These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The aquaporins. A family of water channel proteins  

Microsoft Academic Search

The recent discovery of aquaporins, a family of highly conserved water channel proteins, which are expressed in both eukaryotes and prokaryotes, has provoked a re-evaluation of the physiology of water transport in all organisms. So far, seven distinct aquaporins have been characterised in mammals, but highly homologous family members have also been found in amphibians, insects, plants and bacteria. These

D. L Connolly; C. M Shanahan; P. L Weissberg

1998-01-01

2

Prediction of functional residues in water channels and related proteins.  

PubMed Central

In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

1998-01-01

3

Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation.  

PubMed

We functionalized double-walled carbon nanotubes (DWCNTs) as artificial water channel proteins. For the first time, molecular dynamics simulations show that the bilayer structure of DWCNTs is advantageous for carbon nanotube based transmembrane channels. The shielding of the amphiphilic outer layer could guarantee biocompatibility of the synthetic channel and protect the inner tube (functional part) from disturbance of the membrane environment. This novel design could promote more sophisticated nanobiodevices which could function in a bioenvironment with high biocompatibility. PMID:19245237

Liu, Bo; Li, Xiaoyi; Li, Baolei; Xu, Bingqian; Zhao, Yuliang

2009-04-01

4

Developmental Gene Expression and Tissue Distribution of the CHIP28 Water Channel Protein  

Microsoft Academic Search

The CHIP28 water channel is a major component of red cell and renal tubule membranes; however, its ontogeny and tissue distribution remain undefined. Three patterns of expression were identified when CHIP28 mRNA was surveyed by in situ hybridization histochemistry in rats between embryonic day 14 and maturity. (i) CHIP28 mRNA and protein were very abundant in hematopoietic tissue and kidneys

Carolyn Bondy; Edward Chin; Barbara L. Smith; Gregory M. Preston; Peter Agre

1993-01-01

5

Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z  

PubMed Central

The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ?800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

2007-01-01

6

Immunolocalization of the Mercurial-Insensitive Water Channel and Glycerol Intrinsic Protein in Epithelial Cell Plasma Membranes  

Microsoft Academic Search

Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react. By immunofluorescence, MIWC and

Antonio Frigeri; Michael A. Gropper; C. W. Turck; A. S. Verkman

1995-01-01

7

Mutations in AQP5, Encoding a Water-Channel Protein, Cause Autosomal-Dominant Diffuse Nonepidermolytic Palmoplantar Keratoderma  

PubMed Central

Autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma is characterized by the adoption of a white, spongy appearance of affected areas upon exposure to water. After exome sequencing, missense mutations were identified in AQP5, encoding water-channel protein aquaporin-5 (AQP5). Protein-structure analysis indicates that these AQP5 variants have the potential to elicit an effect on normal channel regulation. Immunofluorescence data reveal the presence of AQP5 at the plasma membrane in the stratum granulosum of both normal and affected palmar epidermis, indicating that the altered AQP5 proteins are trafficked in the normal manner. We demonstrate here a role for AQP5 in the palmoplantar epidermis and propose that the altered AQP5 proteins retain the ability to form open channels in the cell membrane and conduct water. PMID:23830519

Blaydon, Diana C.; Lind, Lisbet K.; Plagnol, Vincent; Linton, Kenneth J.; Smith, Francis J.D.; Wilson, Neil J.; McLean, W.H. Irwin; Munro, Colin S.; South, Andrew P.; Leigh, Irene M.; O'Toole, Edel A.; Lundstrom, Anita; Kelsell, David P.

2013-01-01

8

The Role of Water Channel Proteins in Facilitating Recovery of Leaf Hydraulic Conductance from Water Stress in Populus trichocarpa  

PubMed Central

Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf. PMID:25406088

Laur, Joan; Hacke, Uwe G.

2014-01-01

9

A Simple Water Channel  

ERIC Educational Resources Information Center

Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

White, A. S.

1976-01-01

10

Aquaporin water channels in mammals  

Microsoft Academic Search

Water channels, aquaporins (AQPs), are a family of small integral plasma membrane proteins that primarily transport water\\u000a across the plasma membrane. There are 13 members (AQP0–12) in humans. This number is final as the human genome project has\\u000a been completed. They are divided into three subgroups based on the primary sequences: water selective AQPs (AQP0, 1, 2, 4,\\u000a 5, 6,

Kenichi Ishibashi; Shigeki Hara; Shintaro Kondo

2009-01-01

11

Effect of Atractylodes macrocephala on Hypertonic Stress-Induced Water Channel Protein Expression in Renal Collecting Duct Cells.  

PubMed

Edema is a symptom that results from the abnormal accumulation of fluid in the body. The cause of edema is related to the level of aquaporin (AQP)2 protein expression, which regulates the reabsorption of water in the kidney. Edema is caused by overexpression of the AQP2 protein when the concentration of Na(+) in the blood increases. The rhizome of Atractylodes macrocephala has been used in traditional oriental medicine as a diuretic drug; however, the mechanism responsible for the diuretic effect of the aqueous extract from A. macrocephala rhizomes (AAMs) has not yet been identified. We examined the effect of the AAM on the regulation of water channels in the mouse inner medullary collecting duct (mIMCD)-3 cells under hypertonic stress. Pretreatment of AAM attenuates a hypertonicity-induced increase in AQP2 expression as well as the trafficking of AQP2 to the apical plasma membrane. Tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor known to play a central role in cellular homeostasis by regulating the expression of some proteins, including AQP2. Western immunoblot analysis demonstrated that the protein and mRNA expression levels of TonEBP also decrease after AAM treatment. These results suggest that the AAM has a diuretic effect by suppressing water reabsorption via the downregulation of the TonEBP-AQP2 signaling pathway. PMID:23258995

Lee, Yong Pyo; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Hye Yoom; Kang, Dae Gill; Lee, Ho Sub

2012-01-01

12

Aquaporins in Saccharomyces: Characterization of a second functional water channel protein  

PubMed Central

The Saccharomyces cerevisiae genome database contains two ORFs with homology to aquaporins, AQY1 and AQY2. Aqy1p has been shown to be a functional aquaporin in some strains, such as ?1278b. AQY2 is disrupted by a stop codon in most strains; however, ?1278b has an intact ORF. Because ?1278b Aqy2p has an intracellular localization in Xenopus oocytes and in yeast, other strains of yeast were examined. Aqy2p from Saccharomyces chevalieri has a single amino acid in the third transmembrane domain (Ser-141) that differs from ?1278b Aqy2p (Pro-141). S. chevalieri Aqy2p is a functional water channel in oocytes and traffics to the plasma membrane of yeast. The ?1278b parental strain, the aqy1-aqy2 double null yeast, and null yeast expressing S. chevalieri Aqy2p were examined under various conditions. Comparison of these strains revealed that the aquaporin null cells were more aggregated and their surface was more hydrophobic. As a result, the aquaporin null cells were more flocculent and more efficient at haploid invasive growth. Despite its primary intracellular localization, ?1278b Aqy2p plays a role in yeast similar to Aqy1p and S. chevalieri Aqy2p. In addition, Aqy1p and Aqy2p can affect cell surface properties and may provide an advantage by dispersing the cells during starvation or during sexual reproduction. PMID:11158584

Carbrey, Jennifer M.; Bonhivers, Melanie; Boeke, Jef D.; Agre, Peter

2001-01-01

13

The Fusobacterium nucleatum major outer-membrane protein (FomA) forms trimeric, water-filled channels in lipid bilayer membranes.  

PubMed

The pore-forming activity of the major outer-membrane protein FomA of the anaerobic Fusobacterium nucleatum was studied in artificial lipid bilayer membranes. FomA was isolated from F. nucleatum strains Fev1, ATCC 10953, and ATCC 25586 by extraction with lithium dodecyl sulfate and lithium chloride and had an apparent molecular mass of about 40 kDa. When solubilized at low temperatures, the protein ran with an apparent molecular mass of about 62 kDa on SDS/PAGE. Cross-linking experiments and two-dimensional SDS/PAGE gave evidence that the 62-kDa protein band represented the trimeric form of FomA. The protein trimers were susceptible to SDS and temperature. The stability of the porin trimers varied among the strains. The properties of the FomA channels were studied in reconstitution experiments with black lipid bilayer membranes. The F. nucleatum porins formed channels with single-channel conductances in the range 0.66-1.30 nS in M KCl. The single-channel conductance was a function of the mobilities of the ions present in the aqueous solution bathing the bilayer membrane. This means that FomA forms general diffusion channels since (a) the conductance showed a linear dependence on the salt concentration, (b) the ion selectivity was small and varied for the three strains, and (c) the channels did not exhibit any binding site for maltotriose or triglycine. The water-filled channel was voltage dependent, and conductance decrements were observed at transmembrane potentials of +/- 50 mV. The conductance decrement steps were about one-third of the total conductance of a functional unit in its fully 'open' state. This strongly suggests that the trimer is the functional unit of the porin. PMID:7588760

Kleivdal, H; Benz, R; Jensen, H B

1995-10-01

14

FAITH Water Channel Flow Visualization  

NASA Video Gallery

Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

15

Aquaporin-1, nothing but a water channel.  

PubMed

Aquaporin-1 (AQP1) is a membrane channel that allows rapid water movement driven by a transmembrane osmotic gradient. It was claimed to have a secondary function as a cyclic nucleotide-gated ion channel. However, upon reconstitution into planar bilayers, the ion channel exhibited a 10-fold lower single channel conductance than in Xenopus oocytes and a 100-fold lower open probability (<10(-6)) of doubtful physiological significance (Saparov, S. M., Kozono, D., Rothe, U., Agre, P., and Pohl, P. (2001) J. Biol. Chem. 276, 31515-31520). Investigating AQP1 expressed in human embryonic kidney cells, we now have shown that the discrepancy is not due to alterations of AQP1 properties upon reconstitution into bilayers but rather to regulatory processes of the oocyte expression system that may have been misinterpreted as AQP1 ion channel activity. As confirmed by laser scanning reflection microscopy, from 0.8 to 1.4 x 10(6) AQP1 copies/cell contributed to osmotic cell swelling. The proper plasma membrane localization was confirmed by observing the fluorescence of the N-terminal yellow fluorescent protein tag. Whole-cell patch clamp experiments of wild type or tagged AQP1-expressing cells revealed that neither cGMP nor cAMP mediated ion channel activity. The lack of significant CNG ion channel activity rules out a secondary role of AQP1 water channels in cellular signal transduction. PMID:14701836

Tsunoda, Satoshi P; Wiesner, Burkhard; Lorenz, Dorothea; Rosenthal, Walter; Pohl, Peter

2004-03-19

16

Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across a Rhesus protein channel and lipid membranes.  

PubMed

As a member of the ubiquitous ammonium transporter/methylamine permease/Rhesus (Amt/MEP/Rh) family of membrane protein channels, the 50 kDa Rhesus channel (Rh50) has been implicated in ammonia (NH(3)) and, more recently, also in carbon dioxide (CO(2)) transport. Here we present molecular dynamics simulations of spontaneous full permeation events of ammonia and carbon dioxide across Rh50 from Nitrosomonas europaea. The simulations show that Rh50 is functional in its crystallographic conformation, without the requirement for a major conformational change or the action of a protein partner. To assess the physiological relevance of NH(3) and CO(2) permeation across Rh50, we have computed potentials of mean force (PMFs) and permeabilities for NH(3) and CO(2) flux across Rh50 and compare them to permeation through a wide range of lipid membranes, either composed of pure lipids or composed of lipids plus an increasing cholesterol content. According to the PMFs, Rh50 is expected to enhance NH(3) flux across dense membranes, such as membranes with a substantial cholesterol content. Although cholesterol reduces the intrinsic CO(2) permeability of lipid membranes, the CO(2) permeabilities of all membranes studied here are too high to allow significant Rh50-mediated CO(2) flux. The increased barrier in the PMF for water permeation across Rh50 shows that Rh50 discriminates 40-fold between water and NH(3). Thus, Rh50 channels complement aquaporins, allowing the cell to regulate water and NH(3) flux independently. The PMFs for methylamine and NH(3) are virtually identical, suggesting that methylamine provides an excellent model for NH(3) in functional experiments. PMID:20815391

Hub, Jochen S; Winkler, Fritz K; Merrick, Mike; de Groot, Bert L

2010-09-29

17

Computational optimization of synthetic water channels.  

SciTech Connect

Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic biomimetic membranes for applications in water purification, energy, and catalysis.

Rogers, David Michael; Rempe, Susan L. B.

2012-12-01

18

Aquaporin water channels - from atomic structure to clinical medicine  

Microsoft Academic Search

The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein. AQP1 is selectively permeated by water driven by osmotic gradients. The atomic structure of human AQP1 has recently been defined. Each subunit of the tetramer contains an individual aqueous

Peter Agre; Landon S. King; Masato Yasui; Wm B. Guggino; Ole Petter Ottersen; Yoshinori Fujiyoshi; Andreas Engel; Søren Nielsen

2002-01-01

19

Channel incision and water quality  

NASA Astrophysics Data System (ADS)

Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were superior, as it supported almost twice as many species and yielded more than four times as much biomass per unit of effort. These results suggest that channel incision is associated with a complex of ecological stressors that includes channel erosion, hydrologic perturbation, and water quality and physical habitat degradation. Ecological engineering of stream corridors must focus at least as much energy on mediating hydrologic perturbations and managing habitat quality as on pollutant loadings.

Shields, F. D.

2009-12-01

20

The plasma membrane of Arabidopsis thaliana contains a mercury- insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP  

Microsoft Academic Search

Plant cells contain proteins that are members of the major intrinsic protein (MIP) family, an ancient family of membrane channel proteins characterized by six membrane-spanning domains and two asparagine-proline-alanine (NPA) amino acid motifs in the two halves of the protein. We recently demonstrated that y- TIP, one of the MIP homologs found in the vacuolar membrane of plant cells, is

Mark J. Daniels; T. Erik Mirkov; Maarten J. Chrispeels

1994-01-01

21

Protein patterning in polycarbonate microfluidic channels  

NASA Astrophysics Data System (ADS)

In this work protein patterning has been achieved within a polycarbonate microfluidic device. Channel structures were first coated with plasma polymerized allylamine (ALAPP) followed by the "cloud point" deposition of polyethylene oxide (PEO), a protein repellent molecule. Excimer laser micromachining was used to pattern the PEO to control protein localization. Subsequent removal of a sacrificial layer of polycarbonate resulted in the patterned polymer coating only in the channels of a simple fluidic device. Following a final diffusion bonding fabrication step the devices were filled with a buffer containing Streptavidin conjugated with fluorescein, and visualized under a confocal fluorescent microscope. This confirmed that protein adhesion occurred only in laser patterned areas. The ability to control protein adhesion in microfludic channels leads to the possibility of generating arrays of proteins or cells within polymer microfludics for cheap automated biosensors and synthesis systems.

Thomson, David A.; Hayes, Jason P.; Thissen, Helmut

2004-03-01

22

Allosteric mechanism of water channel gating by Ca2+-calmodulin  

PubMed Central

Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits. PMID:23893133

Reichow, Steve L.; Clemens, Daniel M.; Freites, J. Alfredo; Nemeth-Cahalan, Karin L.; Heyden, Matthias; Tobias, Douglas J.; Hall, James E.; Gonen, Tamir

2013-01-01

23

Estimating the dielectric constant of the channel protein and pore  

Microsoft Academic Search

When modelling biological ion channels using Brownian dynamics (BD) or Poisson–Nernst–Planck theory, the force encountered\\u000a by permeant ions is calculated by solving Poisson’s equation. Two free parameters needed to solve this equation are the dielectric\\u000a constant of water in the pore and the dielectric constant of the protein forming the channel. Although these values can in\\u000a theory be deduced by

Jin Aun Ng; Taira Vora; Vikram Krishnamurthy; Shin-Ho Chung

2008-01-01

24

Membrane-Protein Interactions in Mechanosensitive Channels  

PubMed Central

In this article, we examine the mechanical role of the lipid bilayer in ion channel conformation and function with specific reference to the case of the mechanosensitive channel of large conductance (MscL). In a recent article we argued that mechanotransduction very naturally arises from lipid-protein interactions by invoking a simple analytic model of the MscL channel and the surrounding lipid bilayer. In this article, we focus on improving and expanding this analytic framework for studying lipid-protein interactions with special attention to MscL. Our goal is to generate simple scaling relations which can be used to provide qualitative understanding of the role of membrane mechanics in protein function and to quantitatively interpret experimental results. For the MscL channel, we find that the free energies induced by lipid-protein interaction are of the same order as the measured free energy differences between conductance states. We therefore conclude that the mechanics of the bilayer plays an essential role in determining the conformation and function of the channel. Finally, we compare the predictions of our model to experimental results from the recent investigations of the MscL channel by a variety of investigators and suggest a suite of new experiments. PMID:15542561

Wiggins, Paul; Phillips, Rob

2005-01-01

25

Aquaporin water channels in gastrointestinal physiology  

PubMed Central

Fluid transport is a major function of the gastrointestinal (GI) tract with more than 9 litres of fluid being absorbed or secreted across epithelia in human salivary gland, stomach, the hepatobiliary tract, pancreas, small intestine and colon. This review evaluates the evidence that aquaporin-type water channels are involved in GI fluid transport. The aquaporins are a family of small (?30 kDa) integral membrane proteins that function as water channels. At least seven aquaporins are expressed in various tissues in the GI tract: AQP1 in intrahepatic cholangiocytes, AQP4 in gastric parietal cells, AQP3 and AQP4 in colonic surface epithelium, AQP5 in salivary gland, AQP7 in small intestine, AQP8 in liver, pancreas and colon, and AQP9 in liver. There are functional data suggesting that some GI cell types expressing aquaporins have high or regulated water permeability; however, there has been no direct evidence for a role of aquaporins in GI physiology. Recently, transgenic mice have been generated with selective deletions of various aquaporins. Preliminary evaluation of GI function suggests a role for AQP1 in dietary fat processing and AQP4 in colonic fluid absorption. Further study of aquaporin function in the GI tract should provide new insights into normal GI physiology and disease mechanisms, and may yield novel therapies to regulate fluid movement in GI diseases. PMID:10332084

Ma, Tonghui; Verkman, A S

1999-01-01

26

Structural insight into the protein translocation channel  

Microsoft Academic Search

A structurally conserved protein translocation channel is formed by the heterotrimeric Sec61 complex in eukaryotes, and SecY complex in archaea and bacteria. Electron microscopy studies suggest that the channel may function as an oligomeric assembly of Sec61 or SecY complexes. Remarkably, the recently determined X-ray structure of an archaeal SecY complex indicates that the pore is located at the center

William M Clemons; Jean-François Ménétret; Christopher W Akey; Tom A Rapoport

2004-01-01

27

Aquaporin1, Nothing but a Water Channel  

Microsoft Academic Search

Aquaporin-1 (AQP1) is a membrane channel that al- lows rapid water movement driven by a transmembrane osmotic gradient. It was claimed to have a secondary function as a cyclic nucleotide-gated ion channel. How- ever, upon reconstitution into planar bilayers, the ion channel exhibited a 10-fold lower single channel con- ductance than in Xenopus oocytes and a 100-fold lower open probability

Satoshi P. Tsunoda; Burkhard Wiesner; Dorothea Lorenz; Walter Rosenthal; Peter Pohl; Freie Universitaet

2004-01-01

28

Design of protein-releasing chitosan channels.  

PubMed

After traumatic injury to the spinal cord, the neural tissue degenerates, resulting in lost function below the site of injury. Promoting axonal regeneration after injury remains a challenge; however, guidance channels have demonstrated some success when combined with cellular and protein therapies. One of the limitations of current guidance channels is the inability to deliver therapeutically relevant molecules in situ, within the guidance channel, to enhance regeneration. In an effort to provide a system for local and sustained drug release, poly(lactide-co-glycolide) (PLGA) microspheres were embedded into chitosan guidance channels by a novel spin-coating technique. The method was designed to create guidance channels with the appropriate dimensions for implantation into the spinal cord, with special attention paid to the wall thickness. The release and bioactivity of a model protein, alkaline phosphatase, was followed from the channels and compared to those from free-floating microspheres over a 90-day period. Since chitosan formulations often require the use of acidic solutions, careful attention was paid to redesign the process to minimize exposure of PLGA microspheres to acid. This was achieved as demonstrated by release and bioactivity data where alkaline phosphatase released from chitosan/microsphere channels followed a profile and bioactivity similar to those of free floating microspheres. PMID:18324828

Kim, Howard; Tator, Charles H; Shoichet, Molly S

2008-01-01

29

Water transport and ion-water interaction in the gramicidin channel.  

PubMed Central

The diffuse permeability and the diffusion coefficient of water (Dw) in the gramicidin channel is determined from the osmotic water permeability of the channel and "single file" pore theory. Dw is about 7% of the self-diffusion coefficient of bulk water. The diffusion coefficient of a single water molecule alone in the channel is also determined and is about equal to the value in bulk water. This provides an estimate of the mobility of water on the channel walls in the absence of water-water interaction. Since the gramicidin channel walls should be representative of uncharged polar protein surfaces, this result provides direct evidence that the presence of a cation in the channel reduces the hydraulic water permeability by a factor ranging from 60 for Tl+ to 5 for Na+. The diffusion coefficient of a cation (Dc) in the channel is estimated and compared with Dw. For Na+ it is found that Dc approximately equal to Dw, which implies that the movement of the row of water molecules through the channel determines the local mobility of Na+. Thus, it seems that short range ion-wall interactions are not important in determining the channel conductance for Na+. In contrast, for Li+, local ion-wall interactions probably do limit the conductance. PMID:6168311

Dani, J A; Levitt, D G

1981-01-01

30

Water transport and ion-water interaction in the gramicidin channel.  

PubMed

The diffuse permeability and the diffusion coefficient of water (Dw) in the gramicidin channel is determined from the osmotic water permeability of the channel and "single file" pore theory. Dw is about 7% of the self-diffusion coefficient of bulk water. The diffusion coefficient of a single water molecule alone in the channel is also determined and is about equal to the value in bulk water. This provides an estimate of the mobility of water on the channel walls in the absence of water-water interaction. Since the gramicidin channel walls should be representative of uncharged polar protein surfaces, this result provides direct evidence that the presence of a cation in the channel reduces the hydraulic water permeability by a factor ranging from 60 for Tl+ to 5 for Na+. The diffusion coefficient of a cation (Dc) in the channel is estimated and compared with Dw. For Na+ it is found that Dc approximately equal to Dw, which implies that the movement of the row of water molecules through the channel determines the local mobility of Na+. Thus, it seems that short range ion-wall interactions are not important in determining the channel conductance for Na+. In contrast, for Li+, local ion-wall interactions probably do limit the conductance. PMID:6168311

Dani, J A; Levitt, D G

1981-08-01

31

Reconstitution of a chloroplast protein import channel.  

PubMed Central

The chloroplastic outer envelope protein OEP75 with a molecular weight of 75 kDa probably forms the central pore of the protein import machinery of the outer chloroplastic membrane. Patch-clamp analysis shows that heterologously expressed, purified and reconstituted OEP75 constitutes a voltage-gated ion channel with a unit conductance of Lambda = 145pS. Activation of the OEP75 channel in vitro is completely dependent on the magnitude and direction of the voltage gradient. Therefore, movements of protein charges of parts of OEP75 in the membrane electric field are required either for pore formation or its opening. In the presence of precursor protein from only one side of the bilayer, strong flickering and partial closing of the channel was observed, indicating a specific interaction of the precursor with OEP75. The comparatively low ionic conductance of OEP75 is compatible with a rather narrow aqueous pore (dporeapproximately equal to 8-9 A). Provided that protein and ion translocation occur through the same pore, this implies that the environment of the polypeptide during the transit is mainly hydrophilic and that protein translocation requires almost complete unfolding of the precursor. PMID:9405364

Hinnah, S C; Hill, K; Wagner, R; Schlicher, T; Soll, J

1997-01-01

32

Theoretical and computational studies of microscopic water channels  

NASA Astrophysics Data System (ADS)

Water channels are ubiquitous in all life forms. A notable example is aquaporins (AQPs), a family of proteins which mainly function as passive water channels in cell membranes. The availability of the crystal structures of several AQPs in recent years allowed us to study them in atomic details. We performed molecular dynamics (MD) simulations on AQPs in lipid bilayers to study water permeation through these channels. We also simulated water conduction in carbon nanotubes, serving as simplified models for biological channels. We developed theories and methodologies aimed to reproduce and predict important experimental quantities of water channels from simulations. We showed that the diffusion permeability (pd), which is measured by tracer diffusion in experiments, can be calculated from equilibrium MD simulations. In order to calculate the osmotic permeability (p f), which is experimentally measured in the presence of a solute concentration difference, we developed a method to induce a hydrostatic pressure difference across the membrane under periodic boundary conditions. We calculated the osmotic permeability for aquaporin-1 using this method, which agrees with experiments. Using a continuous-time random-walk model, we showed that for single-file water channels, the ratio of p f to pd is roughly equal to the number of water molecules in the channel. Proton transfer through single water file was studied theoretically using network thermodynamics. Finally, we proposed a new model for general water channels, which gives a quantitative relationship between water permeations under equilibrium and non-equilibrium conditions, and therefore allows one to calculate pf from equilibrium MD simulations.

Zhu, Fangqiang

33

Chlorella virus MT325 encodes water and potassium channels that interact synergistically  

PubMed Central

Fast and selective transport of water through cell membranes is facilitated by water channels. Water channels belonging to the major intrinsic proteins (MIPs) family have been found in all three domains of life, Archaea, Bacteria, and Eukarya. Here we show that Chlorella virus MT325 has a water channel gene, aqpv1, that forms a functional aquaglyceroporin in oocytes. aqpv1 is transcribed during infection together with MT325 kcv, a gene encoding a previously undescribed type of viral potassium channel. Coexpression of AQPV1 and MT325-Kcv in Xenopus oocytes synergistically increases water transport, suggesting a possible concerted action of the two channels in the infection cycle. The two channels operate by a thermodynamically coupled mechanism that simultaneously alters water conductance and driving force for water movement. Considering the universal role of osmosis, this mechanism is relevant to any cell coexpressing water and potassium channels and could have pathological as well as basic physiological relevance. PMID:16569697

Gazzarrini, Sabrina; Kang, Ming; Epimashko, Svetlana; Van Etten, James L.; Dainty, Jack; Thiel, Gerhard; Moroni, Anna

2006-01-01

34

Solubilization of membrane proteins in ethanol: new perspective method for isolation of ion channels  

NASA Astrophysics Data System (ADS)

In spite of the successful use of detergents for the solubilization of a number of membrane proteins, this approach has some restrictions. It is mainly due to difficulties in removing detergents from the proteins which can influence the structure and function of the isolated proteins and interfere with channel activity measurements under the reconstruction of the proteins into lipid bilayers. We have developed a method using ethanol for the extraction of membrane proteins. The dielectric constant of ethanol is between those of water and carbohydrates which aids it to penetrate into the membrane between protein and lipids. This decrease the binding of lipids to proteins and promotes protein solubilization. We have applied this approach to the isolation and reconstitution in lipid bilayer of the large subunit of the (Na+, K+)- ATPase from microsomes and from mitochondria: two Ca2+-channels, thermogenin and the KATP channel. The properties of these channels remained native.

Mironova, Galina D.

1997-06-01

35

Protein translocation by the Sec61/SecY channel.  

PubMed

The conserved protein-conducting channel, referred to as the Sec61 channel in eukaryotes or the SecY channel in eubacteria and archaea, translocates proteins across cellular membranes and integrates proteins containing hydrophobic transmembrane segments into lipid bilayers. Structural studies illustrate how the protein-conducting channel accomplishes these tasks. Three different mechanisms, each requiring a different set of channel binding partners, are employed to move polypeptide substrates: The ribosome feeds the polypeptide chain directly into the channel, a ratcheting mechanism is used by the eukaryotic endoplasmic reticulum chaperone BiP, and a pushing mechanism is utilized by the bacterial ATPase SecA. We review these translocation mechanisms, relating biochemical and genetic observations to the structures of the protein-conducting channel and its binding partners. PMID:16212506

Osborne, Andrew R; Rapoport, Tom A; van den Berg, Bert

2005-01-01

36

System identification of an open water channel  

Microsoft Academic Search

In this paper, models of the water level in an irrigation channel are derived from system identification experiments. We present the complete system identification procedure from experiment design to model validation, taking into account prior physical information and that the intended use of the models is prediction and control. It is shown that first and second order models capture the

Erik Weyer

2001-01-01

37

Fluctuation driven active molecular transport in passive channel proteins  

NASA Astrophysics Data System (ADS)

Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

Kosztin, Ioan

2006-03-01

38

Electrostatic Tuning of Permeation and Selectivity in Aquaporin Water Channels  

Microsoft Academic Search

Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0\\/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The

Morten Ø. Jensen; Emad Tajkhorshid; Klaus Schulten

2003-01-01

39

Regulation of the water channel aquaporin-2 by posttranslational modification.  

PubMed

The cellular functions of many eukaryotic membrane proteins, including the vasopressin-regulated water channel aquaporin-2 (AQP2), are regulated by posttranslational modifications. In this article, we discuss the experimental discoveries that have advanced our understanding of how posttranslational modifications affect AQP2 function, especially as they relate to the role of AQP2 in the kidney. We review the most recent data demonstrating that glycosylation and, in particular, phosphorylation and ubiquitination are mechanisms that regulate AQP2 activity, subcellular sorting and distribution, degradation, and protein interactions. From a clinical perspective, posttranslational modification resulting in protein misrouting or degradation may explain certain forms of nephrogenic diabetes insipidus. In addition to providing major insight into the function and dynamics of renal AQP2 regulation, the analysis of AQP2 posttranslational modification may provide general clues as to the role of posttranslational modification for regulation of other membrane proteins. PMID:21307124

Moeller, Hanne B; Olesen, Emma T B; Fenton, Robert A

2011-05-01

40

Water at interface with proteins  

E-print Network

Water is essential for the activity of proteins. However, the effect of the properties of water on the behavior of proteins is only partially understood. Recently, several experiments have investigated the relation between the dynamics of the hydration water and the dynamics of protein. These works have generated a large amount of data whose interpretation is debated. New experiments measure the dynamics of water at low temperature on the surface of proteins, finding a qualitative change (crossover) that might be related to the slowing down and stop of the protein's activity (protein glass transition), possibly relevant for the safe preservation of organic material at low temperature. To better understand the experimental data several scenarios have been discussed. Here, we review these experiments and discuss their interpretations in relation with the anomalous properties of water. We summarize the results for the thermodynamics and dynamics of supercooled water at an interface. We consider also the effect of water on protein stability, making a step in the direction of understanding, by means of Monte Carlo simulations and theoretical calculations, how the interplay of water cooperativity and hydrogen bonds interfacial strengthening affects the protein cold denaturation.

Giancarlo Franzese; Valentino Bianco; Svilen Iskrov

2010-10-24

41

Does water drive protein folding?  

NASA Astrophysics Data System (ADS)

We investigate the thermodynamic stability of a protein in water using an all-atom molecular model. The free energy change upon protein folding is calculated using an approach that combines molecular dynamics simulations and the integral-equation theory of molecular liquids. With this computational approach, we can analyze components of free energy such as protein intramolecular energy, hydration energy, and hydration entropy. Based upon its free energy change during protein folding, we argue that water can thermodynamically contribute to the structural stability of a protein.

Maruyama, Yutaka; Harano, Yuichi

2013-08-01

42

Corynebacterium diphtheriae: identification and characterization of a channel-forming protein in the cell wall.  

PubMed

The cell wall fraction of the gram-positive, nontoxic Corynebacterium diphtheriae strain C8r(-) Tox- (=ATCC 11913) contained a channel-forming protein, as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent-treated cell walls and in extracts of whole cells obtained using organic solvents. The protein had an apparent molecular mass of about 66 kDa as determined on Tricine-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and consisted of subunits having a molecular mass of about 5 kDa. Single-channel experiments with the purified protein suggested that the protein formed channels with a single-channel conductance of 2.25 nS in 1 M KCl. Further single-channel analysis suggested that the cell wall channel is wide and water filled because it has only slight selectivity for cations over anions and its conductance followed the mobility sequence of cations and anions in the aqueous phase. Antibodies raised against PorA, the subunit of the cell wall channel of Corynebacterium glutamicum, detected both monomers and oligomers of the isolated protein, suggesting that there are highly conserved epitopes in the cell wall channels of C. diphtheriae and PorA. Localization of the protein on the cell surface was confirmed by an enzyme-linked immunosorbent assay. The prospective homology of PorA with the cell wall channel of C. diphtheriae was used to identify the cell wall channel gene, cdporA, in the known genome of C. diphtheriae. The gene and its flanking regions were cloned and sequenced. CdporA is a protein that is 43 amino acids long and does not have a leader sequence. cdporA was expressed in a C. glutamicum strain that lacked the major outer membrane channels PorA and PorH. Organic solvent extracts of the transformed cells formed in lipid bilayer membranes the same channels as the purified CdporA protein of C. diphtheriae formed, suggesting that the expressed protein is able to complement the PorA and PorH deficiency of the C. glutamicum strain. The study is the first report of a cell wall channel in a pathogenic Corynebacterium strain. PMID:17720794

Schiffler, Bettina; Barth, Enrico; Daffé, Mamadou; Benz, Roland

2007-11-01

43

Onion root water transport sensitive to water channel and K+ channel inhibitors.  

PubMed

Transroot osmotic water flux (Jos) and radial hydraulic conductivity (Lpr) in onion roots were greatly increased by three means; infiltration of roots by pressurization, repetition of osmosis and chilling at 5 degrees C. Jos was strongly reduced by the water channel inhibitor HgCl2 (91%) and the K+ channel inhibitor nonyltriethylammonium (C9, 75%), which actually made the membrane potential of root cells less sensitive to K+. C9 decreased the rate of turgor reduction induced by sorbitol solution to the same extent as HgCl2. Thus, C9 is assumed to decrease the hydraulic conductivity (Lp) of the plasma membrane by blocking water channels, although possible inhibition of the plasmodesmata of the root symplast by C9 cannot be excluded. Onion roots transported water from the tip to the base in the absence of the osmotic gradient. This non-osmotic water flux (Jnos) was equivalent to Jos induced by 0.029 M sorbitol. Jnos increased when Jos was increased by repetition of osmosis and decreased when Jos was decreased by either HgCl2 or by C9. The correlation between Jnos and Jos suggests that non-osmotic water transport occurs via the same pathways as those for osmotic water transport. PMID:11158441

Tazawa, M; Sutou, E; Shibasaka, M

2001-01-01

44

Allosteric mechanism of water-channel gating by Ca2+-calmodulin.  

PubMed

Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudoatomic structure of full-length mammalian aquaporin-0 (AQP0, Bos taurus) in complex with CaM, using EM to elucidate how this signaling protein modulates water-channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits. PMID:23893133

Reichow, Steve L; Clemens, Daniel M; Freites, J Alfredo; Németh-Cahalan, Karin L; Heyden, Matthias; Tobias, Douglas J; Hall, James E; Gonen, Tamir

2013-09-01

45

Determinants of Water Permeability through Nanoscopic Hydrophilic Channels  

PubMed Central

Naturally occurring pores show a variety of polarities and sizes that are presumably directly linked to their biological function. Many biological channels are selective toward permeants similar or smaller in size than water molecules, and therefore their pores operate in the regime of single-file water pores. Intrinsic factors affecting water permeability through such pores include the channel-membrane match, the structural stability of the channel, the channel geometry and channel-water affinity. We present an extensive molecular dynamics study on the role of the channel geometry and polarity on the water osmotic and diffusive permeability coefficients. We show that the polarity of the naturally occurring peptidic channels is close to optimal for water permeation, and that the water mobility for a wide range of channel polarities is essentially length independent. By systematically varying the geometry and polarity of model hydrophilic pores, based on the fold of gramicidin A, the water density, occupancy, and permeability are studied. Our focus is on the characterization of the transition between different permeation regimes in terms of the structure of water in the pores, the average pore occupancy and the dynamics of the permeating water molecules. We show that a general relationship between osmotic and diffusive water permeability coefficients in the single-file regime accounts for the time averaged pore occupancy, and that the dynamics of the permeating water molecules through narrow non single file channels effectively behaves like independent single-file columns. PMID:19186131

Portella, Guillem; de Groot, Bert L.

2009-01-01

46

Calcium channel ? subunits: a functionally diverse protein family  

Microsoft Academic Search

The calcium channel ? subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane\\u000a domains and intracellular N- and C-termini. Although the first ? subunit was identified as an auxiliary subunit of a voltage-dependent\\u000a calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse\\u000a protein family. A cluster

Ren-Shiang Chen; Tzyy-Chyn Deng; Thomas Garcia; Zachary M. Sellers; Philip M. Best

2007-01-01

47

Small potassium ion channel proteins encoded by chlorella viruses  

PubMed Central

Kcv, a 94-aa protein encoded by Paramecium bursaria chlorella virus 1, is the smallest known protein to form a functional potassium ion channel and basically corresponds to the “pore module” of potassium channels. Both viral replication and channel activity are inhibited by the ion channel blockers barium and amantadine but not by cesium. Genes encoding Kcv-like proteins were isolated from 40 additional chlorella viruses. Differences in 16 of the 94 amino acids were detected, producing six Kcv-like proteins with amino acid substitutions occurring in most of the functional domains of the protein (N terminus, transmembrane 1, pore helix, selectivity filter, and transmembrane 2). The six proteins form functional potassium selective channels in Xenopus oocytes with different properties including altered current kinetics and inhibition by cesium. The amino acid changes together with the different properties observed in the six Kcv-like channels will be used to guide site-directed mutations, either singularly or in combination, to identify key amino acids that confer specific properties to Kcv. PMID:14762169

Kang, Ming; Moroni, Anna; Gazzarrini, Sabrina; DiFrancesco, Dario; Thiel, Gerhard; Severino, Maria; Van Etten, James L.

2004-01-01

48

The G-protein-gated atrial K+ channel IKAch is a heteromultimer of two inwardly rectifying K+-channel proteins  

Microsoft Academic Search

Heart rate is slowed in part by acetylcholine-dependent activation of a cardiac potassium (K+) channel, IKACh. Activated muscarinic receptors stimulate lKAch via the G-protein betagamma-subunits. It has been assumed that the inwardly rectifying K+-channel gene, GIRK1, alone encodes IKAch-It is now shown that IKAch is a heteromultimer of two distinct inwardly rectifying K+-channel subunits, GIRK1 and a newly cloned member

G. Krapivinsky; E. A. Gordon; K. Wickman; B. Velimirovic; L. Krapivinsky; D. E. Clapham

1995-01-01

49

Iterative Water-filling for Gaussian Vector Multiple Access Channels  

E-print Network

Iterative Water-filling for Gaussian Vector Multiple Access Channels W. Yu, W. Rhee, S. Boyd, and J. Cioffi Zhenlei Shen Lehigh University March 29, 2005 Zhenlei Shen (Lehigh) Iterative Water-filling for Gaussian Vector Multiple Access ChannelsMarch 29, 2005 1 / 13 #12;1 Quick Review 2 Iterative Water

Li, Tiffany Jing

50

Regulation of voltage-dependent calcium channels by RGK proteins  

PubMed Central

RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members– Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca2+ (CaV1 and CaV2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of CaV1/CaV2 channels. PMID:23063948

Yang, Tingting; Colecraft, Henry M.

2013-01-01

51

Slob, a Slowpoke channel–binding protein, modulates synaptic transmission  

PubMed Central

Modulation of ion channels by regulatory proteins within the same macromolecular complex is a well-accepted concept, but the physiological consequences of such modulation are not fully understood. Slowpoke (Slo), a potassium channel critical for action potential repolarization and transmitter release, is regulated by Slo channel–binding protein (Slob), a Drosophila melanogaster Slo (dSlo) binding partner. Slob modulates the voltage dependence of dSlo channel activation in vitro and exerts similar effects on the dSlo channel in Drosophila central nervous system neurons in vivo. In addition, Slob modulates action potential duration in these neurons. Here, we investigate further the functional consequences of the modulation of the dSlo channel by Slob in vivo, by examining larval neuromuscular synaptic transmission in flies in which Slob levels have been altered. In Slob-null flies generated through P-element mutagenesis, as well as in Slob knockdown flies generated by RNA interference (RNAi), we find an enhancement of synaptic transmission but no change in the properties of the postsynaptic muscle cell. Using targeted transgenic rescue and targeted expression of Slob-RNAi, we find that Slob expression in neurons (but not in the postsynaptic muscle cell) is critical for its effects on synaptic transmission. Furthermore, inhibition of dSlo channel activity abolishes these effects of Slob. These results suggest that presynaptic Slob, by regulating dSlo channel function, participates in the modulation of synaptic transmission. PMID:21282401

Zhang, Jiaming

2011-01-01

52

Ferritin protein nanocage ion channels: gating by N-terminal extensions.  

PubMed

Ferritin protein nanocages, self-assembled from four-?-helix bundle subunits, use Fe(2+) and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe(2+) ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3-1.8 ?) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe(2+) exit from dissolved, ferric minerals inside ferritin protein cages; Fe(2+) exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe(2+) exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe(2+) exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides. PMID:22362775

Tosha, Takehiko; Behera, Rabindra K; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C

2012-04-13

53

Protein 4.1 and the control of ion channels.  

PubMed

The classical function of 4.1R in red blood cells is to contribute to the mechanochemical properties of the membrane by promoting the interaction between spectrin and actin. More recently, it has been recognized that 4.1R is required for the stable cell surface accumulation of a number of erythrocyte membrane proteins. 4.1R is one member of the mammalian 4.1 family - the others being 4.1N, 4.1G and 4.1B - and is expressed in many cell types other than erythrocytes. Recently we have examined the phenotype of hearts from 4.1R knockout mice. Although they had a generally normal morphology, these hearts exhibited bradycardia, and prolongation of both action potentials and QT intervals. Electrophysiological analysis revealed anomalies in a range of ion channel activities. In addition, the immunoreactivity of voltage-gated Na(+) channel NaV1.5 was reduced, indicating a role for 4.1R in the cellular accumulation of this ion channel. 4.1 proteins also have roles in the accumulation of at least two other classes of ion channel. In epithelia, 4.1 interacts with the store-operated channel TRPC4. In neurons, the ligand-gated channels GluR1 and GluR4 require 4.1 proteins for cell surface accumulation. The spectrum of transmembrane proteins that bind to 4.1 proteins overlaps with that of ankyrin. A hypothesis to investigate in the future is that differential regulation of 4.1 and ankyrins (e.g. by PIP(2)) allows highly selective control of cell surface accumulation and transport activity of a specific range of ion channels. PMID:19272819

Baines, Anthony J; Bennett, Pauline M; Carter, Edward W; Terracciano, Cesare

2009-01-01

54

Sansom Group: Simulation of Ion Channels and Membrane Proteins  

NSDL National Science Digital Library

Dr. Mark Sansom of the Department of Biochemistry at Oxford University (UK) heads up this research group on Simulation of Ion Channels and Membrane Proteins. Dedicated to understanding the physiological properties of ion channels -- conductance, ion selectivity, and gating -- this lab uses molecular modeling (and other approaches) to generate "plausible molecular models of ion channels." Targeting those in the know, the homepage provides a wealth of technical information and resource links. The Introduction section outlines the research project, while technical publications, including FTP access to several papers, are offered in the Bibliography and FTP sections. The heart of the site is the Research section, which gives detailed, color-illustrated descriptions of the (currently) six main projects, including Antimicrobial Peptides and Molecular Dynamics Simulations of Ion Permeation in Channels, among others. A hefty selection of academic links rounds out the site.

55

Engineering Proteins for Custom Inhibition of CaV Channels  

NSDL National Science Digital Library

The influx of Ca2+ ions through voltage-dependent calcium (CaV) channels links electrical signals to physiological responses in all excitable cells. Not surprisingly, blocking CaV channel activity is a powerful method to regulate the function of excitable cells, and this is exploited for both physiological and therapeutic benefit. Nevertheless, the full potential for CaV channel inhibition is not being realized by currently available small-molecule blockers or second-messenger modulators due to limitations in targeting them either to defined groups of cells in an organism or to distinct subcellular regions within a single cell. Here, we review early efforts to engineer protein molecule blockers of CaV channels to fill this crucial niche. This technology would greatly expand the toolbox available to physiologists studying the biology of excitable cells at the cellular and systems level.

Xianghua Xu (College of Physicians and Surgeons, Columbia University Physiology and Cellular Biophysics); Henry Colecraft (Columbia University)

2009-08-01

56

INTRODUCTION Gap junctions are intercellular protein channels formed by  

E-print Network

INTRODUCTION Gap junctions are intercellular protein channels formed by 12 subunits of membrane. To date, gap junctions remain the only known ubiquitous conduits for the direct exchange of ions and metabolites between cells, and in this capacity they have been found throughout the metazoa. Gap junctions

Snyder, Scott A.

57

Water transportation across narrow channel of nanometer dimension  

NASA Astrophysics Data System (ADS)

Since the discovery of the carbon nanotube and aquaporin, the study of the transportation of water across nanochannels has become one of the hot subjects. When the radius of a nanochannel is only about one nanometer or a little larger, water confined in those nanoscale channels usually exhibits dynamics different from those in bulk system, such as the wet-dry transition due to the confinement, concerted hydrogen-bond orientations and flipping, concerted motion of water molecules, and strong interactions with external charges. Those dynamics correlate with the unique behavior of the water transportation across the channels, such as the extra-high permeability, excellent on-off gating behavior with response to the external mechanical and electrical signals and noises, enhancement by structure outside the channel, directional transportation driven by charges close to a channel or electric field. In this article, we review some of the recent progress on the study of the water molecules inside those narrow nanochannels.

Wan, Rongzheng; Fang, Haiping

2010-06-01

58

An improved Water Filling algorithm over time varying fading channel  

Microsoft Academic Search

A novel power allocation and adaptive modulation algorithm for MIMO systems over time varying fading channel is proposed. Using water-filling theory in space domains, the optimal power allocation and adaptive MQAM by singular values of the channel transfer matrix with average transmit power constraint is obtained. The spectral efficiency is analyzed. The theoretic analysis and simulation results show that the

Yang Jie; Yang Shenyuan; Wei Na

2008-01-01

59

Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels.  

PubMed

The physiological ability of the mammalian CNS to integrate peripheral stimuli and to convey information to the body is tightly regulated by its capacity to preserve the ion composition and volume of the perineuronal milieu. It is well known that astroglial syncytium plays a crucial role in such process by controlling the homeostasis of ions and water through the selective transmembrane movement of inorganic and organic molecules and the equilibration of osmotic gradients. Astrocytes, in fact, by contacting neurons and cells lining the fluid-filled compartments, are in a strategic position to fulfill this role. They are endowed with ion and water channel proteins that are localized in specific plasma membrane domains facing diverse liquid spaces. Recent data in rodents have demonstrated that the precise dynamics of the astroglia-mediated homeostatic regulation of the CNS is dependent on the interactions between water channels and ion channels, and their anchoring with proteins that allow the formation of macromolecular complexes in specific cellular domains. Interplay can occur with or without direct molecular interactions suggesting the existence of different regulatory mechanisms. The importance of molecular and functional interactions is pinpointed by the numerous observations that as consequence of pathological insults leading to the derangement of ion and volume homeostasis the cell surface expression and/or polarized localization of these proteins is perturbed. Here, we critically discuss the experimental evidence concerning: (1) molecular and functional interplay of aquaporin 4, the major aquaporin protein in astroglial cells, with potassium and gap-junctional channels that are involved in extracellular potassium buffering. (2) the interactions of aquaporin 4 with chloride and calcium channels regulating cell volume homeostasis. The relevance of the crosstalk between water channels and ion channels in the pathogenesis of astroglia-related acute and chronic diseases of the CNS is also briefly discussed. PMID:20026249

Benfenati, V; Ferroni, S

2010-07-28

60

Water Transport in Hydrophilic Channels of Nafion (DMR 0819860)  

E-print Network

Water Transport in Hydrophilic Channels of Nafion (DMR 0819860) Qiao Zhao, Paul Majsztrik and Jay, consists of sulfonic acid groups dispersed in a teflon-like hydrophobic matrix. It was shown that water of the sulfonic acids; (ii) (10%water forms a hydration shell and forms a hydrophilic percolation pathway

Petta, Jason

61

X-ray structure of a protein-conducting channel.  

PubMed

A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The alpha-subunit has two linked halves, transmembrane segments 1-5 and 6-10, clamped together by the gamma-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an 'hourglass' with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation. PMID:14661030

Van den Berg, Bert; Clemons, William M; Collinson, Ian; Modis, Yorgo; Hartmann, Enno; Harrison, Stephen C; Rapoport, Tom A

2004-01-01

62

Water Binding in Whey Protein Concentrates  

Microsoft Academic Search

Measurements of the heat of fusion of free water in concentrated solutions of purified whey proteins showed that .5 g water\\/g whey protein would not freeze at --40 C. This water was defined as bound. Total bound water in protein solu- tions containing lactose and salts varied between .5 and 1.2 g water\\/g solids, with unfreezable water increasing as the

P. G. Kliman; B. A. Anderson; M. J. Pallansch

1973-01-01

63

Functional Expression and Characterization of G-protein-gated Inwardly Rectifying K+ Channels Containing GIRK3  

E-print Network

Functional Expression and Characterization of G-protein-gated Inwardly Rectifying K+ Channels, USA Received: 13 January 1999/Revised: 2 March 1999 Abstract. The G-protein-gated inwardly rectifying: Potassium channels -- Kir 3.3 -- G --Ion channels Introduction The inward rectifier K+ channels are encoded

Clapham, David E.

64

Identification of Native Atrial G-protein-regulated Inwardly Rectifying K (GIRK4) Channel Homomultimers*  

E-print Network

Identification of Native Atrial G-protein-regulated Inwardly Rectifying K (GIRK4) Channel-protein-regulated inwardly rectifying K (GIRK) channels play critical inhibitory roles throughout the nervous system, heart

Clapham, David E.

65

Pregabalin activates ROMK1 channels via cAMP-dependent protein kinase and protein kinase C.  

PubMed

Pregabalin (PGB) displays analgesic and anticonvulsant activities. Regulation of the resting membrane potential (RMP) by renal outer medullary potassium (ROMK1) channels may provide a mechanism for these activities. We examined the effects of PGB on ROMK1 channel activity. To investigate the regulatory effect of PGB on the activity of ROMK1 channel, we used inside-out excised membrane patches to measure the K(+) current in Xenopus oocytes expressed either the wild-type (WT) or mutant ROMK1 channels. PGB concentration-dependently enhanced the activity of ROMK1 channels. PGB increases the WT channels, pHi gating residue mutant channels (K80M) and the mutant channels at phosphatidylinositol bisphosphate (PIP2)-binding sites (R188Q, R217A, and K218A). Our study suggests that PGB in the regulating of ROMK1 channel function are neither by pHi- nor PIP2-dependent mechanism. We found PGB failed to prompt the activity of consensus phosphorylation sites for protein kinase C (PKC) mutated channels (S183A, T191A, T193A, S201A and T234A). Furthermore, PGB did not stimulate the activity of channels in the presence of cAMP-dependent protein kinase (PKA) inhibitors, the mutants of the C-terminal PKA-phosphorylation sites (S219A and S313A), and the mutants constructed (S219D and S313D) which mimic the addition of negative charged associated with phosphorylation bound to a serine. These results demonstrated that PKA- and PKC-mediated phosphorylation represents a novel mechanism for PGB-activated ROMK1 channels. The enhancement of ROMK1 currents proves to an important molecular mechanism underlying the analgesic/anticonvulsant property of PGB for the restoration of RMP. PMID:25008072

Lee, Chien-Hsing; Liou, Horng-Huei

2014-10-01

66

Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex  

PubMed Central

The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

2013-01-01

67

Protein Properties in Water-Reduced & Water-Free Media  

E-print Network

Protein Properties in Water-Reduced & Water-Free Media Alpay Taralp, Sabanci University, Istanbul microcapsules drop formulations Question: What are some biases related to proteins in unusual environments? Fact Native search for robustness: Approach 1: use proteins in water-free media ApproachApproachApproach 2

Taralp, Alpay

68

Model studies of dense water overflows in the Faroese Channels  

NASA Astrophysics Data System (ADS)

The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with the experimental observations and measurements. In addition, the comparisons show that strong temporal variability in the predicted outflow pathways and circulations have a strong influence in regulating the Faroe Bank Channel and Wyville-Thomson Ridge overflows, as well as in determining the overall response in the Faroese Channels to changes in the Faroe-Shetland Channel inlet boundary conditions.

Cuthbertson, Alan; Davies, Peter; Stashchuk, Nataliya; Vlasenko, Vasiliy

2014-01-01

69

ThermoTRP channels as modular proteins with allosteric gating.  

PubMed

Ion channels activate by sensing stimuli such as membrane voltage, ligand binding or temperature and transduce this information into conformational changes that open the channel pore. Thus, a key question in understanding ion channel function is how do the protein domains involved in sensing stimuli (sensors) and opening the pore (gates) communicate. In this regard, transient receptor potential (TRP) channels that confer thermosensation [A. Dhaka, V. Viswanath, A. Patapoutian, TRP ion channels and temperature sensation, Annu. Rev. Neurosci. 29 (2006) 135-161; I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels, Annu. Rev. Physiol. 68 (2006) 619-647] (thermoTRP; Q(10)>10) are unique to the extent that they integrate a variety of physical and chemical stimuli. In some cases such as, for example, the vanilloid receptor TRPV1 [M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature 389 (1997) 816-824] and TRPA1 [G.M. Story, A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures, Cell 112 (2003) 819-829; S. Jordt, D. Julius, Molecular basis for species-specific sensitivity to "hot" chilli peppers, Cell 108 (2002) 421-430] the integration of these stimuli elicit pain [M. Tominaga, M.J. Caterina, A.B. Malmberg, T.A. Rosen, H. Gilbert, K. Skinner, B.E. Raumann, A.I. Basbaum, D. Julius, The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 21 (1998) 531-543; M. Bandell, A. Dubin, M. Petrus, A. Orth, J. Mathur, S. Hwang, A. Patapoutian, High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol, Nat. Neurosci. 9 (2006) 466-468; S. Zurborg, B. Yurgionas, JA. Jira, O. Caspani, P.A. Heppenstall, Direct activation of the ion channel TRPA1 by Ca(2+), Nat. Neurosci. 10 (2007) 277-279]. These stimuli include voltage, pH, agonist binding, and temperature. Understanding how each of these distinct physiological signals regulate channel opening will be informative about the mechanical linkages that can act either independently or in concert to influence channel activation. In this paper we show that thermoTRP channel-forming proteins are modular in the sense that certain structure or structures (modules) confer temperature-dependent regulation, whereas others confer voltage-dependent regulation. We also discuss the thermodynamic basis of heat and cold activation in an effort to elucidate what confer to these channels the capability to be gated by temperature directly. PMID:17499848

Latorre, Ramon; Brauchi, Sebastian; Orta, Gerardo; Zaelzer, Cristián; Vargas, Guillermo

2007-01-01

70

Protein Digestibility Coefficients for Yearling Channel Catfish Fed High Protein Feedstuffs  

Microsoft Academic Search

Yearling (1 +) channel catfish (Ictalurus punctatus) were held in a regulated environment and fed high protein feedstuffs to determine apparent crude protein digestibility coefficients (ACPD). ACPD was determined by feeding semi-purified diets containing a sufficient non-protein energy source and substituting the test feedstuff at an isonitrogenous level. Feedstuffs tested were corn gluten meal, peanut meal, poultry by-product meal, soybean

Paul B. Brown; Richard J. Strange; Kelly R. Robbins

1985-01-01

71

Distinct Sensitivity of Slo1 Channel Proteins to Ethanol  

PubMed Central

Ethanol levels reached in circulation during moderate-to-heavy alcohol intoxication (50–100 mM) modify Ca2+- and voltage-gated K+ (BK) channel steady-state activity, eventually altering both physiology and behavior. Ethanol action on BK steady-state activity solely requires the channel-forming subunit slo1 within a bare lipid environment. To identify the protein regions that confer ethanol sensitivity to slo1, we tested the ethanol sensitivity of heterologously expressed slo1 and structurally related channels. Ethanol (50 mM) increased the steady-state activities of mslo1 and Ca2+-gated MthK, the latter after channel reconstitution into phospholipid bilayers. In contrast, 50–100 mM ethanol failed to alter the steady-state activities of Na+/Cl?-gated rslo2, H+-gated mslo3, and an mslo1/3 chimera engineered by joining the mslo1 region encompassing the N terminus to S6 with the mslo3 cytosolic tail domain (CTD). Collectively, data indicate that the slo family canonical design, which combines a transmembrane 6 (TM6) voltage-gated K+ channel (KV) core with CTDs that empower the channel with ion-sensing, does not necessarily render ethanol sensitivity. In addition, the region encompassing the N terminus to the S0–S1 cytosolic loop (missing in MthK) is not necessary for ethanol action. Moreover, incorporation of both this region and an ion-sensing CTD to TM6 KV cores (a design common to mslo1, mslo3, and the mslo1/mslo3 chimera) is not sufficient for ethanol sensitivity. Rather, a CTD containing Ca2+-sensing regulator of conductance for K+ domains seems to be critical to bestow KV structures, whether of TM2 (MthK) or TM6 (slo1), with sensitivity to intoxicating ethanol levels. PMID:23093494

Liu, Jianxi; Bukiya, Anna N.; Kuntamallappanavar, Guruprasad; Singh, Aditya K.

2013-01-01

72

Explosive boiling of water in parallel micro-channels  

Microsoft Academic Search

The objective of this study is to visualize the flow pattern and to measure heat transfer coefficient during explosive boiling of water in parallel triangular micro-channels. Tests were performed in the range of inlet Reynolds number 25–60, mass flux 95–340 kg\\/m2s, and heat flux 80–330 kW\\/m2.The flow visualization showed that the behavior of long vapor bubbles, occurring in a micro-channel

G. Hetsroni; A. Mosyak; E. Pogrebnyak; Z. Segal

2005-01-01

73

Mercury inhibits the L170C mutant of aquaporin Z by making waters clog the water channel.  

PubMed

We conduct in silico experiments of the L170C mutant of the Escherichia coli aquaporin Z (AQPZ) with and without mercury bonded to residue Cys 170. We find that bonding mercury to Cys 170 does not induce consequential structural changes to the protein. We further find that mercury does not stick in the middle of the water channel to simply occlude water permeation, but resides on the wall of the water pore. However, we observe that the water permeation coefficient of L170C-Hg(+) (with one mercury ion bonded to Cys 170) is approximately half of that of the mercury-free L170C. We examine the interactions between the mercury ion and the waters in its vicinity and find that five to six waters are strongly attracted by the mercury ion, occluding the space of the water channel. Therefore we conclude that mercury, at low concentration, inhibits AQPZ-L170C mutant by making water molecules clog the water channel. PMID:21963041

Zhang, Yubo; Cui, Yubao; Chen, L Y

2012-01-01

74

On Water-Level Error Propagation in Controlled Irrigation Channels  

Microsoft Academic Search

We consider the propagation of water-level errors in a controlled string of (identical) pools comprising an open-water irrigation channel. It is shown that water-level errors are amplified as they propagate upstream, whenever the feedback control scheme is decentralised and load-disturbance rejection is required in steady-state. Moreover, a design trade-off is identified between local performance, in terms of set-point regulation and

Yuping Li; Michael Cantoni; Erik Weyer

2005-01-01

75

Novel channel enzyme fusion proteins confer arsenate resistance.  

PubMed

Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

Wu, Binghua; Song, Jie; Beitz, Eric

2010-12-17

76

Distribution of mRNA encoding the FA-CHIP water channel in amphibian tissues: Effects of salt adaptation  

Microsoft Academic Search

A water channel, the frog aquaporin-CHIP (FA-CHIP) was recently cloned from Rana esculenta urinary bladder. The 28.9 kDa encoded protein shows 78.8%, 77.4%, 42.4% and 35.6% identity with rat CHIP28, human CHIP28, rat WCH-CD and ?-TIP, other members of the new transmembrane water channel family (Aquaporin-CHIP). We have now studied membranes from different frog (R. esculenta) organs employing semiquantitative PCR

L. Abrami; C. Capurro; C. Ibarra; M. Parisi; J.-M. Buhler; P. Ripoche

1995-01-01

77

Protein-protein interactions in intracellular Ca2+-release channel function.  

PubMed Central

Release of Ca2+ ions from intracellular stores can occur via two classes of Ca2+-release channel (CRC) protein, the inositol 1,4, 5-trisphosphate receptors (InsP3Rs) and the ryanodine receptors (RyRs). Multiple isoforms and subtypes of each CRC class display distinct but overlapping distributions within mammalian tissues. InsP3Rs and RyRs interact with a plethora of accessory proteins which modulate the activity of their intrinsic channels. Although many aspects of CRC structure and function have been reviewed in recent years, the properties of proteins with which they interact has not been comprehensively surveyed, despite extensive current research on the roles of these modulators. The aim of this article is to review the regulation of CRC activity by accessory proteins and, wherever possible, to outline the structural details of such interactions. The CRCs are large transmembrane proteins, with the bulk of their structure located cytoplasmically. Intra- and inter-complex protein-protein interactions between these cytoplasmic domains also regulate CRC function. Some accessory proteins modulate channel activity of all CRC subtypes characterized, whereas other have class- or even isoform-specific effects. Certain accessory proteins exert both direct and indirect forms of regulation on CRCs, occasionally with opposing effects. Others are themselves modulated by changes in Ca2+ concentration, thereby participating in feedback mechanisms acting on InsP3R and RyR activity. CRCs are therefore capable of integrating numerous signalling events within a cell by virtue of such protein-protein interactions. Consequently, the functional properties of InsP3Rs and RyRs within particular cells and subcellular domains are 'customized' by the accessory proteins present. PMID:9895277

MacKrill, J J

1999-01-01

78

Urine concentration and avian aquaporin water channels  

Microsoft Academic Search

Although birds and mammals have evolved from primitive tetrapods and advanced divergently, both can conserve water by producing\\u000a hyperosmotic urine. Unique aspects in the avian system include the presence of loopless and looped nephrons, lack of the thin\\u000a ascending limb of Henle’s loop, a corticomedullary osmotic gradient primarily consisting of NaCl without contribution of urea,\\u000a and significant postrenal modification of

Hiroko Nishimura

2008-01-01

79

CHANNEL CHARACTER OF UNCOUPLING PROTEIN-MEDIATED TRANSPORT  

PubMed Central

Mitochondrial uncoupling proteins (UCPs) are pure anion uniporters, which mediate fatty acid (FA) uniport leading to FA cycling. Protonated FAs then flip-flop back across the lipid bilayer. An existence of pure proton channel in UCPs is excluded by the equivalent flux-voltage dependencies for uniport of FAs and halide anions, which are best described by the Eyring barrier variant with a single energy well in the middle of two peaks. Experiments with FAs unable to flip and alkylsulfonates also support this view. Phylogenetically, UCPs took advantage of the common FA-uncoupling function of SLC25 family carriers and dropped their solute transport function. PMID:20206627

Ježek, Petr; Jab?rek, Martin; Garlid, Keith D.

2010-01-01

80

Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein.  

PubMed Central

Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation. PMID:7531528

Pawlak, M.; Meseth, U.; Dhanapal, B.; Mutter, M.; Vogel, H.

1994-01-01

81

Protein-water interactions and functional properties  

Microsoft Academic Search

Hydration or rehydration is the first and perhaps most critical step in imparting desired functional properties to proteins\\u000a in a food system. Water that interacts with the protein molecule exhibits different properties from those of “free” water.\\u000a The types of water in protein-food systems are described in terms of structural, monolayers, unfreezable, hydrophobic hydration,\\u000a imbibition or capillary condensation, and hydrodynamic

David H. Chou; Charles V. Morr

1979-01-01

82

Water vapor and carbon dioxide species measurements in narrow channels  

Microsoft Academic Search

Classical spectroscopic techniques have been applied in a novel manner to measure the concentration of gas species, water vapor and carbon dioxide, within a narrow channel flow field non-invasively. Tunable diode laser absorption spectroscopy (TDLAS) was used in conjunction with a laser modulated at a high frequency [Wavelength Modulation Spectroscopy (WMS)] tuned to the ro-vibrational transition of the species. This

Saptarshi Basu; Derek E. Lambe; Ranganathan Kumar

2010-01-01

83

Robust Source Localization in a Random Shallow Water Channel  

E-print Network

This paper addresses source localization problem in a random shallow water channel. We present an extension of the generalized MUSIC method to the case, %in which when the signal correlation matrix is imprecisely known. The algorithm is validated by %simulations and its application to the experimental data observed in the Barents Sea. It has been found that the approach proposed demonstrates its excellent performance.

Sazontov, Alexander; Matveyev, Alexander

2014-01-01

84

Iterative water-filling for Gaussian vector multiple access channels  

Microsoft Academic Search

We develop an efficient iterative water-filling algorithm to find an optimal transmit spectrum for maximum sum capacity in a Gaussian multiple access channel with vector inputs and a vector output. The iterative algorithm converges from any starting point and reaches within (K-1)\\/2 nats per output dimension from the K-user sum capacity after just one iteration

Wei Yu; Wonjong Rhee; Stephen Boyd; J. M. Ciofli

2001-01-01

85

Homogeneous Nucleation in Water in Microfluidic Channels  

NASA Astrophysics Data System (ADS)

It has been an experimental challenge to test the rupture of liquids with homogeneous nucleation of vapor bubbles. Many prior studies suffered from the ubiquitous presence of impurities in liquids or at container surfaces that spontaneously nucleate and grow under tension. Here, we propose a microfluidic approach to eliminate such impurities and obtain homogeneous bubble nucleation. We stretch the liquid dynamically via the interaction between a laser-induced shock and an air-liquid interface in a microchannel. Reproducible observations of the nucleation of vapor bubbles are obtained, supporting our claim of homogeneous nucleation. From comparisons of the distribution of vapor cavities with Euler flow simulations, the nucleation threshold for water at room temperature is predicted to be -60MPa.

Ando, Keita; Liu, Ai-Qun; Ohl, Claus-Dieter

2012-07-01

86

Transcellular Water Transport in Lung Alveolar Epithelium Through Mercury Sensitive Water Channels  

Microsoft Academic Search

The movement of water between the air space and capillary compartments is important for the maintenance of air space hydration during respiration and for reabsorption of excess alveolar fluid. We have obtained immunocytochemical and functional evidence that plasma-membrane water channels are responsible for water transport in the intact lung. Northern and quantitative immunoblot analysis showed high expression of CHIP28 (channel-forming

Hans G. Folkesson; Michael A. Matthay; Hajime Hasegawa; Farrah Kheradmand; A. S. Verkman

1994-01-01

87

Evidence for the existence of a sulfonylurea-receptor-like protein in plants: Modulation of stomatal movements and guard cell potassium channels by sulfonylureas and potassium channel openers  

PubMed Central

Limitation of water loss and control of gas exchange is accomplished in plant leaves via stomatal guard cells. Stomata open in response to light when an increase in guard cell turgor is triggered by ions and water influx across the plasma membrane. Recent evidence demonstrating the existence of ATP-binding cassette proteins in plants led us to analyze the effect of compounds known for their ability to modulate ATP-sensitive potassium channels (K-ATP) in animal cells. By using epidermal strip bioassays and whole-cell patch-clamp experiments with Vicia faba guard cell protoplasts, we describe a pharmacological profile that is specific for the outward K+ channel and very similar to the one described for ATP-sensitive potassium channels in mammalian cells. Tolbutamide and glibenclamide induced stomatal opening in bioassays and in patch-clamp experiments, a specific inhibition of the outward K+ channel by these compounds was observed. Conversely, application of potassium channel openers such as cromakalim or RP49356 triggered stomatal closure. An apparent competition between sulfonylureas and potassium channel openers occurred in bioassays, and outward potassium currents, previously inhibited by glibenclamide, were partially recovered after application of cromakalim. By using an expressed sequence tag clone from an Arabidopsis thaliana homologue of the sulfonylurea receptor, a 7-kb transcript was detected by Northern blot analysis in guard cells and other tissues. Beside the molecular evidence recently obtained for the expression of ATP-binding cassette protein transcripts in plants, these results give pharmacological support to the presence of a sulfonylurea-receptor-like protein in the guard-cell plasma membrane tightly involved in the outward potassium channel regulation during stomatal movements. PMID:9391169

Leonhardt, Nathalie; Marin, Elena; Vavasseur, Alain; Forestier, Cyrille

1997-01-01

88

The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels.  

PubMed

Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel-like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bundle deflections in mice with null mutations of Tmc1, Tmc2, or both. During the first postnatal week, we observed a normal MT current in hair cells lacking Tmc1 or Tmc2; however, in the absence of both isoforms, we recorded a large MT current that was phase-shifted 180°, being evoked by displacements of the hair bundle away from its tallest edge rather than toward it as in wild-type hair cells. The anomalous MT current in hair cells lacking Tmc1 and Tmc2 was blocked by FM1-43, dihydrostreptomycin, and extracellular Ca(2+) at concentrations similar to those that blocked wild type. MT channels in the double knockouts carried Ca(2+) with a lower permeability than wild-type or single mutants. The MT current in double knockouts persisted during exposure to submicromolar Ca(2+), even though this treatment destroyed the tip links. We conclude that the Tmc isoforms do not themselves constitute the MT channel but are essential for targeting and interaction with the tip link. Changes in the MT conductance and Ca(2+) permeability observed in the absence of Tmc1 mutants may stem from loss of interaction with protein partners in the transduction complex. PMID:24127526

Kim, Kyunghee X; Beurg, Maryline; Hackney, Carole M; Furness, David N; Mahendrasingam, Shanthini; Fettiplace, Robert

2013-11-01

89

The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels  

PubMed Central

Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel–like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bundle deflections in mice with null mutations of Tmc1, Tmc2, or both. During the first postnatal week, we observed a normal MT current in hair cells lacking Tmc1 or Tmc2; however, in the absence of both isoforms, we recorded a large MT current that was phase-shifted 180°, being evoked by displacements of the hair bundle away from its tallest edge rather than toward it as in wild-type hair cells. The anomalous MT current in hair cells lacking Tmc1 and Tmc2 was blocked by FM1-43, dihydrostreptomycin, and extracellular Ca2+ at concentrations similar to those that blocked wild type. MT channels in the double knockouts carried Ca2+ with a lower permeability than wild-type or single mutants. The MT current in double knockouts persisted during exposure to submicromolar Ca2+, even though this treatment destroyed the tip links. We conclude that the Tmc isoforms do not themselves constitute the MT channel but are essential for targeting and interaction with the tip link. Changes in the MT conductance and Ca2+ permeability observed in the absence of Tmc1 mutants may stem from loss of interaction with protein partners in the transduction complex. PMID:24127526

Kim, Kyunghee X.; Beurg, Maryline; Hackney, Carole M.; Furness, David N.; Mahendrasingam, Shanthini

2013-01-01

90

Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons  

SciTech Connect

Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned by the water present within the channel. Our own quantum calculations as well as numerous experiments of others are interpreted in terms of this hypothesis. It is also shown that the evidence that supports the motion of the sensor as the gating current can also be consistent with the hypothesis we present.

Kariev, Alisher M.; Green, Michael E.

2012-02-26

91

Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease  

Microsoft Academic Search

G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to activation of many different G protein-coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on the channel subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that

Christian Lüscher; Paul A. Slesinger

2010-01-01

92

Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases  

Microsoft Academic Search

Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel

Nasrin Nejatbakhsh; Zhong-ping Feng

2011-01-01

93

Novel geminate recombination channel after indirect photoionization of water  

SciTech Connect

We studied the photolysis of neat protonated and heavy water using pump-probe and pump-repump-probe spectroscopy. A novel recombination channel is reported leading to ultrafast quenching (0.7 {+-} 0.1 ps) of almost one third of the initial number of photo-generated electrons. The efficiency and the recombination rate of this channel are lower in heavy water, 27 {+-} 5% and (0.9 {+-} 0.1 ps){sup -1}, respectively. Comparison with similar data measured after photodetachment of aqueous hydroxide provides evidence for the formation of short-lived OH:e{sup -} (OD:e{sup -}) pairs after indirect photoionization of water at 9.2 eV.

Fischer, Martin K.; Rossmadl, Hubert; Iglev, Hristo [Physik-Department E 11, Technische Universitaet Muenchen, D-85748 Garching (Germany)

2011-06-07

94

Novel geminate recombination channel after indirect photoionization of water  

NASA Astrophysics Data System (ADS)

We studied the photolysis of neat protonated and heavy water using pump-probe and pump-repump-probe spectroscopy. A novel recombination channel is reported leading to ultrafast quenching (0.7 ± 0.1 ps) of almost one third of the initial number of photo-generated electrons. The efficiency and the recombination rate of this channel are lower in heavy water, 27 ± 5% and (0.9 ± 0.1 ps)-1, respectively. Comparison with similar data measured after photodetachment of aqueous hydroxide provides evidence for the formation of short-lived OH:e- (OD:e-) pairs after indirect photoionization of water at 9.2 eV.

Fischer, Martin K.; Rossmadl, Hubert; Iglev, Hristo

2011-06-01

95

NMR Structure and Ion Channel Activity of the p7 Protein from Hepatitis C Virus*  

PubMed Central

The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly ?-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by 1H and 13C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal ?-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism. PMID:20667830

Montserret, Roland; Saint, Nathalie; Vanbelle, Christophe; Salvay, Andres Gerardo; Simorre, Jean-Pierre; Ebel, Christine; Sapay, Nicolas; Renisio, Jean-Guillaume; Bockmann, Anja; Steinmann, Eike; Pietschmann, Thomas; Dubuisson, Jean; Chipot, Christophe; Penin, Francois

2010-01-01

96

Comparison of Space-Time Water-filling and Spatial Water-filling for MIMO Fading Channels  

E-print Network

Comparison of Space-Time Water-filling and Spatial Water-filling for MIMO Fading Channels Zukang the capacities achieved by space-time water-filling and spatial water-filling for MIMO fading channels. Both to two-dimensional space-time water-filling. However, with log-normal shadowing, space-time water

Evans, Brian L.

97

Aquaporin water channels: unanswered questions and unresolved controversies  

Microsoft Academic Search

The long-standing biophysical question of how water crosses plasma membranes has been answered by the recent discovery of the aquaporins. Identification of this large family of membrane water-transport proteins has generated new questions about the physiological functions, tissue distributions, and regulatory mechanisms of individual aquaporins. The fast pace of developments in this field has also resulted in major discrepancies in

Peter Agre; Dennis Brown; Søren Nielsen

1995-01-01

98

Identification of a functional water channel in cytochrome P450 enzymes  

PubMed Central

Cytochrome P450 enzymes are monooxygenases that contain a functional heme b group linked to a conserved cysteine with a thiolate bond. In the native state, the central iron atom is hexacoordinated with a covalently bound water molecule. The exclusion of solvent molecules from the active site is essential for efficient enzymatic function. Upon substrate binding, water has to be displaced from the active site to prevent electron uncoupling that results in hydrogen peroxide or water. In contrast to typical hemoproteins, the protein surface is not directly accessible from the heme of cytochromes P450. We postulate a two-state model in which a conserved arginine, stabilizing the heme propionate in all known cytochrome P450 crystal structures, changes from the initial, stable side-chain conformation to another rotamer (metastable). In this new state, a functional water channel (aqueduct) is formed from the active site to a water cluster located on the thiolate side of the heme, close to the protein surface. This water cluster communicates with the surface in the closed state and is partly replaced by the flipping arginine side chain in the open state, allowing water molecules to exit to the surface or to reaccess the active site. This two-state model suggests the presence of an exit pathway for water between the active site and the protein surface. PMID:9122160

Oprea, Tudor I.; Hummer, Gerhard; Garcia, Angel E.

1997-01-01

99

Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics  

PubMed Central

Alcohol (ethanol)-induced behaviors may arise from direct interaction of alcohol with discrete protein cavities within brain proteins. Recent structural and biochemical studies have provided new insights into the mechanism of alcohol-dependent activation of G protein-gated inwardly rectifying potassium (GIRK) channels, which regulate neuronal responses in the brain reward circuit. GIRK channels contain an alcohol binding pocket formed at the interface of two adjacent channel subunits. Here, we discuss the physiochemical properties of the alcohol pocket and the roles of G protein ?? subunits and membrane phospholipid PIP2 in regulating the alcohol response of GIRK channels. Some of the features of alcohol modulation of GIRK channels may be common to other alcohol-sensitive brain proteins. We discuss the possibility of alcohol-selective therapeutics that block alcohol access to the pocket. Understanding alcohol recognition and modulation of brain proteins is essential for development of therapeutics for alcohol abuse and addiction. PMID:24611054

Bodhinathan, Karthik; Slesinger, Paul A.

2014-01-01

100

Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions  

SciTech Connect

We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

Khodadadi, S [University of Akron; Curtis, J. E. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Sokolov, Alexei P [ORNL

2011-01-01

101

Phycodnavirus Potassium Ion Channel Proteins Question the Virus Molecular Piracy Hypothesis  

Microsoft Academic Search

Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K+ channels. To determine if these viral K+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K+ channel pore modules from seven phycodnaviruses

Kay Hamacher; Timo Greiner; Hiroyuki Ogata; James L. Van Etten; Manuela Gebhardt; Luis P. Villarreal; Cristian Cosentino; Anna Moroni; Gerhard Thiel

2012-01-01

102

Kinetics of Gravity-Driven Water Channels Under Steady Rainfall  

E-print Network

We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity).These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel finger tip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [1976]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities.

Cesare M. Cejas; Yuli Wei; Remi Barrois; Christian Fretigny; Douglas J. Durian; Remi Dreyfus

2014-03-13

103

Drosophila hygrosensation requires the TRP channels water witch and nanchung.  

PubMed

The ability to detect variations in humidity is critical for many animals. Birds, reptiles and insects all show preferences for specific humidities that influence their mating, reproduction and geographic distribution. Because of their large surface area to volume ratio, insects are particularly sensitive to humidity, and its detection can influence their survival. Two types of hygroreceptors exist in insects: one responds to an increase (moist receptor) and the other to a reduction (dry receptor) in humidity. Although previous data indicated that mechanosensation might contribute to hygrosensation, the cellular basis of hygrosensation and the genes involved in detecting humidity remain unknown. To understand better the molecular bases of humidity sensing, we investigated several genes encoding channels associated with mechanosensation, thermosensing or water transport. Here we identify two Drosophila melanogaster transient receptor potential channels needed for sensing humidity: CG31284, named by us water witch (wtrw), which is required to detect moist air, and nanchung (nan), which is involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels, and neurons expressing wtrw and nan project to central nervous system regions associated with mechanosensation. Construction of the hygrosensing system with opposing receptors may allow an organism to very sensitively detect changes in environmental humidity. PMID:17994098

Liu, Lei; Li, Yuhong; Wang, Runping; Yin, Chong; Dong, Qian; Hing, Huey; Kim, Changsoo; Welsh, Michael J

2007-11-01

104

Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B  

Microsoft Academic Search

BACKGROUND: Recent data suggest that canalicular bile secretion involves selective expression and coordinated regulation of aquaporins (AQPs), a family of water channels proteins. In order to further characterize the role of AQPs in this process, an in vitro cell system with retained polarity and expression of AQPs and relevant solute transporters involved in bile formation is highly desirable. The WIF-B

Sergio A Gradilone; Pamela S Tietz; Patrick L Splinter; Raúl A Marinelli; Nicholas F LaRusso

2005-01-01

105

Kinetics of gravity-driven water channels under steady rainfall  

NASA Astrophysics Data System (ADS)

We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972), 10.2136/sssaj1972.03615995003600050010x]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

Cejas, Cesare M.; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J.; Dreyfus, Rémi

2014-10-01

106

Voltage-regulated water flux through aquaporin channels in silico.  

PubMed

Aquaporins (AQPs) facilitate the passive flux of water across biological membranes in response to an osmotic pressure. A number of AQPs, for instance in plants and yeast, have been proposed to be regulated by phosphorylation, cation concentration, pH change, or membrane-mediated mechanical stress. Here we report an extensive set of molecular dynamics simulations of AQP1 and AQP4 subject to large membrane potentials in the range of ±1.5 V, suggesting that AQPs may in addition be regulated by an electrostatic potential. As the regulatory mechanism we identified the relative population of two different states of the conserved arginine in the aromatic/arginine constriction region. A positive membrane potential was found to stabilize the arginine in an up-state, which allows rapid water flux, whereas a negative potential favors a down-state, which reduces the single-channel water permeability. PMID:21156125

Hub, Jochen S; Aponte-Santamaría, Camilo; Grubmüller, Helmut; de Groot, Bert L

2010-12-15

107

Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress.  

PubMed

The phytohormone abscisic acid (ABA) regulates many stress-related processes in plants. In this context ABA mediates the responsiveness of plants to environmental stresses such as drought, cold or salt. In response to water stress, ABA induces stomatal closure by activating Ca2+, K+ and anion channels in guard cells. To understand the signalling pathways that regulate these turgor control elements, we studied the transcriptional control of the K+ release channel gene GORK that is expressed in guard cells, roots and vascular tissue. GORK transcription was up-regulated upon onset of drought, salt stress and cold. The wilting hormone ABA that integrates responses to these stimuli induced GORK expression in seedlings in a time- and concentration-dependent manner and this induction was dependent on extracellular Ca2+. ABA-responsive expression of GORK was impaired in the ABA-insensitive mutants abi1-1 and abi2-1, indicating that these protein phosphatases are regulators of GORK expression. Application of ABA to suspension-cultured cells for 2 min followed by a 4 h chase was sufficient to manifest transcriptional activation of the K+ channel gene. As predicted for a process involved in drought adaptation, only 12-24 h after the release of the stress hormone, GORK mRNA slowly decreased. In contrast to other tissues, GORK expression as well as K+(out) channel activity in guard cells is ABA insensitive, allowing the plant to adjust stomatal movement and water status control separately. PMID:14596925

Becker, D; Hoth, S; Ache, P; Wenkel, S; Roelfsema, M R G; Meyerhoff, O; Hartung, W; Hedrich, R

2003-11-01

108

Functionality and Protein-Water Interactions  

E-print Network

The structures of proteins exhibit secondary elements composed of helices and loops. Comparison of several water-only hydrophobicity scales with the functionalities of two repeat proteins shows that these secondary elements possess water-induced medium-range order that is sometimes similar, but can also be complementary, to structural order. Study of these hitherto "phantom" order parameters promises far-reaching incremental improvements in the theory of protein dynamics. A by-product of the theory is an independent evaluation of the reliability of different hydrophobicity scales.

J. C. Phillips

2008-03-02

109

Mixing and Transport in the Stockton Deep Water Ship Channel  

NASA Astrophysics Data System (ADS)

The Stockton Deep Water Ship Channel (DWSC) section of the San Joaquin River suffers from hypoxia during the late summer and fall. Various factors have been hypothesized to contribute to low dissolved oxygen (DO) during this period, including thermal stratification, decreased freshwater water flow rates in the San Joaquin River, nutrient loading from municipal wastes and agricultural runoff, and geomorphic features of the dredged ship channel. To quantify the mixing and transport in the DWSC, an SF6 tracer release experiment was conducted in August 2005. On August 14, 2005, ca. 1.6 mol of SF6 was injected in the San Joaquin River, 13 km upstream from the DWSC. The tracer entered the DWSC within one day, and the tracer was mapped for 8 consecutive days following the injection. From the change in SF6 distribution with time, the longitudinal dispersion was determined to be 10.1 m2 s-1 and net advection was 1.2 km day-1 during the period of the study. Based on the decay of SF6 concentrations, the residence time for waters in the DWSC is ~3-4 days. This is considered a low estimate for the residence time as our survey was conducted under high flow conditions.

Schmieder, P. J.; Ho, D. T.; Sharma, A. N.; Condon, M. E.; McDermott, J. A.; Clark, J. F.; Hurst, D. F.

2006-12-01

110

Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block.  

PubMed Central

The influenza A virus M2 integral membrane protein has ion channel activity which can be blocked by the antiviral drug amantadine. The M2 protein transmembrane domain is highly conserved in amino acid sequence for all the human, swine, equine, and avian strains of influenza A virus, and thus, known amino acid differences could lead to altered properties of the M2 ion channel. We have expressed in oocytes of Xenopus laevis the M2 protein of human influenza virus A/Udorn/72 and the avian virus A/chicken/Germany/34 (fowl plague virus, Rostock) and derivatives of the Rostock ion channel altered in the presumed pore region. The pH of activation of the M2 ion channels and amantadine block of the M2 ion channels were investigated. The channels were found to be activated by pH in a similar manner but differed in their apparent Kis for amantadine block. Images PMID:7688826

Wang, C; Takeuchi, K; Pinto, L H; Lamb, R A

1993-01-01

111

Membrane-protein integration and the role of the translocation channel  

Microsoft Academic Search

Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the channel to open across the membrane and to release laterally

Tom A. Rapoport; Veit Goder; Sven U. Heinrich; Kent E. S. Matlack

2004-01-01

112

Selectivity and conductance among the glycerol and water conducting aquaporin family of channels  

E-print Network

Minireview Selectivity and conductance among the glycerol and water conducting aquaporin family water plus glycerol conducting channel (GlpF), and now of aquaporin Z (AqpZ) from the same species in the glycerol plus water channel paradigm, GlpF. Water molecules form a single hydrogen bonded ¢le throughout

113

Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge  

PubMed Central

A partial characterization of the ion channels formed by the SARS coronavirus (CoV) envelope (E) protein was previously reported [C. Verdiá-Báguena et al., 2012]. Here, we provide new significant insights on the involvement of lipids in the structure and function of the CoV E protein channel on the basis of three series of experiments. First, reversal potential measurements over a wide range of pH allows the dissection of the contributions to channel selectivity coming from ionizable residues of the protein transmembrane domain and also from the negatively charged groups of diphytanoyl phosphatidylserine (DPhPS) lipid. The corresponding effective pKa’s are consistent with the model pKa’s of the acidic residues candidates for titration. Second, the change of channel conductance with salt concentration reveals two distinct regimes (Donnan-controlled electrodiffusion and bulk-like electrodiffusion) fully compatible with the outcomes of selectivity experiments. Third, by measuring channel conductance in mixtures of neutral diphytanoyl phosphatidylcholine (DPhPC) lipids and negatively charged DPhPS lipids in low and high salt concentrations we conclude that the protein-lipid conformation in the channel is likely the same in charged and neutral lipids. Overall, the whole set of experiments supports the proteolipidic structure of SARS-CoV E channels and explains the large difference in channel conductance observed between neutral and charged membranes. PMID:23688394

Verdia-Baguena, Carmina; Nieto-Torres, Jose L.; Alcaraz, Antonio; DeDiego, Marta L.; Enjuanes, Luis; Aguilella, Vicente M.

2013-01-01

114

Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish ( Ictalurus punctatus)  

Microsoft Academic Search

Feed intake (FI), feed efficiency (FE), protein efficiency ratio (PER) and weight gain (WG) of juvenile channel catfish initially weighing 15.0±0.23 g (10–12 cm initial total length) were evaluated under three regimes of time-varying water temperature (mean daily water temperature for Stoneville, MS, USA; mean +3; and, mean ?3°C) and three of dissolved oxygen (DO; 100, 70 and 30% air

J. Alejandro Buentello; Delbert M Gatlin; William H Neill

2000-01-01

115

Channel Extension in Deep-Water Distributive Systems  

Microsoft Academic Search

The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and

D. C. Hoyal; B. A. Sheets

2007-01-01

116

The influence of water on protein properties  

NASA Astrophysics Data System (ADS)

The "dynamic" or "glass" transition in biomolecules is as important to their functioning as the folding process. This transition occurs in the low temperature regime and has been related to the onset of biochemical activity that is dependent on the hydration level. This protein transition is believed to be triggered by the strong hydrogen bond coupling in the hydration water. We study the vibrational bending mode and measure it using Fourier Transform Infrared spectroscopy. We demonstrate that at the molecular level the hydration water bending mode bonds the C=O and N-H peptide groups, and find that the temperature of the "dynamic" protein transition is the same as the fragile-to-strong dynamic transition in confined water. The fragile-to-strong dynamic transition in water governs the nature of the H bonds between water and peptides and appears to be universal in supercooled glass-forming liquids.

Mallamace, Francesco; Baglioni, Piero; Corsaro, Carmelo; Chen, Sow-Hsin; Mallamace, Domenico; Vasi, Cirino; Stanley, H. Eugene

2014-10-01

117

The influence of water on protein properties.  

PubMed

The "dynamic" or "glass" transition in biomolecules is as important to their functioning as the folding process. This transition occurs in the low temperature regime and has been related to the onset of biochemical activity that is dependent on the hydration level. This protein transition is believed to be triggered by the strong hydrogen bond coupling in the hydration water. We study the vibrational bending mode and measure it using Fourier Transform Infrared spectroscopy. We demonstrate that at the molecular level the hydration water bending mode bonds the C=O and N-H peptide groups, and find that the temperature of the "dynamic" protein transition is the same as the fragile-to-strong dynamic transition in confined water. The fragile-to-strong dynamic transition in water governs the nature of the H bonds between water and peptides and appears to be universal in supercooled glass-forming liquids. PMID:25362345

Mallamace, Francesco; Baglioni, Piero; Corsaro, Carmelo; Chen, Sow-Hsin; Mallamace, Domenico; Vasi, Cirino; Stanley, H Eugene

2014-10-28

118

Multiple Scales in the Simulation of Ion Channels and Proteins.  

PubMed

Computation of living processes creates great promise for the everyday life of mankind and great challenges for physical scientists. Simulations molecular dynamics have great appeal to biologists as a natural extension of structural biology. Once a biologist sees a structure, she/he wants to see it move. Molecular biology has shown that a small number of atoms, sometimes even one messenger ion, like Ca(2+), can control biological function on the scale of cells, organs, tissues, and organisms. Enormously concentrated ions-at number densities of ~20 M-in protein channels and enzymes are responsible for many of the characteristics of living systems, just as highly concentrated ions near electrodes are responsible for many of the characteristics of electrochemical systems. Here we confront the reality of the scale differences of ions. We show that the scale differences needed to simulate all the atoms of biological cells are 10(7) in linear dimension, 10(21) in three dimensions, 10(9) in resolution, 10(11) in time, and 10(13) in particle number (to deal with concentrations of Ca(2+)). These scales must be dealt with simultaneously if the simulation is to deal with most biological functions. Biological function extends across all of them, all at once in most cases. We suggest a computational approach using explicit multiscale analysis instead of implicit simulation of all scales. The approach is based on an energy variational principle EnVarA introduced by Chun Liu to deal with complex fluids. Variational methods deal automatically with multiple interacting components and scales. When an additional component is added to the system, the resulting Euler Lagrange field equations change form automatically-by algebra alone-without additional unknown parameters. Multifaceted interactions are solutions of the resulting equations. We suggest that ionic solutions should be viewed as complex fluids with simple components. Highly concentrated solutions-dominated by interactions of components-are easily computed by EnVarA. Successful computation of ions concentrated in special places may be a significant step to understanding the defining characteristics of biological and electrochemical systems. Indeed, computing ions near proteins and nucleic acids may prove as important to molecular biology and chemical technology as computing holes and electrons has been to our semiconductor and digital technology. PMID:21135913

Eisenberg, Bob

2010-10-21

119

Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ  

PubMed Central

Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 109 transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins. PMID:11493683

Pohl, Peter; Saparov, Sapar M.; Borgnia, Mario J.; Agre, Peter

2001-01-01

120

Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs.  

PubMed

Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of ? and ? ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD. PMID:25329998

Zhao, Runzhen; Liang, Xinrong; Zhao, Meimi; Liu, Shan-Lu; Huang, Yao; Idell, Steven; Li, Xiumin; Ji, Hong-Long

2014-01-01

121

Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs  

PubMed Central

Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of ? and ? ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD. PMID:25329998

Zhao, Meimi; Liu, Shan-Lu; Huang, Yao; Idell, Steven; Li, Xiumin; Ji, Hong-Long

2014-01-01

122

Distinct Acyl Protein Transferases and Thioesterases Control Surface Expression of Calcium-activated Potassium Channels*  

PubMed Central

Protein palmitoylation is rapidly emerging as an important determinant in the regulation of ion channels, including large conductance calcium-activated potassium (BK) channels. However, the enzymes that control channel palmitoylation are largely unknown. Indeed, although palmitoylation is the only reversible lipid modification of proteins, acyl thioesterases that control ion channel depalmitoylation have not been identified. Here, we demonstrate that palmitoylation of the intracellular S0–S1 loop of BK channels is controlled by two of the 23 mammalian palmitoyl-transferases, zDHHC22 and zDHHC23. Palmitoylation by these acyl transferases is essential for efficient cell surface expression of BK channels. In contrast, depalmitoylation is controlled by the cytosolic thioesterase APT1 (LYPLA1), but not APT2 (LYPLA2). In addition, we identify a splice variant of LYPLAL1, a homolog with ?30% identity to APT1, that also controls BK channel depalmitoylation. Thus, both palmitoyl acyltransferases and acyl thioesterases display discrete substrate specificity for BK channels. Because depalmitoylated BK channels are retarded in the trans-Golgi network, reversible protein palmitoylation provides a critical checkpoint to regulate exit from the trans-Golgi network and thus control BK channel cell surface expression. PMID:22399288

Tian, Lijun; McClafferty, Heather; Knaus, Hans-Guenther; Ruth, Peter; Shipston, Michael J.

2012-01-01

123

Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel.  

PubMed

The single-file water transport through a biomimic water channel consisting of a (6,6) carbon nanotube (CNT) with different types of external point charges is studied using molecular dynamics simulations. It is demonstrated that, as in the aquaporins, asymmetrically positioned charges cannot generate robust unidirectional water flow in the CNT. Thermal fluctuation in bulk water competes with charge affinity to steer the water transport, resulting in nonmonotonic flow with intermittent reversal of transport direction. The energetic analysis suggests that the water-water interaction, determined by dipole orientation configuration, influences the transport rate significantly. These findings can provide correct biomimic understanding of water transport properties and will benefit the design of efficient functional nanofluidic devices. PMID:20000381

Zuo, Guangchao; Shen, Rong; Ma, Shaojie; Guo, Wanlin

2010-01-26

124

Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses  

E-print Network

Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses by enteroviruses such as polio and coxsackie viruses with two transmembrane domains. The protein is found to make this has on the in vivo activity of 2B. Keywords: 2B, polio virus, coxsackie virus, membrane proteins

Watts, Anthony

125

Morphology of rain water channelization in systematically varied model sandy soils  

E-print Network

We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in water infiltration depth, water channel width, and water channel separation. At a fixed raining condition, we combine the effects of grain diameter and surface hydrophobicity into a single parameter and determine its influence on water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to rain water channelization phenomenon, including pre-wetting sandy soils at different level before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

Y. Wei; C. M. Cejas; R. Barrois; R. Dreyfus; D. J. Durian

2014-03-13

126

Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils  

NASA Astrophysics Data System (ADS)

We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

2014-10-01

127

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel  

E-print Network

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller means, without the permission of the author. #12;ii Supervisory Committee Liquid Water Dynamics Dr. Sadik Dost, Department of Mechanical Engineering Departmental Member Water management

Victoria, University of

128

Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia  

NASA Astrophysics Data System (ADS)

Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.

Li, Ming; McCann, John D.; Anderson, Matthew P.; Clancy, John P.; Liedtke, Carole M.; Nairn, Angus C.; Greengard, Paul; Welsh, Michael J.

1989-06-01

129

Control of Neuronal Voltage-Gated Calcium Ion Channels From RNA to Protein  

PubMed Central

Voltage-gated calcium (CaV) ion channels convert neuronal activity into rapid intracellular calcium signals to trigger a myriad of cellular responses. Their involvement in major neurological and psychiatric diseases, and importance as therapeutic targets, has propelled interest in subcellular-specific mechanisms that align CaV channel activity to specific tasks. Here we highlight recent studies that delineate mechanisms controlling the expression of CaV channels at the level of RNA and protein. We discuss the roles of RNA editing and alternative pre-mRNA splicing in generating CaV channel isoforms with activities specific to the demands of individual cells; the roles of ubiquitination and accessory proteins in regulating CaV channel expression; and the specific binding partners which contribute to both pre- and post- synaptic CaV channel function. PMID:23907011

Lipscombe, Diane; Allen, Summer E; Toro, Cecilia P.

2013-01-01

130

Independently Gated Multiple Substates of an Epithelial Chloride-Channel Protein  

NASA Astrophysics Data System (ADS)

We have purified a protein from Necturus maculosus gallbladder cells that forms chloride channels in an artificial membrane. The same protein apparently can form channels that are highly selective for chloride but can have conductances varying from 9 to about 150 pS. The high-conductance channels are blocked by the monoclonal antibody used to purify the protein, but this antibody has no effect on the 9-pS channels. The observation that gating of the low- and high-conductance states is independent and that the antibody affects only the latter has implications regarding the control of chloride conductance in cell membranes and the different types of channels described in those cells.

Finn, Arthur L.; Dillard, Margaret; Gaido, Marcia

1993-06-01

131

Phycodnavirus Potassium Ion Channel Proteins Question the Virus Molecular Piracy Hypothesis  

PubMed Central

Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K+ channels. To determine if these viral K+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K+ channel pore modules from seven phycodnaviruses to the K+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K+ channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K+ channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K+ channels in algae and perhaps even all cellular organisms. PMID:22685610

Hamacher, Kay; Greiner, Timo; Ogata, Hiroyuki; Van Etten, James L.; Gebhardt, Manuela; Villarreal, Luis P.; Cosentino, Cristian; Moroni, Anna; Thiel, Gerhard

2012-01-01

132

Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.  

PubMed

Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms. PMID:22685610

Hamacher, Kay; Greiner, Timo; Ogata, Hiroyuki; Van Etten, James L; Gebhardt, Manuela; Villarreal, Luis P; Cosentino, Cristian; Moroni, Anna; Thiel, Gerhard

2012-01-01

133

Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel  

Microsoft Academic Search

PARASYMPATHETIC nerve stimulation causes slowing of the heart rate by activation of muscarinic receptors and the subsequent opening of muscarinic K+ channels in the sinoatrial node and atrium1-4. This inwardly rectifying K+ channel is coupled directly with G protein5-10. Based on sequence homology with cloned inwardly rectifying K+ channels, ROMK1 (ref. 11) and IRK1 (ref. 12), we have isolated a

Yoshihiro Kubo; Eitan Reuveny; Paul A. Slesinger; Yuh Nung Jan; Lily Y. Jan

1993-01-01

134

Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex.  

PubMed

Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the I?B kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the I?B/NF?B pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders. PMID:22364545

Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda

2012-04-01

135

Direct Activation of Mammalian Atrial Muscarinic Potassium Channels by GTP Regulatory Protein Gk  

Microsoft Academic Search

The mammalian heart rate is regulated by the vagus nerve, which acts via muscarinic acetylcholine receptors to cause hyperpolarization of atrial pacemaker cells. The hyperpolarization is produced by the opening of potassium channels and involves an intermediary guanosine triphosphate-binding regulatory (G) protein. Potassium channels in isolated, inside-out patches of membranes from atrial cells now are shown to be activated by

Atsuko Yatani; Juan Codina; Arthur M. Brown; Lutz Birnbaumer

1987-01-01

136

Ancient association between cation leak channels and Mid1 proteins is conserved in fungi and animals  

PubMed Central

Neuronal resting potential can tune the excitability of neural networks, affecting downstream behavior. Sodium leak channels (NALCN) play a key role in rhythmic behaviors by helping set, or subtly changing neuronal resting potential. The full complexity of these newly described channels is just beginning to be appreciated, however. NALCN channels can associate with numerous subunits in different tissues and can be activated by several different peptides and second messengers. We recently showed that NALCN channels are closely related to fungal calcium channels, which they functionally resemble. Here, we use this relationship to predict a family of NALCN-associated proteins in animals on the basis of homology with the yeast protein Mid1, the subunit of the yeast calcium channel. These proteins all share a cysteine-rich region that is necessary for Mid1 function in yeast. We validate this predicted association by showing that the Mid1 homolog in Drosophila, encoded by the CG33988 gene, is coordinately expressed with NALCN, and that knockdown of either protein creates identical phenotypes in several behaviors associated with NALCN function. The relationship between Mid1 and leak channels has therefore persisted over a billion years of evolution, despite drastic changes to both proteins and the organisms in which they exist. PMID:24639627

Ghezzi, Alfredo; Liebeskind, Benjamin J.; Thompson, Ammon; Atkinson, Nigel S.; Zakon, Harold H.

2014-01-01

137

A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells.  

PubMed

The plant hormone abscisic acid (ABA) serves as a physiological monitor to assess the water status of plants and, under drought conditions, induces stomatal pore closure by activating specific ion channels, such as a slow-anion channel (SLAC1) that, in turn, mediate ion efflux from the guard cells. Earlier genetic analyses uncovered a protein kinase (OST1) and several 2C-type phosphatases, as respective positive and negative regulators of ABA-induced stomatal closure. Here we show that the OST1 kinase interacts with the SLAC1 anion channel, leading to its activation via phosphorylation. PP2CA, one of the PP2C phosphatase family members acts in an opposing manner and inhibits the activity of SLAC1 by two mechanisms: (1) direct interaction with SLAC1 itself, and (2) physical interaction with OSTI leading to inhibition of the kinase independently of phosphatase activity. The results suggest that ABA signaling is mediated by a physical interaction chain consisting of several components, including a PP2C member, SnRK2-type kinase (OST1), and an ion channel, SLAC1, to regulate stomatal movements. The findings are in keeping with a paradigm in which a protein kinase-phosphatase pair interacts physically with a target protein to couple a signal with a specific response. PMID:19955427

Lee, Sung Chul; Lan, Wenzhi; Buchanan, Bob B; Luan, Sheng

2009-12-15

138

A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells  

PubMed Central

The plant hormone abscisic acid (ABA) serves as a physiological monitor to assess the water status of plants and, under drought conditions, induces stomatal pore closure by activating specific ion channels, such as a slow-anion channel (SLAC1) that, in turn, mediate ion efflux from the guard cells. Earlier genetic analyses uncovered a protein kinase (OST1) and several 2C-type phosphatases, as respective positive and negative regulators of ABA-induced stomatal closure. Here we show that the OST1 kinase interacts with the SLAC1 anion channel, leading to its activation via phosphorylation. PP2CA, one of the PP2C phosphatase family members acts in an opposing manner and inhibits the activity of SLAC1 by two mechanisms: (1) direct interaction with SLAC1 itself, and (2) physical interaction with OSTI leading to inhibition of the kinase independently of phosphatase activity. The results suggest that ABA signaling is mediated by a physical interaction chain consisting of several components, including a PP2C member, SnRK2-type kinase (OST1), and an ion channel, SLAC1, to regulate stomatal movements. The findings are in keeping with a paradigm in which a protein kinase-phosphatase pair interacts physically with a target protein to couple a signal with a specific response. PMID:19955427

Lee, Sung Chul; Lan, Wenzhi; Buchanan, Bob B.; Luan, Sheng

2009-01-01

139

Effect of Heavy Water on Protein Flexibility  

Microsoft Academic Search

The effects of heavy water (D2O) on internal dynamics of proteins were assessed by both the intrinsic phosphorescence lifetime of deeply buried Trp residues, which reports on the local structure about the triplet probe, and the bimolecular acrylamide phosphorescence quenching rate constant that is a measure of the average acrylamide diffusion coefficient through the macromolecule. The results obtained with several

Patrizia Cioni; Giovanni B. Strambini

2002-01-01

140

Optimum Dietary Protein to Energy Ratio for Channel Catfish Fingerlings, Ictalurus punctatus 1-4  

Microsoft Academic Search

Twenty-one semipurified diets were formulated to deter mine the optimum protein :energy ratio (P\\/E) for channel catfish finger- lings. Seven crude protein levels and three energy levels at each protein level were utilized. The protein, lipid, and digestible carbohydrate sources were hexane-extracted whole egg powder, salmon-corn oil mixture, and white dextrin, respectively. After an initial 2 week conditioning period, the

DONALD L. GARLING; J. R. ANDROBERT; P. WILSON

141

The ABC protein turned chloride channel whose failure causes cystic fibrosis  

NASA Astrophysics Data System (ADS)

CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

Gadsby, David C.; Vergani, Paola; Csanády, László

2006-03-01

142

Bacterial origin of a mitochondrial outer membrane protein translocase: new perspectives from comparative single channel electrophysiology.  

PubMed

Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

2012-09-01

143

Concentrating Toxoplasma gondii and Cyclospora cayetanensis from Surface Water and Drinking Water by Continuous Separation Channel Centrifugation  

EPA Science Inventory

Aims: To evaluate the effectiveness of continuous separation channel centrifugation for concentrating Toxoplasma gondii and Cyclospora cayetanensis from drinking water and environmental waters. Methods and Results: Ready-to-seed vials with known quantities of Toxoplasma gondii a...

144

Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel  

PubMed Central

The envelope (E) protein from coronaviruses is a small polypeptide that contains at least one ?-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA), but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV) that the transmembrane domain of E protein (ETM) forms pentameric ?-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular ?-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293) cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA), but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target. PMID:19593379

Pervushin, Konstantin; Tan, Edward; Parthasarathy, Krupakar; Lin, Xin; Jiang, Feng Li; Yu, Dejie; Vararattanavech, Ardcharaporn; Soong, Tuck Wah; Liu, Ding Xiang; Torres, Jaume

2009-01-01

145

Viral channel proteins in intracellular protein-protein communication: Vpu of HIV-1, E5 of HPV16 and p7 of HCV.  

PubMed

Viral channel forming proteins are known for their capability to make the lipid membrane of the host cell and its subcellular compartments permeable to ions and small compounds. There is increasing evidence that some of the representatives of this class of proteins are also strongly interacting with host proteins and the effectiveness of this interaction seems to be high. Interaction of viral channel proteins with host factors has been proposed by bioinformatics approaches and has also been identified experimentally. An overview of the interactions with host proteins is given for Vpu from HIV-1, E5 from HPV-16 and p7 from HCV. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. PMID:24035804

Fischer, Wolfgang B; Li, Li-Hua; Mahato, Dhani Ram; Wang, Yi-Ting; Chen, Chin-Pei

2014-04-01

146

PKA phosphorylation of HERG protein regulates the rate of channel synthesis  

PubMed Central

Acute changes in cAMP and protein kinase A (PKA) signaling can regulate ion channel protein activities such as gating. Effects on channels due to chronic PKA signaling, as in stress or disease states, are less understood. We examined the effects of prolonged PKA activity on the human ether-a-go-go-related gene (HERG) K+ channel in stably transfected human embryonic kidney (HEK)293 cells. Sustained elevation of cAMP by either chlorophenylthiol (CPT)-cAMP or forskolin increased the HERG channel protein abundance two- to fourfold within 24 h, with measurable difference as early as 4 h. The cAMP-induced augmentation was not due to changes in transcription and was specific for HERG compared with other cardiac K+ channels (Kv1.4, Kv1.5, Kir2.1, and KvLQT1). PKA activity was necessary for the effect on HERG protein and did not involve other cAMP signaling pathways. Direct PKA phosphorylation of the HERG protein was responsible for the cAMP-induced augmentation. Enhanced abundance of HERG protein was detected in endoplasmic reticulum-enriched, Golgi, and plasma membrane without significant changes in trafficking rates or patterns. An increase in the K+ current density carried by the HERG channel was also observed, but with a delay, suggesting that traffic to the surface is rate-limiting traffic. Acceleration of the HERG protein synthesis rate was the primary factor in the cAMP/PKA effect with lesser effects on protein stability. These results provide evidence for a novel mechanism whereby phosphorylation of a nascent protein dictates its rate of synthesis, resetting its steady-state abundance. PMID:19234087

Chen, Jian; Sroubek, Jakub; Krishnan, Yamini; Li, Yan; Bian, Jinsong; McDonald, Thomas V.

2009-01-01

147

Subunit Stoichiometry of a Heteromultimeric G protein-coupled Inward-rectifier K Channel*  

E-print Network

Subunit Stoichiometry of a Heteromultimeric G protein-coupled Inward-rectifier K Channel* (Received subunits (4­7). More recently, two members of the inward-rectifier class, IRK1 (8) and ROMK1 (9), have also-protein-coupled inward rectifiers (GIRKs).1 In par- ticular, coexpression of GIRK1 and GIRK4 (CIR) produces

Silverman, Scott K.

148

SDS capillary gel electrophoresis of proteins in microfabricated channels  

PubMed Central

Analysis of variations in the concentrations or structures of biomolecules (e.g., mRNAs, proteins, peptides, natural products) that occur either naturally or in response to environmental or genetic perturbations can provide important insight into complex biological processes. Many biological samples are mixtures that require a separation step before quantitation of variations in the individual components. Two-dimensional denaturing gel electrophoresis has been used very effectively to separate complex mixtures of proteins, but it is time consuming and requires considerable amounts of sample. Microchannel-based separations have proven very effective in rapidly separating small amounts of nucleic acids; more recently, isoelectric focusing of proteins also has been adapted to the microchannel format. Here, we describe microchannel-based SDS capillary gel electrophoresis of proteins and demonstrate the speed and high resolution it provides. This development is an important step toward the miniaturization and integration of multidimensional and array separation methods for complex protein mixtures. PMID:10318890

Yao, Shao; Anex, Deon S.; Caldwell, W. Brett; Arnold, Don W.; Smith, Katherine B.; Schultz, Peter G.

1999-01-01

149

Colon water transport in transgenic mice lacking aquaporin-4 water channels  

PubMed Central

Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (?/?) mice. The transepithelial osmotic water permeability coefficient (Pf) of in vivo perfused colon of +/+ mice, measured using the volume marker 14C-labeled polyethylene glycol, was 0.016 ± 0.002 cm/s. Pf of proximal colon was greater than that of distal colon (0.020 ± 0.004 vs. 0.009 ± 0.003 cm/s, P < 0.01). Pf was significantly lower in ?/? mice when measured in full-length colon (0.009 ± 0.002 cm/s, P < 0.05) and proximal colon (0.013 ± 0.002 cm/s, P < 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. ?/? mice (0.80 ± 0.01 vs. 0.81 ± 0.01), but there was a slightly higher water content in defecated stool from +/+ mice (0.68 ± 0.01 vs. 0.65 ± 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 ± 9 vs. 51 ± 8 ?l · min?1 · g?1). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration. PMID:10915657

WANG, KASPER S.; MA, TONGHUI; FILIZ, FERDA; VERKMAN, A. S.; BASTIDAS, J. AUGUSTO

2012-01-01

150

Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane.  

PubMed

Reconstitution of membrane proteins in artificial membrane systems creates a platform for exploring their potential for pharmacological or biotechnological applications. Previously, we demonstrated amphiphilic block copolymers as promising building blocks for artificial membranes with long-term stability and tailorable structural parameters. However, the insertion of membrane proteins has not previously been realized in a large-area, stable, and solid-supported artificial membrane. Here, we show the first, preliminary model of a channel membrane protein that is functionally incorporated in a completely artificial polymer, tethered, solid-supported bilayer membrane (TSSBM). Unprecedented ionic transport characteristics that differ from previous results on protein insertion into planar, free-standing membranes, are identified. Our findings mark a change in understanding protein insertion and ion flow within natural channel proteins when inserted in an artificial TSSBM, thus holding great potential for numerous applications such as drug screening, trace analyzing, and biosensing. PMID:23846807

Zhang, Xiaoyan; Fu, Wangyang; Palivan, Cornelia G; Meier, Wolfgang

2013-01-01

151

EFFECT OF ELEVATED WATER TEMPERATURE ON INSECT EMERGENCE IN OUTDOOR EXPERIMENTAL CHANNELS  

EPA Science Inventory

Emergence of adult aquatic insects was evaluated weekly with plexiglass traps positioned in two outdoor experimental channels from April through August 1977. One channel was seasonal Mississippi River water temperature and the other maintained at 10C above. Maximum water temperat...

152

EFFECT OF ELEVATED WATER TEMPERATURE ON MACRO-INVERTEBRATE COMMUNITIES IN OUTDOOR EXPERIMENTAL CHANNELS  

EPA Science Inventory

Macroinvertebrates were sampled monthly from December 1976 to September 1977 in two 520 m long outdoor experimental channels. One channel was maintained at ambient seasonal Mississippi River water temperatures and the other 10C higher. Maximum water temperature reached 31.0C in t...

153

Importance of voltage-dependent inactivation in N-type calcium channel regulation by G-proteins  

PubMed Central

Direct regulation of N-type calcium channels by G-proteins is essential to control neuronal excitability and neurotransmitter release. Binding of the G?? dimer directly onto the channel is characterized by a marked current inhibition (“ON” effect), whereas the pore opening- and time-dependent dissociation of this complex from the channel produce a characteristic set of biophysical modifications (“OFF” effects). Although G-protein dissociation is linked to channel opening, the contribution of channel inactivation to G-protein regulation has been poorly studied. Here, the role of channel inactivation was assessed by examining time-dependent G-protein de-inhibition of Cav2.2 channels in the presence of various inactivation-altering ? subunit constructs. G-protein activation was produced via ?-opioid receptor activation using the DAMGO agonist. Whereas the “ON” effect of G-protein regulation is independent of the type of ? subunit, the “OFF” effects were critically affected by channel inactivation. Channel inactivation acts as a synergistic factor to channel activation for the speed of G-protein dissociation. However, fast inactivating channels also reduce the temporal window of opportunity for G-protein dissociation, resulting in a reduced extent of current recovery, whereas slow inactivating channels undergo a far more complete recovery from inhibition. Taken together, these results provide novel insights on the role of channel inactivation in N-type channel regulation by G-proteins and contribute to the understanding of the physiological consequence of channel inactivation in the modulation of synaptic activity by G-protein coupled receptors. PMID:17171365

Weiss, Norbert; Tadmouri, Abir; Mikati, Mohamad; Ronjat, Michel; De Waard, Michel

2007-01-01

154

14-3-3 protein regulation of proton pumps and ion channels  

Microsoft Academic Search

In addition to their regulation of cytoplasmic enzymes, the 14-3-3 proteins are important regulators of membrane localised proteins. In particular, many of the cells' ion pumps and channels are either directly or indirectly modulated by 14-3-3 proteins. Binding of 14-3-3 can lead to the activation of pump activity as in the case of the plasma membrane H+-ATPase or inhibition as

Tom D. Bunney; Paul W. J. van den Wijngaard; Albertus H. de Boer

2002-01-01

155

Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels.  

PubMed

We show the accuracy and applicability of our fast algorithmic implementation of a three-dimensional Poisson-Nernst-Planck (3D-PNP) flow model for characterizing different protein channels. Due to its high computational efficiency, our model can predict the full current-voltage characteristics of a channel within minutes, based on the experimental 3D structure of the channel or its computational model structure. Compared with other methods, such as Brownian dynamics, which currently needs a few weeks of the computational time, or even much more demanding molecular dynamics modeling, 3D-PNP is the only available method for a function-based evaluation of very numerous tentative structural channel models. Flow model tests of our algorithm and its optimal parametrization are provided for five native channels whose experimental structures are available in the protein data bank (PDB) in an open conductive state, and whose experimental current-voltage characteristics have been published. The channels represent very different geometric and structural properties, which makes it the widest test to date of the accuracy of 3D-PNP on real channels. We test whether the channel conductance, rectification, and charge selectivity obtained from the flow model, could be sufficiently sensitive to single-point mutations, related to unsignificant changes in the channel structure. Our results show that the classical 3D-PNP model, under proper parametrization, is able to achieve a qualitative agreement with experimental data for a majority of the tested characteristics and channels, including channels with narrow and irregular conductivity pores. We propose that although the standard PNP model cannot provide insight into complex physical phenomena due to its intrinsic limitations, its semiquantitative agreement is achievable for rectification and selectivity at a level sufficient for the bioinformatical purpose of selecting the best structural models with a great advantage of a very short computational time. PMID:23720356

Dyrka, Witold; Bartuzel, Maciej M; Kotulska, Malgorzata

2013-10-01

156

Structure of the SecY channel during initiation of protein translocation  

PubMed Central

Many secretory proteins are targeted by signal sequences to a protein-conducting channel, formed by prokaryotic SecY- or eukaryotic Sec61-complexes, and are translocated across the membrane during their synthesis1,2. Crystal structures of the inactive channel show that the SecY subunit of the heterotrimeric complex consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces the lipid phase3-5. The closed channel has an empty cytoplasmic funnel and an extracellular funnel that is filled with a small helical domain, called the plug. During initiation of translocation, a ribosome–nascent chain complex binds to the SecY/Sec61 complex, resulting in insertion of the nascent chain. However, the mechanism of channel opening during translocation is unclear. Here, we have addressed this question by determining structures of inactive and active ribosome–channel complexes with cryo-electron microscopy. Non-translating ribosome–SecY channel complexes derived from Methanococcus jannaschii or Escherichia coli show the channel in its closed state, and indicate that ribosome binding per se causes only minor changes. The structure of an active E. coli ribosome–channel complex demonstrates that the nascent chain opens the channel, causing mostly rigid body movements of the N- and C-terminal halves of SecY. In this early translocation intermediate, the polypeptide inserts as a loop into the SecY channel with the hydrophobic signal sequence intercalated into the open lateral gate. The nascent chain also forms a loop on the cytoplasmic surface of SecY rather than directly entering the channel. PMID:24153188

Park, Eunyong; Menetret, Jean-Francois; Gumbart, James C.; Ludtke, Steven J.; Li, Weikai; Whynot, Andrew

2013-01-01

157

The TMEM16 Protein Family: A New Class of Chloride Channels?  

PubMed Central

Abstract Cl? channels play important roles in many physiological processes, including transepithelial ion absorption and secretion, smooth and skeletal muscle contraction, neuronal excitability, sensory perception, and cell volume regulation. The molecular identity of many types of Cl? channels is still unknown. Recently, three research groups have arrived independently at the identification of TMEM16A (also known as anoctamin-1) as a membrane protein strongly related to the activity of Ca2+-activated Cl? channels (CaCCs). Site-specific mutagenesis of TMEM16A alters the properties of the channels, thus suggesting that TMEM16A forms, at least in part, the CaCC. TMEM16A is a member of a family that includes nine other membrane proteins. All TMEM16 proteins have a similar structure, with eight putative transmembrane domains and cytosolic amino- and carboxy-termini. TMEM16B expression also evokes the appearance of CaCCs, but with biophysical characteristics (voltage dependence, unitary conductance) different from those associated to TMEM16A. The roles of the other TMEM16 proteins are still unknown. The study of TMEM16 proteins may lead to identification of novel molecular mechanisms underlying ion transport and channel gating by voltage and Ca2+. PMID:20006941

Galietta, Luis J.V.

2009-01-01

158

Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport.  

PubMed Central

Water movement across the airway epithelium is important for regulation of the volume and composition of airspace fluid. A novel approach is reported here to measure osmotic and diffusional water permeability in intact airways. Small airways (100-200 microns diameter, 1-2 mm length) from guinea pig lung were microdissected and perfused in vitro using concentric glass holding and perfusion pipettes. For measurement of osmotic water permeability (Pf), the airway lumen was perfused wit PBS (300 mOsM) containing a membrane impermeable fluorophore, fluorescein sulfonate (FS), and the airway was bathed in solutions of specified osmolalities. Pf determination was based on the changes in FS fluorescence at the distal end of the airway resulting from transepithelial water transport. Pf was 4-5 x 10(-3) cm/s at 23 degrees C and independent of lumen flow rate (10-100 nl/min) and the magnitude and direction of the osmotic gradient (bath osmolality 50-600 mOsM). Temperature dependence measurements gave an activation energy of 4.4 kcal/mol (15-37 degrees C). Pf was not altered by 0.3 mM HgCl2 or 50 microM forskolin, but was increased to 31 x 10(-3) cm/s by 100 micrograms/ml amphotericin B, indicating that osmosis is not limited by unstirred layers. Diffusional water permeability (Pd) was measured by H2O/D2O (deuterium oxide) exchange using the H2O/D2O-sensitive fluorescent probe aminonapthelane trisulfonic acid in the lumen. Measured Pd was 3-6 x 10(-6) cm/s at 23 degrees C, indicating significant restriction to water diffusion by unstirred layers. Antibody localization of water channels showed strong expression of the mercurial-insensitive water channel (AQP-4) at the basolateral membrane of airway epithelial cells. These results provide functional evidence that water movement across the distal airway epithelium is mediated by water channels. PMID:8609221

Folkesson, H G; Matthay, M A; Frigeri, A; Verkman, A S

1996-01-01

159

Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor  

Microsoft Academic Search

Human ether-a-go-go-related gene (HERG) channels heterologously expressed in Xenopus oocytes are regulated by the activation of G protein-coupled hormone receptors that, like the thyrotropin-releasing hormone\\u000a (TRH) receptor, activate phospholipase C. Previous work with serially deleted HERG mutants suggested that residues 326–345\\u000a located in the proximal domain of the channels amino terminus might be required for the hormonal modulation of HERG

Carlos Alonso-Ron; Francisco Barros; Diego G. Manso; David Gómez-Varela; Pablo Miranda; Luis Carretero; Pedro Domínguez; Pilar de la Peña

2009-01-01

160

A single Sec61-complex functions as a protein-conducting channel.  

PubMed

During cotranslational translocation of proteins into the endoplasmic reticulum (ER) translating ribosomes bind to Sec61-complexes. Presently two models exist how these membrane protein complexes might form protein-conducting channels. While electron microscopic data suggest that a ring-like structure consisting of four Sec61-complexes build the channel, the recently solved crystal structure of a homologous bacterial protein complex led to the speculation that the actual tunnel is formed by just one individual Sec61-complex. Using protease protection assays together with quantitative immunoblotting we directly examined the structure of mammalian protein-conducting channels. We found that in native ER-membranes one single Sec61alpha-molecule is preferentially protected by a membrane bound ribosome, both, in the presence and absence of nascent polypeptides. In addition we present evidence that the nascent polypeptide destabilizes the ring-like translocation apparatus formed by four Sec61-complexes. Moreover, we found that after solubilization of ER-membranes a single Sec61-complex is sufficient to protect the nascent polypeptide chain against added proteases. Finally, we could show that this single Sec61-complex allows the movement of the nascent chain, when it has been released from the ribosome by puromycin treatment. Collectively, our data suggest that the active protein-conducting channel in the ER is formed by a single Sec61-complex. PMID:18778738

Kalies, Kai-Uwe; Stokes, Vivica; Hartmann, Enno

2008-12-01

161

Pxmp2 Is a Channel-Forming Protein in Mammalian Peroxisomal Membrane  

PubMed Central

Background Peroxisomal metabolic machinery requires a continuous flow of organic and inorganic solutes across peroxisomal membrane. Concerning small solutes, the molecular nature of their traffic has remained an enigma. Methods/Principal Findings In this study, we show that disruption in mice of the Pxmp2 gene encoding Pxmp2, which belongs to a family of integral membrane proteins with unknown function, leads to partial restriction of peroxisomal membrane permeability to solutes in vitro and in vivo. Multiple-channel recording of liver peroxisomal preparations reveals that the channel-forming components with a conductance of 1.3 nS in 1.0 M KCl were lost in Pxmp2?/? mice. The channel-forming properties of Pxmp2 were confirmed with recombinant protein expressed in insect cells and with native Pxmp2 purified from mouse liver. The Pxmp2 channel, with an estimated diameter of 1.4 nm, shows weak cation selectivity and no voltage dependence. The long-lasting open states of the channel indicate its functional role as a protein forming a general diffusion pore in the membrane. Conclusions/Significance Pxmp2 is the first peroxisomal channel identified, and its existence leads to prediction that the mammalian peroxisomal membrane is permeable to small solutes while transfer of “bulky” metabolites, e.g., cofactors (NAD/H, NADP/H, and CoA) and ATP, requires specific transporters. PMID:19352492

Rokka, Aare; Soininen, Raija; Immonen, Hanna L.; Pirilä, Päivi L.; Bergmann, Ulrich; Sormunen, Raija T.; Weckström, Matti; Hiltunen, J. Kalervo

2009-01-01

162

Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins  

PubMed Central

Many voltage-gated ion channel (VGIC) superfamily members contain six-transmembrane segments in which the first four form a voltage-sensing domain (VSD) and the last two form the pore domain (PD). Studies of potassium channels from the VGIC superfamily together with identification of voltage-sensor only proteins have suggested that the VSD and the PD can fold independently. Whether such transmembrane modularity is common to other VGIC superfamily members has remained untested. Here we show, using protein dissection, that the Silicibacter pomeroyi voltage-gated sodium channel (NaVSp1) PD forms a stand-alone, ion selective pore (NaVSp1p) that is tetrameric, ?-helical, and that forms functional, sodium-selective channels when reconstituted into lipid bilayers. Mutation of the NaVSp1p selectivity filter from LESWSM to LDDWSD, a change similar to that previously shown to alter ion selectivity of the bacterial sodium channel NaVBh1 (NaChBac), creates a calcium-selective pore-only channel, CaVSp1p. We further show that production of PDs can be generalized by making pore-only proteins from two other extremophile NaVs: one from the hydrocarbon degrader Alcanivorax borkumensis (NaVAb1p), and one from the arsenite oxidizer Alkalilimnicola ehrlichei (NaVAe1p). Together, our data establish a family of active pore-only ion channels that should be excellent model systems for study of the factors that govern both sodium and calcium selectivity and permeability. Further, our findings suggest that similar dissection approaches may be applicable to a wide range of VGICs and, thus, serve as a means to simplify and accelerate biophysical, structural, and drug development efforts. PMID:21746903

Shaya, David; Kreir, Mohamed; Robbins, Rebecca A.; Wong, Stephanie; Hammon, Justus; Bruggemann, Andrea; Minor, Daniel L.

2011-01-01

163

Advances in research on G protein-coupled inward rectifier K(+) channel gene.  

PubMed

G protein-coupled inward rectifier K(+) channel 4(GIRK4) is a G protein-coupled inward rectifier potassium channel family member. Encoded by the KCNJ5, it is widely distributed in the mammalian heart, brain, and other tissues and organs. Recent studies have demonstrated that the abnormal expression of GIRK4 gene is associated with atrial fibrillation, and meanwhile may be closely related to obesity, metabolic syndrome, and many other clinical conditions. Further research on the role the GIRK4 gene in the pathophysiology of these clinical conditions will definitely facilitate their clinical diagnosis and treatment. PMID:22954132

Kang, Yong-an; Hu, Yan-rong; Li, Nan-fang

2012-08-01

164

Probing membrane protein structure using water polarization transfer solid-state NMR  

NASA Astrophysics Data System (ADS)

Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins.

Williams, Jonathan K.; Hong, Mei

2014-10-01

165

Probing membrane protein structure using water polarization transfer solid-state NMR.  

PubMed

Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

Williams, Jonathan K; Hong, Mei

2014-10-01

166

The Small Hydrophobic Protein of the Human Respiratory Syncytial Virus Forms Pentameric Ion Channels*  

PubMed Central

The small hydrophobic (SH) protein is encoded by the human respiratory syncytial virus. Its absence leads to viral attenuation in the context of whole organisms, and it prevents apoptosis in infected cells. Herein, we have examined the structure of SH protein in detergent micelles and in lipid bilayers, by solution NMR and attenuated total reflection-Fourier transform infrared spectroscopy, respectively. We found that SH protein has a single ?-helical transmembrane domain and forms homopentamers in several detergents. In detergent micelles, the transmembrane domain is flanked N-terminally by an ?-helix that forms a ring around the lumen of the pore and C-terminally by an extended ?-turn. SH protein was found in the plasma membrane of transiently expressing HEK 293 cells, which showed pH-dependent (acid-activated) channel activity. Channel activity was abolished in mutants lacking both native His residues, His22 and His51, but not when either His was present. Herein, we propose that the pentameric model of SH protein presented is a physiologically relevant conformation, albeit probably not the only one, in which SH contributes to RSV infection and replication. Viroporins are short (?100 amino acids) viral membrane proteins that form oligomers of a defined size, act as proton or ion channels, and in general enhance membrane permeability in the host. However, with some exceptions, their precise biological role of their channel activity is not understood. In general, viroporins resemble poorly specialized proteins but are nevertheless critical for viral fitness. In vivo, viruses lacking viroporins usually exhibit an attenuated or weakened phenotype, altered tropism, and diminished pathological effects. We have chosen to study the SH protein, 64 amino acids long, found in the human respiratory syncytial virus because of the effect of RSV on human health and the lack of adequate antivirals. We show that SH protein forms oligomers that behave as ion channels when activated at low pH. This study adds SH protein to a growing group of viroporins that have been structurally characterized. Although the precise biological role of this pentameric channel is still unknown, this report is nevertheless essential to fill some of the many gaps that exist in the understanding of SH protein function. PMID:22621926

Gan, Siok-Wan; Tan, Edward; Lin, Xin; Yu, Dejie; Wang, Juejin; Tan, Gregory Ming-Yeong; Vararattanavech, Ardcharaporn; Yeo, Chiew Ying; Soon, Cin Huang; Soong, Tuck Wah; Pervushin, Konstantin; Torres, Jaume

2012-01-01

167

Suspended lipid bilayer for optical and electrical measurements of single ion channel proteins.  

PubMed

Making and holding an artificial lipid bilayer horizontally in an aqueous solution within the microscopic working distance of ~100 ?m are essential for simultaneous single molecule imaging and single ion-channel electrical current recording. However, preparation of such a lipid bilayer without a solid support is technically challenging. In a typical supported lipid bilayer, the asymmetric local environments and the strong perturbation of the underneath solid or dense surface can diverge the normal behavior of membrane proteins and lipids. On the other hand, the suspended lipid bilayers can provide a native local environment for the membrane proteins and lipids by having fluids on both sides. In this technical report, we present a simple and novel methodology for making a suspended lipid bilayer that can be used for recording the single-molecule diffusion and single ion-channel electrical measurements of ion-channel proteins. Our approach has a higher validity for studying the molecular diffusions and conformational fluctuations of membrane proteins without having perturbations from supporting layers. We demonstrate the feasibility of such an approach on simultaneous single-molecule fluorescence imaging and electric current measurements of ion channel proteins. PMID:23992532

Rajapaksha, Suneth P; Wang, Xuefei; Lu, H Peter

2013-10-01

168

Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1  

PubMed Central

The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinne, Susanne; Decher, Niels; Schlichthorl, Gunter; Daut, Jurgen

2014-01-01

169

Water, proton, and urea transport in toad bladder endosomes that contain the vasopressin-sensitive water channel  

Microsoft Academic Search

Vasopressin (VP) increases the water permeability of the toad urinary bladder epithelium by inducing the cycling of vesicles containing water channels to and from the apical membrane of granular cells. In this study, we have measured several functional characteristics of the endosomal vesicles that participate in this biological response to hormonal stimulation. The water, proton, and urea perme- abilities of

LAN-BO SHI; D. BROWN; A. S. VERKMAN

1990-01-01

170

The protein import channel in the outer mitosomal membrane of Giardia intestinalis.  

PubMed

The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a approximately 200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes. PMID:19531743

Dagley, Michael J; Dolezal, Pavel; Likic, Vladimir A; Smid, Ondrej; Purcell, Anthony W; Buchanan, Susan K; Tachezy, Jan; Lithgow, Trevor

2009-09-01

171

A flow through water system for channel catfish fingerling culture  

E-print Network

. 1975. The influence of various culture conditions on the oxygen consumption of channel catfish. Trans. Amer. Fish. Soc. 104(2): 217-438. Buss, K. 1968. Innovations for fish culturist. Benner Spring Fish Research Station, Pennsylvania Fish Commission.... 1975. The influence of various culture conditions on the oxygen consumption of channel catfish. Trans. Amer. Fish. Soc. 104(2): 217-438. Buss, K. 1968. Innovations for fish culturist. Benner Spring Fish Research Station, Pennsylvania Fish Commission...

Steinbach, Donny W

2012-06-07

172

Particularities of the dynamics of river channel processes in the Khabarovsk water junction  

Microsoft Academic Search

The dynamics of river channel processes were analyzed in the region of complex floodplain-channel branching of the Amur River\\u000a near Khabarovsk using remote sensing data of the Earth’s surface. Zones of steady accumulation and long-term erosion of the\\u000a river channel are established within the Khabarovsk water junction over the period of 1964–2004. The main problems related\\u000a to restoring the Amur

V. I. Sinyukov; V. A. Glukhov; O. V. Rybas; A. N. Makhinov; V. I. Kim; N. V. Berdnikov

2008-01-01

173

Groundwater-surface water ecotones at the upstream part of confluences in former river channels  

Microsoft Academic Search

Two slow flowing former channels of the Rhône River, which are supplied by nutrient-poor groundwater and subject to backflows of nutrient-rich water from the Rhone, were studied in order to demonstrate the occurrence of an ecotone located upstream to their confluences with the main channel. In one of the channels, the long-term stability of the boundary zone compared to the

Gudrun Bornettel; Andrew R. G. Large

1995-01-01

174

Modulating the activity of the channel-forming segment of Vpr protein from HIV1  

Microsoft Academic Search

Viral protein of regulation (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) is a short auxiliary protein that\\u000a is 96 amino acids in length. During the viral life cycle, Vpr is released into the blood serum and is able to enter cellular\\u000a membranes of noninfected cells. In this study a short peptide, Vpr55–83, was shown to exhibit ion-channel-like activity

Chin-Pei Chen; Clemens Kremer; Peter Henklein; Ulrich Schubert; Rainer H. A. Fink; Wolfgang B. Fischer

2010-01-01

175

Pattern of distribution and cycling of SLOB, Slowpoke channel binding protein, in Drosophila  

Microsoft Academic Search

BACKGROUND: SLOB binds to and modulates the activity of the Drosophila Slowpoke (dSlo) calcium activated potassium channel. Recent microarray analyses demonstrated circadian cycling of slob mRNA. RESULTS: We report the mRNA and protein expression pattern of slob in Drosophila heads. slob transcript is present in the photoreceptors, optic lobe, pars intercerebralis (PI) neurons and surrounding brain cortex. SLOB protein exhibits

Angela M Jaramillo; Xiangzhong Zheng; Yi Zhou; Defne A Amado; Amanda Sheldon; Amita Sehgal; Irwin B Levitan

2004-01-01

176

A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain.  

PubMed

The chloride intracellular channel protein 1 (CLIC1) is unique among eukaryotic ion channels in that it can exist as either a soluble monomer or an integral membrane channel. CLIC1 contains no known membrane-targeting signal sequences and the environmental factors which promote membrane binding of the transmembrane domain (TMD) are poorly understood. Here we report a positively charged motif at the C-terminus of the TMD and show that it enhances membrane partitioning and insertion. A 30-mer TMD peptide was synthesized in which the positively charged motif was replaced by three glutamate residues. The peptide was examined in 2,2,2-trifluoroethanol (TFE), sodium dodecyl sulfate micelles and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using size-exclusion chromatography, far-UV CD, and fluorescence spectroscopy. The motif appears to enhance membrane interaction via electrostatic contacts and functions as an electrostatic plug to anchor the TMD in membranes. In addition, the motif is also involved in orientating the TMD with respect to the cis and trans faces of the membrane. These findings shed light on the intrinsic and environmental factors that promote the spontaneous conversion of CLIC1 from a water-soluble to a membrane-bound protein. PMID:24925575

Peter, Bradley; Fanucchi, Sylvia; Dirr, Heini W

2014-09-01

177

The Cell Wall of the Pathogenic Bacterium Rhodococcus equi Contains Two Channel-Forming Proteins with Different Properties  

PubMed Central

We have identified in organic solvent extracts of whole cells of the gram-positive pathogen Rhodococcus equi two channel-forming proteins with different and complementary properties. The isolated proteins were able to increase the specific conductance of artificial lipid bilayer membranes made from phosphatidylcholine-phosphatidylserine mixtures by the formation of channels able to be permeated by ions. The channel-forming protein PorAReq (R. equi pore A) is characterized by the formation of cation-selective channels, which are voltage gated. PorAReq has a single-channel conductance of 4 nS in 1 M KCl and shows high permeability for positively charged solutes because of the presence of negative point charges. According to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein has an apparent molecular mass of about 67 kDa. The analysis (using the effect of negative charges on channel conductance) of the concentration dependence of the single-channel conductance suggested that the diameter of the cell wall channel is about 2.0 nm. The second channel (formed by PorBReq [R. equi pore B]) shows a preferred movement of anions through the channel and is not voltage gated. This channel shows a single-channel conductance of 300 pS in 1 M KCl and is characterized by the presence of positive point charges in or near the channel mouth. Based on SDS-PAGE, the apparent molecular mass of the channel-forming protein is about 11 kDa. Channel-forming properties of the investigated cell wall porins were compared with those of others isolated from mycolic acid-containing actinomycetes. We present here the first report of a fully characterized anion-selective cell wall channel from a member of the order Actinomycetales. PMID:12700275

Rie?, Franziska G.; Elflein, Marion; Benk, Michael; Schiffler, Bettina; Benz, Roland; Garton, Natalie; Sutcliffe, Iain

2003-01-01

178

Drift of macroinvertebrates in a channel carrying heated water from a power plant  

Microsoft Academic Search

Hourly drift samples were collected once each month over a 24 hour period for 10 months at the mouth of a channel returning heated coolant water from a steam electric generating station to a 330 ha reservoir. Most benthic macroinvertebrates existed at lower densities on the bottom of the channel than in the reservoir. No organisms were found in the

Charles W. Durrett; William D. Pearson

1975-01-01

179

Efficient water-filling algorithms for a Gaussian multiaccess channel with ISI  

Microsoft Academic Search

Although the optimum transmit power spectral density (PSD) of each user in a Gaussian multiaccess channel is theoretically available, efficient algorithms are needed to obtain the optimal PSD numerically. This paper presents two water-filling algorithms for the scenario where all users have the same priorities. First we propose for a two-user channel an exact algorithm with a computational complexity of

Chaohuang Zeng; Louise M. C. Hoo; John M. Cioffi

2000-01-01

180

Optimal water-filling algorithms for a Gaussian multiaccess channel with intersymbol interference  

Microsoft Academic Search

This paper presents two novel and efficient water-filling algorithms for a two-user Gaussian multiaccess channel with intersymbol interference. These algorithms efficiently compute the optimal transmit power spectral density (PSD) for each user and obtain the capacity region of the channel. One algorithm is developed for the special case where two users have the same priorities and is more efficient than

Chaohuang Zeng; L. M. C. Hoo; J. M. Cioffi

2001-01-01

181

Ricean Shadowed Statistical Characterization of Shallow Water Acoustic Channels for Wireless Communications  

E-print Network

In this letter, the statistical behaviour of the shallow water acoustic channel for wireless communications is shown to be well characterized by the Ricean shadowed distribution, which has never been proposed for communication purposes on this type of channel. This characterization is clearly motivated from statistical and physical perspectives and has both theoretical and practical advantages compared to previously proposed models.

Ruiz-Vega, F; Otero, P; Paris, J F

2011-01-01

182

The alpha Subunit of the GTP Binding Protein Gk Opens Atrial Potassium Channels  

Microsoft Academic Search

Guanine nucleotide binding (G) proteins (subunit composition alpha beta gamma ) dissociate on activation with guanosine triphosphate (GTP) analogs and magnesium to give alpha -guanine nucleotide complexes and free beta gamma subunits. Whether the opening of potassium channels by the recently described Gk in isolated membrane patches from mammalian atrial myocytes was mediated by the alpha k subunit or beta

Juan Codina; Atsuko Yatani; Dagoberto Grenet; Arthur M. Brown; Lutz Birnbaumer

1987-01-01

183

The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties  

SciTech Connect

The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-{delta}E-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-{delta}E virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-{delta}E virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm.

Lee, Changhee [Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Yoo, Dongwan [Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)]. E-mail: dyoo@uoguelph.ca

2006-11-10

184

Engineering of an E. coli outer membrane protein FhuA with increased channel diameter  

PubMed Central

Background Channel proteins like FhuA can be an alternative to artificial chemically synthesized nanopores. To reach such goals, channel proteins must be flexible enough to be modified in their geometry, i.e. length and diameter. As continuation of a previous study in which we addressed the lengthening of the channel, here we report the increasing of the channel diameter by genetic engineering. Results The FhuA ?1-159 diameter increase has been obtained by doubling the amino acid sequence of the first two N-terminal ?-strands, resulting in variant FhuA ?1-159 Exp. The total number of ?-strands increased from 22 to 24 and the channel surface area is expected to increase by ~16%. The secondary structure analysis by circular dichroism (CD) spectroscopy shows a high ?-sheet content, suggesting the correct folding of FhuA ?1-159 Exp. To further prove the FhuA ?1-159 Exp channel functionality, kinetic measurement using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine) were conducted. The results indicated a 17% faster diffusion kinetic for FhuA ?1-159 Exp as compared to FhuA ?1-159, well correlated to the expected channel surface area increase of ~16%. Conclusion In this study using a simple "semi rational" approach the FhuA ?1-159 diameter was enlarged. By combining the actual results with the previous ones on the FhuA ?1-159 lengthening a new set of synthetic nanochannels with desired lengths and diameters can be produced, broadening the FhuA ?1-159 applications. As large scale protein production is possible our approach can give a contribution to nanochannel industrial applications. PMID:21854627

2011-01-01

185

A virus-encoded potassium ion channel is a structural protein in the chlorovirus Paramecium bursaria chlorella virus 1 virion  

PubMed Central

Most chloroviruses encode small K+ channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K+ channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K+ channel from chlorovirus MA-1D to search for the viral K+ channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K+ channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K+ channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions. PMID:23918407

Romani, Giulia; Piotrowski, Adrianna; Hillmer, Stefan; Gurnon, James; Van Etten, James L.; Moroni, Anna; Thiel, Gerhard

2013-01-01

186

Intra-membrane molecular interactions of K%2B channel proteins : application to problems in biodefense and bioenergy.  

SciTech Connect

Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

Moczydlowski, Edward G.

2013-07-01

187

Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow  

SciTech Connect

An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

Mahmood, S.T. [Global Nuclear Fuel, GE Vallecitos Nuclear Center, 6705 Vallecitos Road, Sunol, CA 94586 (United States); Lin, Y.P.; Dubecky, M.A. [Global Nuclear Fuel, 3901 Castle Hayne Road, m/c H25, Wilmington, NC 28401 (United States); Edsinger, K. [Electric Power Research Institute, 3420 Hillview Avenue, Palo Alto, CA 94304 (United States); Mader, E.V. [Electric Power Research Institute, 1000 River Walk Dr. no. 340, Idaho Falls, ID 83402 (United States)

2007-07-01

188

Electron Spin-Echo Envelope Modulation (ESEEM) Reveals Water and Phosphate Interactions with the KcsA Potassium Channel  

SciTech Connect

Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that {sup 31}P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the {sup 31}P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

Cieslak, John A.; Focia, Pamela J.; Gross, Adrian (NWU)

2010-08-13

189

Detection and localization of a putative cyclic-GMP-activated channel protein in the protozoan ciliate Stentor coeruleus.  

PubMed

Immunoblotting and immunocytochemical assays were employed to identify and localize a channel protein activated by cyclic GMP (cGMP) in the protozoan ciliate Stentor coeruleus. Analysis of whole-cell homogenate with antibodies raised against the alpha-subunit of the cGMP-activated channel protein from bovine rod outer segments and against cGMP revealed four major protein bands with molecular masses of 40 kDa, 63 kDa, and over 120 kDa, which bound cGMP. However, only a cGMP-binding protein of 63 kDa, corresponding to the alpha-subunit of the cGMP-activated ion channel protein from bovine rod outer segments, was found in the ciliate cortex fraction. The functional cGMP-activated channel protein was also shown to be present in the cortex fraction of S. coeruleus by patch-clamp measurements of artificial liposomes. Incorporation of the cortex fraction into liposomes resulted in the appearance of ion channel activity related to cGMP. The reconstituted protein channels were strongly inhibited by l-cis-diltiazem, a known potent blocker of many types of cyclic-nucleotide-activated channels. The results presented here are the first demonstration of the existence and localization of a putative cGMP-activated channel protein in the ciliate S. coeruleus. Cyclic-nucleotide-activated channel proteins are nonspecific cation channels which mediate the receptor potentials in photoreceptor cells and in cells of the olfactory epithelium. On the basis of these data, we suggest that the 63 kDa protein identified in Stentor coeruleus is also a cGMP-activated ion channel and that it may be involved as an effector in the photosensory transduction pathway leading to the motile photophobic response in this ciliate protist. PMID:16736256

Walerczyk, M; Fabczak, H; Fabczak, S

2006-05-01

190

Building the water edge : a public event for art and artists at Fort Point Channel  

E-print Network

The thesis deals with building the water edge at Fort Point Channel, between Congress Street and Summer Street Bridges. It serves as a public event that intends to establish continuity of movement along the waterfront. The ...

Godwin, Audrey

1996-01-01

191

Crystallization of the large membrane protein complex photosystem I in a microfluidic channel.  

PubMed

Traditional macroscale protein crystallization is accomplished nontrivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time-consuming and resource-intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these "difficult to crystallize" proteins such as femtosecond nanocrystallography are being developed yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via second-order nonlinear imaging of chiral crystals (SONICC) was applied for the detection of nanometer- and micrometer-sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698

Abdallah, Bahige G; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra

2013-12-23

192

Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL.  

PubMed

This protocol details the chemical modification of the mechanosensitive channel of large-conductance (MscL) channel protein into a light-activated nanovalve and its utilization for triggered delivery in synthetic liposomal vesicles. It is based on charge-induced activation of this otherwise mechanosensitive channel by covalent attachment to the protein of rationally designed synthetic functionalities. In the dark, these functionalities will be uncharged and the channel will stay closed, but UV illumination will cause their ionization and trigger channel activity. In the case of reversible activation, subsequent illumination with visible light will neutralize the charge, causing the channel to close. The protocol includes synthesis of light-responsive compounds, protein isolation and its chemical labeling, reconstitution of the protein into artificial membranes, its analysis at the single-molecule level and its application in liposomal delivery. The whole protocol takes 4 days. Unlike mutagenesis, this method allows the introduction of custom-designed functional groups. PMID:17545979

Koçer, Arma?an; Walko, Martin; Feringa, Ben L

2007-01-01

193

Computational Analysis of the Soluble Form of the Intracellular Chloride Ion Channel Protein CLIC1  

PubMed Central

The chloride intracellular channel (CLIC) family of proteins has the remarkable property of maintaining both a soluble form and an integral membrane form acting as an ion channel. The soluble form is structurally related to the glutathione-S-transferase family, and CLIC can covalently bind glutathione via an active site cysteine. We report approximately 0.6??s of molecular dynamics simulations, encompassing the three possible ligand-bound states of CLIC1, using the structure of GSH-bound human CLIC1. Noncovalently bound GSH was rapidly released from the protein, whereas the covalently ligand-bound protein remained close to the starting structure over 0.25??s of simulation. In the unliganded state, conformational changes in the vicinity of the glutathione-binding site resulted in reduced reactivity of the active site thiol. Elastic network analysis indicated that the changes in the unliganded state are intrinsic to the protein architecture and likely represent functional transitions. Overall, our results are consistent with a model of CLIC function in which covalent binding of glutathione does not occur spontaneously but requires interaction with another protein to stabilise the GSH binding site and/or transfer of the ligand. The results do not indicate how CLIC1 undergoes a radical conformational change to form a transmembrane chloride channel but further elucidate the mechanism by which CLICs are redox controlled. PMID:24089665

Jones, Peter M.; Curmi, Paul M. G.; Valenzuela, Stella M.; George, Anthony M.

2013-01-01

194

Inactivation of Photosystems I and II in Response to Osmotic Stress in Synechococcus. Contribution of Water Channels1  

PubMed Central

The effects of osmotic stress due to sorbitol on the photosynthetic machinery were investigated in the cyanobacterium Synechococcus R-2. Incubation of cells in 1.0 m sorbitol inactivated photosystems I and II and decreased the intracellular solute space by 50%. These effects of sorbitol were reversible: Photosynthetic activity and cytoplasmic volume returned to the original values after removal of the osmotic stress. A blocker of water channels prevented the osmotic-stress-induced inactivation and shrinkage of the intracellular space. It also prevented the recovery of photosynthetic activity and cytoplasmic volume when applied just before release from osmotic stress. Inhibition of protein synthesis by lincomycin had no significant effects on the inactivation and recovery processes, an observation that suggests that protein synthesis was not involved in these processes. Our results suggest that osmotic stress decreased the amount of water in the cytoplasm via the efflux of water through water channels (aquaporins), with resultant increases in intracellular concentrations of ions and a decrease in photosynthetic activity. PMID:10759516

Allakhverdiev, Suleyman I.; Sakamoto, Atsushi; Nishiyama, Yoshitaka; Murata, Norio

2000-01-01

195

Performance analysis of a LDPC coded OFDM communication system in shallow water acoustic channels  

NASA Astrophysics Data System (ADS)

Time-varying significant multipath interference is the major obstacle to reliable data communication in shallow water acoustic channels. In this paper, the performance of a low density parity check (LDPC) coded orthogonal frequency division multiplexing (OFDM) communication system is investigated for these channels. The initial message for LDPC, decoded by using the belief propagation (BP) algorithm, is deduced for OFDM underwater acoustic channels; based on this deduction, the noise thresholds of regular LDPC codes with different code rates are obtained by using the density evolution algorithm. Furthermore, a communication system model, developed with LDPC code, OFDM and channel interleaver for shallow water acoustic channels, is introduced. The effect of modulation and coding schemes on the LDPC codes performance is investigated by simulation. The results show that the system can achieve remarkable performance in shallow water acoustic channels, and the performance improves with increasing code length and decreasing code rate. The bit error rate (BER) of the system, under conditions with QPSK modulation, 1280-code length and 1/2-code rate, is less than 10-5 when the signal to noise ratio (SNR) is greater than 6.8dB. These values are obtained for a five-path shallow water acoustic channel of Xiamen harbor.

Liu, Shengxing; Xu, Xiaomei

2012-11-01

196

Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein  

NASA Astrophysics Data System (ADS)

In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-? -S, pertussis toxin, and antibodies against the ? -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

1996-07-01

197

Single molecule measurements of channel proteins incorporated into biomimetic polymer membranes  

NASA Astrophysics Data System (ADS)

Lipid bilayer membranes have been extensively utilized to examine membrane channel and pore proteins and are the subjects of study in their own right. There has been considerable recent interest in developing technologies to substitute or strengthen lipid bilayer membranes for a number of applications, including sensing or drug delivery. In particular, biomimetic amphiphilic block co-polymers have been shown to have the capacity to form membrane structures and to contain membrane proteins within them. In this work, we describe the creation of biomimetic membranes from a 5.7 nm thick tri-block co-polymer and the investigation of the effects of the polymer environment on incorporated channel proteins (?-haemolysin, OmpG, and alamethicin) with single molecule transport measurements. We found that the polymer membranes consistently have seal resistances of tens of G? and greater, and that the conductance of single channels is reduced by approximately 10% from that measured in diphytanoyl phosphatidylcholine lipid membranes, possibly as a result of increased cohesion of the polymer compared to lipid. The voltage gating ability and threshold voltages of voltage gated channels were also found to be very similar in the lipid and polymer environments.

Wong, Denise; Jeon, Tae-Joon; Schmidt, Jacob

2006-08-01

198

A single Gbeta subunit locus controls cross-talk between protein kinase C and G protein regulation of N-type calcium channels.  

PubMed

The modulation of N-type calcium channels is a key factor in the control of neurotransmitter release. Whereas N-type channels are inhibited by Gbetagamma subunits in a G protein beta-isoform-dependent manner, channel activity is typically stimulated by activation of protein kinase C (PKC). In addition, there is cross-talk among these pathways, such that PKC-dependent phosphorylation of the Gbetagamma target site on the N-type channel antagonizes subsequent G protein inhibition, albeit only for Gbeta(1)-mediated responses. The molecular mechanisms that control this G protein beta subunit subtype-specific regulation have not been described. Here, we show that G protein inhibition of N-type calcium channels is critically dependent on two separate but adjacent approximately 20-amino acid regions of the Gbeta subunit, plus a highly conserved Asn-Tyr-Val motif. These regions are distinct from those implicated previously in Gbetagamma signaling to other effectors such as G protein-coupled inward rectifier potassium channels, phospholipase beta(2), and adenylyl cyclase, thus raising the possibility that the specificity for G protein signaling to calcium channels might rely on unique G protein structural determinants. In addition, we identify a highly specific locus on the Gbeta(1) subunit that serves as a molecular detector of PKC-dependent phosphorylation of the G protein target site on the N-type channel alpha(1) subunit, thus providing for a molecular basis for G protein-PKC cross-talk. Overall, our results significantly advance our understanding of the molecular details underlying the integration of G protein and PKC signaling pathways at the level of the N-type calcium channel alpha(1) subunit. PMID:15105422

Doering, Clinton J; Kisilevsky, Alexandra E; Feng, Zhong-Ping; Arnot, Michelle I; Peloquin, Jean; Hamid, Jawed; Barr, Wendy; Nirdosh, Aparna; Simms, Brett; Winkfein, Robert J; Zamponi, Gerald W

2004-07-01

199

A minimal isoform of the TMEM16A protein associated with chloride channel activity  

PubMed Central

TMEM16A protein, also known as anoctamin-1, has been recently identified as an essential component of Ca2+-activated Cl? channels. We previously reported the existence of different TMEM16A isoforms generated by alternative splicing. In the present study, we have determined the functional properties of a minimal TMEM16A protein. This isoform, called TMEM16A(0), has a significantly shortened amino-terminus and lacks three alternative segments localized in the intracellular regions of the protein (total length: 840 amino acids). TMEM16A(0) expression is associated with Ca2+-activated Cl? channel activity as measured by three different functional assays based on the halide-sensitive yellow fluorescent protein, short-circuit current recordings, and patch-clamp technique. However, compared to a longer isoform, TMEM16(abc) (total length: 982 amino acids), TMEM16A(0) completely lacks voltage-dependent activation. Furthermore, TMEM16A(0) and TMEM16A(abc) have similar but not identical responses to extracellular anion replacement, thus suggesting a difference in ion selectivity and conductance. Our results indicate that TMEM16A(0) has the basic domains required for anion transport and Ca2+-sensitivity. However, the absence of alternative segments, which are present in more complex isoforms of TMEM16A, modifies the channel gating and ion transport ability. PMID:21645494

Ferrera, Loretta; Scudieri, Paolo; Sondo, Elvira; Caputo, Antonella; Caci, Emanuela; Zegarra-Moran, Olga; Ravazzolo, Roberto; Galietta, Luis J.V.

2011-01-01

200

Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning  

NASA Astrophysics Data System (ADS)

Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops, this dictates opposite orientations of water molecules in the two halves of the channel, and thus prevents the formation of a ``proton wire,'' while permitting rapid water diffusion. Both simulations and observations revealed a more regular distribution of channel water and an increased water permeability for the W48F/F200T mutant.

Tajkhorshid, Emad; Nollert, Peter; Jensen, Morten Ø.; Miercke, Larry J. W.; O'Connell, Joseph; Stroud, Robert M.; Schulten, Klaus

2002-04-01

201

Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes.  

PubMed

We have previously demonstrated that Kir3.1 channels and Gbeta1gamma2 subunits initially interact in the endoplasmic reticulum (ER). To elucidate the role that anterograde protein trafficking pathways may play in the formation of these complexes, we used dominant negative (DN) mutants of the small G proteins Sar 1 and various compartment-specific Rabs which impede anterograde protein trafficking at different steps. Sar 1 H79G and Rab 1 S25N mutants efficiently blocked the plasma membrane trafficking of the Kir3.1/Kir3.4 complex however they did not block the Gbeta1gamma2/Kir3.1 interaction as measured using bioluminescence resonance energy transfer (BRET). This interaction was also insensitive to the presence of DN Rabs 2, 6, 8, and 11. These results confirm that Gbetagamma/Kir3 complexes form early during channel biosynthesis and trafficking. Using a combination of BRET, protein complementation assays and co-immunoprecipitation, we demonstrate that Gbeta1-4 can interact with Kir3.1 in the absence of Kir3.4. Gbeta5 does not directly interact with the channel but can still be co-immunoprecipitated as part of a larger complex. The interaction between Gbeta and Kir3.1 was selectively fostered by co-expression with different Ggamma subunits. When Ggamma1 or Ggamma11 was co-expressed with eGFP-Gbeta3 or eGFP-Gbeta4, the interaction with the effector was lost. Kir3.2 was capable of interacting with Gbeta1-3 and not Gbeta4 or Gbeta5. These interactions were again fostered by co-expression with Ggamma and were also insensitive to DN Sar 1 or Rab 1. Taken together, our data show that these "precocious" channel/G protein interactions are specific and may have implications beyond their basic function in signalling events. PMID:19135528

Robitaille, Mélanie; Ramakrishnan, Nitya; Baragli, Alessandra; Hébert, Terence E

2009-04-01

202

Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.  

PubMed

Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. PMID:24869855

Lee, Andre; Vastermark, Ake; Saier, Milton H

2014-08-01

203

Water and sediment transport of channel-flat systems in a mesotidal mudflat: Willapa Bay, Washington  

NASA Astrophysics Data System (ADS)

The muddy tidal flats of southern Willapa Bay, Washington are tidally dominated and receive little direct freshwater input. We use data from instruments deployed in channels of different size and on their adjacent flats to investigate the hydrodynamics and sediment dynamics of each morphological setting under a range of seasonal and meteorological conditions, including rain and wind events. Interaction between the morphology of the channel/flat complex and tidal water-level variations produces well-defined velocity pulses during both flooding and ebbing tides. These pulses represent about 27% of the total along-channel water transport and 35% of the suspended-sediment transport of the system. Maintenance of continuity produces the velocity pulse, and pulse magnitude is determined by tidal range. Wind alters the flow regime in channels and on the flat, enhancing over-flat ebb flow in this study location while decreasing ebb-pulse intensity. Wind speed was positively correlated with minimum suspended-sediment concentration. Precipitation falling directly on flats was found to erode flat sediment, which subsequently formed a temporary deposit in the adjacent channel. Residual along-channel water transport in channels and on nearby flats was flood dominant under all seasonal conditions sampled, and sediment flux was flood dominant during winter and spring deployments.

Nowacki, Daniel J.; Ogston, Andrea S.

2013-06-01

204

A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension  

NASA Technical Reports Server (NTRS)

MscL, a bacterial mechanosensitive channel of large conductance, is the first structurally characterized mechanosensor protein. Molecular models of its gating mechanisms are tested here. Disulfide crosslinking shows that M1 transmembrane alpha-helices in MscL of resting Escherichia coli are arranged similarly to those in the crystal structure of MscL from Mycobacterium tuberculosis. An expanded conformation was trapped in osmotically shocked cells by the specific bridging between Cys 20 and Cys 36 of adjacent M1 helices. These bridges stabilized the open channel. Disulfide bonds engineered between the M1 and M2 helices of adjacent subunits (Cys 32-Cys 81) do not prevent channel gating. These findings support gating models in which interactions between M1 and M2 of adjacent subunits remain unaltered while their tilts simultaneously increase. The MscL barrel, therefore, undergoes a large concerted iris-like expansion and flattening when perturbed by membrane tension.

Betanzos, Monica; Chiang, Chien-Sung; Guy, H. Robert; Sukharev, Sergei

2002-01-01

205

Water slug to drop and film transitions in gas-flow channels.  

PubMed

Water emerging from micrometer-sized pores into millimeter-sized gas-flow channels forms drops. The drops grow until the force from the flowing gas is sufficient to detach the drops as either (1) slugs that completely occlude the cross section of the channel and move at the superficial gas velocity, (2) drops that partially occlude the channel and move at a velocity that is less than the gas velocity, or (3) films that flow continuously, occluding part of the channel. At steady state, small residual water droplets, ?100 ?m in diameter, left in corners and on surface defects from previous drops, are key in determining the shape of water drops at detachment. Slugs are formed at low-gas-phase Reynolds numbers (ReG) in both hydrophilic and hydrophobic channels. Drops are shed in Teflon-coated hydrophobic channels for ReG > 30. Films are formed in acrylic hydrophilic channels for ReG > 30. Slugs form when growing drops encounter residual water droplets that nucleate the drop to slug transition. Drops are shed when the force exerted by the flowing gas on growing drops exceeds the force needed to advance the gas/liquid/solid contact line before they grow to the critical size for the drop to slug transition. Drops grow by "stick-slip" of the solid-liquid-gas contact lines and with pinned contact lines until the force on the drops results in either the downstream contact angle becoming greater than the dynamic advancing contact angle or the upstream contact angle becoming less than the dynamic receding contact angle. The upstream contact line never detaches for hydrophilic channels, which is why films form. The shape of water drops and the detachment energies are shown to be well approximated by the force balance between the force needed to advance the drop's contact lines and the force that the flowing gas exerts on a stationary drop. PMID:24206393

Cheah, May Jean; Kevrekidis, Ioannis G; Benziger, Jay B

2013-12-01

206

The threshold of vapor channel formation in water induced by pulsed CO2 laser  

NASA Astrophysics Data System (ADS)

Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

2012-12-01

207

Flow cytometry and sorting of amphibian bladder endocytic vesicles containing ADH-sensitive water channels  

Microsoft Academic Search

The water permeability of ADH target epithelial cells is believed to be regulated by a cycle of exo-endocytosis of vesicles containing functional water channels. These vesicles were selectively labeled in intact frog urinary bladders with an impermeant fluorescent marker, 6-carboxyfluorescein. Vesicle suspensions containing the labeled endosomes were obtained by homogenization and differential centrifugation of bladder epithelial cells. The osmotic permeability

F. G. Goot; A. Seigneur; J.-C. Gaucher; P. Ripoche

1992-01-01

208

Impacts of commercial navigation on water quality in the Illinois River Channel. Research report  

SciTech Connect

The U.S. Army Corps of Engineers shut down the navigation locks at the LaGrange and Peoria dams on the Illinois River for repairs for 58 days during summer 1987, which prevented commercial tows from traversing a 151-mile reach of the waterway. A study was designed to collect water quality and benthic data from the main channel during the shutdown and for 30-day periods before and after it. Statistical tests were used to determine whether water quality conditions improved when commercial navigation was absent. The results indicated that, at the present rate, commercial traffic does not significantly change overall water and benthic sediment quality in the channel.

Butts, T.A.; Shackleford, D.B.

1992-01-01

209

Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family  

PubMed Central

Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation–contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/ nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes. PMID:21519847

Silverio, Abe L. F.

2014-01-01

210

Down-regulation of K? channels by human parvovirus B19 capsid protein VP1.  

PubMed

Parvovirus B19 (B19V) can cause inflammatory cardiomyopathy and endothelial dysfunction. Pathophysiological mechanisms involved include lysophosphatidylcholine producing phospholipase A2 (PLA2) activity of the B19V capsid protein VP1. Most recently, VP1 and lysophosphatidylcholine have been shown to inhibit Na(+)/K(+) ATPase. The present study explored whether VP1 modifies the activity of Kv1.3 and Kv1.5 K(+) channels. cRNA encoding Kv1.3 or Kv1.5 was injected into Xenopus oocytes without or with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-induced myocarditis. K(+) channel activity was determined by dual electrode voltage clamp. Injection of cRNA encoding Kv1.3 or Kv1.5 into Xenopus oocytes was followed by appearance of Kv K(+) channel activity, which was significantly decreased by additional injection of cRNA encoding VP1, but not by additional injection of cRNA encoding PLA2-negative VP1 mutant (H153A). The effect of VP1 on Kv current was not significantly modified by transcription inhibitor actinomycin (10 ?M for 36 h) but was mimicked by lysophosphatidylcholine (1 ?g/ml). The B19V capsid protein VP1 inhibits host cell Kv channels, an effect at least partially due to phospholipase A2 (PLA) dependent formation of lysophosphatidylcholine. PMID:25010641

Ahmed, Musaab; Almilaji, Ahmad; Munoz, Carlos; Elvira, Bernat; Shumilina, Ekaterina; Bock, C-Thomas; Kandolf, Reinhard; Lang, Florian

2014-08-01

211

Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.  

PubMed

Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein ?? heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of G?? on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed. PMID:21061161

Currie, Kevin P M

2010-11-01

212

An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity  

PubMed Central

The ability to control the timing and mode of host cell death plays a pivotal role in microbial infections. Many bacteria use toxins to kill host cells and evade immune responses. Such toxins are unknown in Mycobacterium tuberculosis. Virulent M. tuberculosis strains induce necrotic cell death in macrophages by an obscure molecular mechanism. Here we show that the M. tuberculosis protein Rv3903c (channel protein with necrosis-inducing toxin, CpnT) consists of an N-terminal channel domain that is used for uptake of nutrients across the outer membrane and a secreted toxic C-terminal domain. Infection experiments revealed that CpnT is required for survival and cytotoxicity of M. tuberculosis in macrophages. Furthermore, we demonstrate that the C-terminal domain of CpnT causes necrotic cell death in eukaryotic cells. Thus, CpnT has a dual function in uptake of nutrients and induction of host cell death by M. tuberculosis. PMID:24753609

Danilchanka, Olga; Sun, Jim; Pavlenok, Mikhail; Maueroder, Christian; Speer, Alexander; Siroy, Axel; Marrero, Joeli; Trujillo, Carolina; Mayhew, David L.; Doornbos, Kathryn S.; Munoz, Luis E.; Herrmann, Martin; Ehrt, Sabine; Berens, Christian; Niederweis, Michael

2014-01-01

213

Defective regulation of outwardly rectifying Cl channels by protein kinase A corrected by insertion of CFTR  

Microsoft Academic Search

CYSTIC fibrosis (CF) is a lethal genetic disease resulting in a reduced CI- permeability1, increased mucous sulphation2, increased Na+ absorption3 and defective acidification of lysosomal vesicles4. The CF gene encodes a protein (the cystic fibrosis trans-membrane conductance regulator, CFTR5) that can function as a low-conductance Cl- channel with a linear current-voltage relationship whose regulation is defective in CF patients6-8. Larger

Marie Egan; Terence Flotte; Sandra Afione; Rikki Solow; Pamela L. Zeitlin; Barrie J. Carter; William B. Guggino

1992-01-01

214

The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels  

PubMed Central

TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and G?q protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of G?i/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for G?i/o proteins in channel activation in addition to their known role in cellular signaling. PMID:22878724

Kim, Hana; Kim, Jinsung; Jeon, Jae-Pyo; Myeong, Jongyun; Wie, Jinhong; Hong, Chansik; Kim, Hyun Jin; Jeon, Ju-Hong; So, Insuk

2012-01-01

215

33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...  

Code of Federal Regulations, 2013 CFR

33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sacramento Deep Water Ship Channel Barge Lock and Approach Canals...Section 207.640 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF...

2013-07-01

216

33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...  

Code of Federal Regulations, 2011 CFR

33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sacramento Deep Water Ship Channel Barge Lock and Approach Canals...Section 207.640 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF...

2011-07-01

217

Evidence for water channels in renal proximal tubule cell membranes  

Microsoft Academic Search

Summary Water transport mechanisms in rabbit proximal convoluted cell membranes were examined by measurement of: (1) osmotic (Pf) and diffusional (Pd) water permeabilities, (2) inhibition ofPf by mercurials, and (3) activation energies (Ea) forPf.Pf was measured in PCT brush border (BBMV) and basolateral membrane (BLMV) vesicles, and in viable PCT cells by stopped-flow light scattering;Pd was measured in PCT cells

Mary M. Meyer; A. S. Verkman

1987-01-01

218

Hatching Success and Fingerling Growth of Channel Catfish Cultured in Ozonated Hatchery Water  

Microsoft Academic Search

Egg hatching success and fry and fingerling growth of channel catfish Ictalurus punctatus were examined to determine if ozonation of hatchery water would facilitate increased stocking densities without sacrificing growth characteristics. Egg masses reared in ozonated water hatched 18–24 h sooner than those in unozonated water, but hatching rates of 60.5 ± 3.6% and 56.7 ± 3.9% in ozonated and

Brian L. Brazil; William R. Wolters

2002-01-01

219

Shear strength and water resistance of modified soy protein adhesives  

Microsoft Academic Search

Soy protein polymers recently have been considered as alternatives to petroleum polymers to ease environmental pollution.\\u000a The use of soy proteins as adhesives for plywood has been limited because of their low water resistance. The objective of\\u000a this research was to test the water resistance of adhesives containing modified soy proteins in walnut, maple, poplar, and\\u000a pine plywood applications. Gluing

Xiuzhi Sun; Ke Bian

1999-01-01

220

Sensory neuron proteins interact with the intracellular domains of sodium channel NaV1.8.  

PubMed

Voltage-gated sodium channels initiate and propagate action potentials in excitable cells. The tetrodotoxin-resistant Na(+) channel (Na(V)1.8/SNS) is expressed in damage-sensing neurons (nociceptors) and plays an important role in pain pathways. Expression of high levels of functional Na(V)1.8 in heterologous cells has proved problematic, even in the presence of known sodium channel accessory beta-subunits. This suggests that other regulatory proteins are required for normal levels of Na(V)1.8 expression. Here we report the use of a yeast two-hybrid system and a rat dorsal root ganglion cDNA library to identify 28 different clones encoding proteins which interact with intracellular domains of Na(V)1.8. Many clones are expressed at high levels in small diameter DRG neurons as judged by in situ hybridization. Interacting proteins include cytoplasmic elements and linker proteins (e.g. beta-actin and moesin), enzymes (e.g. inositol polyphosphate 5-phosphatase and TAO2 thousand and one protein kinase), channels and membrane-associated proteins (voltage-dependent anion channel VDAC3V and tetraspanin), as well as motor proteins (dynein intermediate and light chain) and transcripts encoding previously undescribed proteins. Immunoprecipitation (pull-down) assays confirm that some of the proteins interact with, and may hence regulate, Na(V)1.8 in vivo. PMID:12591166

Malik-Hall, Misbah; Poon, W-Y Louisa; Baker, Mark D; Wood, John N; Okuse, Kenji

2003-02-20

221

Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii  

PubMed Central

It has been recently shown that resistance to both imipenem and meropenem in multidrug-resistant clinical strains of Acinetobacter baumannii is associated with the loss of a heat-modifiable 25/29-kDa outer membrane protein, called CarO. This study aimed to investigate the channel-forming properties of CarO. Mass spectrometry analyses of this protein band detected another 25-kDa protein (called Omp25), together with CarO. Both proteins presented similar physicochemical parameters (Mw and pI). We overproduced and purified the two polypeptides as His-tagged recombinant proteins. Circular dichroism analyses demonstrated that the secondary structure of these proteins was mainly a ?-strand conformation with spectra typical of porins. We studied the channel-forming properties of proteins by reconstitution into artificial lipid bilayers. In these conditions, CarO induced ion channels with a conductance value of 110 pS in 1 M KCl, whereas the Omp25 protein did not form any channels, despite its suggested porin function. The pores formed by CarO showed a slight cationic selectivity and no voltage closure. No specific imipenem binding site was found in CarO, and this protein would rather form unspecific monomeric channels. PMID:16304148

Siroy, Axel; Molle, Virginie; Lemaitre-Guillier, Christelle; Vallenet, David; Pestel-Caron, Martine; Cozzone, Alain J.; Jouenne, Thierry; De, Emmanuelle

2005-01-01

222

Auxiliary GABAB receptor subunits uncouple G protein ?? subunits from effector channels to induce desensitization.  

PubMed

Activation of K(+) channels by the G protein ?? subunits is an important signaling mechanism of G-protein-coupled receptors. Typically, receptor-activated K(+) currents desensitize in the sustained presence of agonists to avoid excessive effects on cellular activity. The auxiliary GABAB receptor subunit KCTD12 induces fast and pronounced desensitization of the K(+) current response. Using proteomic and electrophysiological approaches, we now show that KCTD12-induced desensitization results from a dual interaction with the G protein: constitutive binding stabilizes the heterotrimeric G protein at the receptor, whereas dynamic binding to the receptor-activated G?? subunits induces desensitization by uncoupling G?? from the effector K(+) channel. While receptor-free KCTD12 desensitizes K(+) currents activated by other GPCRs in vitro, native KCTD12 is exclusively associated with GABAB receptors. Accordingly, genetic ablation of KCTD12 specifically alters GABAB responses in the brain. Our results show that GABAB receptors are endowed with fast and reversible desensitization by harnessing KCTD12 that intercepts G?? signaling. PMID:24836506

Turecek, Rostislav; Schwenk, Jochen; Fritzius, Thorsten; Ivankova, Klara; Zolles, Gerd; Adelfinger, Lisa; Jacquier, Valerie; Besseyrias, Valerie; Gassmann, Martin; Schulte, Uwe; Fakler, Bernd; Bettler, Bernhard

2014-06-01

223

Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel.  

PubMed

A critical event during spore germination is the release of Ca-DPA (calcium in complex with dipicolinic acid). The mechanism of release of Ca-DPA through the inner membrane of the spore is not clear, but proteins encoded by the Bacillus subtilis?spoVA operon are involved in the process. We cloned and expressed the spoVAC gene in Escherichia coli and characterized the SpoVAC protein. We show that SpoVAC protects E.?coli against osmotic downshift, suggesting that it might act as a mechanosensitive channel. Purified SpoVAC was reconstituted in unilamellar lipid vesicles to determine the gating mechanism and pore properties of the protein. By means of a fluorescence-dequenching assay, we show that SpoVAC is activated upon insertion into the membrane of the amphiphiles lysoPC and dodecylamine. Patch clamp experiments on E.?coli giant spheroplast as well as giant unilamellar vesicles (GUVs) containing SpoVAC show that the protein forms transient pores with main conductance values of about 0.15 and 0.1 nS respectively. Overall, our data indicate that SpoVAC acts as a mechanosensitive channel and has properties that would allow the release of Ca-DPA and amino acids during germination of the spore. PMID:24666282

Velásquez, Jeanette; Schuurman-Wolters, Gea; Birkner, Jan Peter; Abee, Tjakko; Poolman, Bert

2014-05-01

224

A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins.  

PubMed

Pacemaker (HCN) channels have a key role in the generation and modulation of spontaneous activity of sinoatrial node myocytes. Previous work has shown that compartmentation of HCN4 pacemaker channels within caveolae regulates important functions, but the molecular mechanism responsible is still unknown. HCN channels have a conserved caveolin-binding domain (CBD) composed of three aromatic amino acids at the N-terminus; we sought to evaluate the role of this CBD in channel-protein interaction by mutational analysis. We generated two HCN4 mutants with a disrupted CBD (Y259S, F262V) and two with conservative mutations (Y259F, F262Y). In CHO cells expressing endogenous caveolin-1 (cav-1), alteration of the CBD shifted channels activation to more positive potentials, slowed deactivation and made Y259S and F262V mutants insensitive to cholesterol depletion-induced caveolar disorganization. CBD alteration also caused a significant decrease of current density, due to a weaker HCN4-cav-1 interaction and accumulation of cytoplasmic channels. These effects were absent in mutants with a preserved CBD. In caveolin-1-free fibroblasts, HCN4 trafficking was impaired and current density reduced with all constructs; the activation curve of F262V was not altered relative to wt, and that of Y259S displayed only half the shift than in CHO cells. The conserved CBD present in all HCN isoforms mediates their functional interaction with caveolins. The elucidation of the molecular details of HCN4-cav-1 interaction can provide novel information to understand the basis of cardiac phenotypes associated with some forms of caveolinopathies. PMID:22659290

Barbuti, Andrea; Scavone, Angela; Mazzocchi, Nausicaa; Terragni, Benedetta; Baruscotti, Mirko; Difrancesco, Dario

2012-08-01

225

CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Enhancement of water permeation across nanochannels by partial charges mimicked from biological channels  

NASA Astrophysics Data System (ADS)

In biological water channel aquaporins (AQPs), it is believed that the bipolar orientation of the single-file water molecules inside the channel blocks proton permeation but not water transport. In this paper, the water permeation and particularly the water-selective behaviour across a single-walled carbon nanotube (SWNT) with two partial charges adjacent to the wall of the SWNT are studied by molecular dynamics simulations, in which the distance between the two partial charges is varied from 0.14 nm to 0.5 nm and the charges each have a quantity of 0.5 e. The two partial charges are used to mimic the charge distribution of the conserved non-pseudoautosomal (NPA) (asparagine/proline/alanine) regions in AQPs. Compared with across the nanochannel in a system with one +1 e charge, the water permeation across the nanochannel is greatly enhanced in a system with two +0.5 e charges when charges are close to the nanotube, i.e. the two partial charges permit more rapid water diffusion and maintain better bipolar order along the water file when the distance between the two charges and the wall of SWNT is smaller than about 0.05 nm. The bipolar orientation of the single-file water molecules is crucial for the exclusion of proton transfer. These findings may serve as guidelines for the future nanodevices by using charges to transport water and have biological implications because membrane water channels share a similar single-file water chain and positive charged region at centre and provide an insight into why two residues are necessitated in the central region of water channel protein.

Gong, Xiao-Jing; Fang, Hai-Ping

2008-07-01

226

Vertical arrival structure of shipping noise in deep water channels  

Microsoft Academic Search

In passive sonar systems, knowledge of low-frequency shipping noise is significant for target detection performance. However, an accurate model for the shipping noise structure is difficult to obtain, because of the varying distributions of ships and complicated underwater environment. This work characterizes low-frequency distant shipping noise observed in deep water environments as a function of receiver depth and vertical arrival

Zizheng Li; Lisa M. Zurk; Barry Ma

2010-01-01

227

Effects of variations in dietary protein and energy on the growth and survival of channel catfish fry (Ictalurus punctatus)  

E-print Network

May, 1982 Major Subject: Wildlife and Fishe"ies Sciences EFFECTS OF VARIATIONS IN DIETARY PROTEIN AND ENERGY ON THE GROWTH AND SURVIVAL OF CHANNEL CATFISH FRY (ICTALURUS PUNCTATUS) A Thesis by STEVEN DWIGHT NILES Approved as to style... May, 1982 Major Subject: Wildlife and Fishe"ies Sciences EFFECTS OF VARIATIONS IN DIETARY PROTEIN AND ENERGY ON THE GROWTH AND SURVIVAL OF CHANNEL CATFISH FRY (ICTALURUS PUNCTATUS) A Thesis by STEVEN DWIGHT NILES Approved as to style...

Niles, Steven Dwight

2012-06-07

228

The EGFP/hERG fusion protein alter the electrophysiological properties of hERG channels in HEK293 cells.  

PubMed

EGFP (enhanced green fluorescent protein) tagged to either the N (amino)-terminus [EGFP/hERG (human ether-a-go-go-related gene)] or C (carboxyl)-terminus (hERG/EGFP) of hERG channel is used to study mutant channel protein trafficking for several years. However, it has been reported that the process can alter hERG channel properties. The aim of the study was to determine whether EGFP tagged to N-terminus of hERG channels would alter the cellular localizations and the electrophysiological properties of hERG channels compared with untagged hERG channels. The hERG channels tagged with or without EGFP were transiently expressed in HEK (human embryonic kidney) 293 cells using a lipofectamine method. HEK 293 cells expressing pCDNA3-hERG or pEGFP-hERG were double immunolabelled with anti-hERG and anti-calnexin (an ER marker protein) followed with FITC- and TRITC (tetramethylrhodamine ?-isothiocyanate)-labelled secondary antibodies, respectively. Confocal laser scanning microscope was used to observe the cellular localization of EGFP-tagged hERG channels and untagged hERG channels. Patch-clamp technique was used to record whole cell currents. We found that the EGFP/hERG fusion protein and untagged hERG channels were both expressed not only on the cell surface membrane but also in the cytoplasm of HEK293 cells. The EGFP/hERG appeared to influence the hERG channel gating properties, including reduction of the peak tail current density, more rapid inactivation process, faster recovery from inactivation and faster deactivation kinetics compared with untagged hERG channels. Our results suggest that the EGFP/hERG channel alter the electrophysiological properties of hERG channel, but it does not seem to alter the cellular location of hERG channels. Thus, EGFP tagging to N-terminus might be used for research of subcellular location of hERG channels but not for the channel electrophysiological properties. PMID:21143190

Huang, Na; Lian, Jiang-Fang; Huo, Jian-Hua; Liu, Li-Ying; Ni, Lei; Yang, Xi; Zhou, Jian-Qing; Li, Zong-Fang; Song, Tu-Sheng; Huang, Chen

2011-03-01

229

Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean  

Microsoft Academic Search

Recent reports have shown that GTP-binding proteins (G-proteins) are present in plants but have given limited indication as to their site of action. G-proteins in animal cells transduce extracellular signals into intracellular or membrane-mediated events, including the regulation of ion channels. Using whole-cell patch clamp, we provide evidence that a G-protein in guard cells of fava bean regulates the magnitude

Katrina Fairley-Grenot; Sarah M. Assmann

1991-01-01

230

Slip Effects on Mixed Convective Peristaltic Transport of Copper-Water Nanofluid in an Inclined Channel  

PubMed Central

Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles. PMID:25170908

Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

2014-01-01

231

Protein composition of white skeletal muscle from mesopelagic fishes having different water and protein contents  

Microsoft Academic Search

The consequences for white skeletal muscle of the whole body variation in water and protein content were examined in 11 mesopelagic fishes taken off the coast of Oregon, USA, in 1983. For such muscles, water content varied from 71 to 91% of muscle wet weight, and protein content ranged from 56 to 141 mg g-1 muscle wet weight, depending on

J. F. Siebenaller; P. H. Yancey

1984-01-01

232

Structure-function of proteins interacting with the ?1 pore-forming subunit of high-voltage-activated calcium channels  

PubMed Central

Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (?1) associated with four additional polypeptide chains ?, ?2, ?, and ?, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the ?1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of ?1-subunits and during specific stages of biogenesis. More strikingly, most of the ?1-subunit interacting proteins, such as the ?-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the ?1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

Neely, Alan; Hidalgo, Patricia

2014-01-01

233

Computation of water-surface profiles in open channels  

USGS Publications Warehouse

The standard step-backwater method of computing water-surface profiles is described in this chapter. The hydraulic principles and assumptions are reviewed, and the field data requirements are described. Certain special cases of backwater curves and certain special field conditions are discussed in detail. The technique is used to establish or extend stage-discharge ratings; to define areas which will be innundated by flood flows of a given frequency; and to compute profiles through various reaches, including multichannel flows, and past control structures such as bridges, culverts, and road embankments. A brief description of analysis of floodways and effects of encroachments is also presented.

Davidian, Jacob

1984-01-01

234

Channels Formed by Botulinum, Tetanus, and Diphtheria Toxins in Planar Lipid Bilayers: Relevance to Translocation of Proteins across Membranes  

NASA Astrophysics Data System (ADS)

The heavy chains of both botulinum neurotoxin type B and tetanus toxin form channels in planar bilayer membranes. These channels have pH-dependent and voltage-dependent properties that are remarkably similar to those previously described for diphtheria toxin. Selectivity experiments with anions and cations show that the channels formed by the heavy chains of all three toxins are large; thus, these channels could serve as ``tunnel proteins'' for translocation of active peptide fragments. These findings support the hypothesis that the active fragments of botulinum neurotoxin and tetanus toxin, like that of diphtheria toxin, are translocated across the membranes of acidic vesicles.

Hoch, David H.; Romero-Mira, Miryam; Ehrlich, Barbara E.; Finkelstein, Alan; Dasgupta, Bibhuti R.; Simpson, Lance L.

1985-03-01

235

Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes  

NASA Astrophysics Data System (ADS)

Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5?nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

Huang, Hubiao; Song, Zhigong; Wei, Ning; Shi, Li; Mao, Yiyin; Ying, Yulong; Sun, Luwei; Xu, Zhiping; Peng, Xinsheng

2013-12-01

236

Vibrational energy flow through the green fluorescent protein-water interface: communication maps and thermal boundary conductance.  

PubMed

We calculate communication maps for green fluorescent protein (GFP) to elucidate energy transfer pathways between the chromophore and other parts of the protein in the ground and excited state. The approach locates energy transport channels from the chromophore to remote regions of the protein via residues and water molecules that hydrogen bond to the chromophore. We calculate the thermal boundary conductance between GFP and water over a wide range of temperature and find that the interface between the protein and the cluster of water molecules in the ?-barrel poses negligible resistance to thermal flow, consistent with facile vibrational energy transfer from the chromophore to the ?-barrel waters observed in the communication maps. PMID:24471982

Xu, Yao; Leitner, David M

2014-07-17

237

Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents  

Microsoft Academic Search

The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from

V Singhal; J. P. N Rai

2003-01-01

238

Channel propagation in water and gelatin by a free-running erbium laser  

Microsoft Academic Search

Channel propagation in water and gelatin by a free-running erbium laser is described with a hydrodynamic model which describes the propagation process in terms of energy, mass, and momentum balance equations which influence the evaporation pressure at the phase boundary. The theory takes the deformability of cold material below the zone of absorption into account. It is shown that by

Martin Forrer; Martin Frenz; Valerio Romano; Heinz P. Weber; Aleksandr Silenok; Vitalij I. Konov

1993-01-01

239

Homogeneous Nucleation in Water in Microfluidic Channels Keita Ando* and Ai-Qun Liu  

E-print Network

Homogeneous Nucleation in Water in Microfluidic Channels Keita Ando* and Ai-Qun Liu School the rupture of liquids with homogeneous nucleation of vapor bubbles. Many prior studies suffered from homogeneous bubble nucleation. We stretch the liquid dynamically via the interaction between a laser

Ohl, Claus-Dieter

240

Impact of multiple submarine channels on the descent of dense water at high latitudes  

Microsoft Academic Search

A three-dimensional numerical hydrodynamic model is applied to examine the impact of multiple submarine channels (<10 km across, <100 m deep), common to most continental margins of the ocean, on the descent of dense water at high latitudes. The model consists of an ocean bottom layer of constant height that follows variable bottom topography under constant vertical grid spacing. An

Jochen Kämpf

2000-01-01

241

On the turbulent flow around water turbines placed in an open channel: an experimental study  

NASA Astrophysics Data System (ADS)

A growing interest in water turbines (using tidal, river, marine currents) has been observed during the last few years. Fundamental understanding of the turbulent flow around the water turbines is crucial to predict the potential effects of these structures on the local morphology, water flow and power available in the current, among others. In this study, a series of model water turbines (single and an aligned array) of 50 cm rotor diameter were placed in the main channel of the Saint Anthony Falls Laboratory at the University of Minnesota. The main channel is approx 2.5 m wide, 1.8 m height and 85 m long. Flow around the water turbines were analyzed under subcritical conditions. Turbine hub heights coincided with the channel mid height. A series of acoustic Doppler anemometers (ADV) were used to obtain 3 velocity components of the flow at a rate of 200 Hz. Selected streamwise and spanwise vertical planes were measured to describe the kinematics around the water turbines. Potential interactions with the lateral walls were also addressed. High order statistics (mean velocity, turbulence intensities and Reynolds stresses) as well as two point correlations and spectra were computed to infer fundamental differences and similitude with their counterparts, the wind turbines.

Sotiropoulos, F.; Chamorro, L. P.; Arndt, R.

2010-12-01

242

Water-mediated ionic interactions in protein structures.  

PubMed

It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule. PMID:21654080

Sabarinathan, R; Aishwarya, K; Sarani, R; Vaishnavi, M Kirti; Sekar, K

2011-06-01

243

Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel  

Microsoft Academic Search

The flow of ground water in a buried permeable paleo-channel can be observed at the ground surface through its self-potential signature. We apply this method to delineate the Saint-Ferréol paleo-channel of the Rhone River located in Camargue, in the South East of France. Negative potentials, ??30 mV (reference taken outside the paleo-channel), are associated with ground water flow in this

A. Revil; L. Cary; Q. Fan; A. Finizola; F. Trolard

2005-01-01

244

Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel  

Microsoft Academic Search

The flow of ground water in a buried permeable paleo-channel can be observed at the ground surface through its self-potential signature. We apply this method to delineate the Saint-Ferréol paleo-channel of the Rhone River located in Camargue, in the South East of France. Negative potentials, ~-30 mV (reference taken outside the paleo-channel), are associated with ground water flow in this

A. Revil; L. Cary; Q. Fan; A. Finizola; F. Trolard

2005-01-01

245

Ring-like pore structures of SecA: Implication for bacterial protein-conducting channels  

PubMed Central

SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes. PMID:12642659

Wang, Hong-Wei; Chen, Yong; Yang, Hsiuchin; Chen, Xianchuan; Duan, Ming-Xing; Tai, Phang C.; Sui, Sen-Fang

2003-01-01

246

The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers  

Microsoft Academic Search

Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through

J. C. Rowland; W. E. Dietrich; G. Day

2005-01-01

247

A simulation tool for high data-rate acoustic communication in a shallow-water, time-varying channel  

Microsoft Academic Search

The paper discusses the development of a simulation tool to model high data-rate acoustic communication in shallow water. The simulation tool is able to generate synthetic time series of signals received at a transducer array after transmission across a shallow-water communication channel. The simulation tool is suitable for testing advanced signal processing techniques for message recovery. A channel model has

C. Bjerrum-Niese; L. Bjorno; M. A. Pinto; B. Quellec

1996-01-01

248

Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa  

USGS Publications Warehouse

Riparian zones of many incised channels in agricultural regions are cropped to the channel edge leaving them unvegetated for large portions of the year. In this study we evaluated surface and groundwater interaction in the riparian zone of an incised stream during a spring high flow period using detailed stream stage and hydraulic head data from six wells, and water quality sampling to determine whether the riparian zone can be a source of nitrate pollution to streams. Study results indicated that bank storage of stream water from Walnut Creek during a large storm water runoff event was limited to a narrow 1.6 m zone immediately adjacent to the channel. Nitrate concentrations in riparian groundwater were highest near the incised stream where the unsaturated zone was thickest. Nitrate and dissolved oxygen concentrations and nitrate-chloride ratios increased during a spring recharge period then decreased in the latter portion of the study. We used MODFLOW and MT3DMS to evaluate dilution and denitrification processes that would contribute to decreasing nitrate concentrations in riparian groundwater over time. MT3DMS model simulations were improved with a denitrification rate of 0.02 1/d assigned to the floodplain sediments implying that denitrification plays an important role in reducing nitrate concentrations in groundwater. We conclude that riparian zones of incised channels can potentially be a source of nitrate to streams during spring recharge periods when the near-stream riparian zone is largely unvegetated. ?? 2005 Elsevier B.V. All rights reserved.

Schilling, K. E.; Li, Z.; Zhang, Y. -K.

2006-01-01

249

Water Channel of Horseradish Peroxidase Studied by the Charge-Transfer Absorption Band of Ferric Heme  

E-print Network

connects the aqueous solution to the heme site. Ferric horseradish peroxidase has an absorption band at 640, the protein was incorporated into trehalose/sucrose glasses and the hydration of the sugar glasses was varied are narrower for the protein in glycerol/water (glass transition at 150 K) than in trehalose/sucrose (glass

Sharp, Kim

250

The Dynamic Transition of Protein Hydration Water  

E-print Network

Thin layers of water on biomolecular and other nanostructured surfaces can be supercooled to temperatures not accessible with bulk water. Chen et al. [PNAS 103, 9012 (2006)] suggested that anomalies near 220 K observed by quasi-elastic neutron scattering can be explained by a hidden critical point of bulk water. Based on more sensitive measurements of water on perdeuterated phycocyanin, using the new neutron backscattering spectrometer SPHERES, and an improved data analysis, we present results that show no sign of such a fragile-to-strong transition. The inflection of the elastic intensity at 220 K has a dynamic origin that is compatible with a calorimetric glass transition at 170 K. The temperature dependence of the relaxation times is highly sensitive to data evaluation; it can be brought into perfect agreement with the results of other techniques, without any anomaly.

W. Doster; S. Busch; A. M. Gaspar; M. -S. Appavou; J. Wuttke; H. Scheer

2009-11-26

251

IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels  

PubMed Central

The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. PMID:18948278

Harmar, Anthony J.; Hills, Rebecca A.; Rosser, Edward M.; Jones, Martin; Buneman, O. Peter; Dunbar, Donald R.; Greenhill, Stuart D.; Hale, Valerie A.; Sharman, Joanna L.; Bonner, Tom I.; Catterall, William A.; Davenport, Anthony P.; Delagrange, Philippe; Dollery, Colin T.; Foord, Steven M.; Gutman, George A.; Laudet, Vincent; Neubig, Richard R.; Ohlstein, Eliot H.; Olsen, Richard W.; Peters, John; Pin, Jean-Philippe; Ruffolo, Robert R.; Searls, David B.; Wright, Mathew W.; Spedding, Michael

2009-01-01

252

Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.  

PubMed

Ferritin biominerals are protein-caged metabolic iron concentrates used for iron-protein cofactors and oxidant protection (Fe(2+) and O2 sequestration). Fe(2+) passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe(2+) substrate movement to ferritin enzyme (Fox) sites. Fe(2+) and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, ?max 650 nm, which decays to [Fe(3+)-O-Fe(3+)] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe(2+) concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe(2+) access), Mn(2+) < Co(2+) < Cu(2+) < Zn(2+), reflecting metal ion-protein binding stabilities. Fe(2+)-Cys126 binding in ferritin ion channels, observed as Cu(2+)-S-Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu(2+) inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe(2+) movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe(2+) into ferritin enzymatic sites. The results clarify Fe(2+) transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations. PMID:24843174

Behera, Rabindra K; Theil, Elizabeth C

2014-06-01

253

Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2.  

PubMed

The tip link protein protocadherin 15 (PCDH15) is a central component of the mechanotransduction complex in auditory and vestibular hair cells. PCDH15 is hypothesized to relay external forces to the mechanically gated channel located near its cytoplasmic C terminus. How PCDH15 is coupled to the transduction machinery is not clear. Using a membrane-based two-hybrid screen to identify proteins that bind to PCDH15, we detected an interaction between zebrafish Pcdh15a and an N-terminal fragment of transmembrane channel-like 2a (Tmc2a). Tmc2a is an ortholog of mammalian TMC2, which along with TMC1 has been implicated in mechanotransduction in mammalian hair cells. Using the above-mentioned two-hybrid assay, we found that zebrafish Tmc1 and Tmc2a can interact with the CD1 or CD3 cytoplasmic domain isoforms of Pcdh15a, and this interaction depends on the common region shared between the two Pcdh15 isoforms. Moreover, an interaction between mouse PCDH15-CD3 and TMC1 or TMC2 was observed in both yeast two-hybrid assays and coimmunoprecipitation experiments. To determine whether the Pcdh15-Tmc interaction is relevant to mechanotransduction in vivo, we overexpressed N-terminal fragments of Tmc2a in zebrafish hair cells. Overexpression of the Tmc2a N terminus results in mislocalization of Pcdh15a within hair bundles, together with a significant decrease in mechanosensitive responses, suggesting that a Pcdh15a-Tmc complex is critical for mechanotransduction. Together, these results identify an evolutionarily conserved association between the fish and mouse orthologs of PCDH15 and TMC1 and TMC2, supporting the notion that TMCs are key components of the transduction complex in hair cells. PMID:25114259

Maeda, Reo; Kindt, Katie S; Mo, Weike; Morgan, Clive P; Erickson, Timothy; Zhao, Hongyu; Clemens-Grisham, Rachel; Barr-Gillespie, Peter G; Nicolson, Teresa

2014-09-01

254

Water-mediated interaction at a protein–protein interface  

Microsoft Academic Search

The water-mediated indirect interaction between barnase and barstar was investigated by surface plasmon resonance measurement and cryogenic X-ray crystallography. Mutations of four acidic residues of barstar, D35A, D39A, E76A and E80A, decreased the binding free energies by 17.2, 25.2, 3.8 and 2.1 kJmol?1, respectively, in the presence of 150 mM NaCl at pH 7.4 and 25 °C. The changes of

Teikichi Ikura; Yoshiaki Urakubo; Nobutoshi Ito

2004-01-01

255

Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.  

PubMed

Water emerging from ?100 ?m pores into millimeter-size gas flow channels forms drops that grow and become slugs which span the flow channel. Flowing gas causes the slugs to detach and move down the channel. The effect of channel geometry, surface wettability, and gravity on the formation and motion of water slugs has been analyzed using high-speed video images of the drops and differential pressure-time traces. Drops grow and appear, assuming a sequence of shapes that minimize the total interfacial energy of the gas-liquid and liquid-solid interfaces. The drops are initially spherical caps centered on the pore (the liquid contacts one wall). Above a certain size, the drops move to the corner, forming "corner drops" (the liquid contacts two walls). Corner drops grow across the channel, evolving into partial liquid bridges (drops confined by three walls), and finally the drops span the channel cross-section forming slugs (contacting all four walls). Smaller slugs are formed in channels with hydrophobic walls than in channels with hydrophilic walls. Smaller slugs are formed in channels with curved walls than in square or rectangular channels. Slugs move when the differential gas pressure overcomes the force to move the advancing and receding gas-liquid-solid contact lines of the slugs. Residual water left behind in corners by moving slugs reduces the barriers for drops to form slugs, causing the steady-state slug volumes to be smaller than those seen at start-up in dry channels. PMID:23876035

Cheah, May J; Kevrekidis, Ioannis G; Benziger, Jay B

2013-08-01

256

Intractable Nausea and Vomiting from Autoantibodies Against a Brain Water Channel  

PubMed Central

Background & Aims Antibodies against the water channel protein aquaporin (AQP)-4 cause a spectrum of inflammatory, demyelinating, central nervous system disorders called neuromyelitis optica spectrum disorders (NMOSDs); these primarily affect the optic nerves and spinal cord, but also the brain. Symptoms of intractable nausea, vomiting and hiccups reflect involvement of AQP4 in the brainstem area postrema and account for gastroenterologic presentations. We investigated the frequency of intractable nausea, vomiting, or hiccups in patients with NMOSD who tested positive for immunoglobulin-G against AQP4 (AQP4-IgG). We also analyzed sera from patients with idiopathic nausea or vomiting for the presence of AQP4-IgG. Methods We reviewed the Mayo Clinic AQP4-IgG positive NMOSD database (n=70) to identify patients who presented with vomiting, focusing on results from gastroenterologic evaluations. We also tested serum samples (from the Gastroparesis Clinical Research Consortium repository) from patients who presented with idiopathic nausea or vomiting for AQP4-IgG (controls n=318 with gastroparesis and 117 without gastroparesis). Results Ten AQP4-IgG-positive patients diagnosed with NMOSD (14% of patients in the database) initially presented with intractable vomiting. Extensive gastroenterological evaluation was non-informative. AQP4-IgG was not detected in any of the controls. Conclusions Though NMOSDs are rare, tests for AQP4-IgG should be considered for patients that present with unexplained, intractable vomiting. Detection of the antibody before the development of optic neuritis or transverse myelitis allows patients to receive immunosuppressive therapy before the development of neurologic disabilities. PMID:23211959

Iorio, Raffaele; Lucchinetti, Claudia F.; Lennon, Vanda A.; Farrugia, Gianrico; Pasricha, Pankaj J.; Weinshenker, Brian G.; Pittock, Sean J.

2013-01-01

257

A dual channel optical detector for trace water chemodosimetry and imaging of live cells.  

PubMed

A novel 3-5-dichlorosalicylaldehyde Schiff base chemodosimeter (compound 1) for water is designed and synthesized, and it works based on a water-triggered reaction of a Schiff base. Addition of trace amounts of water into 1 in various organic solvents leads to a fluorescence turn-on response and a simultaneous dual-channel signal modulation (both in the fluorescence and absorption spectra). Especially, 1 is found to be an outstanding fluorescence enhancement water sensor in methanol with an extremely low detection limit of 22 ppm. Consequently this probe can be utilized to detect trace water in commercial methanol. The quantitative detection of a wide range of water content is enhanced in THF and acetonitrile (0-35% v/v for THF and 0-20% v/v for acetonitrile), where the fluorescence peak intensity is nearly proportional to the amount of water added. Moreover, 1 can be used for monitoring pH through a novel ON-OFF-ON type signal modulation both in fluorescence and absorption spectra within a wide pH detection range. Thus, the chemodosimeter can not only be utilized to monitor the intracellular pH fluctuations, but also to accomplish simultaneous in situ staining of the cytosol and acidic organelles in two different channels, respectively. PMID:23552729

Men, Guangwen; Zhang, Guirong; Liang, Chunshuang; Liu, Huiling; Yang, Bing; Pan, Yuyu; Wang, Zhenyu; Jiang, Shimei

2013-05-21

258

Grazing Land Management Strongly Controls Water Quality, Sediment and Channel Dynamics in Tallgrass Prairie Headwater Networks  

NASA Astrophysics Data System (ADS)

In the prairie remnants of North America, watershed sediment regimes are heavily influenced by livestock grazing practices. Despite dramatic declines in stream water quality and ecosystem function concomitant with increasing gazing pressures, there have been no studies to quantitatively assess the relationship between various grazing treatments and sediment production in natural grassland ecosystems. In this study, we evaluate suspended sediment transport and channel morphology in the Flint Hills physiographic province using a paired whole-watershed approach, including 2 replicates of high density cattle grazing, 2 replicates of low density cattle grazing, 3 replicates of bison grazing and 3 replicates of no grazing. As expected, results demonstrate that cattle grazing operations increase e-coli, sediment concentrations and increase channel width. However, no significant differences in e-coli, suspended sediment dynamics or channel geomorphology were found between bison grazed and ungrazed watersheds.

Grudzinski, B. G.; Daniels, M. D.

2013-12-01

259

Channel Incision and Water-Table Decline Along a Recently Formed Proglacial Stream, Mendenhall Valley, Southeastern Alaska  

USGS Publications Warehouse

Retreat of the Mendenhall Glacier, in southeastern Alaska, resulted in the formation of Mendenhall Lake, which has reduced the supply of coarse sediment to the proglacial Mendenhall River. Channel geometry surveys conducted in 1969 and 1998 over a 5.3 km reach of the Mendenhall River revealed reductions in mean bed elevations ranging from 0.4 to 1.5 meters based on cross sections replicated at 7 locations. Channel incision in the Mendenhall River is believed to be the result of a combination of factors resulting from localized and region-wide glacial retreat. In addition to a reduction of river stage due to channel incision, a decline in water-table elevations of about 0.6 m during a 17-year period from 1984 to 2001 was identified in an observation well located 250 m from the incising stream channel. Water-table elevations 600 m from the incising channel in the adjacent alluvial outwash aquifer respond in phase to changes in river stage, indicating water-levels in the adjacent aquifer are declining in response to river-channel incision. This study suggests channel incision can rapidly lower water-table elevations for large distances in the adjacent aquifer, potentially modifying the hydrology to a degree capable of influencing adjacent surface-water features, such as off-channel wetlands and flood-plain side channels.

Neal, Edward G.

2009-01-01

260

River channel instability in East Anglia as a result of increasing water demand  

NASA Astrophysics Data System (ADS)

Both climate change and population growth are having an increasing effect on the morphodynamics of lowland rivers in East Anglia, mainly due to the rising water demand and the increasing magnitude of climate extremes such as droughts or floods. The region has had the UK's highest percentage increase in population in recent years and it is projected to rise by a further 20% over the next 15 years. East Anglia is also already the driest region in the UK. It receives only half of the national average annual rainfall in a normal year and most catchments are over-abstracted. The naturally-available water supply is low and therefore water has to be transferred from neighbouring catchments via pipelines and existing rivers, adding a significant amount of extra water to the natural river flows. Inadequate research is available to explain the spatial and temporal relationships of these additional flows on the affected river channels. A four year field study has been recently undertaken to explore the rates and causes of river channel instability on the River Stour in East Anglia. A river bank retreat of up to 1.3 m/year was recorded, which is much higher than the maximum rate of 0.2 m/year interpreted from an analysis of historical maps since 1886. The field study employed a unique combination of four geomorphologic field methods including the use of innovative photo-electronic erosion pins system for detailed continuous bank research. The studied river channel is used to transport additional water to supply, which was found to create 40% of all effective flows in the upstream reaches during the study period. The impact of this transferred water decreased downstream. The frequency of effective flows due to the water transfer scheme was examined against the river bank erosion retreat data considering the complexity of the channel boundary processes. Clear morphological evidence has also been collected that proves the effect that the water transfer flows are having on the river channel.

Anstead, Lenka; Tovey, Keith

2014-05-01

261

Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.  

PubMed

The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water. PMID:24745233

Dominic, A; Sarangan, J; Suresh, S; Sai, Monica

2014-03-01

262

Water Behavior in Layered Porous Media with Discrete Flow Channels: Results of a Large-Scale Experiment  

SciTech Connect

A meter-scale experimental system (2-m high by 2-m wide by 3-m long) was used to investigate the behavior of water in a model system consisting of two unconsolidated sediment layers separated by a layer containing discrete flow channels. Stainless steel tubes were inserted vertically through a clay matrix to represent the discrete flow-channel layer. The experimental system was well characterized, and results from water infiltration experiments were analyzed. A time series of water arrival at a network of 86 probes located in the unconsolidated sediment layers is presented, as well as water pressure histories at specific locations. Some probes were located at opposite ends of the flow channels to assess water migration through the discrete flow-channel layer. Analyses of the experimental results focused on capillary break phenomena at the interface between the overlying unconsolidated layer and the underlying discrete flow channels. Dissimilar water pressure histories were measured at probes near the upper boundary of the discrete flow-channel layer, suggesting varied and complex water flow behavior. At some locations, a steady or periodic ‘leaking’ of water through the discrete flow channels appeared to occur, contrary to capillary break theory. The authors advocate larger-scale experiments to advance our understanding and ability to model fluid flow across a wide range of spatial and temporal scales.

R. J. Lenhard; P. Meakin

2007-08-01

263

CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination  

Microsoft Academic Search

Reverse osmosis (RO) is widely used for the production of drinking water from brackish and sea water. In RO process, pressure is used to separate water and salts by allowing water to pass through a semi-permeable membrane leaving the salts behind. Therefore, controlling membrane fouling will keep the productivity at its optimum condition. Having spacer filaments in the feed channel

S. Wardeh; H. P. Morvan

2008-01-01

264

A "Solvated Rotamer" Approach to Modeling Water-Mediated Hydrogen Bonds at ProteinProtein Interfaces  

E-print Network

of Washington, Seattle, Washington ABSTRACT Water-mediated hydrogen bonds play critical roles at protein and more gener- ally reflect the properties of discrete individual molecules rather than continuum solvent

Baker, David

265

Reaction enthalpies along the two channels of geminate electron recombination in liquid-to-supercritical water  

NASA Astrophysics Data System (ADS)

Ionizing radiation or UV light produces electrons and H2O+ ions in water. These species transform into hydrated electron, e-aq, hydrated H3O+ ion, and ·OH radical in each other's neighborhood much faster than any forthcoming chemical transformation. Part of the electrons escapes their geminate partners. There exists two possible paths for the remaining fraction to react: H3O++e-aq=H3O· [channel (A)] and ·OH+e-aq=OH- [channel (B)]. We devised two thermodynamic cycles for the computation of the reaction enthalpies of both channels. Channel (A) was found to be endothermic with an enthalpy of 3.61 eV at room temperature. The enthalpy is seen to be almost constant up to 500 K, to increase at 600 K and to drop abruptly around 650 K, i.e. in the region where the dielectric constant is below 20. Channel (B) was found to be exothermic with an enthalpy of -2.33 eV at room temperature. It is becoming gradually less exothermic with increasing temperature the variation becoming fast around 650 K. The tendency of these thermochemical results parallel with recent kinetic calculations by Torres-Alacan et al. (J. Torres-Alacan, S. Kratz, P. Vöhringer, 2011. Phys. Chem. Chem. Phys. 13, 20806-20819)

Schiller, Robert; Horváth, Ákos

2013-11-01

266

Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins  

PubMed Central

Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel remains uncertain, two members of the transmembrane channel–like family, Tmc1 and Tmc2, are crucial to hair cell mechanotransduction. We measured MT channel current amplitude and Ca2+ permeability along the cochlea’s longitudinal (tonotopic) axis during postnatal development of wild-type mice and mice lacking Tmc1 (Tmc1?/?) or Tmc2 (Tmc2?/?). In wild-type mice older than postnatal day (P) 4, MT current amplitude increased ?1.5-fold from cochlear apex to base in outer hair cells (OHCs) but showed little change in inner hair cells (IHCs), a pattern apparent in mutant mice during the first postnatal week. After P7, the OHC MT current in Tmc1?/? (dn) mice declined to zero, consistent with their deafness phenotype. In wild-type mice before P6, the relative Ca2+ permeability, PCa, of the OHC MT channel decreased from cochlear apex to base. This gradient in PCa was not apparent in IHCs and disappeared after P7 in OHCs. In Tmc1?/? mice, PCa in basal OHCs was larger than that in wild-type mice (to equal that of apical OHCs), whereas in Tmc2?/?, PCa in apical and basal OHCs and IHCs was decreased compared with that in wild-type mice. We postulate that differences in Ca2+ permeability reflect different subunit compositions of the MT channel determined by expression of Tmc1 and Tmc2, with the latter conferring higher PCa in IHCs and immature apical OHCs. Changes in PCa with maturation are consistent with a developmental decrease in abundance of Tmc2 in OHCs but not in IHCs. PMID:23277480

Kim, Kyunghee X.

2013-01-01

267

Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.  

PubMed

Hydrophobic effects, often conflated with hydrophobic forces, are implicated as major determinants in biological association and self-assembly processes. Protein-protein interactions involved in signaling pathways in living systems are a prime example where hydrophobic effects have profound implications. In the context of protein-protein interactions, a priori knowledge of relevant binding interfaces (i.e., clusters of residues involved directly with binding interactions) is difficult. In the case of hydrophobically mediated interactions, use of hydropathy-based methods relying on single residue hydrophobicity properties are routinely and widely used to predict propensities for such residues to be present in hydrophobic interfaces. However, recent studies suggest that consideration of hydrophobicity for single residues on a protein surface require accounting of the local environment dictated by neighboring residues and local water. In this study, we use a method derived from percolation theory to evaluate spanning water networks in the first hydration shells of a series of small proteins. We use residue-based water density and single-linkage clustering methods to predict hydrophobic regions of proteins; these regions are putatively involved in binding interactions. We find that this simple method is able to predict with sufficient accuracy and coverage the binding interface residues of a series of proteins. The approach is competitive with automated servers. The results of this study highlight the importance of accounting of local environment in determining the hydrophobic nature of individual residues on protein surfaces. Proteins 2014; 82:3312-3326. © 2014 Wiley Periodicals, Inc. PMID:25204743

Cui, Di; Ou, Shuching; Patel, Sandeep

2014-12-01

268

Long-range protein–water dynamics in hyperactive insect antifreeze proteins  

PubMed Central

Antifreeze proteins (AFPs) are specific proteins that are able to lower the freezing point of aqueous solutions relative to the melting point. Hyperactive AFPs, identified in insects, have an especially high ability to depress the freezing point by far exceeding the abilities of other AFPs. In previous studies, we postulated that the activity of AFPs can be attributed to two distinct molecular mechanisms: (i) short-range direct interaction of the protein surface with the growing ice face and (ii) long-range interaction by protein-induced water dynamics extending up to 20 Å from the protein surface. In the present paper, we combine terahertz spectroscopy and molecular simulations to prove that long-range protein–water interactions make essential contributions to the high antifreeze activity of insect AFPs from the beetle Dendroides canadensis. We also support our hypothesis by studying the effect of the addition of the osmolyte sodium citrate. PMID:23277543

Meister, Konrad; Ebbinghaus, Simon; Xu, Yao; Duman, John G.; DeVries, Arthur; Gruebele, Martin; Leitner, David M.; Havenith, Martina

2013-01-01

269

Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene  

SciTech Connect

Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanquineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. 32 refs., 4 figs.

Lieburg, A.F. van; Verdijk, M.A.J.; Knoers, V.V.A.M.; Monnens, L.A.H.; Oost, B.A. van; Os, C.H. van; Deen, P.M.T. [Univ. of Nijmegen (Netherlands); Essen, A.J. van [Univ. of Groningen (Netherlands); Proesmans, W. [Univ. of Leuven (Belgium); Mallmann, R. [Univ. of Bonn (Germany)

1994-10-01

270

Endocytic vesicles from renal papilla which retrieve the vasopressin- sensitive water channel do not contain a functional H+ ATPase  

Microsoft Academic Search

The water permeability of the kidney col- lecting duct epithelium is regulated by vasopressin (VP)-induced recycling of water channels between an intracellular vesicular compartment and the plasma membrane of principal cells. To test whether the water channels pass through an acidic endosomal compart- ment during the endocytic portion of this pathway, we measured ATP-dependent acidification of FITC- dextran-labeled endosomes in

Wayne I. Lencer; A. S. Verkman; M. Amin Arnaout; Dennis A. Ausiello; Dennis Brown

1990-01-01

271

[Isolation and purification of human blood plasma proteins able to form potassium channels in artificial bilayer lipid membrane].  

PubMed

Protein fraction able to induce K(+)-selective transport across bilayer lipid membrane was isolated from human blood plasma with the use of the detergent and proteolytic enzyme-free method developed at our laboratory. After addition of the studied sample to the artificial membrane in the presence of 100 mM KCl, a discrete current change was observed. No channel activity was recorded in the presence of calcium and sodium ions. Channel forming activity of fraction was observed only in the presence of K+. Using a threefold gradient of KCl in the presence of studied proteins the potassium-selective potential balanced by voltage of -29 mV was registered. This value is very close to the theoretical Nernst potential in this case. This means that the examined ion channel is cation-selective. According to data obtained with MS-MALDI-TOF/TOF and database NCBI three protein components were identified in isolated researched sample. PMID:23136772

Venediktova, N I; Kuznetsov, K V; Gritsenko, E N; Gulidova, G P; Mironova, G D

2012-01-01

272

Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters  

NASA Astrophysics Data System (ADS)

The narrow and deep Faroe Bank Channel (FBC) is an important pathway for cold, dense waters from the Nordic Seas to flow across the Iceland-Scotland ridge into the North Atlantic. The swift, turbulent FBC overflow is associated with strong vertical mixing. Hydrographic profiles from a shipboard survey and two Slocum electric gliders deployed during a cruise in May-June 2012 show an intermediate water mass characterized by low salinity and low oxygen concentration between the upper waters of Atlantic origin and the dense overflow water. A weak low-salinity signal originating north-east of Iceland is discernible at the exit of the FBC, but smeared out by intense mixing. Further west (downstream) marked salinity and oxygen minima are found, which we hypothesize are indicators of a mixture of Labrador Sea Water and Intermediate Water from the Iceland Basin. Water mass characteristics vary strongly on short time scales. Low-salinity, low-oxygen water in the stratified interface above the overflow plume is shown to move along isopycnals toward the Iceland-Faroe Front as a result of eddy stirring and a secondary, transverse circulation in the plume interface. The interaction of low-salinity, low-oxygen intermediate waters with the overflow plume already at a short distance downstream of the sill, here reported for the first time, affects the final properties of the overflow waters through entrainment and mixing.

Ullgren, Jenny E.; Fer, Ilker; Darelius, Elin; Beaird, Nicholas

2014-01-01

273

ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels.  

PubMed

Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity. PMID:22935148

Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng

2013-03-01

274

Increased migration and metastatic potential of tumor cells expressing aquaporin water channels  

Microsoft Academic Search

Aquaporin (AQP) water channels are expressed in high-grade tumor cells of different tissue origins. Based on the involvement of AQPs in angio- genesis and cell migration, we tested whether AQP expression in tumor cells might enhance their migra- tion and metastatic potential. Transfection of B16F10 and 4T1 tumor cells with AQP1 did not affect their appearance, size, growth, or substrate

Jie Hu; A. S. Verkman

2006-01-01

275

Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration  

Microsoft Academic Search

Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in mi- crovascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in al- veolar epithelia. Novel quantitative methods were developed to compare airway fluid transport-related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from

Yuanlin Song; Sujatha Jayaraman; Baoxue Yang; Michael A. Matthay; A. S. Verkman

2001-01-01

276

Acute renal failure leads to dysregulation of lung salt and water channels  

Microsoft Academic Search

Acute renal failure leads to dysregulation of lung salt and water channels.BackgroundRenal ischemia\\/reperfusion (I\\/R) injury and the acute respiratory distress syndrome (ARDS) frequently coexist in the intensive care setting, and this combination is associated with a high mortality. Recent experimental data demonstrate that renal I\\/R injury leads to an increase in pulmonary vascular permeability, similar to that observed in ARDS.

Hamid Rabb; Zhaohui Wang; Takashi Nemoto; John Hotchkiss; Naoko Yokota; Manoocher Soleimani

2003-01-01

277

Penetration of water vapour into narrow channels during steam sterilization processes  

NASA Astrophysics Data System (ADS)

In surgery medical devices are used that should be sterile. To obtain surface steam sterilization conditions in hollow medical devices (e.g. endoscopes), sufficient water vapour should be present in the narrow channels in these devices during sterilization. In this paper, a model to calculate the water vapour distribution in narrow channels during steam sterilization processes is presented. The narrow channels in the devices are modelled as tubes with one open and one closed end. The model is restricted to isothermal situations in which no condensation takes place. To validate the model, the time evolution of the water vapour density at the closed end of a test tube is quantified by a pilot experiment based on infrared light absorption measurements. A stainless-steel test tube was used with a length of 54 cm, a radius of 1.5 mm and a wall thickness of 0.5 mm. These dimensions are comparable to the channels in medical instruments. Both the model calculations and the experiments show that for a wide range of sterilization process parameters the vapour density near the closed end of the tube is insufficient for steam sterilization. Despite the simplicity of the model, a fair overall agreement is found between the model predictions and the experimental results. This agreement can be improved significantly by an empirical modification of the boundary conditions at the open end of the tube. Our calculations show that the tube length is the most important parameter. Some possible changes in the process parameters to increase the water vapour concentration at the closed end of the tube are addressed briefly.

van Doornmalen, J. P. C. M.; Verschueren, M.; Kopinga, K.

2013-02-01

278

Game Theoretic Model for the OFDM Water-Filling Algorithm with Imperfect Channel State Information  

Microsoft Academic Search

In this paper the game-theoretic model of the water-filling algorithm for an OFDM system is presented. The considered game model concerns the strategic choice of assigning the transmission power to each individual subcarrier in the situation of uncertainty regarding the channel state information (CSI). Strategies, utilities and payoffs are defined, and the application of the model in the time-varying radio

Hanna Bogucka

2008-01-01

279

Simultaneous Iterative Water-Filling for Gaussian Frequency-Selective Interference Channels  

Microsoft Academic Search

The sequential iterative water-filling algorithm (IWFA) proposed by Yu et al. is by now a popular low-complexity algorithm to compute the Nash equilibrium point of the power allocation game in a Gaussian frequency-selective multiuser interference channel. The algorithm is based on a distributed sequential updating where, at each iteration, the users choose their power allocation, one after the other. However,

Gesualdo Scutari; Daniel P. Palomar; Sergio Barbarossa

2006-01-01

280

Crystal Structure of the Mammalian GIRK2 KplusChannel and Gating Regulation by G Proteins PIP2 and Sodium  

SciTech Connect

G protein-gated K{sup +} channels (Kir3.1--Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K{sup +} channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP{sub 2} suggest that G proteins open only the G loop gate in the absence of PIP{sub 2}, but in the presence of PIP{sub 2} the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na{sup +} ion-binding site, which would allow intracellular Na{sup +} to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.

M Whorton; R MacKinnon

2011-12-31

281

Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1.  

PubMed

Molecular dynamics (MD) simulations have been carried out on bundles of the channel-forming transmembrane (TM) domain of the viral protein U (VPU(1-27) and VPU(6-27)) from the human immunodeficiency virus (HIV-1). Simulations of hexameric and pentameric bundles of VPU(6-27) in an octane/water membrane mimetic system suggested that the pentamer is the preferred oligomer. Accordingly, an unconstrained pentameric helix bundle of VPU(1-27) was then placed in a hydrated palmitoyl-oleyl-3-n-glycero-phosphatidylethanolamine (POPE) lipid bilayer and its structural properties calculated from a 3-ns MD run. Some water molecules, initially inside the channel lumen, were expelled halfway through the simulation and the bundle adopted a conical structure reminiscent of previous MD results obtained for VPU(6-27) in an octane/water system. The pore constriction generated may correspond to a closed state of the channel and underlies the relocation of the W residue toward the pore lumen. The relative positions of the helices with respect to the bilayer and their interactions with the lipids are discussed. The observed structure is stabilized via specific interactions between the VPU helices and the carbonyl oxygen atoms of the lipid molecules, particularly at the Q and S residues. PMID:12202353

Lopez, Carlos F; Montal, Mauricio; Blasie, J Kent; Klein, Michael L; Moore, Preston B

2002-09-01

282

Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7  

PubMed Central

The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP protein family (Solute Carrier Family 39A, SLC39A) transiently increase the cytosolic free zinc (Zn2+) concentration in response to extracellular signals. Here, we show that phosphorylation of evolutionarily conserved residues in zinc transporter ZIP7 is associated with the gated release of Zn2+ from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Through pharmacological manipulation, proximity assay, and mutagenesis, we identified CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that eukaryotic transition element channels can be activated post-translationally by phosphorylation eliciting a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals for these events which are characteristic of cancerous cells. Furthermore, the interaction of ZIP7 with CK2, a kinase that is antiapoptotoc and promotes cell division, highlights the potential for ZIP7 as a target for anti-cancer drug development. PMID:22317921

Taylor, Kathryn M.; Hiscox, Stephen; Nicholson, Robert I.; Hogstrand, Christer; Kille, Peter

2012-01-01

283

Presynaptic Calcium Channel Localization and Calcium Dependent Synaptic Vesicle Exocytosis Regulated by the Fuseless Protein  

PubMed Central

Summary A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted 8-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, a ~3-fold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wildtype fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca2+ concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca2+ channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca2+ channel domains required for efficient coupling of the Ca2+ influx and synaptic vesicle exocytosis during neurotransmission. PMID:18385325

Long, A. Ashleigh; Kim, Eunju; Leung, Hung-Tat; Woodruff, Elvin; An, Lingling; Doerge, R. W.; Pak, William L.; Broadie, Kendal

2009-01-01

284

Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth  

NASA Technical Reports Server (NTRS)

The hydraulics of channelized water flows on Mars and the resulting sediment transport rates are calculated, and similar computations are performed for such terrestrial analogs as the Mississippi River and the catastrophic Lake Missoula floods that formed the Channeled Scabland in eastern Washington State. The morphologies of deep-sea channels formed by catastrophic turbidity currents are compared with the Martian channels, many similarities are pointed out, and the hydraulics of the various flows are compared. The results indicate that the velocities, discharges, bottom shear stresses, and sediment-transport capacity of water flows along the Martian channels would be comparable to those of the oceanic turbidity currents and the Lake Missoula floods. It is suggested that the submarine canyons from which turbidity currents originate are the terrestrial counterparts to the chaotic-terrain areas or craters that serve as sources for many of the Martian channels.

Komar, P. D.

1979-01-01

285

Why do proteins aggregate? "Intrinsically insoluble proteins" and "dark mediators" revealed by studies on "insoluble proteins" solubilized in pure water  

PubMed Central

In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the ?-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media. PMID:24555050

Song, Jianxing

2013-01-01

286

Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein.  

PubMed

Cardiomyocyte apoptosis is a critical process in the pathogenesis of ischemic and diabetic cardiomyopathy, but the mechanisms are not fully understood. Thioredoxin-interacting protein (TXNIP) has recently been shown to have deleterious effects in the cardiovascular system and we therefore investigated whether it may also play a role in diabetes-associated cardiomyocyte apoptosis. In fact, TXNIP expression was increased in H9C2 cardiomyocytes incubated at high glucose, and cardiac expression of TXNIP and cleaved caspase-3 were also elevated in vivo in streptozotocin- and obesity-induced diabetic mice. Together, these findings not only suggest that TXNIP is involved in diabetic cardiomyopathy but also that it may represent a novel therapeutic target. Surprisingly, testing putative TXNIP modulators revealed that calcium channel blockers reduce cardiomyocyte TXNIP transcription and protein levels in a dose-dependent manner. Oral administration of verapamil for 3 wk also reduced cardiac TXNIP expression in mice even in the face of severe diabetes, and these reduced TXNIP levels were associated with decreased apoptosis. To determine whether lack of TXNIP can mimic the verapamil-induced decrease in apoptosis, we used TXNIP-deficient HcB-19 mice, harboring a natural nonsense mutation in the TXNIP gene. Interestingly, we found significantly reduced cleaved caspase-3 levels in HcB-19 hearts, suggesting that TXNIP plays a critical role in cardiac apoptosis and that the verapamil effects were mediated by TXNIP reduction. Thus our results suggest that TXNIP reduction is a powerful target to enhance cardiomyocyte survival and that agents such as calcium channel blockers may be useful in trying to achieve this goal and prevent diabetic cardiomyopathy. PMID:19258488

Chen, Junqin; Cha-Molstad, Hyunjoo; Szabo, Anna; Shalev, Anath

2009-05-01

287

Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein  

PubMed Central

Cardiomyocyte apoptosis is a critical process in the pathogenesis of ischemic and diabetic cardiomyopathy, but the mechanisms are not fully understood. Thioredoxin-interacting protein (TXNIP) has recently been shown to have deleterious effects in the cardiovascular system and we therefore investigated whether it may also play a role in diabetes-associated cardiomyocyte apoptosis. In fact, TXNIP expression was increased in H9C2 cardiomyocytes incubated at high glucose, and cardiac expression of TXNIP and cleaved caspase-3 were also elevated in vivo in streptozotocin- and obesity-induced diabetic mice. Together, these findings not only suggest that TXNIP is involved in diabetic cardiomyopathy but also that it may represent a novel therapeutic target. Surprisingly, testing putative TXNIP modulators revealed that calcium channel blockers reduce cardiomyocyte TXNIP transcription and protein levels in a dose-dependent manner. Oral administration of verapamil for 3 wk also reduced cardiac TXNIP expression in mice even in the face of severe diabetes, and these reduced TXNIP levels were associated with decreased apoptosis. To determine whether lack of TXNIP can mimic the verapamil-induced decrease in apoptosis, we used TXNIP-deficient HcB-19 mice, harboring a natural nonsense mutation in the TXNIP gene. Interestingly, we found significantly reduced cleaved caspase-3 levels in HcB-19 hearts, suggesting that TXNIP plays a critical role in cardiac apoptosis and that the verapamil effects were mediated by TXNIP reduction. Thus our results suggest that TXNIP reduction is a powerful target to enhance cardiomyocyte survival and that agents such as calcium channel blockers may be useful in trying to achieve this goal and prevent diabetic cardiomyopathy. PMID:19258488

Chen, Junqin; Cha-Molstad, Hyunjoo; Szabo, Anna; Shalev, Anath

2009-01-01

288

Cloud area determination from AVIRIS data using water vapor channels near 1. mu. m  

SciTech Connect

Fractional cloud area is derived from spectral images collected by the airborne visible-infrared imaging spectrometer (AVIRIS). AVIRIS covers the spectral region from 0.4 to 2.5 {mu}m with 224 channels and has a ground instantaneous field of view of 20 {times} 20 m from an altitude of 20 km. The derivation is made by ratioing radiances near the 0.94- and the 1.14-{mu}m water vapor band centers against those in the intermediate atmospheric window regions. The derivation makes use of the facts that (1) the reflectances of most ground targets vary approximately linearly with wavelength in the 0.94- and the 1.14-{mu}m water vapor band absorption regions, and (2) the peak absorptions of the water vapor band over cloudy areas are smaller than those over nearby clear surface areas because of the rapidly decreasing atmospheric water vapor concentration with height. The band ratioing technique effectively discriminates among clouds and surface areas having similar reflectance values. Such discrimination is not possible using standard radiance thresholding techniques. It is expected that the use of water vapor channels in the near-infrared region in future satellites will improve the ability to determine cloud cover over the land.

Gao, B.C.; Goetz, A.F.H. (Univ. of Colorado, Boulder (USA))

1991-02-20

289

Water and Protein Structure in Photoaged and Chronically Aged Skin  

Microsoft Academic Search

Changes in the structural proteins and hydration during aging is responsible for altered skin morphologic and mechanical properties manifested as wrinkling, sagging, loss of elasticity, or apparent dryness. To gain insight into the age-related alterations in protein conformation and water structure, we obtained Raman spectra from the sun-protected buttock skin representing chronologic aging and the sun-exposed forearm skin representing combined

Monika Gniadecka; Ole Faurskov Nielsen; Sonja Wessel; Michael Heidenheim; Daniel Højgaard Christensen; Hans Christian Wulf

1998-01-01

290

Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures  

NASA Technical Reports Server (NTRS)

Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 micrometers near 157 and 183 GHz, and greater than 30-40 micrometers at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30-40 micrometers range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds.

Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu

1994-01-01

291

The influence of tidal channel network characteristics on water and nutrient exchanges between tidal channels and adjacent marsh groundwater  

NASA Astrophysics Data System (ADS)

Freshwater tidal wetlands can serve as sinks for sediment and nutrients in stream flow. Many tidal marshes have tidal network channels that are hydrologically connected to the marsh groundwater, providing a variety of sites where biogeochemical changes can take place. Therefore, the hydraulic characteristics of this channel- groundwater system provide a framework in which to evaluate hydrological controls on denitrification and related processes. Previous work on tidal marshes suggests that horizontal groundwater fluxes occur only near tidal channels. The combination of shallow depths and small grain size in the first order streams in the tidal network led us to hypothesize that hydraulic conductivity and horizontal groundwater flux would be lower along the first order channels than along higher order channels. To test this, we measured the geomorphic characteristics of the tidal channels and the hydraulic conductivity and groundwater fluxes in the adjacent groundwater system. The hydraulic conductivity structure of the tidal wetland showed significant heterogeneity, but was not organized according to stream order within the tidal network. Hydraulic conductivity values decreased with both distance from a tidal channel and depth within the sediment. The total volume of groundwater that drained to the tidal network channel over a tidal cycle was also considerably higher over the 1st-order segment of stream than over the 2nd-order segment of stream, due to more complete draining of the channel. This finding suggests that the number and density of first-order should influence both hydrological and nutrient dynamics in tidal marshes.

Phemister, K.; Prestegaard, K.

2006-05-01

292

Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.  

PubMed Central

The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS. Images PMID:2420780

Armstrong, S K; Parr, T R; Parker, C D; Hancock, R E

1986-01-01

293

Hydration-dependent dynamic crossover phenomenon in protein hydration water  

NASA Astrophysics Data System (ADS)

The characteristic relaxation time ? of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, ? only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.

Wang, Zhe; Fratini, Emiliano; Li, Mingda; Le, Peisi; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

2014-10-01

294

Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures  

PubMed Central

Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability and dynamics, as well as interacting with the bulk water. Water potential functions are often parameterized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (?1.0 Å) protein crystal structures with a high level of hydration water by calculating the experimental water-protein radial distribution function or surface distribution function (SDF) and water radial distribution function (RDF). Two maxima are observed in SDF: the first maximum at a radius of 2.75 Å reflects first shell and hydrogen bond interactions between protein and water, the second maximum at 3.65 Å reflects second shell and van der Waals interactions between water and non-polar atoms of protein forming clathrate-hydrate-like structures. Thus, the two shells do not overlap. The RDF showed the features of liquid water rather than solid ice. The first and second maxima of RDF at 2.75 and 4.5 Å, respectively, are the same as for bulk water, but the peaks are sharper indicating hydration water is more stable than bulk water. Both distribution functions are inversely correlated with the distribution of B factors (atomic thermal factors) for the waters, suggesting that the maxima reflect stable positions. Therefore, the average water structure near the protein surface has experimentally observable differences from bulk water. This analysis will help improve the accuracy for models of water on the protein surface by providing rigorous data for the effects of the apparent chemical potential of the water near a protein surface. PMID:18754631

Chen, Xianfeng; Weber, Irene; Harrison, Robert W.

2009-01-01

295

Water and protein dynamics in sedimented systems: a relaxometric investigation.  

PubMed

Sedimented proteins have recently been shown to provide solid-state NMR spectra of high quality, suitable for structural investigation. This is ascribed to the strong self-crowding effect, which apparently increases the reorientation time up to the point that the protein can be considered immobile on the NMR timescale. Herein, a relaxometric investigation of sedimented bovine serum albumin is performed to obtain information on the dynamics of the system. The measurement of the proton longitudinal relaxation rates as a function of the applied magnetic field indicates that the sedimented protein has relaxation properties very different from those of the protein in concentrated water solutions, even in the presence of glycerol, and similar to those of slightly rehydrated lyophilized systems. This study confirms the hypothesis that the reorientation of the protein molecules is largely abolished in sediments. PMID:23671018

Luchinat, Claudio; Parigi, Giacomo; Ravera, Enrico

2013-09-16

296

Regulation of the Membrane Insertion and Conductance Activity of the Metamorphic Chloride Intracellular Channel Protein CLIC1 by Cholesterol  

PubMed Central

The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer. PMID:23457643

Valenzuela, Stella M.; Alkhamici, Heba; Brown, Louise J.; Almond, Oscar C.; Goodchild, Sophia C.; Carne, Sonia; Curmi, Paul M. G.; Holt, Stephen A.; Cornell, Bruce A.

2013-01-01

297

Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.  

PubMed

The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer. PMID:23457643

Valenzuela, Stella M; Alkhamici, Heba; Brown, Louise J; Almond, Oscar C; Goodchild, Sophia C; Carne, Sonia; Curmi, Paul M G; Holt, Stephen A; Cornell, Bruce A

2013-01-01

298

Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels  

E-print Network

Nusselt number a b s t r a c t Oxygen transport resistance at the air flow channel and gas diffusion layerNumerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels Mustafa Koz a , Satish G. Kandlikar a,b,* a Microsystems

Kandlikar, Satish

299

Transverse slope of bed and turbid-clear water interface of channelized turbidity currents flowing around bends  

E-print Network

1 Transverse slope of bed and turbid-clear water interface of channelized turbidity currents Production Research Company Houston, Texas USA ABSTRACT Turbidity currents are sediment-laden bottom flows of meandering rivers. In order to understand the flow of turbidity currents in sinuous channels a simple

Parker, Gary

300

Conserved BK Channel-Protein Interactions Reveal Signals Relevant to Cell Death and Survival  

PubMed Central

The large-conductance Ca2+-activated K+ (BK) channel and its ?-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS) in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3?, valosin-containing protein (VCP), stathmin (STMN), cortactin (CTTN), and prohibitin (PHB), of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR) and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, ?-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-? serine/threonine-protein kinase 1 (Akt), glycogen synthase kinase-3? (GSK3?) and phosphoinositide-dependent kinase-1 (PDK1). Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3? and PDK1 had the opposite effect. This comparative systems approach suggests conservation in BK function across different species in addition to novel functions that may include the initiation of signals relevant to cell death/survival. PMID:22174833

Sokolowski, Bernd; Sridhar, Settu; Sakai, Yoshihisa

2011-01-01

301

Specificity of Action of Guanine Nucleotide-Binding Regulatory Protein Subunits on the Cardiac Muscarinic K+ Channel  

Microsoft Academic Search

The cardiac muscarinic receptor stimulates a potassium-selective ionic current (IK.ACh) through activation of a guanine nucleotide-binding regulatory protein. Purified alpha and beta gamma subunits of the guanine nucleotide-binding regulatory protein have each been reported to open the K+ channel. We have reported that nanomolar concentrations of purified brain beta gamma subunits activated IK.ACh in chicken embryonic atrial patches. In contrast,

Diomedes E. Logothetis; Donghee Kim; John K. Northup; Eva J. Neer; David E. Clapham

1988-01-01

302

Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40.  

PubMed

?-barrel membrane proteins in the mitochondrial outer membrane use the TOM40 complex to enter mitochondria and then the TOB/SAM complex to be assembled into the outer membrane. Tom7, a subunit of the TOM40 complex, regulates association of Mdm10 with the TOB complex. Here, we analyzed the role of Tom7 in assembly of ?-barrel proteins, including Tom40, a central channel subunit of the TOM40 complex, and porin. Depletion of Tom7 decreased transient accumulation of Tom40 at the level of the TOB complex and retarded assembly of porin in vitro. On the other hand, overexpression of Tom7 resulted in enhanced accumulation of in vitro imported Tom40 in the TOB complex, yet it did not affect the in vitro assembly of porin. Site-specific photocross-linking in vivo revealed that Tom7 directly interacts with Tom40 through its transmembrane segment and with Mdm10. These results collectively show that Tom7 recruits Mdm10, enhancing its association with the MMM1 complex, to regulate timing of the release of Tom40 from the TOB complex for subsequent assembly into the TOM40 complex. PMID:21036907

Yamano, Koji; Tanaka-Yamano, Sachiko; Endo, Toshiya

2010-12-31

303

tassel-less1 encodes a boron channel protein required for inflorescence development in maize.  

PubMed

tassel-less1 (tls1) is a classical maize (Zea mays) inflorescence mutant. Homozygous mutant plants have no tassels or very small tassels, and ear development is also impaired. Using a positional cloning approach, ZmNIP3;1 (a NOD26-like intrinsic protein) was identified as the candidate gene for tls1. The ZmNIP3;1 gene is completely deleted in the tls1 mutant genome. Two Mutator-insertional TUSC alleles of ZmNIP3;1 exhibited tls1-like phenotypes, and allelism tests confirmed that the tls1 gene encodes ZmNIP3;1. Transgenic plants with an RNA interference (RNAi) construct to down-regulate ZmNIP3;1 also showed tls1-like phenotypes, further demonstrating that TLS1 is ZmNIP3;1. Sequence analysis suggests that ZmNIP3;1 is a boron channel protein. Foliar application of boron could rescue the tls1 phenotypes and restore the normal tassel and ear development. Gene expression analysis indicated that in comparison with that of the wild type or tls1 plants treated with boron, the transition from the vegetative to reproductive phase or the development of the floral meristem is impaired in the shoot apical meristem of the tls1 mutant plants. It is concluded that the tls1 mutant phenotypes are caused by impaired boron transport, and boron is essential for inflorescence development in maize. PMID:24685595

Leonard, April; Holloway, Beth; Guo, Mei; Rupe, Mary; Yu, GongXin; Beatty, Mary; Zastrow-Hayes, Gina; Meeley, Robert; Llaca, Victor; Butler, Karlene; Stefani, Tony; Jaqueth, Jennifer; Li, Bailin

2014-06-01

304

Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS  

E-print Network

Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel- tions of turbid coastal waters with remotely sensed multi-spectral data. The method improves upon many calibration in excessively turbid waters and influences of dissolved organic materials, chlorophyll pigments

Siegel, David A.

305

A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization  

SciTech Connect

To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.

Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl; Dong, Ming; Biggin, Mark D.; Jin, Jian

2009-10-02

306

Solvent effects on squid sodium channels are attributable to movements of a flexible protein structure in gating currents and to hydration in a pore  

PubMed Central

Solvent effects on the time course of gating and sodium currents were analysed in squid sodium channels using four non-electrolytes of different size, glycerol, erythritol, glucose and sucrose, to separate effects of viscosity from those of osmolarity and to obtain viscosity and osmolarity parameters that were independent of molecular size. The gating and sodium currents were reversibly slowed in a voltage-independent manner as the non-electrolyte concentration increased. Solvent effects were analysed using a model in which the percentage change in time constant was expressed by an equation involving the viscosity parameter ? and the osmolarity parameter ?: t/t0 =?((?/?0) – 1 + 100??1)exp(???), where ?/?0 is solution viscosity and ?? is increase in osmolarity. Since the solution viscosity was found experimentally to be a function of the solution osmolarity, solvent effects are described by an equation with one independent variable ?/?0 or ??. Voltage sensor movement, reflected in gating currents, was primarily sensitive to viscosity, as its decay time constant was a function of ?/?0, with only a minor sensitivity to osmolarity (? was 2–3 water molecules). For sodium currents, ? was equal to that of gating currents but ? was 2–3 times greater, suggesting that the final channel opening was primarily sensitive to osmolarity (?? was 5 water molecules). The relative ineffectiveness of the largest non-electrolyte, sucrose, suggested that this osmolarity-sensitive step in channel opening occurred in the narrow pore region. Sodium channel inactivation was primarily sensitive to osmolarity (?? was 8–12 water molecules). The observed viscosity dependence of the sodium current activation and inactivation processes was attributable to the viscosity-dependent process accompanying the gating current. This model explains why non-electrolytes slow sodium currents while electrolytes do not. Viscosity effects on gating currents can be explained by a process in which non-electrolytes interact with the flexible hydrophilic parts of sodium channel proteins, but osmolarity effects on the final step need to be explained by a local interaction of several water molecules with fluctuating protein segments in the pore. PMID:10713962

Kukita, Fumio

2000-01-01

307

Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge  

ERIC Educational Resources Information Center

Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

Harle, Marissa; Towns, Marcy H.

2012-01-01

308

Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons  

E-print Network

Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat inactivated with Pertussis toxin (PTX). We suggest instead that the divergence in the pathways activated are mediated through the receptor-triggered release of bg subunits from heteromeric Pertussis toxin (PTX

Brown, David

309

Water nutrient concentrations in channels in relation to occurrence of aquatic plants: a case study in eastern Croatia  

Microsoft Academic Search

In this paper we analyzed nutrient concentration in the channels of eastern Croatia and investigated whether certain plant\\u000a species and associations can be used as direct estimators of water quality. One hundred and twenty-two channel sites were\\u000a visited and water samples taken for laboratory analysis (pH and concentrations of sulfate, chloride, ammonium, nitrate, and\\u000a total phosphorus). At each site, macrophyte

Aleksandra Ko?i?; Tomislav Hengl; Janja Horvati?

2008-01-01

310

Self-association and precursor protein binding of Saccharomyces cerevisiae Tom40p, the core component of the protein translocation channel of the mitochondrial outer membrane.  

PubMed Central

The precursor protein translocase of the mitochondrial outer membrane (Tom) is a multi-subunit complex containing receptors and a general import channel, of which the core component is Tom40p. Nuclear-encoded mitochondrial precursor proteins are first recognized by surface receptors and then pass through the import channel. The Tom complex has been purified; however, the protein-protein interactions that drive its assembly and maintain its stability have been difficult to study. Here we show that Saccharomyces cerevisiae Tom40p expressed in bacteria and purified to homogeneity associates efficiently with itself. The self-association is very strong and can withstand up to 4 M urea or 1 M salt. The tight self-association does not require the N-terminal segment of Tom40p. Furthermore, purified Tom40p preferentially recognizes the targeting sequence of mitochondrial precursor proteins. Although the binding of the targeting sequence to Tom40p is inhibited by urea concentrations in excess of 1 M, it is moderately resistant to 1 M salt. Simultaneous self-assembly and precursor protein binding suggest that Tom40p contains at least two different domains mediating these processes. The experimental approach described here should be useful for analysing protein-protein interactions involving individual or groups of components of the mitochondrial import machinery. PMID:11336653

Gordon, D M; Wang, J; Amutha, B; Pain, D

2001-01-01

311

Water circulation in non-isothermal droplet-laden turbulent channel flow  

NASA Astrophysics Data System (ADS)

We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared to simulations without droplets or with solid particles a significant increase in Nusselt number is found, arising from the additional phase changes. In the statistically steady state, which is reached after a long time, the flow exhibits a mean motion of water vapor from the warm wall to the cold wall. Vapor condenses on average on drops near the cold wall and evaporates from drops near the warm wall. This transport is balanced by a net mean mass transfer of droplets from the cold wall to the warm wall.

Russo, E.; Kuerten, J. G. M.; van der Geld, C. W. M.; Geurts, B. J.

2013-10-01

312

Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels.  

PubMed

One of the major obstacles for the vitrification of mature porcine oocytes with ethylene glycol is their low permeability to this cryoprotectant, which results in osmotic stress-induced cell damage and low survival. Pig blastocysts, on the other hand, show enhanced water and cryoprotectant permeability, which has been related to the transcriptional activation of aquaporin-3 (AQP3) channels at this stage of development. In this study, we asked if expression of cRNAs encoding two aquaglyceroporins, human AQP3 (hAQP3) or the zebrafish Aqp3b-T85A mutant, in porcine oocytes can increase their permeability. Microinjection of germinal-vesicle-stage oocytes with enhanced green fluorescent protein (EGFP) or AQP3 cRNAs resulted in the expression of the corresponding proteins in ?26% of the metaphase-II stage oocytes at 40-44?hr of in vitro culture; co-injection of EGFP cRNA appeared to be a suitable marker for oocyte selection since all EGFP-positive oocytes also expressed the corresponding aquaporin. Using this method, we found that mature oocytes co-expressing EGFP and hAQP3 or EGFP and Aqp3b-T85A showed approximately a twofold increase of the hydraulic conductivity (Lp ) with respect non-injected or EGFP alone-injected oocytes in a 0.43?M sucrose or 1.3?M ethylene glycol solution, whereas the ethylene glycol permeability (PEG ) of EGFP?+?hAQP3 and EGFP?+?Aqp3b-T85A oocytes was 6.7- and 12-fold higher, respectively, than control oocytes. These data demonstrate that the artificial expression of aquaglyceroporins in porcine metaphase-II oocytes improves their permeability, and that the zebrafish Aqp3b-T85A mutant is more efficient than the human channel at increasing the oocyte permeability to ethylene glycol. PMID:24488947

Morató, Roser; Chauvigné, François; Novo, Sergi; Bonet, Sergi; Cerdà, Joan

2014-05-01

313

Tetraethylammonium block of water flux in Aquaporin1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line  

Microsoft Academic Search

BACKGROUND: Aquaporin-1 (AQP1) channels are constitutively active water channels that allow rapid transmembrane osmotic water flux, and also serve as cyclic-GMP-gated ion channels. Tetraethylammonium chloride (TEA; 0.05 to 10 mM) was shown previously to inhibit the osmotic water permeability of human AQP1 channels expressed in Xenopus oocytes. The purpose of the present study was to determine if TEA blocks osmotic

Andrea J Yool; Olga H Brokl; Thomas L Pannabecker; William H Dantzler; W Daniel Stamer

2002-01-01

314

Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4.  

PubMed

The insect cell/baculovirus system was used to express the mercurial-insensitive water channel aquaporin-4 (AQP4) for purification and reconstitution. Immunoblot analysis of Sf9 cells infected with recombinant baculovirus showed greatest AQP4 expression at 72 h after infection at a multiplicity-of-infection of 5. Immunostaining and cell membrane fractionation indicated AQP4 plasma membrane expression. Quantitative immunoblot analysis showed approximately 60 microg of AQP4 per milligram of plasma membrane protein (approximately 2 mg of AQP4 protein per liter of Sf9 cell culture). Functional analysis by stopped-flow light scattering indicated that AQP4 functioned as a mercurial-insensitive water-selective transporter. Osmotic water permeability (Pf) in plasma membrane vesicles from AQP4-expressing Sf9 cells was very high (0.053 cm/s at 10 degrees C), weakly temperature dependent (activation energy, 4.5 kcal/mol), and not inhibited by HgCl2. The AQP4 single channel water permeability (p(f)), estimated from Pf and protein amount, was 19 x 10(-14) cm3/s. Purification of AQP4 to a single Coomassie blue-stained protein on SDS-PAGE (1300-fold over homogenate) was achieved by membrane fractionation, carbonate stripping of nonintegral proteins, solubilization in octyl-beta-glucoside, and anion exchange chromatography. AQP4 protein identity was confirmed by mass spectrometry. Reconstitution of purified AQP4 into proteoliposomes increased osmotic water permeability by >40-fold, giving a p(f) of 15 x 10(-14) cm3/s, remarkably greater than that of 4.9 x 10(-14) cm3/s measured in parallel for AQP1. These results establish the first purification of an aquaporin from a heterologous expression system. The high AQP4 p(f) suggests (a) significant functional differences among the aquaporins, (b) inadequacy of existing pore models to account for high water flow and water permselectivity, and (c) possible enhancement of water flow by AQP4 assembly in orthogonal arrays. PMID:9200715

Yang, B; van Hoek, A N; Verkman, A S

1997-06-17

315

Down-regulation of ether-a-go-go-related gene potassium channel protein through sustained stimulation of AT1 receptor by angiotensin II.  

PubMed

We investigated the effects of AT1 receptor stimulation by angiotensin II (Ang II) on human ether-a-go-go-related gene (hERG) potassium channel protein in a heterogeneous expression system with the human embryonic kidney (HEK) 293 cells which stably expressed hERG channel protein and were transiently transfected with the human AT1 receptors (HEK293/hERG). Western-blot analysis showed that Ang II significantly decreased the expression of mature hERG channel protein (155-kDa band) in a time- and dose-dependent manner without affecting the level of immature hERG channel protein (135-kDa band). The relative intensity of 155-kDa band was 64.7±6.8% of control (P<0.01) after treatment of Ang II at 100nM for 24h. To investigate the effect of Ang II on the degradation of mature hERG channel protein, we blocked forward trafficking from ER to Golgi with a Golgi transit inhibitor brefeldin A (10?M). Ang II significantly enhanced the time-dependent reduction of mature hERG channel protein. In addition, the proteasomal inhibitor lactacystin (5?M) inhibited Ang II-mediated the reduction of mature hERG channel protein, but the lysosomal inhibitor bafilomycin A1 (1?M) had no effect on the protein. The protein kinase C (PKC) inhibitor bisindolylmaleimide 1 (1?M) antagonized the reduction of mature hERG channel protein induced by Ang II. The results indicate that sustained stimulation of AT1 receptors by Ang II reduces the mature hERG channel protein via accelerating channel proteasomal degradation involving the PKC pathway. PMID:25218469

Cai, Yue; Wang, Yuhong; Xu, Jia; Zuo, Xu; Xu, Yanfang

2014-09-26

316

Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data  

NASA Astrophysics Data System (ADS)

flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

2014-02-01

317

The TRPC Ion Channels: Association with Orai1 and STIM1 Proteins and Participation in Capacitative and Non-capacitative Calcium Entry  

Microsoft Academic Search

\\u000a Transient receptor potential (TRP) proteins are involved in a large number of non-selective cation channels that are permeable\\u000a to both monovalent and divalent cations. Two general classes of receptor-mediated Ca2+ entry has been proposed: one of then is conduced by receptor-operated Ca2+ channels (ROC), the second is mediated by channels activated by the emptying of intracellular Ca2+ stores (store-operated channels

Gines M. Salido; Isaac Jardín; Juan A. Rosado

318

Evidence for Recent Liquid Water on Mars: Channeled Aprons in a Small Crater within Newton Crater  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Newton Crater is a large basin formed by an asteroid impact that probably occurred more than 3 billion years ago. It is approximately 287 kilometers (178 miles) across. The picture shown here (top) highlights the north wall of a specific, smaller crater located in the southwestern quarter of Newton Crater (above). The crater of interest was also formed by an impact; it is about 7 km (4.4 mi) across, which is about 7 times bigger than the famous Meteor Crater in northern Arizona in North America.

The north wall of the small crater has many narrow gullies eroded into it. These are hypothesized to have been formed by flowing water and debris flows. Debris transported with the water created lobed and finger-like deposits at the base of the crater wall where it intersects the floor (bottom center top image). Many of the finger-like deposits have small channels indicating that a liquid--most likely water--flowed in these areas. Hundreds of individual water and debris flow events might have occurred to create the scene shown here. Each outburst of water from higher upon the crater slopes would have constituted a competition between evaporation, freezing, and gravity.

The individual deposits at the ends of channels in this MOC image mosaic were used to get a rough estimate of the minimum amount of water that might be involved in each flow event. This is done first by assuming that the deposits are like debris flows on Earth. In a debris flow, no less than about 10% (and no more than 30%) of their volume is water. Second, the volume of an apron deposit is estimated by measuring the area covered in the MOC image and multiplying it by a conservative estimate of thickness, 2 meters (6.5 feet). For a flow containing only 10% water, these estimates conservatively suggest that about 2.5 million liters (660,000 gallons) of water are involved in each event; this is enough to fill about 7 community-sized swimming pools or enough to supply 20 people with their water needs for a year.

The MOC high resolution view is located near 41.1oS, 159.8oW and is a mosaic of three different pictures acquired between January and May 2000. The MOC scene is illuminated from the left; north is up. The context picture was acquired in 1977 by the Viking 1 orbiter and is illuminated from the upper right.

2000-01-01

319

Water and sediment budgets for the stormwater-drainage channel at the Navy Ships Parts Control Center near Mechanicsburg, Pennsylvania, water year 1993  

USGS Publications Warehouse

The Navy Ships Parts Control Center near Mechanicsburg, Pa., occupies an area of 824 acres, of which 358 are covered by impervious surfaces. Most of the impervious area is drained by stormwater systems that discharge to an open channel that extends about 7,900 feet from its headwaters to its confluence with Trindle Spring Run. The channel drains an area of 992 acres, of which 435 are covered by impervious surfaces. The entire area of the Center including the stormwater-drainage channel is situated in karst terrain. Parts of the drainage channel contain large sinkholes and most of the storm runoff that enters the channel drains to the sinkholes. From 1992 to 1994, the U.S. Geological Survey, in cooperation with the Department of the Navy, conducted a detailed study of water and sediment flows in the stormwater-drainage channel. The purpose of this study was to quantify the discharge of stormwater and suspended sediment to the ground-water system, by way of sinkholes, and to Trindle Spring Run. From October 1, 1992, to September 30, 1993, the data-collection period for the study, discharge and suspended-sediment concentrations were measured at three sites along the drainage channel. During the period, water inflow to the channel totaled 679 acre-feet and outflow to Trindle Spring Run totaled 131 acre-feet. Water loss to sinkholes in the drainage channel totaled 548 acre-feet or 81 percent of inflow. Total sediment inflow to the drainage channel was 97 tons, outflow to Trindle Spring Run was 22 tons, sediment loss to sinkholes was 63 tons, and the residual 12 tons of sediment was deposited in the channel. The effect of filling the sinkholes on flooding was estimated through use of a step-backwater model. The model was used to simulate undampened water-surface elevations that would result from the maximum instantaneous discharge recorded during October 1992-September 1993. The model is constrained by uncertainty in the values of the channel-roughness parameter. Analysis of the model results indicates that during high flows, inflow to sinkholes results in a moderate reduction in discharge and water-surface elevations in the drainage channel. This analysis shows that filling the sinkholes will result in increased frequency and magnitude of flooding in downstream parts of the drainage channel and increased discharge of storm runoff and suspended sediment to Trindle Spring Run.

Reed, L. A.; Durlin, R. R.; Bender, J. K.

1994-01-01

320

Plumes and Blooms: Modeling the Case II Waters of the Santa Barbara Channel. Chapter 15  

NASA Technical Reports Server (NTRS)

The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-the-art ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case II environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. The PnB field program started in the summer of 1996. At each of the 7 PnB stations, a complete verification bio-geo-optical data set is collected. Included are redundant measures of apparent optical properties (remote sensing reflectance and diffuse attenuation spectra), as well as in situ profiles of spectral absorption, beam attenuation and backscattering coefficients. Water samples are analyzed for component in vivo absorption spectra, fluorometric chlorophyll, phytoplankton pigment (by the SDSU CHORS laboratory), and inorganic nutrient concentrations. A primary goal is to use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). In support of this goal, we have also been addressing SeaWiFS ocean color and AVHRR SST imagery. We also are using the PnB data set to address time/space variability of water masses in the Santa Barbara Channel and its relationship to the 1997/1998 El Nino. However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance, L(sub wN)(lambda), correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions. Last, we remain active in outreach activities.

Siegel, D. A.; Maritorena, S.; Nelson, N. B.

2003-01-01

321

Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.  

PubMed

Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 ?m) as tracers at a mean velocity of ?0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale. PMID:22867425

Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

2012-09-01

322

The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume.  

PubMed

Aquaporin-1 (AQP-1), the universal water channel, is responsible for rapid response of cell volume to changes in plasma tonicity. In the membrane of the red cell the concentration of the protein is tightly controlled. Here, we show that AQP-1 is partially lost during in vitro maturation of mouse reticulocytes and that it is associated with exosomes, released throughout this process. AQP-1 in young reticulocytes localizes to the plasma membrane and also in endosomal compartments and exosomes, formed both in vitro and in vivo. During maturation a part of the total pool of AQP-1 is differentially sorted and released via the exosomal pathway. A proteasome inhibitor, MG132, suppresses secretion of AQP-1, implying that ubiquitination is a sorting signal for its release. We further show that modulation of medium tonicity in vitro regulates the secretion of AQP-1, thus showing that extracellular osmotic conditions can drive sorting of selected proteins by the exosomal pathway. These results lead us to suggest that AQP-1 sorting into exosomes may be the mechanism by which the reticulocyte adapts to environmental changes during its maturation. PMID:19724054

Blanc, Lionel; Liu, Jing; Vidal, Michel; Chasis, Joel Anne; An, Xiuli; Mohandas, Narla

2009-10-29

323

Cytocompatible and water stable ultrafine protein fibers for tissue engineering  

NASA Astrophysics Data System (ADS)

This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be efficient to enhance the strength and water stability of scaffolds. The crosslinked protein scaffolds showed higher cytocompatibility than the polylactic acid scaffolds and the fibers crosslinked by glutaraldehyde. The potential of using these protein-based ultrafine fibers crosslinked by citric acid for tissue engineering has been proved in this dissertation.

Jiang, Qiuran

324

A Substrate-Fusion Protein Is Trapped inside the Type III Secretion System Channel in Shigella flexneri  

PubMed Central

The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion. PMID:24453973

Dohlich, Kim; Zumsteg, Anna Brotcke; Goosmann, Christian; Kolbe, Michael

2014-01-01

325

Water Dynamics and Dewetting Transitions in the Small Mechanosensitive Channel MscS  

PubMed Central

The dynamics of confined water in capillaries and nanotubes suggests that gating of ion channels may involve not only changes of the pore geometry, but also transitions between water-filled and empty states in certain locations. The recently solved heptameric structure of the small mechanosensitive channel of Escherichia coli, MscS, has revealed a relatively wide (7–15 Å) yet highly hydrophobic transmembrane pore. Continuum estimations based on the properties of pore surface suggest low conductance and a thermodynamic possibility of dewetting. To test the predictions we performed molecular dynamics simulations of MscS filled with flexible TIP3P water. Irrespective to the initial conditions, several independent 6-ns simulations converged to the same stable state with the pore water-filled in the wider part, but predominantly empty in the narrow hydrophobic part, displaying intermittent vapor-liquid transitions. The polar gain-of-function substitution L109S in the constriction resulted in a stable hydration of the entire pore. Steered passages of Cl? ions through the narrow part of the pore consistently produced partial ion dehydration and required a force of 200–400 pN to overcome an estimated barrier of 10–20 kcal/mole, implying negligibly low conductance. We conclude that the crystal structure of MscS does not represent an open state. We infer that MscS gate, which is similar to that of the nicotinic ACh receptor, involves a vapor-lock mechanism where limited changes of geometry or surface polarity can locally switch the regime between water-filled (conducting) and empty (nonconducting) states. PMID:15111405

Anishkin, Andriy; Sukharev, Sergei

2004-01-01

326

Conversion of the FhuA transport protein into a diffusion channel through the outer membrane of Escherichia coli.  

PubMed Central

The FhuA receptor protein is involved in energy-coupled transport of Fe3+ via ferrichrome through the outer membrane of Escherichia coli. Since no energy source is known in the outer membrane it is assumed that energy is provided through the action of the TonB, ExbB and ExbD proteins, which are anchored to the cytoplasmic membrane. By deleting 34 amino acid residues of a putative cell surface exposed loop, FhuA was converted from a ligand specific transport protein into a TonB independent and nonspecific diffusion channel. The FhuA deletion derivative FhuA delta 322-355 formed stable channels in black lipid membranes, in contrast to wild-type FhuA which did not increase membrane conductance. The single-channel conductance of the FhuA mutant channels was at least three times larger than that of the general diffusion porins of E. coli outer membrane. It is proposed that the basic structure of FhuA in the outer membrane is a channel formed by beta-barrels. Since the loop extending from residue 316 to 356 is part of the active site of FhuA, it probably controls the permeability of the channel. The transport-active conformation of FhuA is mediated by a TonB-induced conformational change in response to the energized cytoplasmic membrane. The ferrichrome transport rate into cells expressing FhuA delta 322-355 increased linearly with increasing substrate concentration (from 0.5 to 20 microM), in contrast to FhuA wild-type cells, which displayed saturation at 5 microM. This implies that in wild-type cells ferrichrome transport through the outer membrane is the rate-limiting step and that TonB, ExbB and ExbD are only required for outer membrane transport. Images PMID:7688295

Killmann, H; Benz, R; Braun, V

1993-01-01

327

Experimental study of Cu-water nanofluid forced convective flow inside a louvered channel  

NASA Astrophysics Data System (ADS)

Heat transfer enhancement plays a very important role for energy saving in plate-fin heat exchangers. In the present study, the influences of simultaneous utilization of a louvered plate-fin channel and copper-base deionized water nanofluid on performance of these exchangers are experimentally explored. The effects of flow rate (2-5 l/min) and nanoparticles weight fraction (0-0.4 %) on heat transfer and pressure drop characteristics are determined. Experimental results indicate that the use of louvered channel instead of the plain one can improve the heat transfer performance. Likewise, addition of small amounts of copper nanoparticles to the base fluid augments the convective heat transfer coefficient remarkably. The maximum rise of 21.7 % in the convective heat transfer coefficient is observed for the 0.4 % wt nanofluid compared to the base fluid. Also, pumping power for the base fluid and nanofluids are calculated based on the measured pressure drop in the louvered channel. The average increase in pumping power is 11.8 % for the nanofluid with 0.4 % wt compared to the base fluid. Applied performance criterion shows a maximum performance index of 1.167 for the nanofluid with 0.1 % wt Finally, two correlations are proposed for Nusselt number and friction factor which fit the experimental data with in ±10 %.

Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A.

2014-09-01

328

Using unsteady-state water level data to estimate channel roughness and discharge hydrograph  

NASA Astrophysics Data System (ADS)

A novel methodology for simultaneous discharge and channel roughness estimation is developed and applied to data sets available at three experimental sites. The methodology is based on the synchronous measurement of water level data in two river sections far some kilometers from each other, as well as on the use of a diffusive flow routing solver and does not require any direct velocity measurement. The methodology is first analyzed for the simplest case of a channel with a large slope, where the kinematic assumption holds. A sensitivity and a model error analysis are carried out in this hypothesis in order to show the stability of the results with respect to the error in the input parameters in the case of homogeneous roughness and to analyze the effect of unknown roughness heterogeneity on the estimated discharges. The methodology is then extended to the more general case of channels with mild slope and validated using field data previously collected in three Italian rivers: the Arno (in Tuscany), the Tiber (in Latium) and the Vallo di Diana, a small tributary of the Tanagro river (in Southern Italy). The performance of the proposed algorithm has been investigated according to three performance criteria estimating the quality of the match between the measured and the computed stage and discharge hydrographs. Results of the field tests can be considered good, despite the uncertainties of the field data and of the measured values.

Aricò, Costanza; Nasello, Carmelo; Tucciarelli, Tullio

2009-08-01

329

Reversible Adsorption of Proteins at the Oil\\/Water Interface. I. Preferential Adsorption of Proteins at Charged Oil\\/Water Interfaces  

Microsoft Academic Search

The behaviour of positively and negatively charged oil-in-water emulsions, stabilized with hexadecyl trimethyl ammonium bromide and sodium hexadecyl sulphate respectively in the presence of protein solutions has been studied. Under certain conditions proteins will adsorb to a charged oil\\/water interface. When finely dispersed oil-in-water emulsion was used to provide this oil\\/water interface, adsorption of protein resulted in flocculation of the

J. J. Elkes; A. C. Frazer; J. H. Schulman; H. C. Stewart

1943-01-01

330

Reversible Adsorption of Proteins at the Oil\\/Water Interface. I. Preferential Adsorption of Proteins at Charged Oil\\/Water Interfaces  

Microsoft Academic Search

The behaviour of positively and negatively charged oil-in-water emulsions, stabilized with hexadecyl trimethyl ammonium bromide and sodium hexadecyl sulphate respectively in the presence of protein solutions has been studied. Under certain conditions proteins will adsorb to a charged oil\\/water interface. When finely dispersed oil-in-water emulsion was used to provide this oil\\/water interface, adsorption of protein resulted in flocculation of the

J. J. Elkes; A. C. Frazer; J. H. Schulman; H. C. Stewart

1946-01-01

331

Copper accumulation in channel catfish (Ictalurus punctatus) exposed to water borne copper sulfate  

SciTech Connect

Liver and axial muscle of channel catfish (Ictalurus punctatus) was analyzed for residual copper after exposure to water borne copper sulfate. Copper sulfate was continuously introduced into well water in three fiber glass tanks to achieve 1.7 mg/L, 2.7 mg/L and 3.6 mg/L copper sulfate concentrations in exposure waters. Milli-Q quality water was metered into a fourth tank at the same rate for unexposed fish. Actual levels of copper in exposure waters were determined by daily sampling and analysis by graphite furnace atomic absorption spectrophotometry (GFAA). Tissue samples were taken from six fish from each of the exposed and unexposed tanks at two-week intervals, Samples were collected until tissue analysis indicated an equilibrium had been established between the uptake and elimination in both the muscle and liver tissue. Elimination was followed until a clear rate of deputation could be established. Samples were digested in nitric acid in a micro wave digestor and analyzed by GFAA. Results of tissue analysis will be presented to demonstrate bioaccumulation and the effect of copper concentration, length of copper exposure, and gender on copper uptake, establishment of tissue:environmental copper equilibrium, and rate of copper elimination following exposure.

Hobbs, M. [Oak Ridge Inst. for Science and Education, TN (United States); Griffin, B. [National Biological Service, Stuttgart, AR (United States); Schlenk, D. [Univ. of Mississippi, Oxford, MS (United States); Kadlubar, F.; Brand, C.D. [National Center for Toxicological Research, Jefferson, AR (United States)

1995-12-31

332

The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers  

NASA Astrophysics Data System (ADS)

Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17 times in tie channel progradation rates. In a few instances Fly River tie channels have become filled with sediment following the increase in sediment loading. The precise role of tie channels in the ecology of lowland river systems has yet to be quantified, but given their critical role in connecting rivers with floodplain habitats it is likely they provide an important source of refuge, breeding habitat, and biomass production for many aquatic organisms. As restoration efforts increasingly focus on the improving or reestablishing connectivity between lowland rivers and their floodplains, consideration should be given as to whether tie channels are an important missing component of such systems.

Rowland, J. C.; Dietrich, W. E.; Day, G.

2005-05-01

333

Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program is focused on improving the treatment of radiation transfer in models of the atmospheric general circulation, as well as on improving parameterizations of cloud properties and formation processes in these models (USDOE, 1990). To help achieve these objectives, ARM is deploying several two-channel, microwave radiometers at the Cloud and Radiation Testbed (CART) site in Oklahoma for the purpose of obtaining long time series observations of total precipitable water vapor (PWV) and cloud liquid water path (LWP). The performance of the WVR-1100 microwave radiometer deployed by ARM at the Oklahoma CART site central facility to provide time series measurements precipitable water vapor (PWV) and liquid water path (LWP) has been presented. The instrument has proven to be durable and reliable in continuous field operation since June, 1992. The accuracy of the PWV has been demonstrated to achieve the limiting accuracy of the statistical retrieval under clear sky conditions, degrading with increasing LWP. Improvements are planned to address moisture accumulation on the Teflon window, as well as to identity the presence of clouds with LWP at or below the retrieval uncertainty.

Liljegren, J.C.

1994-01-01

334

Quantitative analysis of the water occupancy around the selectivity filter of a K+ channel in different gating modes.  

PubMed

Recovery in K(+) channels, that is, the transition from the inactivated nonconductive selectivity filter conformation toward the conductive conformation, occurs on a time scale of the order of seconds, which is astonishingly long, given that the structural differences among the filter conformations are faint (<1 Å). Computational studies and electrophysiological measurements suggested that buried water molecules bound behind the selectivity filter are at the origin of the slowness of recovery in K(+) channels. Using a combination of solid-state NMR spectroscopy (ssNMR) and long molecular dynamics simulations, we sketch a high-resolution map of the spatial and temporal distribution of water behind the selectivity filter of a membrane-embedded K(+) channel in two different gating modes. Our study demonstrates that buried water molecules with long residence times are spread all along the rear of the inactivated filter, which explains the recovery kinetics. In contrast, the same region of the structure appears to be dewetted when the selectivity filter is in the conductive state. Using proton-detected ssNMR on fully protonated channels, we demonstrate the presence of a pathway that allows for the interchange of buried and bulk water, as required for a functional influence of buried water on recovery and slow inactivation. Furthermore, we provide direct experimental evidence for the presence of additional ordered water molecules that surround the filter and that are modulated by the channel's gating mode. PMID:24410583

Weingarth, Markus; van der Cruijsen, Elwin A W; Ostmeyer, Jared; Lievestro, Sylke; Roux, Benoît; Baldus, Marc

2014-02-01

335

Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States  

NASA Astrophysics Data System (ADS)

Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

Payn, R. A.; Gooseff, M. N.; McGlynn, B. L.; Bencala, K. E.; Wondzell, S. M.

2009-11-01

336

Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport.  

PubMed Central

The influenza A/fowl plague virus/Rostock/34 hemagglutinin (HA), which is cleaved intracellularly and has a high pH threshold (pH 5.9) for undergoing its conformational change to the low-pH form, was expressed from cDNA in CV-1 and HeLa T4 cells in the absence of other influenza virus proteins. It was found, by biochemical assays, that the majority of the HA molecules were in a form indistinguishable from the low-pH form of HA. The acidotropic agent, ammonium chloride, stabilized the accumulation of HA in its native form. Coexpression of HA and the homotypic influenza virus M2 protein, which has ion channel activity, stabilized the accumulation of HA in its pH neutral (native) form, and the M2 protein ion channel blocker, amantadine, prevented the rescue of HA in its native form. These data provide direct evidence that the influenza virus M2 protein ion channel activity can affect the status of the conformational form of cleaved HA during intracellular transport. Images PMID:7507186

Takeuchi, K; Lamb, R A

1994-01-01

337

Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla).  

PubMed

The European eel is a euryhaline teleost which has been shown to differentially up- and downregulate aquaporin (AQP) water channels in response to changes in environmental salinity. We have characterized the transport properties of four aquaporins localized to osmoregulatory organs - gill, esophagus, intestine and kidney. By sequence comparison these four AQP orthologs resemble human AQP1 (eel AQP1), AQP3 (eel AQP3) and AQP10 (AQPe). The fourth member is a duplicate form of AQP1 (AQP1dup) thought to arise from a duplication of the teleost genome. Using heterologous expression in Xenopus oocytes we demonstrate that all four eel orthologs transport water and are mercury inhibitable. Eel AQP3 and AQPe also transport urea and glycerol, making them aquaglyceroporins. Eel AQP3 is dramatically inhibited by extracellular acidity (91% and 69% inhibition of water and glycerol transport respectively at pH 6.5) consistent with channel gating by protons. Maximal water flux of eel AQP3 occurred around pH 8.2 - close to the physiological pH of plasma in the eel. Exposure of AQP-expressing oocytes to heavy metals revealed that eel AQP3 is highly sensitive to extracellular nickel and zinc (88.3% and 86.3% inhibition, respectively) but less sensitive to copper (56.4% inhibition). Surprisingly, copper had a stimulatory effect on eel AQP1 (153.7% activity of control). Copper, nickel and zinc did not affect AQP1dup or AQPe. We establish that all four eel AQP orthologs have similar transport profiles to their human counterparts, with eel AQP3 exhibiting some differences in its sensitivity to metals. This is the first investigation of the transport properties and inhibitor sensitivity of salinity-regulated aquaporins from a euryhaline species. Our results indicate a need to further investigate the deleterious effects of metal pollutants on AQP-containing epithelial cells of the gill and gastrointestinal tract at environmentally appropriate concentrations. PMID:19684221

MacIver, Bryce; Cutler, Christopher P; Yin, Jia; Hill, Myles G; Zeidel, Mark L; Hill, Warren G

2009-09-01

338

Water Permeability of Aquaporin-4 Channel Depends on Bilayer Composition, Thickness, and Elasticity  

PubMed Central

Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10?13 cm3/s (mean ± SE), 1.2 ± 0.1 × 10?13 cm3/s, and 0.4 ± 0.1 × 10?13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10?13 cm3/s, 0.8 ± 0.1 × 10?13 cm3/s, and 0.3 ± 0.1 × 10?13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability. PMID:23199918

Tong, Jihong; Briggs, Margaret M.; McIntosh, Thomas J.

2012-01-01

339

Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla)  

PubMed Central

Summary The European eel is a euryhaline teleost which has been shown to differentially up- and downregulate aquaporin (AQP) water channels in response to changes in environmental salinity. We have characterized the transport properties of four aquaporins localized to osmoregulatory organs – gill, esophagus, intestine and kidney. By sequence comparison these four AQP orthologs resemble human AQP1 (eel AQP1), AQP3 (eel AQP3) and AQP10 (AQPe). The fourth member is a duplicate form of AQP1 (AQP1dup) thought to arise from a duplication of the teleost genome. Using heterologous expression in Xenopus oocytes we demonstrate that all four eel orthologs transport water and are mercury inhibitable. Eel AQP3 and AQPe also transport urea and glycerol, making them aquaglyceroporins. Eel AQP3 is dramatically inhibited by extracellular acidity (91% and 69% inhibition of water and glycerol transport respectively at pH 6.5) consistent with channel gating by protons. Maximal water flux of eel AQP3 occurred around pH 8.2 – close to the physiological pH of plasma in the eel. Exposure of AQP-expressing oocytes to heavy metals revealed that eel AQP3 is highly sensitive to extracellular nickel and zinc (88.3% and 86.3% inhibition, respectively) but less sensitive to copper (56.4% inhibition). Surprisingly, copper had a stimulatory effect on eel AQP1 (153.7% activity of control). Copper, nickel and zinc did not affect AQP1dup or AQPe. We establish that all four eel AQP orthologs have similar transport profiles to their human counterparts, with eel AQP3 exhibiting some differences in its sensitivity to metals. This is the first investigation of the transport properties and inhibitor sensitivity of salinity-regulated aquaporins from a euryhaline species. Our results indicate a need to further investigate the deleterious effects of metal pollutants on AQP-containing epithelial cells of the gill and gastrointestinal tract at environmentally appropriate concentrations. PMID:19684221

MacIver, Bryce; Cutler, Christopher P.; Yin, Jia; Hill, Myles G.; Zeidel, Mark L.; Hill, Warren G.

2009-01-01

340

CRMP2 Protein SUMOylation Modulates NaV1.7 Channel Trafficking*  

PubMed Central

Voltage-gated sodium channel (NaV) trafficking is incompletely understood. Post-translational modifications of NaVs and/or auxiliary subunits and protein-protein interactions have been posited as NaV-trafficking mechanisms. Here, we tested if modification of the axonal collapsin response mediator protein 2 (CRMP2) by a small ubiquitin-like modifier (SUMO) could affect NaV trafficking; CRMP2 alters the extent of NaV slow inactivation conferred by the anti-epileptic (R)-lacosamide, implying NaV-CRMP2 functional coupling. Expression of a CRMP2 SUMOylation-incompetent mutant (CRMP2-K374A) in neuronal model catecholamine A differentiated (CAD) cells did not alter lacosamide-induced NaV slow inactivation compared with CAD cells expressing wild type CRMP2. Like wild type CRMP2, CRMP2-K374A expressed robustly in CAD cells. Neurite outgrowth, a canonical CRMP2 function, was moderately reduced by the mutation but was still significantly higher than enhanced GFP-transfected cortical neurons. Notably, huwentoxin-IV-sensitive NaV1.7 currents, which predominate in CAD cells, were significantly reduced in CAD cells expressing CRMP2-K374A. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wild type CRMP2-expressing CAD cells decreased NaV1.7 currents. Consistent with a reduction in current density, biotinylation revealed a significant reduction in surface NaV1.7 levels in CAD cells expressing CRMP2-K374A; surface NaV1.7 expression was also decreased by SENP1 + SENP2 overexpression. Currents in HEK293 cells stably expressing NaV1.7 were reduced by CRMP2-K374A in a manner dependent on the E2-conjugating enzyme Ubc9. No decrement in current density was observed in HEK293 cells co-expressing CRMP2-K374A and NaV1.1 or NaV1.3. Diminution of sodium currents, largely NaV1.7, was recapitulated in sensory neurons expressing CRMP2-K374A. Our study elucidates a novel regulatory mechanism that utilizes CRMP2 SUMOylation to choreograph NaV1.7 trafficking. PMID:23836888

Dustrude, Erik T.; Wilson, Sarah M.; Ju, Weina; Xiao, Yucheng; Khanna, Rajesh

2013-01-01

341

AMP-activated protein kinase connects cellular energy metabolism to KATP channel function.  

PubMed

AMPK is an important sensor of cellular energy levels. The aim of these studies was to investigate whether cardiac K(ATP) channels, which couple cellular energy metabolism to membrane excitability, are regulated by AMPK activity. We investigated effects of AMPK on rat ventricular K(ATP) channels using electrophysiological and biochemical approaches. Whole-cell K(ATP) channel current was activated by metabolic inhibition; this occurred more rapidly in the presence of AICAR (an AMPK activator). AICAR had no effects on K(ATP) channel activity recorded in the inside-out patch clamp configuration, but ZMP (the intracellular intermediate of AICAR) strongly activated K(ATP) channels. An AMPK-mediated effect is demonstrated by the finding that ZMP had no effect on K(ATP) channels in the presence of Compound C (an AMPK inhibitor). Recombinant AMPK activated Kir6.2/SUR2A channels in a manner that was dependent on the AMP concentration, whereas heat-inactivated AMPK was without effect. Using mass-spectrometry and co-immunoprecipitation approaches, we demonstrate that the AMPK ?-subunit physically associates with K(ATP) channel subunits. Our data demonstrate that the cardiac K(ATP) channel function is directly regulated by AMPK activation. During metabolic stress, a small change in cellular AMP that activates AMPK can be a potential trigger for K(ATP) channel opening. This article is part of a Special Issue entitled "Local Signaling in Myocytes". PMID:21888913

Yoshida, Hidetada; Bao, Li; Kefaloyianni, Eirini; Taskin, Eylem; Okorie, Uzoma; Hong, Miyoun; Dhar-Chowdhury, Piyali; Kaneko, Michiyo; Coetzee, William A

2012-02-01

342

GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells  

NASA Astrophysics Data System (ADS)

Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[?-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[?-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[?-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

1992-11-01

343

Effects of water management practices on discharge of nutrients and organic matter from channel catfish ( Ictalurus punctatus) ponds  

Microsoft Academic Search

A water quality data set generated by sampling commercial ponds for 2 years was used in a hydrological model of pond overflow volume to describe the effects of water management practices on discharge of nutrients and organic matter from channel catfish Ictalurus punctatus ponds in northwest Mississippi, USA. Average concentrations of total nitrogen, total phosphorus, chemical oxygen demand, and biochemical

Craig S Tucker; Susan K Kingsbury; Jonathan W Pole; Charles L Wax

1996-01-01

344

Inhibition of the KCa3.1 channels by AMP-activated protein kinase in human airway epithelial cells  

PubMed Central

The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5?-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 ?M AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the ?1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp380 to Ala400 in COOH-terminal were essential for the interaction AMPK-?1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-?1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the ?1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-?1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-?-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the ?1-subunit of AMPK. PMID:19052260

Klein, Helene; Garneau, Line; Trinh, Nguyen Thu Ngan; Prive, Anik; Dionne, Francois; Goupil, Eugenie; Thuringer, Dominique; Parent, Lucie; Brochiero, Emmanuelle; Sauve, Remy

2009-01-01

345

Proton mobilities in water and in different stereoisomers of covalently linked gramicidin A channels.  

PubMed Central

Proton conductivities in bulk solution (lambda(H)) and single-channel proton conductances (g(H)) in two different stereoisomers of the dioxolane-linked gramicidin A channel (the SS and RR dimers) were measured in a wide range of bulk proton concentrations ([H], 0.1-8000 mM). Proton mobilities (micro(H)) in water as well as in the SS and RR dimers were calculated from the conductivity data. In the concentration range of 0.1-2000 mM, a straight line with a slope of 0.75 describes the log (g(H))-log ([H]) relationship in the SS dimer. At [H] > 2000 mM, saturation is followed by a decline in g(H). The g(H)-[H] relationship in the SS dimer is qualitatively similar to the [H] dependence of lambda(H). However, the slope of the straight line in the log(lambda(H))-log([H]) plot is 0.96, indicating that the rate-limiting step for proton conduction through the SS dimer is not the diffusion of protons in bulk solution. The significant difference between the slopes of those linear relationships accounts for the faster decline of micro(H) as a function of [H] in the SS dimer in relation to bulk solution. In the high range of [H], saturation and decline of g(H) in the SS dimer can be accounted for by the significant decrease of micro(H) in bulk solution. At any given [H], g(H) in the RR dimer is significantly smaller than in the SS. Moreover, the g(H)-[H] relationship in the RR stereoisomer is qualitatively different from that in the SS. Between 1 and 50 mM [H], g(H) can be fitted with an adsorption isotherm, suggesting the presence of a proton-binding site inside the pore (pK(a) approximately 2), which limits proton exit from the channel. At 100 mM < [H] < 3000 mM, g(H) increases linearly with [H]. The distinctive shape of the g(H)-[H] relationship in the RR dimer suggests that the channel can be occupied simultaneously by more than one proton. At higher [H], the saturation and decline of g(H) in the RR dimer reflect the properties of micro(H) in bulk solution. In the entire range of [H], protons seem to cross the SS and RR channels via a Grotthuss-like mechanism. The rate-limiting step for proton transfer in the SS dimer is probably the membrane-channel/bulk solution interface. It is also proposed that the smaller g(H) in the RR dimer is the consequence of a different organization and dynamics of the H-bonded network of water molecules inside the pore of the channel, resulting in a slower proton transfer and multiple pore occupancy by protons. PMID:10733963

Cukierman, S

2000-01-01

346

G-protein-gated potassium (GIRK) channels containing the GIRK2 subunit are control hubs for pharmacologically induced hypothermic responses.  

PubMed

Hypothermic responses of rodents to the peripheral or intraventricular injection of many individual neurotransmitter receptor agonists have been well documented. Because many hypothermia-inducing agonists are also known to activate G-protein-gated potassium (GIRK) channels, we investigated the hypothermic response to several of these agents on Girk2 null mutant mice. Core body temperatures were measured through radiotelemetry, and animals were maintained in special temperature-regulated chambers to ensure the accuracy of the measurements. The resulting data indicate that the activation of GIRK2-containing potassium channels plays a significant role in hypothermia induced by the activation of serotonergic (5-HT(1A)), GABAergic (GABA(B)), muscarinic (m2), adenosine (A1), and mu, delta, and kappa opioid receptors. These channels also are involved in the alcohol-induced hypothermic response. These results have implications for the understanding of pharmacologically induced hypothermia and thermoregulatory mechanisms. PMID:16120781

Costa, Alberto C S; Stasko, Melissa R; Stoffel, Markus; Scott-McKean, Jonah J

2005-08-24

347

Early Fluid and Protein Shifts in Men During Water Immersion  

NASA Technical Reports Server (NTRS)

High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 C; immersion was preceded by 30 min control standing in air at 28 +/- 1 C. Blood was sampled from an antecubital catheter for determination of Blood Density (BD), Plasma Density (PD), Haematocrit (Ht), total Plasma Protein Concentration (PPC), and Plasma Albumin Concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g/l; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intra-vascular fluid shift.

Hinghofer-Szalkay, H.; Harrison, M. H.; Greenleaf, J. E.

1987-01-01

348

Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction.  

PubMed

Mitochondrial dysfunction is one of the major intracellular lesions of Alzheimer's disease (AD). However, the causative factors involved in the mitochondrial dysfunction in human AD are not well understood. Here we report that nonglycosylated full-length and C-terminal truncated amyloid precursor protein (APP) accumulates exclusively in the protein import channels of mitochondria of human AD brains but not in age-matched controls. Furthermore, in AD brains, mitochondrially associated APP formed stable approximately 480 kDa complexes with the translocase of the outer mitochondrial membrane 40 (TOM40) import channel and a super complex of approximately 620 kDa with both mitochondrial TOM40 and the translocase of the inner mitochondrial membrane 23 (TIM23) import channel TIM23 in an "N(in mitochondria)-C(out cytoplasm)" orientation. Accumulation of APP across mitochondrial import channels, which varied with the severity of AD, inhibited the entry of nuclear-encoded cytochrome c oxidase subunits IV and Vb proteins, which was associated with decreased cytochrome c oxidase activity and increased levels of H2O2. Regional distribution of mitochondrial APP showed higher levels in AD-vulnerable brain regions, such as the frontal cortex, hippocampus, and amygdala. Mitochondrial accumulation of APP was also observed in the cholinergic, dopaminergic, GABAergic, and glutamatergic neuronal types in the category III AD brains. The levels of translocationally arrested mitochondrial APP directly correlated with mitochondrial dysfunction. Moreover, apolipoprotein genotype analysis revealed that AD subjects with the E3/E4 alleles had the highest content of mitochondrial APP. Collectively, these results suggest that abnormal accumulation of APP across mitochondrial import channels, causing mitochondrial dysfunction, is a hallmark of human AD pathology. PMID:16943564

Devi, Latha; Prabhu, Badanavalu M; Galati, Domenico F; Avadhani, Narayan G; Anandatheerthavarada, Hindupur K

2006-08-30

349

Defective trafficking of cone photoreceptor CNG channels induces the unfolded protein response and ER-stress-associated cell death.  

PubMed

Mutations that perturb the function of photoreceptor CNG (cyclic nucleotide-gated) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the ER (endoplasmic reticulum) is known to cause ER stress and trigger the UPR (unfolded protein response), an evolutionarily conserved cellular programme that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared with wild-type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones {TUDCA (tauroursodeoxycholate sodium salt), 4-PBA (sodium 4-phenylbutyrate) and the cGMP analogue CPT-cGMP [8-(4-chlorophenylthio)-cGMP]} differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER-stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization-defective CNG channels, and may represent a contributing factor for photoreceptor degeneration. PMID:21992067

Duricka, Deborah L; Brown, R Lane; Varnum, Michael D

2012-01-15

350

The membrane protein Pannexin1 forms two open channel conformations depending on the mode of activation  

PubMed Central

Pannexin1 (Panx1) participates in several signaling events that involve ATP release, including the innate immune response, ciliary beat in airway epithelia and oxygen supply in the vasculature. The view that Panx1 forms a large ATP-release channel has been challenged by the association of a low conductance, small anion-selective channel with the presence of Panx1. We showed that Panx1 membrane channels can function in two distinct modes with different conductances and permeabilities when heterologously expressed in Xenopus oocytes. When stimulated by potassium ions (K+), Panx1 formed a high conductance channel of ~500 pS that was permeable to ATP. Various physiological stimuli can induce this ATP-permeable conformation of the channel in several cell types. In contrast, the channel had a low conductance (~50 pS) with no detectable ATP permeability when activated by voltage in the absence of K+. The two channel states were associated with different reactivities of the terminal cysteine of Panx1 to thiol reagents, suggesting different conformations. Single particle electron microscopic analysis revealed that K+ stimulated the formation of channels with a larger pore diameter than those formed in the absence of K+. These data suggest that different stimuli lead to distinct channel structures with distinct biophysical properties. PMID:25056878

Wang, Junjie; Ambrosi, Cinzia; Qiu, Feng; Jackson, David G.; Sosinsky, Gina; Dahl, Gerhard

2014-01-01

351

Flow field simulation of gas-water two phase flow in annular channel  

NASA Astrophysics Data System (ADS)

The gas-water two-phase flow is very common in the industrial processes. the deep understanding of the two-phase flow state is to achieve the production equipment design and safe operation. In the measurement of gas-water two-phase flow, the differential pressure sensor is widely used, and some measurement model of multiphase flow have been concluded. The differential pressure is generated when fluid flowing through the throttling components to calculate flow rate. This paper mainly focuses on two points: 1. The change rule of the parameters include velocity, pressure, phase fraction as the change of time, when the phase inlet velocity is given. 2. Analysis the distribution of the parameters above-mentioned at a certain moment under the condition of different water inlet velocity. Three-dimensional computational fluid dynamics (CFD) approach was used to simulate gas-water two-phase flow fluid in the annular channel, which is composed of horizontal pipe and long- waist cone sensor. The simulation results were obtained from FLUENT software.

Ji, Pengcheng; Dong, Feng

2014-04-01

352

Evidence for Recent Liquid Water on Mars: Channels and Aprons in East Gorgonum Crater  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] Warning!This link leads to a very large image that may be too long for some web browsers (in these cases, you must save the link to your desktop and view with other software) [figure removed for brevity, see original site]

This suite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) pictures provides a vista of martian gullies on the northern wall of a 12 kilometer-(7.4 mile)-wide meteor impact crater east of the Gorgonum Chaos region on the red planet.

The first picture (above left) is a composite of three different high resolution MOC views obtained in 1999 and 2000. The second picture (above right)shows the location of the high resolution views relative to the whole crater as it appeared in the highest resolution image previously acquired of the area, taken by the Viking 1 orbiter in 1978. The release image (top) shows a close-up of one of the channels and debris aprons found in the northwestern quarter of the impact crater.

Some of the channels in this crater are deeply-entrenched and cut into lighter-toned deposits. The numerous channels and apron deposits indicate that many tens to hundreds of individual events involving the flow of water and debris have occurred here. The channels and aprons have very crisp, sharp relief and there are no small meteor impact craters on them, suggesting that these features are extremely young relative to the 4.5 billion year history of Mars. It is possible that these landforms are still being created by water seeping from the layered rock in the crater wall today.

The crater has no name and it is located near 37.4oS, 168.0oW. The composite view in (above left) includes a picture taken by MOC on September 10, 1999, a picture obtained April 26, 2000, and another on May 22, 2000. The scene from left to right (including the dark gap between photos) covers an area approximately 7.6 kilometers (4.7 miles) wide by 18 km (11.1 mi) long. Sunlight illuminates the scene from the upper left. MOC high resolution images are taken black-and-white (grayscale); the color seen here has been synthesized from the colors of Mars observed by the MOC wide angle cameras and by the Viking Orbiters in the late 1970s.

2000-01-01

353

TRP Channels  

PubMed Central

The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

Venkatachalam, Kartik; Montell, Craig

2011-01-01

354

Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, Ictalurus punctatus (Rafinesque).  

PubMed

Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMT), has recently emerged as an important modification in the regulation of gene expression. In this communication, we identified and characterized the channel catfish orthologs to human PRMT 1, 3, 4 and 5, and PRMT4 like. Each PRMT nucleic acid sequence has an open reading frame (ORF) and 3'-untranslated regions. Each ORF appears to encode 361, 587 and 458 amino acid residues for PRMT1, PRMT4 and variant, respectively. The partial ORF of PRMT3 and PRMT5 encode 292 and 563 amino acids, respectively. By comparison with the human counterparts, each channel catfish PRMT also has conserved domains. For expression profile, the channel catfish PRMT1 transcript was detected by RT-PCR in spleens, anterior kidneys, livers, intestines, skin and gills of fish examined. Except in liver, the PRMT3 transcript was detected in all catfish tissues examined. However, the PRMT4 cDNA was detected in livers from all three catfish and gills from two fish, but not other tissues. This information will enable us to further elucidate PRMT functions in channel catfish. PMID:22286871

Yeh, Hung-Yueh; Klesius, Phillip H

2012-08-01

355

Channel catfish (Ictalurus punctatus) protein disulphide isomerase, PDIA6: molecular characterization and expression regulated by bacteria and virus inoculation.  

PubMed

Protein disulfide isomerases (PDIs) are thought to aid protein folding and assembly by catalyzing formation and shuffling of cysteine disulfide bonds in the endoplasmic reticulum (ER). Currently, increasing evidence suggests PDIs play an important role in host cell invasion and they are relevant targets for the host immune response. However the roles of specific PDIs in teleosts are little known. Here, we characterized the Protein disulfide isomerase family A, member 6 (PDIA6) from channel catfish, Ictalurus punctatus (named as ccPDIA6). The catfish ccPDIA6 gene was homologous to those of other vertebrate species with 13 exons and 12 introns. The consensus full-length ccPDIA6 cDNA contained an ORF of 1320 bp encoding a putative protein of 439 amino acids. It had a 19 amino acid signal peptide and two active thioredoxin-like domains. Sequence of phylogenic analysis and multiple alignments showed that ccPDIA6 was conserved throughout vertebrate evolution. Southern blot analysis suggested the presence of one copy of the ccPDIA6 gene in the catfish genome. Tissue distribution shows that ccPDIA6 was expressed in all examined tissues at the mRNA level. When using the aquatic zoonotic pathogens such as Edwardsiella tara, Streptococcus iniae, and channel catfish reovirus ?CCRV? to challenge channel catfish, ccPDIA6 expression was significant changed in immune-related tissues such as head kidney, intestine, liver and spleen. The results suggested that ccPDIA6 might play an important role in the immunity of channel catfish. This is the first report that the PDI gene may be involved in fish host defense against pathogen infection. PMID:22561356

Sha, Zhen-Xia; Liu, Hong; Wang, Qi-Long; Liu, Yang; Lu, Yang; Li, Min; Chen, Song-Lin

2012-08-01

356

Suprachiasmatic nucleus function and circadian entrainment are modulated by G protein-coupled inwardly rectifying (GIRK) channels.  

PubMed

protein signalling within the central circadian oscillator, the suprachiasmatic nucleus (SCN), is essential for conveying time-of-day information. We sought to determine whether G protein-coupled inwardly rectifying potassium channels (GIRKs) modulate SCN physiology and circadian behaviour. We show that GIRK current and GIRK2 protein expression are greater during the day. Pharmacological inhibition of GIRKs and genetic loss of GIRK2 depolarized the day-time resting membrane potential of SCN neurons compared to controls. Behaviourally, GIRK2 knockout (KO) mice failed to shorten free running period in response to wheel access in constant darkness and entrained more rapidly to a 6 h advance of a 12 h:12 h light-dark (LD) cycle than wild-type (WT) littermate controls. We next examined whether these effects were due to disrupted signalling of neuropeptide Y (NPY), which is known to mediate non-photic phase shifts, attenuate photic phase shifts and activate GIRKs. Indeed, GIRK2 KO SCN slices had significantly fewer silent cells in response to NPY, likely contributing to the absence of NPY-induced phase advances of PER2::LUC rhythms in organotypic SCN cultures from GIRK2 KO mice. Finally, GIRK channel activation is sufficient to cause a non-photic-like phase advance of PER2::LUC rhythms on a Per2(Luc+/-) background. These results suggest that rhythmic regulation of GIRK2 protein and channel function in the SCN contributes to day-time resting membrane potential, providing a mechanism for the fine tuning responses to non-photic and photic stimuli. Further investigation could provide insight into disorders with circadian disruption comorbidities such as epilepsy and addiction, in which GIRK channels have been implicated. PMID:25217379

Hablitz, L M; Molzof, H E; Paul, J R; Johnson, R L; Gamble, K L

2014-11-15

357

G Protein-Coupled Inwardly Rectifying K + Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons  

Microsoft Academic Search

To study the role of G protein-coupled, inwardly rectifying K+ (GIRK) channels in mediating neurotransmitter actions in hippocampal neurons, we have examined slices from transgenic mice lacking the GIRK2 gene. The outward currents evoked by agonists for GABAB receptors, 5HT1A receptors, and adenosine A1 receptors were essentially absent in mutant mice, while the inward current evoked by muscarinic receptor activation

Christian Lüscher; Lily Y Jan; Markus Stoffel; Robert C Malenka; Roger A Nicoll

1997-01-01

358

A Trace Component of Ginseng that Inhibits Ca2+ Channels through a Pertussis Toxin-Sensitive G Protein  

Microsoft Academic Search

A crude extract from ginseng root inhibits high-threshold, voltage-dependent Ca2+ channels through an unknown receptor linked to a pertussis toxin-sensitive G protein. We now have found the particular compound that seems responsible for the effect: it is a saponin, called ginsenoside Rf (Rf), that is present in only trace amounts within ginseng. At saturating concentrations, Rf rapidly and reversibly inhibits

Seung-Yeol Nah; Hwa-Jin Park; Edwin W. McCleskey

1995-01-01

359

On the Protein Crystal Formation as an Interface-Controlled Process with Prototype Ion-Channeling Effect  

Microsoft Academic Search

A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a\\u000a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic)\\u000a free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype\\u000a ion-channeling effect. An overall diffusion function contains

Jacek Siódmiak; Jan J. Uher; Ivan Santamaría-Holek; Natalia Kruszewska; Adam Gadomski

2007-01-01

360

Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density  

PubMed Central

Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS. PMID:24709664

Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

2014-01-01

361

Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity  

PubMed Central

Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3?/?:stomatin?/?, asic3?/?:stoml3?/? and asic2?/?:stomatin?/? double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both A?- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3?/? mice in which ?35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3?/?:stoml3?/? mutant mice. However, A?-nociceptors showed much reduced mechanosensitivity in asic3?/?:stoml3?/? mutant mice compared to asic3?/? controls. Interestingly, in asic2?/?:stomatin?/? mutant mice many A?-nociceptors completely lost their mechanosensitivity which was not observed in asic2?/? or stomatin?/? mice. Examination of stomatin?/?:stoml3?/? mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater A?-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3?/? or asic2?/? mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function. PMID:23959680

Moshourab, Rabih A; Wetzel, Christiane; Martinez-Salgado, Carlos; Lewin, Gary R

2013-01-01

362

Development of heart failure is independent of K+ channel-interacting protein 2 expression.  

PubMed

Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K(+) channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K(+) current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2(-/-) mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2(-/-) mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2(-/-) control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2(-/-) mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2(-/-) with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K(+) current. PMID:24099801

Speerschneider, Tobias; Grubb, Søren; Metoska, Artina; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B

2013-12-01

363

Water Budget and Modeling of Stream Channel Infiltration of Coalbed Methane Co-Produced Water at a Storage Impoundment Site, Powder River Basin, Wyoming  

NASA Astrophysics Data System (ADS)

Rapid coalbed methane (CBM) development in the Powder River Basin, Wyoming, has resulted in a dramatic increase in the number of producing wells, with as many as 40,000 new wells projected to drilled during the next decade. CBM development involves the co-production of large volumes of coalbed water, which is most commonly discharged to impoundments. Little is known about the potentially significant effects that this co-produced water may have on shallow aquifers and water budgets. Since many of the impoundments in the Powder River Basin are in-channel and supplement surface water flow, it is important to understand what factors influence stream channel infiltration. Modeling of cross-sectional infiltration in a stream channel was undertaken using the U. S. Geological Survey's SUTRA finite-element code, simulating fluid movement from the stream channel, through the unsaturated zone, and into the shallow aquifer. Soil type, saturated hydraulic conductivity, and degree of anisotropy within the soil layer were analyzed to better understand the effects that each have on channel infiltration. At a small study site containing two in-channel infiltration impoundments in the Beaver Creek drainage (a tributary to the Powder River), water budgets have been determined from late July, 2003 to the present (excluding the winter months). Calculated infiltration rates of 0.04 cfs/mile in a 0.8 m wide stream channel compared well with modeled regional soils. Slug tests were utilized to determine aquifer properties in the underlying alluvium/weathered bedrock. A two-layer SUTRA model is presented representing the upper soil layer and underlying alluvium/weathered bedrock and compared to observed changes in groundwater levels in the stream sections affected by introduced CBM water.

Payne, A. A.; Saffer, D. M.

2004-12-01

364

Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication  

PubMed Central

Background Teleost radiation in the oceans required specific physiological adaptations in eggs and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water homeostasis evolved. The marine teleost gilthead sea bream (Sparus aurata) has a mammalian aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in mediating egg hydration. However, teleosts have an additional AQP isoform structurally more similar to AQP1, though its relationship with AQP1o is unclear. Results By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods, have two closely linked AQP1 paralogous genes, termed aqp1a and aqp1b (formerly AQP1o). In marine teleosts that produce hydrated eggs, aqp1b is highly expressed in the ovary, whereas in freshwater species that produce non-hydrated eggs, aqp1b has a completely different expression pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective channels when expressed in Xenopus laevis oocytes. However, expression of chimeric and mutated proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-independent and -dependent mechanisms. Conclusion We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably originated specifically in the teleost lineage by duplication of a common ancestor soon after divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b expression in the plasma membrane. PMID:18811940

2008-01-01

365

A Geophysical Investigation along a Fractured Bedrock River Channel: Implications to Groundwater-Surface Water Interaction  

NASA Astrophysics Data System (ADS)

Fractured sedimentary rock aquifers represent an important source of water for many communities around the world. The Eramosa River - a major tributary of the Speed River within the Grand River Watershed, Ontario, Canada - resides upon a bedrock aquifer of densely fractured dolostone with dissolution-enhanced channels and karst features. While this aquifer represents a major component of the total water supply for the surrounding region, the potential effects of increased groundwater extraction on the overlying river and surrounding environment are not yet fully understood. A comprehensive assessment of groundwater-surface water interaction over a 12 km reach of the river has been initiated using a discrete fracture network framework, i.e., based on the idea that groundwater flow occurs in networks of discrete fractures or channels that are interconnected. Preliminary measurements using airborne infrared thermography and surface-water temperature have been collected in an attempt to delineate hydraulically-active fracture zones; however, these measurements do not provide any information about the physical geometry of features potentially controlling hydraulic interactions. A nest of small-diameter vertical coreholes have been drilled through the upper 15 m to characterize the geology and hydrogeology at a single location along the river. While these coreholes provide the typical information used to understand flow systems, well installation can be improved using prior knowledge of the shallow subsurface and river flow system. Geophysical techniques such as ground-penetrating radar (GPR) and frequency-domain electromagnetics (FDEM) can provide detailed information about and shallow rock environment, thereby increasing the likelihood of identifying hydraulically-active zones along a river channel. To examine the suitability of GPR and FDEM for the characterization of bedrock river environments, a geophysical investigation has been initiated along a 0.5 km reach of the river in close proximity to the vertical coreholes. The study area contains outcrops along the riverbank which enable direct imaging into the upper 15-20 m rock. GPR reflection profiles and common-midpoint (CMP) soundings were collected using 50 MHz and 100 MHz antennas along two main transects situated on either side of the river to examine the nature of the formation. FDEM measurements using an EM-34, -31 and -38 were concurrently collected along the GPR transects to identify variations in depth to rock and riverbed sedimentation. In addition, a 3D GPR reflection grid and azimuthal CMP and EM-31 measurements were collected over a 10 × 25 m plot immediately adjacent to the river to better understand fracture orientation and karst development within the formations. These geophysical data provide valuable insight into the nature of the structurally-controlled features expected to strongly influence groundwater discharge and surface water recharge along the bedrock river channel. This information will guide the site-selection process and placement of future coreholes, ultimately minimizing the invasiveness of small-diameter drilling activities.

Steelman, C. M.; Kennedy, C.; Parker, B. L.; Cherry, J.

2012-12-01

366

Stream channel surface water - groundwater interactions in a fire impacted watershed  

NASA Astrophysics Data System (ADS)

We are conducting a study of surface water - groundwater interactions within the Scott Creek watershed, a 4th order catchment of 76.6 km2 in central coastal California, to assess the impacts of fire on channel and riparian conditions. Scott Creek and its tributaries are valuable spawning habitat for Coho salmon and Steelhead trout. The Scott Creek watershed is located on the western (windward) side of the Santa Cruz Mountains, where the most intense precipitation falls from November to April, and includes a mixture of protected land and areas used for agriculture, grazing, and selective timber harvesting. 37% of the watershed was burned in a fire in August 2009, and we hypothesize that this could result in enhanced delivery of fine grained hill slope sediments to stream channels for several years post fire, reducing the extent of hyporheic exchange downstream of burned areas. This could reduce the survival rates of Coho and Steelhead redds (egg nests), which are dependent on surface water - groundwater exchange for regulation of water nutrient content and temperature. We are monitoring streambed seepage rates and hydraulic conductivity, and performing repeated tracer discharge experiments at three sites on Scott Creek, two within and one upstream of the area burned in the 2009 fire. Streambed seepage rates are calculated using a time series method applied to heat as a tracer, using naturally occurring diurnal changes in stream temperature, and extended to calculations of streambed hydraulic conductivity based on measured head gradients. Hyporheic exchange parameters are assessed using tracer breakthrough data, as fit by an optimized model of one-dimensional advection, dispersion and transient storage. Variations in hydrologic characteristics (e.g., transient storage area, exchange coefficient) over time at each site are being used to assess the magnitude and timing of channel modifications independent to, and associated with, the burning of catchment hill slopes. Preliminary data suggest that there is more variability in both streambed seepage rates and streambed hydraulic conductivity in burned areas relative to the unburned reach. Fires in undeveloped and urbanized areas seem likely to become more common throughout the western U.S., and other parts of the world, as a result of land use practices and climate change. Studies such as ours are important for understanding, anticipating, and mitigating the hydrologic response of critical habitat to fires and other events.

Russo, T. A.; Fisher, A. T.

2010-12-01

367

Free lysine ( l-lysine · HCl) is utilized for growth less efficiently than protein-bound lysine (soybean meal) in practical diets by young channel catfish ( Ictalurus punctatus)  

Microsoft Academic Search

Two 10-week feeding experiments were conducted with channel catfish fingerlings in aquaria to compare the efficiency of utilization for growth of free versus protein bound lysine in practical diets. In experiment 1, a basal, 26% protein diet, deficient only in lysine, was formulated with a combination of peanut meal and corn gluten meal as the primary protein source. The diet

Dannie D. Zarate; Richard T. Lovell

1997-01-01

368

A conceptual model for river water and sediment dispersal in the Santa Barbara Channel, California  

USGS Publications Warehouse

The ephemeral Santa Clara River delivers large amounts of freshwater and sediment to the eastern Santa Barbara Channel during brief, episodic discharge events. This discharge into the channel was characterized here with shipboard measurements during floods of 1997 and 1998. Within approximately 1-km of the river mouth, the river discharge quickly stratifies into a freshened, turbid surface plume and a bottom nephloid layer. Observations immediately off the Santa Clara River mouth on a peak day of river discharge revealed that sediment rapidly settled from the freshened surface waters, as suspended sediment in the freshened surface plume contained only ???6% of the sediment mass expected if the sediment mixed conservatively. On the two subsequent days the reduction of sediment mass in the surface plume continued at ???50% per day. These observations suggest that river sediment undergoes rapid initial settling within ???1-km of the river mouth, followed by somewhat slower rates of settling. Although we did not measure sedimentation or bottom boundary layer processes, our mass balance results suggest that almost all of the river sediment either escapes along or deposits upon the inner shelf seabed.

Warrick, J. A.; A. k. , Mertes, L.; Washburn, L.; A. , Siegel, D.

2004-01-01

369

A device to achieve low Reynolds numbers in an open surface water channel  

NASA Astrophysics Data System (ADS)

When investigating flow structures, and especially flow transitions, research projects often seek to increase insight using complementary numerical and physical experiments. Obtaining exact Reynolds number correspondence can frequently be difficult in experiments, particularly when relatively low values are required. Often, available test facilities were designed and optimised for a specific velocity range, meaning they have restrictions on the minimum flow velocity. This study describes a device to reduce the flow velocity locally in an open surface water channel. The underlying idea is to divert a controlled fraction of the incoming flow from the working section by increasing the pressure there, resulting in reduced velocity. This idea is realised using a `sub-channel' that can be inserted into the main test chamber, with a variable porosity perforated screen at its downstream end. This study assesses and optimises the flow quality inside this structure, such as usable test section length, uniformity of the velocity profiles and turbulence intensity. The results demonstrate that the device creates high quality low Reynolds number flows, which is exemplified with the canonical circular cylinder in cross-flow.

Radi, Alexander; Lo Jacono, David; Sheridan, John

2014-05-01

370

A Technique for Remote Sensing of Suspended Sediments and Shallow Coastal Waters Using MODIS Visible and Near-IR Channels  

NASA Technical Reports Server (NTRS)

We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

Li, Rong-Rong; Kaufman, Yoram J.

2002-01-01

371

Up-regulation of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 3 (HCN3) by Specific Interaction with K+ Channel Tetramerization Domain-containing Protein 3 (KCTD3)*  

PubMed Central

Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes. PMID:23382386

Cao-Ehlker, Xiaochun; Zong, Xiangang; Hammelmann, Verena; Gruner, Christian; Fenske, Stefanie; Michalakis, Stylianos; Wahl-Schott, Christian; Biel, Martin

2013-01-01

372

Protein Solvation in Membranes and at Water-Membrane Interfaces  

NASA Technical Reports Server (NTRS)

Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.

2002-01-01

373

Modulation of Ca v3.1 T-type Ca 2+ channels by the ran binding protein RanBPM  

Microsoft Academic Search

In order to study the currently unknown cellular signaling pathways of Cav3.1 T-type Ca2+ channels (Cav3.1 channels), we performed a yeast two-hybrid screening using intracellular domains of Cav3.1 ?1 subunit as bait. After screening the human brain cDNA library, several proteins, including RanBPM, were identified as interacting with Cav3.1 channels. RanBPM was found to bind to the cytoplasmic intracellular loop

Taehyun Kim; Sunoh Kim; Hyung-Mun Yun; Kwang Chul Chung; Ye Sun Han; Hee-Sup Shin; Hyewhon Rhim

2009-01-01

374

Inhibition of G-protein-activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine.  

PubMed

Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K(+) (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A(1) adenosine receptors or by intracellularly applied GTPgammaS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

2010-06-01

375

Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli  

PubMed Central

A large family of membrane channel proteins selective for transport of water (aquaporins) or water plus glycerol (aquaglyceroporins) has been found in diverse life forms. Escherichia coli has two members of this family—a water channel, AqpZ, and a glycerol facilitator, GlpF. Despite having similar primary amino acid sequences and predicted structures, the oligomeric state and solute selectivity of AqpZ and GlpF are disputed. Here we report biochemical and functional characterizations of affinity-purified GlpF and compare it to AqpZ. Histidine-tagged (His-GlpF) and hemagglutinin-tagged (HA-GlpF) polypeptides encoded by a bicistronic construct were expressed in bacteria. HA-GlpF and His-GlpF appear to form oligomers during Ni-nitrilotriacetate affinity purification. Sucrose gradient sedimentation analyses showed that the oligomeric state of octyl glucoside-solubilized GlpF varies: low ionic strength favors subunit dissociation, whereas Mg2+ stabilizes tetrameric assembly. Reconstitution of affinity-purified GlpF into proteoliposomes increases glycerol permeability more than 100-fold and water permeability up to 10-fold compared with control liposomes. Glycerol and water permeability of GlpF both occur with low Arrhenius activation energies and are reversibly inhibited by HgCl2. Our studies demonstrate that, unlike AqpZ, a water-selective stable tetramer, purified GlpF exists in multiple oligomeric forms under nondenaturing conditions and is highly permeable to glycerol but less well permeated by water. PMID:11226336

Borgnia, Mario J.; Agre, Peter

2001-01-01

376

Structural ordering and ice-like glass transition on cooling the nano-channel water formed within a crystalline framework  

NASA Astrophysics Data System (ADS)

Heat capacities and enthalpy relaxation rates were measured for crystalline [Ni(cyclam)(H2O)2]3(TMA)2·24H2O, where cyclam is 1,4,8,11-tetraazacyclotetradecane, TMA is 1,3,5-benzene tricarboxylic acid, and 24H2O represents the water forming a nano-channel. A phase transition was found to occur at 196.9 K, and a glass transition at 87 K. A potential picture is given for the progress of the ordering of water molecules and hydrogen atoms in the channel. At room temperature, interfacial water molecules form hydrogen bonds with the oxygen atoms of the channel wall, and the aggregation of water molecules is recognized, as the average structure, to be in a crystalline state with a long-range order. The bond formation plays important role in the stabilization of the crystalline framework with a channel structure. The aggregate transforms to a more stable crystalline state at 196.9 K. All the water molecules should be fixed completely there. The positions of the hydrogen atoms on the network are, however, essentially in the disordered state while keeping an ice rule, and freeze at 87 K only with a short-range order in the arrangement. The progress of such ordering of channel water reveals a striking contrast to the behaviour of the water within meso-porous silicas, in which the molecules in the interface are always in the non-crystalline state and those in the pore centre tend to crystallize only when the pore diameter is greater than 2 or 3 nm.

Watanabe, Keisuke; Oguni, Masaharu; Tadokoro, Makoto; Nakamura, Ryouhei

2006-10-01

377

Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe  

PubMed Central

We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the ?-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity. PMID:19450488

Liu, Jing; Strzalka, Joseph; Tronin, Andrey; Johansson, Jonas S.; Blasie, J. Kent

2009-01-01

378

Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe  

SciTech Connect

We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.

Liu, J.; Strzalka, J; Tronin, A; Johansson, J; Blasie, J

2009-01-01

379

Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74.  

PubMed

The voltage-dependent anion-selective channel 1 (VDAC1), i.e. eukaryotic porin, functions as a channel in membranous structures as described for the outer mitochondrial membrane, the cell membrane, endosomes, caveolae, the sarcoplasmatic reticulum, synaptosomes, and post-synaptic density fraction. The identification of VDAC1 interacting proteins may be a promising approach for better understanding the biological context and function of the channel protein. In this study human VDAC1 was used as a bait protein in a two-hybrid screening, which is based on the Sos recruitment system (SRS). hVDAC1 interacts with the dynein light chain Tctex-1 and the heat-shock protein peptide-binding protein 74 (PBP74)/mitochondrial heat-shock protein 70 (mtHSP70)/glucose-regulated protein 75 (GRP75)/mortalin in vivo. Both interactions were confirmed by overlay-assays using recombinant partner proteins and purified hVDAC1. Indirect immunofluorescence on HeLa cells indicates a co-localisation of hVDAC1 with the dynein light chain and the PBP74. In addition, HeLa cells were transfected transiently with enhanced green fluorescent protein (EGFP)-hVDAC1 fusion proteins, which also clearly co-localise with both proteins. The functional relevance of the identified protein interactions was analysed in planar lipid bilayer (PLB) experiments. In these experiments both recombinant binding partners altered the electrophysiological properties of hVDAC1. While rTctex-1 increases the voltage-dependence of hVDAC1 slightly, the rPBP74 drastically minimises the voltage-dependence, indicating a modulation of channel properties in each case. Since the identified proteins are known to be involved in the transport or processing of proteins, the results of this study represent additional evidence of membrane-associated trafficking of the voltage-dependent anion-selective channel 1. PMID:12009301

Schwarzer, Christian; Barnikol-Watanabe, Shitsu; Thinnes, Friedrich P; Hilschmann, Norbert

2002-09-01

380

Diffusion model of protein adsorption and effect of protein layer composition on water permeability for ultrafiltration membranes  

Microsoft Academic Search

The study of interrelation between kinetics of protein adsorption and flux of water through ultrafiltration membranes is of interest for understanding the influence of adsorption on ultrafiltration. A short model sketch of protein adsorption derived from complicated transport phenomena is presented. As quantitative criterion of protein adsorption the ratio of reversibility is proposed. This ratio describes the relative amount of

A. L. Iordanskii; V. S. Markin; L. P. Razumovskii; R. Yu. Kosenko; N. A. Tarasova; G. E. Zaikov

1996-01-01

381

Cocaine sensitization increases Ih current channel subunit 2 (HCN2) protein expression in structures of the Mesocorticolimbic System  

PubMed Central

Alteration of the biological activity among neuronal components of the Mesocorticolimbic (MCL) system has been implicated in the pathophysiology of drug abuse. Changes in the electrophysiological properties of neurons involved in the reward circuit seem to be of utmost importance in addiction. The Hyperpolarization-Activated Cyclic-Nucleotide Current, Ih, is a prominent mixed cation current present in neurons. The biophysical properties of the Ih and its potential modulatory role in cell excitability depend on the expression profile of the Hyperpolarization-activated cyclic nucleotide gated channel (HCN) subunits. We investigated whether cocaine-induced behavioral sensitization, an animal model of drug addiction, elicits region-specific changes in the expression of the HCN2 channel’s subunit in the MCL system. Tissue samples from the ventral tegmental area, prefrontal cortex, nucleus accumbens and hippocampus were analyzed using Western Blot. Our findings demonstrate that cocaine treatment induced a significant increase in the expression profile of the HCN2 subunit in both, its glycosylated and non-glycosylated protein isoforms, in all areas tested. The increase in the glycosylated isoform was only observed in the ventral tegmental area. Together, these data suggest that the observed changes in MCL excitability during cocaine addiction might be associated to alterations in the subunit composition of their HCN channels. PMID:23203153

Santos-Vera, Bermary; Vazquez-Torres, Rafael; Garcia Marrero, Hermes G.; Ramos Acevedo, Juan M.; Arencibia-Albite, Francisco; Velez-Hernandez, Maria E.; Miranda, Jorge D.; Jimenez-Rivera, Carlos A.

2013-01-01