different times and locations are also evaluated. Our observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil water content from GANS compared quantitatively with mean water content values derived from a network of classical devices (RMSE = 0.02 m3/m3 and r2 = 0.98) in three calibration periods with cropped-field conditions. Then, same calibration parameters corresponded

  10. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    SciTech Connect

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  11. [Water-salt homeostasis in rats during space flight].

    PubMed

    Natochin, Iu V; Serova, L V

    1995-01-01

    The paper generalized the results of s series of experiments aimed at studying liquid and electrolytes contents in various organs and tissues of rats following 3-week space flights (SF). The results ascertain high reliability of the water-salt homeostasis maintaining system which ensures stable water and electrolytes amounts in the majority of animal tissues in SF. The following alterations appear to be of greatest significance: deduced potassium levels in the heart ventricle tissues in male rats after short-duration (7-9 d) exposure in SF, zero-g-induced degradation of the body ability to bind potassium at injection of isotonic solution KCl into the stomach; redistribution of potassium ions between mother and developing fetuses in space experiments with pregnant animals. Simulated experiments showed that similar shifting of potassium ions in the mother-fetus system may be due not to weightlessness exclusively but other impacts, i.e. they are not specific. PMID:8664861

  12. Identification and Control of Pollution from Salt Water Intrusion.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document contains informational guidelines for identifying and evaluating the nature and extent of pollution from salt water intrusion. The intent of these guidelines is to provide a basic framework for assessing salt water intrusion problems and their relationship to the total hydrologic system, and to provide assistance in developing…

  13. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat.

    PubMed

    Greenwood, Michael P; Greenwood, Mingkwan; Paton, Julian F R; Murphy, David

    2014-01-01

    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions. PMID:25111786

  14. Effects of liquid VOC concentration and salt content on partitioning equilibrium of hydrophilic VOC at air-sweat interface

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Chu, Fu-Sui; Su, Tzy-I.

    Volatile organic compounds (VOCs) must initially be absorbed by sweat on the surface of skin for human VOC dermal exposure. The partitioning equilibrium at the air-sweat interface is given by p=Cg*/C, where pc is the partitioning coefficient, and Cg* is the gaseous concentration in equilibrium with the aqueous VOC concentration ( CL) at a constant water temperature ( Tw). A series of thermodynamic functions of Cg*(C,T) are presented, as well as the values of pc, and the heat of gaseous-liquid phase transfer (Δ Htr) for tested VOCs, including iso-propanol (IPA, CL=12-120 mg L -1) and methyl ethyl ketone (MEK, CL=10-80 mg L -1) to determine the effects of liquid VOC concentration and salt contents of sweat on pc of hydrophilic VOCs. Experimental data reveal that the pc values of IPA and MEK drop as the liquid VOC concentrations increasing from 10 to 120 mg L -1. However, sodium salt content in human sweat (sodium chloride and sodium lactate) induces the effect of salt, indicating the increase in pc. Notably, neither urea nor ammonia in human sweat increase pc. Artificial sweat, consisting of sodium chloride 0.47%, urea 0.05%, ammonia 0.004% and sodium lactate 0.6%, was used to evaluate the increase in the pc values of IPA and MEK. The liquid VOC concentration effect simultaneously develops together with the salt effect on the partition at the interface of air-sweat for hydrophilic VOC solutions. The pc values of IPA for artificial sweat decrease as much as 32.5% as CL increases from 12 to 120 mg L -1 at 300 K, and those of MEK drop by as much as 70.9% as CL increases from 10 to 80 mg L -1 at 300 K. This investigation provides a basis for elucidating the assessment of human dermal exposure to hydrophilic VOCs.

  15. Soil water content and yield variability in vineyards of Mediterranean northeastern Spain affected by mechanization and climate variability

    NASA Astrophysics Data System (ADS)

    Ramos, M. C.

    2006-07-01

    The objective of this paper was to analyse the combined influence of the Mediterranean climate variability (particularly the irregular rainfall distribution throughout the year) and the land transformations carried out in vineyards of northeastern Spain on soil water content evolution and its influence on grape production. The study was carried out in a commercial vineyard located in the Anoia-Alt Penedès region (Barcelona province, northeastern Spain), which was prepared for mechanization with important land transformations. Two plots were selected for the study: one with low degree of transformation of the soil profile, representing a non-disturbed situation, and the second one in which more than 3 m were cut in the upper part of the plot and filled in the lower part, representing the disturbed situation. Soil water content was evaluated at three positions along the slope in each plot and at three depths (0-20, 20-40, 40-60 cm) during the period 1999-2001, years with different rainfall characteristics, including extreme events and long dry periods. Rainfall was recorded in the experimental field using a pluviometer linked to a data-logger. Runoff rates and yield were evaluated at the same positions. For the same annual rainfall, the season of the year in which rainfall is recorded and its intensity are critical for water availability for crops. Soil water content varies within the plot and is related to the soil characteristics existing at the different positions of the landscape. The differences in soil depth created by soil movements in the field mechanization give rise to significant yield reductions (up to 50%) between deeper and shallow areas. In addition, for the same annual rainfall, water availability for crops depends on its distribution over the year, particularly in soils with low water-storage capacity. The yield was strongly affected in years with dry or very dry winters.

  16. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  17. Influence of Salts on the Partitioning of 5-Hydroxymethylfurfural in Water/MIBK.

    PubMed

    Mohammad, Sultan; Held, Christoph; Altuntepe, Emrah; Köse, Tülay; Sadowski, Gabriele

    2016-04-28

    This study investigates the influence of electrolytes on the performance of extracting 5-hydroxymethylfurfural (HMF) from aqueous media using methyl isobutyl ketone (MIBK). For that purpose, liquid-liquid phase equilibria (LLE) of quaternary systems containing HMF, water, MIBK and salts were measured at atmospheric pressure and 298.15 K. The salts under investigation were composed of one of the anions NO(3-), SO4(2-), Cl(-), or CH3COO(-) and of one of the alkali cations Li(+), Na(+), or K(+). On the basis of these LLE data, the partition coefficient of HMF between the aqueous and the MIBK phase KHMF was determined. It could be shown that KHMF significantly depends on the kind and concentration of the added salt. Weak electrolytes (e.g., sulfates, acetates) caused salting-out, whereas nitrates caused salting-in of HMF to the aqueous phase. Unexpectedly, LiCl caused salting-out at low LiCl concentrations and salting-in at LiCl concentrations higher than 3 mol/kgH2O. The model electrolyte perturbed-chain SAFT (ePC-SAFT) was used to predict the salt influence on the LLE in the quaternary systems water/MIBK/HMF/salt in good agreement with the experimental data. On the basis of ePC-SAFT, it could be concluded that the different salting-out/salting-in behavior of the various salts is mainly caused by their different tendency to form ion pairs in aqueous solutions. PMID:27027570

  18. Mineral content and biochemical variables of Aloe vera L. under salt stress.

    PubMed

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  19. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress

    PubMed Central

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  20. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  1. Salt stress increases content and size of glutenin macropolymers in wheat grain.

    PubMed

    Zhang, Xiaxiang; Shi, Zhiqiang; Tian, Youjia; Zhou, Qin; Cai, Jian; Dai, Tingbo; Cao, Weixing; Pu, Hanchun; Jiang, Dong

    2016-04-15

    Addition of salt solution in making wheat dough improves viscoelasticity. However, the effect of native salt fortification on dough quality is unclear. Here, wheat plants were subjected to post-anthesis salt stress to modify salt ion content in grains. The contents of Na(+) and K(+), high-molecular-weight glutenin subunits (HMW-GS), glutenin macropolyers (GMP) and amino acids in mature grains were measured. As NaCl concentration in soil increased, grain yield decreased while Na(+) and K(+) contents increased. The contents of amino acids, HMW-GS and GMP in grains also increased, especially when NaCl concentration exceeded 0.45%. Fraction of GMP larger than 10 μm was also increased. Na(+) and K(+) contents were significantly positively correlated to GMP and total HMW-GS contents, and to large GMP fraction. PMID:26616983

  2. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  3. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  4. Water Dynamics, Ice Stability, and Salts in Victoria Valley Soils, Antarctica: An Instructive Analog for Mars

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Sletten, R. S.; Hallet, B.

    2006-12-01

    quantity supported by salt concentration and the temperature record. According to the solute content and temperature of these soils and phase equilibria, sulfates mostly gypsum (CaSO4 2H2O), and mirabilite (Na2SO4 10H2O) are present in dry and ice rich soils. Dry soils, due to hydration have the potential to store 7.5 mm of water in the top 0.22 m of dry soil. Both the sublimation and advection-dispersion model suggest that summer snow events significantly affect ice stability. More realistic estimates of the effect of snow on the annual sublimation rates require field data on the timing and duration of snow cover, and the formation of snowmelt water and surface recharge of subsurface ice. The abundance of hydrated salts in dry soils and first measurements of contrasting water contents at different humidities strongly suggests that the role of salts in the storage and transport of H2O in cold, dry soils needs to be evaluated. This seems to be even more important as recent investigation on Mars indicate that the hydrological cycle on Mars may have been strongly influenced by dehydration reactions of sulfate salts.

  5. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  6. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE PAGESBeta

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  7. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials. PMID:27124392

  8. Salt content of school meals and comparison of perception related to sodium intake in elementary, middle, and high schools.

    PubMed

    Ahn, Sohyun; Park, Seoyun; Kim, Jin Nam; Han, Sung Nim; Jeong, Soo Bin; Kim, Hye-Kyeong

    2013-02-01

    Excessive sodium intake leading to hypertension, stroke, and stomach cancer is mainly caused by excess use of salt in cooking. This study was performed to estimate the salt content in school meals and to compare differences in perceptions related to sodium intake between students and staffs working for school meal service. We collected 382 dishes for food from 24 schools (9 elementary, 7 middle, 8 high schools) in Gyeonggi-do and salt content was calculated from salinity and weight of individual food. The average salt content from elementary, middle, and high school meals were 2.44 g, 3.96 g, and 5.87 g, respectively. The amount of salt provided from the school lunch alone was over 80% of the recommended daily salt intake by WHO. Noodles, stews, sauces, and soups were major sources of salt intake at dish group level, while the most salty dishes were sauces, kimchies, and stir-fried foods. Dietary knowledge and attitude related to sodium intake and consumption frequency of the salty dishes were surveyed with questionnaire in 798 students and 256 staffs working for school meal service. Compared with the staffs, the students perceived school meals salty and the proportions of students who thought school meals were salty increased with going up from elementary to high schools (P < 0.001). Among the students, middle and high school students showed significant propensity for the preference to one-dish meal, processed foods, eating much broth and dipping sauce or seasoning compared with the elementary students, although they had higher nutrition knowledge scores. These results proposed that monitoring salt content of school meals and consideration on the contents and education methods in school are needed to lower sodium intake. PMID:23424102

  9. Discerning total salt contents and surface humidity on building stone with a portable moisture meter (Protimeter) in the region of Petra (Jordan)

    NASA Astrophysics Data System (ADS)

    Gomez-Heras, M.; Wedekind, W.; Lopez-Arce, P.

    2012-04-01

    Water and moisture are some of the main decay agents of building stone and, in general of any stone structure. Several non-invasive methods are used to quantify moisture in building stone, many of them based on the fact that moist stone presents different electrical properties than dry stone. This is the case of resistance-based sensing equipment, such as "Protimeter" portable moisture meters. Although originally designed to measure moisture contents in wood, this sensing equipment is commonly used to measure the so-called "Wood Moisture Equivalent" (WME) in other building materials, such stone and mortar. However, this type of resistance-based sensors pose a degree of uncertainty, as there are other factors that modify electrical properties, such as porosity and salt content. When assessing the overall state of decay of a structure, it might not be crucial, in some cases, to discern between salt and water content: both high moisture levels and high salt content give high WME values, and both are usually related to areas with overall poor state of conservation and/or more prone to decay. However, discerning these two factors is crucial when trying to understand the dynamics of how some decay patterns are formed. This is the case of surface runoff in vertical façades and how it leads to the formation of alveoli and tafoni through salt weathering. Surface runoff and associated salt weathering are among the main decay processes found at the archaeological site of Petra (Jordan) and its understanding is of paramount importance for the conservation of this site. Some "Protimeter" sensors include a capacitance sensor in addition to the usual resistance sensing pins, which allows to measure sub-surface electrical properties. This paper presents results on how the combination of these two measurement modes could be used to discern if high WME values are caused by high surface humidity or by high salt contents in the context of Surface runoff and associated salt weathering

  10. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  11. Hygienic importance of increased barium content in some fresh waters.

    PubMed

    Havlík, B; Hanusová, J; Rálková, J

    1980-01-01

    In surface waters of the mining and processing areas of uranium ore there is an increased content of free and bound barium ions due to the use of barium salts for the treatment of waste and mine waters containing radium. In model experiments with the algae Ankistrodesmus falcatus, Chlorella kessleri and Scenedesmus obliquus, we studied the effect of Ba2+ on the accumulation of 226Ra. It was found that the accumulation of radium by algae is negatively influenced with barium concentrations higher than 1 mg.l-1. The accumulation of barium of organisms of primary production was studied using 133BaCl2. At a barium content in the medium of 4.0, 0.46 and 0.04 mu. l-1, the algae accumulated 30-60% of the added amount of barium during an exposure of 15 days. Biochemical analyses showed that barium is bound to the cellular membrane and to other components of the algal cell that cannot be extracted with water or alcohol. PMID:7462608

  12. 4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER TOWER, AND OFFICE BUILDING. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  14. Ply Thickness Fiber Glass on Windmill Drive Salt Water Pump

    NASA Astrophysics Data System (ADS)

    Sifa, Agus; Badruzzaman; Suwandi, Dedi

    2016-04-01

    Factors management of salt-making processes need to be considered selection of the location and the season is very important to support the efforts of salting. Windmills owned by the farmers are still using wood materials are made each year it is not effectively done and the shape of windmills made not in accordance with the requirements without considering the wind speed and the pumping speed control influenced by the weight and size of windmill, it affects the productivity of salt. to optimize the function of windmills on pumping salt water by change the material blade on the wheel by using a material composite, composite or fiberglass are used for blades on windmills made of a material a mixture of Epoxy-Resin and Matrix E-Glass. The mechanical characteristics of the power of his blade one of determining the materials used and the thickness of the blade, which needed a strong and lightweight. The calculation result thick fiberglass with a composition of 60% fiber and 40% epoxy, at a wind speedof area salt fields 9 m/s, the drag force that occurs at 11,56 kg, then the calculation result by 0,19 mm thick with a layer of 10, the total thickness of 1,9 mm, with a density of 1760 kg/m3, mechanical character of elongated elastic modulus of 46200 MPa, modulus of transverse elasticity of 10309,6 MPa, shear modulus of 3719 MPa and Poisson ratio of 0,31, then the calculation using the finite element ABAQUS obtained critical point at the confluence of the blade to the value of Von Mises tension was happening 1,158e9 MPa maximum and minimum 2,123e5 MPa, for a maximum value of displacement occurred condition at the tip of the blade. The performance test results windmills at a wind speed of 5,5 m/s wind power shows that occur 402,42 watts and power turbines produced 44,21 watt, and TSR 0,095 and the value Cp of 0,1, test results windmill in salt fields in the beginning rotation windmill lighter, able to move above wind speed of 5.5 m/s.

  15. Excess Salt Increases Infarct Size Produced by Photothrombotic Distal Middle Cerebral Artery Occlusion in Spontaneously Hypertensive Rats

    PubMed Central

    Yao, Hiroshi; Nabika, Toru

    2014-01-01

    Cerebral circulation is known to be vulnerable to high salt loading. However, no study has investigated the effects of excess salt on focal ischemic brain injury. After 14 days of salt loading (0.9% saline) or water, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to photothrombotic middle cerebral artery occlusion (MCAO), and infarct volume was determined at 48 h after MCAO: albumin and hemoglobin contents in discrete brain regions were also determined in SHR. Salt loading did not affect blood pressure levels in SHR and WKY. After MCAO, regional cerebral blood flow (CBF), determined with two ways of laser-Doppler flowmetry (one-point measurement or manual scanning), was more steeply decreased in the salt-loaded group than in the control group. In SHR/Izm, infarct volume in the salt-loaded group was 112±27 mm3, which was significantly larger than 77±12 mm3 in the control group (p = 0.002), while the extents of blood-brain barrier disruption (brain albumin and hemoglobin levels) were not affected by excess salt. In WKY, salt loading did not significantly increase infarct size. These results show the detrimental effects of salt loading on intra-ischemic CBF and subsequent brain infarction produced by phototrhombotic MCAO in hypertensive rats. PMID:24816928

  16. Breadboard wash water renovation system. [using ferric chloride and ion exchange resins to remove soap and dissolved salts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A total wash water renovation system concept was developed for removing objectionable materials from spacecraft wash water in order to make the water reusable. The breadboard model system described provides for pretreatment with ferric chloride to remove soap by chemical precipitation, carbon adsorption to remove trace dissolved organics, and ion exchange for removal of dissolved salts. The entire system was put into continuous operation and carefully monitored to assess overall efficiency and equipment maintenance problems that could be expected in actual use. In addition, the capacity of the carbon adsorbers and the ion-exchange resin was calculated and taken into consideration in the final evaluation of the system adequacy. The product water produced was well within the Tentative Wash Water Standards with regard to total organic carbon, conductivity, urea content, sodium chloride content, color, odor, and clarity.

  17. Geoelectrical Monitoring for Observation of Changes in Water Content in the Slope of an Embankment Caused By Heavy Rain Using a Large-Scale Rainfall Simulator

    NASA Astrophysics Data System (ADS)

    Takakura, S.; Yoshioka, M.; Ishizawa, T.; Sakai, N.

    2014-12-01

    Measuring the temporal variation of water content along a slope is important for predicting and preventing slope disasters. We conducted repeated monthly geoelectrical surveys since February 2011 on one slope of an embankment in the large-scale rainfall simulator of the National Research Institute for Earth Science and Disaster Prevention (NIED). In order to confirm the relationship between water content and resistivity changes in the slope due to heavy rain, we conducted seven artificial rain experiments at the embankment, controlling the total amount and intensity of rainfall using the mobile rainfall simulator. We observed soil water content and conducted geoelectrical measurements on the slope of the embankment before, during and after the artificial rains. It is difficult to obtain the rapid change of resistivity structure due to the rain because the analysis of resistivity structure requires measurement by much electrode array combination. Therefore, we performed only a continuous measurement using a Wenner array with "a" spacing of 0.5 m and 1 m. The changes in analyzed resistivity took place almost simultaneously with changes in water content. The fall of resistivity accelerates as the intensity of rainfall increases. The resistivity changed significantly with a rapid change in water content. The change in resistivity is slightly earlier than the change in volumetric water content at the same depth. These facts indicate that geoelectrical monitoring is effective for observing changes in the water content of the slope of an embankment caused by heavy rain.

  18. Surveys of the salt content in UK bread: progress made and further reductions possible

    PubMed Central

    Brinsden, Hannah C; He, Feng J; Jenner, Katharine H; MacGregor, Graham A

    2013-01-01

    Objectives To explore the salt reductions made over time in packaged bread sold in the UK, the biggest contributor of salt to the UK diet. Study design Cross-sectional surveys were carried out on the salt content of breads available in UK supermarkets in 2001(40 products), 2006 (138) and 2011 (203). Main outcome measures The primary outcome measure was the change in salt content per 100 g over time. Further measures included the proportion of products meeting salt targets and differences between brands and bread types. Results The average salt level of bread was 1.23±0.19 g/100 g in 2001, 1.05±0.16 in 2006 and 0.98±0.13 in 2011. This shows a reduction in salt/100 g of ≈20% between 2001 and 2011. In the 18 products which were surveyed in all 3 years, there was a significant reduction of 17% (p<0.05). Supermarket own brand bread was found to be lower in salt compared with branded bread (0.95 g/100 g compared with 1.04 g/100 g in 2011). The number of products meeting the 2012 targets increased from 28% in 2001 to 71% in 2011 (p<0.001). Conclusions This study shows that the salt content of bread has been progressively reduced over time, contributing to the evidence base that a target-based approach to salt reduction can lead to reductions being made. A wide variation in salt levels was found with many products already meeting the 2012 targets, indicating that further reductions can be made. This requires further progressive lower targets to be set, so that the UK can continue to lead the world in salt reduction and save the maximum number of lives. PMID:23794567

  19. Anomalous water diffusion in salt solutions

    PubMed Central

    Ding, Yun; Hassanali, Ali A.; Parrinello, Michele

    2014-01-01

    The dynamics of water exhibits anomalous behavior in the presence of different electrolytes. Recent experiments [Kim JS, Wu Z, Morrow AR, Yethiraj A, Yethiraj A (2012) J Phys Chem B 116(39):12007–12013] have found that the self-diffusion of water can either be enhanced or suppressed around CsI and NaCl, respectively, relative to that of neat water. Here we show that unlike classical empirical potentials, ab initio molecular dynamics simulations successfully reproduce the qualitative trends observed experimentally. These types of phenomena have often been rationalized in terms of the “structure-making” or “structure-breaking” effects of different ions on the solvent, although the microscopic origins of these features have remained elusive. Rather than disrupting the network in a significant manner, the electrolytes studied here cause rather subtle changes in both structural and dynamical properties of water. In particular, we show that water in the ab initio molecular dynamics simulations is characterized by dynamic heterogeneity, which turns out to be critical in reproducing the experimental trends. PMID:24522111

  20. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    NASA Technical Reports Server (NTRS)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  1. Impact of the analytical blank in the uncertainty evaluation of the copper content in waters by flame atomic absorption spectrometry.

    PubMed

    de Oliveira, Elcio Cruz; Monteiro, Maria Inês Couto; Pontes, Fernanda Veronesi Marinho; de Almeida, Marcelo Dominguez; Carneiro, Manuel Castro; da Silva, Lílian Irene Dias; Alcover Neto, Arnaldo

    2012-01-01

    Chemical analysts use analytical blanks in their analyses, but seldom is this source of uncertainty evaluated. Generally, there is great confusion. Although the numerical value of the blank, in some situations, can be negligible, its source of uncertainty cannot be. This article discusses the uncertainty contribution of the analytical blank using a numerical example of the copper content in waters by flame atomic absorption spectrometry. The results indicate that the uncertainties of the analytical blank can contribute up to 50% when the blank sample is considered in this analysis, confirming its high impact. This effect can be primarily observed where the analyte concentration approaches the lower range of the analytical curve. Even so, the blank is not always computed. Therefore, the relevance of the analytical blank can be confirmed by uncertainty evaluation. PMID:22649945

  2. Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts.

    PubMed

    Rodríguez-Liébana, José A; Mingorance, Ma Dolores; Peña, Aránzazu

    2011-03-01

    Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution. PMID:20980092

  3. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  4. Content of toxic and essential metals in recrystallized and washed table salt in Shiraz, Iran

    PubMed Central

    2014-01-01

    Background Table salt is the most commonly used food additive. Since most of the salt consumed in Iran comes from mines, contamination with heavy metals is a health concern. The commonest salt purification method in Iran is washing with water. But recently, some industries have turned to recrystallization method. The present study aimed to determine the level of essential and non-essential heavy metals in the table salt refined with recrystallization and washing methods. Methods Thirty eight pre-packed salt samples were directly collected from retail market in Shiraz (22 samples refined with recrystallization method and 16 with washing method). The level of lead, cadmium, copper, zinc, nickel and cobalt was determined using Voltammetric method. Daily intakes of lead and cadmium as well as their weekly intakes were calculated. Results The levels of lead, cadmium, copper, zinc, nickel and cobalt in recrystallized samples were 0. 30 ± 0.26, 0.02 ± 0.02, 0.11 ± 0.06, 0.34 ± 0.22, 0.15 ± 0.19 and 0.008 ± 0.007 μg/g, respectively, and also 0.37 ± 0.27, 0.017 ± 0.021, 0.19 ± 0.18, 0.37 ± 0.20, 0.13 ± 0.23 and 0.037 ± 0.06 μg/g in washed salt samples. The calculated weekly intake of lead and cadmium was 0.216 and 0.014 μg/kg, respectively for the recrystallized and 0.2653 and 0.0119 μg/kg for the washed salts. Conclusion All values for toxic metals were lower than the permitted maximum for human consumption as prescribed by Codex and Institute of Standards and Industrial Research of Iran. Only 0.8652-1.0612% of lead and 0.17-0.2% of cadmium PTWIs are received via salt consumption weekly. PMID:24398299

  5. Rapid estimates of relative water content.

    PubMed

    Smart, R E

    1974-02-01

    Relative water content may be accurately estimated using the ratio of tissue fresh weight to tissue turgid weight, termed here relative tissue weight. That relative water content and relative tissue weight are linearly related is demonstrated algebraically. The mean value of r(2) for grapevine (Vitis vinifera L. cv. Shiraz) leaf tissue over eight separate sampling occasions was 0.993. Similarly high values were obtained for maize (Zea mays cv. Cornell M-3) (0.998) and apple (Malus sylvestris cv. Northern Spy) (0.997) using a range of leaf ages. The proposal by Downey and Miller (1971. Rapid measurements of relative turgidity in maize (Zea mays L.). New Phytol. 70: 555-560) that relative water content in maize may be estimated from water uptake was also investigated for grapevine leaves; this was found to be a less reliable estimate than that obtained with relative tissue weight. With either method, there is a need for calibration, although this could be achieved for relative tissue weight at least with only a few subsamples. PMID:16658686

  6. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  7. Narrowly size-distributed cobalt salt containing poly(2-hydroxyethyl methacrylate) particles by inverse miniemulsion.

    PubMed

    Cao, Zhihai; Wang, Zhuo; Herrmann, Christine; Ziener, Ulrich; Landfester, Katharina

    2010-05-18

    Cobalt-containing hybrid particles have been prepared through the encapsulation of cobalt tetrafluoroborate hexahydrate (CoTFB) via inverse miniemulsion polymerization of 2-hydroxyethyl methacrylate (HEMA). We systematically varied the amount and type of cosolvent (water, methanol, ethanol, ethylene glycol), apolar continuous phase (cyclohexane, isooctane, isopar M, hexadecane), amount of cobalt salt, and molecular weight of the polymeric surfactant. The influence of those parameters on the particle size, size distribution, and particle morphology were investigated. Narrowly size-distributed hybrid particles with good colloidal stability could be obtained in a wide range of cobalt content between 5.7 and 22.6 wt % salt relative to the monomer. The addition of a cosolvent such as water not only promotes the loading of metal salt but also has a positive influence on narrowing the particle size distribution. We assume that generally narrowly size-distributed particles can be obtained for a large variety of combinations of polar/apolar phase by adjusting the balance between osmotic and Laplace pressure via the solubility of the metal salt in the continuous phase and lowering the interfacial tension by adjusting the hydrophilic-lipophilic balance (HLB) value of the surfactant. The results show a significant advantage of the inverse miniemulsion over the direct system with respect to the variability and total amount of metal salt without losing the narrow particle size distribution and colloidal stability. PMID:20112941

  8. Air-Liquid Interfaces: II. Water Structure and Salts

    NASA Astrophysics Data System (ADS)

    Allen, Heather; Gopalakrishnan, Sandhya; Ma, Gang; Liu, Dingfang; Levering, Lori

    2004-03-01

    Aqueous salt solutions were investigated using scanning sum frequency generation (SFG), a highly surface-selective spectroscopy, and ATR-IR and Raman spectroscopies. Water surface structure was investigated for NaF, NaCl, NaBr and NaI aqueous solutions and surface data indicate a significantly disturbed hydrogen bonding environment from that of neat water. The spectra strongly suggest the presence of bromide and iodide anions in the interfacial region in addition to an increase in interfacial depth; yet the surfaces of the sodium fluoride and chloride salt solutions do not show evidence of surface water perturbation. Ammonium chloride and sulfate, and sodium sulfate aqueous solutions were also investigated. Surface water structure varied considerably between the three salt solutions. Electric double layer effects are indicated.

  9. Survival of Salmonella enterica serotype Tennessee during simulated gastric passage is improved by low water activity and high fat content.

    PubMed

    Aviles, Bryan; Klotz, Courtney; Smith, Twyla; Williams, Robert; Ponder, Monica

    2013-02-01

    The low water activity (a(w) 0.3) of peanut butter prohibits the growth of Salmonella in a product; however, illnesses are reported from peanut butter contaminated with very small doses, suggesting the food matrix itself influences the infectious dose of Salmonella, potentially by improving Salmonella's survival in the gastrointestinal tract. The purpose of our study was to quantify the survival of a peanut butter outbreak-associated strain of Salmonella enterica serotype Tennessee when inoculated into peanut butters with different fat contents and a(w) (high fat, high a(w); high fat, low a(w); low fat, high a(w); low fat, low a(w)) and then challenged with a simulated gastrointestinal system. Exposures to increased fat content and decreased a(w) both were associated with a protective effect on the survival of Salmonella Tennessee in the simulated gastric fluid compared with control cells. After a simulated intestinal phase, the populations of Salmonella Tennessee in the control and low-fat formulations were not significantly different; however, a 2-log CFU/g increase occurred in high-fat formulations. This study demonstrates that cross-protection from low-a(w) stress and the presence of high fat results in improved survival in the low pH of the stomach. The potential for interaction of food matrix and stress adaptations could influence the virulence of Salmonella and should be considered for risk analysis. PMID:23433384

  10. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  11. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems.

    PubMed

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, [Formula: see text] generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  12. Salts as Water Ice Cloud Nuclei on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D.; Chuang, P. Y.; Iraci, L. T.

    2015-12-01

    In recent years, observations of the Martian surface have indicated the presence of chlorine-bearing minerals, including perchlorates, on the surface of Mars. These salt-bearing minerals would potentially be source material for dust lofted from the surface into the Martian atmosphere, thus providing potential nucleation sites for water ice clouds. Considering that salts play an important role in cloud formation on Earth, it is important to have a better understanding of how salt may affect nucleation processes under Mars-like conditions. We perform laboratory experiments to examine water ice nucleation onto salt substrates. We use a vacuum chamber that simulates the temperatures and pressures observed of the Martian atmosphere. Using infrared spectroscopy we measure the onset of nucleation and calculate the temperature-dependent critical saturation ratio (Scrit) for water ice nucleation onto salts, specifically sodium chloride and sodium perchlorate. Preliminary results of Scrit values for water ice nucleation on sodium chloride show a negative temperature dependence, as did other substrates from previous experiments. Values of Scrit are useful for understanding the realistic conditions under which water ice clouds may form on Mars, and can be used in climate models simulating clouds on Mars.

  13. Rainfall estimation from liquid water content and precipitable water content data over land, ocean and plateau

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Adhikari, A.; Maitra, A.

    2016-01-01

    A simplistic approach has been proposed to estimate annual rainfall amount from cloud liquid water content and precipitable water content utilizing the data pertaining to the period of 1997-2006. The study involves seven land locations over India, seven stations over plateau and seven locations over the Indian Ocean. The wavelet analyses exhibit prominent annual peaks in the global spectra of rainfall, cloud liquid water content and precipitable water content. Power-law relationships are found to exist between the global wavelet peaks of precipitation and those of both the parameters, namely, cloud liquid water content and precipitable water content. Again, a linear relationship exists between global wavelet peaks of rainfall amount and total rainfall amount. The rainfall estimations utilizing cloud liquid water content data exhibit better matching with the measured values than those utilizing precipitable water content data.

  14. A derivatization approach using pyrylium salts for the sensitive and simple determination of sulfide in spring water by high performance liquid chromatography.

    PubMed

    Rembisz, Żaneta; Bzdurska, Dorota; Obiedzińska, Justyna; Martínez-Máńez, Ramón; Zakrzewski, Robert

    2015-08-14

    A high-performance liquid chromatography method based on pre-column derivatization with the pyrylium salts (4-[p-(N,N-dimethylamino)phenyl]-2,6-diphenylpyrylium perchlorate (LN1) and 2,4,6-triphenylpyrylium tetrafluoroborate (L1)) has been developed for the determination of sulfide. After the reaction of sulfide ions with LN1 or L1 aiming at the formation of the corresponding thiopyrylium derivatives LN3 or L3, they were separated on a C18 column using phosphate buffer and acetonitrile as eluent, and afterwards detected with a UV/vis detector. By using the described method, sulfide ions can be determined in the range of 5.12-486.4 μg·L(-1) or 1.024-20.48 μg·L(-1) by means of L1 or LN1, respectively. In our experiments, the relative standard deviation was not higher than 2% and the recovery coefficient was in the range of 88-102%. The proposed method was applied to the determination of sulfide in spring water samples from Busko Zdrój and Uniejów health resorts located in Poland. PMID:26163932

  15. ALUMINUM BIOAVAILABILITY FROM DRINKING WATER IS VERY LOW AND IS NOT APPRECIABLY INFLUENCED BY STOMACH CONTENTS OR WATER HARDNESS. (R825357)

    EPA Science Inventory

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intra...

  16. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. PMID:25737264

  17. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    PubMed

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system. PMID:26698815

  18. Novel wireless health monitor with acupuncture bio-potentials obtained by using a replaceable salt-water-wetted foam-rubber cushions on RFID-tag.

    PubMed

    Lin, Jium-Ming; Lu, Hung-Han; Lin, Cheng-Hung

    2014-01-01

    This paper proposes a bio-potential measurement apparatus including a wireless device for transmitting acupuncture bio-potential information to a remote control station for health conditions analysis and monitor. The key technology of this system is to make replaceable foam-rubber cushions, double-side conducting tapes, chip and antenna on the radio frequency identification (RFID) tag. The foam-rubber cushions can be wetted with salt-water and contact with the acupuncture points to reduce contact resistance. Besides, the double-side conducting tapes are applied to fix foam-rubber cushions. Thus, one can peel the used cushions or tapes away and supply new ones quickly. Since the tag is a flexible plastic substrate, it is easy to deploy on the skin. Besides, the amplifier made by CMOS technology on RFID chip could amplify the signals to improve S/N ratio and impedance matching. Thus, cloud server can wirelessly monitor the health conditions. An example shows that the proposed system can be used as a wireless health condition monitor, the numerical method and the criteria are given to analyze eleven bio-potentials for the important acupunctures of eleven meridians on a person's hands and legs. Then a professional doctor can know the performance of an individual and the cross-linking effects of the organs. PMID:25227072

  19. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  20. Dynamics of pore-water and salt in estuarine marshes subjected to tide and evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shen, C.; Li, L.; Lockington, D. A.

    2015-12-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore water and salt in a vertical cross section perpendicular to the tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore water from unsaturated soil surface with salt left in soils, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, solute concentration and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the tidal signal, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period in a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains close to that of seawater. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water-saturated soil is maintained while tidal inundation absent. On the contrary, the sandy supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  1. Classification of 17 DES supernovae by SALT

    NASA Astrophysics Data System (ADS)

    Kasai, E.; Bassett, B.; Crawford, S.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.

    2016-02-01

    We report optical spectroscopy of 17 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (380-820nm) were obtained using the Robert Stobie Spectrograph (RSS) on the South African Large Telescope (SALT).

  2. Mineralogical study of stream waters and efflorescent salts in Sierra Minera, SE Spain

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Garcia-Lorenzo, Maria luz; Martinez-Sanchez, Maria Jose; Hernandez, Carmen; Hernandez-Cordoba, Manuel

    2015-04-01

    content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As (remains soluble) and Zn and Cd (high mobility). In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. However, the As remains soluble. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. Some differences were found from the high and the low part: samples located in the lower part (D2-D7) showed higher As content while Zn is higher in the high part (D8-D13) The DRX analysis in evaporates suggest that in D4 copiapite, coquimbite, gypsum, bianchite and ferrohexahydrite are formed and in D11 gypsum, bianchite, halotrichite and siderotil. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements.

  3. Characterization of Cloud Water-Content Distribution

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  4. Ultrasonic characterization of pork meat salting

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

    2012-12-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  5. Geophysical surveys for monitoring coastal salt water intrusion

    NASA Astrophysics Data System (ADS)

    Loperte, A.; Satriani, A.; Simoniello, T.; Imbrenda, V.; Lapenna, V.

    2009-04-01

    Geophysical surveys have been exploited in a coastal forest reserve, at the mouth of the river Bradano in South Italy (Basilicata, southern Italy, N 40°22', E 16°51'), to investigate the subsurface saltwater contamination. Forest Reserve of Metapontum is a wood of artificial formation planted to protect fruit and vegetable cultivations from salt sea-wind; in particular it is constituted by a back dune pine forest mainly composed of Aleppo Pine trees (Pinus halepensis) and domestic pine trees (Pinus pinea). Two separate geophysical field campaigns, one executed in 2006 and a second executed in 2008, were performed in the forest reserve; in particular, electrical resistivity tomographies, resistivity and ground penetrating radar maps were elaborated and analyzed. In addition, chemical and physical analyses on soil and waters samples were performed in order to confirm and integrate geophysical data. The analyses carried out allowed an accurate characterization of salt intrusion phenomenon: the spatial extension and depth of the saline wedge were estimated. Primary and secondary salinity of the Metapontum forest reserve soil occurred because of high water-table and the evapo-transpiration rate which was much higher than the rainfall rate; these, of course, are linked to natural factors such as climate, natural drainage patterns, topographic features, geological structure and distance to the sea. Naturally, since poor land management, like the construction of river dams, indiscriminate extraction of inert from riverbeds that subtract supplies sedimentary, the alteration of the natural water balance, plays an important role in this process. The obtained results highlighted that integrated geophysical surveys gave a precious contribute for better evaluating marine intrusion wedge in coastal aquifers and providing a rapid, non-invasive and low cost tool for coastal monitoring.

  6. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  7. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  8. Spatial and temporal evolution of a microseismic swarm induced by water injection in the Arkema-Vauvert salt field (southern France)

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Bardainne, Thomas; Regnier, Marc; Deschamps, Anne; Valette, Marc

    2012-01-01

    This study investigates a microseismic swarm induced by injection operations in the Arkema-Vauvert salt field. The seismic activity in this field is monitored only by two permanent 3-component stations deployed in two wells. This study focuses on a period of 21 months (2004 January-2005 September) during which 1214 seismic events are located. The seismic activity is divided into three periods correlating with the water injection operations, highlighting a migration of the seismicity toward a thrust fault connecting the injection well and the production well. A waveform analysis reveals S-wave anisotropy, and focal mechanisms are computed using P, Sv and Sh amplitudes manually measured on anisotropy-corrected seismograms. First, synthetic resolution tests assess the reliability of the focal mechanisms determination from the two 3-component stations deployed in the field. Synthetic data are generated for 1056 earthquakes with various focal mechanisms and are perturbed with noise. The results indicate that the type of focal mechanism is correctly retrieved for 74 per cent of the synthetic earthquakes, but the uncertainties of the strike and rake are significant (from 15 to 45?). Next, the focal mechanisms are computed for 532 real earthquakes. The solutions primarily correspond to a dip-slip/thrust fault type with subvertical NE-SW and subhorizontal N-S to NW-SE nodal planes. Correlations between the focal mechanisms and the spatio-temporal distribution of the seismic activity are noteworthy. The study shows it is possible to reliably retrieve double-couple focal mechanisms for some faulting geometries with two 3-component seismological stations. However, the reliability of the focal mechanism retrieval depends on the station configuration. Therefore, the addition of further stations would improve the results.

  9. Evaluation of Trace Metal Content by ICP-MS Using Closed Vessel Microwave Digestion in Fresh Water Fish

    PubMed Central

    Jarapala, Sreenivasa Rao; Kandlakunta, Bhaskarachary; Thingnganing, Longvah

    2014-01-01

    The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS). Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68 mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52 mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07 mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24 mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56 mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05 mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO. PMID:24744789

  10. Workers intake too much salt from dishes of eating out and food service cafeterias; direct chemical analysis of sodium content

    PubMed Central

    Park, Hae-Ryun; Lee, Seung-Lim; Kim, Jin-Young; Kang, Soon-Ah; Park, Kun-Young; Ryou, Hyun-Joo

    2009-01-01

    The average sodium intake of Koreans was reported to be 5,279.9 mg/day, which is one of the highest intake levels worldwide. The average Koreans intake 19.6% of sodium from kimchi, showing kimchi as the main contributor of sodium in this country (Ministry of Health and Welfare, 2005). The sodium content of dishes that are frequently chosen by workers, and which were served by foodservice cafeterias were chemically analyzed. The average sodium content of one meal provided by 10 foodservice cafeterias was 2,777.7 mg. Twenty-one, one-dish-meals, frequently chosen by workers for a lunch menu, were collected at 4 different restaurants for each menu by one male, aged in the twenties and analyzed chemically also. Workers who eat lunch at a workplace cafeteria everyday could intake about 8 g of salt at a one-time meal and those who eat out for a one-dish-meal would intake 3-8 g of salt without counting sodium content from the side dishes. From these study results, one could estimate that over 10 g of salt could be possible for a single meal for workers who eat out everyday. A nationwide nutrition campaign and education for low salt diets for restaurant owners and foodservice providers should be seriously considered. PMID:20098587

  11. Bromide content of sea-salt aerosol particles collected over the Indian Ocean during INDOEX 1999

    NASA Astrophysics Data System (ADS)

    Gabriel, R.; von Glasow, R.; Sander, R.; Andreae, M. O.; Crutzen, P. J.

    2002-10-01

    Bromide can be depleted from sea-salt aerosol particles in the marine boundary layer (MBL) and converted to reactive gas-phase species like Br, BrO, and HOBr, which affect ozone chemistry. Air pollution can enhance the bromine release from sea-salt aerosols and thus inject additional bromine into the MBL. During the winter monsoon the northern Indian Ocean is strongly affected by air pollution from the Indian subcontinent and Asia. As part of the Indian Ocean Experiment (INDOEX), aerosol particles were sampled with stacked filter units (SFU) on the NCAR Hercules C-130 aircraft during February-March 1999. We determined the vertical and latitudinal distribution of the major inorganic aerosol components (NH4+, Na+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-) and the Br- content of the coarse aerosol to examine the role of the bromine release on the gas-phase chemistry in the marine boundary layer over the tropical Indian Ocean. The aerosol mass and composition varied significantly with air mass origin and sampling location. In the northern part of the Indian Ocean (5°-15°N, 66°-73°E), high concentrations of pollution-derived inorganic species were found in the marine boundary layer extending from the sea surface to about 1.2 km above sea level. In this layer, the average mass concentration of all aerosol species detected by our technique was comparable to pollution levels observed in industrialized regions. In the Southern Hemisphere (1°-9°S, 66°- 73°E), the aerosol concentrations rapidly declined to remote background levels. A chloride loss from the coarse aerosol particles was observed in parallel to the latitudinal gradient of the non sea salt SO42- burden. In most of the samples, Br- was depleted from the sea-salt aerosols. However, we found an enrichment in bromide in aerosols affected by air masses originating over strong pollution sources in India (Bombay, Calcutta). In these cases the additional pollution-derived Br from organo-halogen additives in petrol

  12. Increased Cerebral Water Content in Hemodialysis Patients

    PubMed Central

    Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, Nadim Jon

    2015-01-01

    Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content. PMID:25826269

  13. Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale 'Abencor' milling system.

    PubMed

    Aviani, I; Raviv, M; Hadar, Y; Saadi, I; Dag, A; Ben-Gal, A; Yermiyahu, U; Zipori, I; Laor, Y

    2012-03-01

    Olive mill wastewaters (OMW) were obtained at laboratory scale by milling olives from four cultivars grown at different irrigation levels and harvested at different times. Samples were compared based on wastewater quantity, pH, suspended matter, salinity, organic load, total phenols, NPK, and phytotoxicity. Principal component analysis discriminated between harvest times, regardless of olive cultivar, indicating substantial influence of fruit ripeness on OMW characteristics. OMW properties were affected both by the composition and the extraction efficiency of fruit water. As the fruit water content increased, the concentrations of solutes in the fruit water decreased, but the original fruit water composed a larger portion of the total wastewater volume. These contradicting effects resulted in lack of correlation between fruit water content and OMW properties. The significant effects shown for fruit ripeness, irrigation and cultivar on OMW characteristics indicate that olive horticultural conditions should be considered in future OMW management. PMID:22226593

  14. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  15. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490.

    PubMed

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2007-06-14

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns. PMID:17581068

  16. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490

    NASA Astrophysics Data System (ADS)

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2007-06-01

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400ps and 1.10ns.

  17. WATER LEVEL AND OXYGEN DELIVERY/UTILIZATION IN POROUS SALT MARSH SEDIMENTS

    EPA Science Inventory

    Increasing terrestrial nutrient inputs to coastal waters is a global water quality issue worldwide, and salt marshes may provide a valuable nutrient buffer, either by direct removal or by smoothing out pulse inputs between sources and sensitive estuarine habitats. A major challen...

  18. Estimating the vegetation water content using a radar vegetation index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation water content is an important biophysical parameter. Here, the Radar Vegetation Index (RVI) based on polarimetric backscatter observations was evaluated for estimating vegetation water content. Analysis utilized a data set obtained by a ground-based multi-frequency polarimetric scatterome...

  19. Tensile properties and translaminar fracture toughness of glass fiber reinforced unsaturated polyester resin composites aged in distilled and salt water

    NASA Astrophysics Data System (ADS)

    Sugiman, Gozali, M. Hulaifi; Setyawan, Paryanto Dwi

    2016-03-01

    Glass fiber reinforced polymer has been widely used in chemical industry and transportation due to lightweight and cost effective manufacturing. However due to the ability to absorb water from the environment, the durability issue is of interest for up to days. This paper investigated the water uptake and the effect of absorbed water on the tensile properties and the translaminar fracture toughness of glass fiber reinforced unsaturated polyester composites (GFRP) aged in distilled and salt water up to 30 days at a temperature of 50°C. It has been shown that GFRP absorbed more water in distilled water than in salt water. In distilled water, the tensile strength of GFRP tends to decrease steeply at 7 days and then slightly recovered for further immersion time. In salt water, the tensile strength tends to decrease continually up to 30 days immersion. The translaminar fracture toughness of GFRP aged in both distilled and salt-water shows the similar behavior. The translaminar fracture toughness increases after 7 days immersion and then tends to decrease beyond that immersion time. In the existence of ionics content in salt water, it causes more detrimental effect on the mechanical properties of fiberglass/unsaturated polyester composites compared to that of distilled water.

  20. Some characteristics of protein precipitation by salts.

    PubMed

    Shih, Y C; Prausnitz, J M; Blanch, H W

    1992-12-01

    The solubilities of lysozyme, alpha-chymotrypsin and bovine serum albumin (BSA) were studied in aqueous electrolyte solution as a function of ionic strength, pH, the chemical nature of salt, and initial protein concentration. Compositions were measured for both the supernatant phase and the precipitate phase at 25 degrees C. Salts studied were sodium chloride, sodium sulfate, and sodium phosphate. For lysozyme, protein concentrations in supernatant and precipitate phases are independent of the initial protein concentration; solubility can be represented by the Cohn salting-out equation. Lysozyme has a minimum solubility around pH 10, close to its isoelectric point (pH 10.5). The effectiveness of the three salts studied for precipitation were in the sequence sulfate > phosphate > chloride, consistent with the Hofmeister series. However, for alpha-chymotrypsin and BSA, initial protein concentration affects the apparent equillibrium solubility. For these proteins, experimental results show that the compositions of the precipitate phase are also affected by the initial protein concentration. We define a distribution coefficient kappa(e) to represent the equilibrium ratio of the protein concentration in the supernatant phase to that in the precipitate phase. When the salt concentration is constant, the results show that, for lysozyme, the protein concentrations in both phases are independent of the initial protein concentrations, and thus kappa(e) is a constant. For alpha-chymotrypsin and BSA, their concentrations in both phases are nearly proportional to the initial protein concentrations, and therefore, for each protein, at constant salt concentration, the distribution coefficient kappa(e) is independent of the initial protein concentration. However, for both lysozyme and alpha-chymotrypsin, the distribution coefficient falls with increasing salt concentration. These results indicate that care must be used in the definition of solubility. Solubility is appropriate

  1. Effect of initial hydrogen content of a titanium alloy on susceptibility to hot-salt stress-corrosion

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1971-01-01

    The Ti-8Al-1Mo-1V alloy was tested in four conditions: mill annealed (70 ppM H), duplex annealed (70 ppM H), vacuum annealed to an intermediate (36 ppM) and a low (9 ppM H) hydrogen level. Material annealed at 650 C (duplex condition) exhibited resistance to hot-salt stress corrosion superior to that exhibited by material in the mill-annealed condition. Reduction of the alloy hydrogen content from 70 to as low as 9 ppM did not influence resistance to hot-salt stress corrosion embrittlement or cracking.

  2. Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels

    SciTech Connect

    Kidder, G.W. III |; McCoy, A.A. |

    1996-02-01

    The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.

  3. The MODIS Vegetation Canopy Water Content product

    NASA Astrophysics Data System (ADS)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  4. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  5. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  6. THE INFLUENCE OF SALT CONTENT AT DIFFERENT CONCENTRATIONS OF TERASI TO THE SENSORY CHARACTERISTICS OF SAMBAL TERASI, THE CHILI SAUCE ADDED WITH TERASI.

    PubMed

    Ambarita, N T Damanik; De Meulenaer, B

    2015-01-01

    The type of terasi (the Indonesian seafood fermented paste) and the ingredients used can give sambal terasi (ST), the chili sauce added with terasi, its identity and taste distinction. Inherit from its production, salt content differs the flavor(s) of product added with terasi. This research explored the role of terasi salt content, either from the origin of terasi or by salt adjustment, to the products acceptability and sensory characteristics perceived during subsequent sensorial evaluations. Six types of terasi were characterized based on the proximate and salt content, and prepared as STs with and without salt adjustment at several terasi concentrations. 118 panelists conducted sensory evaluations for overall acceptability at 12.5% terasi; at lower concentration specific tastes (sweet, bitter, salty, sour, umami, fishy and rebon) were characterized by 80 panelists. Results showed that the acceptance of ST is more due to its innate origin salt content and to the suitability saltiness perceived. The specific odor of terasi, combining with other taste(s), when prepared at higher terasi concentration as practiced in restaurant, home and commercial products showed masking effect(s). After saltiness adjusted, different types of terasi showed different taste characteristics. Preferred ST were different between higher and lower concentration. Better tastes characteristics and stronger spices taste were found at lower salt content (and terasi concentration). PMID:26630752

  7. Geophysical methods to support correct water sampling locations for salt dilution gauging

    NASA Astrophysics Data System (ADS)

    Comina, C.; Lasagna, M.; De Luca, D. A.; Sambuelli, L.

    2014-05-01

    To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Discharge measurements, using salt dilution gauging, are a traditional and well-documented technique. The complete mixing of salt used for dilution gauging is required for reliable measurements; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, Fast Electrical Resistivity Tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross-section. In this way, it is possible to check whether complete mixing has occurred. If the mixing is not complete, the image created by FERT can also provide guidance for selecting water-sampling locations in the sampling cross-section. A water multi-sampling system prototype for the simultaneous sampling of canal water at different points within the cross-section, aimed to potentially take into account concentration variability, is also proposed and tested. Preliminary results of a single test with salt dilution gauging and FERT in a real case are reported. The results show that imaging the passage of the salt plume is possible by means of geophysical controls and that this can potentially help in the selection of water sampling points.

  8. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea.

    PubMed

    Ahmad, Parvaiz; Abdel Latef, Arafat A; Hashem, Abeer; Abd Allah, Elsayed F; Gucel, Salih; Tran, Lam-Son P

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  9. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  10. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    PubMed Central

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  11. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  12. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  13. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli. PMID:27083431

  14. Offshore Stratigraphic Controls on Salt-Water Intrusion in Los Angeles Area Coastal Aquifers

    NASA Astrophysics Data System (ADS)

    Edwards, B. D.; Ponti, D. J.; Ehman, K. D.; Tinsley, J. C.; Reichard, E. G.

    2002-12-01

    Ground water is a major component of the water supply for the ~10 million residents of Los Angeles County. Ground water pumping, linked to population growth since the early 1900's, caused water levels to decline, reversed seaward hydraulic gradients in some coastal aquifers, and resulted in salt water intrusion. United States Geological Survey geologists and hydrologists are working cooperatively with local water agencies to (1) understand and model the process of salt-water intrusion in this siliciclastic, structurally complex basin, and (2) identify potential pathways for the salt-water intrusion. We collected over 2000 trackline-km of single- and multi-channel intermediate- and high-resolution seismic-reflection profiles (60 to 5000 Hz) from the Los Angeles/Long Beach Harbor complex and the adjacent San Pedro shelf to develop a 3-dimensional stratigraphic model of the coastal aquifer system. These data define stratal geometries, paleo-channels, and fault traces in the offshore that are potential pathways of salt-water intrusion. The offshore seismic-reflection profiles correlate with onshore geophysical and borehole data collected from four nearby drill sites that were cored continuously to depths ranging to 400 meters. These core holes provide detailed 1-dimensional reference sections that furnish stratigraphic, age, and facies control for the seismic-reflection profiles. The coastal aquifer system is described using sequence stratigraphic concepts as units deposited during eustatic sea level fluctuations during the Pleistocene to Recent. Seismic-reflection profiles identify sequence boundaries, and hence aquifer and aquitard units, by the truncation and onlap of reflectors. If and where the sequences crop out on the sea floor provides a potential pathway for intrusion. The youngest unit, the Gaspur aquifer, is intruded with salt water and consists of at least two flat-lying sequences, each marked by basal gravelly sands deposited by the ancestral Los Angeles

  15. NITRATE RELEASE BY SALT MARSH PLANTS: AN OVERLOOKED NUTRIENT FLUX MECHANISM

    EPA Science Inventory

    Salt marshes provide water purification as an important ecosystem service in part by storing, transforming and releasing nutrients. This service can be quantified by measuring nutrient fluxes between marshes and surface waters. Many processes drive these fluxes, including photosy...

  16. Rise and fall of road salt contamination of water-supply springs

    NASA Astrophysics Data System (ADS)

    Werner, Eberhard; Dipretoro, Richard S.

    2006-12-01

    A storage pile of de-icing agent consisting principally of sodium chloride was placed in the recharge area of two springs, and remained there for 2 years. Water flow is through fractures in rocks with low matrix permeability, along a hydraulic gradient developed along fracture zones. Salt contamination in the springs was noticed about 1 year after the salt was placed. When the salt was removed 1 year later, chloride concentrations in the springs exceeded 500 mg/L. Monitoring for the following 5 years showed salt contamination rising for the first year, but receding to normal background after 5 years. Chloride to sodium ratios of the spring waters indicated that some sodium was initially sequestered, probably by ion exchange on clay minerals, in the early part of the monitoring period, and released during the latter part; thereby extending the period of contamination.

  17. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1987-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water-quality changes had occurred. The dissolved-solids concentration of the water from 13 of the wells has increased by more than 10 percent since 1962-67.

  18. The relationship between water content and swelling parameters of soils

    NASA Astrophysics Data System (ADS)

    Samet Öngen, Ali; Abiddin Ergüler, Zeynal

    2016-04-01

    The level of swelling dependent damages of low-rising engineering structures constructed on and/or in unsaturated zone of soil deposits is generally controlled by mineralogical compositions and water content of soils. It is well known that seasonal or even daily variations in water content causes volumetric changes within unsaturated zone of a soil composed mainly of swelling type clay minerals. In this regard, in addition to mineralogical composition of soils, water content should be considered as another major factor for understanding swelling behavior of soils. It can be concluded from literature review that swelling parameters of soils were determined by performing experimental studies on dry samples or samples having natural water content without incorporating seasonal continuous variations in water content. Thus, the effect of variation in water content on swelling mechanism of soils is not yet sufficiently studied in previous studies. For achieving accurate understanding of swelling behavior at field conditions, a new approach is required to identify swelling parameter at different initial water content. For this purpose, a comprehensive study was performed to investigate the effect of water content on swelling behavior of soils and to find a new parameter for assessing swelling parameters of samples prepared at different initial water content conditions. Based on main objectives of this study, soil samples having wide range in terms of grain size distributions, mineralogical compositions and Atterberg limits were collected from different locations in Turkey. To minimize the effect of dry unit weight on swelling behavior of soils, samples were prepared at the same dry unit weight (14.6 kN/m3) and different initial water contents. It was determined that there is a linear relationship between initial water content and swelling parameters, and swelling parameters decrease with increasing initial water content conditions. By utilizing this relationship, a new

  19. Monitoring the oleuropein content of olive leaves and fruits using ultrasound- and salt-assisted liquid-liquid extraction optimized by response surface methodology and high-performance liquid chromatography.

    PubMed

    Ismaili, Ahmad; Heydari, Rouhollah; Rezaeepour, Reza

    2016-01-01

    A novel and rapid ultrasound- and salt-assisted liquid-liquid extraction coupled with high-performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box-Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound-assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A(2) , B(2) , C(2) , and D(2) are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique. PMID:26530030

  20. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination. PMID:26785556

  1. Modeling of salt-water migration through spod-podzolic soils under the field and laboratory conditions

    NASA Astrophysics Data System (ADS)

    Ronzhina, Tatiana

    2013-04-01

    The assessment of highly mineralized water influence on soils is an important issue in the contemporary world. Various regions with different conditions are exposed to salt-affected soils forming. Salinization of soils is a complex process of the chemical and physical properties changes. Therefore the chain of the laboratory and field experiments should be done in order to assess the main factors promoting highly mineralized water migration. In addition to it modelling is a good way to understand and evaluate main chemical and physical transformations in soils. The chain of experiments was done to assess salt water movement in spod-podzolic soils under field and laboratory conditions. The main goals were to evaluate the rate of salt water movement through soils and to estimate velocity of the desalinization process. Field experiment was conducted on spod-podzolic soils of Kaliningrad region. There were 4 sites measuring 20*25 cm watering with salt water in amount of 5 liters per each area. The mineralization of the solution was 100 g/l. In addition to the salt affected sites, 2 non polluted grounds were assessed too. Soils samples were collected in the period of 1 week, 1 month, 3 month and 1 year after the spill had been done. The samples were taken each 10 cm 110 cm deep and in double repeatability. Main chemical and physical parameters, such as volume water content, pH, conductivity, amount of calcium ion, magnesium, sodium, and chlorite in soils etc. were measured in each sample. The second experiment was conducted to evaluate the rate of soils solutions transformation under the laboratory conditions. Organic horizon was taken from the field and was stuffed in columns with 1.0 g/cm3 density. There were 16 columns with 4 cm diameter. 14 columns were showered with salt water with the same mineralization as in the field experiment. The amount of salt water injected in columns was 104 mm per one sample which is equal to the salt water volume spilled per one area in

  2. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  3. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  4. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  5. Hydrochemical investigations for delineating salt-water intrusion into the coastal aquifer of Maharlou Lake, Iran

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Reza; Zare, Mohammad

    2016-09-01

    Groundwater quality depends on different factors such as geology, lithology, properties of aquifer, land use, the physical condition of boundaries etc. Studying these factors can help users to manage groundwater quality. This study deals with the groundwater quality of an aquifer located in the southeastern part of Maharlou salt lake, Iran. This lake is located in the southeast of Shiraz and is the outlet of Shiraz sewages. Due to overexploitation of groundwater from the aquifer, the gradient of water table is from the lake towards the aquifer and therefore, saline water migrates to the aquifer. The phenomenon of salt water intrusion contributes to the deterioration of groundwater. In this research, groundwater types, maps of iso EC and iso ions, ion exchange in the mixing of fresh and salt water, salinity variation of the groundwater in the profile of well water column, and the salinity-time variation of the groundwater were studied. The gradual increase of the salinity of groundwater with depth from top to down in the aquifer indicates that salt water is located under fresh water. The time variation of physical and chemical parameters in the groundwater discharged from a well shows that the saline water in the bottom of the aquifer moves upward and destroys the quality of groundwater in the study area. Furthermore, Sachoun geological formation formed by evaporate deposits and evaporation from shallow groundwater are two other factors which decrease the groundwater quality.

  6. Double inversion of emulsions induced by salt concentration.

    PubMed

    Zhang, Jingchun; Li, Lu; Wang, Jun; Sun, Haigang; Xu, Jian; Sun, Dejun

    2012-05-01

    The effects of salt on emulsions containing sorbitan oleate (Span 80) and Laponite particles were investigated. Surprisingly, a novel double phase inversion was induced by simply changing the salt concentration. At fixed concentration of Laponite particles in the aqueous phase and surfactant in paraffin oil, emulsions are oil in water (o/w) when the concentration of NaCl is lower than 5 mM. Emulsions of water in oil (w/o) are obtained when the NaCl concentration is between 5 and 20 mM. Then the emulsions invert to o/w when the salt concentration is higher than 50 mM. In this process, different emulsifiers dominate the composition of the interfacial layer, and the emulsion type is correspondingly controlled. When the salt concentration is low in the aqueous dispersion of Laponite, the particles are discrete and can move to the interface freely. Therefore, the emulsions are stabilized by particles and surfactant, and the type is o/w as particles are in domination. At intermediate salt concentrations, the aqueous dispersions of Laponite are gel-like, the viscosity is high, and the transition of the particles from the aqueous phase to the interface is inhibited. The emulsions are stabilized mainly by lipophilic surfactant, and w/o emulsions are obtained. For high salt concentration, flocculation occurs and the viscosity of the dispersion is reduced; thus, the adsorption of particles is promoted and the type of emulsions inverts to o/w. Laser-induced fluorescent confocal micrographs and cryo transmission electron microscopy clearly confirm the adsorption of Laponite particles on the surface of o/w emulsion droplets, whereas the accumulation of particles at the w/o emulsion droplet surfaces was not observed. This mechanism is also supported by the results of rheology and interfacial tension measurements. PMID:22475400

  7. Aldicarb and carbofuran transport in a Hapludalf influenced by differential antecedent soil water content and irrigation delay.

    PubMed

    Kazemi, H V; Anderson, S H; Goyne, K W; Gantzer, C J

    2009-01-01

    Pesticide use in agroecosystems can adversely impact groundwater quality via chemical leaching through soils. Few studies have investigated the effects of antecedent soil water content (SWC) and timing of initial irrigation (TII) after chemical application on pesticide transport and degradation. The objectives of this study were to investigate the effects of antecedent soil water content (wet vs dry) and timing of initial irrigation (0h Delay vs 24h Delay) on aldicarb [(EZ)-2-methyl-2-(methylthio)propionaldehyde O-methylcarbamoyloxime] and carbofuran [2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate] transport and degradation parameters at a field site with Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalf) soils. Aldicarb and carbofuran were applied to plots near field capacity (wet) or near permanent wilting point (dry). Half of the dry and wet plots received irrigation water immediately after chemical application and the remaining plots were irrigated after a 24h Delay. The transport and degradation parameters were estimated using the method of moments. Statistical significance determined for SWC included averages across TII levels, and significance determined for TII included averages across SWC levels. For the dry treatment, aldicarb was detected 0.10 m deeper (P<0.01) on two of the four sampling dates and carbofuran was detected at least 0.10 m deeper (P<0.05) on all of the sampling dates compared to the wet treatment. Pore water velocity was found to be higher (P<0.10) in the dry vs wet treatments on three of four dates for aldicarb and two of four dates for carbofuran. Retardation coefficients for both pesticides showed similar evidence of reduced values for the dry vs wet treatments. These results indicate deeper pesticide movement in the initially dry treatment. For aldicarb and carbofuran, estimated values of the degradation rate were approximately 40-49% lower in the initially dry plots compared to the initially wet plots

  8. Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions.

    PubMed

    Wang, Jie; Xu, Ruisong; Yang, Shilun

    2009-10-01

    Vegetation water content could possibly provide widespread utility in agriculture, forestry and hydrology. In this article, three species leaves were measured radiometrically in order to determine a relationship between leaf water status and the spectral feature centered at 1,450 and 1,940 nm where there are strong water absorptions. The first step of our research is to measure leaf spectra with a FieldSpec-FR. After the spectral analysis using the continuum removal technique, the spectral absorption feature parameters: absorption band depth (D (1450), D (1940)), the normalized band depth of absorption in 1,450 and 1,940 nm (BNA(1450), BNA(1940)), the ratio of the two reflectance of continuum line (R (1450i )/R (1940i )), the ratio of the two band depth (D (1450)/D (1940)) and the ratio of the two absorption areas (A (1450)/A (1940)) in the two wavebands were extracted from each leaf spectrum. The fuel moisture content (FMC), specific leaf weight (SLW), equivalent water thickness (EWT) were measured for each leaf sample. A correlation analysis was conducted between the spectral absorption feature parameters and corresponding FMC, SLW and EWT. In addition, some existing indices for assessing water status such as WI (water index), WI/NDVI (water index/normalized difference vegetation index), MSI (moisture stress index), NDWI (normalized difference water index)were calculated and the correlation between them and water status were analyzed too. The results by comparing the correlations indicated that the spectral absorption feature indices we proposed were better. The indexes BNA(1940), D (1450)/D (1940), and A (1450)/A (1940) were well correlated with FMC, and the correlation between the indexes D (1450,) D (1940), R (1450i )/R (1940i ) and EWT were strong. The index A (1450)/A (1940) was tested to be a good indictor for evaluating plant water content, because there was strongest positive correlation between it and FMC than other indices. PMID:18853268

  9. On temporal wind variations forcing salt water inflows into the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lass, H. U.; Matthäus, W.

    1996-10-01

    Salt water inflows into the Baltic Sea are important processes for maintaining the general stratification and the ventilation of the bottom water in deep basins of the central Baltic. These events occur randomly during the winter season at intervals from one to several years. This pattern changed in the mid-seventies when only weak or no major inflows were observed. During that period a steady loss of salt together with a steady increase in hydrogen sulphide concentrations was observed in the central Baltic deep water.It is generally assumed that strong westerly winds force a salt water inflow. Long time series of daily wind records at the meteorological station Arkona and sea level observations at Landsort between 1951 and 1990 have been analyzed in order to find characteristic sequences being associated with inflow events. A necessary condition for a salt water inflow is for the wind to blow from west for several tens of days. The weighted mean of the yearly cycle of the wind components for years without and with salt water inflows revealed that this condition happens usually in November and December. However, in years with inflows, a long-lasting easterly wind occurs in October and early November just before the strengthening of westerly winds. A similar sequence is observed in the yearly cycle of the mean sea level of the Baltic Sea, i.e., in years with inflows a lowering of the mean sea level precedes the increase of the sea level in November to December. Hence, major salt water inflows are very likely forced by a sequence of easterly winds in late autumn lasting for 20 30days followed by strong to very strong westerly winds of similar duration.

  10. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana

    PubMed Central

    Martínez-Ballesta, Mcarmen; Moreno-Fernández, Diego A.; Castejón, Diego; Ochando, Cristina; Morandini, Piero A.; Carvajal, Micaela

    2015-01-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. Exposure to salinity increases the levels of several of these compounds, but their role in abiotic stress response is unclear. The effect of aliphatic glucosinolates on plant water balance and growth under salt stress, involving aquaporins, was investigated by means of Arabidopsis thaliana mutants impaired in aliphatic glucosinolate biosynthesis, which is controlled by two transcription factors: Myb28 and Myb29. The double mutant myb28myb29, completely lacking aliphatic glucosinolates, was compared to wild type Col-0 (WT) and the single mutant myb28. A greater reduction in the hydraulic conductivity of myb28myb29 was observed under salt stress, when compared to the WT and myb28; this correlated with the abundance of both PIP1 and PIP2 aquaporin subfamilies. Also, changes in root architecture in response to salinity were genotype dependent. Treatment with NaCl altered glucosinolates biosynthesis in a similar way in WT and the single mutant and differently in the double mutant. The results indicate that short-chain aliphatic glucosinolates may contribute to water saving under salt stress. PMID:26236322

  11. Salt rejection and water transport through boron nitride nanotubes.

    PubMed

    Hilder, Tamsyn A; Gordon, Daniel; Chung, Shin-Ho

    2009-10-01

    Nanotube-based water-purification devices have the potential to transform the field of desalination and demineralization through their ability to remove salts and heavy metals without significantly affecting the fast flow of water molecules. Boron nitride nanotubes have shown superior water flow properties compared to carbon nanotubes, and are thus expected to provide a more efficient water purification device. Using molecular dynamics simulations it is shown that a (5, 5) boron nitride nanotube embedded in a silicon nitride membrane can, in principle, obtain 100% salt rejection at concentrations as high as 1 M owing to a high energy barrier while still allowing water molecules to flow at a rate as high as 10.7 water molecules per nanosecond (or 0.9268 L m(-2) h(-1)). Furthermore, ions continue to be rejected under the influence of high hydrostatic pressures up to 612 MPa. When the nanotube radius is increased to 4.14 A the tube becomes cation-selective, and at 5.52 A the tube becomes anion-selective. PMID:19582727

  12. General Synthesis of Amino Acid Salts from Amino Alcohols and Basic Water Liberating H2.

    PubMed

    Hu, Peng; Ben-David, Yehoshoa; Milstein, David

    2016-05-18

    An atom-economical and environmentally friendly method to transform amino alcohols to amino acid salts using just basic water, without the need of pre-protection or added oxidant, catalyzed by a ruthenium pincer complex, is developed. Water is the solvent, the source of the oxygen atom of the carboxylic acid group, and the actual oxidant, with liberation of dihydrogen. Many important and useful natural and unnatural amino acid salts can be produced in excellent yields by applying this new method. PMID:27139983

  13. A comparison of the coupled fresh water-salt water flow and the Ghyben-Herzberg sharp interface approaches to modeling of transient behavior in coastal aquifer systems

    USGS Publications Warehouse

    Essaid, H.I.

    1986-01-01

    A quasi-three dimensional finite difference model which simulates coupled, fresh water and salt water flow, separated by a sharp interface, is used to investigate the effects of storage characteristics, transmissivity, boundary conditions and anisotropy on the transient responses of such flow systems. The magnitude and duration of the departure of aquifer response from the behavior predicted using the Ghyben-Herzberg, one-fluid approach is a function of the ease with which flow can be induced in the salt water region. In many common hydrogeologic settings short-term fresh water head responses, and transitional responses between short-term and long-term, can only be realistically reproduced by including the effects of salt water flow on the dynamics of coastal flow systems. The coupled fresh water-salt water flow modeling approach is able to reproduce the observed annual fresh water head response of the Waialae aquifer of southeastern Oahu, Hawaii. ?? 1986.

  14. Peptide salt bridge stability: From gas phase via microhydration to bulk water simulations

    NASA Astrophysics Data System (ADS)

    Pluhařová, Eva; Marsalek, Ondrej; Schmidt, Burkhard; Jungwirth, Pavel

    2012-11-01

    The salt bridge formation and stability in the terminated lysine-glutamate dipeptide is investigated in water clusters of increasing size up to the limit of bulk water. Proton transfer dynamics between the acidic and basic side chains is described by DFT-based Born-Oppenheimer molecular dynamics simulations. While the desolvated peptide prefers to be in its neutral state, already the addition of a single water molecule can trigger proton transfer from the glutamate side chain to the lysine side chain, leading to a zwitterionic salt bridge state. Upon adding more water molecules we find that stabilization of the zwitterionic state critically depends on the number of hydrogen bonds between side chain termini, the water molecules, and the peptidic backbone. Employing classical molecular dynamics simulations for larger clusters, we observed that the salt bridge is weakened upon additional hydration. Consequently, long-lived solvent shared ion pairs are observed for about 30 water molecules while solvent separated ion pairs are found when at least 40 or more water molecules hydrate the dipeptide. These results have implications for the formation and stability of salt bridges at partially dehydrated surfaces of aqueous proteins.

  15. Measuring the Dark Matter Content of Galaxies with SALT

    NASA Astrophysics Data System (ADS)

    Bixel, Alex; Sellwood, Jerry; Mitchell, Carl

    2016-01-01

    In order to test the predictions of galaxy formation models, we seek to measure the detailed dark matter distributions of spiral galaxies. The best way to accomplish this is through measurements of the Doppler shift of the Hα line, through which we can produce detailed velocity maps and rotational models of a galaxy. Since the gas flows in rough centrifugal balance, we can use the rotational models to estimate the central gravitational attraction and therefore the mass distribution. As an example, we present a rotational velocity model fitted to an Hα velocity map of the spiral galaxy NGC 908, and find that the fitted systemic velocity gives good agreement with previous measurements in the literature. In the future, this method can be used to determine the rotation curves of the nineteen nearby galaxies for which we have or plan to collect interferometric data; we are currently working to produce similar results for the galaxy NGC 7606.This research has been supported by NSF grant PHY-1263280.

  16. Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Steinich, Birgit; Escolero, Oscar; Marín, Luis E.

    1998-12-01

    The Valley of Hermosillo coastal aquifer, state of Sonora, northwestern Mexico, has been over-exploited for the last four decades, in order to maintain agricultural activity in one of the most important irrigation districts of the Mexican Republic. The over-exploitation has resulted in the development of several drawdown cones and in the lowering of the water table to as much as 50 m below mean sea level. Contamination of the aquifer in the form of salt-water intrusion from the Gulf of California and high nitrate concentrations is the consequence of human activities. A hydrogeochemical zonation of the aquifer, based on the presence of different water families, led to the identification of a coastal band approximately 30 km wide that is affected by salt-water intrusion. Conductivity of the sampled water and the interpretation of the ratio Na/Cl×1000 was used to identify the location of three major intrusion plumes in this coastal band. The background nitrate contamination of the aquifer is about 4 ppm, but contents as great as about 17 ppm occur in some wells. Irrigation with raw sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for localized peaks of the nitrate concentration.

  17. Water content reflectometer calibration, field versus laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For soils with large amounts of high-charge clays, site-specific calibrations for the newer permittivity probes that operate at lower frequencies, often have higher permittivity values than factory calibrations. The purpose of this study was to determine site-specific calibration of water content re...

  18. Offstream water and trace mineral salt as management strategies for improved cattle distribution.

    PubMed

    Porath, M L; Momont, P A; DelCurto, T; Rimbey, N R; Tanaka, J A; McInnis, M

    2002-02-01

    The objective of this study was to test the combined effect of offstream water and trace mineral salt on cattle distribution in a riparian meadow and its adjacent uplands. From July 15 to August 26, 1996 and 1997, three treatments were each randomly assigned to one pasture in each of three blocks. Sixty cow/calf pairs were then randomly allotted to the grazed pastures. The treatments included 1) stream access and access to offstream water and trace-mineral salt (off-stream), 2) stream access and no access to offstream water or trace-mineral salt (no-offstream), and 3) ungrazed control. The response of cattle was measured through visual observations of cattle distribution, grazing activity and travel distance, cow/calf performance, and fecal deposit distribution. Distribution patterns of the cattle, measured as the distance of cattle from the stream, was characterized by a time of day x treatment x time in grazing period x year interaction (P < 0.05). No-offstream cattle began the day further from the stream than offstream cattle but consistently moved closer to the stream after the morning grazing period (0600 to 0900). Differences in distribution patterns between the two treatments were more pronounced early in the grazing period than late in the grazing period. Grazing activity, fecal deposit distribution, and travel distance of cattle were not affected by the presence of offstream water and trace-mineral salt. Cows and calves with offstream water and trace-mineral salt gained 11.5 kg and 0.14 kg/d more, respectively, than no-offstream cows and calves averaged across years (P < 0.05). Overall, cattle distribution patterns and cow/calf performance were influenced by the presence of offstream water and trace-mineral salt. Changes in distribution were most pronounced early in the grazing season. PMID:11881924

  19. Sea Water Ageing of GFRP Composites and the Dissolved salts

    NASA Astrophysics Data System (ADS)

    Chakraverty, A. P.; Mohanty, U. K.; Mishra, S. C.; Satapathy, A.

    2015-02-01

    This paper houses the effect of sea water immersion on glass fibre reinforced polymer (GFRP) composites. The major sources of interest are study of sea water absorption, penetration of the dissolved salts, details of chemical and physical bonds at the interface, variations of mechanical properties and study of failure mechanisms as revealed through SEM fractographs. Eighteen ply GFRP composites are immersed in sea water for a period of one year in steps of two months durations. It is revealed that the moisture absorption transforms from a Fickian to non-Fickian behavior with lapse of time. The dissolved salt 'K' shows highest depth of penetration after one year of immersion while 'Na' shows a least depth of penetration, as revealed from the EDS spectra. It is also revealed that 'Ca' seems to have a sudden burst in the rate of penetration even surpassing that of 'K'. This trend can be attributed to the combined effect of ionic mobility of the various dissolved salts and the probable interaction between 'K' and the -OH group of epoxy resin. This interaction between dissolved 'K' and the -OH group in the polymer could have arrested the further advancement of 'K' salts in the polymer, resulting in comparatively high rates of 'Ca' penetration. The mechanical properties such as inter laminar shear stress (ILSS), stress and strain at rupture, glass transition temperature (Tg) and elastic modulus show a decreasing trend with the increased duration of immersion. As revealed from the SEM fractographs pot- holing, fiber pull-out, matrix crack etc. are seen to be the major reason for failure of the immersed samples under load.

  20. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  1. Hydrogen Bonding in Liquid Water and in the Hydration Shell of Salts.

    PubMed

    Dagade, Dilip H; Barge, Seema S

    2016-03-16

    A near-IR spectral study on pure water and aqueous salt solutions is used to investigate stoichiometric concentrations of different types of hydrogen-bonded water species in liquid water and in water comprising the hydration shell of salts. Analysis of the thermodynamics of hydrogen-bond formation signifies that hydrogen-bond making and breaking processes are dominated by enthalpy with non-negligible heat capacity effects, as revealed by the temperature dependence of standard molar enthalpies of hydrogen-bond formation and from analysis of the linear enthalpy-entropy compensation effects. A generalized method is proposed for the simultaneous calculation of the spectrum of water in the hydration shell and hydration number of solutes. Resolved spectra of water in the hydration shell of different salts clearly differentiate hydrogen bonding of water in the hydration shell around cations and anions. A comparison of resolved liquid water spectra and resolved hydration-shell spectra of ions highlights that the ordering of absorption frequencies of different kinds of hydrogen-bonded water species is also preserved in the bound state with significant changes in band position, band width, and band intensity because of the polarization of water molecules in the vicinity of ions. PMID:26749515

  2. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. PMID:25553411

  3. Metasomatic control of water contents in the Kaapvaal cratonic mantle

    NASA Astrophysics Data System (ADS)

    Peslier, A. H.; Woodland, A. B.; Bell, D. R.; Lazarov, M.; Lapen, T. J.

    2012-11-01

    Water and trace element contents were measured by FTIR and laser ablation-ICPMS on minerals from peridotite xenoliths in kimberlites of the Kaapvaal craton from Finsch, Kimberley, Jagersfontein (South Africa), Letseng-La-Terae, and Liqhobong (Lesotho) mines. The peridotites record a wide range of pressure, temperature, oxygen fugacity, and metasomatic events. Correlations between water content or OH vibration bands with major, minor and trace elements in pyroxene and garnet precludes disturbance during xenolith entrainment by the host kimberlite magma and indicate preservation of mantle water contents. Clinopyroxene water contents (150-400 ppm H2O, by weight) correlate with those of orthopyroxene (40-250 ppm). Olivines (Peslier et al., 2008, 2010) and garnets have 0-86 and 0-20 ppm H2O, respectively. Relations in individual xenolith suites between the amount of water and that of incompatible elements Ti, Na, Fe3+ and rare earths in minerals suggests that metasomatism by oxidizing melts controls the water content of olivine, pyroxene and garnet. At pressures ⩽5.5 GPa, hydrous, alkaline, siliceous fluids or melts metasomatized Liqhobong and Kimberley peridotites, producing high water contents in their olivine, pyroxenes and garnet. At higher pressures, the percolation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, and the overall crystallization of garnet with lower water contents than those in the original peridotites. The upward migration of these ultramafic melts through the lithospheric mantle also increased the water content of olivines with decreasing pressure at Finsch Mine. H2O/Ce ratios of melts in equilibrium with Kaapvaal peridotites range from 100 to 20,000 and the larger values may indicate metasomatism in subduction zone settings. Metasomatic events in Kaapvaal peridotites are thought to have occurred from the Archean to the Mesozoic. However, circumstantial evidence

  4. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  5. A simple method for locating the fresh water-salt water interface using pressure data.

    PubMed

    Kim, Kue-Young; Chon, Chul-Min; Park, Ki-Hwa

    2007-01-01

    Salt water intrusion is a key issue in dealing with exploitation, restoration, and management of fresh ground water in coastal aquifers. Constant monitoring of the fresh water-salt water interface is necessary for proper management of ground water resources. This study presents a simple method to estimate the depth of the fresh water-salt water interface in coastal aquifers using two sets of pressure data obtained from the fresh and saline zones within a single borehole. This method uses the density difference between fresh water and saline water and can practically be used at coastal aquifers that have a relatively sharp fresh water-salt water interface with a thin transition zone. The proposed method was applied to data collected from a coastal aquifer on Jeju Island, Korea, to estimate the variations in the depth of the interface. The interface varied with daily tidal fluctuations and heavy rainfall in the rainy season. The estimated depth of the interface showed a good agreement with the measured electrical conductivity profile. PMID:17973750

  6. Geologic appraisal of Paradox basin salt deposits for water emplacement

    USGS Publications Warehouse

    Hite, R.J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin. The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits. Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines. The central or salt-bearing cores of tthe anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable. The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively

  7. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging

    PubMed Central

    2010-01-01

    Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps. Results ρw images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves

  8. Communication: Infrared spectroscopy of salt-water complexes

    NASA Astrophysics Data System (ADS)

    Tandy, Jon; Feng, Cheng; Boatwright, Adrian; Sarma, Gautam; Sadoon, Ahmed M.; Shirley, Andrew; Rodrigues, Natercia Das Neves; Cunningham, Ethan M.; Yang, Shengfu; Ellis, Andrew M.

    2016-03-01

    To explore how the ion-pair in a single salt molecule evolves with the addition of water, infrared (IR) spectra of complexes composed of NaCl and multiple water molecules have been recorded for the first time. The NaCl(H2O)n complexes were formed and probed in liquid helium nanodroplets, and IR spectra were recorded for n = 1 → 4. The spectra for n = 1, 2, and 3 are consistent with formation of the lowest energy contact-ion pair structures in which each water molecule forms a single ionic hydrogen bond to an intact Na+Cl- ion-pair. Alternative structures with hydrogen bonding between water molecules become energetically competitive for n = 4, and the IR spectrum indicates likely the coexistence of at least two isomers.

  9. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    SciTech Connect

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 water molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if these

  10. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China

    NASA Astrophysics Data System (ADS)

    Gao, Xubo; Wang, Yanxin; Li, Yilian; Guo, Qinghai

    2007-12-01

    Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF{2/-}, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F- with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl-Na or SO4-Na type water).

  11. Water-quality assessment of the Great Salt Lake basins, Utah, Idaho, and Wyoming; environmental setting and study design

    USGS Publications Warehouse

    Baskin, Robert L.; Waddell, K.M.; Thiros, S.A.; Giddings, E.M.; Hadley, H.K.; Stephens, D.W.; Gerner, S.J.

    2002-01-01

    The Great Salt Lake Basins, Utah, Idaho, and Wyoming is one of 51 study units in the United States where the status and trends of water quality, and the factors controlling water quality, are being studied by the National Water-Quality Assessment Program of the U.S. Geological Survey. The 14,500-square-mile Great Salt Lake Basins study unit encompasses three major river systems that enter Great Salt Lake: the Bear, the Weber, and the Utah Lake/Jordan River systems. The environmental setting of the study unit includes natural and human-related factors that potentially influence the physical, chemical, and/or biological quality of the surface- and ground-water resources. Surface- and ground-water components of the planned assessment activities are designed to evaluate the sources of natural and human-related factors that affect the water quality in the Great Salt Lake Basins study unit.

  12. Specific water content in speleothem sections as indicator for paleoprecipitation

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Marx, T.; Riechelmann, D. F. C.; Schimpf, D.; Mühlinghaus, C.; Kilian, R.; Aeschbach-Hertig, W.

    2009-04-01

    The development of a measurement system for tiny water quantities (submicroliters) enables the precise determination of water contained in fluid inclusions of speleothems. The comparison of the specific water content (water per g calcite) in selected stalagmites with precipitation related proxies such as ^18O and Mg/Ca ratios from stalagmites and pollen abundance in lake sediments revealed a correlation between precipitation and water content in the according growth periods. Investigation of stalagmites from Central Europe (Bunker Cave) and Southern Chile (Marcelo Arévalo Cave) confirm this relation, which is independently constrained by modelled drip rates using a reverse stalagmite model. The obtained data already enable a first interpretation of the speleothem water content records with regard to paleoprecipitation.

  13. The water cycles of water-soluble organic salts of atmospheric importance

    NASA Astrophysics Data System (ADS)

    Peng, Changgeng; Chan, Chak K.

    In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76-2.18 from RH=10-90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH 4) 2SO 4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.

  14. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, Yuriy V.; Vlachy, Vojko

    2016-06-01

    Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein-protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim's associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained.

  15. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions.

    PubMed

    Kalyuzhnyi, Yuriy V; Vlachy, Vojko

    2016-06-01

    Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein-protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim's associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained. PMID:27276970

  16. Effect of moisture content of concrete on water uptake

    SciTech Connect

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-15

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ({sup 1}H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-sq roott dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from sq roott behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction gamma is defined for the calculation of surface flux.

  17. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  18. Temporal Variation of Water and Salt Exchange at Xiaoqinghe River Mouth, North of China

    NASA Astrophysics Data System (ADS)

    Zou, T.; Zhang, H.

    2014-12-01

    Estuaries are important components of coastal ecosystem and function as dominant pathways of material exchange at the land-sea interface. The transport of terrestrial input through river inflow is controlled by physical process including tides, waves, and fresh water discharge. This study investigates net water and salt flux within Xiaoqinghe River mouth, a mesotidal shallow estuarine system (water depth < 8 m) exports substantial amount of nutrients and pollutants to the adjacent Laizhou Bay. Profile velocity and salinity are measured using ADCP and CTD through complete tidal cycles (25hours) in April, July and September 2013. The instantaneous velocity and salinity data are decomposed into time-averaged means and time-varying components based on the improved Kjerfve (1986) method to quantify the contributions of various physical processes. The results show that the freshwater discharge and tidal pumping are dominant processes of salt transport during the wet season and dry season, respectively, while both factors are almost the same during the normal season. The advective flux also determined the direction of the net salt flux. The remaining terms, which are dependent on the deviations from time-average means have a limited role in salt transports. The vertical shear flux tended to very small. There is a distinguishable difference between the transport of salinity and water for all three surveys, and also obvious separation character of salinity and water's long-term transport during all three surveys. An imbalance of the salt budget across the river mouth is also observed. Overall, tidal pumping is the underlying process of salt transport while river discharge dominates its temporal variation. This study will make addition to scientific foundation for management hazardous contamination and best time to release of environmental flows during difference seasons.

  19. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  20. Conversion of an Aziridine to an Oxazolidinone Using a Salt and Carbon Dioxide in Water

    ERIC Educational Resources Information Center

    Wallace, Justin R.; Lieberman, Deborah L.; Hancock, Matthew T.; Pinhas, Allan R.

    2005-01-01

    A convenient, inexpensive, environment friendly, and regioselective conversion of an aziridine to an oxazolidinone is developed by using iodide salt and CO[2] in water. A description is provided, on the way in which this series of experiments will show students how to change experimental conditions to obtain mainly one desired regiosomer of a…

  1. Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes

    PubMed Central

    Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Droplet merging and sorting in microfluidic devices usually rely on electric fields generated by solid metal electrodes. We show that simpler and more reliable salt water electrodes, despite their lower conductivity, can perform the same droplet manipulations at the same voltages. PMID:24671446

  2. Salicylic Acid Alleviates the Adverse Effects of Salt Stress in Torreya grandis cv. Merrillii Seedlings by Activating Photosynthesis and Enhancing Antioxidant Systems

    PubMed Central

    Du, Xuhua; Tang, Hui; Shen, Chaohua; Wu, Jiasheng

    2014-01-01

    Background Salt stress is a major factor limiting plant growth and productivity. Salicylic acid (SA) has been shown to ameliorate the adverse effects of environmental stress on plants. To investigate the protective role of SA in ameliorating salt stress on Torreya grandis (T. grandis) trees, a pot experiment was conducted to analyze the biomass, relative water content (RWC), chlorophyll content, net photosynthesis (Pn), gas exchange parameters, relative leakage conductivity (REC), malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and peroxidase (POD) of T. grandis under 0.2% and 0.4% NaCl conditions with and without SA. Methodology/Principal Findings The exposure of T. grandis seedlings to salt conditions resulted in reduced growth rates, which were associated with decreases in RWC and Pn and increases in REC and MDA content. The foliar application of SA effectively increased the chlorophyll (chl (a+b)) content, RWC, net CO2 assimilation rates (Pn), and proline content, enhanced the activities of SOD, CAT and POD, and minimized the increases in the REC and MDA content. These changes increased the capacity of T. grandis in acclimating to salt stress and thus increased the shoot and root dry matter. However, when the plants were under 0% and 0.2% NaCl stress, the dry mass of the shoots and roots did not differ significantly between SA-treated plants and control plants. Conclusions SA induced the salt tolerance and increased the biomass of T. grandis cv. by enhancing the chlorophyll content and activity of antioxidative enzymes, activating the photosynthetic process, and alleviating membrane injury. A better understanding about the effect of salt stress in T. grandis is vital, in order gain knowledge over expanding the plantations to various regions and also for the recovery of T. grandis species in the future. PMID:25302987

  3. Thermal energy storage by encapsulated Glauber's salt in a liquid fluidized bed

    SciTech Connect

    Sozen, Z.Z.; Grace, J.R.; Pinder, K.L.

    1983-12-01

    Glauber's salt is a promising phase change thermal energy storage compound because of its low price, suitable phase change temperature (32.4/sup 0/C), high latent heat (3.665 x 10/sup 5/kJ/m/sup 3/) and the availability of a suitable nucleating agent (Borax). However, segregation due to incongruent melting is a serious problem associated with Glauber's salt. Mechanical mixing in devices like rotating drums has been shown in the past to prevent segregation, but these devices often have a very low heat transfer area per unit storage area. Encapsulation of Glauber's salt in small particles increases the heat transfer area per unit storage volume enormously and helps alleviate the segregation problem. Mechanical mixing of the capsules and their contents is also much easier and more efficient than mixing the entire storage volume. In this study, a mixture consisting of 96% Glauber's salt and 4% Borax was encapsulated in 25 mm diameter hollow polypropylene spheres with 5% air space in each sphere to increse the mixing efficiency. Agitation and heat transfer were provided by fluidizing the spherical capsules with water in a pilot-plant-scale (340 mm diameter, 1.37 m free height) column. The instrumentation of the system was capable of supplying data for accurate and detailed energy balances. A closed water recirculation system allowed the superficial velocity to be varied without changing the heat input or output from the system. The capsules were tested for impermeability in water and in air for a period of one year and proved to be completely impermeable.

  4. UPCONING OF A SALT-WATER/FRESH-WATER INTERFACE BELOW A PUMPING WELL

    EPA Science Inventory

    Analytical solutions for the upconing of an abrupt salt-water/fresh-water interface beneath a pumping well and for the concentration profile across a moving interface are developed for two types of upconing problems. The first considers the position of the interface and the salin...

  5. Calcium and bromide contents of natural waters

    USGS Publications Warehouse

    Anderson, R.J.; Graf, D.L.; Jones, B.F.

    1966-01-01

    The linear relation observed in a log Ca++ versus log Br - plot for subsurface Cl- waters is attributed to ultrafiltration by shale of sea water and fresh water that have passed through sedimentary rocks since their formation. Reactions between these solutions and sedimentary minerals, particularly dolomitization, must have contributed additional Ca+ + to solution.

  6. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    PubMed Central

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  7. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary.

    PubMed

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  8. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    NASA Astrophysics Data System (ADS)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-06-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE.

  9. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  10. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-12-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

  11. Mineralogical and Anthropogenic Controls of Stream Water Chemistry in Salted Watersheds

    NASA Astrophysics Data System (ADS)

    Sun, H.; Alexander, J.; Gove, B.; Chakowski, N.; Husch, J.

    2013-12-01

    Analyses of major cation and anion concentrations in stream water and soil solutions from two salted (regular applications of winter road deicing salt) watersheds located in the northeastern United States indicate that both mineralogical and anthropogenic factors are important in controlling water chemistry. The relatively stable concentrations of calcium and magnesium, as well as their possible weathering paths identified by mass-balance models, indicate that the weathering of feldspars and the dissolution of carbonates are the primary sources for these two cations in the small, salted Centennial Lake Watershed (CLW, 1.95 km 2). However, the relatively stable and lower concentrations of sodium and chloride in soil solutions, and their fluctuating and higher concentrations in stream water from the CLW, indicate that road deicing salt is the primary source for these ions in stream water. Furthermore, positive correlations between calcium and sulfur concentrations and magnesium and sulfur concentrations in soil solutions, as well as positive correlations between sulfur and iron concentrations in soil compositions, indicate that both the dissolution of gypsum and the oxidation of pyrite into hematite are the primary sources of sulfate in the CLW. Analyses of water chemistry from the related and much larger Delaware River Watershed (DRW, 17560 km 2) show that sodium and chloride concentrations have increased steadily due to the regular application of winter deicing salt over the 68 years for which data are available. The more rapid increase of stream water chloride concentrations, relative to the increase in sodium, also results in the steady decline of Na+/Cl-molar ratios in the DRW over that time. In addition, the reduction of sulfate and increase of bicarbonate concentration since 1980 in DRW stream water may be attributed to the decline of sulfate levels in atmospheric deposition resulting from enhanced national and state environmental regulations and a shift in

  12. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Worthy, G. A.; Byers, F. M.

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  13. Time lapse imaging of water content with geoelectrical methods: on the interest of working with absolute water content data

    NASA Astrophysics Data System (ADS)

    Dumont, Gaël; Pilawski, Tamara; Robert, Tanguy; Hermans, Thomas; Garré, Sarah; Nguyen, Frederic

    2016-04-01

    The electrical resistivity tomography is a suitable method to estimate the water content of a waste material and detect changes in water content. Various ERT profiles, both static data and time-lapse, where acquired on a landfill during the Minerve project. In the literature, the relative change of resistivity (Δρ/ρ) is generally computed. For saline or heat tracer tests in the saturated zone, the Δρ/ρ can be easily translated into pore water conductivity or underground temperature changes (provided that the initial salinity or temperature condition is homogeneous over the ERT panel extension). For water content changes in the vadose zone resulting of an infiltration event or injection experiment, many authors also work with the Δρ/ρ or relative changes of water content Δθ/θ (linked to the change of resistivity through one single parameter: the Archie's law exponent "m"). This parameter is not influenced by the underground temperature and pore fluid conductivity (ρ¬w) condition but is influenced by the initial water content distribution. Therefore, you never know if the loss of Δθ/θ signal is representative of the limit of the infiltration front or more humid initial condition. Another approach for the understanding of the infiltration process is the assessment of the absolute change of water content (Δθ). This requires the direct computation of the water content of the waste from the resistivity data. For that purpose, we used petrophysical laws calibrated with laboratory experiments and our knowledge of the in situ temperature and pore fluid conductivity parameters. Then, we investigated water content changes in the waste material after a rainfall event (Δθ= Δθ/θ* θ). This new observation is really representatives of the quantity of water infiltrated in the waste material. However, the uncertainty in the pore fluid conductivity value may influence the computed water changes (Δθ=k*m√(ρw) ; where "m" is the Archie's law exponent

  14. The water, deuterium, gas and uranium content of tektites

    USGS Publications Warehouse

    Friedman, I.

    1958-01-01

    The water content, deuterium concentration of the water, total gas and uranium contents were determined on tektite samples and other glass samples from Texas, Australia, Philippine Islands, Java, French Indo-China, Czechoslovakia, Libyan Desert, Billiton Island, Thailand, French West Africa, Peru, and New Mexico. The water content ranges from 0.24 per cent for the Peru tektite, to 0.0002 per cent for a moldavite. The majority of the tektites have less than 0.05 per cent water, and average 0.005 per cent H2O by weight. No other gases were detected, the lower detection limit being about 1 p.p.m. by weight. The deuterium content of the water in tektites is in the same range as that in terrestrial waters, and varies from 0.010 mole per cent to 0.0166 mole per cent deuterium. The uranium content is about from 1 to 3 p.p.m. The possible origin of tektites is discussed. The experimental data presented favour their being originally terrestrial, but produced by some catastrophic event. An extra-terrestrial source is not ruled out. ?? 1958.

  15. Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions.

    PubMed

    Fares, Ali; Awal, Ripendra; Bayabil, Haimanote K

    2016-01-01

    Studies show that the performance of soil water content monitoring (SWCM) sensors is affected by soil physical and chemical properties. However, the effect of organic matter on SWCM sensor responses remains less understood. Therefore, the objectives of this study are to (i) assess the effect of organic matter on the accuracy and precision of SWCM sensors using a commercially available soil water content monitoring sensor; and (ii) account for the organic matter effect on the sensor's accuracy. Sand columns with seven rates of oven-dried sawdust (2%, 4%, 6%, 8%, 10%, 12% and 18% v/v, used as an organic matter amendment), thoroughly mixed with quartz sand, and a control without sawdust were prepared by packing quartz sand in two-liter glass containers. Sand was purposely chosen because of the absence of any organic matter or salinity, and also because sand has a relatively low cation exchange capacity that will not interfere with the treatment effect of the current work. Sensor readings (raw counts) were monitored at seven water content levels (0, 0.02, 0.04, 0.08, 0.12, 0.18, 0.24, and 0.30 cm³ cm(-3)) by uniformly adding the corresponding volumes of deionized water in addition to the oven-dry one. Sensor readings were significantly (p < 0.05) affected by the organic matter level and water content. Sensor readings were strongly correlated with the organic matter level (R² = 0.92). In addition, the default calibration equation underestimated the water content readings at the lower water content range (<0.05 cm³ cm(-3)), while it overestimated the water content at the higher water content range (>0.05 cm³ cm(-3)). A new polynomial calibration equation that uses raw count and organic matter content as covariates improved the accuracy of the sensor (RMSE = 0.01 cm³ cm(-3)). Overall, findings of this study highlight the need to account for the effect of soil organic matter content to improve the accuracy and precision of the tested sensor under different soils and

  16. Water swellable clay composition and method to maintain stability in salt contaminated water

    SciTech Connect

    Alexander, W.

    1987-01-06

    A method is described of drilling comprising contacting an earthen formation with a rotary drilling bit to form a salt contaminated drill hole and circulating a drilling fluid in the drill hole to cool and lubricate the drill bit during rotation and to lift drill cuttings of the drill hole. The drilling fluid becomes contaminated with salt contaminated water. The improvement described here comprises adding a water swellable montmorillonite clay composition to the drilling fluid. The composition comprises a water swellable montmorillonite clay, xanthan gum in an amount of 0.1% to 20% based on the weight of water swellable montmorillonite clay, and at least one other, water soluble gum selected from the group consisting of guar gum, dextran gum, locust bean gum, and mixtures thereof in an amount of 4.0% to 10% based on the weight of water swellable clay.

  17. Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide

    PubMed Central

    Keyster, Marshall; Klein, Ashwil; Ludidi, Ndiko

    2012-01-01

    Salinity stress causes ionic stress (mainly from high Na+ and Cl- levels) and osmotic stress (as a result of inhibition of water uptake by roots and amplified water loss from plant tissue), resulting in cell death and inhibition of growth and ultimately adversely reducing crop productivity. In this report, changes in root nitric oxide content, shoot and root biomass, root H2O2 content, root lipid peroxidation, root cell death, root caspase-like enzymatic activity, root antioxidant enzymatic activity and root ascorbate and glutathione contents/redox states were investigated in maize (Zea mays L. cv Silverking) after long-term (21 d) salt stress (150 mM NaCl) with or without exogenously applied nitric oxide generated from the nitric oxide donor 2,2′-(Hydroxynitrosohydrazano)bis-ethane. In addition to reduced shoot and root biomass, salt stress increased the nitric oxide and H2O2 contents in the maize roots and resulted in elevated lipid peroxidation, caspase-like activity and cell death in the roots. Altered antioxidant enzymatic activities, along with changes in ascorbate and glutathione contents/redox status were observed in the roots in response to salt stress. The detrimental effects of salt stress in the roots were reversed by exogenously applied nitric oxide. These results demonstrate that exogenously applied nitric oxide confers salt stress tolerance in maize by reducing salt stress-induced oxidative stress and caspase-like activity through a process that limits accumulation of reactive oxygen species via enhanced antioxidant enzymatic activity. PMID:22476534

  18. Dependence of seismoelectric amplitudes on water content - a field study

    NASA Astrophysics Data System (ADS)

    Strahser, M. H. P.; Matthey, P.-D.; Jouniaux, L.; Sailhac, P.

    2009-04-01

    In porous saturated media, seismic compressional waves can cause seismoelectric and seismoelectromagnetic signals through electrokinetic coupling. It has been observed that these measureable signals also occur in partially saturated media, but the theory is largely unknown for these circumstances. Seismoelectromagnetic tomography is expected to combine the sensitivity of electrical properties to water-content and permeability, to the high spatial resolution of seismic surveys. A better understanding of the physical processes and a reliable quantification of the conversion between seismic and electric energy are necessary and need to take into account the effect of water-content, especially for shallow subsurface investigations. In order to quantify seismoelectric signals with changing water content, we repeated seismoelectric and seismic measurements on the same profile in the Vosges Mountains during several months. The electrical resistivity was also monitored to take into account the water-content variations. We show that an exponential relation can be established between the seismoelectric amplitudes normalized with the seismic amplitudes and the resistivity which in turn is related to the saturation: Increasing resistivity (decreasing water content) leads to decreasing normalized seismoelectric amplitudes. These results imply that the electrokinetic coefficient should increase with water-saturation, as measured in laboratory, but not predicted by theory. This work was funded by CNRS and Université Louis Pasteur de Strasbourg.

  19. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  20. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    PubMed

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface. PMID:26651708

  1. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Borg, Matthew K.; Sefiane, Khellil; Reese, Jason M.

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  2. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content

    NASA Astrophysics Data System (ADS)

    Cherblanc, F.; Berthonneau, J.; Bromblet, P.; Huon, V.

    2016-06-01

    The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

  3. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which the vessel is floating but not for the weight of fuel, water, etc., required for consumption... 46 Shipping 2 2010-10-01 2010-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged...

  4. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... which the vessel is floating but not for the weight of fuel, water, etc., required for consumption... 46 Shipping 2 2011-10-01 2011-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged...

  5. States of Salt Water in Polyampholyte Hydrogel Networks at Ice Forming Temperatures

    NASA Astrophysics Data System (ADS)

    Chung, Hyun-Joong; Li, Xinda; Elliott, Janet A. W.

    The behavior of water in polymers, including ice formation, is of increasing interest. For example, one can achieve improved longevity of water-borne polymeric coatings and aqueous electrolytes that operate at low temperature by understanding the polymer-water interaction. Water molecules that are bound to hydrophilic polymer backbones are known to be non-freezable at extremely low temperatures such as -100°C, whereas non-bound water is still freezable at higher temperatures. Polyampholyte, which contains both cationic and anionic groups in its backbone, is an interesting class of anti-fouling coating material with a hygroscopic nature and self-healing ability. In real operational condition, for example in maritime petroleum production in the arctic climate, multiple species of salt ions can complicate the ice formation, but their effect has not been exhaustively studied. Using a random copolymer of sodium p-styrenesulphonate (NaSS) and 3-(methacryloylamino)propyl-trimethylammonium chloride as a model system to study the phase behavior of NaCl salt in the hydrogel, this work presents (i) intriguing mechanical and electrical properties of polyelectrolytes at low temperature (<-20°C), (ii) differential scanning calorimetry studies on the effects of salt concentration, polymer chain density, degree of polymerization, and (iii) effect of dialysis on microstructure and phase water behavior in the polyampholyte hydrogel.

  6. Ra-Po-Pb isotope systematics in waters of Sambhar Salt Lake, Rajasthan (India): geochemical characterization and particulate reactivity.

    PubMed

    Yadav, D N; Sarin, M M

    2009-01-01

    The Sambhar Salt Lake hydrological system, including river waters, groundwaters, evaporating pans and sub-surface brines, has been analyzed for the salt content (TDS) and naturally occurring radionuclides (210Po, 210Pb and 226,228Ra). The abundance of these radionuclides and their activity ratios show a wide variation in different hydrological regimes, which helps to geochemically characterize the lake system. A significantly lower Ra to total dissolved solids (TDS) ratio in the brines (by two to three orders of magnitude), when compared to the groundwaters and river waters, suggests removal of dissolved Ra by co-precipitation with Ca-Mg minerals at an early stage of the brine evolution. The concentration of Ra in evaporating lake/pan waters saturates at a value of about 10 mBq L (-1) [corrected] over the salinity range of 100-370gL(-1); attributable to its equilibration with the clay minerals. The two distinct regimes, saline lake system (lake water, evaporating pans and sub-surface brines) and groundwaters have been identified based on their differences in the distribution of 226,228Ra isotopes. This observation points to the conclusion that the groundwaters and the lake brines are not intimately coupled in terms of their origin and evolution. The abundances of 210Po and 210Pb along with their activity ratios (210Po/210Pb) are markedly different among the surface lake waters/evaporating pans, sub-surface lake brines and groundwaters. These differences are explained in terms of different geochemical behaviour of these nuclides in presence of algae and organic matter present in these water regimes. PMID:19019503

  7. Concentration and precipitation of NaCl and KCl from salt cake leach solutions by electrodialysis

    SciTech Connect

    Sreenivasarao, K; Patsiogiannis, F.; Hryn, J.N.

    1997-02-09

    Electrodialysis was investigated for cost-effective recovery of salt from salt cake leach solutions. (Salt cake is a waste stream generated by the aluminum industry during treatment of aluminum drosses and scrap.) We used a pilot-scale electrodialysis stack of 5 membrane pairs, each with an effective area of 0.02 m{sup 2}. The diluate stream contained synthetic NaCl, KCl,mixtures of NaCl and KCl, and actual salt cake leach solutions (mainly NaCl and KCl, with small amounts of MgCl{sub 2}). We concentrated and precipitated NaCl and KCl salts from the concentrate steam when the initial diluate stream concentration was 21.5 to 28.8 wt% NaCl and KCl. We found that water transferring through the membranes was a significant factor in overall efficiency of salt recovery by electrodialysis.

  8. Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening.

    PubMed

    Yanachkina, Palina; McCarthy, Catherine; Guinee, Tim; Wilkinson, Martin

    2016-05-01

    Production of healthier reduced-fat and reduced-salt cheeses requires careful selection of starter bacteria, as any substantial alterations to cheese composition may prompt changes in the overall performance of starters during cheese ripening. Therefore, it is important to assess the effect of compositional alterations on the individual strain response during cheese ripening for each optimised cheese matrix. In the current study, the effect of varying fat and salt levels in Cheddar cheese on the performance of a commercial Lactococcus lactis culture preparation, containing one L. lactis subsp. lactis strain and one L. lactis subsp. cremoris strain was investigated. Compositional variations in fat or salt levels did not affect overall starter viability, yet reduction of fat by 50% significantly delayed non-starter lactic acid bacteria (NSLAB) populations at the initial ripening period. In comparison to starter viability, starter autolysis, as measured by release of intracellular lactate dehydrogenase (LDH) or post-proline dipeptidyl aminopeptidase (Pep X) into cheese juices, decreased significantly with lower salt addition levels in full-fat Cheddar. Conversely, reducing fat content of cheese resulted in a significantly higher release of intracellular Pep X, and to a lesser extent intracellular LDH, into juices over ripening. Flow cytometry (FCM) indicated that the permeabilised and dead cell sub-populations were generally lower in juices from cheeses with reduced salt content, however no significant differences were observed between different salt and fat treatments. Interestingly, fat reductions by 30 and 50% in cheeses with reduced or half added salt contents appeared to balance out the effect of salt, and enhanced cell permeabilisation, cell death, and also cell autolysis in these variants. Overall, this study has highlighted that alterations in both salt and fat levels in cheese influence certain aspects of starter performance during ripening, including

  9. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  10. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  11. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    SciTech Connect

    Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  12. Body water content of extremely preterm infants at birth

    PubMed Central

    Hartnoll, G.; Betremieux, P.; Modi, N.

    2000-01-01

    BACKGROUND—Preterm birth is often associated with impaired growth. Small for gestational age status confers additional risk.
AIM—To determine the body water content of appropriately grown (AGA) and small for gestational age (SGA) preterm infants in order to provide a baseline for longitudinal studies of growth after preterm birth.
METHODS—All infants born at the Hammersmith and Queen Charlotte's Hospitals between 25 and 30 weeks gestational age were eligible for entry into the study. Informed parental consent was obtained as soon after delivery as possible, after which the extracellular fluid content was determined by bromide dilution and total body water by H218O dilution.
RESULTS—Forty two preterm infants were studied. SGA infants had a significantly higher body water content than AGA infants (906 (833-954) and 844 (637-958) ml/kg respectively; median (range); p = 0.019). There were no differences in extracellular and intracellular fluid volumes, nor in the ratio of extracellular to intracellular fluid. Estimates of relative adiposity suggest a body fat content of about 7% in AGA infants, assuming negligible fat content in SGA infants and lean body tissue hydration to be equivalent in the two groups.
CONCLUSIONS—Novel values for the body water composition of the SGA preterm infant at 25-30 weeks gestation are presented. The data do not support the view that SGA infants have extracellular dehydration, nor is their regulation of body water impaired.

 PMID:10873174

  13. Infrared spectroscopy of aqueous ionic salt mixtures at low concentrations: ion pairing in water.

    PubMed

    Max, Jean-Joseph; Chapados, Camille

    2007-09-21

    The analysis by infrared spectroscopy of aqueous mixtures of NaI and CsCl was made in order to obtain information at the molecular level of the mixing of these two salts taken as model systems of strong electrolytes in water. In previous papers [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001) and J.-J. Max et al., ibid. 126, 184507 (2007)] it was reported that a pure salt in water forms pairs of monoions to which are attached a fixed number of water molecules, giving solvated water species. Due to their interaction with the ion pairs, the solvated water molecules are strongly perturbed, modifying the IR water spectrum being monitored. After taking the IR spectrum of pure water, a small volume of NaI 2M was added and the IR spectrum taken. Then a small volume of CsCl 2M was added and a new IR spectrum taken. This procedure was repeated to obtain a series of 38 spectra in the 0.05M-0.83M concentration range. Factor analysis made on the series revealed the presence of three types of water: pure water and two salt solvated waters. The number of solvated water molecules on the two salts taken together is ten. Since NaI and CsCl have, respectively, 3.5 and 3.0 solvated water molecules, it was concluded that a reaction occurred in the solutions forming NaCl and CsI that have, respectively, five water molecules each for a total of ten. The analysis of the spectra of the orthogonal factors supports this attribution. These results provide additional proof of ion pairing in water. Furthermore, comparing the band displacements and intensity variations observed on the solvated water species to that of pure water indicates that the dielectric milieu surrounding the ion pairs is not constant. These results do not support the classical view of Debye-Huckel that considers that the ions are independent and the dielectric milieu constant. The present results give some in situ information on the reaction that goes on in "simple" electrolyte systems whose reactivity and

  14. Postmortem aging can significantly enhance water-holding capacity of broiler pectoralis major muscle measured by the salt-induced swelling/centrifuge method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-holding capacity (WHC) is one of the most important functional properties of fresh meat and can be significantly affected by postmortem muscle changes. Two experiments were carried out to evaluate the effects of postmortem aging on WHC of broiler pectoralis (p.) major muscle indicated with % s...

  15. Salt marsh ecohydrological zonation due to heterogeneous vegetation - groundwater - surface water interactions

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Gorelick, S.; McLaren, R.; Sudicky, E. A.

    2011-12-01

    Among the most fundamental characteristics of intertidal salt marshes are distinctive vegetation zonation and tidally-forced hydrology. Vegetation zones often correlate with tidal hydrology and plant water use is significant in the wetland balance; however, specific links between vegetation zonation, plant water use, and spatiotemporally variable intertidal hydrology have eluded thorough characterization. This investigation developed the first comprehensive salt marsh ecohydrology models integrating the transient, 3D, coupled surface water and groundwater flow and plant water use of an intensively studied salt marsh field site. The physics-based modeling demonstrated that superimposing heterogeneous sediment hydraulic properties, evapotranspiration rates, and rooting depths, together with tidal dynamics, induced surprising spatial variations in root zone hydraulics: variations pronounced enough to constitute wholly different root zone habitats with different pressure heads, saturations, and vertical groundwater velocities. These diverse habitats were apparent only when both hydraulic and vegetative influences were accounted for, leading to their definition as discrete "ecohydrological zones." We distinguished five different ecohydrological zones (EHZs) by distinct combinations of sediment hydraulic properties and evapotranspiration rates and two EHZs by topography. The hydraulic variations among EHZs were masked shortly after a flooding tide, but again became prominent during prolonged marsh exposure. Boundaries between EHZs exhibited large gradients in head, saturation, and vertical flow magnitude and direction due to a combination of vegetation and sediment effects. We suggest that ecohydrological zones, combining spatially-variable topographic, sediment, and vegetation influences, are the fundamental spatial habitat units comprising the salt marsh ecosystem. This perspective contrasts with historical emphasis on vegetation zones as the foremost unit of habitat

  16. Strengthening aerobic granule by salt precipitation.

    PubMed

    Chen, Yu-You; Pan, Xiangliang; Li, Jun; Lee, Duu-Jong

    2016-10-01

    Structural stability of aerobic granules is generally poor during long-term operation. This study precipitated seven salts inside aerobic granules using supersaturated solutions of (NH4)3PO4, CaCO3, CaSO4, MgCO3, Mg3(PO4)2, Ca3(PO4)2 or SiO2 to enhance their structural stability. All precipitated granules have higher interior strength at ultrasonic field and reveal minimal loss in organic matter degradation capability at 160-d sequential batch reactor tests. The strength enhancement followed: Mg3(PO4)2=CaSO4>SiO2>(NH4)3PO4>MgCO3>CaCO3=Ca3(PO4)2>original. Also, the intra-granular solution environment can be buffered by the precipitate MgCO3 to make the aerobic granules capable of degradation of organic matters at pH 3. Salt precipitation is confirmed a simple and cost-effective modification method to extend the applicability of aerobic granules for wastewater treatments. PMID:27377228

  17. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.

    PubMed

    Sackin, H; Boulpaep, E L

    1975-12-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761

  18. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    PubMed Central

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  19. Effects of subfornical organ extracts on salt-water balance in the rat

    NASA Technical Reports Server (NTRS)

    Summy-Long, J. Y.; Crawford, I. L.; Severs, W. B.

    1976-01-01

    The subfornical organ (SFO) is a circumventricular structure located at the junction of the lamina terminalis and the tela choroidea of the third cerebral ventricle. SFO is histologically regarded as a neurosecretory structure, although the physiological effects or biochemical nature of such secretions are not yet ascertained. Results are presented for an experimental study designed to determine whether SFO extracts alter parameters associated with salt-water balance in the rat. The data obtained support the conclusion that SFO contains some water-soluble substance(s), easily released by incubation, dialyzable and heat stable, which influences the salt-water balance after injection into ventricular cerebrospinal fluid. Whether other brain tissues or plasma contains the same or similar material is not yet convincingly established. The observation that one or more active constituents are easily released from SFO upon incubation in potassium-enriched medium may be of value.

  20. [Application study of the thermal infrared emissivity spectra in the estimation of salt content of saline soil].

    PubMed

    Xia, Jun; Tashpolat, Tiyip; Mamat, Sawut; Zhang, Fei; Han, Gui-Hong

    2012-11-01

    Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible. PMID:23387157

  1. The mechanism of sulforaphene degradation to different water contents.

    PubMed

    Tian, Guifang; Li, Yuan; Cheng, Li; Yuan, Qipeng; Tang, Pingwah; Kuang, Pengqun; Hu, Jing

    2016-03-01

    Sulforaphene extracted from radish seeds was strongly associated with cancer prevention. However, sulforaphene was unstable in aqueous medium and at high temperature. This instability impairs many useful applications of sulforaphene. In this paper, the stability of sulforaphene (purity above 95%) during storage at -20°C, 4°C and 26°C was studied. The degradation product was purified by preparative HPLC and identified by ESI/MS, NMR ((1)H and (13)C NMR) and FTIR spectroscopy. The degradation pathway of sulforaphene was presented. Furthermore, we found that the degradation rate of sulforaphene was closely related to the water content of sulforaphene sample. The higher the water content was, the faster the sulforaphene sample degraded. A mathematical model was developed to predict the degradation constant at various water contents. It provided a guideline for industry to improve the stability of sulforaphene during preparation, application and storage. PMID:26471648

  2. The deuterium content of water in some volcanic glasses

    USGS Publications Warehouse

    Friedman, I.; Smith, R.L.

    1958-01-01

    The deuterium-hydrogen composition (relative to Lake Michigan water = 0.0) of water extractsd from coexisting perlite and obsidian from eleven different localities was determined. The water content of the obsidians is generally from 0.09 to 0.29 per cent by weight, though two samples from near Olancha, California, contain about 0.92 per cent. The relative deuterium concentration is from -4.6 to -12.3 per cent. The coexisting perlite contains from 2.0 to 3.8 per cent of water with a relative deuterium concentration of -3.1 to -16.6 per cent. The deuterium concentration in the perlites is not related to that in the enclosed obsidian. The deuterium concentration in the perlite water is related to the deuterium concentration of the modern meteoric water and the perlite water contains approximately 4 per cent less deuterium than does the groundwater of the area in which the perlites occur. The above relations hold true for perlites from northern New Mexico, east slope of the Sierra Nevada. California Coast Range, Yellowstone Park, Wyoming, and New Zealand. As the water in the obsidian is unrelated to meteoric water, but the enclosing perlite water is related, we believe that this is evidence for the secondary hydration of obsidian to form high water content perlitic glass. ?? 1958.

  3. [Effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics, photosynthesis and grain yield of winter wheat].

    PubMed

    Man, Jian-guo; Yu, Zhen-wen; Shi, Yu; Zhang, Yong-li

    2015-08-01

    Field experiments were conducted during 2012-2014 winter wheat growing seasons. Six irrigation treatments were designed: rainfed, W0; a local irrigation practice that irrigated at jointing and anthesis with 60 mm each time, W1; four irrigation treatments were designed with target relative soil moisture of 65% field capacity (FC) at jointing and 70% FC at anthesis in 0-20 (W2) 0-40 (W3), 0-60 (W4) , and 0-140 cm (W5) soil layers, respectively, to study the effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics and photosynthesis and grain yield of winter wheat. The irrigation amounts at jointing in W1 and W4 were the highest, followed by W3 treatment, W2 and W5 were the lowest. The irrigation amounts at anthesis and total irrigation amounts were ranked as W5 > Wl, W4 > W3 > W2, the total water consumption in W3 was higher than that in W2, but had no difference with that in W1, W4 and W5 treatments, W3 had the higher soil water consumption than W1, W4 and W5 treatments, and the soil water consumption in 40-140 cm soil layers from jointing to anthesis and in 60-140 cm soil layers from anthesis to maturity in W3 were significantly higher than the other treatments. The photosynthetic rate, transpiration rate and water use efficiency of flag leaf at middle stage of grain filling from the W3 treatment were the highest, followed by the W1 and W4 treatments, and W0 treatment was the lowest. In the two growing seasons, the grain yield and water use efficiency in the W3 were 9077-9260 kg · hm(-2) and 20.7-20.9 kg · hm(-2) · mm(-1), respectively, which were higher than those from the other treatments, and the irrigation water productivity in the W3 was the highest. As far as high-yield and high-water use efficiency were concerned in this experiment, the most appropriate soil layer for measuring moisture content was 0-40 cm. PMID:26685598

  4. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions. PMID:21882051

  5. Comparison of Vegetation Water Content Estimates from Windsat and Modis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retrieval of soil moisture content from microwave sensors also returns an estimate of vegetation water content. Remotely sensed indices from optical sensors can be used to estimate canopy water content. For corn and soybean in central Iowa, there are allometric relationships between canopy water c...

  6. Critical water contents of hydrophobic soils in New Zealand

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Holzinger, Ursula; Singh, Ranvir; Klik, Andreas

    2013-04-01

    Soil water repellency is an important problem for pasture farming in New Zealand which causes low infiltration rates and increased surface runoff. However, the real extent of this issue is not yet evaluated. Water repellency is thought to appear on dry soils, when the water content falls below a critical limit. The main objectives of this study was 1) to investigate the effects of different amounts of infiltration water on hydrophobicity of three selected soils under grassland in the North island of New Zealand, and 2) to determine the critical water content for ten sites with five different soil types. In April 2011 undisturbed and disturbed soil samples from a brown, gley and organic soil have been taken from sites around Mount Taranaki. Soil water repellency was determined using the Water Droplet Penetration Time Test (WDPT) and the Molarity of Ethanol Droplet Test (MED). During the lab experiment four amounts of water were applied to the 270 cm³ samples: 400, 800, 1600 and 2400 mL . One test was performed with cold and one with hot (80 °C) water. Each test was replicated four times. In the leachate the amount of dissolved organic carbon was analyzed. The experiments showed that only for the brown soil water repellency decreased significantly with increasing amount of infiltration water whereas for gley soils no correlation was found. Gley soil had initially a lower degree of hydrophobicity compared to the other soils. Possibly due to the higher bulk density of these soils, the carbon compounds directly surrounding the soil particles wre rearranged rather than leached. No clear pattern could be obtained for organic soils. This may be explained by the high initial carbon content of more than 20%. It may take a much greater amount of infiltration to affect hydrophobicity. The critical contact angle of investigated soils above which water repellency is moderately persistent, was 93.8°. In May 2012 ten more sites were sampled and five soil types were investigated

  7. Sodium Content of Community Water Supplies in California

    PubMed Central

    Steinkamp, Ruth C.; Young, Clarence L.; Nyhus, Dolores; Greenberg, Arnold E.

    1968-01-01

    The amount of sodium ion in water used for ingestion may be critical in effective use of a low sodium dietary regimen. Waters containing not over 20 mg of sodium per liter are provided for in the sodium restricted diets set forth by the American Heart Association. For diets containing more than 500 mg of sodium a day, waters of greater sodium content may be used if proper dietary adjustments are made. While assessment of the long-term average sodium content of a community water supply is difficult, the determined values for sodium lend to classification within range categories. The larger community water supplies in California are presented within several range categories of sodium content. The more commonly used water softeners add sodium to water. The sodium-restricted patient should be cautioned against their use. Similar consideration should probably be given to water supplies of retirement communities where the potential for disorders requiring sodium restriction is greater than in the general population. PMID:5673988

  8. Remote sensing of vegetation water content using shortwave infrared reflectances

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond, Jr.; Yilmaz, M. Tugrul

    2007-09-01

    Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. One of the objectives of the Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) were to develop and test algorithms for a vegetation water content data product using shortwave infrared reflectances. SMEX04 studied native vegetation in Arizona, USA, and Sonora, Mexico, while SMEX05 studied corn and soybean in Iowa, USA. The normalized difference infrared index (NDII) is defined as (R 850 - R 1650)/(R 800 + R 1650), where R 850 is the reflectance in the near infrared and R1650 is the reflectance in the shortwave infrared. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) model indicated that NDII is sensitive to surface moisture content. From Landsat 5 Thematic Mapper and other imagery, NDII is linear with respect to foliar water content with R2 = 0.81. The regression standard error of the y estimate is 0.094 mm, which is equivalent to about a leaf area index of 0.5 m2 m -2. Based on modeling the dynamic water flow through plants, the requirement for detection of water stress is about 0.01 mm, so detection of water stress may not be possible. However, this standard error is accurate for input into the tau-omega model for soil moisture. Therefore, NDII may be a robust backup algorithm for MODIS as a standard data product.

  9. Geomicrobiology and hopanoid content of sulfidic subsurface vent biofilms, Little Salt Spring, Florida

    NASA Astrophysics Data System (ADS)

    Yang, E.; Schaperdoth, I.; Albrecht, H.; Freeman, K. H.; Macalady, J. L.

    2008-12-01

    Sulfide-rich, oxygen-poor environments are widespread in the subsurface and were prevalent at the earth's surface during critical intervals in the geologic past. Modern microbial communities in sulfidic niches have the potential to shed light on the biogeochemistry and biosignatures of anoxia and euxinia in earth history. Caves and sinkholes provide rare windows into microbially-dominated, sulfidic subsurface environments that are otherwise difficult and expensive to access. Little Salt Spring (Sarasota County, Florida) is a cover-collapse sinkhole lake with oxic surface water and anoxic, sulfidic bottom water (Alvarez Zarikian 2005). The site is famous for excellent preservation of human and animal archaeological remains (Clausen 1979), and its microbiology has never been investigated. Abundant white biofilms develop seasonally at a warm vent that feeds into the anoxic bottom water at 73 m depth below the water surface. The biofilms are of interest both as potential sources of biomarker compounds and because of their likely role in sulfuric acid production and limestone dissolution (speleogenesis). Biofilm samples were collected by expert science divers and investigated using microscopy, nucleic acid, and lipid analytical methods. Microscopy of the live biofilm revealed clusters of microbial filaments with holdfasts and dendritic, sulfur-rich colonial structures similar to those described in the 1960s for Thiobacterium, a sulfur-oxidizing genus with undetermined phylogeny. A 16S rDNA library constructed from the biofilm was split into three main phylotypes, with multiple clones representing (1) a Betaproteobacterial clade with no cultivated representatives, (2) filamentous Epsilonproteobacteria, and (3) a major bacterial lineage without named isolates (OP11/OD2). A full cycle rRNA approach is currently underway to link 16S rDNA phylotypes with specific populations in the biofilm. We confirmed using fluorescence in situ hybridization (FISH) that abundant

  10. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    SciTech Connect

    Not Available

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ``Vitro`` site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ``Clive`` disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer.

  11. Proteins induced by salt stress in tomato germinating seeds

    SciTech Connect

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A. )

    1989-04-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 35}S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present.

  12. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  13. SBUV Trends in PMC Ice Water Content

    NASA Astrophysics Data System (ADS)

    Deland, M. T.; Thomas, G. E.; Shettle, E. P.; Olivero, J. J.

    2010-12-01

    Overlapping data sets from SBUV and SBUV/2 instruments can be combined to create a long-term record of polar mesospheric cloud (PMC, also known as noctilucent clouds) behavior. We have previously used these data to examine multi-decade trends in PMC occurrence frequency and albedo. In this presentation, we extend our analysis to consider zonally and seasonally averaged PMC ice water content (IWC). We use a set of parameterized relationships between mid-UV PMC albedo and scattering angle derived from WACCM-CARMA simulations to determine IWC from SBUV PMC observations at 252 nm. This procedure incorporates an adjustment for the fact that the SBUV/2 data are sensitive to only a portion of the total IWC. We will show results using SBUV/2 data from 1979 to the most recent Northern Hemisphere PMC season in 2010, and compare our results with previous work (e.g. Stevens et al. [2007], Baumgarten et al. [2008]).

  14. [Estimating canopy water content in wheat based on new vegetation water index].

    PubMed

    Cheng, Xiao-juan; Yang, Gui-jun; Xu, Xin-gang; Chen, Tian-en; Li, Zhen-hai; Feng, Hai-kuan; Wang, Dong

    2014-12-01

    Moisture content is an important indicator for crop water stress condition, timely and effective monitoring crop water content is of great significance for evaluate crop water deficit balance and guide agriculture irrigation. In order to improve the saturated problems of different forms of typical NDWI (Normalized Different Water Index), we tried to introduce EVI (Enhanced Vegetation Index) to build new vegetation water indices (NDWI#) to estimate crop water content. Firstly, PROSAIL model was used to study the saturation sensitivity of NDWI, and NDWI# to canopy water content and LAI (Leaf Area Index). Then, the estimated model and verified model were estimated using the spectral data and moisture data in the field. The result showed that the new indices have significant relationships with canopy water content. In particular, by implementing modified standardized for NDWI1450, NDWI1940, NDWI2500. The result indicated that newly developed indices with visible-infrared and shortwave infrared spectral feature may have greater advantage for estimation winter canopy water content. PMID:25881445

  15. Progress report on studies of salt-water encroachment on Long Island, New York, 1953

    USGS Publications Warehouse

    Lusczynski, N.J.; Upson, J.E.

    1954-01-01

    Nearly all the water used on Long Island, N. Y., is derived by wells from the thick and extensive water-bearing formations that underlie and compose the entire island. The unconsolidated deposits, consisting of sand, gravel, and clay, range in thickness from a few feet in northern Queens County to more than 2,000 feet in southern Suffolk County. Four main and relatively distinct aquifers, all interconnected hydraulically to a greater or lesser degree, have been recognized and delineated at least in a general way. They are, from younger to older, the upper Pleistocene deposits, in which the ground water is mainly unconfined, and three formations in which the water is generally confined - the Jameco gravel, of Pleistocene age, and the Magothy (?) formation and the Lloyd sand member of the Rartian formation, both of Lake Cretaceous age. Except for some artificial recharge, these aquifers are replenished entirely by infiltration of precipitation. Under natural conditions, the fresh water moves into and through the formations, discharging into the sea. With the growth of population on Long Island and the continuously increasing use of water over the years, not only has the infiltration of precipitation been seriously impeded at places, but the withdrawals from the ground-water reservoir have increased markedly. These factors have upset the natural balance between the fresh surface and ground water of the island and the surrounding sea water, and with increased use of water will do so more and more, thus leading to salt-water encroachment. In a sense, the whole problem of utilization of ground water on Long Island is one of determining how much ground water can be withdrawn without serious salt-water encroachment.

  16. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  17. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress.

    PubMed

    Bejaoui, Fatma; Salas, Joaquín J; Nouairi, Issam; Smaoui, Abderrazak; Abdelly, Chedly; Martínez-Force, Enrique; Youssef, Nabil Ben

    2016-07-01

    The possible involvement of chloroplast lipids in the mechanisms of NaCl tolerance was studied in leaves of two varieties of Fabaceae: Sulla carnosa and Sulla coronaria, which were subjected to 200mM NaCl over 20days. Changes in membrane lipid peroxidation, chloroplast lipids content, fatty acids (FA) composition and the ultrastructure of chloroplasts under salt stress were investigated. Chloroplast lipids were separated and quantified by high performance liquid chromatography coupled to evaporative light scattering detection (HPLC/ELSD). The results showed that salinity induced a significant decrease in digalactosyldiacylglycerol (DGDG), phosphatidylglycerol (PG) and sulfoquinovosylglycerol (SQDG) content in both S. carnosa and S. coronaria leaves, whereas monogalactosyldiacylglycerol (MGDG) content did not change significantly in S. carnosa leaves. The MGDG/DGDG ratio remained stable in S. coronaria leaves but increased in those of S. carnosa. In addition, the unsaturated-to-saturated fatty acids ratio (UFAs:SFAs) did not change under salt stress in S. coronaria leaves, while it decreased significantly in S. carnosa leaves. Moreover, salinity did not induce significant changes in MGDG and DGDG unsaturation level in S. carnosa leaves, in contrast to S. coronaria, in which salinity seems to enhance the unsaturation level in MGDG, DGDG and PG. Furthermore, the level of membrane lipid peroxidation, as expressed by malondialdehyde (MDA) levels, increased at 200mM in S. carnosa leaves, while it did not change significantly in those of S. coronaria. With respect to the ultrastructure of chloroplasts at 200mM NaCl, investigated by transmission electron microscopy (TEM), salt-stress caused the swelling of thylakoids in S. carnosa mesophyll. These ultrastructural changes were observed especially in the spongy tissue in S. coronaria. Taken together, these findings suggest that the stability of MGDG/DGDG ratio, the unchanged unsaturation level, and increasing unsaturation

  18. Salt diffusion in interstitial waters and halite removal from sediments: Examples from the Red Sea and Illinois basins

    SciTech Connect

    Ranganathan, V. )

    1991-06-01

    Large thicknesses of bedded halite can be removed in subsiding sedimentary basins by verticla diffusion of dissolved salt in interstitial waters over geologic time scales. Calculations show that at least 10 m to 40 m of halite may have dissolved and diffused through the Red Sea sediments overlying the salt beds, since cessation of salt deposition approximatley 5.3 million years ago. The total amount of salt diffused out of the sediment column over geologic time is five to twenty times the amount of salt that currently exists in the porewater column. If upward flow in the past occurred at even small rates, 10{sup {minus}3} m/yr, the amount of halite removed could have been ten times as great, 500 m. Unlike the Red Sea Basin, no halite beds are known in the Illinois Basin in spite of the fact that interstitial waters with as much as 200{per thousand} TDS (approximately 220 g/L) occur. Calculations show that if a halite bed had been deposited at the base of the Illinois Basin in Cambrian time, it would have been completely removed from the stratigraphic record had it initially been less than 60 m to 130 m in thickness. A significant thickness of halite deposited in sedimentary basins may thus be removed during active burial of salt beds, and before exhumation and exposure of the salt beds to shallow meteoric waters.

  19. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles. PMID:27372129

  20. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.

    PubMed

    Chen, Lin; Liu, Yunpeng; Wu, Gengwei; Veronican Njeri, Kimani; Shen, Qirong; Zhang, Nan; Zhang, Ruifu

    2016-09-01

    Salt stress reduces plant growth and is now becoming one of the most important factors restricting agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear. In this study, hydroponic experiments indicated that the PGPR strain Bacillus amyloliquefaciens SQR9 could help maize plants tolerate salt stress. After exposure to salt stress for 20 days, SQR9 significantly promoted the growth of maize seedlings and enhanced the chlorophyll content compared with the control. Additional analysis showed that the involved mechanisms could be the enhanced total soluble sugar content for decreasing cell destruction, improved peroxidase/catalase activity and glutathione content for scavenging reactive oxygen species, and reduced Na(+) levels in the plant to decrease Na(+) toxicity. These physiological appearances were further confirmed by the upregulation of RBCS, RBCL, H(+) -PPase, HKT1, NHX1, NHX2 and NHX3, as well as downregulation of NCED expression, as determined by quantitative reverse transcription-polymerase chain reaction. However, SQR9 counteracted the increase of abscisic acid in response to salt stress. In summary, these results show that SQR9 confers plant salt tolerance by protecting the plant cells and managing Na(+) homeostasis. Hence, it can be used in salt stress prone areas, thereby promoting agricultural production. PMID:26932244

  1. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization. PMID:23323426

  2. Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia

    NASA Technical Reports Server (NTRS)

    Korolkov, V. I.; Kovalenko, Y. A.; Krotov, V. P.; Ilyushko, N. A.; Kondratyeva, V. A.; Kondratyev, Y. I.

    1980-01-01

    Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism.

  3. Isotherms and Kinetics of Water Vapor Sorption/Desorption for Surface Films of Polyion-Surfactant Ion Complex Salts.

    PubMed

    Gustavsson, Charlotte; Piculell, Lennart

    2016-07-14

    Thin films of "complex salts" (CS = ionic surfactants with polymeric counterions) have recently been shown to respond to humidity changes in ambient air by changing their liquid crystalline structure. We here report isotherms and kinetics of water sorption/desorption for ∼10-100 μm films of alkyltrimethylammonium polyacrylate CS, measured in a dynamic gravimetric vapor sorption instrument over a 0-95% relative humidity (RH) range. The sorption per ion pair was similar to that observed for common ionomers. A kinetic model for the water exchange is presented, assuming that the "external" transport between the vapor reservoir and the film surface is rate-determining. The model predicts that the water content, after a small stepwise change of the reservoir RH, should vary exponentially with time, with a time constant proportional to both the slope of the sorption isotherm and the film thickness. These predictions were confirmed for our films over large RH ranges, and the external mass transfer coefficient in our setup was calculated from the experimental data. Expressions derived for the Biot number (ratio of characteristic times for internal and external water transport) for the considered limiting case strongly indicate that external water transport should quite generally affect, or even dominate, the measured kinetics for similarly thin hydrated films. PMID:27327628

  4. EARTHQUAKE HAZARDS TO DOMESTIC WATER DISTRIBUTION SYSTEMS IN SALT LAKE COUNTY, UTAH.

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  5. Production of Carbopol 974P and Carbopol 971P pellets by extrusion-spheronization: optimization of the processing parameters and water content.

    PubMed

    Mezreb, N; Charrueau, Christine; Boy, P; Allain, P; Chaumeil, J C

    2004-05-01

    Pellets obtained by extrusion-spheronization represent multiparticulate dosage forms whose interest in intestinal drug delivery can be potentiated and targeted through bioadhesive properties. However, adhesion itself makes the process difficult or even impossible. The problem of tackiness encountered with bioadhesive wet masses was previously eliminated by the use of electrolytes such as CaCl2. This approach is known to reduce the viscosity of polyacrylic acids by disturbing the interactions between carboxylate groups on adjacent polymer molecules, thereby decreasing their bioadhesive properties. The present study aimed at producing pellets containing carbomers without addition of electrolytes in order to maintain their bioadhesive potentiality at its maximum. Carbopol 974P (10%, 15% and 20%) and Carbopol 971P (10%) were used in combination with Avicel PH101. The extrusion speed (30, 45, 60, 90, and 150 rpm), spheronizer speed (350, 700, 960, 1000, and 1300 rpm), spheronization time (5, 10, 15, and 20 minutes) and amount of water (45%, 50%, 54%, and 58%) were optimized in order to obtain the highest yield of spherical pellets ranging 710-1000 microm in diameter. For pellets containing 10%, 15% Carbopol 974P or 10% Carbopol 971P and 45% water content, 30 rpm extrusion speed, 960 rpm, and 10 minutes spheronization speed and time led to the highest yields and sphericities, respectively, 72% and 0.91, 67% and 0.78, and 76% and 0.80. Production of pellets with 20% Carbopol 974P could be achieved through the increase of the water content up to 58% and implementation of 30 rpm extrusion speed, 1300 rpm, and 10 minutes spheronization speed and time. The yield and sphericity were 42% and 0.78 respectively. PMID:15244083

  6. Surface-water and climatological data, Salt Lake County, Utah, water year 1980

    USGS Publications Warehouse

    Pyper, G.E.; Christensen, R.C.; Stephens, D.W.; McCormack, H.F.; Conroy, L.S.

    1981-01-01

    This report presents streamflow, water-quality, precipitation, and storm-runoff data collected in Salt Lake County, Utah, during the 1980 water year and certain water-quality data for the 1979 water year which were included for comparative purposes. Surface-water data consist of daily mean values of flow at 33 sites on natural streams, canals, and conduits. Water-quality data consist of chemical, biologic, and sediment analyses at 30 sites. Precipitation data consist of daily and monthly total at nine sites. Storm-runoff data consist of 5 and 15-minute interval discharge data for storms of July 1-2, August 19, and August 25, 1980, for most surface-water sites. (USGS)

  7. Corrosion of Mullite by Molten Salts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

    1996-01-01

    The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

  8. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  9. Water dynamics in aqueous solutions of tetra-n-alkylammonium salts: hydrophobic and Coulomb interactions disentangled.

    PubMed

    van der Post, Sietse T; Scheidelaar, Stefan; Bakker, Huib J

    2013-12-01

    We studied the effects of tetra-n-alkylammonium bromide (N(C(n)H(2n+1))(4)(+)Br(-)) salts on the dynamics of water using polarization-resolved femtosecond infrared spectroscopy. With this technique, we are capable of distinguishing the response of water solvating the hydrophobic cations from that of water solvating the bromide anion. We observe that both types of ions slow down the orientational dynamics of the water molecules in their solvation shells. However, the nature of this slowdown is different for both ions. For the hydrophobic cation, we find an increasing number of retarded water molecules, scaling with the alkyl chain length. Water in the bromide solvation shell experiences a partial decay of its orientation by a fast wobbling motion, after which the remaining anisotropy decays much slower. The dynamics of the wobbling motion are observed to be dependent on the nature of the cation. For Me(4)NBr, the slow reorientation time is not concentration-dependent, and no aggregation is observed. This is in contrast to the tetra-n-alkylammonium salts with longer alkyl chains, for which the slow reorientation time of bromide-bound water molecules increases dramatically with concentration, and clusters of cations and anions appear to be formed. PMID:24228939

  10. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  11. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  12. Design and Implementation of a Low-Cost Non-Destructive System for Measurements of Water and Salt Levels in Food Products Using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masot, Rafael; Alcañiz, Miguel; Fuentes, Ana; Campos, Franciny; Barat, José M.; Gil, Luis; Labrador, Roberto H.; Soto, Juan; Martínez-Máñez, Ramón

    2009-05-01

    The IQMA and the DTA have developed a low-cost system to determinate the contents of water and salt in food products as cured ham or pork loin using non-destructive methods. The system includes an electronic equipment that allows the implementation of impedance spectroscopy and an electrode. The electrode is a concentric needle which allows carrying out tests in a non-destructive way. Preliminary results indicate that there is a correlation between the water and salt contents and the module and phase of the impedance of the food sample in the range of 1 Hz to 1 MHz.

  13. Diversity of the predominant spoilage bacteria in water-boiled salted duck during storage.

    PubMed

    Liu, Fang; Wang, Daoying; Du, Lihui; Zhu, Yongzhi; Xu, Weimin

    2010-06-01

    The spoilage microbiota in water-boiled salted duck during storage at 4 degrees C was determined using culture-dependent and independent methods. Analysis of the denaturing gradient gel electrophoresis (DGGE) patterns of PCR amplicons targeting the V3 region of the 16S rDNA and sequencing of the bands allowed profiling of the microbiota present in the duck. Community DNA extracts were prepared directly from water-boiled salted duck and from culturable bacterial fractions harvested from both MRS and PCA media. The spoilage bacteria mainly consisted of Staphylococcus saprophyticus, Macrococcus caseolyticus, Weissella, Halomonas sp. or Cobetia sp., and Exiguobacterium sp. based on sequencing and homology search of the DGGE bands. It appeared that both the bacterial counts and diversity increased during storage time. By plating method, bacterial counts in MRS agar increased from 10(4) to 10(8) CFU/g from day 1 to 10, while total bacterial counts in PCA agar reached 10(9) CFU/g after 10 d. Total of 14 strains isolated from PCA and MRS agar were identified as M. caseolyticus (2), S. saprophyticus (7), S. sciuri (1), W. paramesenteroides (2), and W. confusa (2) by 16S rDNA sequencing. The identification of the spoilage-related microbiota is helpful to better understand the bacteria ecology in water-boiled salted duck and may lead to the discovery of appropriate preservation strategies. PMID:20629890

  14. Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures.

    PubMed

    Valente, Inês Maria; Gonçalves, Luís Moreira; Rodrigues, José António

    2013-09-20

    The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted. PMID:23958692

  15. Tamarisk Water Flux Patterns Before, During and After Episodic Defoliation by the Salt Cedar Leaf Beetle on the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Nagler, P. L.; Dennison, P. E.

    2008-12-01

    Tamarisk (Tamarix) species are among the most successful plant invaders in the western United States, and has had significant impacts on watershed hydrology and water resources. Accordingly, local, state and federal agencies have undertaken considerable efforts to eradicate tamarisk and restore riparian habitats to pre-invasion status. A biological control - the saltcedar leaf beetle (Diorhabda elongata) - was released in the summer of 2004 at several locations in eastern Utah, USA to control the spread and impact of tamarisk within the Colorado River watershed. Beginning in April of 2008, sap flux techniques were used to monitor changes in transpiration fluxes in response to canopy defoliation by the beetle. Specifically we installed modified (10 mm length) heat dissipation probes into the main stem of 20 mature tamarisk trees within a single stand on the Colorado Plateau. In July, the saltcedar leaf beetle reduced the total leaf area to near 0% of pre-beetle invasion status. Consequently, sap flux declined by up to 80% compared to pre-beetle invasion fluxes. By mid-August, refoliation of the canopy occurred, and sap flux rates returned to pre- defoliation status. Sap flux rates prior to defoliation were modeled against atmospheric vapor pressure deficit in order to predict the amount of water salvage from defoliation. Sap flux from June 1 through September 1 was on average 36% lower than predicted values. Combined with scaling techniques, the heat dissipation approach shows a high potential for monitoring changes in watershed hydrology in response to tamarisk defoliation by the saltcedar leaf beetle. Nevertheless, tamarisk sap flux studies with heat dissipation probes presents several challenges, including, narrow sapwood depth, low flux rates in response to defoliation, and large thermal gradients that are inevitable in warm climates (particularly after defoliation removes canopy shading). We will present results from ongoing research to address these potential

  16. Linear modeling of the soil-water partition coefficient normalized to organic carbon content by reversed-phase thin-layer chromatography.

    PubMed

    Andrić, Filip; Šegan, Sandra; Dramićanin, Aleksandra; Majstorović, Helena; Milojković-Opsenica, Dušanka

    2016-08-01

    Soil-water partition coefficient normalized to the organic carbon content (KOC) is one of the crucial properties influencing the fate of organic compounds in the environment. Chromatographic methods are well established alternative for direct sorption techniques used for KOC determination. The present work proposes reversed-phase thin-layer chromatography (RP-TLC) as a simpler, yet equally accurate method as officially recommended HPLC technique. Several TLC systems were studied including octadecyl-(RP18) and cyano-(CN) modified silica layers in combination with methanol-water and acetonitrile-water mixtures as mobile phases. In total 50 compounds of different molecular shape, size, and various ability to establish specific interactions were selected (phenols, beznodiazepines, triazine herbicides, and polyaromatic hydrocarbons). Calibration set of 29 compounds with known logKOC values determined by sorption experiments was used to build simple univariate calibrations, Principal Component Regression (PCR) and Partial Least Squares (PLS) models between logKOC and TLC retention parameters. Models exhibit good statistical performance, indicating that CN-layers contribute better to logKOC modeling than RP18-silica. The most promising TLC methods, officially recommended HPLC method, and four in silico estimation approaches have been compared by non-parametric Sum of Ranking Differences approach (SRD). The best estimations of logKOC values were achieved by simple univariate calibration of TLC retention data involving CN-silica layers and moderate content of methanol (40-50%v/v). They were ranked far well compared to the officially recommended HPLC method which was ranked in the middle. The worst estimates have been obtained from in silico computations based on octanol-water partition coefficient. Linear Solvation Energy Relationship study revealed that increased polarity of CN-layers over RP18 in combination with methanol-water mixtures is the key to better modeling of

  17. Variations in the mercury content of the Katun` River water

    SciTech Connect

    Vizhin, V.V.; Gogolev, A.Z.; Sagdeev, R.Z.; Saprykin, A.V.; Friezen, L.F.

    1995-01-01

    The scale of temporal variations in the mercury content of the Katun` River water is discussed. The correlation between the content of mercury in suspended form and the mineral and granulometric composition of suspended matter is analyzed. The process of transforming the spatial nonhomogeneity of the mercury distribution over the catchment area into the temporal nonhomogeneity of the mercury content in water is discussed.

  18. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis

    PubMed Central

    Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Background Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. Results The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. Conclusion The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance. PMID:26562158

  19. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies. PMID:27105414

  20. Measurement of intravesicular volumes by salt entrapment.

    PubMed

    Gruber, H J; Wilmsen, H U; Schurga, A; Pilger, A; Schindler, H

    1995-12-13

    Internal volume is a very sensitive parameter of vesicle morphology. Measurement of captured volumes by solute entrapment is legitimate for most types of vesicles (Perkin, W.R. et al. (1993) Chem. Phys. Lipids 64, 197-217). In this study chloride was selected as the most convenient marker ion because the ubiquity of Cl- in physiological buffers eliminates prelabeling with exogenous markers and because minute concentrations of trapped chloride are well detectable in the presence of large extravesicular nitrate concentrations. Perfect exchange of external chloride for nitrate was shown to be accomplished by gel filtration, dialysis, or sucrose gradient flotation-but only after significant technical improvements and/or elimination of experimental pitfalls. Reliability was cross-checked by simultaneous entrapment of Cl- and K+. Diafiltration and ion exchange chromatography appeared inapplicable for exchange of extravesicular salt. When a representative variety of vesicle preparations was analyzed for internal volume (as well as for external surface and size) unexpected features of vesicle morphology were discovered. This emphasizes the genuine role of macroscopic vesicle characterization in complementing information from electron microscopy. PMID:8541298

  1. Halophilic enzyme activation induced by salts

    PubMed Central

    Ortega, Gabriel; Laín, Ana; Tadeo, Xavier; López-Méndez, Blanca; Castaño, David; Millet, Oscar

    2011-01-01

    Halophilic archea (halobacteriae) thrive in hypersaline environments, avoiding osmotic shock by increasing the ion concentration of their cytoplasm by up to 3–6 M. To remain folded and active, their constitutive proteins have evolved towards a biased amino acid composition. High salt concentration affects catalytic activity in an enzyme-dependent way and a unified molecular mechanism remains elusive. Here, we have investigated a DNA ligase from Haloferax volcanii (Hv LigN) to show that K+ triggers catalytic activity by preferentially stabilising a specific conformation in the reaction coordinate. Sodium ions, in turn, do not populate such isoform and the enzyme remains inactive in the presence of this co-solute. Our results show that the halophilic amino acid signature enhances the enzyme's thermodynamic stability, with an indirect effect on its catalytic activity. This model has been successfully applied to reengineer Hv LigN into an enzyme that is catalytically active in the presence of NaCl. PMID:22355525

  2. Electrokinetics dependence on water-content in sand

    NASA Astrophysics Data System (ADS)

    Allègre, V.; Lehmann, F.; Jouniaux, L.; Sailhac, P.; Matthey, P.

    2009-12-01

    The electrokinetic potential results from the coupling between the water flow and the electrical current because of the presence of ions within water. This coupling is well described in fluid-saturated media, however its behavior under unsaturated flow conditions is still discussed. We propose here an experimental approach which can clearly describe streaming potential variations in unsaturated conditions. Several drainage experiments have been performed within a column filled with a clean sand. Streaming potential measurements are combined to capillary pressure and to water content measurements each 10 centimeter along the column. In order to model hydrodymanics during each experiment, we solve Richards equation in an inverse way which allows us to establish the relation between hydraulic conductivity and water content, and retention relation. The electrokinetic coefficient C shows a more complex behavior than it was previously reported and can not be fitted by the existing models. We show that the normalized electrokinetic coefficient increases first when water saturation decreases from 100% to about 80% - 95%, and then decreases as the water saturation decreases, whereas all previous works described a unifrom decrease of the normalized electrokinetic coefficient as water saturation decreases. We delimited two water saturation domains, and deduced two different empirical laws describing the evolution of the electrokinetic coefficient in unsaturated conditions. Finally, electrical potentials data from four different drainage experiments and hydrodynamics were jointly inversed, including electrical conductivity measurements in order to find a robust description of the electrokinetic coefficient behavior in unsaturated conditions.

  3. Salt marsh-atmosphere exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Wolf, Adam; Berry, Joe A.; Gorelick, Steven M.

    2010-10-01

    The degree to which short-duration, transient floods modify wetland-atmosphere exchange of energy, water vapor, and carbon dioxide (CO2) is poorly documented despite the significance of flooding in many wetlands. This study explored the effects of transient floods on salt marsh-atmosphere linkages. Eddy flux, micrometeorological, and other field data collected during two tidal phases (daytime versus nighttime high tides) quantified the salt marsh radiation budget, surface energy balance, and CO2 flux. Analysis contrasted flooded and nonflooded and day and night effects. The salt marsh surface energy balance was similar to that of a heating-dominated sparse crop during nonflooded periods but similar to that of an evaporative cooling-dominated, well-watered grassy lawn during flooding. Observed increases in latent heat flux and decreases in net ecosystem exchange during flooding were proportional to flood depth and duration, with complete CO2 flux suppression occurring above some flood height less than the canopy height. Flood-induced changes in the salt marsh energy balance were dominated by changes in sensible heat flux, soil heat flux, and surface water heat storage. Parameters suitable for predicting the salt marsh surface energy balance were obtained by calibrating common models (e.g., Penman-Monteith, Priestley-Taylor, and pan coefficient). Biophysical controls on salt marsh-atmosphere exchange were identified following calibration of models describing the coupling of canopy photosynthesis and stomatal conductance in the salt marsh. The effects of flooding on salt marsh-atmosphere exchange are temporary but strongly affect the marsh water, carbon, and energy balance despite their short duration.

  4. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Gambou-Bosca, Axel; Bélanger, Daniel

    2016-09-01

    The effect of the electrolyte on the electrochemical utilization of manganese dioxide as active material for electrochemical capacitor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. MnO2-based composite electrodes were characterized in salt-in-water (0.65 M K2SO4, 5 M LiNO3, 0.5 M LiNO3 and 0.5 M Ca(NO3)2) and water-in-salt (5 M LiTFSI (lithium bis-trifluoromethanesulfonimide)) electrolytes. Firstly, no effect of the cation valence on the specific capacitance was observed as similar values were measured in 0.5 M LiNO3 and 0.5 M Ca(NO3)2 aqueous solutions at both low and high scan rate, when a MnO2-based composite electrode was cycled in the pseudocapacitive potential region. Secondly, it was found that in 5 M LiTFSI, a MnO2 electrode is characterized by an extended potential stability window of about 1.4 V and exhibits a high specific capacitance of 239 F g-1 per active material mass at a scan rate of 2 mV s-1. However due to the low ionic conductivity of this solution, the rate capability is limited at high scan rate.

  5. Stage-Specific Changes in the Water, Na+, Cl- and K+ Contents of Organelles during Apoptosis, Demonstrated by a Targeted Cryo Correlative Analytical Approach.

    PubMed

    Nolin, Frédérique; Michel, Jean; Wortham, Laurence; Tchelidze, Pavel; Banchet, Vincent; Lalun, Nathalie; Terryn, Christine; Ploton, Dominique

    2016-01-01

    Many studies have demonstrated changes in the levels of several ions during apoptosis, but a few recent studies have reported conflicting results concerning the changes in water content in apoptotic cells. We used a correlative light and cryo-scanning transmission electron microscopy method to quantify water and ion/element contents simultaneously at a nanoscale resolution in the various compartments of cells, from the onset to the end of apoptosis. We used stably transfected HeLa cells producing H2B-GFP to identify the stages of apoptosis in cells and for a targeted elemental analysis within condensed chromatin, nucleoplasm, mitochondria and the cytosol. We found that the compartments of apoptotic cells contained, on average, 10% more water than control cells. During mitochondrial outer membrane permeabilization, we observed a strong increase in the Na+ and Cl- contents of the mitochondria and a strong decrease in mitochondrial K+ content. During the first step in apoptotic volume decrease (AVD), Na+ and Cl- levels decreased in all cell compartments, but remained higher than those in control cells. Conversely, during the second step of AVD, Na+ and Cl- levels increased considerably in the nucleus and mitochondria. During these two steps of AVD, K+ content decreased steadily in all cell compartments. We also determined in vivo ion status during caspase-3 activity and chromatin condensation. Finally, we found that actinomycin D-tolerant cells had water and K+ contents similar to those of cells entering apoptosis but lower Na+ and Cl- contents than both cells entering apoptosis and control cells. PMID:26866363

  6. Stage-Specific Changes in the Water, Na+, Cl- and K+ Contents of Organelles during Apoptosis, Demonstrated by a Targeted Cryo Correlative Analytical Approach

    PubMed Central

    Nolin, Frédérique; Michel, Jean; Wortham, Laurence; Tchelidze, Pavel; Banchet, Vincent; Lalun, Nathalie; Terryn, Christine; Ploton, Dominique

    2016-01-01

    Many studies have demonstrated changes in the levels of several ions during apoptosis, but a few recent studies have reported conflicting results concerning the changes in water content in apoptotic cells. We used a correlative light and cryo-scanning transmission electron microscopy method to quantify water and ion/element contents simultaneously at a nanoscale resolution in the various compartments of cells, from the onset to the end of apoptosis. We used stably transfected HeLa cells producing H2B-GFP to identify the stages of apoptosis in cells and for a targeted elemental analysis within condensed chromatin, nucleoplasm, mitochondria and the cytosol. We found that the compartments of apoptotic cells contained, on average, 10% more water than control cells. During mitochondrial outer membrane permeabilization, we observed a strong increase in the Na+ and Cl- contents of the mitochondria and a strong decrease in mitochondrial K+ content. During the first step in apoptotic volume decrease (AVD), Na+ and Cl- levels decreased in all cell compartments, but remained higher than those in control cells. Conversely, during the second step of AVD, Na+ and Cl- levels increased considerably in the nucleus and mitochondria. During these two steps of AVD, K+ content decreased steadily in all cell compartments. We also determined in vivo ion status during caspase-3 activity and chromatin condensation. Finally, we found that actinomycin D-tolerant cells had water and K+ contents similar to those of cells entering apoptosis but lower Na+ and Cl- contents than both cells entering apoptosis and control cells. PMID:26866363

  7. ATTACHMENT OF ESCHERICHIA COLI TO SOIL AGGREGATES AS AFFECTED BY AGGREGATE WATER CONTENT AND PRESENCE OF MANURE COLLOIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soils contain relatively large structural units that do not slack when soil is being wetted. Soil aggregates, obtained from dry soil samples by sieving, present a model media to study the interactions of intact soils with dissolved or suspended contaminants. Land-applied manures may contain var...

  8. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  9. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    SciTech Connect

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  10. Water, salt, and heat exchange through the Kinburn Strait of the Dnieper-Bug Estuary

    NASA Astrophysics Data System (ADS)

    Minkovskaya, R. Ya.; Demidov, A. N.

    2014-09-01

    Based on the multiannual observations (1965-2011), the diurnal, seasonal, and annual variabilities of the water, salt, and heat exchange rates in the Kinburn Strait of the Dnieper-Bug Estuary are studied. A method for calculation of the water, salt, and heat exchange rates through the strait is proposed, and the respective values are specified to be used for solving the practical problems related to efficient use of the water resources in this near-mouth region.

  11. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    NASA Astrophysics Data System (ADS)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  12. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect

    Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie; Cheng, Chu-lin; Perfect, Edmund; Horita, Juske; Warren, Jeffrey

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  13. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  14. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages. PMID:16937334

  15. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; Hibbitts, C.A.; Granahan, J.C.

    1998-01-01

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  16. Clear salt water above sediment-laden fresh water: Interfacial instabilities

    NASA Astrophysics Data System (ADS)

    Schulte, B.; Konopliv, N.; Meiburg, E.

    2016-05-01

    The stability of an interface separating less dense, clear salt water above from more dense, sediment-laden fresh water below is explored via direct numerical simulations. We find that the destabilizing effects of double diffusion and particle settling amplify each other above the diffusive interface, whereas they tend to cancel each other below. For moderate settling velocities, plumes form both above and below the interface, whereas for large settling velocities plume formation below the interface is suppressed. We identify the dimensionless parameter that determines in which regime a given flow takes place, along with the critical value at which the transition between the regimes takes place.

  17. Salt leaching leads to drier soils in disturbed semiarid woodlands of central Argentina.

    PubMed

    Marchesini, Victoria A; Fernández, R J; Jobbágy, E G

    2013-04-01

    Disturbances in semiarid environments have revealed a strong connection between water, salt and vegetation dynamics highlighting how the alteration of water fluxes can drive salt redistribution process and long-term environmental degradation. Here, we explore to what extent the reciprocal effect, that of salt redistribution on water fluxes, may play a role in dictating environmental changes following disturbance in dry woodlands. We assessed salt and water dynamics comparing soil-solution electrical conductivity, chloride concentration, soil water content (SWC) and soil matric and osmotic water potential (Ψm, Ψos) between disturbed and undisturbed areas. A large pool of salts and chlorides present in undisturbed areas was absent in disturbed plots, suggesting deep leaching. Unexpectedly, this was associated with slight but consistently lower SWC in disturbed versus undisturbed situations during two growing seasons. The apparent paradox of increased leaching but diminishing SWC after disturbance can be explained by the effect of native salt lowering Ψos enough to prevent full soil drying. Under disturbed conditions, the onset of deep drainage and salt leaching would raise Ψos allowing a decline of Ψm and SWC. Soil water storage seems to be modulated by the presence (under natural conditions) and partial leaching (following selective shrub disturbance) of large salt pools. This counterintuitive effect of disturbances may be important in semiarid regions where deep soil salt accumulation is a common feature. Our results highlight the importance of water-salt-vegetation coupling for the understanding and management of these systems. PMID:23015213

  18. Estimation of salt water upconing using a steady-state solution for partial completion of a pumped well.

    PubMed

    Garabedian, Stephen P

    2013-01-01

    A new steady-state analytical solution to the two-dimensional radial-flow equation was developed for drawdown (head) conditions in an aquifer with constant transmissivity, no-flow conditions at the top and bottom, constant head conditions at a known radial distance, and a partially completed pumping well. The solution was evaluated for accuracy by comparison to numerical simulations using MODFLOW. The solution was then used to estimate the rise of the salt water-fresh water interface (upconing) that occurs under a pumping well, and to calculate the critical pumping rate at which the interface becomes unstable, allowing salt water to enter the pumping well. The analysis of salt water-fresh water interface rise assumed no significant effect on upconing by recharge; this assumption was tested and supported using results from a new steady-state analytical solution developed for recharge under two-dimensional radial-flow conditions. The upconing analysis results were evaluated for accuracy by comparison to those from numerical simulations using SEAWAT for salt water-fresh water interface positions under mild pumping conditions. The results from the equation were also compared with those of a published numerical sharp-interface model applied to a case on Cape Cod, Massachusetts. This comparison indicates that estimating the interface rise and maximum allowable pumping rate using the analytical method will likely be less conservative than the maximum allowable pumping rate and maximum stable interface rise from a numerical sharp-interface model. PMID:23336341

  19. Experimental investigation of radiative-acoustic effects in the water by the thermodynamical conditions of Dumand

    NASA Technical Reports Server (NTRS)

    Golubnichy, P. I.; Korchikov, S. D.; Nikolsky, S. I.; Yakovlev, V. I.

    1985-01-01

    The value of the sound pulse produced by a high energy neutrino, if the thermoacoustical mechanism of sound generation takes place, is proportional to the density of energy absorbed, the coefficient of thermal expansion, the sound velocity, and the specific heat all of which depend on temperature, pressure and the salt content of the water.

  20. Vertical profiles of soil water content as influenced by environmental factors in a small catchment on the hilly-gully Loess Plateau.

    PubMed

    Wang, Bing; Wen, Fenxiang; Wu, Jiangtao; Wang, Xiaojun; Hu, Yani

    2014-01-01

    Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0-20, 20-160, and 160-300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0-20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex terrains

  1. Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau

    PubMed Central

    Wang, Bing; Wen, Fenxiang; Wu, Jiangtao; Wang, Xiaojun; Hu, Yani

    2014-01-01

    Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0–20, 20–160, and 160–300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0–20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex

  2. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  3. Factors Governing the Impact of Emerged Salt Diapirs on Water Resources.

    PubMed

    Zarei, M

    2016-05-01

    Salt diapirs in southern Iran are typically in contact with karstic and alluvial aquifers and consequently they are the most likely sources of groundwater salinization in this arid region. However, there are some salt diapirs that have no significant degradation effect on adjacent aquifers. Assessments of 62 of 122 Iranian-emerged salt diapirs based on geological, geomorphological, hydrogeological, and hydrochemical investigations indicated that 45% of the studied salt diapirs did not have a negative impact on surrounding water resources, whereas 55% of the salt diapirs have degraded water quality of adjacent aquifers. The impacts ranged from low- to high-grade salinization. We characterize here four major factors that control the impact of salt diapirs on surrounding water resources: (1) the evolutionary stage of the diapir, (2) the geological and (3) hydrogeological setting of the diapir, and (4) human activities. Identification of the major factors governing the influence of salt diapirs on the adjacent aquifers is necessary to understand the mechanism of salt diapir impact on adjacent aquifers, and subsequently to decide how to mitigate the deteriorating effect of the diapirs on the surrounding water resources. PMID:26394154

  4. Health Gain by Salt Reduction in Europe: A Modelling Study

    PubMed Central

    Hendriksen, Marieke A. H.; van Raaij, Joop M. A.; Geleijnse, Johanna M.; Breda, Joao; Boshuizen, Hendriek C.

    2015-01-01

    Excessive salt intake is associated with hypertension and cardiovascular diseases. Salt intake exceeds the World Health Organization population nutrition goal of 5 grams per day in the European region. We assessed the health impact of salt reduction in nine European countries (Finland, France, Ireland, Italy, Netherlands, Poland, Spain, Sweden and United Kingdom). Through literature research we obtained current salt intake and systolic blood pressure levels of the nine countries. The population health modeling tool DYNAMO-HIA including country-specific disease data was used to predict the changes in prevalence of ischemic heart disease and stroke for each country estimating the effect of salt reduction through its effect on blood pressure levels. A 30% salt reduction would reduce the prevalence of stroke by 6.4% in Finland to 13.5% in Poland. Ischemic heart disease would be decreased by 4.1% in Finland to 8.9% in Poland. When salt intake is reduced to the WHO population nutrient goal, it would reduce the prevalence of stroke from 10.1% in Finland to 23.1% in Poland. Ischemic heart disease would decrease by 6.6% in Finland to 15.5% in Poland. The number of postponed deaths would be 102,100 (0.9%) in France, and 191,300 (2.3%) in Poland. A reduction of salt intake to 5 grams per day is expected to substantially reduce the burden of cardiovascular disease and mortality in several European countries. PMID:25826317

  5. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    SciTech Connect

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

  6. Maxwell-Wagner relaxation in common minerals and a desert soil at low water contents

    NASA Astrophysics Data System (ADS)

    Arcone, Steven A.; Boitnott, Ginger E.

    2012-06-01

    Penetration of 100- to 1000-MHz ground-penetrating radar (GPR) signals is virtually non-existent in arid and desert soils despite their low water content and moderate conductivity, the latter of which cannot explain the loss. Under the hypothesis that strong dielectric relaxation supplements DC conductivity to cause high intrinsic attenuation rates, we compared the complex permittivity of a desert soil sample with that of controlled samples of quartz, feldspars, calcite, coarse and crystallite gypsum, kaolinite and montmorillonite. The soil had 80% quartz, 10% feldspars and 10% gypsum by weight, with the latter composed of crystallites and crustations. All samples had 4-7% volumetric water content. We measured permittivity most accurately from 1.6 MHz to 4 GHz with Fourier Transform time domain reflectometry, and used grain sizes less than 53 μm. All samples show low-frequency dispersion with the soil, gypsum crystallites and montmorillonite having the strongest below 100 MHz, the highest attenuation rates, and conductivity values unable to account for these rates. The soil rate exceeded 100 dB m- 1 by 1 GHz. Through modeling we find that a broadened relaxation centered from 2 to 16 MHz sufficiently supplements losses caused by conductivity and free water relaxation to account for loss rates in all our samples, and accounts for low-frequency dispersion below 1 GHz. We interpret the relaxation to be of the Maxwell-Wagner (MW) type because of the 2- to 16-MHz values, relaxation broadening, the lack of salt, clay and magnetic minerals, and insufficient surface area to support adsorbed water. The likely MW dipolar soil inclusions within the predominantly quartz matrix were gypsum particles coated with water containing ions dissolved from the gypsum, and the conducting water layers themselves. The inclusions for the monomineralic soils were likely ionized partially or completely water-filled interstices, and partially filled galleries for the montmorillonite. The low

  7. Heterogeneous oxidation of a phosphocholine on synthetic sea salt by ozone at room temperature.

    PubMed

    Dilbeck, Christopher W; Finlayson-Pitts, Barbara J

    2013-02-14

    The ozonolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) adsorbed on salt mixtures as models for sea-salt particles was studied in real time using diffuse reflection infrared Fourier transform spectrometry (DRIFTS) at room temperature with and without added water vapor. The salt substrates were a mixture of MgCl(2)·6H(2)O with NaCl or a commercially available synthetic sea salt. Ozone concentrations ranged from (0.25 to 3.9) × 10(13) molecules cm(-3) (0.1-1.6 ppm). The major products identified by FTIR and confirmed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were the secondary ozonide (SOZ) and a phospholipid aldehyde and carboxylic acid formed by scission of the double bond. The reaction probabilities for the two substrates were similar, γ = (6-7) × 10(-7), with an estimated overall uncertainty of a factor of two. The presence of water vapor decreased the yield of SOZ relative to the products formed by C[double bond, length as m-dash]C scission, but also increased the availability of the double bond for reaction, particularly on the less hygroscopic commercial sea-salt substrate. Thus, water not only affects the mechanisms and products, but also the structure of the phospholipid on the salt in a manner that affects its reactivity. The results of these studies suggest that the reactivity and products of oxidation of unsaturated phospholipids on sea-salt particles in air will be very sensitive to the nature and phase of the substrate, the amount of water present, and whether there is phase separation between the organics and the inorganic salt mixture. PMID:23258195

  8. OCCUPATIONAL ALLERGY AND ASTHMA AMONG SALT WATER FISH PROCESSING WORKERS

    PubMed Central

    Jeebhay, Mohamed F; Robins, Thomas G; Miller, Mary E; Bateman, Eric; Smuts, Marius; Baatjies, Roslynn; Lopata, Andreas L

    2010-01-01

    Background Fish processing is a common economic activity in Southern Africa. The aim of this study was to determine the prevalence and host determinants of allergic symptoms, allergic sensitization, bronchial hyper-responsiveness and asthma among workers processing saltwater fish. Methods A cross-sectional study was conducted on 594 currently employed workers in two processing plants involved in pilchard canning and fishmeal processing. A modified European Community Respiratory Health Survey (ECRHS) questionnaire was used. Skin prick tests (SPT) used extracts of common airborne allergens, fresh fish (pilchard, anchovy, maasbanker, mackerel, red eye) and fishmeal. Spirometry and methacholine challenge tests (tidal breathing method) used ATS guidelines. Results Work-related ocular-nasal symptoms (26%) were more common than asthma symptoms (16%). The prevalence of atopy was 36%, while 7% were sensitized to fish species and 26% had NSBH (PC20 ≤ 8 mg/ml or ≥12% increase in FEV1 post bronchodilator). The prevalence of probable occupational asthma was 1.8% and fish allergic rhino-conjunctivitis 2.6%. Women were more likely to report work-related asthma symptoms (OR=1.94) and have NSBH (OR=3.09), while men were more likely to be sensitized to fish (OR=2.06) and have airway obstruction (OR=4.17). Atopy (OR=3.16) and current smoking (OR=2.37), but not habitual seafood consumption were associated with sensitization to fish. Conclusions Based on comparison with previous published studies, the prevalence of occupational asthma to salt water fish is lower than due to shellfish. The gendered distribution of work and exposures in fish processing operations together with atopy and cigarette smoking are important determinants of occupational allergy and asthma. PMID:18726880

  9. Gill (Na+ +K+)-ATPase involvement and regulation during salmonid adaptation to salt water.

    PubMed

    Borgatti, A R; Pagliarani, A; Ventrella, V

    1992-08-01

    1. The involvement of gill (Na+ +K+)-ATPase in salmonid adaptation to salt water (SW) is discussed. 2. Gill (Na+ +K+)-ATPase increase during SW adaptation is mainly related to the increased number and complexity of chloride cells deputed to salt extrusion. 3. The temporal relationships between serum peaks of thyroid hormones, cortisol, growth hormone, prolactin and gill (Na+ +K+)-ATPase rise during salmonid smoltification, suggest a hormonal involvement in the enzyme stimulation and thus in the acquirement of SW tolerance. 4. Literature on gill (Na+ +K+)-ATPase response to hormonal treatment is reviewed. The effects produced on gill (Na+ +K+)-ATPase and chloride cells by exogenous hormones point out a complex inter-relationship between the hormones considered. The mechanisms involved in hormonal regulation of the enzyme remain a matter of debate. PMID:1355028

  10. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    PubMed

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)). PMID:26597560

  11. [Fluoride in children saliva with its natural low intake in cases of fluoridated salt or water consumption].

    PubMed

    Popruzhenko, T V; Terekhova, T N

    2008-01-01

    Fluoride content dynamics in whole saliva in 3 groups of 5-6 year old children before and after meal. All children lived in the region with lov F-0,2 ppm in water, used fluoridated toothpaste and went to kindergartens. Children from group A (n=10) did not have other sources of F, group B children (n=10) drink one glass a day of F-water (1 ppm), participants from group C (n=11) eat F-salt 250+/-100 ppm. The F in saliva samples gathered prior to and following meal was determined. Before the meal children saliva in group A contains 0,058 ppm F, in group B - 0,078 ppm F, in group C - 0,074 ppm F. Saliva of group A children shows the increase of F after the meal (0,067 ppm), F decreases lower the starting point after the 5th minute (0,056 ppm) and restores to normal by minute 40. Group B showed the decrease of F right after the meal, lasting to minute 20 (0,060 ppm), than a small increase followed (0,063 ppm), and finally the restoration to normal by minute 50. In group C immediate raise of F (0,085 ppm) was noticed, by minute 10 - some decline (0,076 ppm), from minute 20 F rises to level 0,090 ppm, after that it is decreasing slowly, but by minute 60 remains higher tan the starting point (0, 076 ppm). Thus, F-salt use allows to raise a basic level of F, and also to positively change F dynamics in oral fluid during the risk period (after the meal intake). PMID:19156108

  12. The effects of replacing the water model while decoupling water-water and water-solute interactions on computed properties of simple salts

    NASA Astrophysics Data System (ADS)

    Li, Jicun; Wang, Feng

    2016-07-01

    The effects of decoupling the water-water and water-solute interactions are studied with selected mono-valent ions as the solute. Using the ion-water cross terms developed for the BLYPSP-4F water model, we replaced the water potential with WAIL, TIP4P, and TIP3P without changing the ion-water parameters. When the adaptive force matching (AFM) derived BLYPSP-4F model is replaced by the other AFM derived WAIL model, the difference in ion properties, such as hydration free energies, radial distribution functions, relative diffusion constants, is negligible, demonstrating the feasibility for combining AFM parameters from different sources. Interestingly, when the AFM-derived ion-water cross-terms are used with a non-AFM based water model, only small changes in the ion properties are observed. The final combined models with TIP3P or TIP4P water reproduce the salt hydration free energies within 6% of experiments. The feasibility of combining AFM models with other non-AFM models is of significance since such combinations allow more complex systems to be studied without specific parameterization. In addition, the study suggests an interesting prospect of reusing the cross-terms when a part of a general force field is replaced with a different model. The prevailing practice, which is to re-derive all cross-terms with combining rules, may not have been optimal.

  13. Inverse modeling of GPR signal for estimating soil water content

    NASA Astrophysics Data System (ADS)

    Lambot, S.; van den Bosch, I.; Slob, E. C.; Stockbroeckx, B.; Scheers, B.; Vanclooster, M.

    2003-04-01

    For a large variety of environmental and agricultural applications, the use of ground penetrating radar (GPR) for identifying soil water content is a matter of concern. However, the current state of technology still needs improvements and new developments. Research has focused on the development of an integrated inverse modeling approach including GPR design, GPR signal forward modeling, and GPR signal inversion to estimate simultaneously the depth dependent dielectric constant and electrical conductivity of the shallow subsurface. We propose to use as radar system a stepped frequency continuous wave radar with an ultrawide band dielectric filled TEM horn antenna used in monostatic mode. This configuration is appropriate for real time mapping and allows for a more realistic forward modeling of the radar-antenna-soil system. Forward modeling was based on the exact solution of Maxwell's equations and inversion was formulated by the classical least square problem. Given the inherent complex topography of the objective functions to optimize in electromagnetic inversion problems, we used for the inversion the recently developed global multilevel coordinate search algorithm that we combine sequentially with the local Nelder-Mead simplex algorithm. We applied the method in laboratory conditions on tank filled with sand subject to different water content levels considering a homogeneous water profile. The inverse estimation of the soil dielectric constant was remarkably well in accordance with each water content level and the corresponding theoretical values of the dielectric constant for the sand. Comparison of GPR measurements with estimations from time domain reflectometry (TDR) were also well in close agreement.

  14. Land Use Change Impacts on Water, Salt, and Nutrient Cycles: Case Study Semiarid Southern High Plains, Texas, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Gates, J. B.

    2009-12-01

    Land use change can have large scale impacts on the salt and nutrient cycles by changing partitioning of water at the land surface, applying irrigation and fertilizers to the system, and transporting salts and nutrients to underlying aquifers. The objective of this study was to evaluate impacts of land-use change on salt and nutrient cycles by quantifying water fluxes and salt and nutrient inventories under natural ecosystems (3 boreholes) and rain-fed agroecosystem (19 boreholes) and irrigated agroecosystem (13 boreholes) in the Southern High Plains, Texas. Salt and nutrient inventories were estimated by measuring water-extractable anion concentrations in sampled boreholes and water fluxes were estimated using the chloride mass balance approach. Large salt inventories accumulated under natural ecosystems from bulk precipitation since the Pleistocene (median chloride: 2,200 kg/ha/m; perchlorate: 46 g/ha/m; sulfate: 5,600 kg/ha/m). Conversion of natural ecosystems to rainfed agroecosystems flushed these pre-existing salt reservoirs towards and into the underlying Ogallala aquifer as a result of increased recharge rates (median of 19 profiles: 24 mm/yr). The flushed zone of rain-fed profiles are characterized by extremely low inventories of salts (chloride: 15 kg/ha/m; perchlorate: 6.3 g/ha/m; sulfate, 750 kg/ha/m). Cultivation also resulted in mineralization and nitrification of soil organic nitrogen, creating nitrate reservoirs at the leading edge of the front that represent 74% of profile nitrate-N and that are being mobilized into the aquifer. Irrigation has the greatest impact on nonpoint source contaminants by adding salts and nutrients to the system. Chloride inventories under irrigated agroecosystems (median 1,600 kg/ha/m) are similar to those under natural ecosystems (median 2,200 kg/ha/m) but accumulated over decades rather than millennia typical of natural ecosystems. Peak Cl concentrations in profiles represent evapoconcentration factors of 12-42 relative

  15. Determination of water content using mass spectrometry

    NASA Technical Reports Server (NTRS)

    Wood, G. M.; Upchurch, B. T.; Hughes, D. B.

    1975-01-01

    Mass spectrometer is used to measure small quantities of water present in different materials. System has been applied in measuring water and gases desorbed from microcircuitry insulation, can also be used with foods, polymeric materials, and organic solvents.

  16. Both water intoxication and osmotic BBB disruption increase brain water content in rats.

    PubMed

    Kozler, P; Riljak, V; Pokorný, J

    2013-01-01

    Our previous experiments revealed that water intoxication and osmotic BBB disruption in the rat allow penetration of high-molecular substances into the brain and that resulting changes in the internal environment of the CNS lead to pathological development, such as the loss of integrity of myelin. The aim of the present study was to determine whether the previously described phenomena are associated with increased water content in the brain. To answer the question following methods were used: a) water intoxication: intraperitoneal administration of distilled water, b) osmotic BBB disruption: application of mannitol (20 %) selectively into the internal carotid artery, c) brain wet weight was measured after decapitation, and subsequently (after six days in thermostat set at 86 °C) the dry weight were estimated d) in animals with 20 % and 30 % hyperhydration the degree of myelin deterioration was estimated e) animal locomotor activity was tested by continuous behavior tracking and analysis. Brain water content after water intoxication and following the administration of mannitol was higher than in the control group. Different degrees of hyperhydration led to different levels of brain water content and to different degrees of myelin impairment. Hyperhydration corresponding to 20 % of the body weight brought about lower locomotor activity. Increased water content in the brain after the BBB osmotic disruption is surprising because this method is frequently used in the clinical practice. PMID:24329706

  17. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  18. Water Content of Basalt Erupted on the ocean floor

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Deep sea pillow basalts dredged from the ocean floor show that vesicularity changes with composition as well as with depth. Alkalic basalts are more vesicular than tholeiitic basalts erupted at the same depth. The vesicularity data, when related to experimentally determined solubility of water in basalt, indicate that K-poor oceanic tholeiites originally contained about 0.25 percent water, Hawaiian tholeiites of intermediate K-content, about 0.5 percent water, and alkali-rich basalts, about 0.9 percent water. Analyses of fresh basalt pillows show a systematic increase of H2O+ as the rocks become more alkalic. K-poor oceanic tholeiites contain 0.06-0.42 percent H2O+, Hawaiian tholeiites, 0.31-0.60 percent H2O+, and alkali rich basalts 0.49-0.98 percent H2O+. The contents of K2O, P2O5, F, and Cl increase directly with an increase in H2O+ content such that at 1.0 weight percent H2O+, K2O is 1.58 percent, P2O5 is 0.55 percent, F is 0.07 percent, and Cl is 0.1 percent. The measured weight percent of deuterium on the rim of one Hawaiian pillow is -6.0 (relative to SMOW); this value, which is similar to other indications of magmatic water, suggests that no appreciable sea water was absorbed by the pillow during or subsequent to eruption on the ocean floor. Concentrations of volatile constituents in the alkali basalt melts relative to tholeiitic melts can be explained by varying degrees of partial melting of mantle material or by fractional crystallization of a magma batch. ?? 1970 Springer-Verlag.

  19. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Scheidegger, Y.; Brennwald, M. S.; Fleitmann, D.; Figura, S.; Wieler, R.; Kipfer, R.

    2012-07-01

    In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure for its total water content. The stalagmites' water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Low δ18Ocalcite values are thereby accompanied by low water yields and vice versa. Based on the paleoclimatic interpretation of the δ18Ocalcite records, water yields can be linked to drip water supply. High drip water supply caused by high precipitation rates supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a tropical or subtropical area, its water yield record represents a novel paleoclimate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated precipitation rates.

  20. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  1. Estimation of soil water content for engineering and agricultural applications using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Grote, Katherine Rose

    2003-10-01

    Near-surface water content is important for a variety of applications in engineering, agriculture, ecology, and environmental monitoring and is an essential input parameter for hydrological and atmospheric models. Water content is both spatially and temporally variable and is difficult to characterize using conventional measurement techniques, which are invasive, time-consuming to collect, and provide only a limited number of point measurements. The purpose of this study is to investigate ground penetrating radar (GPR) techniques for improved estimation of water content. GPR techniques have potential for providing accurate, high-resolution estimates of water content quickly and non-invasively, but the efficacy of these techniques for field-scale applications has not been previously determined. This study begins with a literature review of the application of GPR techniques for water content estimation, followed by a description of the principles employed in GPR surveying and the general methodology for converting electromagnetic GPR measurements to water content estimates. Next, a pilot experiment using GPR techniques for water content estimation is described; this experiment was performed under very controlled conditions and used common-offset GPR reflections to estimate the water content in sandy test pits. This experiment showed that GPR techniques can estimate water content very accurately (within 0.017 cm3/cm3 of the volumetric water content estimates obtained gravimetrically) and provided motivation for the second, less-controlled experiment. The second study used common-offset GPR reflections to estimate water content in a transportation engineering application, where the GPR data were used to monitor the water content in sub-asphalt aggregate layers and to estimate deformation under dynamic loading. This experiment showed that GPR data could be used to accurately monitor changes in the horizontal and vertical distributions of sub-asphalt water content with

  2. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  3. Remote sensing of leaf, canopy and vegetation water contents for satellite climate data records

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...

  4. On the Variation of Water Diffusion Coefficient in Stratum Corneum With Water Content.

    PubMed

    Li, Xin; Johnson, Robert; Kasting, Gerald B

    2016-03-01

    Water permeability and transient water sorption data in human and porcine stratum corneum (SC) are analyzed in conjunction with equilibrium water sorption data and a dynamic skin swelling model to develop a quantitative model for water diffusivity in the SC as a function of its water content. The recommended function (model 1) is phenomenological and treats the SC as a uniform, swellable slab. This approach yields satisfactory agreement with experimental data over a wide range of RH and associated equilibrium SC water content, Cw. It is supported by two alternative approaches. Model 2 considers the SC to be a multilaminate membrane consisting of alternating lipid and protein layers. Diffusivity in the protein phase is estimated from water diffusivity in other keratinized tissues, whereas diffusivity in the lipid phase is assumed to be linearly related to the swelling strain on intercellular lipids. Model 3 uses an analysis previously suggested by Stockdale to rationalize transepidermal water loss data in humans over a wide range of relative humidity. All models yield similar results for 0.20 ≤ Cw ≤ 0.78 g/cm(3), the usual range of SC water content in vivo. PMID:26886319

  5. Effect of water in salt repositories. Final report

    SciTech Connect

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  6. Remote Sensing of Vegetation Water Content using Shortwave Infrared Reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. The Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) had an objective of developing and testing algorithms for a vegetation water content (VWC) data product using sh...

  7. Remote sensing of soil water content at large scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at the near surface is a critical parameter for understanding land surface atmosphere interactions, influencing surface energy balances. Using microwave radiometry, an accurate global map of surface soil water content can be generated on a near daily basis. The accuracy of the p...

  8. Remote Sensing of Vegetation Water Content using Shortwave Infrared Reflectances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. The Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) had an objective of developing and testing algorithms for a vegetation water content data product using shortwav...

  9. Potential water-quality effects from iron cyanide anticaking agents in road salt

    SciTech Connect

    Paschka, M.G.; Ghosh, R.S.; Dzombak, D.A.

    1999-10-01

    Water-soluble iron cyanide compounds are widely used as anticaking agents in road salt, which creates potential contamination of surface and groundwater with these compounds when the salt dissolves and is washed off roads in runoff. This paper presents a summary of available information on iron cyanide use in road salt and its potential effects on water quality. Also, estimates of total cyanide concentrations in snow-melt runoff from roadways are presented as simple mass-balance calculations. Although available information does not indicate a widespread problem, it also is clear that the water-quality effects of cyanide in road salt have not been examined much. Considering the large, and increasing, volume of road salt used for deicing, studies are needed to determine levels of total and free cyanide in surface and groundwater adjacent to salt storage facilities and along roads with open drainage ditches. Results could be combined with current knowledge of the fate and transport of cyanide to assess water-quality effects of iron cyanide anticaking agents used in road salt.

  10. A three dimensional two-phase debris flow model: Reduction to one free model parameter by linking rheology to grain size distribution and water content

    NASA Astrophysics Data System (ADS)

    von Boetticher, Albrecht; McArdell, Brian; Rickenmann, Dieter; Hübl, Johannes; Scheidl, Christian

    2014-05-01

    Attempts to model debris flow material either as a granular or as a viscous matter can not account for the wide range of debris flow processes, leading to the development of two-phase models with one phase accounting for the fluid and the other for the grains. Within this group of models, depth-averaged approaches are wide-spread, but since the rheology of true material is sensitive to pressure and shear gradient, three dimensional simulations are necessary to predict flows in complex geometries. Phase interaction can be modelled by solving the Navier-Stokes equation system for each phase and linking the phases with drag force models. However, this is a numerically expensive way that introduces a number of free parameters because too little is known about drag of non-spherical grains in non-Newtonian fluids. The approach proposed here solves one phase-averaged Navier-stokes equation system by applying the Volume of Fluid method, while still allowing to account for the sensitivity of the local rheology to pressure and shear in dependency to phase concentrations. One phase with a Herschel-Bulkley rheology represents the interstitial fluid and can mix with a second phase with the Coulomb-viscoplastic rheology of Pudasaini (Birte et al. 2013) that represents the gravel. A third phase is kept separate and represents the air. This setup allows modelling key properties of debris flow processes like run out or impact in high detail. By linking the Herschel Bulkley parameters to water content, clay mineral proportion and grain size distribution (Kaitna et al. 2007, Yu et al. 2013), and the parameters of the Coulomb-viscoplastic rheology to the angle of repose of the gravel, a reduction to one free model parameter was achieved. The resulting model is tested with laboratory experiments for its capability to reproduce the sensitivity of debris flow material to water content and channel curvature. Existing large scale flume experiments are used to corroborate the model and

  11. High water content in primitive continental flood basalts

    PubMed Central

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-01-01

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>105 km3) within short time span (<1–3 Ma) is in principle caused by an abnormally high temperature, extended decompression, a certain amount of mafic source rocks (e.g., pyroxenite), or an elevated H2O content in the mantle source. These four factors are not mutually exclusive. There are growing evidences for high temperature, decompression and mafic source rocks, albeit with hot debate. However, there is currently no convincing evidence of high water content in the source of CFB. We retrieved the initial H2O content of the primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB. PMID:27143196

  12. High water content in primitive continental flood basalts

    NASA Astrophysics Data System (ADS)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-05-01

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>105 km3) within short time span (<1–3 Ma) is in principle caused by an abnormally high temperature, extended decompression, a certain amount of mafic source rocks (e.g., pyroxenite), or an elevated H2O content in the mantle source. These four factors are not mutually exclusive. There are growing evidences for high temperature, decompression and mafic source rocks, albeit with hot debate. However, there is currently no convincing evidence of high water content in the source of CFB. We retrieved the initial H2O content of the primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  13. High water content in primitive continental flood basalts.

    PubMed

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin

    2016-01-01

    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>10(5) km(3)) within short time span (<1-3 Ma) is in principle caused by an abnormally high temperature, extended decompression, a certain amount of mafic source rocks (e.g., pyroxenite), or an elevated H2O content in the mantle source. These four factors are not mutually exclusive. There are growing evidences for high temperature, decompression and mafic source rocks, albeit with hot debate. However, there is currently no convincing evidence of high water content in the source of CFB. We retrieved the initial H2O content of the primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB. PMID:27143196

  14. Plant Response to Differential Soil Water Content and Salinity

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  15. Effect of water content on the water repellency for hydrophobized sands

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum

  16. Modeling the Influence of River Flow and Salt Water Intrusion in the Terengganu Estuary, Malaysia

    NASA Astrophysics Data System (ADS)

    Lee, H. L.; Tangang, F.; Hamid, M. R.; Benson, Y.; Razali, M. R.

    2016-07-01

    Salinity intrusion is a major concern when the freshwater extraction station is located in the estuary. This paper attempt to predict the salt intrusion length in the upper stretch of estuary, by applying different magnitudes of freshwater discharge at the river regime. The integrated two dimensional hydrodynamics model associated with advection dispersion model was performed to investigate the salinity intrusion. The model was well calibrated and verified by the measured data undertaken during dry season. The maximum salt intrusion length to the threshold of salinity density is 1.00 ppt on the existing condition was predicted at 9.97 km from the river mouth. Moreover, with the magnitude of 100.00 m3s-1 and 30.00 m3s-1 freshwater discharges at the upstream boundary (Kpg Tanggol), it was predicted the maximum salt intrusion length was 11.84 km and 21.41 km, respectively, from the river mouth. Therefore, it was determined the minimum freshwater discharge of approximately 100.00 m3s-1 is required at the Kpg Tanggol river gauging station, in order to maintain the acceptable salinity levels at the Pulau Musang freshwater pump house. However, the actual water discharge at the Kpg Tanggol boundary station should be higher, since the minimum discharge does not take into consideration the amount of water extraction by the Pulau Musang and SATU pump stations. Further analysis is required to execute the consequences of water extraction toward the salinity intrusion in the Terengganu estuary that coupled with projected sea level rise.

  17. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer.

    PubMed

    Rhee, Sang-Hoon

    2003-12-15

    The effect of calcium salt content in the poly(epsilon-caprolactone) (PCL)/silica nanocomposite on the nucleation and growth behavior of apatite layer in simulated body fluid (SBF) was investigated. The specimens were prepared with low (L) and high (H) concentrations of calcium nitrate tetrahydrate through a sol-gel method. After soaking in the SBF at 36.5 degrees C for 1 week, a densely packed apatite layer that had a smooth surface and a Ca/P ratio similar to bone was formed on specimens containing a low concentration of calcium salt while a loosely packed apatite layer with a rugged surface and a higher Ca/P ratio than that of bone occurred on specimens containing a high concentration of calcium salt. The results are explained in terms of the degree of supersaturation of apatite in the SBF, as determined by the concentrations of constituent ions of apatite and pH. The practical implication of the results is that a dense and bone-like apatite layer on the PCL/silica nanocomposite in vitro, and perhaps in vivo, can be achieved by adopting an appropriate calcium salt content. PMID:14624498

  18. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    PubMed

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious. PMID:25058808

  19. VOC emissions of Grey poplar leaves as affected by salt stress and different N sources.

    PubMed

    Teuber, M; Zimmer, I; Kreuzwieser, J; Ache, P; Polle, A; Rennenberg, H; Schnitzler, J-P

    2008-01-01

    Nitrogen nutrition and salt stress experiments were performed in a greenhouse with hydroponic-cultured, salt-sensitive Grey poplar (Populus x canescens) plants to study the combined influence of different N sources (either 1 mm NO(3) (-) or NH(4)(+)) and salt (up to 75 mm NaCl) on leaf gas exchange, isoprene biosynthesis and VOC emissions. Net assimilation and transpiration proved to be highly sensitive to salt stress and were reduced by approximately 90% at leaf sodium concentrations higher than 1,800 microg Na g dry weight (dw)(-1). In contrast, emissions of isoprene and oxygenated VOC (i.e. acetaldehyde, formaldehyde and acetone) were unaffected. There was no significant effect of combinations of salt stress and N source, and neither NO(3)(-) or NH(4)(+) influenced the salt stress response in the Grey poplar leaves. Also, transcript levels of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PcDXR) and isoprene synthase (PcISPS) did not respond to the different N sources and only responded slightly to salt application, although isoprene synthase (PcISPS) activity was negatively affected at least in one of two experiments, despite high isoprene emission rates. A significant salt effect was the strong reduction of leaf dimethylallyl diphosphate (DMADP) content, probably due to restricted availability of photosynthates for DMADP biosynthesis. Further consequences of reduced photosynthetic gas exchange and maintaining VOC emissions are a very high C loss, up to 50%, from VOC emissions related to net CO(2) uptake and a strong increase in leaf internal isoprene concentrations, with maximum mean values up to 6.6 microl x l(-1). Why poplar leaves maintain VOC biosynthesis and emission under salt stress conditions, despite impaired photosynthetic CO(2) fixation, is discussed. PMID:18211549

  20. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection.

    PubMed

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang

    2016-05-25

    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection. PMID:27158976

  1. Determining the Influence of Soil Water Content Variability on GPR Measurements with Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Buchner, Jens S.; Wollschläger, Ute; Schneider, Stefan; Roth, Kurt

    2010-05-01

    Soil water content in the vadose zone is a key quantity in the hydrological cycle. Atmospheric forcing and soil textural heterogeneity may lead to a high temporal and spatial variability of the soil water content. Due to the large difference between the dielectric permittivity of water and the further soil constituents soil matrix and air, soil water content can be observed using electromagnetic methods. GPR has become a widely used non-invasive method to investigate soil water content dynamics at scales ranging between a few meters and a few kilometers. In this study, the influence of soil water content variability on the GPR wave field is investigated quantitatively. We consider a two-dimensional model of a measurement site. Transient water content dynamics are simulated by numerical solutions of Richard's equation using rainfall measurements as atmospheric forcing. The resulting water content profiles are transformed into dielectric permittivity profiles by invoking the CRIM formula. For representative states of the permittivity distributions, GPR measurements are simulated numerically by solving Maxwell's equations. We show the effects on the GPR measurements for these states and for specific features of the water content distribution, for instance sharp infiltration fronts. In addition, we discuss the impact of the often made simplified assumption of a homogeneous permittivity distribution and the necessity to account for spatial soil water content variability in GPR evaluations.

  2. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  3. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  4. Comparison of hyperspectral retrievals with vegetation water indices for leaf and canopy water content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf and canopy water contents provide information for leaf area index, vegetation biomass, and wildfire fuel moisture content. Hyperspectral retrievals of leaf and canopy water content are determined from the relationship of spectral reflectance and the specific absorption coefficient of water ove...

  5. Salt-water encroachment, geology, and ground-water resources of Savannah area, Georgia and South Carolina

    USGS Publications Warehouse

    Counts, H.B.; Donsky, Ellis

    1964-01-01

    The Savannah area consists of about 2,300 square miles of the Coastal Plain along the coast of eastern Georgia and southeastern South Carolina. Savannah is near the center of the area. Most of the large ground-water developments are in or near Savannah. About 98 percent of the approximately 60 mgd of ground water used is pumped from the principal artesian aquifer, which is composed of about 600 feet of limestone of middle Eocene, Oligocene, and early Miocene ages. Industrial and other wells of large diameter yield as much as 4,200 gpm from the principal artesian aquifer. Pumping tests and flow-net analyses show that the coefficient of transmissibility averages about 200,000 gpd per ft in the immediate Savannah area. The specific capacity of wells in the principal artesian aquifer generally is about 50 gpm per ft of drawdown. The coefficient of storage of the principal artesian aquifer is about 0.0003 in the Savannah area. Underlying the Savannah area are a series of unconsolidated and semiconsolidated sediments ranging in age from Late Cretaceous to Recent. The Upper Cretaceous, Paleocene, and lower Eocene sediments supply readily available and usable water in other parts of the Coastal Plain, but although the character and physical properties of these formations are similar in the Savannah area to the same properties in other areas, the hydraulic and structural conditions appear to be different. Deep test wells are needed to evaluate the ground-water potential of these rocks. The lower part of the sediments of middle Eocene age acts as a confining layer to the vertical movement of water into or out of the principal artesian aquifer. Depending on the location and depth, the principal artesian aquifer consists of from one to five geologic units. The lower boundary of the aquifer is determined by a reduction in permeability and an increase in salt-water content. Although the entire limestone section is considered water bearing, most of the ground water used in the

  6. The salt and lipid composition of model cheeses modifies in-mouth flavour release and perception related to the free sodium ion content.

    PubMed

    Boisard, Lauriane; Andriot, Isabelle; Martin, Christophe; Septier, Chantal; Boissard, Vanessa; Salles, Christian; Guichard, Elisabeth

    2014-02-15

    Reducing salt and lipid levels in foodstuffs without any effect on acceptability is a major challenge, particularly because of their interactions with other ingredients. This study used a multimodal approach to understand the effects of changes to the composition of model cheeses (20/28, 24/24, 28/20 lipid/protein ratios, 0% and 1% added NaCl) on sodium ion mobility ((23)Na NMR), in-mouth sodium release and flavour perception. An increase in the salt content decreased cheese firmness and perceived hardness, and increased sodium ion mobility, in vivo sodium release and both saltiness and aroma perception. With the same amount of salt, a lower lipid/protein ratio increased the firmness of the cheeses, perceived hardness, and decreased sodium ion mobility, in vivo sodium release, saltiness and aroma perception. These findings suggest on one hand that it could be possible to increase saltiness perception by varying cheese composition, thus inducing differences in sodium ion mobility and in free sodium ion concentration, leading to differences in in-mouth sodium release and saltiness perception, and on the other hand that the reformulation of foods in line with health guidelines needs to take account of both salt content and the lipid/protein ratio. PMID:24128499

  7. DEHYDRATION OF LOW WATER CONTENT ETHANOL

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a...

  8. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  9. Salt Marsh Sediment Biogeochemical Response to the Deep Water Horizon BP Oil Spill (Skiff Island, LA, and Cat Island, Marsh Point, and Salt Pan Island, MS)

    NASA Astrophysics Data System (ADS)

    Guthrie, C. L.; McNeal, K. S.; Mishra, D. R.; Blakeney, G. A.

    2012-12-01

    The large scale impact of the Deep Water Horizon BP Oil Spill on biological communities can be better predicted by developing an understanding of how carbon loading from the spill is affecting the microbial and biological communities of salt marshes along the Mississippi and Louisiana Gulf Coast. Sediment biogeochemical processes that degrade enriched carbon pools through sulfate reduction are primarily responsible for the biological breakdown of spilled hydrocarbons (Shin et al., 2000). Determination of sulfide concentration in contaminated areas, therefore, allows for an assessment of the oil spill impact on salt marsh at Skiff Island, LA, and Marsh Point, Cat Island, and Salt Pan Island, MS. As a result of carbon loading, porewater hydrogen sulfide (H2S) concentrations are expected to show an increase in the largely anoxic wetland sediment, making the sediment more toxic and inhospitable to marsh vegetation (Alber et al., 2008). High sulfide levels due to carbon loading in hydrocarbon contaminated salt marshes cause microbial activity to increase at the plant rhizospere, leading to plant browning and die back (Eldridge and Morse 2000). Preliminary analysis of the Marsh Point study area was conducted in Fall 2010. Sediment cores indicated that sulfate reducing bacteria are significantly more active in contaminated sediments, producing sulfide concentrations 20x higher than in non-contaminated sediments. The difference in the sediment biogeochemistry between the contaminated site and non-contaminated site at Marsh Point, MS indicated that the effects of hydrocarbon contamination on sulfur cycling in salt marshes should be more spatially explored. In Fall 2011, the study was expanded to include Skiff Island, LA, and Cat Island, and Salt Pan Island, MS in addition to Marsh Point, MS. Sediment electrode profiles (H2S, O2, pH, and Eh), degree of hydrocarbon contamination (GC), grain size analysis, microbial community substrate level carbon utilization profiles, and

  10. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  11. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  12. Relationship between Water Content and Osmotic Potential of Lentinula edodes

    PubMed Central

    Cho, Sun-Young

    2008-01-01

    This study was conducted to understand how osmotic potentials in Lentinula edodes tissues are related to water contents and how they change while a mushroom matures. Water content and osmotic potential of L. edodes mushroom tissues from log cultivation and sawdust cultivation were measured and the relationships were analyzed. Osmotic potentials in the tissues were exponentially proportional to their moisture contents and there were strain differences in the potentials. Strain 290 has lower osmotic potential than strain 302, in the tissues at the same water content. As the mushrooms mature, tissue water content maintained ca 94% in head tissues and ca 90% in gills, but significantly decreased from ca 90% to 82% in the stipe tissues. Osmotic potential changes were similar to the tissue water content changes as the mushrooms mature. While osmotic potentials maintained -0.25 to -0.45 MPa in head and gill tissues, the potentials greatly decreased from -0.65 to -1.33MPa in stipe tissues. Our results show that osmotic potentials in L. edodes tissues are exponentially proportional to tissue water contents, that strains differ in osmotic potential related to water, and that stipe tissues can still have nutritional value when they mature. PMID:23997603

  13. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae)

    USGS Publications Warehouse

    Vasquez, E.A.; Glenn, E.P.; Brown, J.J.; Guntenspergen, G.R.; Nelson, S.G.

    2005-01-01

    A distinct, non-native haplotype of the common reed Phragmites australis has become invasive in Atlantic coastal Spartina marshes. We compared the salt tolerance and other growth characteristics of the invasive M haplotype with 2 native haplotypes (F and AC) in greenhouse experiments. The M haplotype retained 50% of its growth potential up to 0.4 M NaCl, whereas the F and AC haplotypes did not grow above 0.1 M NaCl. The M haplotype produced more shoots per gram of rhizome tissue and had higher relative growth rates than the native haplotypes on both freshwater and saline water treatments. The M haplotype also differed from the native haplotypes in shoot water content and the biometrics of shoots and rhizomes. The results offer an explanation for how the M haplotype is able to spread in coastal salt marshes and support the conclusion of DNA analyses that the M haplotype is a distinct ecotype of P. australis.

  14. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? – ?r)/(?s – ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  15. Intra-Abdominal Pressure Correlates with Extracellular Water Content

    PubMed Central

    Dąbrowski, Wojciech; Kotlinska-Hasiec, Edyta; Jaroszynski, Andrzej; Zadora, Przemyslaw; Pilat, Jacek; Rzecki, Ziemowit; Zaluska, Wojciech; Schneditz, Daniel

    2015-01-01

    Background Secondary increase in intra-abdominal pressure (IAP) may result from extra-abdominal pathology, such as massive fluid resuscitation, capillary leak or sepsis. All these conditions increase the extravascular water content. The aim of this study was to analyze the relationship between IAP and body water volume. Material and Methods Adult patients treated for sepsis or septic shock with acute kidney injury (AKI) and patients undergoing elective pharyngolaryngeal or orthopedic surgery were enrolled. IAP was measured in the urinary bladder. Total body water (TBW), extracellular water content (ECW) and volume excess (VE) were measured by whole body bioimpedance. Among critically ill patients, all parameters were analyzed over three consecutive days, and parameters were evaluated perioperatively in surgical patients. Results One hundred twenty patients were studied. Taken together, the correlations between IAP and VE, TBW, and ECW were measured at 408 time points. In all participants, IAP strongly correlated with ECW and VE. In critically ill patients, IAP correlated with ECW and VE. In surgical patients, IAP correlated with ECW and TBW. IAP strongly correlated with ECW and VE in the mixed population. IAP also correlated with VE in critically ill patients. ROC curve analysis showed that ECW and VE might be discriminative parameters of risk for increased IAP. Conclusion IAP strongly correlates with ECW. PMID:25849102

  16. Grain orientation in high Tc superconductors by molten salt powder synthesis

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Sudhakar; Schulze, Walter A.

    1991-01-01

    The molten salt or the flux method is used to fabricate a grain oriented YBa2Cu3O(7-x) (123) superconductor. Here we suggest a two-stage approach in using the 'green phase', Y2BaCuO5 (211), as seed crystals in the formation of YBa2Cu3O(7-x). The process uses Y2BaCuO5 formed by molten salt synthesis. The Y2BaCuO5 phase was observed to be stable in water and in most of the salt systems. Salt processing can form a small quantity of anisotropic particles of Y2BaCuO5. This material can form the 123 phase when tape cast and sintered in the presence of the required levels of Ba and Cu.

  17. The Pressure induced by salt crystallization in confinement

    NASA Astrophysics Data System (ADS)

    Desarnaud, J.; Bonn, D.; Shahidzadeh, N.

    2016-08-01

    Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials.

  18. The Pressure induced by salt crystallization in confinement.

    PubMed

    Desarnaud, J; Bonn, D; Shahidzadeh, N

    2016-01-01

    Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials. PMID:27493020

  19. The Pressure induced by salt crystallization in confinement

    PubMed Central

    Desarnaud, J.; Bonn, D.; Shahidzadeh, N.

    2016-01-01

    Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials. PMID:27493020

  20. Carbonhydrate Content and Root Growth in Seeds Germinated Under Salt Stress: Implications for Seed Conditioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugars and sugar alcohols have well documented roles in salt tolerance in whole plants and maturing seeds. Less is known, however, about possible effects of these compounds during germination. Seeds from mannitol-accumulating salt-tolerant celery [Apium graveloens L. var. dulce (P. Mill.) DC], non...

  1. Salt Pumping by Voltage-Gated Nanochannels.

    PubMed

    Tagliazucchi, Mario; Szleifer, Igal

    2015-09-17

    This Letter investigates voltage-gated nanochannels, where both the potential applied to the conductive membrane containing the channel (membrane potential) and the potential difference between the solutions at both sides of the membrane (transmembrane potential) are independently controlled. The predicted conductance characteristics of these fixed-potential channels dramatically differ from those of the widely studied fixed-charge nanochannels, in which the membrane is insulating and has a fixed surface charge density. The difference arises because the transmembrane potential induces an inhomogeneous charge distribution on the surface of fixed-potential nanochannels. This behavior, related to bipolar electrochemistry, has some interesting and unexpected consequences for ion transport. For example, continuously oscillating the transmembrane potential, while holding the membrane potential at the potential for which it has zero charge in equilibrium, creates fluxes of neutral salt (fluxes of anions and cations in the same direction and number) through the channel, which is an interesting phenomenon for desalination applications. PMID:26722719

  2. Intranasal substituted cathinone "bath salts" psychosis potentially exacerbated by diphenhydramine.

    PubMed

    Gunderson, Erik W; Kirkpatrick, Matthew G; Willing, Laura M; Holstege, Christopher P

    2013-01-01

    In this report, we describe a case of intranasal "bath salts"-associated psychosis. Symptoms developed during a 3-week binge and were potentially exacerbated by oral diphenhydramine taken for insomnia. The clinical case conference includes expert discussion from 3 disciplines: emergency medicine toxicology, behavioral pharmacology, and addiction medicine. It is hoped that the discussion will provide insight into the clinical aspects and challenges of addressing acute substituted cathinone toxicity, including acute psychosis, a major adverse effect of bath salts consumption. PMID:23732955

  3. Nasal Absorption of Insulin: Enhancement by Hydrophobic Bile Salts

    NASA Astrophysics Data System (ADS)

    Gordon, G. S.; Moses, A. C.; Silver, R. D.; Flier, J. S.; Carey, M. C.

    1985-11-01

    We demonstrate that therapeutically useful amounts of insulin are absorbed by the nasal mucosa of human beings when administered as a nasal spray with the common bile salts. By employing a series of bile salts with subtle differences in the number, position, and orientation of their nuclear hydroxyl functions and alterations in side chain conjugation, we show that adjuvant potency for nasal insulin absorption correlates positively with increasing hydrophobicity of the bile salts' steroid nucleus. As inferred from studies employing various concentrations of unconjugated deoxycholate and a constant dose of insulin, insulin absorption begins at the aqueous critical micellar concentration of the bile salt and becomes maximal when micelle formation is well established. These and other data are consistent with the complementary hypotheses that bile salts act as absorption adjuvants by (i) producing high juxtamembrane concentrations of insulin monomers via solubilization in mixed bile salt micelles and (ii) forming reverse micelles within nasal membranes, through which insulin monomers can diffuse through polar channels from the nares into the blood stream.

  4. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    NASA Astrophysics Data System (ADS)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  5. REMOTE ANALYSIS OF HIGH-TRITIUM-CONTENT WATER

    SciTech Connect

    Diprete, D; Raymond Sigg, R; Leah Arrigo, L; Donald Pak, D

    2007-08-07

    Systems to safely analyze for tritium in moisture collected from glovebox atmospheres are being developed for use at Savannah River Site (SRS) tritium facilities. Analysis results will guide whether the material contains sufficient tritium for economical recovery, or whether it should be stabilized for disposal as waste. In order to minimize potential radiation exposures that could occur in handling and diluting high-tritium-content water, SRS sought alternatives to the process laboratory's routine analysis by liquid-scintillation counting. The newer systems determine tritium concentrations by measuring bremsstrahlung radiation induced by low-energy beta interactions. One of the systems determines tritium activity in liquid streams, the other determines tritium activity in water vapor. Topics discussed include counting results obtained by modeling and laboratory testing and corrections that are made for low-energy photon attenuation.

  6. Salting out the polar polymorph: Analysis by alchemical solvent transformation

    NASA Astrophysics Data System (ADS)

    Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D.; Peters, Baron

    2014-01-01

    We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m2 and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m2. Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) < J(γ, brine) < J(α, water). For γ-glycine nuclei, Debye-Hückel theory qualitatively, but not quantitatively, captures the effect of salt addition. Only the alchemical solvent transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.

  7. Thermodynamics of binding water and solute to powdered long-chain salts of fatty acids.

    PubMed

    Mahapatra, P K; Chattoraj, D K

    1994-10-01

    Hydration of powdered fatty acids and their salts has been studied both in presence and absence of neutral salts, sucrose and urea using the isopiestic vapour pressure technique. Moles of water vapour adsorbed per mole or kg of soaps like sodium palmitate, sodium stearate, sodium myristate and sodium laurate have been measured in presence and absence of salts and compared with that of detergents (SDS, CTAB, DTAB and MTAB). For each case of positive excess adsorption of water vapour and negative excess adsorption of inorganic salts, urea and sucrose to different soaps, the standard free energy change (delta G degrees) per kg of substrate in bringing the bulk mole fraction from zero to unity have been calculated using an appropriate thermodynamic equation and the values so obtained have been compared critically. PMID:7851944

  8. [Comparison of conductivity-water content curve and visual methods for ascertaintation of the critical water content of O/W microemulsions formation].

    PubMed

    Xiang, Da-wei; Tang, Tian-tian; Peng, Jin-fei; Li, Lan-lin; Sun, Xiao-bo; Xiang, Da-xiong

    2010-08-01

    This study is to screen 23 blank O/W type microemulsion (ME) samples, that is 15 samples from our laboratory, and 8 samples from literature; compare the conductivity-water content curve (CWCC) method and visual method in determining the critical water content during O/W type MEs' formation, to analyze the deficiency and the feasibility of visual method and to exploxe scientific meanings of CWCC method in judging the critical water content of O/W type MEs during formation. The results show that there is a significant difference between the theoretical feasible CWCC method and visual method in determining the critical water content (P<0.001), and the results judged by conductivity is higher than that by eye-based water content. Therefore, this article firmly confirmed the shortcomings of visual method and suggested that the eye-base "critical water content" may falls into continuous ME stage during O/W MEs' formation. Further more, the CWCC method has theoretical feasibility and scientific meanings in determining the critical water content of O/W type MEs during formation. PMID:21351595

  9. Comparison of hyperspectral retrievals with vegetation water indices for leaf and canopy water content

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond, Jr.; Daughtry, Craig S. T.; Qu, John J.; Wang, Lingli; Hao, Xianjun

    2011-09-01

    Leaf and canopy water contents provide information for leaf area index, vegetation biomass, and wildfire fuel moisture content. Hyperspectral retrievals of leaf and canopy water content are determined from the relationship of spectral reflectance and the specific absorption coefficient of water over the wavelength range of a water absorption feature. Vegetation water indices such as the Normalized Difference Water Index [NDWI = (R850 - R1240)/(R850 + R1240)] and Normalized Difference Infrared Index [NDII = (R850 - R1650)/(R850 + R1650)] may be calculated from multispectral sensors such as Landsat Thematic Mapper, SPOT HRG, or MODIS. Predicted water contents from hyperspectral data were much greater than measured water contents for both leaves and canopies. Furthermore, simulated spectral reflectances from the PROSPECT and SAIL models also had greater retrieved leaf and canopy water contents compared to the inputs. Used simply as an index correlated to leaf and canopy water contents, hyperspectral retrievals had better predictive capability than NDII or NDWI. Atmospheric correction algorithms estimate canopy water content in order to estimate the amount of water vapor. These results indicate that estimated canopy water contents should have a systematic bias, even though this bias does not affect retrieved surface reflectances from hyperspectral data. Field campaigns in a variety of vegetation functional types are needed to calibrate both hyperspectral retrievals and vegetation water indices.

  10. Ice Particle Impact on Cloud Water Content Instrumentation

    NASA Technical Reports Server (NTRS)

    Emery, Edward F.; Miller, Dean R.; Plaskon, Stephen R.; Strapp, Walter; Lillie, Lyle

    2004-01-01

    Determining the total amount of water contained in an icing cloud necessitates the measurement of both the liquid droplets and ice particles. One commonly accepted method for measuring cloud water content utilizes a hot wire sensing element, which is maintained at a constant temperature. In this approach, the cloud water content is equated with the power required to keep the sense element at a constant temperature. This method inherently assumes that impinging cloud particles remain on the sensing element surface long enough to be evaporated. In the case of ice particles, this assumption requires that the particles do not bounce off the surface after impact. Recent tests aimed at characterizing ice particle impact on a thermally heated wing section, have raised questions about the validity of this assumption. Ice particles were observed to bounce off the heated wing section a very high percentage of the time. This result could have implications for Total Water Content sensors which are designed to capture ice particles, and thus do not account for bouncing or breakup of ice particles. Based on these results, a test was conducted to investigate ice particle impact on the sensing elements of the following hot-wire cloud water content probes: (1) Nevzorov Total Water Content (TWC)/Liquid Water Content (LWC) probe, (2) Science Engineering Associates TWC probe, and (3) Particle Measuring Systems King probe. Close-up video imaging was used to study ice particle impact on the sensing element of each probe. The measured water content from each probe was also determined for each cloud condition. This paper will present results from this investigation and attempt to evaluate the significance of ice particle impact on hot-wire cloud water content measurements.

  11. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening.

    PubMed

    Upreti, P; McKay, L L; Metzger, L E

    2006-02-01

    Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during

  12. Betalain rich functional extract with reduced salts and nitrate content from red beetroot (Beta vulgaris L.) using membrane separation technology.

    PubMed

    Mereddy, Ram; Chan, Adeline; Fanning, Kent; Nirmal, Nilesh; Sultanbawa, Yasmina

    2017-01-15

    An initial laboratory-scale evaluation of separation characteristics of membranes with nominal molecular weight cut-offs (NMWCO) ranging from 30kD down to 0.5kD indicated effective separation of betalains in the 0.5kD region. Subsequent pilot-level trials using 1kD, loose reverse osmosis (LRO) and reverse osmosis (RO) spiral-wound membranes showed LRO membrane to be very efficient with up to 96% salt and 47% other dissolved solids removed while retaining majority of the pigment (∼98%) in the betalain rich extract (BRE). The total betalain content in the BRE increased up to 46%, the highest recovery reported so far at pilot scale level. Interestingly, more than 95% of the nitrates were removed from the BRE after the three diafiltrations. These studies indicate that membrane technology is the most efficient technique to produce BRE with highly reduced amounts of salts and nitrate content. PMID:27542480

  13. Dissipation behavior of organophosphorus pesticides during the cabbage pickling process: residue changes with salt and vinegar content of pickling solution.

    PubMed

    Lu, Yuele; Yang, Zhonghua; Shen, Luyao; Liu, Zhenmin; Zhou, Zhiqiang; Diao, Jinling

    2013-03-01

    In this experiment, the behavior of 10 pesticides in three different cabbage pickling treatments has been studied. The brine used for pickling was made up with different salt and vinegar contents to determine the influence of different pickling solutions on pesticide dissipation and distribution. A modified QuECHERS and SPE method was established for the analysis of the pesticides in the cabbage and brine. It was found that different pesticides showed different dissipation patterns and finally represented dissimilar residue levels in the cabbage and brine. Statistical analysis was performed to compare the distinctions of these pesticides between each treatment and proved that salt content and pH value had certain influence on the dissipation and distribution of these pesticides during the pickling process. The data from this experiment would help to control pesticide residues in pickled cabbage and prevent potential risk to human health and environmental safety. PMID:23402557

  14. Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Ruskowitz, J. A.; Tyler, S. W.; Childress, A. E.

    2013-12-01

    Salt-gradient solar ponds are low-cost, large-scale solar collectors with integrated storage that can be used as an energy source in many thermal systems. For instance, solar ponds have proven to be a promising solution to drive thermal desalination in arid zones. However, in zones with limited water availability, where evaporation constrains the use of solar ponds in areas with the greatest potential for solar energy development, evaporation losses at the surface of the pond constrain their use. Therefore, evaporation represents a significant challenge for development of these low-cost solar systems in arid settings. In this investigation, different transparent floating elements were tested to suppress evaporation: flat discs, hemispheres, and a continuous cover. Flat discs were the most effective evaporation suppression element. Evaporation decreased from 4.8 to 2.5 mm/day when 88% of the pond was covered with the flat discs. In addition, the highest temperature increased from 34 to 43°C and the heat content increased from 179 to 220 MJ (a 22% increase). Reduced evaporative losses at the surface of the pond resulted in lower conductive losses from the storage zone and increased the collected energy. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in stored heat allows more energy to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds.

  15. Electroviscous effect of concentrated suspensions in salt-free media: water dissociation and CO2 influence.

    PubMed

    Ruiz-Reina, Emilio; Carrique, Félix

    2010-05-15

    The electroviscous effect of realistic salt-free colloidal suspensions is analyzed theoretically. We study the influence on the electroviscous coefficient of the surface charge density and the particle volume fraction. By realistic salt-free colloidal suspensions we mean aqueous suspensions which have been deionized as far as possible without any electrolyte added during the preparation, in which the only ions present can be (i) the so-called added counterions, coming from the ionization of surface groups and thus counterbalancing the surface charge, (ii) the H(+) and OH(-) ions from water dissociation, and (iii) the ions produced by the atmospheric CO(2) contamination. Our model is elaborated in the framework of a classical mean-field theory, using the spherical cell model approach and the appropriate local equilibrium reactions. It is valid for arbitrary surface charge density and particle concentrations. We have also made a new interpretation of the electroviscous coefficient: the electroviscous coefficient p of the suspension is the ratio between the electrohydrodynamic and the pure hydrodynamic contributions to the specific viscosity of the suspension. The numerical results show that it is necessary to consider the water dissociation influence for volume fractions lower than approximately 10(-3), whereas the atmospheric contamination, if the suspensions are open to the atmosphere, is important in the region of volume fractions φ<0.03. PMID:20231023

  16. Preliminary assestment of lint cotton water content in gin-drying temperature studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior studies to measure total water (free and bound) in lint cotton by Karl Fischer Titration showed the method is more accurate and precise than moisture content by standard oven drying. The objective of the current study was to compare the moisture and total water contents from five cultivars de...

  17. Investigation of the Ionic Hydration in Aqueous Salt Solutions by Soft X-ray Emission Spectroscopy.

    PubMed

    Jeyachandran, Y L; Meyer, F; Benkert, A; Bär, M; Blum, M; Yang, W; Reinert, F; Heske, C; Weinhardt, L; Zharnikov, M

    2016-08-11

    Understanding the molecular structure of the hydration shells and their impact on the hydrogen bond (HB) network of water in aqueous salt solutions is a fundamentally important and technically relevant question. In the present work, such hydration effects were studied for a series of representative salt solutions (NaCl, KCl, CaCl2, MgCl2, and KBr) by soft X-ray emission spectroscopy (XES) and resonant inelastic soft X-ray scattering (RIXS). The oxygen K-edge XES spectra could be described with three components, attributed to initial state HB configurations in pure water, water molecules that have undergone an ultrafast dissociation initiated by the X-ray excitation, and water molecules in contact with salt ions. The behavior of the individual components, as well as the spectral shape of the latter component, has been analyzed in detail. In view of the role of ions in such effects as protein denaturation (i.e., the Hofmeister series), we discuss the ion-specific nature of the hydration shells and find that the results point to a predominant role of anions as compared to cations. Furthermore, we observe a concentration-dependent suppression of ultrafast dissociation in all salt solutions, associated with a significant distortion of intact HB configurations of water molecules facilitating such a dissociation. PMID:27442708

  18. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  19. Pure water injection into porous rock with superheated steam and salt in a solid state

    NASA Astrophysics Data System (ADS)

    Montegrossi, G.; Tsypkin, G.; Calore, C.

    2012-04-01

    Most of geothermal fields require injection of fluid into the hot rock to maintain pressure and productivity. The presence of solid salt in porous space may cause an unexpected change in the characteristics of the reservoir and produced fluids, and dramatically affect the profitability of the project. We consider an injection problem of pure water into high temperature geothermal reservoir, saturated with superheated vapour and solid salt. Pure water moves away from injection point and dissolves solid salt. When salty water reaches the low-pressure hot domain, water evaporation occurs and, consequently, salt precipitates. We develop a simplified analytical model of the process and derive the similarity solutions for a 1-D semi-infinite reservoir. These solutions are multi-valued and describe the reduction in permeability and porosity due to salt precipitation at the leading boiling front. If the parameters of the system exceed critical values, then similarity solution ceases to exist. We identify this mathematical behaviour with reservoir sealing in the physical system. The TOUGH2-EWASG code has been used to verify this hypothesis and investigate the precipitate formation for an idealized bounded 1-D geothermal system of a length of 500 m with water injection at one extreme and fluid extraction at the other one. Both boundaries are kept at constant pressure and temperature. The result for the semi-infinite numerical model show that the monotonic grow of the solid salt saturation to reach asymptotic similarity solution generally occurs over a very large length starting from the injection point. Reservoir sealing occurs if solid salt at the initial state occupies a considerable part of the porous space. Numerical experiments for the bounded 500 m system demonstrate that a small amount of salt is enough to get reservoir sealing. Generally, salt tend to accumulate near the production well, and salt plug forms at the elements adjacent to the extraction point. This type

  20. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Scheidegger, Y.; Brennwald, M. S.; Fleitmann, D.; Figura, S.; Wieler, R.; Kipfer, R.

    2013-01-01

    In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  1. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na(+)/K(+) Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress.

    PubMed

    Mostofa, Mohammad G; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na(+) and the Na(+)/K(+) ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  2. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under