Science.gov

Sample records for water channel proteins

  1. Water channel proteins in the gastrointestinal tract.

    PubMed

    Laforenza, Umberto

    2012-01-01

    Water transport through the human digestive system is physiologically crucial for maintaining body water homeostasis and ensure digestive and absorptive functions. Within the gastrointestinal tract, water recirculates, being secreted with the digestive juices and then almost entirely absorbed by the small and large intestine. The importance of aquaporins (AQPs), transmembrane water channel proteins, in the rapid passage of water across plasma membranes in the gastrointestinal tract appears immediately evident. Several AQP isoforms are found in gastrointestinal epithelia, with AQP1, 3, 7, 10 and 11 being the most abundantly expressed in the whole gut. On the other hand, AQP4 and 8 are located selectively in the stomach and colon, respectively. Here we review AQP expression and localization at the tissue, cellular and subcellular level in gastrointestinal epithelia, and their modification in various gut diseases. PMID:22465691

  2. Prediction of functional residues in water channels and related proteins.

    PubMed Central

    Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

    1998-01-01

    In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

  3. Expression of Water Channel Proteins in Mesembryanthemum crystallinum1

    PubMed Central

    Kirch, Hans-Hubert; Vera-Estrella, Rosario; Golldack, Dortje; Quigley, Francoise; Michalowski, Christine B.; Barkla, Bronwyn J.; Bohnert, Hans J.

    2000-01-01

    We have characterized transcripts for nine major intrinsic proteins (MIPs), some of which function as water channels (aquaporins), from the ice plant Mesembryanthemum crystallinum. To determine the cellular distribution and expression of these MIPs, oligopeptide-based antibodies were generated against MIP-A, MIP-B, MIP-C, or MIP-F, which, according to sequence and functional characteristics, are located in the plasma membrane (PM) and tonoplast, respectively. MIPs were most abundant in cells involved in bulk water flow and solute flux. The tonoplast MIP-F was found in all cells, while signature cell types identified different PM-MIPs: MIP-A predominantly in phloem-associated cells, MIP-B in xylem parenchyma, and MIP-C in the epidermis and endodermis of immature roots. Membrane protein analysis confirmed MIP-F as tonoplast located. MIP-A and MIP-B were found in tonoplast fractions and also in fractions distinct from either the tonoplast or PM. MIP-C was most abundant but not exclusive to PM fractions, where it is expected based on its sequence signature. We suggest that within the cell, MIPs are mobile, which is similar to aquaporins cycling through animal endosomes. MIP cycling and the differential regulation of these proteins observed under conditions of salt stress may be fundamental for the control of tissue water flux. PMID:10806230

  4. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    PubMed

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  5. The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications.

    PubMed

    Benga, Gheorghe

    2012-01-01

    After a decade of work on the water permeability of red blood cells (RBC) Benga group in Cluj-Napoca, Romania, discovered in 1985 the first water channel protein in the RBC membrane. The discovery was reported in publications in 1986 and reviewed in subsequent years. The same protein was purified by chance by Agre group in Baltimore, USA, in 1988, who called in 1991 the protein CHIP28 (CHannel forming Integral membrane Protein of 28 kDa), suggesting that it may play a role in linkage of the membrane skeleton to the lipid bilayer. In 1992 the Agre group identified CHIP28's water transport property. One year later CHIP28 was named aquaporin 1, abbreviated as AQP1. In this review the molecular structure-function relationships of AQP1 are presented. In the natural or model membranes AQP1 is in the form of a homotetramer, however, each monomer has an independent water channel (pore). The three-dimensional structure of AQP1 is described, with a detailed description of the channel (pore), the molecular mechanisms of permeation through the channel of water molecules and exclusion of protons. The permeability of the pore to gases (CO(2), NH(3), NO, O(2)) and ions is also mentioned. I have also reviewed the functional roles and medical implications of AQP1 expressed in various organs and cells (microvascular endothelial cells, kidney, central nervous system, eye, lacrimal and salivary glands, respiratory apparatus, gastrointestinal tract, hepatobiliary compartments, female and male reproductive system, inner ear, skin). The role of AQP1 in cell migration and angiogenesis in relation with cancer, the genetics of AQP1 and mutations in human subjects are also mentioned. The role of AQP1 in red blood cells is discussed based on our comparative studies of water permeability in over 30 species. PMID:22705445

  6. Molecular Cloning, Overexpression and Characterization of a Novel Water Channel Protein from Rhodobacter sphaeroides

    PubMed Central

    Erbakan, Mustafa; Shen, Yue-xiao; Grzelakowski, Mariusz; Butler, Peter J.; Kumar, Manish; Curtis, Wayne R.

    2014-01-01

    Aquaporins are highly selective water channel proteins integrated into plasma membranes of single cell organisms; plant roots and stromae; eye lenses, renal and red blood cells in vertebrates. To date, only a few microbial aquaporins have been characterized and their physiological importance is not well understood. Here we report on the cloning, expression and characterization of a novel aquaporin, RsAqpZ, from a purple photosynthetic bacterium, Rhodobacter sphaeroides ATCC 17023. The protein was expressed homologously at a high yield (∼20 mg/L culture) under anaerobic photoheterotrophic growth conditions. Stopped-flow light scattering experiments demonstrated its high water permeability (0.17±0.05 cm/s) and low energy of activation for water transport (2.93±0.60 kcal/mol) in reconstituted proteoliposomes at a protein to lipid ratio (w/w) of 0.04. We developed a fluorescence correlation spectroscopy based technique and utilized a fluorescent protein fusion of RsAqpZ, to estimate the single channel water permeability of RsAqpZ as 1.24 (±0.41) x 10−12 cm3/s or 4.17 (±1.38)×1010 H2O molecules/s, which is among the highest single channel permeability reported for aquaporins. Towards application to water purification technologies, we also demonstrated functional incorporation of RsAqpZ in amphiphilic block copolymer membranes. PMID:24497982

  7. On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives).

    PubMed

    Benga, Gheorghe

    2012-01-01

    A water channel protein (WCP) or a water channel can be defined as a transmembrane protein that has a specific three-dimensional structure with a pore that provides a pathway for water permeation across biological membranes. The pore is formed by two highly conserved regions in the amino acid sequence, called NPA boxes (or motifs) with three amino acid residues (asparagine-proline-alanine, NPA) and several surrounding amino acids. The NPA boxes have been called the "signature" sequence of WCPs. WCPs are a family of proteins belonging to the Membrane Intrinsic Proteins (MIPs) superfamily. In addition, in the MIP superfamily (with more than 1000 members) there are also proteins with no channel activity. The WCP family include three subfamilies: aquaporins, aquaglyceroporins and S-aquaporins. (1) The aquaporins (AQPs) are water selective or specific water channels, also named by various authors as "orthodox", "ordinary", "conventional", "classical", "pure", "normal", or "sensu strictu" aquaporins); (2) The aquaglyceroporins are permeable to water, but also to other small uncharged molecules, in particular glycerol; this family includes the glycerol facilitators, abbreviated as GlpFs, from glycerol permease facilitators. The "signature" sequence for aquaglyceroporins is the aspartic acid residue (D) in the second NPA box. (3) The third subfamily of WCPs have little conserved amino acid sequences around the NPA boxes, unclassifiable to the first two subfamilies. I recommend to use always for this subfamily the name S-aquaporins. They are also named "superaquaporins", "aquaporins with unusual (or deviated) NPA boxes", "subcellular aquaporins", or "sip-like aquaporins". I also recommend to use always the spelling aquaporin (not aquaporine), and, for various AQPs, the abbreviation AQP followed immediately by the number, (e.g. AQP1), with no space or--which might create confusions with "minus". PMID:22542572

  8. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    PubMed Central

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  9. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaporins (AQPs) are integral membrane channel proteins that facilitate the bidirectional transfer of water or other small solutes across biological membranes involved in numerous essential physiological processes. In arthropods, AQPs belong to several subfamilies, which contribute to osmoregulatio...

  10. The first water channel protein (later called aquaporin 1) was first discovered in Cluj-Napoca, Romania.

    PubMed

    Benga, Gheorghe

    2004-01-01

    This invited review briefly outlines the importance of membrane water permeability, highlights the landmarks leading to the discovery of water channels. After a decade of systematic studies on water channels in human RBC Benga's group discovered in 1985 the presence and location of the water channel protein among the polypeptides migrating in the region of 35-60 kDa on the electrophoretogram of RBC membrane proteins. The work was extended and reviewed in several articles. In 1988, Agre and coworkers isolated a new protein from the RBC membrane, nick-named CHIP28 (channel-forming integral membrane protein of 28 kDa). However, in addition to the 28 kDa component, this protein had a 35-60 kDa glycosylated component, the one detected by the Benga's group. Only in 1992 Agre's group suggested that "it is likely that CHIP28 is a functional unit of membrane water channels". Half of the 2003 Nobel Prize in Chemistry was awarded to Peter Agre (Johns Hopkins University, Baltimore, USA) "for the discovery of water channels", actually the first water channel protein from the human red blood cell (RBC) membrane, known today as aquaporin 1 (AQP1). The seminal contributions from 1986 of the Benga's group were grossly overlooked by Peter Agre and by the Nobel Prize Committee. Thousands of science-related professionals from hundreds of academic and research units, as well as participants in several international scientific events, have signed as supporters of Benga; his priority is also mentioned in several comments on the 2003 Nobel Prize. PMID:15984652

  11. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein.

    PubMed

    Borgnia, M J; Kozono, D; Calamita, G; Maloney, P C; Agre, P

    1999-09-01

    Understanding the selectivity of aquaporin water channels will require structural and functional studies of wild-type and modified proteins; however, expression systems have not previously yielded aquaporins in the necessary milligram quantities. Here we report expression of a histidine-tagged form of Escherichia coli aquaporin-Z (AqpZ) in its homologous expression system. 10-His-AqpZ is solubilized and purified to near homogeneity in a single step with a final yield of approximately 2.5 mg/l of culture. The histidine tag is removed by trypsin, yielding the native protein with the addition of three N-terminal residues, as confirmed by microsequencing. Sucrose gradient sedimentation analysis showed that the native, solubilized AqpZ protein is a trypsin-resistant tetramer. Unlike other known aquaporins, AqpZ tetramers are not readily dissociated by 1% SDS at neutral pH. Hydrophilic reducing agents have a limited effect on the stability of the tetramer in 1% SDS, whereas incubations for more than 24 hours, pH values below 5.6, or exposure to the hydrophobic reducing agent ethanedithiol cause dissociation into monomers. Cys20, but not Cys9, is necessary for the stability of the AqpZ tetramer in SDS. Upon reconstitution into proteoliposomes, AqpZ displays very high osmotic water permeability (pf > or = 10 x 10(-14) cm3 s-1 subunit-1) and low Arrhenius activation energy (Ea = 3.7 kcal/mol), similar to mammalian aquaporin-1 (AQP1). No permeation by glycerol, urea or sorbitol was detected. Expression of native and modified AqpZ in milligram quantities has permitted biophysical characterization of this remarkably stable aquaporin tetramer, which is being utilized for high-resolution structural studies. PMID:10518952

  12. Water channel proteins in the inner ear and their link to hearing impairment and deafness.

    PubMed

    Eckhard, Andreas; Gleiser, Corinna; Arnold, Heinz; Rask-Andersen, Helge; Kumagami, Hidetaka; Müller, Marcus; Hirt, Bernhard; Löwenheim, Hubert

    2012-01-01

    The inner ear is a fluid-filled sensory organ that transforms mechanical stimuli into the senses of hearing and balance. These neurosensory functions depend on the strict regulation of the volume of the two major extracellular fluid domains of the inner ear, the perilymph and the endolymph. Water channel proteins, or aquaporins (AQPs), are molecular candidates for the precise regulation of perilymph and endolymph volume. Eight AQP subtypes have been identified in the membranous labyrinth of the inner ear. Similar AQP subtypes are also expressed in the kidney, where they function in whole-body water regulation. In the inner ear, AQP subtypes are ubiquitously expressed in distinct cell types, suggesting that AQPs have an important physiological role in the volume regulation of perilymph and endolymph. Furthermore, disturbed AQP function may have pathophysiological relevance and may turn AQPs into therapeutic targets for the treatment of inner ear diseases. In this review, we present the currently available knowledge regarding the expression and function of AQPs in the inner ear. We give special consideration to AQP subtypes AQP2, AQP4 and AQP5, which have been studied most extensively. The potential functions of AQP2 and AQP5 in the resorption and secretion of endolymph and of AQP4 in the equilibration of cell volume are described. The pathophysiological implications of these AQP subtypes for inner ear diseases, that appear to involve impaired fluid regulation, such as Menière's disease and Sjögren's syndrome, are discussed. PMID:22732097

  13. Water channel proteins: from their discovery in 1985 in Cluj-Napoca, Romania, to the 2003 Nobel Prize in Chemistry.

    PubMed

    Benga, Gh

    2006-01-01

    Water channel proteins, later called aquaporins, are transmembrane proteins that have as their main(specific) function the water transport across biological membranes. The first water channel protein (WCP), now called aquaporin 1, was identified or "seen" in situ (hence discovered) in the human red blood cell (RBC) membrane in 1985 by Benga's group (Cluj-Napoca, Romania). This was achieved by a very selective radiolabeling of RBC membrane proteins with the water transport inhibitor [203Hg]-p-chloromercuribenzene sulfonate (PCMBS), under conditions of specific inhibition. The presence and location of the WCP was discovered among the polypeptides migrating in the region of 35-60 kDa on the electrophoretogram of RBC membrane proteins. The work was first published in 1986 in Biochemistry and Eur. J. Cell Biol. and reviewed by Benga in several articles in 1988-2004. We have thus a world priority in the discovery of the first water channel in the RBC membrane, that was re-discovered by chance by the group of Agre (Baltimore, USA) in 1988, when they isolated a new protein from the RBC membrane, nick-named CHIP28 (channel-forming integral membrane protein of 28 kDa). However, in addition to the 28 kDa component, this protein had a 35-60 kDa glycosylated component, the one detected by Benga's group. Only in 1992 the Agre's group suggested that "it is likely that CHIP28 is a functional unit of membrane water channels". In 1993 CHIP28 was renamed aquaporin 1. Looking in retrospect, asking the crucial question, when was the first WCP, discovered, a fair and clear cut answer would be: the first WCP, now called aquaporin 1, was identified or "seen" (hence discovered) in situ in the human RBC membrane by Benga and coworkers in 1985. It was again "seen" when it was purified in 1988 and again identified when its water transport property was found byAgre's group in 1992. If we make a comparison with the discovery of New World of America, the first man who has "seen" a part, very

  14. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  15. Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly.

    PubMed

    Sahu, Satyajit; Ghosh, Subrata; Ghosh, Batu; Aswani, Krishna; Hirata, Kazuto; Fujita, Daisuke; Bandyopadhyay, Anirban

    2013-09-15

    Microtubule nanotubes are found in every living eukaryotic cells; these are formed by reversible polymerization of the tubulin protein, and their hollow fibers are filled with uniquely arranged water molecules. Here we measure single tubulin molecule and single brain-neuron extracted microtubule nanowire with and without water channel inside to unravel their unique electronic and optical properties for the first time. We demonstrate that the energy levels of a single tubulin protein and single microtubule made of 40,000 tubulin dimers are identical unlike conventional materials. Moreover, the transmitted ac power and the transient fluorescence decay (single photon count) are independent of the microtubule length. Even more remarkable is the fact that the microtubule nanowire is more conducting than a single protein molecule that constitutes the nanowire. Microtubule's vibrational peaks condense to a single mode that controls the emergence of size independent electronic/optical properties, and automated noise alleviation, which disappear when the atomic water core is released from the inner cylinder. We have carried out several tricky state-of-the-art experiments and identified the electromagnetic resonance peaks of single microtubule reliably. The resonant vibrations established that the condensation of energy levels and periodic oscillation of unique energy fringes on the microtubule surface, emerge as the atomic water core resonantly integrates all proteins around it such that the nanotube irrespective of its size functions like a single protein molecule. Thus, a monomolecular water channel residing inside the protein-cylinder displays an unprecedented control in governing the tantalizing electronic and optical properties of microtubule. PMID:23567633

  16. Effect of Atractylodes macrocephala on Hypertonic Stress-Induced Water Channel Protein Expression in Renal Collecting Duct Cells.

    PubMed

    Lee, Yong Pyo; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Hye Yoom; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Edema is a symptom that results from the abnormal accumulation of fluid in the body. The cause of edema is related to the level of aquaporin (AQP)2 protein expression, which regulates the reabsorption of water in the kidney. Edema is caused by overexpression of the AQP2 protein when the concentration of Na(+) in the blood increases. The rhizome of Atractylodes macrocephala has been used in traditional oriental medicine as a diuretic drug; however, the mechanism responsible for the diuretic effect of the aqueous extract from A. macrocephala rhizomes (AAMs) has not yet been identified. We examined the effect of the AAM on the regulation of water channels in the mouse inner medullary collecting duct (mIMCD)-3 cells under hypertonic stress. Pretreatment of AAM attenuates a hypertonicity-induced increase in AQP2 expression as well as the trafficking of AQP2 to the apical plasma membrane. Tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor known to play a central role in cellular homeostasis by regulating the expression of some proteins, including AQP2. Western immunoblot analysis demonstrated that the protein and mRNA expression levels of TonEBP also decrease after AAM treatment. These results suggest that the AAM has a diuretic effect by suppressing water reabsorption via the downregulation of the TonEBP-AQP2 signaling pathway. PMID:23258995

  17. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels.

    PubMed

    Nielsen, S; Marples, D; Birn, H; Mohtashami, M; Dalby, N O; Trimble, M; Knepper, M

    1995-10-01

    Body water balance is controlled by vasopressin, which regulates Aquaporin-2 (AQP2) water channels in kidney collecting duct cells by vesicular trafficking between intracellular vesicles and the plasma membrane. To examine the molecular apparatus involved in vesicle trafficking and vasopressin regulation of AQP2 in collecting duct cells, we tested if targeting proteins expressed in the synaptic vesicles, namely vesicle-associated membrane proteins 1 and 2 (VAMP1 and 2), are expressed in kidney collecting duct. Immunoblotting revealed specific labeling of VAMP2 (18-kD band) but not VAMP1 in membrane fractions prepared from kidney inner medulla. Controls using preadsorbed antibody or preimmune serum were negative. Bands of identical molecular size were detected in immunoblots of brain membrane vesicles and purified synaptic vesicles. VAMP2 in kidney membranes was cleaved by tetanus toxin, revealing a tetanus toxin-sensitive VAMP homologue. Similarly, tetanus toxin cleaved VAMP2 in synaptic vesicles. In kidney inner medulla, VAMP2 was predominantly expressed in the membrane fraction enriched for intracellular vesicles, with little or no VAMP2 in the plasma membrane enriched fraction. This was confirmed by immunocytochemistry using semithin cryosections, which showed mainly vesicular labeling in collecting duct principal cells, with no labeling of intercalated cells. VAMP2 immunolabeling colocalized with AQP2 labeling in intracellular vesicles, as determined by immunoelectron microscopy after double immunolabeling of isolated vesicles. Quantitative analysis of 1,310 vesicles revealed a highly significant association of both AQP2 and VAMP2 in the same vesicles (P < 0.0001). Furthermore, the presence of AQP2 in vesicles immunoisolated with anti-VAMP2 antibodies was confirmed by immunoblotting. In conclusion, VAMP2, a component of the neuronal SNARE complex, is expressed in vesicles carrying AQP2, suggesting a role in vasopressin-regulated vesicle trafficking of AQP2

  18. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some hemipteran xylem and phloem feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber...

  19. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant.

    PubMed Central

    Yamada, S; Katsuhara, M; Kelly, W B; Michalowski, C B; Bohnert, H J

    1995-01-01

    Seawater-strength salt stress of the ice plant (Mesembryanthemum crystallinum) initially results in wilting, but full turgor is restored within approximately 2 days. We are interested in a mechanistic explanation for this behavior and, as a requisite for in-depth biochemical studies, have begun to analyze gene expression changes in roots coincident with the onset of stress. cDNAs that suggested changes in mRNA amount under stress were found; their deduced amino acid sequences share homologies with proteins of the Mip (major intrinsic protein) gene family and potentially encode aquaporins. One transcript, MipB, was found only in root RNA, whereas two other transcripts, MipA and MipC, were detected in roots and leaves. Transcript levels of MipB were of low abundance. All transcripts declined initially during salt stress but later recovered to at least prestress level. The most drastic decline was in MipA and MipC transcripts. MipA mRNA distribution in roots detected by in situ hybridization indicated that the transcript was present in all cells in the root tip. In the expansion zone of the root where vascular bundles differentiate, MipA transcript amounts were most abundant in the endodermis. In older roots, which had undergone secondary growth, MipA was highly expressed in cell layers surrounding individual xylem strands. MipA was also localized in leaf vascular tissue and, in lower amounts, in mesophyll cells. Transcripts for MipB seemed to be present exclusively in the tip of the root, in a zone before and possibly coincident with the development of a vascular system. MipA- and MipB-encoded proteins expressed in Xenopus oocytes led to increased water permeability. mRNA fluctuations of the most highly expressed MipA and MipC coincided with turgor changes in leaves under stress. As the leaves regained turgor, transcript levels of these water channel proteins increased. PMID:7549476

  20. Involvement of MAPK ERK activation in upregulation of water channel protein aquaporin 1 in a mouse model of Bell's palsy.

    PubMed

    Fang, Fan; Liu, Cai-Yue; Zhang, Jie; Zhu, Lie; Qian, Yu-Xin; Yi, Jing; Xiang, Zheng-Hua; Wang, Hui; Jiang, Hua

    2015-05-01

    The aim of this study is to immunolocalize the aquaporin 1 water channel protein (AQP1) in Schwann cells of idiopathic facial nerve and explore its possible role during the development of facial palsy induced by herpes simplex virus type 1 (HSV-1). HSV-1 was inoculated into the surface of posterior auricle of mouse to establish a paralyzed animal model. In HSV-1-induced facial palsy mice, protein levels of AQP1 significantly increased on the 9th to 16th day after inoculation of HSV-1. The upregulation of AQP1 was closely related to the intratemporal facial nerve edema in facial nerve canal, which was also consistent with the symptom of facial palsy in mice. In a hypoxia model of Schwann cells in vitro, we found that U0126, an ERK antagonist, inhibited not only morphological changes of cultures Schwann cells but also upregulation of both AQP1 and phosphorylated ERK. Combined with increased phosphorylated ERK in HSV-1-induced facial palsy mice, we inferred that ERK MAPK pathway might also be involved in increased AQP1 in mouse model of Bell's palsy. Although the precise mechanism needs to be further explored, our findings suggest that AQP1 in Schwann cells of intratemporal facial nerve is involved in the evolution of facial palsy induced by HSV-1 and may play an important role in the pathogenesis of this disease. AQP1 might be a potential target, and the ERK antagonist U0126 could be a new drug for the treatment of HSV-1-induced Bell's palsy in an early stage. PMID:25527444

  1. Single-molecular artificial transmembrane water channels.

    PubMed

    Hu, Xiao-Bo; Chen, Zhenxia; Tang, Gangfeng; Hou, Jun-Li; Li, Zhan-Ting

    2012-05-23

    Hydrazide-appended pillar[5]arene derivatives have been synthesized. X-ray crystal structure analysis and (1)H NMR studies revealed that the molecules adopt unique tubular conformations. Inserting the molecules into the lipid membranes of vesicles leads to the transport of water through the channels produced by single molecules, as supported by dynamic light scattering and cryo-SEM experiments. The channels exhibit the transport activity at a very low channel to lipid ratio (0.027 mol %), and a water permeability of 8.6 × 10(-10) cm s(-1) is realized. In addition, like natural water channel proteins, the artificial systems also block the transport of protons. PMID:22574988

  2. FAITH Water Channel Flow Visualization

    NASA Video Gallery

    Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

  3. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Suneth P.; Pal, Nibedita; Zheng, Desheng; Lu, H. Peter

    2015-11-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ˜15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  4. Electrostatic Tuning of Permeation and Selectivity in Aquaporin Water Channels

    PubMed Central

    Jensen, Morten Ø.; Tajkhorshid, Emad; Schulten, Klaus

    2003-01-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The movement of the single file water molecules through the channel is concerted, and we show that it can be described by a continuous-time random-walk model. The integrity of the single file remains intact during the permeation, indicating that a disrupted water chain is unlikely to be the mechanism of proton exclusion in aquaporins. Specific hydrogen bonds between permeating water and protein at the channel center (at two conserved Asp-Pro-Ala “NPA” motifs), together with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite water translocation in single file and blocks proton transport. Furthermore, we find that for permeation of a cation, ion-protein electrostatic interactions are more unfavorable at the conserved NPA motifs than at the conserved Arg, suggesting that the major barrier against proton transport in aquaporins is faced at the NPA motifs. PMID:14581193

  5. Electrostatic tuning of permeation and selectivity in aquaporin water channels.

    PubMed

    Jensen, Morten Ø; Tajkhorshid, Emad; Schulten, Klaus

    2003-11-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The movement of the single file water molecules through the channel is concerted, and we show that it can be described by a continuous-time random-walk model. The integrity of the single file remains intact during the permeation, indicating that a disrupted water chain is unlikely to be the mechanism of proton exclusion in aquaporins. Specific hydrogen bonds between permeating water and protein at the channel center (at two conserved Asp-Pro-Ala "NPA" motifs), together with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite water translocation in single file and blocks proton transport. Furthermore, we find that for permeation of a cation, ion-protein electrostatic interactions are more unfavorable at the conserved NPA motifs than at the conserved Arg, suggesting that the major barrier against proton transport in aquaporins is faced at the NPA motifs. PMID:14581193

  6. Computational optimization of synthetic water channels.

    SciTech Connect

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  7. From natural to bioassisted and biomimetic artificial water channel systems.

    PubMed

    Barboiu, Mihail; Gilles, Arnaud

    2013-12-17

    Within biological systems, natural channels and pores transport metabolites across the cell membranes. Researchers have explored artificial ion-channel architectures as potential mimics of natural ionic conduction. All these synthetic systems have produced an impressive collection of alternative artificial ion-channels. Amazingly, researchers have made far less progress in the area of synthetic water channels. The development of synthetic biomimetic water channels and pores could contribute to a better understanding of the natural function of protein channels and could offer new strategies to generate highly selective, advanced water purification systems. Despite the imaginative work by synthetic chemists to produce sophisticated architectures that confine water clusters, most synthetic water channels have used natural proteins channels as the selectivity components, embedded in the diverse arrays of bioassisted artificial systems. These systems combine natural proteins that present high water conductance states under natural conditions with artificial lipidic or polymeric matrixes. Experimental results have demonstrated that natural biomolecules can be used as bioassisted building blocks for the construction of highly selective water transport through artificial membranes. A next step to further the potential of these systems was the design and construction of simpler compounds that maintain the high conduction activity obtained with natural compounds leading to fully synthetic artificial biomimetic systems. Such studies aim to use constitutional selective artificial superstructures for water/proton transport to select functions similar to the natural structures. Moving to simpler water channel systems offers a chance to better understand mechanistic and structural behaviors and to uncover novel interactive water-channels that might parallel those in biomolecular systems. This Account discusses the incipient development of the first artificial water channels

  8. Artificial water channels--incipient innovative developments.

    PubMed

    Barboiu, Mihail

    2016-04-28

    Aquaporins (AQPs) are biological water channels known for fast water transport (∼10(8)-10(9) water molecules per s per channel), with complete proton/ion exclusion. Few synthetic channels have been designed to mimic this high water permeability and to reject ions at a significant level. This Feature Article will discuss the incipient developments of the first artificial water channel systems. PMID:27046217

  9. Expression of aquaporin1, a water channel protein, in cytoplasm is negatively correlated with prognosis of breast cancer patients

    PubMed Central

    Shao, Ying; Liu, Xiaoli; Yang, Limin; Huang, Yong; Fu, Li; Gu, Feng; Ma, Yongjie

    2016-01-01

    Aquaporin1 (AQP1) belongs to a highly conserved family of aquaporin proteins which facilitate water flux across cell membranes. Although emerging evidences indicated the cytoplasm was important for AQP1 localization, the function of AQP1 corresponding to its cytoplasmic distribution has rarely been explored until present. In our clinical study, we reported for the first time that AQP1 was localized dominantly in the cytoplasm of cancer cells of invasive breast cancer patients and cytoplasmic AQP1 was an independent prognostic factor. High expression of AQP1 indicated a shorter survival, especially in luminal subtype. Moreover, in line with our findings in clinic, cytoplasmic expression of AQP1 was further validated in both primary cultured breast cancer cells and AQP1 over-expressing cell lines, in which the functional importance of cytoplasmic AQP1 was confirmed in vitro. In conclusion, our study provided the first evidence that cytoplasmic expression of AQP1 promoted breast cancer progression and it could be a potential prognostic biomarker for breast cancer. PMID:26812884

  10. Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes.

    PubMed

    Noell, Susan; Fallier-Becker, Petra; Beyer, Cordian; Kröger, Stephan; Mack, Andreas F; Wolburg, Hartwig

    2007-10-01

    Agrin is a heparan sulfate proteoglycan of the extracellular matrix and is known for organizing the postsynaptic differentiation of the neuromuscular junction. Increasing evidence also suggests roles for agrin in the developing CNS, including the formation and maintenance of the blood-brain barrier. Here we describe effects of agrin on the expression and distribution of the water channel protein aquaporin-4 (AQP4) and on the swelling capacity of cultured astrocytes of newborn mice. If astrocytes were cultured on a substrate containing poly DL-ornithine, anti-AQP4 immunoreactivity was evenly and diffusely distributed. If, however, astrocytes were cultured in the presence of agrin-conditioned medium, we observed an increase in the intensity of AQP4-specific membrane-associated staining. Freeze-fracture studies revealed a clustering of orthogonal arrays of particles, representing a structural equivalent of AQP4, when exogenous agrin was present in the astrocyte cultures. Neuronal and non-neuronal agrin isoforms (agrin A0B0 and agrin A4B8, respectively) were able to induce membrane-associated AQP4 staining. Water transport capacity as well as the density of orthogonal arrays of intramembranous particles was increased in astrocytes cultured with the neuronal agrin isoform A4B8, but not with the endothelial and meningeal isoform A0B0. RT-PCR demonstrated that agrin A4B8 increased the level of the M23 splice variant of AQP4 and decreased the level of the M1 splice variant of AQP4. Implications for the regulation and maintenance of the blood-brain barrier including oedema formation under pathological conditions are discussed. PMID:17927773

  11. [Ion channels and water channels--a prerequisite for living cells and electric signals in the brain].

    PubMed

    Storm, Johan F

    2003-12-01

    Water channels and ion channels are membrane proteins that transport water and ions into and out of cells with high selectivity and efficiency. Peter Agre and Roderick MacKinnon were awarded the Nobel Prize in chemistry 2003 for their discoveries of the structure of water channels and ion channel proteins, thus explaining basal mechanisms that are fundamental to all forms of life and in particular to the electrical signalling in the brain. These scientific achievements answer questions that biophysicists and physiologists have discussed since the 19th century. PMID:14713970

  12. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy. PMID:24789983

  13. Theoretical and computational studies of microscopic water channels

    NASA Astrophysics Data System (ADS)

    Zhu, Fangqiang

    Water channels are ubiquitous in all life forms. A notable example is aquaporins (AQPs), a family of proteins which mainly function as passive water channels in cell membranes. The availability of the crystal structures of several AQPs in recent years allowed us to study them in atomic details. We performed molecular dynamics (MD) simulations on AQPs in lipid bilayers to study water permeation through these channels. We also simulated water conduction in carbon nanotubes, serving as simplified models for biological channels. We developed theories and methodologies aimed to reproduce and predict important experimental quantities of water channels from simulations. We showed that the diffusion permeability (pd), which is measured by tracer diffusion in experiments, can be calculated from equilibrium MD simulations. In order to calculate the osmotic permeability (p f), which is experimentally measured in the presence of a solute concentration difference, we developed a method to induce a hydrostatic pressure difference across the membrane under periodic boundary conditions. We calculated the osmotic permeability for aquaporin-1 using this method, which agrees with experiments. Using a continuous-time random-walk model, we showed that for single-file water channels, the ratio of p f to pd is roughly equal to the number of water molecules in the channel. Proton transfer through single water file was studied theoretically using network thermodynamics. Finally, we proposed a new model for general water channels, which gives a quantitative relationship between water permeations under equilibrium and non-equilibrium conditions, and therefore allows one to calculate pf from equilibrium MD simulations.

  14. Molecular dynamics insights into human aquaporin 2 water channel.

    PubMed

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney. PMID:26489820

  15. AQP1 is not only a water channel

    PubMed Central

    2010-01-01

    AQPs are water channel proteins. In particular, AQP1 was demonstrated to be involved in cell migration. According to the model proposed by Verkman and collaborators, AQP drives water influx, facilitating lamellipodia extension and cell migration. Investigating the possible connection between AQP1 and cytoskeleton, our group showed that such a water channel through Lin7/β-catenin affects the organization of the cytoskeleton and proposed a model. All together, these data appear particularly intriguing since the use of AQP1 as target might be useful to modulate angiogenesis/vasculogenic mimicry. PMID:20168076

  16. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity. PMID:20091162

  17. 3D flexible water channel: stretchability of nanoscale water bridge

    NASA Astrophysics Data System (ADS)

    Chen, Jige; Wang, Chunlei; Wei, Ning; Wan, Rongzheng; Gao, Yi

    2016-03-01

    Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly dependent upon the polarization strength. More interestingly, we show the possibility of establishing complex water networks, e.g., triangle, rectangle, hexagon, and tetrahedron-tetrahedron water networks. Our results may help realize structurally flexible and environmentally friendly water channels for lab-on-a-chip applications in nanofluidics.Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly

  18. Three-dimensional organization of a human water channel.

    PubMed

    Cheng, A; van Hoek, A N; Yeager, M; Verkman, A S; Mitra, A K

    1997-06-01

    Aquaporins (AQP) are members of the major intrinsic protein (MIP) superfamily of integral membrane proteins and facilitate water transport in various eukaryotes and prokaryotes. The archetypal aquaporin AQP1 is a partly glycosylated water-selective channel that is widely expressed in the plasma membranes of several water-permeable epithelial and endothelial cells. Here we report the three-dimensional structure of deglycosylated, human erythrocyte AQP1, determined at 7 A resolution in the membrane plane by electron crystallography of frozen-hydrated two-dimensional crystals. The structure has an inplane, intramolecular 2-fold axis of symmetry located in the hydrophobic core of the bilayer. The AQP1 monomer is composed of six membrane-spanning, tilted alpha-helices. These helices form a barrel that encloses a vestibular region leading to the water-selective channel, which is outlined by densities attributed to the functionally important NPA boxes and their bridges to the surrounding helices. The intramolecular symmetry within the AQP1 molecule represents a new motif for the topology and design of membrane protein channels, and is a simple and elegant solution to the problem of bidirectional transport across the bilayer. PMID:9177354

  19. Desformylgramicidin: a model channel with an extremely high water permeability.

    PubMed Central

    Saparov, S M; Antonenko, Y N; Koeppe, R E; Pohl, P

    2000-01-01

    The water conductivity of desformylgramicidin exceeds the permeability of gramicidin A by two orders of magnitude. With respect to its single channel hydraulic permeability coefficient of 1.1.10(-12) cm(3) s(-1), desformylgramicidin may serve as a model for extremely permeable aquaporin water channel proteins (AQP4 and AQPZ). This osmotic permeability exceeds the conductivity that is predicted by the theory of single-file transport. It was derived from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double barreled microelectrodes in the immediate vicinity of a planar bilayer. From solvent drag experiments, approximately five water molecules were found to be transported by a single-file process along with one ion through the channel. The single channel proton, potassium, and sodium conductivities were determined to be equal to 17 pS (pH 2.5), 7 and 3 pS, respectively. Under any conditions, the desformyl-channel remains at least 10 times longer in its open state than gramicidin A. PMID:11053127

  20. Dynamics and energetics of water permeation through the aquaporin channel.

    PubMed

    Vidossich, Pietro; Cascella, Michele; Carloni, Paolo

    2004-06-01

    Structural properties of water inside bovine aquaporin-1 are investigated by molecular simulation. The calculations, which are based on the recently determined X-ray structure at 2.2 A resolution (Sui et al., Nature 2001;414:872-878), are carried out on one monomeric subunit immersed in a water-n-octane-water bilayer. Molecular dynamics (MD) simulations suggest that His182, a fully conserved residue in the channel pore, is protonated in the delta position. Furthermore, they reveal a highly ordered water structure in the channel, induced by the electrostatic properties of the protein. Multiple-steering MD simulations are used to calculate the free-energy of water diffusion. To the best of our knowledge, this represents the first free-energy calculation based on the new, high-resolution structure of the pore. The calculated barrier is 2.5 kcal/mol, and it is associated to water permeation through the Asn-Pro-Ala (NPA) region of the pore, where water molecules are only hydrogen-bonded with themselves. These findings are fully consistent with those based on the previous MD studies on the human protein (de Groot and Grubmüller, Science 2001;294:2353-2357). PMID:15146490

  1. 1. INTAKE CHANNEL LOOKING NORTHEAST; WATER FROM BEAVER BROOK ENTERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INTAKE CHANNEL LOOKING NORTHEAST; WATER FROM BEAVER BROOK ENTERS THE INTAKE CHANNEL HERE. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  2. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  3. The dipole moment of membrane proteins: potassium channel protein and beta-subunit.

    PubMed

    Takashima, S

    2001-12-25

    The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins. PMID:11804731

  4. Aquaporin water channels in the nervous system

    PubMed Central

    Papadopoulos, Marios C.; Verkman, Alan S.

    2013-01-01

    The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage. PMID:23481483

  5. Water transport in graphene nano-channels

    NASA Astrophysics Data System (ADS)

    Wagemann, Enrique; Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    2015-11-01

    The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices due to their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate enhancement, defined as the ratio of the computed flow rate to that predicted from the classical Poiseuille model. Moreover, these studies point to the fact that the flow enhancement is a function of channel height and the fluid-wall physical-chemistry. In spite of the intensive research, an explicit relation between the chirality of the graphene walls and the slip length has not been established. In this study, we perform non-equilibrium molecular dynamics simulations of water flow in single- and multi-walled GCs. We examine the influence on the flow rates of dissipating the viscous heat produced by connecting the thermostat to the water molecules, the CNT wall atoms or both of them. From the atomic trajectories, we compute the fluid flow rates in GCs with zig-zag and armchair walls, heights from 1 to 4 nm and different number of graphene layers on the walls. A relation between the chirality, slip length, and flow enhancement is found. We aknowledge partial support from Fondecyt project 11130559 and Redoc udec.

  6. Physiological functions of the TRPM4 channels via protein interactions

    PubMed Central

    Lee, Young-Sun; Kim, Eunju; Hwang, Eun Mi; Park, Jae-Yong

    2015-01-01

    Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are Ca2+-activated Ca2+-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases. [BMB Reports 2015; 48(1): 1-5] PMID:25441424

  7. Gating of the Mechanosensitive Channel Protein MscL: The Interplay of Membrane and Protein

    PubMed Central

    Jeon, Jonggu; Voth, Gregory A.

    2008-01-01

    The mechanosensitive channel of large conductance (MscL) belongs to a family of transmembrane channel proteins in bacteria and functions as a safety valve that relieves the turgor pressure produced by osmotic downshock. MscL gating can be triggered solely by stretching of the membrane. This work reports an effort to understand this mechanotransduction by means of molecular dynamics (MD) simulation on the MscL of mycobacterium tuberculosis embedded in a palmitoyloleoylphosphatidylethanolamine membrane. Equilibrium MD under zero membrane tension produced a more compact protein structure, as measured by its radii of gyration, compared to the crystal structure, in agreement with previous experimental findings. Even under a large applied tension up to 1000 dyn/cm, the MscL lateral dimension largely remained unchanged after up to 20 ns of simulation. A nonequilibrium MD simulation of 3% membrane expansion showed a significant increase in membrane rigidity upon MscL inclusion, which can contribute to efficient mechanotransduction. Direct observation of channel opening was possible only when an explicit lateral bias force was applied to each of the five subunits of MscL in the radially outward direction. Using this force, open structures with a large pore of radius 10 Å could be obtained. The channel opening takes place in a stepwise manner and concurrently with the water chain formation across the channel, which occurs without direct involvement of protein hydrophilic residues. The N-terminal S1 helices stabilize the open structure, and the membrane asymmetry (different lipid density on the two leaflets of membrane) promotes channel opening. PMID:18212020

  8. Ion channel regulation by protein S-acylation

    PubMed Central

    2014-01-01

    Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease. PMID:24821965

  9. Allosteric mechanism of water channel gating by Ca2+–calmodulin

    PubMed Central

    Reichow, Steve L.; Clemens, Daniel M.; Freites, J. Alfredo; Németh-Cahalan, Karin L.; Heyden, Matthias; Tobias, Douglas J.; Hall, James E.; Gonen, Tamir

    2013-01-01

    Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits. PMID:23893133

  10. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  11. Altered sodium channel-protein associations in critical illness myopathy

    PubMed Central

    2012-01-01

    Background During the acute phase of critical illness myopathy (CIM) there is inexcitability of skeletal muscle. In a rat model of CIM, muscle inexcitability is due to inactivation of sodium channels. A major contributor to this sodium channel inactivation is a hyperpolarized shift in the voltage dependence of sodium channel inactivation. The goal of the current study was to find a biochemical correlate of the hyperpolarized shift in sodium channel inactivation. Methods The rat model of CIM was generated by cutting the sciatic nerve and subsequent injections of dexamethasone for 7 days. Skeletal muscle membranes were prepared from gastrocnemius muscles, and purification and biochemical analyses carried out. Immunoprecipitations were performed with a pan-sodium channel antibody, and the resulting complexes probed in Western blots with various antibodies. Results We carried out analyses of sodium channel glycosylation, phosphorylation, and association with other proteins. Although there was some loss of channel glycosylation in the disease, as assessed by size analysis of glycosylated and de-glycosylated protein in control and CIM samples, previous work by other investigators suggest that such loss would most likely shift channel inactivation gating in a depolarizing direction; thus such loss was viewed as compensatory rather than causative of the disease. A phosphorylation site at serine 487 was identified on the NaV 1.4 sodium channel α subunit, but there was no clear evidence of altered phosphorylation in the disease. Co-immunoprecipitation experiments carried out with a pan-sodium channel antibody confirmed that the sodium channel was associated with proteins of the dystrophin associated protein complex (DAPC). This complex differed between control and CIM samples. Syntrophin, dystrophin, and plectin associated strongly with sodium channels in both control and disease conditions, while β-dystroglycan and neuronal nitric oxide synthase (nNOS) associated

  12. Water hardness influences Flavobacterium columnare pathogenesis in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine aspects of water chemistry responsible for large differences in pathogenesis and mortality rates in challenges of channel catfish Ictalurus punctatus with Flavobacterium columnare; challenges were conducted in water supplying the Stuttgart National Aquaculture Res...

  13. Experimental studies toward the characterization of Inmetro's circulating water channel

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Alho, A. T. P.; Garcia, D. A.; Farias, M. H.; Massari, P. L.; Silva, V. V. S.

    2016-07-01

    Circulating water channels are facilities which can be used for conducting environmental, metrological and engineering studies. The Brazilian National Institute of Metrology-INMETRO has a water channel of innovative design, and the present work deals with the prior experimental investigation of its hydrodynamics performance. By using the optical technique PIV - Particle Image Velocimetry, under certain conditions, the velocity profile behavior in a region inside the channel was analyzed in order to evaluate the scope of applicability of such bench.

  14. IDENTIFICATION OF RESONANCE WAVES IN OPEN WATER CHANNELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article presents a procedure to determine the characteristics of open water channels required for controller and filter design, with special focus on the resonance waves. Also, a new simplified model structure for open water channels is proposed. The procedure applies System Identification tool...

  15. Human PIEZO1 Ion Channel Functions as a Split Protein.

    PubMed

    Bae, Chilman; Suchyna, Thomas M; Ziegler, Lynn; Sachs, Frederick; Gottlieb, Philip A

    2016-01-01

    PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the "split protein" is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone. PMID:26963637

  16. Regulation of heartbeat by G protein-coupled ion channels.

    PubMed

    Brown, A M

    1990-12-01

    The coupling of ion channels to receptors by G proteins is the subject of this American Physiological Society Walter B. Cannon Memorial "Physiology in Perspective" Lecture. This subject is particularly appropriate because it includes a molecular explanation of a homeostatic mechanism involving the autonomic nervous system and the latter subject preoccupied Dr. Cannon during most of his career. With the use of reconstitution methods, we and others have shown that heterotrimeric guanine nucleotide-binding (G) proteins couple receptors to ion channels by both membrane-delimited, direct pathways and cytoplasmic second messenger pathways. Furthermore, one set of receptors may be coupled to as many as three different sets of ion channels to form networks. Dual G protein pathways lead to the prediction of biphasic ion current responses in cell signaling, and this prediction was confirmed. In sinoatrial pacemaker cells, the pacemaking hyperpolarization-activated inward current (If) is directly regulated by the G proteins Gs and Go, and the two can act simultaneously. This could explain the classical observation that vagal inhibition of heart rate is greater during sympathetic stimulation. Because deactivation of the muscarinic response occurs much faster than the G protein alpha-subunit hydrolyzes guanosine 5'-triphosphate, we looked for accessory cellular factors. A surprising result was that the small monomeric ras G protein blocked the muscarinic pathway. The significance of this observation is unknown, but it appears that small and large G proteins may interact in ion channel signaling pathways. PMID:1701981

  17. Water Stress and Protein Synthesis

    PubMed Central

    Dhindsa, R. S.; Cleland, R. E.

    1975-01-01

    Water stress causes a reduction in hydrostatic pressure and can cause an increase in abscisic acid in plant tissues. To assess the possible role of abscisic acid and hydrostatic pressure in water stress effects, we have compared the effects of water stress, abscisic acid, and an imposed hydrostatic pressure on the rate and pattern of protein synthesis in Avena coleoptiles. Water stress reduces the rate and changes the pattern of protein synthesis as judged by a double labeling ratio technique, Abscisic acid reduces the rate but does not alter the pattern of protein synthesis. Gibberellic acid reverses the abscisic acid-induced but not the stress-induced inhibition of protein synthesis. The effect of hydrostatic pressure depends on the gas used. With a 19: 1 N2-air mixture, the rate of protein synthesis is increased in stressed but not in turgid tissues. An imposed hydrostatic pressure alters the pattern of synthesis in stressed tissues, but does not restore the pattern to that found in turgid tissues. Because of the differences in response, we conclude that water stress does not affect protein synthesis via abscisic acid or reduced hydrostatic pressure. PMID:16659167

  18. Protein 4.1 and the control of ion channels.

    PubMed

    Baines, Anthony J; Bennett, Pauline M; Carter, Edward W; Terracciano, Cesare

    2009-01-01

    The classical function of 4.1R in red blood cells is to contribute to the mechanochemical properties of the membrane by promoting the interaction between spectrin and actin. More recently, it has been recognized that 4.1R is required for the stable cell surface accumulation of a number of erythrocyte membrane proteins. 4.1R is one member of the mammalian 4.1 family - the others being 4.1N, 4.1G and 4.1B - and is expressed in many cell types other than erythrocytes. Recently we have examined the phenotype of hearts from 4.1R knockout mice. Although they had a generally normal morphology, these hearts exhibited bradycardia, and prolongation of both action potentials and QT intervals. Electrophysiological analysis revealed anomalies in a range of ion channel activities. In addition, the immunoreactivity of voltage-gated Na(+) channel NaV1.5 was reduced, indicating a role for 4.1R in the cellular accumulation of this ion channel. 4.1 proteins also have roles in the accumulation of at least two other classes of ion channel. In epithelia, 4.1 interacts with the store-operated channel TRPC4. In neurons, the ligand-gated channels GluR1 and GluR4 require 4.1 proteins for cell surface accumulation. The spectrum of transmembrane proteins that bind to 4.1 proteins overlaps with that of ankyrin. A hypothesis to investigate in the future is that differential regulation of 4.1 and ankyrins (e.g. by PIP(2)) allows highly selective control of cell surface accumulation and transport activity of a specific range of ion channels. PMID:19272819

  19. Analysis of water channels by molecular dynamics simulation of heterotetrameric sarcosine oxidase

    PubMed Central

    Watanabe, Go; Nakajima, Daisuke; Hiroshima, Akinori; Suzuki, Haruo; Yoneda, Shigetaka

    2015-01-01

    A precise 100-ns molecular dynamics simulation in aquo was performed for the heterotetrameric sarcosine oxidase bound with a substrate analogue, dimethylglycine. The spatial region including the protein was divided into small rectangular cells. The average number of the water molecules locating within each cell was calculated based on the simulation trajectory. The clusters of the cells filled with water molecules were used to determine the water channels. The narrowness of the channels, the average hydropathy indices of the residues of the channels, and the number of migration events of water molecules through the channels were consistent with the selective transport hypothesis whereby tunnel T3 is the pathway for the exit of the iminium intermediate of the enzyme reaction. PMID:27493862

  20. Human PIEZO1 Ion Channel Functions as a Split Protein

    PubMed Central

    Bae, Chilman; Suchyna, Thomas M.; Ziegler, Lynn; Sachs, Frederick; Gottlieb, Philip A.

    2016-01-01

    PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the “split protein” is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone. PMID:26963637

  1. Protein complex analysis of native brain potassium channels by proteomics.

    PubMed

    Sandoz, Guillaume; Lesage, Florian

    2008-01-01

    TREK potassium channels belong to a family of channel subunits with two-pore domains (K(2P)). TREK1 knockout mice display impaired polyunsaturated fatty acid-mediated protection against brain ischemia, reduced sensitivity to volatile anesthetics, resistance to depression and altered perception of pain. Recently, we isolated native TREK1 channels from mouse brain and identified their specific components by mass spectrometry. Among the identified partners, the A-Kinase Anchoring Protein AKAP150 binds to a regulatory domain of TREK1 and acts as a molecular switch. It transforms low activity, outwardly rectifying TREK1 currents into robust leak conductances resistant to stimulation by arachidonic acid, membrane stretch and acidification. Inhibition of the TREK1/AKAP150 channel by Gs-coupled receptors is as extensive as for TREK1 alone (but faster) whereas inhibition of TREK1/AKAP150 by Gq-coupled receptors is reduced. Furthermore, the association of AKAP150 with TREK1 channels integrates them into postsynaptic scaffolds where G protein-coupled membrane receptors and channels dock simultaneously. This chapter describes the proteomic approach used to study the composition of native TREK1 channels and point out its advantages and limitations over more classical methods (two-hybrid screenings in the yeast and bacteria or GST-pull down). PMID:18998088

  2. Electrical detection of protein biomarkers using bioactivated microfluidic channels

    PubMed Central

    Javanmard, Mehdi; Talasaz, Amirali H.; Nemat-Gorgani, Mohsen; Pease, Fabian; Ronaghi, Mostafa; Davis, Ronald W.

    2009-01-01

    Current methods used for analyzing biomarkers involve expensive and time consuming techniques like the Sandwich ELISA which require lengthy incubation times, high reagent costs, and bulky optical equipment. We have developed a technique involving the use of a micro-channel with integrated electrodes, functionalized with receptors specific to target biomarkers. We have applied our biochip to the rapid electrical detection and quantification of target protein biomarkers using protein functionalized micro-channels. We successfully demonstrate detection of anti-hCG antibody, at a concentration of 1 ng ml−1 and a dynamic range of three orders of magnitude, in less than one hour. We envision the use of this technique in a handheld device for multiplex high throughput analysis using an array of micro-channels for probing various protein biomarkers in clinically relevant samples such as human serum for cancer detection. PMID:19417910

  3. Electrical detection of protein biomarkers using bioactivated microfluidic channels.

    PubMed

    Javanmard, Mehdi; Talasaz, Amirali H; Nemat-Gorgani, Mohsen; Pease, Fabian; Ronaghi, Mostafa; Davis, Ronald W

    2009-05-21

    Current methods used for analyzing biomarkers involve expensive and time consuming techniques like the Sandwich ELISA which require lengthy incubation times, high reagent costs, and bulky optical equipment. We have developed a technique involving the use of a micro-channel with integrated electrodes, functionalized with receptors specific to target biomarkers. We have applied our biochip to the rapid electrical detection and quantification of target protein biomarkers using protein functionalized micro-channels. We successfully demonstrate detection of anti-hCG antibody, at a concentration of 1 ng ml(-1) and a dynamic range of three orders of magnitude, in less than one hour. We envision the use of this technique in a handheld device for multiplex high throughput analysis using an array of micro-channels for probing various protein biomarkers in clinically relevant samples such as human serum for cancer detection. PMID:19417910

  4. Interaction of ion channels and receptors with PDZ domain proteins.

    PubMed

    Kornau, H C; Seeburg, P H; Kennedy, M B

    1997-06-01

    The complex anatomy of neurons demands a high degree of functional organization. Therefore, membrane receptors and ion channels are often localized to selected subcellular sites and coupled to specific signal transduction machineries. PDZ domains have come into focus as protein interaction modules that mediate the binding of a class of submembraneous proteins to membrane receptors and ion channels and thus subserve these organizational aspects. The structures of two PDZ domains have been resolved, which has led to a structural understanding of the specificity of interactions of various PDZ domains with their respective partners. The functional implications of PDZ domain interactions are now being addressed in vitro and in vivo. PMID:9232802

  5. Protein-protein interactions among ion channels regulate ion transport in the kidney.

    PubMed

    Boulpaep, E

    2009-01-01

    Epithelial ion transport in various organs has long been known to be controlled by extracellular agonists acting via membrane receptors or by intracellular messengers. Evidence is mounting for regulation of transport by direct interaction among membrane proteins or between a membrane transport protein and membrane-attached proteins. The membrane protein CFTR (Cystic Fibrosis Transmembrane Regulator) is widely expressed along the length of the nephron, but its role as a chloride channel does not appear to be critical for renal handling of salt and water. It is well established that the inward rectifying K channels (ROMK = Kir 1.1) in the thick ascending limb of Henle and in principal cells of the collecting duct are inhibited by millimolar concentrations of cytosolic Mg-ATP. However, the mechanism of this inhibition has been an enigma. We propose that the ATP-Binding Cassette (ABC) protein CFTR is a cofactor for Kir 1.1 regulation. Indeed, Mg-ATP sensitivity of Kir 1.1 is completely absent in two different mouse models of cystic fibrosis. In addition, the open-closed state of CFTR appears to provide a molecular gating switch that prevents or facilitates the ATP sensing of Kir 1.1. Does Mg-ATP sensing by the CFTR- Kir 1.1 complex play a role in coupling metabolism to ion transport? Physiological intracellular ATP concentrations in tubule cells are in the millimolar range, a saturating concentration for the gating of Kir 1.1 by Mg-ATP. Therefore, Kir 1.1 channels would be closed and unable to contribute to regulation of potassium secretion unless some other process modulated the CFTR-dependent ATP-sensitivity of Kir 1.1. The third component of the metabolic sensor-effector complex for Kir 1.1 regulation is most likely the AMP-regulated serine-threonine kinase, AMP kinase (AMPK). Changing levels in AMP rather than in ATP constitute the metabolic signal "sensed" by tubule cells. Because AMPK inhibits CFTR by modulating CFTR channel gating, we propose that renal K

  6. Water transportation across narrow channel of nanometer dimension

    NASA Astrophysics Data System (ADS)

    Wan, Rongzheng; Fang, Haiping

    2010-06-01

    Since the discovery of the carbon nanotube and aquaporin, the study of the transportation of water across nanochannels has become one of the hot subjects. When the radius of a nanochannel is only about one nanometer or a little larger, water confined in those nanoscale channels usually exhibits dynamics different from those in bulk system, such as the wet-dry transition due to the confinement, concerted hydrogen-bond orientations and flipping, concerted motion of water molecules, and strong interactions with external charges. Those dynamics correlate with the unique behavior of the water transportation across the channels, such as the extra-high permeability, excellent on-off gating behavior with response to the external mechanical and electrical signals and noises, enhancement by structure outside the channel, directional transportation driven by charges close to a channel or electric field. In this article, we review some of the recent progress on the study of the water molecules inside those narrow nanochannels.

  7. Physiological evidence that pyramidal neurons lack functional water channels.

    PubMed

    Andrew, R David; Labron, Mark W; Boehnke, Susan E; Carnduff, Lisa; Kirov, Sergei A

    2007-04-01

    The physiological conditions that swell mammalian neurons are clinically important but contentious. Distinguishing the neuronal component of brain swelling requires viewing intact neuronal cell bodies, dendrites, and axons and measuring their changing volume in real time. Cultured or dissociated neuronal somata swell within minutes under acutely overhydrated conditions and shrink when strongly dehydrated. But paradoxically, most central nervous system (CNS) neurons do not express aquaporins, the membrane channels that conduct osmotically driven water. Using 2-photon laser scanning microscopy (2PLSM), we monitored neuronal volume under osmotic stress in real time. Specifically, the volume of pyramidal neurons in cerebral cortex and axon terminals comprising cerebellar mossy fibers was measured deep within live brain slices. The expected swelling or shrinking of the gray matter was confirmed by recording altered light transmittance and by indirectly measuring extracellular resistance over a wide osmotic range of -80 to +80 milliOsmoles (mOsm). Neurons expressing green fluorescent protein were then imaged with 2PLSM between -40 and +80 mOsm over 20 min. Surprisingly, pyramidal somata, dendrites, and spines steadfastly maintained their volume, as did the cerebellar axon terminals. This precluded a need for the neurons to acutely regulate volume, preserved their intrinsic electrophysiological stability, and confirmed that these CNS nerve cells lack functional aquaporins. Thus, whereas water easily permeates the aquaporin-rich endothelia and glia driving osmotic brain swelling, neurons tenatiously maintain their volume. However, these same neurons then swell dramatically upon oxygen/glucose deprivation or [K+]0 elevation, so prolonged depolarization (as during stroke or seizure) apparently swells neurons by opening nonaquaporin channels to water. PMID:16723408

  8. WATER TEMPERATURE DYNAMICS IN EXPERIMENTAL FIELD CHANNELS: ANALYSIS AND MODELING

    EPA Science Inventory

    This study is on water temperature dynamics in the shallow field channels of the USEPA Monticello Ecological Research Station (MERS). The hydraulic and temperature environment in the MERS channels was measured and simulated to provide some background for several biological studie...

  9. Erosional processes in channelized water flows on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  10. Regulation of the epithelial sodium channel by accessory proteins.

    PubMed Central

    Gormley, Kelly; Dong, Yanbin; Sagnella, Giuseppe A

    2003-01-01

    The epithelial sodium channel (ENaC) is of fundamental importance in the control of sodium fluxes in epithelial cells. Modulation of sodium reabsorption through the distal nephron ENaC is an important component in the overall control of sodium balance, blood volume and thereby of blood pressure. This is clearly demonstrated by rare genetic disorders of sodium-channel activity (Liddle's syndrome and pseudohypoaldosteronism type 1), associated with contrasting effects on blood pressure. The mineralocorticoid aldosterone is a well-established modulator of sodium-channel activity. Considerable insight has now been gained into the intracellular signalling pathways linking aldosterone-mediated changes in gene transcription with changes in ion transport. Activating pathways include aldosterone-induced proteins and especially the serum- and glucocorticoid-inducible kinase (SGK) and the small G-protein, K-Ras 2A. Targeting of the ENaC for endocytosis and degradation is now emerging as a major mechanism for the down-regulation of channel activity. Several proteins acting in concert are an intrinsic part of this process but Nedd4 (neural precursor cell expressed developmentally down-regulated 4) is of central importance. Other mechanisms known to interact with ENaC and affect sodium transport include channel-activating protease 1 (CAP-1), a membrane-anchored protein, and the cystic fibrosis transmembrane regulator. The implications of research on accessory factors controlling ENaC activity are wide-ranging. Understanding cellular mechanisms controlling ENaC activity may provide a more detailed insight not only of ion-channel abnormalities in cystic fibrosis but also of the link between abnormal renal sodium transport and essential hypertension. PMID:12460120

  11. Polarized Water Wires under Confinement in Chiral Channels.

    PubMed

    Barboiu, Mihail; Cazade, Pierre-André; Le Duc, Yann; Legrand, Yves-Marie; van der Lee, Arie; Coasne, Benoit

    2015-07-16

    The alignment of water molecules along chiral pores may activate proton/ion conduction along dipolar hydrophilic pathways. Here we show that a simple synthetic "T-channel" forms a directional pore with its carbonyl moieties solvated by chiral helical water wires. Atom-scale simulations and experimental crystallographic assays reveal a dynamical structure of water and electrolyte solutions (alkali metal chlorides) confined in these organic T-channels. Oscillations in the dipole orientation, which correspond to alternative ordering (dipole up-dipole down) of the water molecules with a period of about 4.2 Å (imposed by the distance between two successive carbonyl groups) are observed. When ions are added to the system, despite the strong Coulombic water/ion interaction, confined water remains significantly ordered in the T-channel and still exhibits surface-induced polarization. Cation permeation can be achieved through alternated hydration-dehydration occurring along strongly oriented water wires. The T-channel, which exhibits chirality with strong water orientation, provides an opportunity to unravel novel water-channel systems that share many interesting properties of biomolecular systems. PMID:26090910

  12. Impaired olfaction in mice lacking aquaporin-4 water channels

    PubMed Central

    Lu, Daniel C.; Zhang, Hua; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had ∼12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 ± 0.7 vs. 55 ± 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 ± 0.07 vs. 0.28 ± 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K+ buffering in the olfactory epithelium.—Lu, D. C., Zhang, H., Zador, Z., Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. PMID:18511552

  13. 11. SETTLING TANK OVERFLOW CHANNEL, NORTH SIDE. Hondius Water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SETTLING TANK OVERFLOW CHANNEL, NORTH SIDE. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  14. John Moulton Homestead, water channel with board cover for walkway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Moulton Homestead, water channel with board cover for walkway to house, looking east - John Moulton Homestead, Northwest corner of Mormon Row Road and Antelope Flats Road, Kelly, Teton County, WY

  15. Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation.

    PubMed

    Licsandru, Erol; Kocsis, Istvan; Shen, Yue-Xiao; Murail, Samuel; Legrand, Yves-Marie; van der Lee, Arie; Tsai, Daniel; Baaden, Marc; Kumar, Manish; Barboiu, Mihail

    2016-04-27

    Aquaporins (AQPs) are biological water channels known for fast water transport (∼10(8)-10(9) molecules/s/channel) with ion exclusion. Few synthetic channels have been designed to mimic this high water permeability, and none reject ions at a significant level. Selective water translocation has previously been shown to depend on water-wires spanning the AQP pore that reverse their orientation, combined with correlated channel motions. No quantitative correlation between the dipolar orientation of the water-wires and their effects on water and proton translocation has been reported. Here, we use complementary X-ray structural data, bilayer transport experiments, and molecular dynamics (MD) simulations to gain key insights and quantify transport. We report artificial imidazole-quartet water channels with 2.6 Å pores, similar to AQP channels, that encapsulate oriented dipolar water-wires in a confined chiral conduit. These channels are able to transport ∼10(6) water molecules/s, which is within 2 orders of magnitude of AQPs' rates, and reject all ions except protons. The proton conductance is high (∼5 H(+)/s/channel) and approximately half that of the M2 proton channel at neutral pH. Chirality is a key feature influencing channel efficiency. PMID:27063409

  16. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  17. Inhibition of Voltage-Gated Calcium Channels by RGK Proteins.

    PubMed

    Buraei, Zafir; Yang, Jian

    2015-01-01

    Due to their essential biological roles, voltage-gated calcium channels (VGCCs) are regulated by a myriad of molecules and mechanisms. Fifteen years ago, RGK proteins were discovered to bind the VGCC β subunit (Cavβ) and potently inhibit high-voltage activated Ca(2+) channels. RGKs (Rad, Rem, Rem2 and Gem/Kir) are a family of monomeric small GTPases belonging to the superfamily of Ras GTPases. They exert dual inhibitory effects on VGCCs, decreasing surface expression and suppressing surface channels through immobilization of the voltage sensor or reduction of channel open probability. While Cavβ is required for all forms of RGK inhibition, not all inhibition is mediated by the RGK-Cavβ interaction. Some RGK proteins also interact directly with the pore-forming α1 subunit of some types of VGCCs (Cavα1). Importantly, RGK proteins tonically inhibit VGCCs in native cells, regulating cardiac and neural functions. This minireview summarizes the mechanisms, molecular determinants, and physiological impact of RGK inhibition of VGCCs. PMID:25966691

  18. Model studies of dense water overflows in the Faroese Channels

    NASA Astrophysics Data System (ADS)

    Cuthbertson, Alan; Davies, Peter; Stashchuk, Nataliya; Vlasenko, Vasiliy

    2014-01-01

    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with

  19. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  20. 5. GATE 5, INTAKE CHANNEL LOOKING SOUTH; WATER FROM GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GATE 5, INTAKE CHANNEL LOOKING SOUTH; WATER FROM GATE 5 ENTERED DITCH AND IRRIGATED HONDIUS' FIELDS. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  1. ThermoTRP channels as modular proteins with allosteric gating.

    PubMed

    Latorre, Ramon; Brauchi, Sebastian; Orta, Gerardo; Zaelzer, Cristián; Vargas, Guillermo

    2007-01-01

    Ion channels activate by sensing stimuli such as membrane voltage, ligand binding or temperature and transduce this information into conformational changes that open the channel pore. Thus, a key question in understanding ion channel function is how do the protein domains involved in sensing stimuli (sensors) and opening the pore (gates) communicate. In this regard, transient receptor potential (TRP) channels that confer thermosensation [A. Dhaka, V. Viswanath, A. Patapoutian, TRP ion channels and temperature sensation, Annu. Rev. Neurosci. 29 (2006) 135-161; I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels, Annu. Rev. Physiol. 68 (2006) 619-647] (thermoTRP; Q(10)>10) are unique to the extent that they integrate a variety of physical and chemical stimuli. In some cases such as, for example, the vanilloid receptor TRPV1 [M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature 389 (1997) 816-824] and TRPA1 [G.M. Story, A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures, Cell 112 (2003) 819-829; S. Jordt, D. Julius, Molecular basis for species-specific sensitivity to "hot" chilli peppers, Cell 108 (2002) 421-430] the integration of these stimuli elicit pain [M. Tominaga, M.J. Caterina, A.B. Malmberg, T.A. Rosen, H. Gilbert, K. Skinner, B.E. Raumann, A.I. Basbaum, D. Julius, The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 21 (1998) 531-543; M. Bandell, A. Dubin, M. Petrus, A. Orth, J. Mathur, S. Hwang, A. Patapoutian, High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol, Nat. Neurosci. 9 (2006) 466-468; S. Zurborg, B. Yurgionas, JA. Jira, O

  2. Hydrology of melt-water channels in southwestern Minnesota

    USGS Publications Warehouse

    Thompson, Gerald L.

    1965-01-01

    Melt-water channel deposits are among the most important aquifers in southwestern Minnesota, but permeable zones within the deposits are difficult to locate. Interpretation of the depositional history of proglacial channel deposits from aerial photographs and test-hole samples indicates the position of the permeable zones. Generally, the coarse-grained deposits are in headwater areas, near the confluence of two channels, in bends, or at the junction of sluiceways. Locally, these deposits yield as much as 1,000 gallons per minute to wells.

  3. Erosive dynamics of channels incised by subsurface water flow

    NASA Astrophysics Data System (ADS)

    Lobkovsky, Alexander E.; Smith, Braunen E.; Kudrolli, Arshad; Mohrig, David C.; Rothman, Daniel H.

    2007-09-01

    We propose a dynamical model for channels incised into an erodible bed by subsurface water flow. The model is validated by the time-resolved topographic measurements of channel growth in a laboratory-scale experiment. Surface heights in the experiment are measured via a novel laser-aided imaging technique. The erosion rate in the model is composed of diffusive and advective components as well as a simple driving term due to the seeping water. Steady driving conditions may exist whenever channels are incised into a flat and level erodible bed by a water table replenished via steady (on average) rainfall. Under such steady driving conditions, the model predicts an asymptotically self-similar growing shape for the channel transects. Conversely, given a transect shape that evolved under steady driving conditions and an estimate of the erosion rate at the bottom of the channel, granular transport coefficients can be inferred from the static channel shape. We report an estimate of these transport coefficients for a system of ravines incised into unconsolidated sand in the Apalachicola River basin, Florida.

  4. Effects of water-channel attractions on single-file water permeation through nanochannels

    NASA Astrophysics Data System (ADS)

    Xu, Yousheng; Tian, Xingling; Lv, Mei; Deng, Maolin; He, Bing; Xiu, Peng; Tu, Yusong; Zheng, Youqu

    2016-07-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single

  5. Proteins Take up Water Before Unfolding.

    PubMed

    Groot, Carien C M; Bakker, Huib J

    2016-05-19

    Proteins perform specific biological functions that strongly depend on their three-dimensional structure. This three-dimensional structure, i.e. the way the protein folds, is strongly determined by the interaction between the protein and the water solvent. We study the dynamics of water in aqueous solutions of several globular proteins at different degrees of urea-induced unfolding, using polarization-resolved femtosecond infrared spectroscopy. We observe that a fraction of the water molecules is strongly slowed down by their interaction with the protein surface. By monitoring the slow water fraction we can directly probe the amount of water-exposed protein surface. We find that at mild denaturing conditions, the water-exposed surface increases by almost 50%, while the secondary structure is still intact. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter. PMID:27120433

  6. Dynamic regulation of aquaporin-4 water channels in neurological disorders

    PubMed Central

    Hsu, Ying; Tran, Minh; Linninger, Andreas A.

    2015-01-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  7. Dynamic regulation of aquaporin-4 water channels in neurological disorders.

    PubMed

    Hsu, Ying; Tran, Minh; Linninger, Andreas A

    2015-10-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  8. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  9. Novel Channel Enzyme Fusion Proteins Confer Arsenate Resistance*

    PubMed Central

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-01-01

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H2AsVO4−/HAsVO42−) to arsenite (AsIII(OH)3) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  10. Control of the Aquaporin-4 Channel Water Permeability by Structural Dynamics of Aromatic/Arginine Selectivity Filter Residues.

    PubMed

    Kitchen, Philip; Conner, Alex C

    2015-11-17

    The aquaporins (AQPs) make up a family of integral membrane proteins that control cellular water flow. Gating of the water channel by conformational changes induced by phosphorylation or protein-protein interactions is an established regulatory mechanism for AQPs. Recent in silico and crystallographic analyses of the structural biology of AQPs suggest that the rate of water flow can also be controlled by small movements of single-amino acid side chains lining the water pore. Here we use measurements of the membrane water permeability of mammalian cells expressing AQP4 mutants to provide the first in vitro evidence in support of this hypothesis. PMID:26512424

  11. On shallow water rogue wave formation in strongly inhomogeneous channels

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Pelinovsky, Efim

    2016-05-01

    Rogue wave formation in shallow water is often governed by dispersive focusing and wave-bottom interaction. In this study we try to combine these mechanisms by considering dispersive nonreflecting wave propagation in shallow strongly inhomogeneous channels. Nonreflecting wave propagation provides extreme wave amplification and the transfer of wave energy over large distances, while dispersive effects allow formation of a short-lived wave of extreme height (rogue wave). We found several types of water channels, where this mechanism can be realized, including (i) channels with a monotonically decreasing cross-section (normal dispersion), (ii) an inland basin described by a half of elliptic paraboloid (abnormal dispersion) and (iii) an underwater hill described by a half of hyperbolic paraboloid (normal dispersion). Conditions for variations of local frequency in the wave train providing optimal focusing of the wave train are also found.

  12. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  13. Proton-coupled protein transport through the anthrax toxin channel

    PubMed Central

    Finkelstein, Alan

    2008-01-01

    Anthrax toxin consists of three proteins (approx. 90 kDa each): lethal factor (LF); oedema factor (OF); and protective antigen (PA). The former two are enzymes that act when they reach the cytosol of a targeted cell. To enter the cytosol, however, which they do after being endocytosed into an acidic vesicle compartment, they require the third component, PA. PA (or rather its proteolytically generated fragment PA63) forms at low pH a heptameric β-barrel channel, (PA63)7, through which LF and OF are transported—a phenomenon we have demonstrated in planar phospholipid bilayers. It might appear that (PA63)7 simply forms a large hole through which LF and OF diffuse. However, LF and OF are folded proteins, much too large to fit through the approximately 15 Å diameter (PA63)7 β-barrel. This paper discusses how the (PA63)7 channel both participates in the unfolding of LF and OF and functions in their translocation as a proton–protein symporter. PMID:18957378

  14. Topology of transmembrane channel-like gene 1 protein.

    PubMed

    Labay, Valentina; Weichert, Rachel M; Makishima, Tomoko; Griffith, Andrew J

    2010-10-01

    Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels. PMID:20672865

  15. Structure of the native Sec61 protein-conducting channel

    PubMed Central

    Pfeffer, Stefan; Burbaum, Laura; Unverdorben, Pia; Pech, Markus; Chen, Yuxiang; Zimmermann, Richard; Beckmann, Roland; Förster, Friedrich

    2015-01-01

    In mammalian cells, secretory and membrane proteins are translocated across or inserted into the endoplasmic reticulum (ER) membrane by the universally conserved protein-conducting channel Sec61, which has been structurally studied in isolated, detergent-solubilized states. Here we structurally and functionally characterize native, non-solubilized ribosome-Sec61 complexes on rough ER vesicles using cryo-electron tomography and ribosome profiling. Surprisingly, the 9-Å resolution subtomogram average reveals Sec61 in a laterally open conformation, even though the channel is not in the process of inserting membrane proteins into the lipid bilayer. In contrast to recent mechanistic models for polypeptide translocation and insertion, our results indicate that the laterally open conformation of Sec61 is the only conformation present in the ribosome-bound translocon complex, independent of its functional state. Consistent with earlier functional studies, our structure suggests that the ribosome alone, even without a nascent chain, is sufficient for lateral opening of Sec61 in a lipid environment. PMID:26411746

  16. The stream channel incision syndrome and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed development often triggers channel incision, which accounts for 60-90% of sediments leaving many disturbed watersheds. Impacts of such incision on water quality processes and the implication of such impairment on stream biota are relevant to issues associated with establishing total maxim...

  17. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP.

    PubMed

    Maurel, C; Kado, R T; Guern, J; Chrispeels, M J

    1995-07-01

    The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7542585

  18. Functional analysis of putative genes encoding the PIP2 water channel subfamily in Populus trichocarpa.

    PubMed

    Secchi, Francesca; MacIver, Bryce; Zeidel, Mark L; Zwieniecki, Maciej A

    2009-11-01

    We located fully sequenced putative genes of the plasma membrane intrinsic proteins (PIPs) family in the Populus trichocarpa (Torr. Gray), genome. Of 23 gene candidates, we assigned eight genes to the PIP2 subfamily. All eight putative genes were expressed in vegetative tissues (roots, leaves, bark and wood), and all of them showed water channel activity after being expressed in Xenopus oocytes. Six of eight proteins were affected by mercury ions. No proteins were affected by the presence of nickel or tungsten ions, or by lowering the pH of bathing external solution from 7.4 to 6.5. The presence of copper ions caused seven of eight PIP2 proteins to increase their water transport capacity by as much as 50%. This systematic study of the PIP2 subfamily of proteins in P. trichocarpa provides a basic overview of their activity as water channels and will be a useful reference for future physiological studies of plant water relations that use P. trichocarpa as a model system. PMID:19808706

  19. Protein-protein interactions in intracellular Ca2+-release channel function.

    PubMed Central

    MacKrill, J J

    1999-01-01

    Release of Ca2+ ions from intracellular stores can occur via two classes of Ca2+-release channel (CRC) protein, the inositol 1,4, 5-trisphosphate receptors (InsP3Rs) and the ryanodine receptors (RyRs). Multiple isoforms and subtypes of each CRC class display distinct but overlapping distributions within mammalian tissues. InsP3Rs and RyRs interact with a plethora of accessory proteins which modulate the activity of their intrinsic channels. Although many aspects of CRC structure and function have been reviewed in recent years, the properties of proteins with which they interact has not been comprehensively surveyed, despite extensive current research on the roles of these modulators. The aim of this article is to review the regulation of CRC activity by accessory proteins and, wherever possible, to outline the structural details of such interactions. The CRCs are large transmembrane proteins, with the bulk of their structure located cytoplasmically. Intra- and inter-complex protein-protein interactions between these cytoplasmic domains also regulate CRC function. Some accessory proteins modulate channel activity of all CRC subtypes characterized, whereas other have class- or even isoform-specific effects. Certain accessory proteins exert both direct and indirect forms of regulation on CRCs, occasionally with opposing effects. Others are themselves modulated by changes in Ca2+ concentration, thereby participating in feedback mechanisms acting on InsP3R and RyR activity. CRCs are therefore capable of integrating numerous signalling events within a cell by virtue of such protein-protein interactions. Consequently, the functional properties of InsP3Rs and RyRs within particular cells and subcellular domains are 'customized' by the accessory proteins present. PMID:9895277

  20. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins.

    PubMed

    Solé-Magdalena, Antonio; Revuelta, Enrique G; Menénez-Díaz, Ivan; Calavia, Marta G; Cobo, Teresa; García-Suárez, Olivia; Pérez-Piñera, Pablo; De Carlos, Felix; Cobo, Juan; Vega, Jose A

    2011-05-01

    Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa(+) C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa(+) C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa(+) C. The intensity of immunostaining was high for β-ENa(+) C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa(+) C, and TRPV4, being absent for α-ENa(+) C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission. PMID:20836083

  1. Channel Extension in Deep-Water Distributive Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  2. High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes

    PubMed Central

    2012-01-01

    The exquisite selectivity and unique transport properties of membrane proteins can be harnessed for a variety of engineering and biomedical applications if suitable membranes can be produced. Amphiphilic block copolymers (BCPs), developed as stable lipid analogs, form membranes that functionally incorporate membrane proteins and are ideal for such applications. While high protein density and planar membrane morphology are most desirable, BCP–membrane protein aggregates have so far been limited to low protein densities in either vesicular or bilayer morphologies. Here, we used dialysis to reproducibly form planar and vesicular BCP membranes with a high density of reconstituted aquaporin-0 (AQP0) water channels. We show that AQP0 retains its biological activity when incorporated at high density in BCP membranes, and that the morphology of the BCP–protein aggregates can be controlled by adjusting the amount of incorporated AQP0. We also show that BCPs can be used to form two-dimensional crystals of AQP0. PMID:23082933

  3. Surface water-groundwater connectivity in deltaic distributary channel networks

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Edmonds, Douglas A.; Knights, Deon

    2015-12-01

    Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10-100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.

  4. Novel geminate recombination channel after indirect photoionization of water

    SciTech Connect

    Fischer, Martin K.; Rossmadl, Hubert; Iglev, Hristo

    2011-06-07

    We studied the photolysis of neat protonated and heavy water using pump-probe and pump-repump-probe spectroscopy. A novel recombination channel is reported leading to ultrafast quenching (0.7 {+-} 0.1 ps) of almost one third of the initial number of photo-generated electrons. The efficiency and the recombination rate of this channel are lower in heavy water, 27 {+-} 5% and (0.9 {+-} 0.1 ps){sup -1}, respectively. Comparison with similar data measured after photodetachment of aqueous hydroxide provides evidence for the formation of short-lived OH:e{sup -} (OD:e{sup -}) pairs after indirect photoionization of water at 9.2 eV.

  5. Transmembrane Passage of Hydrophobic Compounds Through a Protein Channel Wall

    SciTech Connect

    Hearn, E.; Patel, D; Lepore, D; Indic, M; van den Berg, B

    2009-01-01

    Membrane proteins that transport hydrophobic compounds have important roles in multi-drug resistance and can cause a number of diseases, underscoring the importance of protein-mediated transport of hydrophobic compounds. Hydrophobic compounds readily partition into regular membrane lipid bilayers, and their transport through an aqueous protein channel is energetically unfavourable3. Alternative transport models involving acquisition from the lipid bilayer by lateral diffusion have been proposed for hydrophobic substrates. So far, all transport proteins for which a lateral diffusion mechanism has been proposed function as efflux pumps. Here we present the first example of a lateral diffusion mechanism for the uptake of hydrophobic substrates by the Escherichia coli outer membrane long-chain fatty acid transporter FadL. A FadL mutant in which a lateral opening in the barrel wall is constricted, but which is otherwise structurally identical to wild-type FadL, does not transport substrates. A crystal structure of FadL from Pseudomonas aeruginosa shows that the opening in the wall of the {beta}-barrel is conserved and delineates a long, hydrophobic tunnel that could mediate substrate passage from the extracellular environment, through the polar lipopolysaccharide layer and, by means of the lateral opening in the barrel wall, into the lipid bilayer from where the substrate can diffuse into the periplasm. Because FadL homologues are found in pathogenic and biodegrading bacteria, our results have implications for combating bacterial infections and bioremediating xenobiotics in the environment.

  6. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins.

    PubMed

    Sabirov, Ravshan Z; Sheiko, Tatiana; Liu, Hongtao; Deng, Defeng; Okada, Yasunobu; Craigen, William J

    2006-01-27

    The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel. PMID:16291750

  7. Topological Predictions for Integral Membrane Channel and Carrier Proteins

    PubMed Central

    Abhinay, Reddy; Jaehoon, Cho; Sam, Ling; Vamsee, Reddy; Maksim, Shlykov; Milton, Saier

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS>MEMSAT>HMMTOP>TOPCONS>PHOBIUS>TMHMM>SVMTOP>DAS>S OSUI. Some families, such as the Sugar Porter family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC# 2.A.1) and the Amino acid/Polyamine/Organocation (APC) Family (TC# 2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC# 2.A.29) and the K+ transporter (Trk) families (TC# 2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted poreforming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms 3 were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. PMID:24992992

  8. Involvement of aquaporin channels in water extrusion from biosilica during maturation of sponge siliceous spicules.

    PubMed

    Wang, Xiaohong; Müller, Werner E G

    2015-08-01

    Aquaporins are a family of small, pore-forming, integral cell membrane proteins. This ancient protein family functions as water channels and is found in all kingdoms (including archaea, eubacteria, fungi, plants, and animals). We discovered that in sponges aquaporin plays a novel role during the maturation of spicules, their skeletal elements. Spicules are synthesized enzymatically via silicatein following a polycondensation reaction. During this process, a 1:1 stoichiometric release of water per one Si-O-Si bond formed is produced. The product of silicatein, biosilica, is a fluffy, soft material that must be hardened in order to function as a solid rod. Using the model of the demosponge species Suberites domuncula Olivi, 1792, which expresses aquaporin, cDNA was cloned and the protein was heterologously expressed. The sponge aquaporin is grouped with the type 8 aquaporins. The function of the sponge aquaporin can be blocked by Mn-sulfate (MnSO4) and mercury chloride (HgCl2). Microscopic and functional studies suggest that aquaporin is involved in removal of the reaction water at the site where siliceous spicules are formed. Another molecule that is likely to be involved in biosilica maturation is the mucin/nidogen-like polypeptide. cDNA has also been cloned from S. domuncula. Experimental studies suggest that water extrusion/suctioning from biosilica after enzymatic synthesis during spicule formation involves both aquaporin-mediated water channeling and "polymerization-induced phase separation" facilitated by the mucin/nidogen-like polypeptide. PMID:26338867

  9. Smoothed Particle Hydrodynamics for water wave propagation in a channel

    NASA Astrophysics Data System (ADS)

    Omidvar, Pourya; Norouzi, Hossein; Zarghami, Ahad

    2015-01-01

    In this paper, Smoothed Particle Hydrodynamics (SPH) is used to simulate the propagation of waves in an intermediate depth water channel. The major advantage of using SPH is that no special treatment of the free surface is required, which is advantageous for simulating highly nonlinear flows with possible wave breaking. The SPH method has an option of different formulations with their own advantages and drawbacks to be implemented. Here, we apply the classical and Arbitrary Lagrange-Euler (ALE) formulation for wave propagation in a water channel. The classical SPH should come with an artificial viscosity which stabilizes the numerical algorithm and increases the accuracy. Here, we will show that the use of classical SPH with an artificial viscosity may cause the waves in the channel to decay. On the other hand, we will show that using the ALE-SPH algorithm with a Riemann solver is more stable, and in addition to producing the pressure fields with much less numerical noise, the waves propagate in the channel without dissipation.

  10. NMR Structure and Ion Channel Activity of the p7 Protein from Hepatitis C Virus*

    PubMed Central

    Montserret, Roland; Saint, Nathalie; Vanbelle, Christophe; Salvay, Andrés Gerardo; Simorre, Jean-Pierre; Ebel, Christine; Sapay, Nicolas; Renisio, Jean-Guillaume; Böckmann, Anja; Steinmann, Eike; Pietschmann, Thomas; Dubuisson, Jean; Chipot, Christophe; Penin, François

    2010-01-01

    The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly α-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by 1H and 13C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal α-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism. PMID:20667830

  11. Characterization of Water Channels in Wheat Root Membrane Vesicles.

    PubMed Central

    Niemietz, C. M.; Tyerman, S. D.

    1997-01-01

    The functional significance of water channels in wheat (Triticum aestivum L.) root membranes was assessed using light scattering to measure vesicle shrinking in response to osmotic gradients rapidly imposed in a stopped flow apparatus. Vesicles were obtained from both a plasma membrane fraction and a plasma membrane-depleted endomembrane fraction including tonoplast vesicles. Osmotic water permeability (Pos) in the endomembrane fraction was high (Pos= 86.0 [mu]m s-1) with a low activation energy (EA= 23.32 kJ mol-1 [plus or minus] 3.88 SE), and was inhibited by mercurials (K1= 40 [mu]M HgCl2, where K1 is the inhibition constant for half-maximal inhibition), suggesting participation of water channels. A high ratio of osmotic to diffusional permeability (Pd) (using D2O as a tracer, Pos/Pd = 7 [plus or minus] 0.5 SE) also supported this view. For the endomembrane fraction there was a marked decrease in Pos with increasing osmotic gradient that was not observed in the plasma membrane fraction. Osmotic water permeability in the plasma membrane fraction was lower (Pos= 12.5 [mu]m s-1) with a high activation energy (EA= 48.07 kJ mol-1 [plus or minus] 3.63 SE) and no mercury inhibition. Nevertheless, Pos/Pd was found to be substantially higher than one (Pos= 3 [plus or minus] 0.2 SE), indicating that water channels mediated water flow in this fraction, too. Possible distortion of the Pos/Pd value by unstirred layer effects was shown to be unlikely. PMID:12223824

  12. Water sorption by proteins: milk and whey proteins.

    PubMed

    Kinsella, J E; Fox, P F

    1986-01-01

    The content and physical state of water in foods influence their physical, chemical, quality, safety, and functional behavior. Information concerning the sorption behavior of dairy proteins, in the water activity (Aw) range 0 to 0.9, is collated in this paper. The sorption behavior of proteins in general, the kinetics of absorption, factors affecting water binding, the phenomenon of desorption hysteresis, and the chemical and physical nature of water/protein interactions are reviewed in general terms. This is followed by a discussion of thermodynamic aspects of sorption phenomena and the adequacy of the various equations for describing sorption isotherms of proteins. After a discussion of the methods available for measuring sorption by milk proteins, the sorption behavior of various milk protein preparations, i.e., nonfat dry milk, whey proteins, caseins, and milk powders is summarized. Finally, the water activity of cheese and its relationship to solute mobility and solvent water are discussed. Some of the unique features of protein behavior, i.e., conformational changes, swelling, and solubilization are cited as possible sources of disparities between various reports. PMID:3527564

  13. Aquaporins: Highly Regulated Channels Controlling Plant Water Relations1

    PubMed Central

    Chaumont, François; Tyerman, Stephen D.

    2014-01-01

    Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key “gatekeeper” cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations. PMID:24449709

  14. LEA proteins prevent protein aggregation due to water stress

    PubMed Central

    Goyal, Kshamata; Walton, Laura J.; Tunnacliffe, Alan

    2005-01-01

    LEA (late embryogenesis abundant) proteins in both plants and animals are associated with tolerance to water stress resulting from desiccation and cold shock. However, although various functions of LEA proteins have been proposed, their precise role has not been defined. Recent bioinformatics studies suggest that LEA proteins might behave as molecular chaperones, and the current study was undertaken to test this hypothesis. Recombinant forms of AavLEA1, a group 3 LEA protein from the anhydrobiotic nematode Aphelenchus avenae, and Em, a group 1 LEA protein from wheat, have been subjected to functional analysis. Heat-stress experiments with citrate synthase, which is susceptible to aggregation at high temperatures, suggest that LEA proteins do not behave as classical molecular chaperones, but they do exhibit a protective, synergistic effect in the presence of the so-called chemical chaperone, trehalose. In contrast, both LEA proteins can independently protect citrate synthase from aggregation due to desiccation and freezing, in keeping with a role in water-stress tolerance; similar results were obtained with lactate dehydrogenase. This is the first evidence of anti-aggregation activity of LEA proteins due to water stress. Again, a synergistic effect of LEA and trehalose was observed, which is significant given that non-reducing disaccharides are known to accumulate during dehydration in plants and nematodes. A model is proposed whereby LEA proteins might act as a novel form of molecular chaperone, or ‘molecular shield’, to help prevent the formation of damaging protein aggregates during water stress. PMID:15631617

  15. Sodium Channel Inhibitors Reduce DMPK mRNA and Protein.

    PubMed

    Witherspoon, Luke; O'Reilly, Sean; Hadwen, Jeremiah; Tasnim, Nafisa; MacKenzie, Alex; Farooq, Faraz

    2015-08-01

    Myotonic dystrophy type 1 (DM1) is caused by an expanded trinucleotide (CTG)n tract in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) gene. This results in the aggregation of an expanded mRNA forming toxic intranuclear foci which sequester splicing factors. We believe down-regulation of DMPK mRNA represents a potential, and as yet unexplored, DM1 therapeutic avenue. Consequently, a computational screen for agents which down-regulate DMPK mRNA was undertaken, unexpectedly identifying the sodium channel blockers mexiletine, prilocaine, procainamide, and sparteine as effective suppressors of DMPK mRNA. Analysis of DMPK mRNA in C2C12 myoblasts following treatment with these agents revealed a reduction in the mRNA levels. In vivo analysis of CD1 mice also showed DMPK mRNA and protein down-regulation. The role of DMPK mRNA suppression in the documented efficacy of this class of compounds in DM1 is worthy of further investigation. PMID:26011798

  16. Drosophila hygrosensation requires the TRP channels water witch and nanchung.

    PubMed

    Liu, Lei; Li, Yuhong; Wang, Runping; Yin, Chong; Dong, Qian; Hing, Huey; Kim, Changsoo; Welsh, Michael J

    2007-11-01

    The ability to detect variations in humidity is critical for many animals. Birds, reptiles and insects all show preferences for specific humidities that influence their mating, reproduction and geographic distribution. Because of their large surface area to volume ratio, insects are particularly sensitive to humidity, and its detection can influence their survival. Two types of hygroreceptors exist in insects: one responds to an increase (moist receptor) and the other to a reduction (dry receptor) in humidity. Although previous data indicated that mechanosensation might contribute to hygrosensation, the cellular basis of hygrosensation and the genes involved in detecting humidity remain unknown. To understand better the molecular bases of humidity sensing, we investigated several genes encoding channels associated with mechanosensation, thermosensing or water transport. Here we identify two Drosophila melanogaster transient receptor potential channels needed for sensing humidity: CG31284, named by us water witch (wtrw), which is required to detect moist air, and nanchung (nan), which is involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels, and neurons expressing wtrw and nan project to central nervous system regions associated with mechanosensation. Construction of the hygrosensing system with opposing receptors may allow an organism to very sensitively detect changes in environmental humidity. PMID:17994098

  17. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. PMID:23816955

  18. Transient natural convection of cold water in a vertical channel

    NASA Astrophysics Data System (ADS)

    Chiba, Ryoichi

    2016-05-01

    The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.

  19. Cl- Channels in CF: Lack of Activation by Protein Kinase C and cAMP-Dependent Protein Kinase

    NASA Astrophysics Data System (ADS)

    Hwang, Tzyh-Chang; Lu, Luo; Zeitlin, Pamela L.; Gruenert, Dieter C.; Huganir, Richard; Guggino, William B.

    1989-06-01

    Secretory chloride channels can be activated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase in normal airway epithelial cells but not in cells from individuals with cystic fibrosis (CF). In excised, inside-out patches of apical membrane of normal human airway cells and airway cells from three patients with CF, the chloride channels exhibited a characteristic outwardly rectifying current-voltage relation and depolarization-induced activation. Channels from normal tissues were activated by both cAMP-dependent protein kinase and protein kinase C. However, chloride channels from CF patients could not be activated by either kinase. Thus, gating of normal epithelial chloride channels is regulated by both cAMP-dependent protein kinase and protein kinase C, and regulation by both kinases is defective in CF.

  20. Kinetics of gravity-driven water channels under steady rainfall

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J.; Dreyfus, Rémi

    2014-10-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972), 10.2136/sssaj1972.03615995003600050010x]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

  1. Kinetics of gravity-driven water channels under steady rainfall.

    PubMed

    Cejas, Cesare M; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J; Dreyfus, Rémi

    2014-10-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972)]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water. PMID:25375487

  2. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  3. Ion Channel Formation by Tau Protein: Implications for Alzheimer’s Disease and Tauopathies

    PubMed Central

    2015-01-01

    Tau is a microtubule associated protein implicated in the pathogenesis of several neurodegenerative diseases. Because of the channel forming properties of other amyloid peptides, we employed planar lipid bilayers and atomic force microscopy to test tau for its ability to form ion permeable channels. Our results demonstrate that tau can form such channels, but only under acidic conditions. The channels formed are remarkably similar to amyloid peptide channels in their appearance, physical and electrical size, permanence, lack of ion selectivity, and multiple channel conductances. These channels differ from amyloid channels in their voltage dependence and resistance to blockade by zinc ion. These channels could explain tau’s pathologic role in disease by lowering membrane potential, dysregulating calcium, depolarizing mitochondria, or depleting energy stores. Tau might also combine with amyloid beta peptides to form toxic channels. PMID:26575330

  4. Ligand-gated ion channel interacting proteins and their role in neuroprotection

    PubMed Central

    Li, Shupeng; Wong, Albert H. C.; Liu, Fang

    2014-01-01

    Ion channel receptors are a vital component of nervous system signaling, allowing rapid and direct conversion of a chemical neurotransmitter message to an electrical current. In recent decades, it has become apparent that ionotropic receptors are regulated by protein-protein interactions with other ion channels, G-protein coupled receptors and intracellular proteins. These other proteins can also be modulated by these interactions with ion channel receptors. This bidirectional functional cross-talk is important for critical cellular functions such as excitotoxicity in pathological and disease states like stroke, and for the basic dynamics of activity-dependent synaptic plasticity. Protein interactions with ion channel receptors can therefore increase the computational capacity of neuronal signaling cascades and also represent a novel target for therapeutic intervention in neuropsychiatric disease. This review will highlight some examples of ion channel receptor interactions and their potential clinical utility for neuroprotection. PMID:24847210

  5. Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated K+ channels

    PubMed Central

    Avdonin, V.; Kasuya, J.; Ciorba, M. A.; Kaplan, B.; Hoshi, T.; Iverson, L.

    1998-01-01

    Drosophila genes reaper, grim, and head-involution-defective (hid) induce apoptosis in several cellular contexts. N-terminal sequences of these proteins are highly conserved and are similar to N-terminal inactivation domains of voltage-gated potassium (K+) channels. Synthetic Reaper and Grim N terminus peptides induced fast inactivation of Shaker-type K+ channels when applied to the cytoplasmic side of the channel that was qualitatively similar to the inactivation produced by other K+ channel inactivation particles. Mutations that reduce the apoptotic activity of Reaper also reduced the synthetic peptide’s ability to induce channel inactivation, indicating that K+ channel inactivation correlated with apoptotic activity. Coexpression of Reaper RNA or direct injection of full length Reaper protein caused near irreversible block of the K+ channels. These results suggest that Reaper and Grim may participate in initiating apoptosis by stably blocking K+ channels. PMID:9751729

  6. Comparison of Channel and Blue Catfish Fed Diets Containing Various Levels of Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seas...

  7. [Isolation of proteins in coconut water].

    PubMed

    Birosel, D M; de Oliveira Ferro, V; Holcberg, I B; Pitelli, A C

    1976-01-01

    The isolation of protein fractions in cocont water was achieved by precipitation with controlled pH variation obtaining three isolates at pH 8,5, 10,5, and 11,5. By comparing each of these isolates with proteins of coconut milk, a similarity between properties of the first two isolates of the water - pH 8,5, 10,5--and those of coconut serum proteins -- glutelin and prolamin was observed. The third isolate is entirely absent from the milk, when coconut water is not used in the second pressing to obtain the milk. PMID:19819

  8. Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions

    SciTech Connect

    Khodadadi, S; Curtis, J. E.; Sokolov, Alexei P

    2011-01-01

    We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

  9. Protein kinase C is involved in regulation of Ca2+ channels in plasmalemma of Nitella syncarpa.

    PubMed

    Zherelova, O M

    1989-01-01

    Ca2+ current recordings have been made on Nitella syncarpa cells using the intracellular perfusion and the voltage-clamp technique. TPA (12-O-tetradecanoylphorbol-13-acetate), a substance capable of activating protein kinase C from plasmalemma of Nitella cells, modulates voltage-dependent Ca2+ channels. Polymixin B, inhibitor of protein kinase C, blocks the Nitella plasmalemma Ca2+ channels; the rate of channel blockage depends on the concentration and exposure time of the substance. PMID:2536617

  10. Dynamics of protein hydration water

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Emmert, S.; Gulich, R.; Lunkenheimer, P.; Loidl, A.

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water.

  11. Dynamics of protein hydration water.

    PubMed

    Wolf, M; Emmert, S; Gulich, R; Lunkenheimer, P; Loidl, A

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water. PMID:26465518

  12. A seasonal intrusion of subtropical water in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Schouten, Mathijs W.; de Ruijter, Wilhelmus P. M.; Ridderinkhof, Herman

    2005-09-01

    An episode of subtropical water intruding in the tropical waters north of Madagascar during the austral summer of 2001 is documented by a combination of satellite derived surface chlorophyll and sea surface height observations and simultaneous in-situ observations of velocity, chemical and biological tracers. A westward jet clearly of subtropical origin is found in the Comoros basin as a continuation of the South Equatorial Current. Further west, a strong anticyclonic Mozambique eddy is formed north of the narrows, that propagates southward into the Channel. The phenomenon documented here seems to occur each austral summer, and may be part of the adjustment to the seasonal variations in the wind forcing over the subtropical and tropical gyres.

  13. Viral potassium channels as a robust model system for studies of membrane-protein interaction.

    PubMed

    Braun, Christian J; Lachnit, Christine; Becker, Patrick; Henkes, Leonhard M; Arrigoni, Cristina; Kast, Stefan M; Moroni, Anna; Thiel, Gerhard; Schroeder, Indra

    2014-04-01

    The viral channel KcvNTS belongs to the smallest K(+) channels known so far. A monomer of a functional homotetramer contains only 82 amino acids. As a consequence of the small size the protein is almost fully submerged into the membrane. This suggests that the channel is presumably sensitive to its lipid environment. Here we perform a comparative analysis for the function of the channel protein embedded in three different membrane environments. 1. Single-channel currents of KcvNTS were recorded with the patch clamp method on the plasma membrane of HEK293 cells. 2. They were also measured after reconstitution of recombinant channel protein into classical planar lipid bilayers and 3. into horizontal bilayers derived from giant unilamellar vesicles (GUVs). The recombinant channel protein was either expressed and purified from Pichia pastoris or from a cell-free expression system; for the latter a new approach with nanolipoprotein particles was used. The data show that single-channel activity can be recorded under all experimental conditions. The main functional features of the channel like a large single-channel conductance (80pS), high open-probability (>50%) and the approximate duration of open and closed dwell times are maintained in all experimental systems. An apparent difference between the approaches was only observed with respect to the unitary conductance, which was ca. 35% lower in HEK293 cells than in the other systems. The reason for this might be explained by the fact that the channel is tagged by GFP when expressed in HEK293 cells. Collectively the data demonstrate that the small viral channel exhibits a robust function in different experimental systems. This justifies an extrapolation of functional data from these systems to the potential performance of the channel in the virus/host interaction. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking. PMID:23791706

  14. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins.

    PubMed

    Yu, Lili; Rodriguez, Roberto A; Chen, L Laurie; Chen, Liao Y; Perry, George; McHardy, Stanton F; Yeh, Chih-Ko

    2016-02-01

    Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients. PMID:26481430

  15. Ultrafast permeation of water through protein-based membranes.

    PubMed

    Peng, Xinsheng; Jin, Jian; Nakamura, Yoshimichi; Ohno, Takahisa; Ichinose, Izumi

    2009-06-01

    Pressure-driven filtration by porous membranes is widely used in the production of drinking water from ground and surface water. Permeation theory predicts that filtration rate is proportional to the pressure difference across the filtration membrane and inversely proportional to the thickness of the membrane. However, these membranes need to be able to withstand high water fluxes and pressures, which means that the active separation layers in commercial filtration systems typically have a thickness of a few tens to several hundreds of nanometres. Filtration performance might be improved by the use of ultrathin porous silicon membranes or carbon nanotubes immobilized in silicon nitride or polymer films, but these structures are difficult to fabricate. Here, we report a new type of filtration membrane made of crosslinked proteins that are mechanically robust and contain channels with diameters of less than 2.2 nm. We find that a 60-nm-thick membrane can concentrate aqueous dyes from fluxes up to 9,000 l h(-1) m(-2) bar(-1), which is approximately 1,000 times higher than the fluxes that can be withstood by commercial filtration membranes with similar rejection properties. Based on these results and molecular dynamics simulations, we propose that protein-surrounded channels with effective lengths of less than 5.8 nm can separate dye molecules while allowing the ultrafast permeation of water at applied pressures of less than 1 bar. PMID:19498395

  16. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  17. Synchrotron X-ray footprinting as a method to visualize water in proteins.

    PubMed

    Gupta, Sayan; Feng, Jun; Chan, Leanne Jade G; Petzold, Christopher J; Ralston, Corie Y

    2016-09-01

    The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed. PMID:27577756

  18. Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

    NASA Astrophysics Data System (ADS)

    Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

    2014-10-01

    We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  19. Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ

    PubMed Central

    Pohl, Peter; Saparov, Sapar M.; Borgnia, Mario J.; Agre, Peter

    2001-01-01

    Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 109 transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins. PMID:11493683

  20. Multiple Scales in the Simulation of Ion Channels and Proteins

    PubMed Central

    Eisenberg, Bob

    2010-01-01

    Computation of living processes creates great promise for the everyday life of mankind and great challenges for physical scientists. Simulations molecular dynamics have great appeal to biologists as a natural extension of structural biology. Once a biologist sees a structure, she/he wants to see it move. Molecular biology has shown that a small number of atoms, sometimes even one messenger ion, like Ca2+, can control biological function on the scale of cells, organs, tissues, and organisms. Enormously concentrated ions—at number densities of ~20 M—in protein channels and enzymes are responsible for many of the characteristics of living systems, just as highly concentrated ions near electrodes are responsible for many of the characteristics of electrochemical systems. Here we confront the reality of the scale differences of ions. We show that the scale differences needed to simulate all the atoms of biological cells are 107 in linear dimension, 1021 in three dimensions, 109 in resolution, 1011 in time, and 1013 in particle number (to deal with concentrations of Ca2+). These scales must be dealt with simultaneously if the simulation is to deal with most biological functions. Biological function extends across all of them, all at once in most cases. We suggest a computational approach using explicit multiscale analysis instead of implicit simulation of all scales. The approach is based on an energy variational principle EnVarA introduced by Chun Liu to deal with complex fluids. Variational methods deal automatically with multiple interacting components and scales. When an additional component is added to the system, the resulting Euler Lagrange field equations change form automatically—by algebra alone—without additional unknown parameters. Multifaceted interactions are solutions of the resulting equations. We suggest that ionic solutions should be viewed as complex fluids with simple components. Highly concentrated solutions—dominated by interactions of

  1. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b

    PubMed Central

    DeBerg, Hannah A.; Bankston, John R.; Rosenbaum, Joel C.; Brzovic, Peter S.; Zagotta, William N.; Stoll, Stefan

    2015-01-01

    Summary Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cAMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide-binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance (NMR), we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels. PMID:25800552

  2. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.

    PubMed Central

    Chiu, S W; Jakobsson, E; Subramaniam, S; McCammon, J A

    1991-01-01

    Molecular dynamics simulations have been done on a system consisting of the polypeptide membrane channel former gramicidin, plus water molecules in the channel and caps of waters at the two ends of the channel. In the absence of explicit simulation of the surrounding membrane, the helical form of the channel was maintained by artificial restraints on the peptide motion. The characteristic time constant of the artificial restraint was varied to assess the effect of the restraints on the channel structure and water motions. Time-correlation analysis was done on the motions of individual channel waters and on the motions of the center of mass of the channel waters. It is found that individual water molecules confined in the channel execute higher frequency motions than bulk water, for all degrees of channel peptide restraint. The center-of-mass motion of the chain of channel waters (which is the motion that is critical for transmembrane transport, due to the mandatory single filing of water in the channel) does not exhibit these higher frequency motions. The mobility of the water chain is dramatically reduced by holding the channel rigid. Thus permeation through the channel is not like flow through a rigid pipe; rather permeation is facilitated by peptide motion. For the looser restraints we used, the mobility of the water chain was not very much affected by the degree of restraint. Depending on which set of experiments is considered, the computed mobility of our water chain in the flexible channel is four to twenty times too high to account for the experimentally measured resistance of the gramicidin channel to water flow. From this result it appears likely that the peptide motions of an actual gramicidin channel embedded in a lipid membrane may be more restrained than in our flexible channel model, and that these restraints may be a significant modulator of channel permeability. For the completely rigid channel model the "trapping" of the water molecules in

  3. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins.

    PubMed Central

    Nikaido, H; Rosenberg, E Y

    1983-01-01

    Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels. PMID:6294049

  4. Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs

    PubMed Central

    Zhao, Meimi; Liu, Shan-Lu; Huang, Yao; Idell, Steven; Li, Xiumin; Ji, Hong-Long

    2014-01-01

    Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD. PMID:25329998

  5. Further analysis of the involvement of the envelope anion channel PIRAC in chloroplast protein import.

    PubMed

    van den Wijngaard, P W; Demmers, J A; Thompson, S J; Wienk, H L; de Kruijff, B; Vredenberg, W J

    2000-06-01

    The ability of preferredoxin to inactivate a 50-pS anion channel of the chloroplast inner membrane in the presence of an energy source was investigated using single-channel recordings. It was found that preferredoxin cannot inactivate the channel when GTP is the only energy source present. From this it is concluded that the precursor has to interact with the, translocon of the inner membrane of chloroplasts (Tic) complex to be able to inactivate the 50-pS anion channel. The ability of two mutants of preferredoxin with deletions in their transit sequence to inactivate the channel was also tested. Both mutants have been shown to have a similar binding affinity for the chloroplast envelope, but only one is able to fully translocate. The mutants were both able to inactivate the channel in a similar manner. From this it is concluded that full translocation is not necessary for the inactivation of the channel. It is also shown that preferredoxin is capable of inactivating the 50-pS anion channel in the chloroplast-attached configuration as was previously found in the inside-out configuration. From this it is concluded that stromal factors do not influence the protein-import-induced inactivation of the 50-pS anion channel of the chloroplast inner membrane. Finally the effect of the anion channel blocker 4, 4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) on the channel activity and on protein import was investigated. It was found that DIDS blocked the channel. Furthermore the addition of the channel blocker reduces the efficiency of import to 52%. This leads to the conclusion that correct functioning of the channel is important for protein import. PMID:10849000

  6. Trapping a translocating protein within the anthrax toxin channel: implications for the secondary structure of permeating proteins

    PubMed Central

    Jennings-Antipov, Laura D.; Jakes, Karen S.; Finkelstein, Alan

    2011-01-01

    Anthrax toxin consists of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). This last forms a heptameric channel, (PA63)7, in the host cell’s endosomal membrane, allowing the former two (which are enzymes) to be translocated into the cytosol. (PA63)7 incorporated into planar bilayer membranes forms a channel that translocates LF and EF, with the N terminus leading the way. The channel is mushroom-shaped with a cap containing the binding sites for EF and LF, and an ∼100 Å–long, 15 Å–wide stem. For proteins to pass through the stem they clearly must unfold, but is secondary structure preserved? To answer this question, we developed a method of trapping the polypeptide chain of a translocating protein within the channel and determined the minimum number of residues that could traverse it. We attached a biotin to the N terminus of LFN (the 263-residue N-terminal portion of LF) and a molecular stopper elsewhere. If the distance from the N terminus to the stopper was long enough to traverse the channel, streptavidin added to the trans side bound the N-terminal biotin, trapping the protein within the channel; if this distance was not long enough, streptavidin did not bind the N-terminal biotin and the protein was not trapped. The trapping rate was dependent on the driving force (voltage), the length of time it was applied, and the number of residues between the N terminus and the stopper. By varying the position of the stopper, we determined the minimum number of residues required to span the channel. We conclude that LFN adopts an extended-chain configuration as it translocates; i.e., the channel unfolds the secondary structure of the protein. We also show that the channel not only can translocate LFN in the normal direction but also can, at least partially, translocate LFN in the opposite direction. PMID:21402886

  7. Enkurin is a novel calmodulin and TRPC channel binding protein in sperm.

    PubMed

    Sutton, Keith A; Jungnickel, Melissa K; Wang, Yanli; Cullen, Kay; Lambert, Stephen; Florman, Harvey M

    2004-10-15

    The TRPC cation channel family has been implicated in receptor- or phospholipase C (PLC)-mediated Ca2+ entry into animal cells. These channels are present in mammalian sperm and are assigned a role in ZP3-evoked Ca2+ influx that drives acrosome reactions. However, the mechanisms controlling channel activity and coupling Ca2+ entry through these channels to cellular responses are not well understood. A yeast two-hybrid screen was carried out to identify TRPC-interacting proteins that would be candidate regulators or effectors. We identified a novel protein, enkurin, that is expressed at high levels in the testis and vomeronasal organ and at lower levels in selected other tissues. Enkurin interacts with several TRPC proteins (TRPC1, TRPC2, TRPC5, but not TRPC3) and colocalizes with these channels in sperm. Three protein-protein interaction domains were identified in enkurin: a C-terminal region is essential for channel interaction; an IQ motif binds the Ca2+ sensor, calmodulin, in a Ca2+-dependent manner; and a proline-rich N-terminal region contains predicted ligand sequences for SH3 domain proteins, including the SH3 domain of the p85 regulatory subunit of 1-phosphatidylinositol-3-kinase. We suggest that enkurin is an adaptor that functions to localize a Ca2+ sensitive signal transduction machinery in sperm to a Ca2+-permeable ion channel. PMID:15385169

  8. A nanoplasmonic probe as a triple channel colorimetric sensor array for protein discrimination.

    PubMed

    Mao, Jinpeng; Lu, Yuexiang; Chang, Ning; Yang, Jiaoe; Yang, Jiacheng; Zhang, Sichun; Liu, Yueying

    2016-06-20

    The salt-induced aggregation, nanoparticle regrowth and self-assembly behaviors of gold nanoparticles (AuNPs) and DNA conjugates could be changed after interaction with different proteins, generating various color changes and a unique fingerprint pattern for each protein. The triple-channel colorimetric signals have been employed for protein discrimination with the naked eye. PMID:27228956

  9. Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Li, Ming; McCann, John D.; Anderson, Matthew P.; Clancy, John P.; Liedtke, Carole M.; Nairn, Angus C.; Greengard, Paul; Welsh, Michael J.

    1989-06-01

    Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.

  10. Control of Neuronal Voltage-Gated Calcium Ion Channels From RNA to Protein

    PubMed Central

    Lipscombe, Diane; Allen, Summer E; Toro, Cecilia P.

    2013-01-01

    Voltage-gated calcium (CaV) ion channels convert neuronal activity into rapid intracellular calcium signals to trigger a myriad of cellular responses. Their involvement in major neurological and psychiatric diseases, and importance as therapeutic targets, has propelled interest in subcellular-specific mechanisms that align CaV channel activity to specific tasks. Here we highlight recent studies that delineate mechanisms controlling the expression of CaV channels at the level of RNA and protein. We discuss the roles of RNA editing and alternative pre-mRNA splicing in generating CaV channel isoforms with activities specific to the demands of individual cells; the roles of ubiquitination and accessory proteins in regulating CaV channel expression; and the specific binding partners which contribute to both pre- and post- synaptic CaV channel function. PMID:23907011

  11. Control of neuronal voltage-gated calcium ion channels from RNA to protein.

    PubMed

    Lipscombe, Diane; Allen, Summer E; Toro, Cecilia P

    2013-10-01

    Voltage-gated calcium ion (CaV) channels convert neuronal activity into rapid intracellular calcium signals to trigger a myriad of cellular responses. Their involvement in major neurological and psychiatric diseases, and importance as therapeutic targets, has propelled interest in subcellular-specific mechanisms that align CaV channel activity to specific tasks. Here, we highlight recent studies that delineate mechanisms controlling the expression of CaV channels at the level of RNA and protein. We discuss the roles of RNA editing and alternative pre-mRNA splicing in generating CaV channel isoforms with activities specific to the demands of individual cells; the roles of ubiquitination and accessory proteins in regulating CaV channel expression; and the specific binding partners that contribute to both pre- and postsynaptic CaV channel function. PMID:23907011

  12. Strategies for Investigating G-Protein Modulation of Voltage-Gated Ca2+ Channels.

    PubMed

    Lu, Van B; Ikeda, Stephen R

    2016-01-01

    G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors. PMID:27140924

  13. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    NASA Astrophysics Data System (ADS)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  14. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  15. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    PubMed

    Hamacher, Kay; Greiner, Timo; Ogata, Hiroyuki; Van Etten, James L; Gebhardt, Manuela; Villarreal, Luis P; Cosentino, Cristian; Moroni, Anna; Thiel, Gerhard

    2012-01-01

    Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms. PMID:22685610

  16. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.

    PubMed

    Shen, Yue-Xiao; Si, Wen; Erbakan, Mustafa; Decker, Karl; De Zorzi, Rita; Saboe, Patrick O; Kang, You Jung; Majd, Sheereen; Butler, Peter J; Walz, Thomas; Aksimentiev, Aleksei; Hou, Jun-li; Kumar, Manish

    2015-08-11

    Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per μm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per μm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays. PMID:26216964

  17. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

    PubMed Central

    Shen, Yue-xiao; Si, Wen; Erbakan, Mustafa; Decker, Karl; De Zorzi, Rita; Saboe, Patrick O.; Kang, You Jung; Majd, Sheereen; Butler, Peter J.; Walz, Thomas; Aksimentiev, Aleksei; Hou, Jun-li; Kumar, Manish

    2015-01-01

    Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14 cm3/s or 3.5(±1.0) × 108 water molecules per s, which is in the range of AQPs (3.4∼40.3 × 108 water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 108 water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼107 water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 105 pores per μm2) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 103 pores per μm2). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays. PMID:26216964

  18. Protective role of brain water channel AQP4 in murine cerebral malaria

    PubMed Central

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-01

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood–brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria. PMID:23277579

  19. Early innate immune response of immune proteins in juvenile channel catfish Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish (Ictalurus punctatus) are raised for aquaculture in the Southeast U.S. and are susceptible to bacterial and viral infections acquired from their pond environment. Innate immune proteins mannose-binding lectin (MBL) and lysozyme were studied during two consecutive years in channel cat...

  20. Some thermodynamical aspects of protein hydration water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene; Chen, Sow-Hsin

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  1. Concentrating Toxoplasma gondii and Cyclospora cayetanensis from Surface Water and Drinking Water by Continuous Separation Channel Centrifugation

    EPA Science Inventory

    Aims: To evaluate the effectiveness of continuous separation channel centrifugation for concentrating Toxoplasma gondii and Cyclospora cayetanensis from drinking water and environmental waters. Methods and Results: Ready-to-seed vials with known quantities of Toxoplasma gondii a...

  2. Fluorometric functional assay for ion channel proteins in lipid nanovesicle membranes

    NASA Astrophysics Data System (ADS)

    Patti, J. T.; Montemagno, C. D.

    2007-08-01

    Voltage-gated membrane proteins function as biomolecular transistors, making them attractive components for biologically based nanodevices. A functional assay for purified channel proteins is described and demonstrated with sodium selective, voltage-gated NaChBac ion channels. Purified NaChBac proteins were incorporated into a nanovesicle system utilizing oxonol VI, a fluorescent indicator of trans-membrane voltage. The ionophore valinomycin was used to trigger a change in membrane potential, allowing the observation of sodium permeability using a fluorometer. This method is suitable for concurrently testing a large population of purified proteins prior to incorporation in nanodevices.

  3. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels.

    PubMed

    Logothetis, Diomedes E; Petrou, Vasileios I; Zhang, Miao; Mahajan, Rahul; Meng, Xuan-Yu; Adney, Scott K; Cui, Meng; Baki, Lia

    2015-01-01

    Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states. PMID:25293526

  4. Rapid Identification of Novel Inhibitors of the Human Aquaporin-1 Water Channel.

    PubMed

    Patil, Rajkumar V; Xu, Shouxi; van Hoek, Alfred N; Rusinko, Andrew; Feng, Zixia; May, Jesse; Hellberg, Mark; Sharif, Najam A; Wax, Martin B; Irigoyen, Macarena; Carr, Grant; Brittain, Tom; Brown, Peter; Colbert, Damon; Kumari, Sindhu; Varadaraj, Kulandaiappan; Mitra, Alok K

    2016-05-01

    Aquaporins (AQPs) are a family of membrane proteins that function as channels facilitating water transport in response to osmotic gradients. These play critical roles in several normal physiological and pathological states and are targets for drug discovery. Selective inhibition of the AQP1 water channel may provide a new approach for the treatment of several disorders including ocular hypertension/glaucoma, congestive heart failure, brain swelling associated with a stroke, corneal and macular edema, pulmonary edema, and otic disorders such as hearing loss and vertigo. We developed a high-throughput assay to screen a library of compounds as potential AQP1 modulators by monitoring the fluorescence dequenching of entrapped calcein in a confluent layer of AQP1-overexpressing CHO cells that were exposed to a hypotonic shock. Promising candidates were tested in a Xenopus oocyte-swelling assay, which confirmed the identification of two lead classes of compounds belonging to aromatic sulfonamides and dihydrobenzofurans with IC50 s in the low micromolar range. These selected compounds directly inhibited water transport in AQP1-enriched stripped erythrocyte ghosts and in proteoliposomes reconstituted with purified AQP1. Validation of these lead compounds, by the three independent assays, establishes a set of attractive AQP1 blockers for developing novel, small-molecule functional modulators of human AQP1. PMID:26685080

  5. DPP6 Localization in Brain Supports Function as a Kv4 Channel Associated Protein

    PubMed Central

    Clark, Brian D.; Kwon, Elaine; Maffie, Jon; Jeong, Hyo-Young; Nadal, Marcela; Strop, Pavel; Rudy, Bernardo

    2008-01-01

    The gene encoding the dipeptidyl peptidase-like protein DPP6 (also known as DPPX) has been associated with human neural disease. However, until recently no function had been found for this protein. It has been proposed that DPP6 is an auxiliary subunit of neuronal Kv4 K+ channels, the ion channels responsible for the somato-dendritic A-type K+ current, an ionic current with crucial roles in the regulation of firing frequency, dendritic integration and synaptic plasticity. This view has been supported mainly by studies showing that DPP6 is necessary to generate channels with biophysical properties resembling the native channels in some neurons. However, independent evidence that DPP6 is a component of neuronal Kv4 channels in the brain, and whether this protein has other functions in the CNS is still lacking. We generated antibodies to DPP6 proteins to compare their distribution in brain with that of the Kv4 pore-forming subunits. DPP6 proteins were prominently expressed in neuronal populations expressing Kv4.2 proteins and both types of protein were enriched in the dendrites of these cells, strongly supporting the hypothesis that DPP6 is an associated protein of Kv4 channels in brain neurons. The observed similarity in the cellular and subcellular patterns of expression of both proteins suggests that this is the main function of DPP6 in brain. However, we also found that DPP6 antibodies intensely labeled the hippocampal mossy fiber axons, which lack Kv4 proteins, suggesting that DPP6 proteins may have additional, Kv4-unrelated functions. PMID:18978958

  6. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin

    PubMed Central

    Hsu, Wen-Li; Yoshioka, Tohru

    2015-01-01

    Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure. PMID:27493511

  7. Constitutive Endocytic Recycling and Protein Kinase C-mediated Lysosomal Degradation Control KATP Channel Surface Density*

    PubMed Central

    Manna, Paul T.; Smith, Andrew J.; Taneja, Tarvinder K.; Howell, Gareth J.; Lippiat, Jonathan D.; Sivaprasadarao, Asipu

    2010-01-01

    Pancreatic ATP-sensitive potassium (KATP) channels control insulin secretion by coupling the excitability of the pancreatic β-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed KATP channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that KATP channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases KATP channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic β-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native KATP channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic β-cells, we propose that PKC-regulated KATP channel trafficking may play a role in the regulation of insulin secretion. PMID:20026601

  8. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  9. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    PubMed Central

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2009-01-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes. PMID:16554808

  10. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.

    PubMed

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-12-26

    G protein-gated inwardly rectifying K(+) (Girk/K(IR)3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABA(B) receptor and Girk1/Girk2 heteromer as a model system. Girk1 did not increase the protein levels or alter the trafficking of Girk2-containing channels to the cell surface in transfected cells or hippocampal neurons, indicating that its potentiating influence involves enhancement of channel activity. Structural elements in both the distal carboxyl-terminal domain and channel core were identified as key determinants of robust channel activity. In the distal carboxyl-terminal domain, residue Q404 was identified as a key determinant of receptor-induced channel activity. In the Girk1 core, three unique residues in the pore (P) loop (F137, A142, Y150) were identified as a collective potentiating influence on both receptor-dependent and receptor-independent channel activity, exerting their influence, at least in part, by enhancing mean open time and single-channel conductance. Interestingly, the potentiating influence of the Girk1 P-loop is tempered by residue F162 in the second membrane-spanning domain. Thus, discontinuous and sometime opposing elements in Girk1 underlie the Girk1-dependent potentiation of receptor-dependent and receptor-independent heteromeric channel activity. PMID:23236146

  11. TRIP Database: a manually curated database of protein–protein interactions for mammalian TRP channels

    PubMed Central

    Shin, Young-Cheul; Shin, Soo-Yong; So, Insuk; Kwon, Dongseop; Jeon, Ju-Hong

    2011-01-01

    Transient receptor potential (TRP) channels are a superfamily of Ca2+-permeable cation channels that translate cellular stimuli into electrochemical signals. Aberrant activity of TRP channels has been implicated in a variety of human diseases, such as neurological disorders, cardiovascular disease and cancer. To facilitate the understanding of the molecular network by which TRP channels are associated with biological and disease processes, we have developed the TRIP (TRansient receptor potential channel-Interacting Protein) Database (http://www.trpchannel.org), a manually curated database that aims to offer comprehensive information on protein–protein interactions (PPIs) of mammalian TRP channels. The TRIP Database was created by systematically curating 277 peer-reviewed literature; the current version documents 490 PPI pairs, 28 TRP channels and 297 cellular proteins. The TRIP Database provides a detailed summary of PPI data that fit into four categories: screening, validation, characterization and functional consequence. Users can find in-depth information specified in the literature on relevant analytical methods and experimental resources, such as gene constructs and cell/tissue types. The TRIP Database has user-friendly web interfaces with helpful features, including a search engine, an interaction map and a function for cross-referencing useful external databases. Our TRIP Database will provide a valuable tool to assist in understanding the molecular regulatory network of TRP channels. PMID:20851834

  12. Principles Governing Metal Ion Selectivity in Ion Channel Proteins

    NASA Astrophysics Data System (ADS)

    Lim, Carmay

    2014-03-01

    Our research interests are to (i) unravel the principles governing biological processes and use them to identify novel drug targets and guide drug design, and (ii) develop new methods for studying macromolecular interactions. This talk will provide an overview of our work in these two areas and an example of how our studies have helped to unravel the principles underlying the conversion of Ca2+-selective to Na+-selective channels. Ion selectivity of four-domain voltage-gated Ca2+(Cav) and sodium (Nav) channels, which is controlled by the selectivity filter (SF, the narrowest region of an open pore), is crucial for electrical signaling. Over billions of years of evolution, mutation of the Glu from domain II/III in the EEEE/DEEA SF of Ca2+-selective Cav channels to Lys made these channels Na+-selective. This talk will delineate the physical principles why Lys is sufficient for Na+/Ca2+selectivity and why the DEKA SF is more Na+-selective than the DKEA one.

  13. Major intrinsic protein superfamily: channels with unique structural features and diverse selectivity filters.

    PubMed

    Verma, Ravi Kumar; Gupta, Anjali Bansal; Sankararamakrishnan, Ramasubbu

    2015-01-01

    Members of the superfamily of major intrinsic proteins (MIPs) facilitate water and solute permeability across cell membranes and are found in sources ranging from bacteria to humans. Aquaporin and aquaglyceroporin channels are the prominent members of the MIP superfamily. Experimental studies show that MIPs are involved in important physiological processes in mammals and plants. They are implicated in several human diseases and are considered to be attractive drug targets for a wide range of diseases such as cancer, brain edema, epilepsy, glaucoma, and congestive heart failure. Three-dimensional structures of MIP channels from diverse sources reveal that MIPs adopt a unique conserved hourglass helical fold consisting of six transmembrane helices (TM1-TM6) and two half-helices (LB and LE). Conserved NPA motifs near the center and the aromatic/arginine selectivity filter (Ar/R SF) toward the extracellular side constitute two narrow constriction regions within the channel. Structural knowledge combined with simulation studies have helped to investigate the role of these two constriction regions in the transport and selectivity of the solutes. With the availability of many genome sequences from diverse species, a large number of MIP genes have been identified. Homology models of 1500 MIP channels have been used to derive structure-based sequence alignment of TM1-TM6 helices and the two half-helices LB and LE. Thirteen residues are highly conserved in different transmembrane helices and half-helices. High group conservation of small and weakly polar residues is observed in 27 positions at the interface of two interacting helices. Thus, although the MIP sequences are diverse, the hourglass helical fold is maintained during evolution with the conservation of these 40 positions within the transmembrane region. We have proposed a generic structure-based numbering scheme for the MIP channels that will facilitate easier comparison of the MIP sequences. Analysis of Ar/R SF in

  14. Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins.

    PubMed

    Pitt, Geoffrey S; Lee, Seok-Yong

    2016-09-01

    In cardiac and skeletal myocytes, and in most neurons, the opening of voltage-gated Na(+) channels (NaV channels) triggers action potentials, a process that is regulated via the interactions of the channels' intercellular C-termini with auxiliary proteins and/or Ca(2+) . The molecular and structural details for how Ca(2+) and/or auxiliary proteins modulate NaV channel function, however, have eluded a concise mechanistic explanation and details have been shrouded for the last decade behind controversy about whether Ca(2+) acts directly upon the NaV channel or through interacting proteins, such as the Ca(2+) binding protein calmodulin (CaM). Here, we review recent advances in defining the structure of NaV intracellular C-termini and associated proteins such as CaM or fibroblast growth factor homologous factors (FHFs) to reveal new insights into how Ca(2+) affects NaV function, and how altered Ca(2+) -dependent or FHF-mediated regulation of NaV channels is perturbed in various disease states through mutations that disrupt CaM or FHF interaction. PMID:27262167

  15. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.

    PubMed

    Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng

    2013-06-01

    Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. PMID:23576296

  16. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels.

    PubMed Central

    Grove, A.; Tomich, J. M.; Iwamoto, T.; Montal, M.

    1993-01-01

    To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures. PMID:7505682

  17. Biogenesis and transmembrane topology of the CHIP28 water channel at the endoplasmic reticulum.

    PubMed

    Skach, W R; Shi, L B; Calayag, M C; Frigeri, A; Lingappa, V R; Verkman, A S

    1994-05-01

    CHIP28 is a 28-kD hydrophobic integral membrane protein that functions as a water channel in erythrocytes and renal tubule epithelial cell membranes. We examined the transmembrane topology of CHIP28 in the ER by engineering a reporter of translocation (derived from bovine prolactin) into nine sequential sites in the CHIP28 coding region. The resulting chimeras were expressed in Xenopus oocytes, and the topology of the reporter with respect to the ER membrane was determined by protease sensitivity. We found that although hydropathy analysis predicted up to seven potential transmembrane regions, CHIP28 spanned the membrane only four times. Two putative transmembrane helices, residues 52-68 and 143-157, reside on the lumenal and cytosolic surfaces of the ER membrane, respectively. Topology derived from these chimeric proteins was supported by cell-free translation of five truncated CHIP28 cDNAs, by N-linked glycosylation at an engineered consensus site in native CHIP28 (residue His69), and by epitope tagging of the CHIP28 amino terminus. Defined protein chimeras were used to identify internal sequences that direct events of CHIP28 topogenesis. A signal sequence located within the first 52 residues initiated nascent chain translocation into the ER lumen. A stop transfer sequence located in the hydrophobic region from residues 90-120 terminated ongoing translocation. A second internal signal sequence, residues 155-186, reinitiated translocation of a COOH-terminal domain (residues 186-210) into the ER lumen. Integration of the nascent chain into the ER membrane occurred after synthesis of 107 residues and required the presence of two membrane-spanning regions. From this data, we propose a structural model for CHIP28 at the ER membrane in which four membrane-spanning alpha-helices form a central aqueous channel through the lipid bilayer and create a pathway for water transport. PMID:7514605

  18. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression.

    PubMed

    Wu, Peiwen; Wang, Yanxia; Davis, Mark E; Zuckerman, Jonathan E; Chaudhari, Sarika; Begg, Malcolm; Ma, Rong

    2015-11-01

    Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes. PMID:25788524

  19. Protein kinase A modulation of CaV1.4 calcium channels

    NASA Astrophysics Data System (ADS)

    Sang, Lingjie; Dick, Ivy E.; Yue, David T.

    2016-07-01

    The regulation of L-type Ca2+ channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca2+ channels, relatively little is known about the closely related CaV1.4 L-type Ca2+ channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca2+-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca2+-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family.

  20. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity.

    PubMed Central

    Gincel, Dan; Shoshan-Barmatz, Varda

    2002-01-01

    The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission. PMID:12496091

  1. Protein kinase A modulation of CaV1.4 calcium channels

    PubMed Central

    Sang, Lingjie; Dick, Ivy E.; Yue, David T.

    2016-01-01

    The regulation of L-type Ca2+ channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca2+ channels, relatively little is known about the closely related CaV1.4 L-type Ca2+ channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca2+-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca2+-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family. PMID:27456671

  2. Protein kinase A modulation of CaV1.4 calcium channels.

    PubMed

    Sang, Lingjie; Dick, Ivy E; Yue, David T

    2016-01-01

    The regulation of L-type Ca(2+) channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca(2+) channels, relatively little is known about the closely related CaV1.4 L-type Ca(2+) channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca(2+)-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca(2+)-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family. PMID:27456671

  3. Apparent digestibility of alternative plant-protein feedstuffs for channel catfish, Ictalurus punctatus (Rafinesque)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted with channel catfish, Ictalurus puntatus to determine apparent digestibility/availability coefficients of protein, amino acids, lipid and energy for alternative plant-protein feedstuffs: corn gluten feed, corn germ meal, distillers dried grains with solubles, and canola meal, c...

  4. Ion channels go to Stockholm--this time as proteins.

    PubMed

    Miller, Christopher

    2003-12-18

    The 2003 Nobel Prize in Chemistry was awarded to two structural biologists, Roderick Mackinnon of Rockefeller University and Peter Agre of Johns Hopkins University, for their groundbreaking work on the structure and function of ion channels. In recognition of the outstanding impact that MacKinnon's work has had for neuroscience, Chris Miller traces MacKinnon's scientific path to the Nobel Prize. PMID:14687537

  5. SecA Alone Can Promote Protein Translocation and Ion Channel Activity

    PubMed Central

    Hsieh, Ying-hsin; Zhang, Hao; Lin, Bor-ruei; Cui, Ningren; Na, Bing; Yang, Hsiuchin; Jiang, Chun; Sui, Sen-fang; Tai, Phang C.

    2011-01-01

    SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1–2 μm. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity. PMID:22033925

  6. A simple model for surface charge on ion channel proteins.

    PubMed Central

    Naranjo, D; Latorre, R; Cherbavaz, D; McGill, P; Schumaker, M F

    1994-01-01

    We present a simple two-parameter model for surface charge directly associated with ion channels. A spherically symmetric "charged shell" models a distribution of surface charge arrayed about the channel entrance, with a corresponding set of image charges behind the plane of the membrane. The transition between a regime of buffered conductance and a regime of rapidly falling conductance at very low ionic strength is found to depend on the magnitude of the surface charge as well as the separation between the charge and the channel entrance. This resolves an apparent discrepancy between the experimental findings of Naranjo and Latorre (1993. Biophys. J. 64:1038-1050) and previous theoretical computations. The charged-shell model is used in a comparative study of the toad skeletal muscle conductance data of Naranjo and Latorre, the rat skeletal muscle conductances of Ravindran et al. (1992. Biophys. J. 61:494-508), and a second set of rat muscle conductances presented in this paper. PMID:7510530

  7. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel

    SciTech Connect

    Wilmes, Anja Aschauer, Lydia; Limonciel, Alice; Pfaller, Walter; Jennings, Paul

    2014-09-01

    Claudins are the major proteins of the tight junctions and the composition of claudin subtypes is decisive for the selective permeability of the paracellular route and thus tissue specific function. Their regulation is complex and subject to interference by several factors, including oxidative stress. Here we show that exposure of cultured human proximal tubule cells (RPTEC/TERT1) to the immunosuppressive drug cyclosporine A (CsA) induces an increase in transepithelial electrical resistance (TEER), a decrease in dome formation (on solid growth supports) and a decrease in water transport (on microporous growth supports). In addition, CsA induced a dramatic decrease in the mRNA for the pore forming claudins -2 and -10, and the main subunits of the Na{sup +}/K{sup +} ATPase. Knock down of claudin 2 by shRNA had no discernable effect on TEER or dome formation but severely attenuated apical to basolateral water reabsorption when cultured on microporous filters. Generation of an osmotic gradient in the basolateral compartment rescued water transport in claudin 2 knock down cells. Inhibition of Na{sup +}/K{sup +} ATPase with ouabain prevented dome formation in both cell types. Taken together these results provide strong evidence that dome formation is primarily due to transcellular water transport following a solute osmotic gradient. However, in RPTEC/TERT1 cells cultured on filters under iso-osmotic conditions, water transport is primarily paracellular, most likely due to local increases in osmolarity in the intercellular space. In conclusion, this study provides strong evidence that claudin 2 is involved in paracellular water transport and that claudin 2 expression is sensitive to compound induced cellular stress. - Highlights: • Cyclosporine A increased TEER and decreased water transport in RPTEC/TERT1 cells. • Claudins 2 and 10 were decreased in response to cyclosporine A. • Knock down of claudin 2 inhibited water transport in proximal tubular cells. • We

  8. Modulation of skeletal muscle sodium channels by human myotonin protein kinase.

    PubMed Central

    Mounsey, J P; Xu, P; John, J E; Horne, L T; Gilbert, J; Roses, A D; Moorman, J R

    1995-01-01

    In myotonic muscular dystrophy, abnormal muscle Na currents underlie myotonic discharges. Since the myotonic muscular dystrophy gene encodes a product, human myotonin protein kinase, with structural similarity to protein kinases, we tested the idea that human myotonin protein kinase modulates skeletal muscle Na channels. Coexpression of human myotonin protein kinase with rat skeletal muscle Na channels in Xenopus oocytes reduced the amplitude of Na currents and accelerated current decay. The effect required the presence of a potential phosphorylation site in the inactivation mechanism of the channel. The mutation responsible for human disease, trinucleotide repeats in the 3' untranslated region, did not prevent the effect. The consequence of an abnormal amount of the kinase would be altered muscle cell excitability, consistent with the clinical finding of myotonia in myotonic dystrophy. Images PMID:7738201

  9. New Findings on the Mechanism of Perspiration Including Aquaporin-5 Water Channel.

    PubMed

    Inoue, Risako

    2016-01-01

    Aquaporin-5 (AQP5) is a member of the water channel protein family. Although AQP5 has been shown to be present in sweat glands, the presence or absence of regulated intracellular translocation of AQP5 in sweat glands remains to be determined. In this article, recent findings on AQP5 in sweat glands are presented. (1) Immunoreactive AQP5 was detected in the apical membranes and the intercellular canaliculi of secretory coils, and in the basolateral membranes of the clear cells in human eccrine sweat glands. (2) AQP5 rapidly concentrated at the apical membranes during sweating in mouse sweat glands. (3) Treatment of human AQP5-expressing Madin-Darby canine kidney cells with calcium ionophore A23187 resulted in a twofold increase in the AQP5 level in the apical membranes within 5 min. (4) Anoctamin-1, a calcium-activated chloride channel was detected in the apical membranes and it completely colocalized with AQP5 in the apical membranes in mouse sweat glands. AQP5 may be involved in sweating and its translocation may help to increase the water permeability of the apical membranes of sweat glands. AQP5 is a potential target molecule for the design of a sweat-modulating drug. PMID:27584958

  10. Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site.

    PubMed

    Yokoyama, Charles T; Myers, Scott J; Fu, Jian; Mockus, Susan M; Scheuer, Todd; Catterall, William A

    2005-01-01

    Ca(v)2.1 and Ca(v)2.2 channels conduct P/Q-type and N-type Ca(2+) currents that initiate neurotransmission and bind SNARE proteins through a synaptic protein interaction (synprint) site. PKC and CaMKII phosphorylate the synprint site and inhibit SNARE protein binding in vitro. Here we identify two separate microdomains that each bind syntaxin 1A and SNAP-25 in vitro and are regulated by PKC phosphorylation at serines 774 and 898 and CaMKII phosphorylation at serines 784 and 896. Activation of PKC resulted in its recruitment to and phosphorylation of Ca(V)2.2 channels, but PKC phosphorylation did not dissociate Ca(V)2.2 channel/syntaxin 1A complexes. Chimeric Ca(V)2.1a channels containing the synprint site of Ca(v)2.2 gain modulation by syntaxin 1A, which is blocked by PKC phosphorylation at the sites identified above. Our results support a bipartite model for the synprint site in which each SNARE-binding microdomain is controlled by a separate PKC and CaMKII phosphorylation site that regulates channel modulation by SNARE proteins. PMID:15607937

  11. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean.

    PubMed

    Fairley-Grenot, K.; Assmann, S. M.

    1991-09-01

    Recent reports have shown that GTP-binding proteins (G-proteins) are present in plants but have given limited indication as to their site of action. G-proteins in animal cells transduce extracellular signals into intracellular or membrane-mediated events, including the regulation of ion channels. Using whole-cell patch clamp, we provide evidence that a G-protein in guard cells of fava bean regulates the magnitude (and not the kinetics) of inward current through K+-selective ion channels in the plasma membrane. GDP[beta]S (100 to 500 [mu]M) increases inward K+ current, whereas GTP[gamma]S (500 [mu]M) has the opposite effect. The control nucleotides ADP[beta]S and ATP[gamma]S (500 [mu]M) do not affect K+ current. Reduction of inward current by GTP[gamma]S is eliminated in the presence of the Ca2+ chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N[prime],N[prime],-tetraacetic acid) (5 mM). When applied intracellularly, the G-protein regulators, cholera toxin and pertussis toxin, both decrease inward K+ current. The entry of K+ (and anions) into guard cells increases their turgor, opening stomatal pores in the leaf epidermis that allow gas exchange with the environment. Our data suggest the involvement of a G-protein in the inhibition of K+ uptake and stomatal opening. Changes in stomatal aperture, vital to both photosynthesis and plant water status, reflect guard-cell responsiveness to a variety of known environmental signals. The results presented here indicate that, in plants as well as animals, ion channel regulation by environmental stimuli may be mediated by G-proteins. PMID:12324626

  12. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean.

    PubMed Central

    Fairley-Grenot, K; Assmann, SM

    1991-01-01

    Recent reports have shown that GTP-binding proteins (G-proteins) are present in plants but have given limited indication as to their site of action. G-proteins in animal cells transduce extracellular signals into intracellular or membrane-mediated events, including the regulation of ion channels. Using whole-cell patch clamp, we provide evidence that a G-protein in guard cells of fava bean regulates the magnitude (and not the kinetics) of inward current through K+-selective ion channels in the plasma membrane. GDP[beta]S (100 to 500 [mu]M) increases inward K+ current, whereas GTP[gamma]S (500 [mu]M) has the opposite effect. The control nucleotides ADP[beta]S and ATP[gamma]S (500 [mu]M) do not affect K+ current. Reduction of inward current by GTP[gamma]S is eliminated in the presence of the Ca2+ chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N[prime],N[prime],-tetraacetic acid) (5 mM). When applied intracellularly, the G-protein regulators, cholera toxin and pertussis toxin, both decrease inward K+ current. The entry of K+ (and anions) into guard cells increases their turgor, opening stomatal pores in the leaf epidermis that allow gas exchange with the environment. Our data suggest the involvement of a G-protein in the inhibition of K+ uptake and stomatal opening. Changes in stomatal aperture, vital to both photosynthesis and plant water status, reflect guard-cell responsiveness to a variety of known environmental signals. The results presented here indicate that, in plants as well as animals, ion channel regulation by environmental stimuli may be mediated by G-proteins. PMID:12324626

  13. Impaired olfaction in mice lacking aquaporin-4 water channels.

    PubMed

    Lu, Daniel C; Zhang, Hua; Zador, Zsolt; Verkman, A S

    2008-09-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had approximately 12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 +/- 0.7 vs. 55 +/- 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 +/- 0.07 vs. 0.28 +/- 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K(+) buffering in the olfactory epithelium. PMID:18511552

  14. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane

    PubMed Central

    Zhang, Xiaoyan; Fu, Wangyang; Palivan, Cornelia G.; Meier, Wolfgang

    2013-01-01

    Reconstitution of membrane proteins in artificial membrane systems creates a platform for exploring their potential for pharmacological or biotechnological applications. Previously, we demonstrated amphiphilic block copolymers as promising building blocks for artificial membranes with long-term stability and tailorable structural parameters. However, the insertion of membrane proteins has not previously been realized in a large-area, stable, and solid-supported artificial membrane. Here, we show the first, preliminary model of a channel membrane protein that is functionally incorporated in a completely artificial polymer, tethered, solid-supported bilayer membrane (TSSBM). Unprecedented ionic transport characteristics that differ from previous results on protein insertion into planar, free-standing membranes, are identified. Our findings mark a change in understanding protein insertion and ion flow within natural channel proteins when inserted in an artificial TSSBM, thus holding great potential for numerous applications such as drug screening, trace analyzing, and biosensing. PMID:23846807

  15. Arsenic removal from flowing irrigation water in bangladesh: impacts of channel properties.

    PubMed

    Lineberger, Ethan M; Badruzzaman, A Borhan M; Ali, M Ashraf; Polizzotto, Matthew L

    2013-11-01

    Across Bangladesh, dry-season irrigation with arsenic-contaminated well water is loading arsenic onto rice paddies, leading to increased arsenic concentrations in plants, diminished crop yields, and increased human health risks. As irrigation water flows through conveyance channels between wells and rice fields, arsenic concentrations change over space and time, indicating that channels may provide a location for removing arsenic from solution. However, few studies have systematically evaluated the processes controlling arsenic concentrations in irrigation channels, limiting the ability to manipulate these systems and enhance arsenic removal from solution. The central goal of this study was to quantify how channel design affected removal of dissolved arsenic from flowing irrigation water. Field experiments were conducted in Bangladesh using a chemically constant source of arsenic-contaminated irrigation water and an array of constructed channels with varying geometries. The resulting hydraulic conditions affected the quantity of arsenic removed from solution within the channels by promoting known hydrogeochemical processes. Channels three times the width of control channels removed ∼3 times the mass of arsenic over 32 min of flowing conditions, whereas negligible arsenic removal was observed in tarp-lined channels, which prevented soil-water contact. Arsenic removal from solution was ∼7 times higher in a winding, 200-m-long channel than in the straight, 45-m-long control channels. Arsenic concentrations were governed by oxidative iron-arsenic coprecipitation within the water column, sorption to soils, and phosphate competition. Collectively, these results suggest that better design and management of irrigation channels may play a part in arsenic mitigation strategies for rice fields in Southern Asia. PMID:25602413

  16. Investigation of water droplet dynamics in PEM fuel cell gas channels

    NASA Astrophysics Data System (ADS)

    Gopalan, Preethi

    Water management in Proton Exchange Membrane Fuel Cell (PEMFC) has remained one of the most important issues that need to be addressed before its commercialization in automotive applications. Accumulation of water on the gas diffusion layer (GDL) surface in a PEMFC introduces a barrier for transport of reactant gases through the GDL to the catalyst layer. Despite the fact that the channel geometry is one of the key design parameters of a fluidic system, very limited research is available to study the effect of microchannel geometry on the two-phase flow structure. In this study, the droplet-wall dynamics and two-phase pressure drop across the water droplet present in a typical PEMFC channel, were examined in auto-competitive gas channel designs (0.4 x 0.7 mm channel cross section). The liquid water flow pattern inside the gas channel was analyzed for different air velocities. Experimental data was analyzed using the Concus-Finn condition to determine the wettability characteristics in the corner region. It was confirmed that the channel angle along with the air velocity and the channel material influences the water distribution and holdup within the channel. Dynamic contact angle emerged as an important parameter in controlling the droplet-wall interaction. Experiments were also performed to understand how the inlet location of the liquid droplet on the GDL surface affects the droplet dynamic behavior in the system. It was found that droplets emerging near the channel wall or under the land lead to corner filling of the channel. Improvements in the channel design has been proposed based on the artificial channel roughness created to act as capillary grooves to transport the liquid water away from the land area. For droplets emerging near the center of the channel, beside the filling and no-filling behavior reported in the literature, a new droplet jumping behavior was observed. As droplets grew and touched the sidewalls, they jumped off to the sidewall leaving the

  17. Single-channel analysis of the anion channel-forming protein from the plant pathogenic bacterium Clavibacter michiganense ssp. nebraskense

    PubMed Central

    Schürholz, Theo; Dloczik, Larissa; Neumann, Eberhard

    1993-01-01

    The anion channel protein from Clavibacter michiganense ssp. nebraskense (Schürholz, Th. et al. 1991, J. Membrane Biol. 123: 1-8) was analyzed at different concentrations of KCl and KF. At 0.8 M KCl the conductance G(Vm) increases exponentially from 21 pS at 50 mV up to 53 pS at Vm = 200 mV, 20°C. The concentration dependence of G(Vm) corresponds to a Michaelis-Menten type saturation function at all membrane voltage values applied (0-200 mV). The anion concentration K0.5, where G(Vm) has its half-maximum value, increases from 0.12 M at 50 mV to 0.24 M at 175 mV for channels in a soybean phospholipid bilayer. The voltage dependence of the single channel conductance, which is different for charged and neutral lipid bilayers, can be described either by a two-state flicker (2SF) model and the Nernst-Planck continuum theory, or by a two barrier, one-site (2B1S) model with asymmetric barriers. The increase in the number of open channels after a voltage jump from 50 mV to 150 mV has a time constant of 0.8 s. The changes of the single-channel conductance are much faster (<1 ms). The electric part of the gating process is characterized by the (reversible) molar electrical work ΔGθel = ρZgFVm ≈ -1.3 RT, which corresponds to the movement of one charge of the gating charge number ǀZgǀ = 1 across the fraction ρ = ΔVm/Vm = 0.15 of the membrane voltage Vm = 200 mV. Unlike with chloride, the single channel conductance of fluoride has a maximum at about 150 mV in the presence of the buffer PIPES (≥5 mM, pH 6.8) with K0.5 ≈ 1 M. It is shown that the decrease in conductance is due to a blocking of the channel by the PIPES anion. In summary, the results indicate that the anion transport by the Clavibacter anion channel (CAC) does not require a voltage dependent conformation change of the CAC. PMID:19431871

  18. Emodin augments calcium activated chloride channel in colonic smooth muscle cells by Gi/Go protein.

    PubMed

    Xu, Long; Ting-Lou; Lv, Nonghua; Zhu, Xuan; Chen, Youxiang; Yang, Jing

    2009-08-01

    Emodin is a natural anthraquinone in rhubarb. It has been identified as a prokinetic drug for gastrointestinal motility in Chinese traditional medicine. Emodin contracts smooth muscle by increasing the concentration of intracellular Ca(2+). In many smooth muscles, increasing intracellular Ca(2+) activates Ca(2+)-activated Cl(-) channels (ClCA). The study was aimed to investigate the effects of emodin on ClCA channels in colonic smooth muscle. 4 channel physiology signal acquire system was used to measure isometric contraction of smooth muscle strips. ClCA currents were recorded by EPC10 with perforated whole cell model. Emodin contracted strips and cells in colonic smooth muscle and augmented ClCA currents. Niflumic acid (NFA) and 4', 4'-diisothiostilbene-2, 2-disulfonic acid (DIDS) blocked the effects. Gi/Go protein inhibits protein kinase A (PKA) and protein kinase C (PKC), and PKA and PKC reduced ClCA currents. Pertussis toxin (PTX, a special inhibitor of Gi/Go protein), 8-bromoadenosine 38, 58-cyclic monophosphate (8-BrcAMP, a membrane-permeant protein kinase A activator) and Phorbol-12-myristate-13-acetate (PMA, a membrane-permeant protein kinase C activator) inhibited the effects on ClCA currents significantly. Our findings suggest that emodin augments ClCA channels to contract smooth muscle in colon, and the effect is induced mostly by enhancement of membrane Gi/Go protein signal transducer pathway. PMID:19409890

  19. The Earliest Ion Channels

    NASA Astrophysics Data System (ADS)

    Pohorille, A.; Wilson, M. A.; Wei, C.

    2009-12-01

    Supplying protocells with ions required assistance from channels spanning their membrane walls. The earliest channels were most likely short proteins that formed transmembrane helical bundles surrounding a water-filled pore. These simple aggregates were capable of transporting ions with efficiencies comparable to those of complex, contemporary ion channels. Channels with wide pores exhibited little ion selectivity but also imposed only modest constraints on amino acid sequences of channel-forming proteins. Channels with small pores could have been selective but also might have required a more precisely defined sequence of amino acids. In contrast to modern channels, their protocellular ancestors had only limited capabilities to regulate ion flux. It is postulated that subsequent evolution of ion channels progressed primarily to acquire precise regulation, and not high efficiency or selectivity. It is further proposed that channels and the surrounding membranes co-evolved.

  20. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression.

    PubMed

    Liu, Chao; Tan, Francis Chee Kuan; Xiao, Zhi-Cheng; Dawe, Gavin S

    2015-05-01

    Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway. PMID:25767117

  1. PIP1 aquaporins: Intrinsic water channels or PIP2 aquaporin modulators?

    PubMed

    Yaneff, Agustín; Vitali, Victoria; Amodeo, Gabriela

    2015-11-30

    The highly conserved plant aquaporins, known as Plasma membrane Intrinsic Proteins (PIPs), are the main gateways for cell membrane water exchange. Years of research have described in detail the properties of the PIP2 subfamily. However, characterizing the PIP1 subfamily has been difficult due to the failure to localize to the plasma membrane. In addition, the discovery of the PIP1-PIP2 interaction suggested that PIP1 aquaporins could be regulated by a complex posttranslational mechanism that involves trafficking, heteromerization and fine-tuning of channel activity. This review not only considers the evidence and findings but also discusses the complexity of PIP aquaporins. To establish a new benchmark in PIP regulation, we propose to consider PIP1-PIP2 pairs as functional units for the purpose of future research into their physiological roles. PMID:26526614

  2. Structure and chromosomal localization of a human water channel (AQP3) gene

    SciTech Connect

    Ishibashi, Kenichi; Sasaki, Sei; Saito, Fumiko

    1995-05-20

    A cDNA encoding rat AQP3, a water channel and a member of the MIP family, that is expressed predominantly in kidney medulla and colon was cloned recently. To determine the structure, tissue distribution, and chromosomal localization of the human AQP3 gene, the authors screened a human kidney cDNA library with rat AQP3 probe and isolated a cDNA coding for human AQP3 protein. The deduced amino acid sequence of human AQP3 was 91% identical to rat AQP3. Human AQP3 mRNA was expressed in colon, kidney, liver, pancreas, lung, peripheral leukocytes, spleen, and prostate. The human AQP3 gene was mapped to 7q36.2-q36.3 by chromosome fluorescence in situ hybridization. 10 refs., 3 figs.

  3. Proton Channel Activity of Influenza A Virus Matrix Protein 2 Contributes to Autophagy Arrest

    PubMed Central

    Ren, Yizhong; Feng, Liqiang; Pan, Weiqi; Li, Liang; Wang, Qian; Li, Jiashun; Li, Na; Han, Ling; Zheng, Xuehua; Niu, Xuefeng; Sun, Caijun

    2015-01-01

    Influenza A virus infection can arrest autophagy, as evidenced by autophagosome accumulation in infected cells. Here, we report that this autophagosome accumulation can be inhibited by amantadine, an antiviral proton channel inhibitor, in amantadine-sensitive virus infected cells or cells expressing influenza A virus matrix protein 2 (M2). Thus, M2 proton channel activity plays a role in blocking the fusion of autophagosomes with lysosomes, which might be a key mechanism for arresting autophagy. PMID:26468520

  4. Stabilization of Kv1.5 channel protein by the inotropic agent olprinone.

    PubMed

    Endo, Ryo; Kurata, Yasutaka; Notsu, Tomomi; Li, Peili; Morikawa, Kumi; Kondo, Takehito; Ogura, Kazuyoshi; Miake, Junichiro; Yoshida, Akio; Shirayoshi, Yasuaki; Ninomiya, Haruaki; Higaki, Katsumi; Kuwabara, Masanari; Yamamoto, Kazuhiro; Inagaki, Yoshimi; Hisatome, Ichiro

    2015-10-15

    Olprinone is an inotropic agent that inhibits phosphodiesterase (PDE) III and causes vasodilation. Olprinone has been shown to be less proarrhythmic and possibly affect expression of functional Kv1.5 channels that confer the ultra-rapid delayed-rectifier K+ channel current (IKur) responsible for action potential repolarization. To reveal involvement of Kv1.5 channels in the less arrhythmic effect of olprinone, we examined effects of the agent on the stability of Kv1.5 channel proteins expressed in COS7 cells. Olprinone at 30-1000 nM increased the protein level of Kv1.5 channels in a concentration-dependent manner. Chase experiments showed that olprinone delayed degradation of Kv1.5 channels. Olprinone increased the immunofluorescent signal of Kv1.5 channels in the endoplasmic reticulum (ER) and Golgi apparatus as well as on the cell surface. Kv1.5-mediated membrane currents, measured as 4-aminopyridine-sensitive currents, were increased by olprinone without changes in their activation kinetics. A protein transporter inhibitor, colchicine, abolished the olprinone-induced increase of Kv.1.5-mediated currents. The action of olprinone was inhibited by 4-aminopyridine, and was not mimicked by the application of 8-Bromo-cAMP. Taken together, we conclude that olprinone stabilizes Kv1.5 proteins at the ER through an action as a chemical chaperone, and thereby increases the density of Kv1.5 channels on the cell membrane. The enhancement of Kv1.5 currents could underlie less arrhythmogenicity of olprinone. PMID:26368666

  5. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis

    PubMed Central

    Krishnan, Yamini; Li, Yan; Zheng, Renjian; Kanda, Vikram; McDonald, Thomas V.

    2012-01-01

    The HERG (human ether-a-go-go related gene) potassium channel aids in repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cAMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo. PMID:22613764

  6. The transmembrane channel-like protein family and human papillomaviruses

    PubMed Central

    Horton, Jaime S; Stokes, Alexander J

    2014-01-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by increased sensitivity to infection by the β-subtype of human papillomaviruses (β-HPVs), causing persistent, tinea versicolor-like dermal lesions. In a majority of affected individuals, these macular lesions progress to invasive cutaneous squamous cell carcinoma (CSCC) in sun-exposed areas. While mutations in transmembrane channel-like 6 (TMC6 / EVER1) and 8 (TMC8 / EVER2) have been causally linked to EV, their molecular functions are unclear. It is likely that their protective effects involve regulation of the β-HPV life cycle, host keratinocyte apoptosis vs. survival balance and/or T-cell interaction with infected host cells. PMID:24800179

  7. Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER.

    PubMed

    Khanna, Rajesh; Lee, Eun Jeon; Papazian, Diane M

    2004-06-15

    We recently showed that an unglycosylated form of the Shaker potassium channel protein is retained in the endoplasmic reticulum (ER) and degraded by proteasomes in mammalian cells despite apparently normal folding and assembly. These results suggest that channel proteins with a native structure can be substrates for ER-associated degradation. We have now tested this hypothesis using the wild-type Shaker protein. Wild-type Shaker is degraded by cytoplasmic proteasomes when it is trapped in the ER and prevented from interacting with calnexin. Neither condition alone is sufficient to destabilize the protein. Proteasomal degradation of the wild-type protein is abolished when ER mannosidase I trimming of the core glycan is inhibited. Our results indicate that transient interaction with calnexin provides long-term protection from ER-associated degradation. PMID:15161937

  8. Ion selectivity of the anthrax toxin channel and its effect on protein translocation

    PubMed Central

    Anderson, Damon; Finkelstein, Alan

    2015-01-01

    Anthrax toxin consists of three ∼85-kD proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). PA63 (the 63-kD, C-terminal portion of PA) forms heptameric channels ((PA63)7) in planar phospholipid bilayer membranes that enable the translocation of LF and EF across the membrane. These mushroom-shaped channels consist of a globular cap domain and a 14-stranded β-barrel stem domain, with six anionic residues lining the interior of the stem to form rings of negative charges. (PA63)7 channels are highly cation selective, and, here, we investigate the effects on both cation selectivity and protein translocation of mutating each of these anionic residues to a serine. We find that although some of these mutations reduce cation selectivity, selectivity alone does not directly predict the rate of protein translocation; local changes in electrostatic forces must be considered as well. PMID:26170174

  9. Monte Carlo simulation of the water in a channel with charges.

    PubMed Central

    Green, M E; Lewis, J

    1991-01-01

    A Monte Carlo simulation of water in a channel with charges suggests the existence of water in immobile, high density, essentially glasslike form near the charges. The channel model has a conical section with an opening through which water molecules can pass, at the narrow end of the cone, and a cylindrical section at the other end. When the charges are placed near the narrow section of the model, the "glass" effectively blocks the channel; with the charges removed, the channel opens. The effect can be determined from the rate of passage of the water molecules through the pore, from the average orientation of the water molecule, and from distortion of the distribution of molecules. In the simulations carried out to date, no external ions have been considered. In addition to the energy, the Helmholtz free energy has been calculated. PMID:1706952

  10. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins.

    PubMed

    Siroy, Axel; Mailaender, Claudia; Harder, Daniel; Koerber, Stephanie; Wolschendorf, Frank; Danilchanka, Olga; Wang, Ying; Heinz, Christian; Niederweis, Michael

    2008-06-27

    Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be an outer membrane protein of unknown function. Expression of rv1698 restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698 partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. These results indicated that Rv1698 provides an unspecific pore that can partially substitute for MspA. Lipid bilayer experiments demonstrated that purified Rv1698 is an integral membrane protein that indeed produces channels. The main single channel conductance is 4.5 +/- 0.3 nanosiemens in 1 M KCl. Zero current potential measurements revealed a weak preference for cations. Whole cell digestion of recombinant M. smegmatis with proteinase K showed that Rv1698 is surface-accessible. Taken together, these experiments demonstrated that Rv1698 is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Rv1698 has single homologs of unknown functions in Corynebacterineae and thus represents the first member of a new class of channel proteins specific for mycolic acid-containing outer membranes. PMID:18434314

  11. Heterogeneities in confined water and protein hydration water

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Kumar, P.; Han, S.; Mazza, M. G.; Stokely, K.; Buldyrev, S. V.; Franzese, G.; Mallamace, F.; Xu, L.

    2009-12-01

    We report recent efforts to understand a broad range of experiments on confined water and protein hydration water, many initiated by a collaboration between workers at the University of Messina and MIT—the editors of this special issue. Preliminary calculations are not inconsistent with one tentative interpretation of these experiments as resulting from the system passing from the high-temperature high-pressure 'HDL' side of the Widom line (where the liquid might display non-Arrhenius behavior) to the low-temperature low-pressure 'LDL' side of the Widom line (where the liquid might display Arrhenius behavior). The Widom line—defined to be the line in the pressure-temperature plane where the correlation length has its maximum—arises if there is a critical point. Hence, interpreting the Messina-MIT experiments in terms of a Widom line is of potential relevance to testing, experimentally, the hypothesis that water displays a liquid-liquid critical point.

  12. The protein kinase A-regulated cardiac Cl- channel resembles the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Nagel, G; Hwang, T C; Nastiuk, K L; Nairn, A C; Gadsby, D C

    1992-11-01

    Stimulation of beta-adrenoceptors in cardiac ventricular myocytes activates a strong chloride ion conductance as a result of phosphorylation by cyclic AMP-dependent protein kinase (PKA). This Cl- conductance, which is time- and voltage-independent, counters the tendency of the simultaneously enhanced Ca2+ channel current to prolong the ventricular action potential. Using inside-out giant patches excised from guinea-pig myocytes, we show here that phosphorylation by the PKA catalytic subunit plus Mg-ATP elicits discrete Cl- channel currents. In almost symmetrical Cl- solutions (approximately 150 mM), unitary current amplitude scales with membrane potential, and reverses sign near 0 mV, to yield a single channel conductance of approximately 12 pS. Opening of the phosphorylated channels requires hydrolysable nucleoside triphosphate, indicating that phosphorylation by PKA is necessary, but not sufficient, for channel activation. The properties of these PKA-regulated cardiac Cl- channels are very similar, if not identical, to those of the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial cell Cl- channel whose regulation is defective in patients with cystic fibrosis. The full cardiological impact of these Cl- channels and of their possible malfunction in patients with cystic fibrosis remains to be determined. PMID:1279437

  13. Hydrogen peroxide treatments for channel catfish eggs infected with water molds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi, or water molds Saprolegnia spp., on channel catfish Ictalurus punctatus eggs can lower fry production. This requires the producer to spawn more catfish or face fingerling shortages. Few treatments have been tested against channel catfish eggs infested with an identified fungus. Hydrogen pe...

  14. Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity

    PubMed Central

    Al Khamici, Heba; Brown, Louise J.; Hossain, Khondker R.; Hudson, Amanda L.; Sinclair-Burton, Alxcia A.; Ng, Jane Phui Mun; Daniel, Elizabeth L.; Hare, Joanna E.; Cornell, Bruce A.; Curmi, Paul M. G.; Davey, Mary W.; Valenzuela, Stella M.

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function. PMID:25581026

  15. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    SciTech Connect

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Mader, E.V.

    2007-07-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  16. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function

    PubMed Central

    Kim, Gukhan; Luján, Rafael; Schwenk, Jochen; Kelley, Melissa H; Aguado, Carolina; Watanabe, Masahiko; Fakler, Bernd; Maylie, James; Adelman, John P

    2016-01-01

    Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca2+ influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels. DOI: http://dx.doi.org/10.7554/eLife.12637.001 PMID:26880549

  17. Viral channel forming proteins - How to assemble and depolarize lipid membranes in silico.

    PubMed

    Fischer, Wolfgang B; Kalita, Monoj Mon; Heermann, Dieter

    2016-07-01

    Viral channel forming proteins (VCPs) have been discovered in the late 70s and are found in many viruses to date. Usually they are small and have to assemble to form channels which depolarize the lipid membrane of the host cells. Structural information is just about to emerge for just some of them. Thus, computational methods play a pivotal role in generating plausible structures which can be used in the drug development process. In this review the accumulation of structural data is introduced from a historical perspective. Computational performances and their predictive power are reported guided by biological questions such as the assembly, mechanism of function and drug-protein interaction of VCPs. An outlook of how coarse grained simulations can contribute to yet unexplored issues of these proteins is given. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26806161

  18. The Protein Import Channel in the Outer Mitosomal Membrane of Giardia intestinalis

    PubMed Central

    Dagley, Michael J.; Dolezal, Pavel; Likić, Vladimir A.; Smid, Ondrej; Purcell, Anthony W.; Buchanan, Susan K.; Tachezy, Jan

    2009-01-01

    The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a ∼200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes. PMID:19531743

  19. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression.

    PubMed

    Kim, Hyun-Ji; Jeong, Myong-Ho; Kim, Kyung-Ran; Jung, Chang-Yun; Lee, Seul-Yi; Kim, Hanna; Koh, Jewoo; Vuong, Tuan Anh; Jung, Seungmoon; Yang, Hyunwoo; Park, Su-Kyung; Choi, Dahee; Kim, Sung Hun; Kang, KyeongJin; Sohn, Jong-Woo; Park, Joo Min; Jeon, Daejong; Koo, Seung-Hoi; Ho, Won-Kyung; Kang, Jong-Sun; Kim, Seong-Tae; Cho, Hana

    2016-01-01

    KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca(2+)/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. PMID:27466704

  20. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression

    PubMed Central

    Kim, Hyun-Ji; Jeong, Myong-Ho; Kim, Kyung-Ran; Jung, Chang-Yun; Lee, Seul-Yi; Kim, Hanna; Koh, Jewoo; Vuong, Tuan Anh; Jung, Seungmoon; Yang, Hyunwoo; Park, Su-Kyung; Choi, Dahee; Kim, Sung Hun; Kang, KyeongJin; Sohn, Jong-Woo; Park, Joo Min; Jeon, Daejong; Koo, Seung-Hoi; Ho, Won-Kyung; Kang, Jong-Sun; Kim, Seong-Tae; Cho, Hana

    2016-01-01

    KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. DOI: http://dx.doi.org/10.7554/eLife.17159.001 PMID:27466704

  1. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity

    PubMed Central

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-01-01

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity. PMID:22955885

  2. Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels.

    PubMed

    Mindthoff, Sabrina; Grunau, Silke; Steinfort, Laura L; Girzalsky, Wolfgang; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D

    2016-02-01

    More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis. PMID:26597702

  3. Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel).

    PubMed Central

    Hruska-Hageman, Alesia M; Wemmie, John A; Price, Margaret P; Welsh, Michael J

    2002-01-01

    Neuronal members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family of cation channels include the mammalian brain Na(+) channel 1 (BNC1), acid-sensing ion channel (ASIC) and dorsal-root acid-sensing ion channel (DRASIC). Their response to acidic pH, their sequence similarity to nematode proteins involved in mechanotransduction and their modulation by neuropeptides suggest that they may function as receptors for a number of different stimuli. Using the yeast two-hybrid assay, we found that the PDZ domain-containing protein PICK1 (protein interacting with C kinase) interacts specifically with the C-termini of BNC1 and ASIC, but not DRASIC or the related alphaENaC or betaENaC. In both the yeast two-hybrid system and mammalian cells, deletion of the BNC1 and ASIC C-termini abolished the interaction with PICK1. Likewise, mutating the PDZ domain in PICK1 abolished its interaction with BNC1 and ASIC. In addition, in a heterologous expression system PICK1 altered the distribution of BNC1 channels; this effect was dependent on the PDZ domain of PICK1 and the C-terminus of BNC1. We found crude synaptosomal fractions of brain to be enriched in ASIC, suggesting a possible synaptic localization. Moreover, in transfected hippocampal neurons ASIC co-localized with PICK1 in a punctate pattern at synapses. These data suggest that PICK1 binds ASIC and BNC1 via its PDZ domain. This interaction may be important for the localization and/or function of these channels in both the central and peripheral nervous systems. PMID:11802773

  4. Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex.

    PubMed

    Gelzinis, Andrius; Butkus, Vytautas; Songaila, Egidijus; Augulis, Ramūnas; Gall, Andrew; Büchel, Claudia; Robert, Bruno; Abramavicius, Darius; Zigmantas, Donatas; Valkunas, Leonas

    2015-02-01

    Fucoxanthin-chlorophyll protein (FCP) is the key molecular complex performing the light-harvesting function in diatoms, which, being a major group of algae, are responsible for up to one quarter of the total primary production on Earth. These photosynthetic organisms contain an unusually large amount of the carotenoid fucoxanthin, which absorbs the light in the blue-green spectral region and transfers the captured excitation energy to the FCP-bound chlorophylls. Due to the large number of fucoxanthins, the excitation energy transfer cascades in these complexes are particularly tangled. In this work we present the two-color two-dimensional electronic spectroscopy experiments on FCP. Analysis of the data using the modified decay associated spectra permits a detailed mapping of the excitation frequency dependent energy transfer flow with a femtosecond time resolution. PMID:25445318

  5. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers.

    PubMed

    Shi, L B; Skach, W R; Verkman, A S

    1994-04-01

    CHIP28 is a major water transporting protein in erythrocytes and kidney which forms tetramers in membranes (Verbavatz, J. M., Brown, D., Sabolic, I., Valenti, G., Ausiello, D. A., Van Hoek, A. N., Ma, T., and Verkman, A. S. (1993) J. Cell Biol. 123, 605-618). To determine whether CHIP28 monomers function independently, chimeric cDNA dimers were constructed which contained wild-type CHIP28 in series with either wild-type CHIP28, a non-water transporting CHIP28 mutant (C189W), or a functional but mercurial-insensitive CHIP28 mutant (C189S). Transcribed cRNAs were injected in Xenopus oocytes and plasma membrane expression was assayed by quantitative immunofluorescence. Water channel function was measured by osmotically induced swelling. CHIP28 homo- and heterodimers were targeted to the oocyte plasma membrane and functioned as water channels. Relative osmotic water permeability (Pf) values (normalized for plasma membrane expression of monomeric subunits) were: 1.0 (CHIP28 monomer), 0.0 (C189W), 1.07 (C189S), 1.10 (CHIP28-CHIP28 dimer) and 0.52 (CHIP28-C189W). The increase in oocyte Pf was linearly related to plasma membrane expression of wild-type CHIP28 and C189S subunits. HgCl2 (0.3 mM) inhibited channel-mediated Pf in oocytes expressing wild-type CHIP28 monomers and dimers by 85-90%, but did not inhibit Pf in oocytes expressing C189S. HgCl2 inhibited Pf in oocytes expressing CHIP28-C189S dimers by 44 +/- 7%, consistent with one mercurial-sensitive and one insensitive subunit in the heterodimer. These results indicate that despite their assembly in tetramers, monomeric CHIP28 subunits function independently as water channels. PMID:7511600

  6. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A.

    PubMed

    Meera, P; Anwer, K; Monga, M; Oberti, C; Stefani, E; Toro, L; Sanborn, B M

    1995-08-01

    Relaxin, a hormone that is elevated during pregnancy, can suppress myometrial contractile activity. Ca(2+)-activated K+ channels (KCa) play a role in the modulation of uterine contractions and myometrial Ca2+ homeostasis and have been implicated in the control of smooth muscle excitability. We now show that relaxin stimulates KCa channels in cell-attached patches in a cell line derived from term pregnant human myometrium. This effect was prevented by the protein kinase A (PKA) antagonist, the Rp diastereomer of adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS). After patch excision, the channel was activated by PKA and inhibited by alkaline phosphatase. These data suggest that relaxin may promote myometrial quiescence in part by stimulation of KCa channels via a PKA-mediated mechanism. PMID:7653512

  7. Electron Spin-Echo Envelope Modulation (ESEEM) Reveals Water and Phosphate Interactions with the KcsA Potassium Channel

    SciTech Connect

    Cieslak, John A.; Focia, Pamela J.; Gross, Adrian

    2010-08-13

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that {sup 31}P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the {sup 31}P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

  8. Probing membrane protein structure using water polarization transfer solid-state NMR

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan K.; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins.

  9. Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR

    PubMed Central

    Williams, Jonathan K.; Hong, Mei

    2014-01-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane peptide of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

  10. Probing membrane protein structure using water polarization transfer solid-state NMR.

    PubMed

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502

  11. Control of TRPC and store-operated channels by protein kinase C.

    PubMed

    Venkatachalam, Kartik; Zheng, Fei; Gill, Donald L

    2004-01-01

    TRPC channels are widely expressed among cells and are believed to play important roles in receptor-mediated Ca2+ signalling. We determined that the function of TRPC channels is highly regulated by protein kinase C (PKC). Application of diacylglycerol (DAG) or elevated endogenous DAG resulting from either DAG-lipase or DAG-kinase inhibition, completely prevented TRPC5 or TRPC4 activation in both HEK293 cells and DT40 cells. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by PKC, in distinction to the stimulatory action of DAG on TRPC3 which was PKC-independent. PKC activation totally blocked TRPC3 channel-activated in response to OAG, and was restored by PKC-blockade. PKC-inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation but not store-depletion per se, was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation reflecting a likely universal feedback control on TRPCs. The profound yet distinct control by PKC and DAG on the activation of TRPC channel subtypes may be the basis of a spectrum of regulatory phenotypes of expressed TRPC channels. PMID:15104182

  12. A kinetic analysis of protein transport through the anthrax toxin channel

    PubMed Central

    Kienker, Paul K.; Briggs, Stephen W.; Finkelstein, Alan

    2011-01-01

    Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA63)7, formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell’s endosomal membrane, disrupting cellular homeostasis. (PA63)7 incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel can be driven by voltage on a timescale of seconds. A characteristic of the translocation of LFN, the N-terminal 263 residues of LF, is its S-shaped kinetics. Because all of the translocation experiments reported in the literature have been performed with more than one LFN molecule bound to most of the channels, it is not clear whether the S-shaped kinetics are an intrinsic characteristic of translocation kinetics or are merely a consequence of the translocation in tandem of two or three LFNs. In this paper, we show both in macroscopic and single-channel experiments that even with only one LFN bound to the channel, the translocation kinetics are S shaped. As expected, the translocation rate is slower with more than one LFN bound. We also present a simple electrodiffusion model of translocation in which LFN is represented as a charged rod that moves subject to both Brownian motion and an applied electric field. The cumulative distribution of first-passage times of the rod past the end of the channel displays S-shaped kinetics with a voltage dependence in agreement with experimental data. PMID:21624946

  13. A Dipeptidyl Aminopeptidase–like Protein Remodels Gating Charge Dynamics in Kv4.2 Channels

    PubMed Central

    Dougherty, Kevin; Covarrubias, Manuel

    2006-01-01

    Dipeptidyl aminopeptidase–like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U. Lin, M.J. Saganich, T. McCormack, K.O. Akinsanya, S.Y. Qi, and B. Rudy. 2005. J. Biol. Chem. 280:18853–18861). However, the underlying mechanism of action is unknown. We hypothesized that a unique interaction between the Kv4.2 channel and a DPLP found in brain (DPPX-S) may remodel the channel's voltage-sensing domain. To test this hypothesis, we implemented a robust experimental system to measure Kv4.2 gating currents and study gating charge dynamics in the absence and presence of DPPX-S. The results demonstrated that coexpression of Kv4.2 and DPPX-S causes a −26 mV parallel shift in the gating charge-voltage (Q-V) relationship. This shift is associated with faster outward movements of the gating charge over a broad range of relevant membrane potentials and accelerated gating charge return upon repolarization. In sharp contrast, DPPX-S had no effect on gating charge movements of the Shaker B Kv channel. We propose that DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement. The remodeling of gating charge dynamics may involve specific protein–protein interactions of the DPPX-S's transmembrane segment with the voltage-sensing and pore domains of the Kv4.2 channel. This mechanism may determine the characteristic fast operation of neuronal Kv4 channels in the subthreshold range of membrane potentials. PMID:17130523

  14. Improved Correction Method for Water-Refracted Terrestrial Laser Scanning Data Acquired in the Mountain Channel

    NASA Astrophysics Data System (ADS)

    Miura, N.; Asano, Y.; Moribe, Y.

    2016-06-01

    Detailed information of underwater topography is required for better understanding and prediction of water and sediment transport in a mountain channel. Recent research showed promising utility of green-wavelength Terrestrial Laser Scanning (TLS) for measuring submerged stream-bed structure in fluvial environment. However, difficulty in acquiring reliable underwater data has been remained in the part of mountain channel where water surface has some gradient. Since horizontal water surface was a major premise for the existing water refraction correction method, significant error was resulted in such area. Therefore, this paper presents a modified method to correct water-refracted TLS data acquired over mountain channel with complex water-surface slope. Applicability of the modified method was validated using the field data and compared with the existing correction method and non-corrected data. The results showed that the modified method has much smaller error with RMSE value of 3 mm than the existing method (RMSE = 10 mm) and non-corrected data (RMSE = 23 mm). Presented method successfully corrected water-refracted TLS data acquired over sloped channel. This would enable us to quantitatively measure whole units of complex mountain channels, and help us to understand water dynamics better in the area.

  15. EVALUATION OF PROTEIN REDUCTION AND LYSINE SUPPLEMENTATION OF PRODUCTION DIETS FOR CHANNEL CATFISH ICTALURUS PUNCTATUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-year continuous production trial was conducted in earthen ponds to evaluate lysine supplementation of practical diets as a means to reduce the need for total dietary protein and limit nitrogenous waste production of channel catfish. Experimental diets consisted of three practical diets containi...

  16. Effects of Dietary Protein Concentration and Feeding Regimen on Channel Catfish Ictalurus punctatus Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other d) on channel catfish Ictalurus punctatus production in earthen ponds. Compared with fish fed daily, fish fed every other d had lower ...

  17. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain

    PubMed Central

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-01-01

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1–S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. PMID:25603957

  18. Effects of Fasting on IGF-Binding Proteins, Glucose, and Cortisol in Channel Catfish (Ictalurus punctatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fasting on IGF-binding proteins, glucose, and cortisol in channel catfish were examined. Fed fish (controls) were compared to 14-, 30-, and 45-day fasted fish and 45-day fasted fish refed for 15 additional days. Body length and body weight changes, condition factor(CF), hepatosomati...

  19. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    PubMed

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. PMID:25603957

  20. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides.

    PubMed Central

    Davis, B D; Chen, L L; Tai, P C

    1986-01-01

    Among the pleiotropic effects of aminoglycosides, their irreversible uptake and their blockade of initiating ribosomes have appeared to explain their bactericidal action, while the contributions of translational misreading and membrane damage and the mechanism of that damage have remained uncertain. We now present evidence that incorporation of misread proteins into the membrane can account for the membrane damage. The bactericidal action thus appears to result from the following sequence, in which each step is essential: slight initial entry of the antibiotic; interaction with chain-elongating ribosomes, resulting in misreading; incorporation of misread protein into the membrane, creating abnormal channels; increased (and irreversible) entry through these channels, and hence increased misreading and formation of channels; and, finally, blockade of initiating ribosomes. This mechanism can account for several previously unexplained observations: that streptomycin uptake requires protein synthesis during, but not after, the lag before the membrane damage; that streptomycin-resistant cells, which fail to take up streptomycin, can do so after treatment by another aminoglycoside; and that puromycin at moderate concentrations accelerates streptomycin uptake, while high concentrations (which release shorter chains) prevent it. In addition, puromycin, prematurely releasing polypeptides of normal sequence, also evidently creates channels, since it is reported to promote streptomycin uptake even in streptomycin-resistant cells. These findings imply that normal membrane proteins must be selected not only for a hydrophobic anchoring surface, but also for a tight fit in the membrane. Images PMID:2426712

  1. A virus-encoded potassium ion channel is a structural protein in the chlorovirus Paramecium bursaria chlorella virus 1 virion.

    PubMed

    Romani, Giulia; Piotrowski, Adrianna; Hillmer, Stefan; Gurnon, James; Van Etten, James L; Moroni, Anna; Thiel, Gerhard; Hertel, Brigitte

    2013-11-01

    Most chloroviruses encode small K(+) channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K(+) channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K(+) channel from chlorovirus MA-1D to search for the viral K(+) channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K(+) channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K(+) channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions. PMID:23918407

  2. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  3. Intra-membrane molecular interactions of K%2B channel proteins : application to problems in biodefense and bioenergy.

    SciTech Connect

    Moczydlowski, Edward G.

    2013-07-01

    Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

  4. Possible near-IR channels for remote sensing precipitable water vapor from geostationary satellite platforms

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Goetz, A. F. H.; Westwater, Ed R.; Conel, J. E.; Green, R. O.

    1993-01-01

    Remote sensing of troposheric water vapor profiles from current geostationary weather satellites is made using a few broadband infrared (IR) channels in the 6-13 micron region. Uncertainties greater than 20% exist in derived water vapor values just above the surface from the IR emission measurements. In this paper, we propose three near-IR channels, one within the 0.94-micron water vapor band absorption region, and the other two in nearby atmospheric windows, for remote sensing of precipitable water vapor over land areas, excluding lakes and rivers, during daytime from future geostationary satellite platforms. The physical principles are as follows. The reflectance of most surface targets varies approximately linearly with wavelength near 1 micron. The solar radiation on the sun-surface-sensor ray path is attenuated by atmospheric water vapor. The ratio of the radiance from the absorption channel with the radiances from the two window channels removes the surface reflectance effects and yields approximately the mean atmospheric water vapor transmittance of the absorption channel. The integrated water vapor amount from ground to space can be obtained with a precision of better than 5% from the mean transmittance. Because surface reflectances vary slowly with time, temporal variation of precipitable water vapor can be determined reliably. High spatial resolution, precipitable water vapor images are derived from spectral data collected by the Airborne Visable-Infrared Imaging Spectrometer, which measures solar radiation reflected by the surface in the 0.4-2.5 micron region in 10-nm channels and has a ground instantaneous field of view of 20 m from its platform on an ER-2 aircraft at 20 km. The proposed near-IR reflectance technique would complement the IR emission techniques for remote sensing of water vapor profiles from geostationary satellite platforms, especially in the boundary layer where most of the water vapor is located.

  5. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    SciTech Connect

    Lee, Changhee; Yoo, Dongwan . E-mail: dyoo@uoguelph.ca

    2006-11-10

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-{delta}E-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-{delta}E virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-{delta}E virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm.

  6. Channel crossing: how are proteins shipped across the bacterial plasma membrane?

    PubMed Central

    Collinson, Ian; Corey, Robin A.; Allen, William J.

    2015-01-01

    The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. PMID:26370937

  7. Inactivation of Photosystems I and II in Response to Osmotic Stress in Synechococcus. Contribution of Water Channels1

    PubMed Central

    Allakhverdiev, Suleyman I.; Sakamoto, Atsushi; Nishiyama, Yoshitaka; Murata, Norio

    2000-01-01

    The effects of osmotic stress due to sorbitol on the photosynthetic machinery were investigated in the cyanobacterium Synechococcus R-2. Incubation of cells in 1.0 m sorbitol inactivated photosystems I and II and decreased the intracellular solute space by 50%. These effects of sorbitol were reversible: Photosynthetic activity and cytoplasmic volume returned to the original values after removal of the osmotic stress. A blocker of water channels prevented the osmotic-stress-induced inactivation and shrinkage of the intracellular space. It also prevented the recovery of photosynthetic activity and cytoplasmic volume when applied just before release from osmotic stress. Inhibition of protein synthesis by lincomycin had no significant effects on the inactivation and recovery processes, an observation that suggests that protein synthesis was not involved in these processes. Our results suggest that osmotic stress decreased the amount of water in the cytoplasm via the efflux of water through water channels (aquaporins), with resultant increases in intracellular concentrations of ions and a decrease in photosynthetic activity. PMID:10759516

  8. Modeling Meandering Channel by Two-Dimensional Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Yu, C.; Duan, J. G.

    2014-12-01

    This research is to simulate the process of channel meandering using a two-dimensional depth-averaged hydrodynamic model. The multiple interactions between unsteady flow, turbulence, secondary flow, nonequilibrium sediment transport and bank erosion are considered by the model. The governing equations are the 2D depth-averaged Reynolds-averaged Navier-Stokes (2D-RANS) equations and the Exner equation for bed elevation evolution. The Reynolds stresses are calculated by the k-ɛ turbulence model. The secondary flow, is modeled by the dispersion terms in momentum equations. The spatial lag between the instantaneous flow properties and the rate of sediment transport is simulated by the nonequilibrium sediment transport model. During the process of adaptation, the sediment transport rate gradually develops into the transport capacity of a given flow condition. The evolution of channel bed and bank is modeled by the general Exner equation that accounts for both vertical deformation of bed elevation as well as lateral migration of bank. The system of governing equations is solved by a semi-implicit finite volume method over the Cartesian mesh. The advective fluxes across each cell interface are simultaneously calculated by the extended HLL Riemann solver. At each time step, the diffusion terms in the governing equations are solved by the implicit Euler scheme. The source terms are discretized in a well-balanced way to retain the C-property of the proposed model. Application of the model to different test cases indicates that the model can correctly simulate different phases of meandering channel evolution which include streamwise migration, transverse migration and rotation of channel bends.

  9. Description and control of dissociation channels in gas-phase protein complexes

    NASA Astrophysics Data System (ADS)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  10. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uncoupling protein 2 is a member of the mitochondrial channel proteins that regulate the flow of hydrogen ions and ATP generation. The relationship between UCP2 and nutrient metabolism has been well-defined in humans but unclear in fish. We hypothesized that increased muscle growth in channel catf...

  11. Mercury-sensitive water channels as possible sensors of water potentials in pollen

    PubMed Central

    Hill, Adrian E.

    2013-01-01

    The growing pollen tube is central to plant reproduction and is a long-standing model for cellular tip growth in biology. Rapid osmotically driven growth is maintained under variable conditions, which requires osmosensing and regulation. This study explores the mechanism of water entry and the potential role of osmosensory regulation in maintaining pollen growth. The osmotic permeability of the plasmalemma of Lilium pollen tubes was measured from plasmolysis rates to be 1.32±0.31×10–3 cm s–1. Mercuric ions reduce this permeability by 65%. Simulations using an osmotic model of pollen tube growth predict that an osmosensor at the cell membrane controls pectin deposition at the cell tip; inhibiting the sensor is predicted to cause tip bursting due to cell wall thinning. It was found that adding mercury to growing pollen tubes caused such a bursting of the tips. The model indicates that lowering the osmotic permeability per se does not lead to bursting but rather to thickening of the tip. The time course of induced bursting showed no time lag and was independent of mercury concentration, compatible with a surface site of action. The submaximal bursting response to intermediate mercuric ion concentration was independent of the concentration of calcium ions, showing that bursting is not due to a competitive inhibition of calcium binding or entry. Bursting with the same time course was also shown by cells growing on potassium-free media, indicating that potassium channels (implicated in mechanosensing) are not involved in the bursting response. The possible involvement of mercury-sensitive water channels as osmosensors and current knowledge of these in pollen cells are discussed. PMID:24098048

  12. Mercury-sensitive water channels as possible sensors of water potentials in pollen.

    PubMed

    Shachar-Hill, Bruria; Hill, Adrian E; Powell, Janet; Skepper, Jeremy N; Shachar-Hill, Yair

    2013-11-01

    The growing pollen tube is central to plant reproduction and is a long-standing model for cellular tip growth in biology. Rapid osmotically driven growth is maintained under variable conditions, which requires osmosensing and regulation. This study explores the mechanism of water entry and the potential role of osmosensory regulation in maintaining pollen growth. The osmotic permeability of the plasmalemma of Lilium pollen tubes was measured from plasmolysis rates to be 1.32±0.31×10(-3) cm s(-1). Mercuric ions reduce this permeability by 65%. Simulations using an osmotic model of pollen tube growth predict that an osmosensor at the cell membrane controls pectin deposition at the cell tip; inhibiting the sensor is predicted to cause tip bursting due to cell wall thinning. It was found that adding mercury to growing pollen tubes caused such a bursting of the tips. The model indicates that lowering the osmotic permeability per se does not lead to bursting but rather to thickening of the tip. The time course of induced bursting showed no time lag and was independent of mercury concentration, compatible with a surface site of action. The submaximal bursting response to intermediate mercuric ion concentration was independent of the concentration of calcium ions, showing that bursting is not due to a competitive inhibition of calcium binding or entry. Bursting with the same time course was also shown by cells growing on potassium-free media, indicating that potassium channels (implicated in mechanosensing) are not involved in the bursting response. The possible involvement of mercury-sensitive water channels as osmosensors and current knowledge of these in pollen cells are discussed. PMID:24098048

  13. CONCENTRATING TOXOPLASMA GONDII AND CYCLOSPORA CAYETANENSIS FROM SURFACE WATER AND DRINKING WATER BY CONTINUOUS SEPARATION CHANNEL CENTRIFUGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To evaluate the effectiveness of continuous separation channel centrifugation for concentrating Toxoplasma gondii and Cyclospora cayetanensis from drinking water and environmental waters.Methods and Results: Ready-to-seed vials with known quantities of Toxoplasma gondii and Cyclospora cayetane...

  14. Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning

    NASA Astrophysics Data System (ADS)

    Tajkhorshid, Emad; Nollert, Peter; Jensen, Morten Ø.; Miercke, Larry J. W.; O'Connell, Joseph; Stroud, Robert M.; Schulten, Klaus

    2002-04-01

    Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops, this dictates opposite orientations of water molecules in the two halves of the channel, and thus prevents the formation of a ``proton wire,'' while permitting rapid water diffusion. Both simulations and observations revealed a more regular distribution of channel water and an increased water permeability for the W48F/F200T mutant.

  15. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.

    PubMed

    Linsdell, P; Hanrahan, J W

    1999-03-01

    1. The effects of physiological substrates of multidrug resistance-associated proteins (MRPs) on cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel currents were examined using patch clamp recording from CFTR-transfected mammalian cell lines. 2. Two MRP substrates, taurolithocholate-3-sulphate (TLCS) and beta-estradiol 17-(beta-D-glucuronide) (E217betaG) caused a voltage-dependent block of macroscopic CFTR Cl- currents when applied to the intracellular face of excised membrane patches, with mean apparent dissociation constants (KDs) of 96+/-10 and 563+/-103 microM (at 0 mV) respectively. The unconjugated bile salts taurocholate and cholate were also effective CFTR channel blockers under these conditions, with KDs of 453+/-44 and 3760+/-710 microM (at 0 mV) respectively. 3. Reducing the extracellular Cl- concentration from 154 to 20 mM decreased the KD for block intracellular TLCS to 54+/-1 microM, and also significantly reduced the voltage dependence of block, by suggesting that TLCS blocks Cl- permeation through CFTR by binding within the channel pore. 4. Intracellular TLCS reduced the apparent amplitude of CFTR single channel currents, suggesting that the duration of block is very fast compared to the gating of the channel. 5. The apparent affinity of block by TLCs is comparable to that of other well-known CFTR channel blockers, suggesting that MRP substrates may comprise a novel class of probes of the CFTR channel pore. 6. These results also suggest that the related proteins CFTR and MRP may share a structurally similar anion binding site at the cytoplasmic face of the membrane. PMID:10217542

  16. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel

    PubMed Central

    Linsdell, Paul; Hanrahan, John W

    1999-01-01

    The effects of physiological substrates of multidrug resistance-associated proteins (MRPs) on cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel currents were examined using patch clamp recording from CFTR-transfected mammalian cell lines. Two MRP substrates, taurolithocholate-3-sulphate (TLCS) and β-estradiol 17-(β-D-glucuronide) (E217βG) caused a voltage-dependent block of macroscopic CFTR Cl− currents when applied to the intracellular face of excised membrane patches, with mean apparent dissociation constants (KDs) of 96±10 and 563±103 μM (at 0 mV) respectively. The unconjugated bile salts taurocholate and cholate were also effective CFTR channel blockers under these conditions, with KDs of 453±44 and 3760±710 μM (at 0 mV) respectively. Reducing the extracellular Cl− concentration from 154 to 20 mM decreased the KD for block intracellular TLCS to 54±1 μM, and also significantly reduced the voltage dependence of block, by suggesting that TLCS blocks Cl− permeation through CFTR by binding within the channel pore. Intracellular TLCS reduced the apparent amplitude of CFTR single channel currents, suggesting that the duration of block is very fast compared to the gating of the channel. The apparent affinity of block by TLCs is comparable to that of other well-known CFTR channel blockers, suggesting that MRP substrates may comprise a novel class of probes of the CFTR channel pore. These results also suggest that the related proteins CFTR and MRP may share a structurally similar anion binding site at the cytoplasmic face of the membrane. PMID:10217542

  17. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  18. From GTP and G proteins to TRPC channels: a personal account.

    PubMed

    Birnbaumer, Lutz

    2015-09-01

    By serendipity and good fortune, as a postdoctoral fellow in 1967, I landed at the right place at the right time, as I was allowed to investigate the mechanism by which hormones activate the enzyme adenylyl cyclase (then adenyl cyclase) in Martin Rodbell's Laboratory at the NIH in Bethesda, Maryland. The work uncovered first, the existence of receptors separate from the enzyme and then, the existence of transduction mechanisms requiring guanosine-5'-triphosphate (GTP) and Mg(2+). With my laboratory colleagues first and postdoctoral fellows after leaving NIH, I participated in the development of the field "signal transduction by G proteins," uncovered by molecular cloning several G-protein-coupled receptors (GPCRs) and became interested in both the molecular makeup of voltage-gated Ca channels and Ca2+ homeostasis downstream of activation of phospholipase C (PLC) by the Gq/11 signaling pathway. We were able to confirm the hypothesis that there would be mammalian homologues of the Drosophila "transient receptor potential" channel and discovered the existence of six of the seven mammalian genes, now called transient receptor potential canonical (TRPC) channels. In the present article, I summarize from a bird's eye view of what I feel were key findings along this path, not only from my laboratory but also from many others, that allowed for the present knowledge of cell signaling involving G proteins to evolve. Towards the end, I summarize roles of TRPC channels in health and disease. PMID:26377676

  19. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  20. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  1. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  2. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  3. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  4. The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Deng, Zhiqin; Yang, Lili; Luo, Hai; Liu, Shanwen; Li, Yuan; Wei, Yan; Peng, Shuang; Zhu, Linyan; Wang, Liwei; Chen, Lixin

    2016-03-01

    Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels. PMID:26794461

  5. Detection of regolith buried water stream channels on Mars with the help of synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    The major problem of Mars research is search of water on its surface Biological life is connected to water In this connection the intense interest represents detection of water stream channels which in the past flew on Mars In these areas the petrified rests of the former life on Mars may be found out Now these channels may be under regolith layer However radio waves penetrating ability allows seeing these channels under a regolith The radio wave falls on a regolith surface under some angle The part of the falling wave power is reflected by regolith Other part of it refracts under a regolith surface and reaches bottom of a channel Here there is reflection because of a difference in refraction index of regolith and bedrock of a channel bottom The part of reflected power gets back to the spacecraft Passage through regolith is accompanied by electric losses In result we receive the image of a channel which contrast depends on regolith depth difference in refraction index of regolith and bedrock of a channel bottom as well as wavelength In this work in some assumptions concerning regolith and bedrock electric properties the model of the channel image is received The optimum wavelength for detection of the water stream channels now buried by regolith is determined The analysis of the reflected signal level dependence from an angle under which SAR onboard aerial is directed to a planet surface is carried out It is shown that power of the SAR transmitter and the size of the onboard aerial will be moderate if radar survey to carry out

  6. Characterization of extended channel bioreactors for continuous-flow protein production

    DOE PAGESBeta

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-10-02

    In this paper, protein based therapeutics are an important class of drugs, used to treat a variety of medical conditions including cancer and autoimmune diseases. Requiring continuous cold storage, and having a limited shelf life, the ability to produce such therapeutics at the point-of-care would open up new opportunities in distributing medicines and treating patients in more remote locations. Here, the authors describe the first steps in the development of a microfluidic platform that can be used for point-of-care protein synthesis. While biologic medicines, including therapeutic proteins, are commonly produced using recombinant deoxyribonucleic acid (DNA) technology in large batch cellmore » cultures, the system developed here utilizes cell-free protein synthesis (CFPS) technology. CFPS is a scalable technology that uses cell extracts containing the biological machinery required for transcription and translation and combines those extracts with DNA, encoding a specific gene, and the additional metabolites required to produce proteins in vitro. While CFPS reactions are typically performed in batch or fed-batch reactions, a well-engineered reaction scheme may improve both the rate of protein production and the economic efficiency of protein synthesis reactions, as well as enable a more streamlined method for subsequent purification of the protein product—all necessary requirements for point-of-care protein synthesis. In this work, the authors describe a new bioreactor design capable of continuous production of protein using cell-free protein synthesis. The bioreactors were designed with three inlets to separate reactive components prior to on-chip mixing, which lead into a long, narrow, serpentine channel. These multiscale, serpentine channel bioreactors were designed to take advantage of microscale diffusion distances across narrow channels in reactors containing enough volume to produce a therapeutic dose of protein, and open the possibility of performing

  7. Characterization of extended channel bioreactors for continuous-flow protein production

    SciTech Connect

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-10-02

    In this paper, protein based therapeutics are an important class of drugs, used to treat a variety of medical conditions including cancer and autoimmune diseases. Requiring continuous cold storage, and having a limited shelf life, the ability to produce such therapeutics at the point-of-care would open up new opportunities in distributing medicines and treating patients in more remote locations. Here, the authors describe the first steps in the development of a microfluidic platform that can be used for point-of-care protein synthesis. While biologic medicines, including therapeutic proteins, are commonly produced using recombinant deoxyribonucleic acid (DNA) technology in large batch cell cultures, the system developed here utilizes cell-free protein synthesis (CFPS) technology. CFPS is a scalable technology that uses cell extracts containing the biological machinery required for transcription and translation and combines those extracts with DNA, encoding a specific gene, and the additional metabolites required to produce proteins in vitro. While CFPS reactions are typically performed in batch or fed-batch reactions, a well-engineered reaction scheme may improve both the rate of protein production and the economic efficiency of protein synthesis reactions, as well as enable a more streamlined method for subsequent purification of the protein product—all necessary requirements for point-of-care protein synthesis. In this work, the authors describe a new bioreactor design capable of continuous production of protein using cell-free protein synthesis. The bioreactors were designed with three inlets to separate reactive components prior to on-chip mixing, which lead into a long, narrow, serpentine channel. These multiscale, serpentine channel bioreactors were designed to take advantage of microscale diffusion distances across narrow channels in reactors containing enough volume to produce a therapeutic dose of protein, and open the possibility of performing these

  8. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Partitioning of Water Discharge by Distributary Channels in the Prograding, Wax Lake Delta, Coastal Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Buttles, J.; Mohrig, D.; Nittrouer, J.; McElroy, B.; Baitis, E.; Allison, M.; Paola, C.; Parker, G.; Kim, W.

    2007-12-01

    How water and sediment is routed through distributary networks on river deltas is incompletely known and a topic of much active research. We have undertaken a study to determine the controls on partitioning of water and sediment discharge in distributary channels of the Wax Lake Delta and to connect these transport processes to the land building associated with the growth of islands that separate distributary channels from each other. Here we present first results from the field project that defines how water from the upstream primary channel is partitioned between the first set of five distributary channels. Measurements of water discharge and channel bathymetry were collected using a 22-ft research vessel equipped with an acoustic Doppler velocity profiler, a swath bathymetry profiler and dual differential GPS antennas. Wax Lake Delta is situated at the downstream end of Wax Lake Outlet, a man-made channel that diverts water and sediment from the lower Atchafalaya River, roughly 20 km upstream from Morgan City, LA. The subaerial delta has been building out into Atchafalaya Bay since roughly 1973 with a delta-front advance rate of about 0.27 km/yr. Associated with this growth has been development of a distributary network of channels that continues to evolve as the delta progrades seaward. Measurements collected in May, 2007 define properties of the upstream channel and the first set of five distributary channels. Characteristic width, depth and water discharge for the upstream channel are 420 m, 21.2 m, and 2900 m3/s. Characteristic values for width, depth and water discharge for the five distributary channels are 1) 270 m, 6.7 m, and 310 m3/s, 2) 300 m, 6.5 m, and 350 m3/s, 3) 650 m, 6.8 m, and 820 m3/s, 4) 395 m, 6.5 m, and 560 m3/s, and 5) 440 m, 6.0 m, and 440 m3/s. These data highlight a number of interesting points regarding the initial set of bifurcations. First, the transition from one to five channels is associated with a two-thirds reduction in

  10. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  11. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  12. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  13. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." PMID:25546839

  14. Capillary-Channeled Polymer (C-CP) Films as Processing Platforms for Protein Analysis by Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry (MALDI-MS)

    NASA Astrophysics Data System (ADS)

    Pittman, Jennifer J.; Manard, Benjamin T.; Kowalski, Paul J.; Marcus, R. Kenneth

    2012-01-01

    Polypropylene (PP) capillary-channeled polymer (C-CP) films have parallel, μm-sized channels that induce solution wicking via capillary action. Efficient mass transport from the solution phase to the channel surface leads to adsorption of hydrophobic protein solutes. The basic premise by which C-CP films can be used as media to manipulate analyte solutions (e.g., proteins in buffer), for the purpose of desalting or chromatographic separation prior to MALDI-MS analysis is presented here. Cytochrome c and myoglobin prepared in a Tris-HCl buffer, and ribonuclease A, lysozyme, and transferrin prepared in phosphate buffered saline (PBS), are used as the test solutions to demonstrate the desalting concept. Protein analysis is performed after deposition on a C-CP film with and without a water washing step, followed by spray deposition of a typical sinapinic acid matrix. Extracted MALDI mass spectra exhibit much improved signal-to-noise characteristics after water washing. A mixture of cytochrome c and myoglobin (2 μL of 2.5 μM each in Tris-HCl buffer) was applied, washed with water and spatially separated via simple capillary action (wicking) using a reversed-phase solvent composition of 0.1% trifluoroacetic acid (TFA) in 50:50 acetonitrile (ACN):H2O. Subsequent application of sinapinic acid followed by imaging of the film using MALDI-MS reveals that as the protein solution is wicked down the film, separation occurs.

  15. Capillary-channeled polymer (C-CP) films as processing platforms for protein analysis by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS).

    PubMed

    Pittman, Jennifer J; Manard, Benjamin T; Kowalski, Paul J; Marcus, R Kenneth

    2012-01-01

    Polypropylene (PP) capillary-channeled polymer (C-CP) films have parallel, μm-sized channels that induce solution wicking via capillary action. Efficient mass transport from the solution phase to the channel surface leads to adsorption of hydrophobic protein solutes. The basic premise by which C-CP films can be used as media to manipulate analyte solutions (e.g., proteins in buffer), for the purpose of desalting or chromatographic separation prior to MALDI-MS analysis is presented here. Cytochrome c and myoglobin prepared in a Tris-HCl buffer, and ribonuclease A, lysozyme, and transferrin prepared in phosphate buffered saline (PBS), are used as the test solutions to demonstrate the desalting concept. Protein analysis is performed after deposition on a C-CP film with and without a water washing step, followed by spray deposition of a typical sinapinic acid matrix. Extracted MALDI mass spectra exhibit much improved signal-to-noise characteristics after water washing. A mixture of cytochrome c and myoglobin (2 μL of 2.5 μM each in Tris-HCl buffer) was applied, washed with water and spatially separated via simple capillary action (wicking) using a reversed-phase solvent composition of 0.1% trifluoroacetic acid (TFA) in 50:50 acetonitrile (ACN):H(2)O. Subsequent application of sinapinic acid followed by imaging of the film using MALDI-MS reveals that as the protein solution is wicked down the film, separation occurs. PMID:22012690

  16. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins

    PubMed Central

    Lee, Andre; Vastermark, Ake

    2014-01-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg2+ transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca2+ and Mg2+ transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. PMID:24869855

  17. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C.

    PubMed

    Venkatachalam, Kartik; Zheng, Fei; Gill, Donald L

    2003-08-01

    The mechanism of receptor-induced activation of the ubiquitously expressed family of mammalian canonical transient receptor potential (TRPC) channels has been the focus of intense study. Primarily responding to phospholipase C (PLC)-coupled receptors, the channels are reported to receive modulatory input from diacylglycerol, endoplasmic reticulum inositol 1,4,5-trisphosphate receptors and Ca2+ stores. Analysis of TRPC5 channels transfected within DT40 B cells and deletion mutants thereof revealed efficient activation in response to PLC-beta or PLC-gamma activation, which was independent of inositol 1,4,5-trisphoshate receptors or the content of stores. In both HEK293 cells and DT40 cells, TRPC5 and TRPC3 channel responses to PLC activation were highly analogous, but only TRPC3 and not TRPC5 channels responded to the addition of the permeant diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). However, OAG application or elevated endogenous DAG, resulting from either DAG lipase or DAG kinase inhibition, completely prevented TRPC5 or TRPC4 activation. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by protein kinase C (PKC), in distinction to the stimulatory action of DAG on TRPC3, which is established to be PKC-independent. PKC activation totally blocked TRPC3 channel activation in response to OAG, and the activation was restored by PKC-blockade. PKC inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. However, store-operated Ca2+ entry in response to the pump blocker, thapsigargin, was unaffected by PKC. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation, reflecting a likely universal feedback control on TRPCs, and that DAG-mediated PKC-independent activation of TRPC channels is highly subtype-specific. The

  18. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension

    NASA Technical Reports Server (NTRS)

    Betanzos, Monica; Chiang, Chien-Sung; Guy, H. Robert; Sukharev, Sergei

    2002-01-01

    MscL, a bacterial mechanosensitive channel of large conductance, is the first structurally characterized mechanosensor protein. Molecular models of its gating mechanisms are tested here. Disulfide crosslinking shows that M1 transmembrane alpha-helices in MscL of resting Escherichia coli are arranged similarly to those in the crystal structure of MscL from Mycobacterium tuberculosis. An expanded conformation was trapped in osmotically shocked cells by the specific bridging between Cys 20 and Cys 36 of adjacent M1 helices. These bridges stabilized the open channel. Disulfide bonds engineered between the M1 and M2 helices of adjacent subunits (Cys 32-Cys 81) do not prevent channel gating. These findings support gating models in which interactions between M1 and M2 of adjacent subunits remain unaltered while their tilts simultaneously increase. The MscL barrel, therefore, undergoes a large concerted iris-like expansion and flattening when perturbed by membrane tension.

  19. Dynamics and mechanism of ultrafast water-protein interactions.

    PubMed

    Qin, Yangzhong; Wang, Lijuan; Zhong, Dongping

    2016-07-26

    Protein hydration is essential to its structure, dynamics, and function, but water-protein interactions have not been directly observed in real time at physiological temperature to our awareness. By using a tryptophan scan with femtosecond spectroscopy, we simultaneously measured the hydration water dynamics and protein side-chain motions with temperature dependence. We observed the heterogeneous hydration dynamics around the global protein surface with two types of coupled motions, collective water/side-chain reorientation in a few picoseconds and cooperative water/side-chain restructuring in tens of picoseconds. The ultrafast dynamics in hundreds of femtoseconds is from the outer-layer, bulk-type mobile water molecules in the hydration shell. We also found that the hydration water dynamics are always faster than protein side-chain relaxations but with the same energy barriers, indicating hydration shell fluctuations driving protein side-chain motions on the picosecond time scales and thus elucidating their ultimate relationship. PMID:27339138

  20. Boiling Water Reactor Fuel Cycle Optimization for Prevention of Channel-Blade Interference

    SciTech Connect

    Kropaczek, David J.; Karve, Atul A.; Oyarzun, Christian C.; Asgari, Mehdi

    2006-07-01

    A formal optimization method for eliminating the potential of Boiling Water Reactor channel-blade interference is presented within the context of fuel cycle design. The method is based on the use of threshold constraints on blade force as penalty terms within an objective function that are employed as part of a search algorithm. Results demonstrate the effectiveness of the constraint formulation in eliminating channel-blade interference as part of the design of the core loading and operational strategy. (authors)

  1. Hungry water: Effects of dams and gravel mining on river channels

    SciTech Connect

    Kondolf, G.M.

    1997-07-01

    Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream), Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources. 80 refs., 17 figs.

  2. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining PMID:9175542

  3. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    NASA Astrophysics Data System (ADS)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  4. Unidirectionally migrating deep-water channels: Architectural styles and flow processes

    NASA Astrophysics Data System (ADS)

    Gong, C.; Steel, R. J.; Wang, Y.; Xu, Q.

    2014-12-01

    3D seismic data are used to investigate flow processes and sedimentation in deep-water slope channels of an alternate type characterized by short and straight channel courses, a lack of levees, and absence of any coeval fans. The study allows a picture of unusual flow processes in submarine channels. The studied channels can be divided into two discrete segments: (1) Upper segments are characterized by low aspect ratio(W/T), little lateral offset (Lm), and low migration/aggradation ratios (Lm/Va). These upper segment channels build vertically-stacked channel-complex sets (CCSs), each of which is characterized by a facies transition from fine-grained sands in the lower part overlain by debris flow deposits and then shale drapes. Energetic sediment density flows triggered by fluid escape and/or strong wave action were well able to bypass sediment and to mask relatively weak bottom currents, yielding deep-water channels characterized by little lateral offset and dominantly aggradational stacking patterns. (2) Lower segments are characterized by higher W/T, wide lateral offset (Lm), and high Lm/Va. They consist of laterally-migrated CCSs, each of which consists of fine-grained reworked sands in the lower part overlain by debris flow deposits and, finally, shale drapes. Bottom currents restricted within the channels would have induced a tilt of the interface between turbidity currents and the overriding bottom currents (Wedderburn number > 1). This would have deflected turbidity currents downward and back toward the gentle channel bank, thus causing channel migration (the steep bank) by ~2° to 15°, and yielding a helical flow circulation composed of a high-velocity zone along the steep bank and a low-velocity zone along the gentle bank. This bottom current-induced helical flow circulation promoted deposition on the gentle bank, but it favored erosion on the steep banke, yielding deep-water channels exhibiting wide lateral offset and dominantly laterally

  5. Assembly of transmembrane proteins on oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Yunker, Peter; Landry, Corey; Chong, Shaorong; Weitz, David

    2015-03-01

    Transmembrane proteins are difficult to handle by aqueous solution-based biochemical and biophysical approaches, due to the hydrophobicity of transmembrane helices. Detergents can solubilize transmembrane proteins; however, surfactant coated transmembrane proteins are not always functional, and purifying detergent coated proteins in a micellar solution can be difficult. Motivated by this problem, we study the self-assembly of transmembrane proteins on oil-water interfaces. We found that the large water-oil interface of oil drops prevents nascent transmembrane proteins from forming non-functional aggregates. The oil provides a hydrophobic environment for the transmembrane helix, allowing the ectodomain to fold into its natural structure and orientation. Further, modifying the strength or valency of hydrophobic interactions between transmembrane proteins results in the self-assembly of spatially clustered, active proteins on the oil-water interface. Thus, hydrophobic interactions can facilitate, rather than inhibit, the assembly of transmembrane proteins.

  6. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    PubMed

    Nieto-Torres, Jose L; DeDiego, Marta L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2014-05-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  7. Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis

    2014-01-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  8. Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family

    PubMed Central

    Silverio, Abe L. F.

    2014-01-01

    Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation–contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/ nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes. PMID:21519847

  9. Using Ion Channel-Forming Peptides to Quantify Protein-Ligand Interactions

    PubMed Central

    Mayer, Michael; Semetey, Vincent; Gitlin, Irina; Yang, Jerry; Whitesides, George M.

    2008-01-01

    This paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW ~30 kD) to the ion channel-forming peptides (MW ~2.5 kD) either reduced the tendency of these peptides to self-assemble into a pore, or extracted them from the bilayer altogether. In both outcomes, the interactions between the protein and the ligand lead to a disruption of self-assembled pores. Addition of a competitive inhibitor – 4-carboxybenzenesulfonamide – to the solution released CA II from the alamethicin-sulfonamide conjugate and restored the current flow across the bilayer by allowing reassembly of the ion channels in the bilayer. Time-averaged recordings of the current over discrete time intervals made it possible to quantify this monovalent ligand binding interaction. This method gave a dissociation constant of ~2 µM for the binding of CA II to alamethicin-sulfonamide in the bilayer recording chamber: this value is consistent with a value obtained independently with CA II and a related sulfonamide derivative by isothermal titration calorimetry. PMID:18179217

  10. Regulation of the protein-conducting channel by a bound ribosome

    PubMed Central

    Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus

    2009-01-01

    Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480

  11. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.

    PubMed

    Curry, M R; Shachar-Hill, B; Hill, A E

    2001-05-15

    The Kedem-Katchalsky (KK) equations are often used to obtain information about the osmotic properties and conductance of channels to water. Using human red cell membranes, in which the osmotic flow is dominated by Aquaporin-1, we show here that compared to NaCl the reflexion coefficient of the channel for methylurea, when corrected for solute volume exchange and for the water permeability of the lipid membrane, is 0.54. The channels are impermeable to these two solutes which would seem to rule out flow interaction and require a reflexion coefficient close to 1.0 for both. Thus, two solutes can give very different osmotic flow rates through a semi-permeable pore, a result at variance with both classical theory and the KK formulation. The use of KK equations to analyze osmotic volume changes, which results in a single hybrid reflexion coefficient for each solute, may explain the discrepancy in the literature between such results and those where the equations have not been employed. Osmotic reflexion coefficients substantially different from 1.0 cannot be ascribed to the participation of other 'hidden' parallel aqueous channels consistently with known properties of the membrane. Furthermore, we show that this difference cannot be due to second-order effects, such as a solute-specific interaction with water in only part of the channel, because the osmosis is linear with driving force down to zero solute concentration, a finding which also rules out the involvement of unstirred-layer effects. Reflexion coefficients smaller than 1.0 do not necessitate water-solute flow interaction in permeable aqueous channels; rather, the osmotic behaviour of impermeable molecular-sized pores can be explained by differences in the fundamental nature of water flow in regions either accessible or inaccessible to solute, created by a varying cross-section of the channel. PMID:11420598

  12. Detection Of Regolith Buried Water Stream Channels On Mars With The Help Of Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Rzhiga, O. N.

    The major problem of Mars research is search of water on its surface. Biological life is connected to water. In this connection the intense interest represents detection of water stream channels, which in the past flew on Mars. In these areas the petrified rests of the former life on Mars may be found out. Now these channels may be under regolith layer. However radio waves penetrating ability allows seeing these channels under a regolith. The radio wave falls on a regolith surface under some angle. The part of the falling wave power is reflected by regolith. Other part of it refracts under a regolith surface and reaches bottom of a channel. Here there is reflection because of a difference in refraction index of regolith and bedrock of a channel bottom. The part of reflected power gets back to the spacecraft. Passage through regolith is accompanied by electric losses. In result we receive the image of a channel which contrast depends on regolith depth, difference in refraction index of regolith and bedrock of a channel bottom as well as wavelength. In this work the optimum wavelength for detection of the water stream channels, now buried by regolith, is determined. In some assumptions concerning regolith and bedrock electric properties the model of the channel image is received. The analysis of the reflected signal level dependence from an angle under which SAR onboard aerial is directed to a planet surface is carried out. It is shown, that power of the SAR transmitter and the size of the onboard aerial will be moderate if radar survey to carry out under a small angle to a local vertical. The way, which allows suppressing the altimetric clutter arising in nadir, is specified. Here one method of search of water on Mars indications - detection of a regolith buried water stream channels is advanced only. However the radar with similar characteristics may be used as well for global survey a planet surface. Owing to a difference in character of reflection and penetrating

  13. Temperature dependence of the transport of single-file water molecules through a hydrophobic channel.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-05-01

    Although great effort has been made on the transport properties of water molecules through nanometer channels, our understanding on the effect of some basic parameters are still rather poor. In this article, we use molecular dynamics simulations to study the temperature effect on the transport of single-file water molecules through a hydrophobic channel. Of particular interest is that the water flow and average translocation time both exhibit exponential relations with the temperature. Based on the continuous-time random-walk model and Arrhenius equation, we explore some new physical insights on these exponential behaviors. With the increase of temperature, the water dipoles flip more frequently, since the estimated flipping barrier is less than 2 kB T. Specifically, the flipping frequency also shows an exponential relation with the temperature. Furthermore, the water-water interaction and water occupancy demonstrate linear relations with the temperature, and the water density profiles along the channel axis can be slightly affected by the temperature. These results not only enhance our knowledge about the temperature effect on the single-file water transport, but also have potential implications for the design of controllable nanofluidic machines. © 2016 Wiley Periodicals, Inc. PMID:26777386

  14. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle.

    PubMed

    Wang, Jian; Shimoda, L A; Sylvester, J T

    2004-04-01

    Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries. PMID:14672922

  15. Visualizing Water Molecules in Transmembrane Proteins Using Radiolytic Labeling Methods

    SciTech Connect

    Orban, T.; Gupta, S; Palczewski, K; Chance, M

    2010-01-01

    Essential to cells and their organelles, water is both shuttled to where it is needed and trapped within cellular compartments and structures. Moreover, ordered waters within protein structures often colocalize with strategically placed polar or charged groups critical for protein function, yet it is unclear if these ordered water molecules provide structural stabilization, mediate conformational changes in signaling, neutralize charged residues, or carry out a combination of all these functions. Structures of many integral membrane proteins, including G protein-coupled receptors (GPCRs), reveal the presence of ordered water molecules that may act like prosthetic groups in a manner quite unlike bulk water. Identification of 'ordered' waters within a crystalline protein structure requires sufficient occupancy of water to enable its detection in the protein's X-ray diffraction pattern, and thus, the observed waters likely represent a subset of tightly bound functional waters. In this review, we highlight recent studies that suggest the structures of ordered waters within GPCRs are as conserved (and thus as important) as conserved side chains. In addition, methods of radiolysis, coupled to structural mass spectrometry (protein footprinting), reveal dynamic changes in water structure that mediate transmembrane signaling. The idea of water as a prosthetic group mediating chemical reaction dynamics is not new in fields such as catalysis. However, the concept of water as a mediator of conformational dynamics in signaling is just emerging, because of advances in both crystallographic structure determination and new methods of protein footprinting. Although oil and water do not mix, understanding the roles of water is essential to understanding the function of membrane proteins.

  16. AqF026 Is a Pharmacologic Agonist of the Water Channel Aquaporin-1

    PubMed Central

    Morelle, Johann; Cnops, Yvette; Verbavatz, Jean-Marc; Campbell, Ewan M.; Beckett, Elizabeth A.H.; Booker, Grant W.; Flynn, Gary

    2013-01-01

    Aquaporin-1 (AQP1) facilitates the osmotic transport of water across the capillary endothelium, among other cell types, and thereby has a substantial role in ultrafiltration during peritoneal dialysis. At present, pharmacologic agents that enhance AQP1-mediated water transport, which would be expected to increase the efficiency of peritoneal dialysis, are not available. Here, we describe AqF026, an aquaporin agonist that is a chemical derivative of the arylsulfonamide compound furosemide. In the Xenopus laevis oocyte system, extracellular AqF026 potentiated the channel activity of human AQP1 by >20% but had no effect on channel activity of AQP4. We found that the intracellular binding site for AQP1 involves loop D, a region associated with channel gating. In a mouse model of peritoneal dialysis, AqF026 enhanced the osmotic transport of water across the peritoneal membrane but did not affect the osmotic gradient, the transport of small solutes, or the localization and expression of AQP1 on the plasma membrane. Furthermore, AqF026 did not potentiate water transport in Aqp1-null mice, suggesting that indirect mechanisms involving other channels or transporters were unlikely. Last, in a mouse gastric antrum preparation, AqF026 did not affect the Na-K-Cl cotransporter NKCC1. In summary, AqF026 directly and specifically potentiates AQP1-mediated water transport, suggesting that it deserves additional investigation for applications such as peritoneal dialysis or clinical situations associated with defective water handling. PMID:23744886

  17. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  18. Dynamic ion-ion and water-ion interactions in ion channels.

    PubMed Central

    Wu, J V

    1992-01-01

    The dynamic interactions among ions and water molecules in ion channels are treated based on an assumption that ions at binding sites can be knocked off by both transient entering ions and local water molecules. The theory, when applied to a single-site model K+ channel, provides solutions for super- and subsaturations, flux-ratio exponent (n') greater than 1, osmotic streaming current, activity-dependent reversal potentials, and anomalous mole-fraction behavior. The analysis predicts that: (a) the saturation may but, in general, does not follow the Michaelis-Menten relation; (b) streaming current results from imbalanced water-ion knock-off interactions; (c) n' greater than 1 even for single-site channels, but it is unlikely to exceed 1.4 unless the pore is occupied by one or more ion(s); (d) in the calculation involving two permeant ion species with similar radii, the heavier ions show higher affinity; the ion-ion knock-off dissociation from the site is more effective when two interacting ions are identical. Therefore, the "multi-ion behaviors" found in most ion channels are the consequences of dynamic ion-ion and water-ion interactions. The presence of these interactions does not require two or more binding sites in channels. PMID:1376158

  19. Polypyrrole-supported membrane proteins for bio-inspired ion channels.

    PubMed

    Pérez-Madrigal, Maria M; del Valle, Luis J; Armelin, Elaine; Michaux, Catherine; Roussel, Guillaume; Perpète, Eric A; Alemán, Carlos

    2015-01-28

    Biomedical platforms constructed by immobilizing membrane proteins in matrixes made of synthetic organic polymers is a challenge because the structure and function of these proteins are affected by environmental conditions. In this work, an operative composite that regulates the diffusion of alkali ions has been prepared by functionalizing a supporting matrix made of poly(N-methylpyrrole) (PNMPy) with a β-barrel membrane protein (Omp2a) that forms channels and pores. The protein has been unequivocally identified in the composite, and its structure has been shown to remain unaltered. The PNMPy-Omp2a platform fulfills properties typically associated with functional bio-interfaces with biomedical applications (e.g., biocompatibility, biodegrabadility, and hydrophilicity). The functionality of the immobilized protein has been examined by studying the passive ion transport response in the presence of electrolytic solutions with Na(+) and K(+) concentrations close to those found in blood. Although the behavior of PNMPy and PNMPy-Omp2a is very similar for solutions with very low concentration, the resistance of the latter decreases drastically when the concentration of ions increases to ∼100 mM. This reduction reflects an enhanced ion exchange between the biocomposite and the electrolytic medium, which is not observed in PNMPy, evidencing that PNMPy-Omp2a is particularly well suited to prepare bioinspired channels and smart biosensors. PMID:25585165

  20. Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration*

    PubMed Central

    Carrara, Guia; Saraiva, Nuno; Parsons, Maddy; Byrne, Bernadette; Prole, David L.; Taylor, Colin W.; Smith, Geoffrey L.

    2015-01-01

    Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently. PMID:25713081

  1. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification

    PubMed Central

    Jiang, Lele; Salao, Kanin; Li, Hui; Rybicka, Joanna M.; Yates, Robin M.; Luo, Xu Wei; Shi, Xin Xin; Kuffner, Tamara; Tsai, Vicky Wang-Wei; Husaini, Yasmin; Wu, Liyun; Brown, David A.; Grewal, Thomas; Brown, Louise J.; Curmi, Paul M. G.; Breit, Samuel N.

    2012-01-01

    Summary Intracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox- and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1−/− mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1−/− macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC1−/− mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs. PMID:22956539

  2. Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels

    PubMed Central

    Zhu, Fangqiang; Schulten, Klaus

    2003-01-01

    Carbon nanotubes, unmodified (pristine) and modified through charged atoms, were simulated in water, and their water conduction rates determined. The conducted water inside the nanotubes was found to exhibit a strong ordering of its dipole moments. In pristine nanotubes the water dipoles adopt a single orientation along the tube axis with a low flipping rate between the two possible alignments. Modification can induce in nanotubes a bipolar ordering as previously observed in biological water channels. Network thermodynamics was applied to investigate proton conduction through the nanotubes. PMID:12829479

  3. Surface expression of the Anoctamin-1 (ANO1) channel is suppressed by protein-protein interactions with β-COP.

    PubMed

    Lee, Young-Sun; Bae, Yeonju; Park, Nammi; Yoo, Jae Cheal; Cho, Chang-Hoon; Ryoo, Kanghyun; Hwang, Eun Mi; Park, Jae-Yong

    2016-06-24

    Anoctamin-1 (ANO1) is a Ca(2+)-activated chloride channel (CaCC) that plays important physiological roles in normal and cancerous tissues. However, the plasma membrane trafficking mechanisms of ANO1 remain poorly characterized. In yeast two-hybrid screening experiments, we observed direct interactions of ANO1 with β-COP, which is a subunit of Coat Protein Complex I (COPI). This interaction was then confirmed using several in vitro and in vivo binding assays. Moreover, the cotransfection of β-COP with ANO1 into HEK293T cells led to decreased the surface expression and the channel activity of ANO1. Accordingly, endogenous ANO1 was associated with β-COP in U251 glioblastoma cells, and silencing of β-COP enhanced surface expression and whole-cell currents of ANO1 in these cells. Taken together, these data suggest that β-COP negatively regulates ANO1 surface expression. PMID:27207835

  4. Channeling of aminoacyl-tRNA for protein synthesis in vivo.

    PubMed Central

    Negrutskii, B S; Deutscher, M P

    1991-01-01

    Channeling, the direct transfer of metabolic intermediates from one enzyme to another in a pathway, has received increased attention as an explanation for the high efficiency of cellular processes. The known structural organization of the protein biosynthetic machinery, and a recent suggestion that aminoacyl-tRNAs may be channeled, has led us to devise a direct test of this possibility. By employing the technique of electroporation, conditions were established for the introduction of aminoacyl-tRNAs into Chinese hamster ovary (CHO) cells. We show, by coelectroporation of various combinations of free [14C]amino acids and [3H]aminoacyl-tRNAs, that whereas the free amino acids serve as effective precursors for protein synthesis, the exogenous aminoacyl-tRNAs are utilized poorly, if at all. The lack of incorporation into protein from added aminoacyl-tRNAs is not due to their leakage from the cell, to their instability, or to their damage during electroporation. Furthermore, in contrast to the findings with intact cells, extracts of CHO cells incorporate both free amino acids and aminoacyl-tRNAs into protein with similar efficiencies. Based on these observations, we conclude that the inability of exogenous aminoacyl-tRNAs to serve as precursors for protein synthesis is due to the structural organization of intact cells that leads to channeling of this substrate in vivo. Thus, we propose that endogenously synthesized aminoacyl-tRNA is directly transferred from aminoacyl-tRNA synthetase to elongation factor to ribosome without dissociation into the cell fluid, and as a consequence, usage of exogenously introduced molecules is precluded. Images PMID:2052582

  5. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    NASA Astrophysics Data System (ADS)

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-06-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  6. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    SciTech Connect

    Ghosh, Ayanjeet E-mail: gai@sas.upenn.edu; Gai, Feng E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  7. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    PubMed Central

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs. PMID:24952572

  8. Structural Waters Define a Functional Channel Mediating Activation of the GPCR, rhodopsin

    SciTech Connect

    Angel, T.; Gupta, S; Jastrzebska, B; Palczewski, K; Chance, M

    2009-01-01

    Structural water molecules may act as prosthetic groups indispensable for proper protein function. In the case of allosteric activation of G protein-coupled receptors (GPCRs), water likely imparts structural plasticity required for agonist-induced signal transmission. Inspection of structures of GPCR superfamily members reveals the presence of conserved embedded water molecules likely important to GPCR function. Coupling radiolytic hydroxyl radical labeling with rapid H2O18 solvent mixing, we observed no exchange of these structural waters with bulk solvent in either ground state or for the Meta II or opsin states. However, the radiolysis approach permitted labeling of selected side chain residues within the transmembrane helices and revealed activation-induced changes in local structural constraints likely mediated by dynamics of both water and protein. These results suggest both a possible general mechanism for water-dependent communication in family A GPCRs based on structural conservation, and a strategy for probing membrane protein structure.

  9. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities

    NASA Technical Reports Server (NTRS)

    Sukharev, S. I.; Blount, P.; Martinac, B.; Kung, C.

    1997-01-01

    Although mechanosensory responses are ubiquitous and diverse, the molecular bases of mechanosensation in most cases remain mysterious MscL, a mechanosensitive channel of large conductance of Escherichia coli and its bacterial homologues are the first and currently only channel molecules shown to directly sense mechanical stretch of the membrane. In response to the tension conveyed via the lipid bilayer, MscL increases its open probability by several orders of magnitude. In the present review we describe the identification, cloning, and first sets of biophysical and structural data on this simplest mechanosensory molecule. We discovered a 2.5-ns mechanosensitive conductance in giant E. coli spheroplasts. Using chromatographies to enrich the target and patch clamp to assay the channel activity in liposome-reconstituted fractions, we identified the MscL protein and cloned the mscL gene. MscL comprises 136 amino acid residues (15 kDa), with two highly hydrophobic regions, and resides in the inner membrane of the bacterium. PhoA-fusion experiments indicate that the protein spans the membrane twice with both termini in the cytoplasm. Spectroscopic techniques show that it is highly helical. Expression of MscL tandems and covalent cross-linking suggest that the active channel complex is a homo-hexamer. We have identified several residues, which when deleted or substituted, affect channel kinetics or mechanosensitivity. Although unique when discovered, highly conserved MscL homologues in both gram-negative and gram-positive bacteria have been found, suggesting their ubiquitous importance among bacteria.

  10. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  11. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  12. Coupled Radon and Water Temperature Measurements to Characterize the Effects of Altered Stream Channel Planform

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G. C.; O'Daniel, S. J.

    2013-12-01

    In summer 2011, a 2.6 km reach of Meacham Creek, Oregon, USA, was altered from a straight, steep wall-based channel to more a sinuous, low-gradient channel. Key objectives of this restoration project were to increase the rate and magnitude of hyporheic exchange. The overarching goal was to initiate increased buffering and lagging of water temperature in the subsurface to mitigate warm surface water temperature in Meacham Creek, an important spawning and rearing stream for depressed populations of Chinook salmon and summer steelhead. To evaluate progress toward project goals and objectives, stream temperature and groundwater temperature in 22 wells have been measured hourly at the restoration site since March 2011. In addition, the radioactive isotope 222Rn was measured in each well and in the surface water on two occasions. The relative residence time of down welling stream water measured in the wells can be determined by ranked amplitude depression and lagged phase of annual temperature signals in the wells relative to that of the open channel flow. Residence times predicted by annual temperature signal dynamics are corroborated by 222Rn concentrations in each well. The data collected to date provide a foundation for developing a groundwater thermal model to predict the effects of channel reconfiguration on ground-surface water exchange and associated temperature effects at the reach scale.

  13. 4D photogrammetric technique to study free surface water in open channels

    NASA Astrophysics Data System (ADS)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Enhancement of water permeation across nanochannels by partial charges mimicked from biological channels

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Jing; Fang, Hai-Ping

    2008-07-01

    In biological water channel aquaporins (AQPs), it is believed that the bipolar orientation of the single-file water molecules inside the channel blocks proton permeation but not water transport. In this paper, the water permeation and particularly the water-selective behaviour across a single-walled carbon nanotube (SWNT) with two partial charges adjacent to the wall of the SWNT are studied by molecular dynamics simulations, in which the distance between the two partial charges is varied from 0.14 nm to 0.5 nm and the charges each have a quantity of 0.5 e. The two partial charges are used to mimic the charge distribution of the conserved non-pseudoautosomal (NPA) (asparagine/proline/alanine) regions in AQPs. Compared with across the nanochannel in a system with one +1 e charge, the water permeation across the nanochannel is greatly enhanced in a system with two +0.5 e charges when charges are close to the nanotube, i.e. the two partial charges permit more rapid water diffusion and maintain better bipolar order along the water file when the distance between the two charges and the wall of SWNT is smaller than about 0.05 nm. The bipolar orientation of the single-file water molecules is crucial for the exclusion of proton transfer. These findings may serve as guidelines for the future nanodevices by using charges to transport water and have biological implications because membrane water channels share a similar single-file water chain and positive charged region at centre and provide an insight into why two residues are necessitated in the central region of water channel protein.

  15. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  16. Calcium-dependent anion channel in the water mold, Blastocladiella emersonii.

    PubMed

    Caldwell, J H; Van Brunt, J; Harold, F M

    1986-01-01

    Injection of depolarizing current into vegetative cells of the water mold Blastocladiella emersonii elicits a regenerative response that has the electrical characteristics of an action potential. Once they have been taken past a threshold of about -40 mV, cells abruptly depolarize to +20 mV or above; after an interval ranging from several hundred milliseconds to a few seconds, the cells spontaneously return to their resting potential near -100 mV. When the action potential was analyzed with voltage-clamp recording, it proved to be biphasic. The initial phase reflects an influx of calcium ions through voltage-sensitive channels that also carry Sr2+ ions. The delayed, and more extended, phase of inward current results from the efflux of chloride and other anions. The anion channels are broadly selective, passing chloride, nitrate, phosphate, acetate, succinate and even PIPES. The anion channels open in response to the entry of calcium ions, but do not recognize Sr2+. Calcium channels, anion channels and calcium-specific receptors that link the two channels appear to form an ensemble whose physiological function is not known. Action potentials rarely occur spontaneously but can be elicited by osmotic downshock, suggesting that the ion channels may be involved in the regulation of turgor. PMID:2420994

  17. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  18. Slip Effects on Mixed Convective Peristaltic Transport of Copper-Water Nanofluid in an Inclined Channel

    PubMed Central

    Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

    2014-01-01

    Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles. PMID:25170908

  19. Numerical sensitivity analysis of passive EHF and SMMW channels to tropospheric water vapor, clouds, and precipitation

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.

    1992-01-01

    Potential uses of specific extremely High Frequency (EHF) and Sub-Millimeter-Wave (SMMW) channels at 90, 166, 183, 220, 325, 340, and 410 GHz for passive spaceborne remote sensing of the troposphere and lower stratosphere are investigated using an iterative numerical radiative transfer model. Collectively, these channels offer potential for high spatial resolution imaging using diffraction-limited apertures of practical size, along with the ability to profile water vapor, map precipitation beneath optically opaque cloud cover, and to measure nonprecipitating cloud (e.g., cirrus) parameters. A widely-spaced set of EHF and SMMW channels can yield observable degrees of freedom related to clouds and precipitation not available by exclusively using the more thoroughly studied microwave channels below 183 GHz. A new passive airborne imaging instrument for tropospheric meteorological sensing is described.

  20. Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel.

    PubMed

    Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

    2014-01-01

    Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles. PMID:25170908

  1. Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins.

    PubMed

    Abriel, Hugues; Kass, Robert S

    2005-01-01

    Na(v)1.5, the major cardiac voltage-gated Na(+) channel, plays a central role in the generation of the cardiac action potential and in the propagation of electrical impulses in the heart. Its importance for normal heart function has been recently exemplified by reports of numerous mutations found in the gene SCN5A--which encodes Na(v)1.5--in patients with various pathologic cardiac phenotypes, indicating that even subtle alterations of Na(v)1.5 cell biology and function may underlie human diseases. Similar to other ion channels, Na(v)1.5 is most likely part of dynamic multiprotein complexes located in the different cellular compartments. This review focuses on five intracellular proteins that have been recently reported to directly bind to and contribute to the regulation of Na(v)1.5: ankyrin proteins, fibroblast growth factor homologous factor 1B, calmodulin, Nedd4-like ubiquitin-protein ligases, and syntrophin proteins. PMID:15795161

  2. Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii

    PubMed Central

    Siroy, Axel; Molle, Virginie; Lemaître-Guillier, Christelle; Vallenet, David; Pestel-Caron, Martine; Cozzone, Alain J.; Jouenne, Thierry; Dé, Emmanuelle

    2005-01-01

    It has been recently shown that resistance to both imipenem and meropenem in multidrug-resistant clinical strains of Acinetobacter baumannii is associated with the loss of a heat-modifiable 25/29-kDa outer membrane protein, called CarO. This study aimed to investigate the channel-forming properties of CarO. Mass spectrometry analyses of this protein band detected another 25-kDa protein (called Omp25), together with CarO. Both proteins presented similar physicochemical parameters (Mw and pI). We overproduced and purified the two polypeptides as His-tagged recombinant proteins. Circular dichroism analyses demonstrated that the secondary structure of these proteins was mainly a β-strand conformation with spectra typical of porins. We studied the channel-forming properties of proteins by reconstitution into artificial lipid bilayers. In these conditions, CarO induced ion channels with a conductance value of 110 pS in 1 M KCl, whereas the Omp25 protein did not form any channels, despite its suggested porin function. The pores formed by CarO showed a slight cationic selectivity and no voltage closure. No specific imipenem binding site was found in CarO, and this protein would rather form unspecific monomeric channels. PMID:16304148

  3. AKAP79/150 signal complexes in G-protein modulation of neuronal ion channels

    PubMed Central

    Zhang, Jie; Bal, Manjot; Bierbower, Sonya; Zaika, Oleg; Shapiro, Mark S.

    2011-01-01

    Voltage-gated M-type (KCNQ) K+ channels play critical roles in regulation of neuronal excitability. Previous work showed A-kinase-anchoring protein (AKAP)79/150-mediated protein kinase C phosphorylation of M channels to be involved in M current (IM) suppression by muscarinic M1, but not bradykinin B2 receptors. In this study, we first explored if purinergic and angiotensin suppression of IM in superior cervical ganglion (SCG) sympathetic neurons involves AKAP79/150. Transfection into rat SCG neurons of ΔA-AKAP79, which lacks the A-domain necessary for PKC binding, or the absence of AKAP150 in AKAP150 (−/−) mice, did not affect IM suppression by purinergic agonist or by bradykinin, but reduced IM suppression by muscarinic agonist and angiotensin II. Transfection of AKAP79, but not ΔA-AKAP79 or AKAP15, “rescued” suppression of IM by muscarinic receptors in AKAP150 (−/−) neurons. We also tested association of AKAP79 with M1, B2, P2Y6 and AT1 receptors, and KCNQ2 and KCNQ3 channels, via Förster resonance energy transfer on CHO cells under total internal refection fluorescence microscopy, which revealed substantial FRET between AKAP79 and M1 and AT1 receptors, and with the channels, but only weak FRET with P2Y6 or B2 receptors. The involvement of AKAP79/150 in Gq/11-coupled muscarinic regulation of N- and L-type Ca2+ channels and by cAMP/protein kinase A was also studied. We found AKAP79/150 to not play a role in the former, but to be necessary for forskolin-induced up-regulation of L-current. Thus, AKAP79/150 action correlates with the PIP2-depletion mode of IM suppression, but does not generalize to Gq/11-mediated inhibition of N- or L-type Ca2+ channels. PMID:21562284

  4. Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion?

    PubMed

    Powell, Thomas; Bowra, Steve; Cooper, Helen J

    2016-06-21

    Subcritical water is an emerging tool in the processing of bioorganic waste. Subcritical water is an environmentally benign solvent which has the potential to provide an alternative to traditional methods of protein hydrolysis without the inclusion of expensive acids or enzymes. To date, most studies on the subcritical water mediated hydrolysis of proteins have focused on the production of amino acids, rather than the intermediate peptides. Here, we investigate the specificity of subcritical water with respect to the production of peptides from three model proteins, hemoglobin, bovine serum albumin, and β-casein, and compare the results with enzymatic digestion of proteins by trypsin. In addition, the effect of subcritical water (SCW) treatment on two protein post-translational modifications, disulfide bonds and phosphorylation, was investigated. The results show that high protein sequence coverages (>80%) can be obtained following subcritical water hydrolysis. These are comparable to those obtained following treatment with tryspin. Under mild subcritical water conditions (160 °C), all proteins showed favored cleavage of the Asp-X bond. The results for β-casein revealed favored cleavage of the Glu-X bond at subcritical water temperatures of 160 and 207 °C. That was similarly observed for bovine serum albumin at a subcritical water temperature of 207 °C. Subcritical water treatment results in very limited cleavage of disulfide bonds. Reduction and alkylation of proteins either prior to or post subcritical water treatment improve reported protein sequence coverages. The results for phosphoprotein β-casein show that, under mild subcritical water conditions, phosphorylation may be retained on the peptide hydrolysis products. PMID:27181872

  5. STIM1 and STIM2 proteins differently regulate endogenous store-operated channels in HEK293 cells.

    PubMed

    Shalygin, Alexey; Skopin, Anton; Kalinina, Vera; Zimina, Olga; Glushankova, Lyuba; Mozhayeva, Galina N; Kaznacheyeva, Elena

    2015-02-20

    The endoplasmic reticulum calcium sensors stromal interaction molecules 1 and 2 (STIM1 and STIM2) are key modulators of store-operated calcium entry. Both these sensors play a major role in physiological functions in normal tissue and in pathology, but available data on native STIM2-regulated plasma membrane channels are scarce. Only a few studies have recorded STIM2-induced CRAC (calcium release-activated calcium) currents. On the other hand, many cell types display store-operated currents different from CRAC. The STIM1 protein regulates not only CRAC but also transient receptor potential canonical (TRPC) channels, but it has remained unclear whether STIM2 is capable of regulating store-operated non-CRAC channels. Here we present for the first time experimental evidence for the existence of endogenous non-CRAC STIM2-regulated channels. As shown in single-channel patch clamp experiments on HEK293 cells, selective activation of native STIM2 proteins or STIM2 overexpression results in store-operated activation of Imin channels, whereas STIM1 activation blocks this process. Changes in the ratio between active STIM2 and STIM1 proteins can switch the regulation of Imin channels between store-operated and store-independent modes. We have previously characterized electrophysiological properties of different Ca(2+) influx channels coexisting in HEK293 cells. The results of this study show that STIM1 and STIM2 differ in the ability to activate these store-operated channels; Imin channels are regulated by STIM2, TRPC3-containing INS channels are induced by STIM1, and TRPC1-composed Imax channels are activated by both STIM1 and STIM2. These new data about cross-talk between STIM1 and STIM2 and their different roles in store-operated channel activation are indicative of an additional level in the regulation of store-operated calcium entry pathways. PMID:25533457

  6. Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding

    SciTech Connect

    McCready, M.J.; Uphold, D.D.; Gifford, K.A.

    1997-12-31

    Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.

  7. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates.

    PubMed

    Theodore, Ann E; Raghavan, Sivakumar; Kristinsson, Hordur G

    2008-08-27

    Antioxidative activity of hydrolyzed protein prepared from alkali-solubilized catfish protein isolates was studied. The isolates were hydrolyzed to 5, 15, and 30% degree of hydrolysis using the protease enzyme, Protamex. Hydrolyzed protein was separated into hydrolysates and soluble supernatants, and both of these fractions were studied for their metal chelating ability, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and their ability to inhibit the formation of thiobarbituric acid reactive substances (TBARS) in washed tilapia muscle containing tilapia hemolysate. Both hydrolysates and supernatants were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Results showed that DPPH radical scavenging ability and reducing power of catfish protein hydrolysates decreased, whereas the ORAC value, metal chelating ability, and ability to inhibit TBARS increased, with an increase in the degree of hydrolysis. Hydrolysate samples showed higher DPPH radical scavenging ability and Fe(3+) reducing ability, and supernatant samples had higher metal chelating ability. In general, low molecular weight (MW) peptides had high ORAC values and high metal chelating ability, and high MW peptides had a higher reducing power (FRAP) and were more effective in scavenging DPPH radicals. In a washed muscle model system, the ability of catfish protein hydrolysates and their corresponding supernatants to inhibit the formation of TBARS increased with an increase in the degree of hydrolysis. PMID:18662014

  8. LRRC8 Proteins Form Volume-Regulated Anion Channels that Sense Ionic Strength.

    PubMed

    Syeda, Ruhma; Qiu, Zhaozhu; Dubin, Adrienne E; Murthy, Swetha E; Florendo, Maria N; Mason, Daniel E; Mathur, Jayanti; Cahalan, Stuart M; Peters, Eric C; Montal, Mauricio; Patapoutian, Ardem

    2016-01-28

    The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ. PMID:26824658

  9. Physiological roles and diseases of tmem16/anoctamin proteins: are they all chloride channels?

    PubMed Central

    Duran, Charity; Hartzell, H Criss

    2011-01-01

    The Tmem16 gene family was first identified by bioinformatic analysis in 2004. In 2008, it was shown independently by 3 laboratories that the first two members (Tmem16A and Tmem16B) of this 10-gene family are Ca2+-activated Cl− channels. Because these proteins are thought to have 8 transmembrane domains and be anion-selective channels, the alternative name, Anoctamin (anion and octa=8), has been proposed. However, it remains unclear whether all members of this family are, in fact, anion channels or have the same 8-transmembrane domain topology. Since 2008, there have been nearly 100 papers published on this gene family. The excitement about Tmem16 proteins has been enhanced by the finding that Ano1 has been linked to cancer, mutations in Ano5 are linked to several forms of muscular dystrophy (LGMDL2 and MMD-3), mutations in Ano10 are linked to autosomal recessive spinocerebellar ataxia, and mutations in Ano6 are linked to Scott syndrome, a rare bleeding disorder. Here we review some of the recent developments in understanding the physiology and structure-function of the Tmem16 gene family. PMID:21642943

  10. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration

    PubMed Central

    Nielsen, N; Lindemann, O; Schwab, A

    2014-01-01

    Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca2+ signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24724725

  11. Pentameric Assembly of Potassium Channel Tetramerization Domain-Containing Protein 5 (KCTD5)

    PubMed Central

    Dementieva, Irina S.; Tereshko, Valentina; McCrossan, Zoe A.; Solomaha, Elena; Araki, Daniel; Xu, Chen; Grigorieff, Nikolaus; Goldstein, Steve A. N.

    2009-01-01

    We report the X-ray crystal structure of human potassium channel tetramerization domain-containing protein 5 (KCTD5), the first member of the family to be so characterized. Four findings were unexpected. First, the structure reveals assemblies of five subunits while tetramers were anticipated; pentameric stoichiometry is observed also in solution by scanning transmission electron microscopy mass analysis and analytical ultracentrifugation. Second, the same Bric-a-brac, Tramtrack, Broad Complex (BTB) domain surface mediates assembly of five KCTD5 and four voltage-gated potassium (Kv) channel subunits; four amino acid differences appear crucial. Third, KCTD5 complexes have well-defined N- and C-terminal modules separated by a flexible linker that swivels ~30°; the C-module shows a new fold and is required to bind Golgi re-assembling stacking protein 55 with ~1 μM affinity as judged by surface plasmon resonance and ultracentrifugation. Fourth, despite the homology reflected in its name, KCTD5 does not impact operation of Kv4.2, Kv3.4, Kv2.1 or Kv1.2 channels. PMID:19361449

  12. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli.

    PubMed Central

    Blount, P; Sukharev, S I; Moe, P C; Schroeder, M J; Guy, H R; Kung, C

    1996-01-01

    We have studied the membrane topology and multimeric structure of a mechanosensitive channel, MscL, which we previously isolated and cloned from Escherichia coli. We have localized this 15-kDa protein to the inner membrane and, by PhoA fusion, have shown that it contains two transmembrane domains with both the amino and carboxyl termini on the cytoplasmic side. Mutation of the glutamate at position 56 to histidine led to changes in channel kinetics which were dependent upon the pH on the periplasmic, but not cytoplasmic side of the membrane, providing additional evidence for the periplasmic positioning of this part of the molecule. Tandems of two MscL subunits expressed as a single polypeptide formed functional channels, suggesting an even number of transmembrane domains per subunit (amino and carboxyl termini on the same side of the membrane), and an even number of subunits per functional complex. Finally, cross-linking studies suggest that the functional MscL complex is a homohexamer. In summary, these data are all consistent with a protein domain assignment and topological model which we propose and discuss. Images PMID:8890153

  13. Apratoxin Kills Cells by Direct Blockade of the Sec61 Protein Translocation Channel.

    PubMed

    Paatero, Anja O; Kellosalo, Juho; Dunyak, Bryan M; Almaliti, Jehad; Gestwicki, Jason E; Gerwick, William H; Taunton, Jack; Paavilainen, Ville O

    2016-05-19

    Apratoxin A is a cytotoxic natural product that prevents the biogenesis of secretory and membrane proteins. Biochemically, apratoxin A inhibits cotranslational translocation into the ER, but its cellular target and mechanism of action have remained controversial. Here, we demonstrate that apratoxin A prevents protein translocation by directly targeting Sec61α, the central subunit of the protein translocation channel. Mutagenesis and competitive photo-crosslinking studies indicate that apratoxin A binds to the Sec61 lateral gate in a manner that differs from cotransin, a substrate-selective Sec61 inhibitor. In contrast to cotransin, apratoxin A does not exhibit a substrate-selective inhibitory mechanism, but blocks ER translocation of all tested Sec61 clients with similar potency. Our results suggest that multiple structurally unrelated natural products have evolved to target overlapping but non-identical binding sites on Sec61, thereby producing distinct biological outcomes. PMID:27203376

  14. Cooperative regulation by G proteins and Na+ of neuronal GIRK2 K+ channels

    PubMed Central

    Wang, Weiwei; Touhara, Kouki K; Weir, Keiko; Bean, Bruce P; MacKinnon, Roderick

    2016-01-01

    G protein gated inward rectifier K+ (GIRK) channels open and thereby silence cellular electrical activity when inhibitory G protein coupled receptors (GPCRs) are stimulated. Here we describe an assay to measure neuronal GIRK2 activity as a function of membrane-anchored G protein concentration. Using this assay we show that four Gβγ subunits bind cooperatively to open GIRK2, and that intracellular Na+ – which enters neurons during action potentials – further amplifies opening mostly by increasing Gβγ affinity. A Na+ amplification function is characterized and used to estimate the concentration of Gβγ subunits that appear in the membrane of mouse dopamine neurons when GABAB receptors are stimulated. We conclude that GIRK2, through its dual responsiveness to Gβγ and Na+, mediates a form of neuronal inhibition that is amplifiable in the setting of excess electrical activity. DOI: http://dx.doi.org/10.7554/eLife.15751.001 PMID:27074662

  15. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  16. Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions.

    PubMed

    Liu, Wu; Chen, Qiushui; Lin, Xuexia; Lin, Jin-Ming

    2015-03-01

    To establish an automatic and online microfluidic chip-mass spectrometry (chip-MS) system, a device was designed and fabricated for microsampling by a hybrid capillary. The movement of the capillary was programmed by a computer to aspirate samples from different microfluidic channels in the form of microdroplets (typically tens of nanoliters in volume), which were separated by air plugs. The droplets were then directly analyzed by MS via paper spray ionization without any pretreatment. The feasibility and performance were demonstrated by a concentration gradient experiment. Furthermore, after eliminating the effect of nonuniform response factors by an internal standard method, determination of the association constant within a noncovalent protein-protein complex was successfully accomplished with the MS-based titration indicating the versatility and the potential of this novel platform for widespread applications. PMID:25597452

  17. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    SciTech Connect

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L. )

    1991-09-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to (35S) MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either (3H)MNXS (label on the piperidine ring of MNXS) or (3H)minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with (35S)MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in (35S) MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by (35S)MNXS in intact RMA were components of smooth muscle cells.

  18. The nature of ion and water barrier crossings in a simulated ion channel.

    PubMed Central

    Chiu, S. W.; Novotny, J. A.; Jakobsson, E.

    1993-01-01

    Using a combination of techniques, including molecular dynamics, time-correlation analysis, stochastic dynamics, and fitting of continuum diffusion theory to electrophysiological data, a characterization is made of thermally driven sodium, water, and D2O motion within the gramicidin A channel. Since the channel contents are constrained to move in a single-file fashion, the motion that corresponds to experimentally measurable rates of permeation of the membrane is the motion of the center of mass of the channel contents. We therefore emphasize channel contents center-of-mass motion in our analysis of molecular dynamics computations. The usual free energy calculation techniques would be of questionable validity when applied to such motion. As an alternative to those techniques, we postulate a periodic sinusoidal free energy profile (related to the periodic structure of the helical channel) and deduce the fluid dynamic diffusion coefficient and the height and spacing of the free energy barriers from the form of the mean-square-deviation function, using stochastic computations. The fluid dynamic friction in each case appears similar to that for aqueous solution. However, the diffusive motions are modulated by a spatially periodic free energy profile with a periodicity characteristic of an L-D pair of amino acids in the gramicidin helix, approximately 1.7 A in the model we use. The barrier height depends on which substance is moving in the channel, but in each case is several times thermal energy. For barriers of this width and height, the motion is intermediate between the low-friction (transition-state) and high-friction (Brownian) limits. Thus, neither of these formalisms that have been used commonly to describe membrane permeation gives an accurate picture of the underlying physical process (although the Brownian description seems closer to correct). The non-Markovian Langevin equation must be solved to describe properly the statistics of the process. The "channel

  19. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study.

    PubMed

    Verbavatz, J M; Brown, D; Sabolić, I; Valenti, G; Ausiello, D A; Van Hoek, A N; Ma, T; Verkman, A S

    1993-11-01

    Channel forming integral protein of 28 kD (CHIP28) functions as a water channel in erythrocytes, kidney proximal tubule and thin descending limb of Henle. CHIP28 morphology was examined by freeze-fracture EM in proteoliposomes reconstituted with purified CHIP28, CHO cells stably transfected with CHIP28k cDNA, and rat kidney tubules. Liposomes reconstituted with HPLC-purified CHIP28 from human erythrocytes had a high osmotic water permeability (Pf0.04 cm/s) that was inhibited by HgCl2. Freeze-fracture replicas showed a fairly uniform set of intramembrane particles (IMPs); no IMPs were observed in liposomes without incorporated protein. By rotary shadowing, the IMPs had a diameter of 8.5 +/- 1.3 nm (mean +/- SD); many IMPs consisted of a distinct arrangement of four smaller subunits surrounding a central depression. IMPs of similar size and appearance were seen on the P-face of plasma membranes from CHIP28k-transfected (but not mock-transfected) CHO cells, rat thin descending limb (TDL) of Henle, and S3 segment of proximal straight tubules. A distinctive network of complementary IMP imprints was observed on the E-face of CHIP28-containing plasma membranes. The densities of IMPs in the size range of CHIP28 IMPs, determined by non-linear regression, were (in IMPs/microns 2): 2,494 in CHO cells, 5,785 in TDL, and 1,928 in proximal straight tubules; predicted Pf, based on the CHIP28 single channel water permeability of 3.6 x 10(-14) cm3/S (10 degrees C), was in good agreement with measured Pf of 0.027 cm/S, 0.075 cm/S, and 0.031 cm/S, respectively, in these cell types. Assuming that each CHIP28 monomer is a right cylindrical pore of length 5 nm and density 1.3 g/cm3, the monomer diameter would be 3.2 nm; a symmetrical arrangement of four cylinders would have a greatest diameter of 7.2 nm, which after correction for the thickness of platinum deposit, is similar to the measured IMP diameter of approximately 8.5 nm. These results provide a morphological signature for CHIP28

  20. Water Determines the Structure and Dynamics of Proteins.

    PubMed

    Bellissent-Funel, Marie-Claire; Hassanali, Ali; Havenith, Martina; Henchman, Richard; Pohl, Peter; Sterpone, Fabio; van der Spoel, David; Xu, Yao; Garcia, Angel E

    2016-07-13

    Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist. PMID:27186992

  1. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness. PMID:19401147

  2. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins.

    PubMed

    Barrallo-Gimeno, Alejandro; Gradogna, Antonella; Zanardi, Ilaria; Pusch, Michael; Estévez, Raúl

    2015-09-15

    The CLC family of chloride channels and transporters is composed by nine members, but only three of them, ClC-Ka/b, ClC-7 and ClC-2, have been found so far associated with auxiliary subunits. These CLC regulatory subunits are small proteins that present few common characteristics among them, both structurally and functionally, and their effects on the corresponding CLC protein are different. Barttin, a protein with two transmembrane domains, is essential for the membrane localization of ClC-K proteins and their activity in the kidney and inner ear. Ostm1 is a protein with a single transmembrane domain and a highly glycosylated N-terminus. Unlike the other two CLC auxiliary subunits, Ostm1 shows a reciprocal relationship with ClC-7 for their stability. The subcellular localization of Ostm1 depends on ClC-7 and not the other way around. ClC-2 is active on its own, but GlialCAM, a transmembrane cell adhesion molecule with two extracellular immunoglobulin (Ig)-like domains, regulates its subcellular localization and activity in glial cells. The common theme for these three proteins is their requirement for a proper homeostasis, since their malfunction leads to distinct diseases. We will review here their properties and their role in normal chloride physiology and the pathological consequences of their improper function. PMID:25762128

  3. The mechanism of inactivation of a 50-pS envelope anion channel during chloroplast protein import.

    PubMed Central

    van den Wijngaard, P W; Dabney-Smith, C; Bruce, B D; Vredenberg, W J

    1999-01-01

    The mechanism of import-competent precursor protein-induced inactivation of a 50-pS anion channel of the chloroplast envelope is investigated using single-channel recordings. The inactivation by precursor protein is the result of the induction of a long-lived closed state of the channel. The mean duration of this state does not depend on precursor concentration. From this it can be concluded that the protein import related anion channel enters the inactive state less frequently when the precursor concentration is lowered, but that the time spent in this state remains the same. Furthermore, it was found that the presence of precursor protein also decreases the mean durations of preexisting open and closed states of the channel. This decrease is found to be dependent on the precursor concentration. From this it is concluded that there is a direct interaction between the precursor protein and a protein complex of which the channel is a constituent. The mean duration of the precursor-induced long-lived closed state does not depend on the length of the translocation-competent precursor. This suggests that the duration of import is independent of precursor length. PMID:10585937

  4. Design of Peptide-Membrane Interactions to Modulate Single-File Water Transport through Modified Gramicidin Channels

    PubMed Central

    Portella, Guillem; Polupanow, Tanja; Zocher, Florian; Boytsov, Danila A.; Pohl, Peter; Diederichsen, Ulf; de Groot, Bert L.

    2012-01-01

    Water permeability through single-file channels is affected by intrinsic factors such as their size and polarity and by external determinants like their lipid environment in the membrane. Previous computational studies revealed that the obstruction of the channel by lipid headgroups can be long-lived, in the range of nanoseconds, and that pore-length-matching membrane mimetics could speed up water permeability. To test the hypothesis of lipid-channel interactions modulating channel permeability, we designed different gramicidin A derivatives with attached acyl chains. By combining extensive molecular-dynamics simulations and single-channel water permeation measurements, we show that by tuning lipid-channel interactions, these modifications reduce the presence of lipid headgroups in the pore, which leads to a clear and selective increase in their water permeability. PMID:23083713

  5. Differential Effects of Voltage-Gated Calcium Channel Blockers on Calcium Channel Alpha-2-Delta-1 Subunit Protein Mediated Nociception

    PubMed Central

    Chang, E.; Chen, X.; Kim, M.; Gong, N.; Bhatia, S.; Luo, Z.D.

    2014-01-01

    Background Overexpression of the voltage gated calcium channel (VGCC) alpha-2-delta1 subunit protein (Cavα2δ1) has been shown to cause pain states. However, whether VGCC are involved in pain states driven by abnormal Cavα2δ1 expression is not known. Methods Intrathecal injection of N-, P/Q-, and L-type VGCC blockers were tested in two models: a transgenic neuronal Cavα2δ1 overexpression (TG) model with behavioral hypersensitivity and a spinal nerve ligation (SNL) model with Cavα2δ1 overexpression in sensory pathways and neuropathy pain states. Results The nociceptive response to mechanical stimuli was significantly attenuated in both models with ω-conotoxin GVIA (an N-type VGCC blocker) and nifedipine (a L-type VGCC blocker), in which ω-conotoxin GVIA appeared more potent than nifedipine. Treatments with ω-agatoxin IVA (P-VGCC blocker), but not ω-conotoxin MVIIC (Q-VGCC blocker) had similar potency in the TG model as the N-type VGCC blocker, while both ω-agatoxin IVA and ω-conotoxin MVIIC had minimal effects in the SNL model compared to controls. Conclusion These findings suggest that, at the spinal level, N- and L-type VGCC are likely involved in behavioral hypersensitivity states driven by Cavα2δ1 overexpression. Q-type VGCC have minimal effects in both models. The anti-nociceptive effects of P-type VGCC blocker in the Cavα2δ1 TG mice, but minimally at the SNL model with presynaptic Cavα2δ1 upregulation, suggest that its potential action site(s) is at the post-synaptic and/or supraspinal level. These findings support that N-, L- and P/Q-type VGCC have differential contributions to behavioral hypersensitivity modulated by Cavα2δ1 dysregulation at the spinal cord level. PMID:25158907

  6. Protein partners of the calcium channel β subunit highlight new cellular functions.

    PubMed

    Rima, Mohamad; Daghsni, Marwa; Fajloun, Ziad; M'rad, Ridha; Brusés, Juan L; Ronjat, Michel; De Waard, Michel

    2016-07-01

    Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, β, α2δ and γ, among which the cytosolic β subunit (Cavβ) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavβ. However, a growing number of proteins have been found to interact with Cavβ, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavβ are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavβ protein partners, this review emphasizes the diverse cellular functions of Cavβ and summarizes both past findings as well as recent progress in the understanding of VGCC. PMID:27354560

  7. Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes.

    PubMed

    Nakajo, Koichi; Kubo, Yoshihiro

    2005-11-15

    It is well established that stimulation of G(q)-coupled receptors such as the M1 muscarinic acetylcholine receptor inhibits KCNQ/M currents. While it is generally accepted that this muscarinic inhibition is mainly caused by the breakdown of PIP(2), the role of the subsequent activation of protein kinase C (PKC) is not well understood. By reconstituting M currents in Xenopus oocytes, we observed that stimulation of coexpressed M1 receptors with 10 microm oxotremorine M (oxo-M) induces a positive shift (4-30 mV, depending on which KCNQ channels are expressed) in the conductance-voltage relationship (G-V) of KCNQ channels. When we applied phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, we observed a large positive shift (17.8 +/- 1.6 mV) in the G-V curve for KCNQ2, while chelerythrine, a PKC inhibitor, attenuated the shift caused by the stimulation of M1 receptors. By contrast, reducing PIP(2) had little effect on the G-V curve for KCNQ2 channels; although pretreating cells with 10 mum wortmannin for 30 min reduced KCNQ2 current amplitude by 80%, the G-V curve was shifted only slightly (5 mV). Apparently, the shift induced by muscarinic stimulation in Xenopus oocytes was mainly caused by PKC activation. When KCNQ2/3 channels were expressed in HEK 293T cells, the G-V curve seemed already to be shifted in a positive direction, even before activation of PKC, and PMA failed to shift the curve any further. That alkaline phosphatase in the patch pipette shifted the G-V curve in a negative direction suggests KCNQ2/3 channels are constitutively phosphorylated in HEK 293T cells. PMID:16179364

  8. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access.

    PubMed

    Ho, Felix M; Styring, Stenbjörn

    2008-02-01

    Given the tightly packed environment of Photosystem II (PSII), channels are expected to exist within the protein to allow the movement of small molecules to and from the oxygen evolving centre. In this report, we calculate solvent contact surfaces from the PSII crystal structures to identify such access channels for methanol and water molecules. In a previous study of the effects of methanol on the EPR split S1-, S3-, and S0-signals [Su et al. (2006) Biochemistry 45, 7617-7627], we proposed that methanol binds to one and the same Mn ion in all S-states. We find here that while channels of methanol dimensions were able to make contact with the CaMn4 cluster, only 3Mn and 4Mn were accessible to methanol. Combining this observation with spectroscopic data in the literature, we propose that 3Mn is the ion to which methanol binds. Furthermore, by calculating solvent contact surfaces for water, we found analogous and more extensive water accessible channels within PSII. On the basis of their structure, orientation, and electrostatic properties, we propose functional assignments of these channels as passages for substrate water access to the CaMn4 cluster, and for the exit of O2 and H+ that are released during water oxidation. Finally, we discuss the possible existence of a gating mechanism for the control of substrate water access to the CaMn4 cluster, based on the observation of a gap within the channel system that is formed by Ca2+ and several mechanistically very significant residues in the vicinity of the cluster. PMID:17964532

  9. Channels Formed by Botulinum, Tetanus, and Diphtheria Toxins in Planar Lipid Bilayers: Relevance to Translocation of Proteins across Membranes

    NASA Astrophysics Data System (ADS)

    Hoch, David H.; Romero-Mira, Miryam; Ehrlich, Barbara E.; Finkelstein, Alan; Dasgupta, Bibhuti R.; Simpson, Lance L.

    1985-03-01

    The heavy chains of both botulinum neurotoxin type B and tetanus toxin form channels in planar bilayer membranes. These channels have pH-dependent and voltage-dependent properties that are remarkably similar to those previously described for diphtheria toxin. Selectivity experiments with anions and cations show that the channels formed by the heavy chains of all three toxins are large; thus, these channels could serve as ``tunnel proteins'' for translocation of active peptide fragments. These findings support the hypothesis that the active fragments of botulinum neurotoxin and tetanus toxin, like that of diphtheria toxin, are translocated across the membranes of acidic vesicles.

  10. Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells.

    PubMed

    Ma, T; Frigeri, A; Tsai, S T; Verbavatz, J M; Verkman, A S

    1993-10-25

    CHIP28 is a major water transporting protein in erythrocytes and plasma membranes in kidney proximal tubule and thin descending limb of Henle. Chinese hamster ovary cells were stably transfected with the coding sequence of cloned rat kidney CHIP28k using expression vectors containing cytomegalovirus or Rous sarcoma virus promoters. Clonal cell populations expressed a 1.3-kilobase mRNA on Northern blot probed by CHIP28k cDNA and a 28-kDa protein on immunoblot probed by a polyclonal CHIP28 antibody. The clone with greatest expression produced approximately 8 x 10(6) copies of CHIP28k protein/cell. Plasma membrane osmotic water permeability (Pf), measured by stopped-flow light scattering, was 0.004 cm/s in control (vector-transfected) cells (10 degrees C) and 0.014 cm/s in the CHIP28k-transfected cells. Pf in CHIP28k-transfected cells had an activation energy of 4.9 kcal/mol and was reversibly inhibited by HgCl2. CHIP28k expression did not affect the transport of protons and the small polar non-electrolytes urea and formamide. CHIP28k immunoreactivity and function was then determined in subcellular fractions. Pf in 6-carboxyfluorescein-labeled endocytic vesicles, measured by a stopped-flow fluorescence quenching assay, was 0.002 cm/s (control cells) and 0.011 cm/s (CHIP28k-transfected cells); Pf in transfected cells was inhibited by HgCl2. Immunoblotting of fractionated endoplasmic reticulum, Golgi, and plasma membranes revealed high densities of CHIP28k (approximately 5000 monomers/microns 2 in plasma membrane) with different glycosylation patterns; functional water transport activity was present only in Golgi and plasma membrane vesicles. Antibody detection of CHIP28k by confocal fluorescence microscopy and immunogold electron microscopy revealed localization to plasma membrane and intracellular vesicles. These studies establish a stably transfected somatic cell line that strongly expresses functional CHIP28k water channels. As in the original proximal tubule cells

  11. The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels

    PubMed Central

    Wie, Jinhong; Kim, Byung Joo; Myeong, Jongyun; Ha, Kotdaji; Jeong, Seung Joo; Yang, Dongki; Kim, Euiyong; Jeon, Ju-Hong; So, Insuk

    2015-01-01

    TRPC4 is important regulators of electrical excitability in gastrointestinal myocytes, pancreatic β-cells and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαi/o and Gαq protein coupled receptor or epidermal growth factor and leptin in particular. However, our understanding of the roles of small G proteins and leptin on TRPC4 channels is still rudimentary. We discuss potential roles for Rasd1 small G protein and leptin in channel activation in addition to their known role in cellular signaling. PMID:26083271

  12. Pannexin1 Channel Proteins in the Zebrafish Retina Have Shared and Unique Properties

    PubMed Central

    Kurtenbach, Sarah; Prochnow, Nora; Kurtenbach, Stefan; Klooster, Jan; Zoidl, Christiane; Dermietzel, Rolf; Kamermans, Maarten; Zoidl, Georg

    2013-01-01

    In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo. PMID:24194896

  13. Contribution of Water to Pressure and Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Bianco, Valentino; Franzese, Giancarlo

    2015-09-01

    The mechanisms of cold and pressure denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here, we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  14. Effect of channel catfish stocking rate on yield and water quality in an intensive, mixed suspended-growth production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the effect of channel catfish (Ictalurus punctatus) stocking rate on yield and water quality in a mixed suspended-growth production system (bio-floc) with zero water exchange. Channel catfish (National Warmwater Aquaculture Center 103 strain; average weight = 13...

  15. The Dipeptidyl-Peptidase-Like Protein DPP6 Determines the Unitary Conductance of Neuronal Kv4.2 Channels

    PubMed Central

    De Santiago-Castillo, José A.; Rocha, Carmen A.; Nadal, Marcela S.; Rudy, Bernardo; Covarrubias, Manuel

    2009-01-01

    The neuronal subthreshold-operating A-type K+ current regulates electrical excitability, spike timing, and synaptic integration and plasticity. The Kv4 channels underlying this current have been implicated in epilepsy, regulation of dopamine release, and pain plasticity. However, the unitary conductance (γ) of neuronal somatodendritic A-type K+ channels composed of Kv4 pore-forming subunits is larger (∼7.5 pS) than that of Kv4 channels expressed singly in heterologous cells (∼4 pS). Here, we examined the putative novel contribution of the dipeptidyl-peptidase-like protein-6 DPP6-S to the γ of native [cerebellar granule neuron (CGN)] and reconstituted Kv4.2 channels. Coexpression of Kv4.2 proteins with DPP6-S was sufficient to match the γ of native CGN channels; and CGN Kv4 channels from dpp6 knock-out mice yielded a γ indistinguishable from that of Kv4.2 channels expressed singly. Moreover, suggesting electrostatic interactions, charge neutralization mutations of two N-terminal acidic residues in DPP6-S eliminated the increase in γ. Therefore, DPP6-S, as a membrane protein extrinsic to the pore domain, is necessary and sufficient to explain a fundamental difference between native and recombinant Kv4 channels. These observations may help to understand the molecular basis of neurological disorders correlated with recently identified human mutations in the dpp6 gene. PMID:19279261

  16. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  17. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  18. The Extent of Channelized Basal Water Flow Under the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Downs, J.; Johnson, J. V.; Harper, J. T.

    2015-12-01

    Glacial ice flows due to a combination of deformation and basal sliding, with sliding accounting for most of the fastest ice flow. Basal sliding is controlled by the transport of water at the glacier's bed, which can be accomplished through both high pressure, low discharge, distributed flow, or low pressure, high discharge, channelized flow. Higher pressures are generally associated with more complete decoupling of a glacier from its bed and faster flow. As the intensity of summer melt in Greenland has increased, our poor understanding of the drainage network's discharge capacity and its coupling to sliding has generated fundamental questions, such as: will larger fluxes of liquid water promote or inhibit basal sliding? To investigate this question we have implemented a model of distributed and channelized flow developed by Werder et. al 2013. The sensitivity of the modeled channel network to basal and surface geometry, melt rate, boundary conditions, and other parameters is examined in a sequence of experiments using synthetic geometries. Expanding on these experiments, we run the model with realistic surface and bedrock data from Issunguata Sermia in Western Central Greenland. These experiments benefit from a wealth of in-situ data, including observations of basal water pressure. Our results suggest that the development of large channels is limited to the margins of the ice sheet, and that higher pressures continue to prevail in the interior.

  19. Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Li, Z.; Zhang, Y.-K.

    2006-01-01

    Riparian zones of many incised channels in agricultural regions are cropped to the channel edge leaving them unvegetated for large portions of the year. In this study we evaluated surface and groundwater interaction in the riparian zone of an incised stream during a spring high flow period using detailed stream stage and hydraulic head data from six wells, and water quality sampling to determine whether the riparian zone can be a source of nitrate pollution to streams. Study results indicated that bank storage of stream water from Walnut Creek during a large storm water runoff event was limited to a narrow 1.6 m zone immediately adjacent to the channel. Nitrate concentrations in riparian groundwater were highest near the incised stream where the unsaturated zone was thickest. Nitrate and dissolved oxygen concentrations and nitrate-chloride ratios increased during a spring recharge period then decreased in the latter portion of the study. We used MODFLOW and MT3DMS to evaluate dilution and denitrification processes that would contribute to decreasing nitrate concentrations in riparian groundwater over time. MT3DMS model simulations were improved with a denitrification rate of 0.02 1/d assigned to the floodplain sediments implying that denitrification plays an important role in reducing nitrate concentrations in groundwater. We conclude that riparian zones of incised channels can potentially be a source of nitrate to streams during spring recharge periods when the near-stream riparian zone is largely unvegetated. ?? 2005 Elsevier B.V. All rights reserved.

  20. Collective motion of symmetric camphor papers in an annular water channel

    NASA Astrophysics Data System (ADS)

    Ikura, Yumihiko S.; Heisler, Eric; Awazu, Akinori; Nishimori, Hiraku; Nakata, Satoshi

    2013-07-01

    We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are generated depending on the number of self-propelled objects. The two modes are characterized by examining the local and global dynamics, and the collective motion mechanism is discussed in relation to the distribution of camphor concentration in the annular water channel. We conclude that the difference between these two modes originates from that of the driving mechanism that pushes a camphor paper away from a cluster, through which mechanism density waves are generated and maintained.

  1. Ancient Origins of RGK Protein Function: Modulation of Voltage-Gated Calcium Channels Preceded the Protostome and Deuterostome Split

    PubMed Central

    Puhl, Henry L.; Lu, Van B.; Won, Yu-Jin; Sasson, Yehezkel; Hirsch, Joel A.; Ono, Fumihito; Ikeda, Stephen R.

    2014-01-01

    RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein–Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein – Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago. PMID:24992013

  2. The Role of Riparian Vegetation Density, Channel Orientation and Water Velocity in Determining River Water Temperature Dynamics

    NASA Astrophysics Data System (ADS)

    Garner, G.; Malcolm, I.; Sadler, J. P.; Hannah, D. M.

    2015-12-01

    There is substantial scientific and practical interest in the potential of riparian shading to mitigate climate change impacts on river temperature extremes. However, there is limited process-based evidence to determine the density and spatial extent of riparian tree planting required to obtain temperature targets under differing environmental conditions. A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ~1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model for the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥ 1.7 °C) and maximum (≥ 3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  3. Note: An underwater multi-channel plasma array for water sterilization

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Kim, H.; Starikovskiy, A.; Cho, Y. I.; Fridman, A.

    2011-09-01

    A simple yet effective method to generate multi-channel plasma array in water is presented in this paper. Thin circular metal disks sandwiched between dielectric layers were used, allowing the production of large-volume underwater plasma array with higher stability. The system can be further scaled up by stacking multiple metal disks, making it suitable for large-scale industrial water treatment. Generation of UV and reactive species was identified by optical emission spectroscopy. Sterilization experiments were performed. Results show that the device was effective in deactivating E. coli in water over a wide range of initial concentrations ranging from 104 to 108 CFU/ml.

  4. Water dynamics clue to key residues in protein folding

    SciTech Connect

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 ; She, Zhen-Su

    2010-01-29

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  5. G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels.

    PubMed

    García, D E; Li, B; García-Ferreiro, R E; Hernández-Ochoa, E O; Yan, K; Gautam, N; Catterall, W A; Mackie, K; Hille, B

    1998-11-15

    We investigated which subtypes of G-protein beta subunits participate in voltage-dependent modulation of N-type calcium channels. Calcium currents were recorded from cultured rat superior cervical ganglion neurons injected intranuclearly with DNA encoding five different G-protein beta subunits. Gbeta1 and Gbeta2 strongly mimicked the fast voltage-dependent inhibition of calcium channels produced by many G-protein-coupled receptors. The Gbeta5 subunit produced much weaker effects than Gbeta1 and Gbeta2, whereas Gbeta3 and Gbeta4 were nearly inactive in these electrophysiological studies. The specificity implied by these results was confirmed and extended using the yeast two-hybrid system to test for protein-protein interactions. Here, Gbeta1 or Gbeta2 coupled to the GAL4-activation domain interacted strongly with a channel sequence corresponding to the intracellular loop connecting domains I and II of a alpha1 subunit of the class B calcium channel fused to the GAL4 DNA-binding domain. In this assay, the Gbeta5 subunit interacted weakly, and Gbeta3 and Gbeta4 failed to interact. Together, these results suggest that Gbeta1 and/or Gbeta2 subunits account for most of the voltage-dependent inhibition of N-type calcium channels and that the linker between domains I and II of the calcium channel alpha1 subunit is a principal receptor for this inhibition. PMID:9801356

  6. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  7. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    PubMed Central

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  8. Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel.

    PubMed

    Mathews, C J; Tabcharani, J A; Chang, X B; Jensen, T J; Riordan, J R; Hanrahan, J W

    1998-04-15

    1. The relationship between phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and its gating by nucleotides was examined using the patch clamp technique by comparing strongly phosphorylated wild-type (WT) channels with weakly phosphorylated mutant channels lacking four (4SA) or all ten (10SA) dibasic consensus sequences for phosphorylation by protein kinase A (PKA). 2. The open probability (Po) of strongly phosphorylated WT channels in excised patches was about twice that of 4SA and 10SA channels, after correcting for the number of functional channels per patch by addition of adenylylimidodiphosphate (AMP-PNP). The mean burst durations of WT and mutant channels were similar, and therefore the elevated Po of WT was due to its higher bursting rate. 3. The ATP dependence of the 10SA mutant was shifted to higher nucleotide concentrations compared with WT channels. The relationship between Po and [ATP] was noticeably sigmoid for 10SA channels (Hill coefficient, 1.8), consistent with positive co-operativity between two sites. Increasing ATP concentration to 10 mM caused the Po of both WT and 10SA channels to decline. 4. Wild-type and mutant CFTR channels became locked in open bursts when exposed to mixtures of ATP and the non-hydrolysable analogue AMP-PNP. The rate at which the low phosphorylation mutants became locked open was about half that of WT channels, consistent with Po being the principal determinant of locking rate in WT and mutant channels. 5. We conclude that phosphorylation at 'weak' PKA sites is sufficient to sustain the interactions between the ATP binding domains that mediate locking by AMP-PNP. Phosphorylation of the strong dibasic PKA sites controls the bursting rate and Po of WT channels by increasing the apparent affinity of CFTR for ATP. PMID:9508802

  9. Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel

    PubMed Central

    Mathews, Ceri J; Tabcharani, Joseph A; Chang, Xiu-Bao; Jensen, Timothy J; Riordan, John R; Hanrahan, John W

    1998-01-01

    The relationship between phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and its gating by nucleotides was examined using the patch clamp technique by comparing strongly phosphorylated wild-type (WT) channels with weakly phosphorylated mutant channels lacking four (4SA) or all ten (10SA) dibasic consensus sequences for phosphorylation by protein kinase A (PKA). The open probability (Po) of strongly phosphorylated WT channels in excised patches was about twice that of 4SA and 10SA channels, after correcting for the number of functional channels per patch by addition of adenylylimidodiphosphate (AMP-PNP). The mean burst durations of WT and mutant channels were similar, and therefore the elevated Po of WT was due to its higher bursting rate. The ATP dependence of the 10SA mutant was shifted to higher nucleotide concentrations compared with WT channels. The relationship between Po and [ATP] was noticeably sigmoid for 10SA channels (Hill coefficient, 1.8), consistent with positive co-operativity between two sites. Increasing ATP concentration to 10 mM caused the Po of both WT and 10SA channels to decline. Wild-type and mutant CFTR channels became locked in open bursts when exposed to mixtures of ATP and the non-hydrolysable analogue AMP-PNP. The rate at which the low phosphorylation mutants became locked open was about half that of WT channels, consistent with Po being the principal determinant of locking rate in WT and mutant channels. We conclude that phosphorylation at ‘weak’ PKA sites is sufficient to sustain the interactions between the ATP binding domains that mediate locking by AMP-PNP. Phosphorylation of the strong dibasic PKA sites controls the bursting rate and Po of WT channels by increasing the apparent affinity of CFTR for ATP. PMID:9508802

  10. Dynamics of energy distribution in three channel alpha helix protein based on Davydov’s ansatz

    SciTech Connect

    Ahmad, Faozan; Alatas, Husin

    2015-04-16

    An important aspect of many biological processes at molecular level is the transfer and storage mechanism of bioenergy released in the reaction of the hydrolysis of Adenosinetriphosphate (ATP) by biomacromolecule especially protein. Model of Soliton Davydov is a new break-through that could describe that mechanism. Here we have reformulated quantum mechanical the Davydov theory, using least action principle. Dynamical aspect of the model is analyzed by numerical calculation. We found two dynamical cases: the traveling and pinning soliton that we suggest they are related to the energy transfer and storage mechanism in the protein. Traveling and pinning soliton can be controlled by strength of coupling. In 3- channel approach, we found the breather phenomena in which its frequency is determined by interchannel coupling parameter.

  11. The BTB domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states.

    PubMed

    Smaldone, Giovanni; Pirone, Luciano; Pedone, Emilia; Marlovits, Thomas; Vitagliano, Luigi; Ciccarelli, Luciano

    2016-06-01

    Potassium channel tetramerization domain-containing (KCTD) proteins are involved in fundamental physio-pathological processes. Here, we report an analysis of the oligomeric state of the Bric-à-brack, Tram-track, Broad complex (BTB) domains of seven distinct KCTDs belonging to five major clades of the family evolution tree. Despite their functional and sequence variability, present electron microscopy data highlight the occurrence of well-defined pentameric states for all domains. Our data also show that these states coexist with alternative forms which include open pentamers. Thermal denaturation analyses conducted using KCTD1 as a model suggest that, in these proteins, different domains cooperate to their overall stability. Finally, negative-stain electron micrographs of KCTD6(BTB) in complex with Cullin3 show the presence of assemblies with a five-pointed pinwheel shape. PMID:27152988

  12. Dynamics of energy distribution in three channel alpha helix protein based on Davydov's ansatz

    NASA Astrophysics Data System (ADS)

    Ahmad, Faozan; Alatas, Husin

    2015-04-01

    An important aspect of many biological processes at molecular level is the transfer and storage mechanism of bioenergy released in the reaction of the hydrolysis of Adenosinetriphosphate (ATP) by biomacromolecule especially protein. Model of Soliton Davydov is a new break-through that could describe that mechanism. Here we have reformulated quantum mechanical the Davydov theory, using least action principle. Dynamical aspect of the model is analyzed by numerical calculation. We found two dynamical cases: the traveling and pinning soliton that we suggest they are related to the energy transfer and storage mechanism in the protein. Traveling and pinning soliton can be controlled by strength of coupling. In 3- channel approach, we found the breather phenomena in which its frequency is determined by interchannel coupling parameter.

  13. Stability analysis of a square rod bundle sub-channel in supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Hai-jun, Wang; Ting, You; Lei, Zhang; Hong-fang, Gu; Yu-shan, Luo; Ji-lian, Bian

    2013-07-01

    Extensive investigations on the flow and heat transfer behavior in SCWR fuel assembly have been undertaken worldwide. However, stability analysis of supercritical water in the sub-channels of tight lattices is still lacking. In this paper, the flow stability of a fuel bundle channel with square pitches has been analyzed using commercial CFD code-ANSYS Fluent. Typical dynamic instability of Density Wave Oscillation (DWO) has occurred in heated channel containing fluids at supercritical pressure. A further discussion about the impacts of various operational parameters (e.g. power input, system pressure, mass velocity, inlet temperature, etc) shows that the system becomes more stable as system pressure and/or mass flow rate increases. An increase in inlet temperature also has a stabilizing effect on the system.

  14. Channelled porous TiO2 synthesized with a water-in-oil microemulsion.

    PubMed

    Malgras, Victor; Jood, Priyanka; Sun, Ziqi; Dou, Shi Xue; Yamauchi, Yusuke; Kim, Jung Ho

    2014-08-11

    Porous titanium dioxide synthesized with a bicontinuous surfactant template is a promising method that leads to a high active surface area electrode. The template used is based on a water/isooctane/dioctyl sodium sulfosuccinate salt together with lecithin. Several parameters were varied during the synthesis to understand and optimize channel formation mechanisms. The material is patterned in stacked conical channels, widening towards the centre of the grains. The active surface area increased by 116 % when the concentration of alkoxide precursors was decreased and increased by 241 % when the template formation temperature was decreased to 10 °C. Increasing the oil phase viscosity tends to widen the pore aperture, thus decreasing the overall active surface area. Changing the phase proportions alters the microemulsion integrity and disrupts channel formation. PMID:25059398

  15. Grazing Land Management Strongly Controls Water Quality, Sediment and Channel Dynamics in Tallgrass Prairie Headwater Networks

    NASA Astrophysics Data System (ADS)

    Grudzinski, B. G.; Daniels, M. D.

    2013-12-01

    In the prairie remnants of North America, watershed sediment regimes are heavily influenced by livestock grazing practices. Despite dramatic declines in stream water quality and ecosystem function concomitant with increasing gazing pressures, there have been no studies to quantitatively assess the relationship between various grazing treatments and sediment production in natural grassland ecosystems. In this study, we evaluate suspended sediment transport and channel morphology in the Flint Hills physiographic province using a paired whole-watershed approach, including 2 replicates of high density cattle grazing, 2 replicates of low density cattle grazing, 3 replicates of bison grazing and 3 replicates of no grazing. As expected, results demonstrate that cattle grazing operations increase e-coli, sediment concentrations and increase channel width. However, no significant differences in e-coli, suspended sediment dynamics or channel geomorphology were found between bison grazed and ungrazed watersheds.

  16. Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, Ictalurus punctatus (Rafinesque)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMT), has recently emerged as an important modification in the regulation of gene expression. In this communication, we identified and characterized the channel catfish orthologs to human PRMT 1, 3, 4 and 5, and PRMT4 ...

  17. Channel Catfish, Ictalurus punctatus Rafinesque 1818, Tetraspanin Membrane Protein Family: Characterization and Expression Analysis of CD81 cDNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD81, also known as the target of an antiproliferative antibody 1 (TAPA-1), is a member of tetraspanin integral membrane protein family. This protein plays many important roles in immune functions. In this report, we characterized and analyzed expression of the channel catfish CD81 transcript. T...

  18. Phase space analysis and classification of sonar echoes in shallow-water channels

    NASA Astrophysics Data System (ADS)

    Okopal, Greg

    A primary objective of active sonar systems is to detect, locate, and classify objects, such as mines, ships, and biologics, based on their sonar backscatter. A shallow-water ocean channel is a challenging environment in which to classify sonar echoes because interactions of the sonar signal with the ocean surface and bottom induce frequency-dependent changes (especially dispersion and damping) in the signal as it propagates, the effects of which typically grow with range. Accordingly, the observed signal depends not only on the initial target backscatter, but also the propagation channel and how far the signal has propagated. These propagation effects can increase the variability of observed target echoes and degrade classification performance. Furthermore, uncertainty of the exact propagation channel and random variations within a channel cause classification features extracted from the received sonar echo to behave as random variables. With the goal of improving sonar signal classification in shallow-water environments, this work develops a phase space framework for studying sound propagation in channels with dispersion and damping. This approach leads to new moment features for classification that are invariant to dispersion and damping, the utility of which is demonstrated via simulation. In addition, the accuracy of a previously developed phase space approximation method for range-independent pulse propagation is analyzed and shown to be greater than the accuracy of the standard stationary phase approximation for both large and small times/distances. The phase space approximation is also extended to range dependent propagation. Finally, the phase space approximation is used to investigate the random nature of moment features for classification by calculating the moments of the moment features under uncertain and random channel assumptions. These moments of the moment features are used to estimate probability distribution functions for the moment features, and

  19. Effect of channelization of Rio Puerto Nuevo on ground-water levels in the San Juan metropolitan area, Puerto Rico

    USGS Publications Warehouse

    Padilla, Ingrid

    1991-01-01

    Channelization and concrete lining of the Rio Puerto Nuevo and its tributaries in the San Juan Metropolitan area has been proposed to control flooding in low lying areas adjacent to the stream. Concern about the effect of these channel modifications on the ground-water system prompted the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers to conduct an investigation of surface-water and ground-water interactions in the Rio Puerto Nuevo basin in 1988. A principal objective of this investigation was to determine the potential effect of channelization of the Rio Puerto Nuevo on ground-water levels.

  20. Use of Label-free Optical Biosensors to Detect Modulation of Potassium Channels by G-protein Coupled Receptors

    PubMed Central

    Fleming, Matthew R.; Shamah, Steven M.; Kaczmarek, Leonard K.

    2014-01-01

    Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane1. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex2,3. Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein's behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs. PMID:24562095

  1. Channel Incision and Water-Table Decline Along a Recently Formed Proglacial Stream, Mendenhall Valley, Southeastern Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2009-01-01

    Retreat of the Mendenhall Glacier, in southeastern Alaska, resulted in the formation of Mendenhall Lake, which has reduced the supply of coarse sediment to the proglacial Mendenhall River. Channel geometry surveys conducted in 1969 and 1998 over a 5.3 km reach of the Mendenhall River revealed reductions in mean bed elevations ranging from 0.4 to 1.5 meters based on cross sections replicated at 7 locations. Channel incision in the Mendenhall River is believed to be the result of a combination of factors resulting from localized and region-wide glacial retreat. In addition to a reduction of river stage due to channel incision, a decline in water-table elevations of about 0.6 m during a 17-year period from 1984 to 2001 was identified in an observation well located 250 m from the incising stream channel. Water-table elevations 600 m from the incising channel in the adjacent alluvial outwash aquifer respond in phase to changes in river stage, indicating water-levels in the adjacent aquifer are declining in response to river-channel incision. This study suggests channel incision can rapidly lower water-table elevations for large distances in the adjacent aquifer, potentially modifying the hydrology to a degree capable of influencing adjacent surface-water features, such as off-channel wetlands and flood-plain side channels.

  2. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.

    2011-04-01

    Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real

  3. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    PubMed Central

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  4. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.

    PubMed

    Harmar, Anthony J; Hills, Rebecca A; Rosser, Edward M; Jones, Martin; Buneman, O Peter; Dunbar, Donald R; Greenhill, Stuart D; Hale, Valerie A; Sharman, Joanna L; Bonner, Tom I; Catterall, William A; Davenport, Anthony P; Delagrange, Philippe; Dollery, Colin T; Foord, Steven M; Gutman, George A; Laudet, Vincent; Neubig, Richard R; Ohlstein, Eliot H; Olsen, Richard W; Peters, John; Pin, Jean-Philippe; Ruffolo, Robert R; Searls, David B; Wright, Mathew W; Spedding, Michael

    2009-01-01

    The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. PMID:18948278

  5. A Novel Plant Major Intrinsic Protein in Physcomitrella patens Most Similar to Bacterial Glycerol Channels1

    PubMed Central

    Gustavsson, Sofia; Lebrun, Anne-Sophie; Nordén, Kristina; Chaumont, François; Johanson, Urban

    2005-01-01

    A gene encoding a novel fifth type of major intrinsic protein (MIP) in plants has been identified in the moss Physcomitrella patens. Phylogenetic analyses show that this protein, GlpF-like intrinsic protein (GIP1;1), is closely related to a subclass of glycerol transporters in bacteria that in addition to glycerol are highly permeable to water. A likely explanation of the occurrence of this bacterial-like MIP in P. patens is horizontal gene transfer. The expressed P. patens GIP1;1 gene contains five introns and encodes a unique C-loop extension of approximately 110 amino acid residues that has no obvious similarity with any other known protein. Based on alignments and structural comparisons with other MIPs, GIP1;1 is suggested to have retained the permeability for glycerol but not for water. Studies on heterologously expressed GIP1;1 in Xenopus laevis oocytes confirm the predicted substrate specificity. Interestingly, proteins of one of the plant-specific subgroups of MIPs, the NOD26-like intrinsic proteins, are also facilitating the transport of glycerol and have previously been suggested to have evolved from a horizontally transferred bacterial gene. Further studies on localization and searches for GIP1;1 homologs in other plants will clarify the function and significance of this new plant MIP. PMID:16113222

  6. Protein Aggregates May Differ in Water Entrapment but Are Comparable in Water Confinement.

    PubMed

    Urbonaite, V; de Jongh, H H J; van der Linden, E; Pouvreau, L

    2015-10-14

    Aggregate size and density are related to gel morphology. In the context of the water distribution in complex food systems, in this study, it was aimed to investigate whether protein aggregates varying in size and density differ in entrapped and confined water. Heat-set soy protein aggregates (1%, v/v) prepared in the presence of 3.5 mM divalent salts increased in size and decreased in apparent density following the salt type order MgSO4, MgCl2, CaSO4, and CaCl2. In the absence of applied (centrifugal) forces, larger and less dense aggregates entrap more water. When force is applied from larger and more deformable aggregates, more water can be displaced. Entrapped water of ∼8-13 g of water/g of protein is associated with (pelleted) aggregates, of which approximately 4.5-8.5 g of water/g of protein is not constrained in exchangeability with the solvent. The amount of confined water within aggregates was found to be independent of the aggregate density and accounted for ∼3.5 g of water/g of protein. Confined water in aggregates is hindered in its diffusion because of physical structure constraints and, therefore, not directly exchangeable with the solvent. These insights in the protein aggregate size and deformability in relation to water entrapment and confinement could be used to tune water holding on larger length scales when force is applied. PMID:26416128

  7. Interaction of Human Chloride Intracellular Channel Protein 1 (CLIC1) with Lipid Bilayers: A Fluorescence Study.

    PubMed

    Hare, Joanna E; Goodchild, Sophia C; Breit, Samuel N; Curmi, Paul M G; Brown, Louise J

    2016-07-12

    Chloride intracellular channel protein 1 (CLIC1) is very unusual as it adopts a soluble glutathione S-transferase-like canonical fold but can also autoinsert into lipid bilayers to form an ion channel. The conversion between these forms involves a large, but reversible, structural rearrangement of the CLIC1 module. The only identified environmental triggers controlling the metamorphic transition of CLIC1 are pH and oxidation. Until now, there have been no high-resolution structural data available for the CLIC1 integral membrane state, and consequently, a limited understanding of how CLIC1 unfolds and refolds across the bilayer to form a membrane protein with ion channel activity exists. Here we show that fluorescence spectroscopy can be used to establish the interaction and position of CLIC1 in a lipid bilayer. Our method employs a fluorescence energy transfer (FRET) approach between CLIC1 and a dansyl-labeled lipid analogue to probe the CLIC1-lipid interface. Under oxidizing conditions, a strong FRET signal between the single tryptophan residue of CLIC1 (Trp35) and the dansyl-lipid analogue was detected. When considering the proportion of CLIC1 interacting with the lipid bilayer, as estimated by fluorescence quenching experiments, the FRET distance between Trp35 and the dansyl moiety on the membrane surface was determined to be ∼15 Å. This FRET-detected interaction provides direct structural evidence that CLIC1 associates with membranes. The results presented support the current model of an oxidation-driven interaction of CLIC1 with lipid bilayers and also propose a membrane anchoring role for Trp35. PMID:27299171

  8. AG Channel Measurement and Modeling Results for Over-Water and Hilly Terrain Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David W.; Sun, Ruoyu

    2015-01-01

    This report describes work completed over the past year on our project, entitled "Unmanned Aircraft Systems (UAS) Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations." This project is funded under the NASA project "Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS)." In this report we provide the following: an update on project progress; a description of the over-freshwater and hilly terrain initial results on path loss, delay spread, small-scale fading, and correlations; complete path loss models for the over-water AG channels; analysis for obtaining parameter statistics required for development of accurate wideband AG channel models; and analysis of an atypical AG channel in which the aircraft flies out of the ground site antenna main beam. We have modeled the small-scale fading of these channels with Ricean statistics, and have quantified the behavior of the Ricean K-factor. We also provide some results for correlations of signal components, both intra-band and inter-band. An updated literature review, and a summary that also describes future work, are also included.

  9. G-Protein Modulation of Voltage-Gated Ca2+ Channels from Isolated Adult Rat Superior Cervical Ganglion Neurons.

    PubMed

    Lu, Van B; Ikeda, Stephen R

    2016-01-01

    Sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) are a well-established model to study G-protein modulation of voltage-gated Ca(2+) channels (VGCCs). SCG neurons can be easily dissociated and are amendable to heterologous expression of genes, including genetic tools to study G-protein signaling pathways, within a time frame to maintain good spatial voltage-clamp control of membrane potential during electrophysiological recordings (8-36 h postdissociation). This protocol focuses on examining G-protein modulation of VGCCs; however, the procedures and experimental setup for acute application of agonists can be applied to study modulation of other ion channels (e.g., M-current, G-protein-coupled inwardly rectifying K(+) channels). We also discuss some common sources of artifacts that can arise during acute drug application onto dissociated neurons, which can mislead interpretation of results. PMID:27140920

  10. Microfabricated channel array electrophoresis for characterization and screening of enzymes using RGS-G protein interactions as a model system.

    PubMed

    Pei, Jian; Dishinger, John F; Roman, David L; Rungwanitcha, Chetwana; Neubig, Richard R; Kennedy, Robert T

    2008-07-01

    A microfluidic chip consisting of parallel channels designed for rapid electrophoretic enzyme assays was developed. Radial arrangement of channels and a common waste channel allowed chips with 16 and 36 electrophoresis units to be fabricated on a 7.62 x 7.62 cm(2) glass substrate. Fluorescence detection was achieved using a Xe arc lamp source and commercial charge-coupled device (CCD) camera to image migrating analyte zones in individual channels. Chip performance was evaluated by performing electrophoretic assays for G protein GTPase activity on chip using BODIPY-GTP as enzyme substrate. A 16-channel design proved to be useful in extracting kinetic information by allowing serial electrophoretic assays from 16 different enzyme reaction mixtures at 20 s intervals in parallel. This system was used to rapidly determine enzyme concentrations, optimal enzymatic reaction conditions, and Michaelis-Menten constants. A chip with 36 channels was used for screening for modulators of the G protein-RGS protein interaction by assaying the amount of product formed in enzyme reaction mixtures that contained test compounds. Thirty-six electrophoretic assays were performed in 30 s suggesting the potential throughput up to 4320 assays/h with appropriate sample handling procedures. Both designs showed excellent reproducibility of peak migration time and peak area. Relative standard deviations of normalized peak area of enzymatic product BODIPY-GDP were 5% and 11%, respectively, in the 16- and 36-channel designs. PMID:18465881

  11. Numerical Simulation of Seepage Field of Tailing Water Channel Under Different Conditions in Operation Period

    NASA Astrophysics Data System (ADS)

    Wang, Feihan; Yan, Guoxin; Chen, Deling

    According to mathematical model of rock and soil, it calculated seepage field of tailing water channel under different conditions. The results showed that under condition of no.1, the seepage discharge from outside to inside of channel is 0.394 m3/h and the discharge under plastic concrete cut-off is 0.358m3/h, and that under condition of no.2, the seepage discharge from outside to inside of channel is 0.249 m3/h and the discharge under plastic concrete cut-off is 0.236m3/h. Under condition of no.1, the outflow of saturation line is at elevation of 411.0m which is under sand and gravel filling layer and near boundary of drift gravel sand layer. Under condition of no.2, the outflow of saturation line is at elevation of 403.0m which is under drift gravel sand layer and near rock foundation. The results showed that numerical simulation can be used to do with seepage problems of tailing water channel.

  12. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates

    PubMed Central

    Behera, Rabindra K.; Theil, Elizabeth C.

    2014-01-01

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron–protein cofactors and oxidant protection (Fe2+ and O2 sequestration). Fe2+ passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe2+ substrate movement to ferritin enzyme (Fox) sites. Fe2+ and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe3+–O–Fe3+] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe2+ concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe2+ access), Mn2+ << Co2+ < Cu2+ < Zn2+, reflecting metal ion–protein binding stabilities. Fe2+–Cys126 binding in ferritin ion channels, observed as Cu2+–S–Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu2+ inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe2+ movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe2+ into ferritin enzymatic sites. The results clarify Fe2+ transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations. PMID:24843174

  13. Dynamical Transition of Protein-Hydration Water

    NASA Astrophysics Data System (ADS)

    Doster, W.; Busch, S.; Gaspar, A. M.; Appavou, M.-S.; Wuttke, J.; Scheer, H.

    2010-03-01

    Thin layers of water on biomolecular and other nanostructured surfaces can be supercooled to temperatures not accessible with bulk water. Chen et al. [Proc. Natl. Acad. Sci. U.S.A. 103, 9012 (2006)]PNASA60027-842410.1073/pnas.0602474103 suggested that anomalies near 220 K observed by quasielastic neutron scattering can be explained by a hidden critical point of bulk water. Based on more sensitive measurements of water on perdeuterated phycocyanin, using the new neutron backscattering spectrometer SPHERES, and an improved data analysis, we present results that show no sign of such a fragile-to-strong transition. The inflection of the elastic intensity at 220 K has a dynamic origin that is compatible with a calorimetric glass transition at 170 K. The temperature dependence of the relaxation times is highly sensitive to data evaluation; it can be brought into perfect agreement with the results of other techniques, without any anomaly.

  14. Iterative Receiver in Time-Frequency Domain for Shallow Water Acoustic Channel

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jianhua

    2012-03-01

    Inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel, degrades the performance of underwater acoustic (UWA) communication systems. In this paper, we combine soft minimum mean squared error (MMSE) equalization and the serially concatenated trellis coded modulation (SCTCM) decoding to develop an iterative receiver in time-frequency domain (TFD) for underwater acoustic point to point communications. Based on sound speed profile (SSP) measured in the lake and finite-element ray (FER) tracing method (Bellhop), the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. The results suggest that the proposed iterative receiver can reduce the calculation complexity of the equalizer and obtain better performance using less receiving elements.

  15. Polycystin-1 is a Cardiomyocyte Mechanosensor That Governs L-type Ca2+ Channel Protein Stability

    PubMed Central

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K.; Morales, Cyndi R.; Contreras, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J.; Somlo, Stefan; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2015-01-01

    Background L-type calcium channel (LTCC) activity is critical to afterload-induced hypertrophic growth of the heart. However, mechanisms governing mechanical stress-induced activation of LTCC activity are obscure. Polycystin-1 (PC-1) is a G-protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. Methods and Results We subjected neonatal rat ventricular myocytes (NRVMs) to mechanical stretch by exposing them to hypo-osmotic (HS) medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on LTCC activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Over-expression of a C-terminal fragment of PC-1 was sufficient to trigger NRVM hypertrophy. Exposing NRVMs to HS medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 KO) and subjected them to mechanical stress in vivo (transverse aortic constriction, TAC). At baseline, PC-1 KO mice manifested decreased cardiac function relative to littermate controls, and α1C LTCC protein levels were significantly lower in PC-1 KO hearts. Whereas control mice manifested robust TAC-induced increases in cardiac mass, PC-1 KO mice showed no significant growth. Likewise, TAC-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals Conclusions PC-1 is a cardiomyocyte mechanosensor and is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. PMID:25888683

  16. Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters

    NASA Astrophysics Data System (ADS)

    Ullgren, Jenny E.; Fer, Ilker; Darelius, Elin; Beaird, Nicholas

    2014-01-01

    The narrow and deep Faroe Bank Channel (FBC) is an important pathway for cold, dense waters from the Nordic Seas to flow across the Iceland-Scotland ridge into the North Atlantic. The swift, turbulent FBC overflow is associated with strong vertical mixing. Hydrographic profiles from a shipboard survey and two Slocum electric gliders deployed during a cruise in May-June 2012 show an intermediate water mass characterized by low salinity and low oxygen concentration between the upper waters of Atlantic origin and the dense overflow water. A weak low-salinity signal originating north-east of Iceland is discernible at the exit of the FBC, but smeared out by intense mixing. Further west (downstream) marked salinity and oxygen minima are found, which we hypothesize are indicators of a mixture of Labrador Sea Water and Intermediate Water from the Iceland Basin. Water mass characteristics vary strongly on short time scales. Low-salinity, low-oxygen water in the stratified interface above the overflow plume is shown to move along isopycnals toward the Iceland-Faroe Front as a result of eddy stirring and a secondary, transverse circulation in the plume interface. The interaction of low-salinity, low-oxygen intermediate waters with the overflow plume already at a short distance downstream of the sill, here reported for the first time, affects the final properties of the overflow waters through entrainment and mixing.

  17. Gas-discharge probe microscopy of water-carrying channels in wood

    NASA Astrophysics Data System (ADS)

    Ivanov-Omskii, V. I.; Ivanova, E. I.

    2012-04-01

    We have used a gas-discharge imaging technique to study the water transport channels (tracheids) in wood samples. Results obtained for the samples of bitch and aspen show features of this variant of the probe microscopy and show its additional possibilities as compared to optical microscopy. It is concluded that gas-discharge probe microscopy can be used for additional diagnostics of the structure of plant and animal tissues.

  18. Wind-forced circulation model and water exchanges through the channel in the Bay of Toulon

    NASA Astrophysics Data System (ADS)

    Dufresne, Christiane; Duffa, Céline; Rey, Vincent

    2014-01-01

    A hydrodynamic model of the Bay of Toulon has been developed for use as a post-accident radionuclide dispersion simulation tool. Located in a Mediterranean urban area, the Bay of Toulon is separated into two basins by a 1.4-km long seawall. The Little Bay is semi-enclosed and connected to the Large Bay by a fairway channel. This channel is the site of significant water mass exchange as a result of both wind-driven currents and bathymetry. It is therefore a focal point for marine contamination. As part of the model calibration and validation process, the first step consisted of studying the water mass exchange between the two basins. An Acoustic Doppler Current Profiler was moored in the channel for 1 year. The present study analyses in situ data to determine the current intensity and direction, and also to better understand the vertical current profile, which is highly correlated with meteorological forcing. Comparisons of model-generated and measured data are presented, and various atmospheric forcing datasets are used to enhance computed results. It appears that accurate meteorological forcing data is needed to enhance the accuracy of the hydrodynamic model. This channel is an important location for water mass renewal in the Bay of Toulon, and model results are used to quantify these exchanges. The mean calculated annual water exchange time is approximately 3.4 days. However, this duration is strongly wind dependent and shortens during windy winter months. It ranges from 1.5 days during strong wind periods to 7.5 days during calm weather. Residence time values calculated through tracer dispersion modelling after release at the back of the Little Bay are found to be comparable to the mean exchange time values, especially for windy conditions.

  19. Fish scales as indicators of wastewater toxicity from an international water channel Tung Dhab drain.

    PubMed

    Kaur, Rajbir; Dua, Anish

    2012-05-01

    The effect of wastewater exposure on scales and chromatophores of freshwater fish Channa punctatus was studied using wastewater dilutions (60-100%) from an international water channel Tung Dhab drain at an interval of 15 and 30 days. The exposed fish showed significant alterations such as uprooted and damaged lepidonts and dispersal of chromatophores. These observations strongly suggest that fish scales can be successfully employed as indicators of wastewater pollution. PMID:21701892

  20. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.

    PubMed

    Palma, Alejandra G; Galizia, Luciano; Kotsias, Basilio A; Marino, Gabriela I

    2016-05-01

    Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases. PMID:26888038

  1. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene

    SciTech Connect

    Lieburg, A.F. van; Verdijk, M.A.J.; Knoers, V.V.A.M.; Monnens, L.A.H.; Oost, B.A. van; Os, C.H. van; Deen, P.M.T.; Essen, A.J. van; Proesmans, W.; Mallmann, R.

    1994-10-01

    Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanquineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. 32 refs., 4 figs.

  2. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.

    2015-11-01

    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  3. Water emergence from the land region and water-sidewall interactions in Proton Exchange Membrane Fuel Cell gas channels with microgrooves

    NASA Astrophysics Data System (ADS)

    Shah, Mihir M.; Kandlikar, Satish G.

    2015-11-01

    Liquid water produced in a Proton Exchange Membrane Fuel Cell (PEMFC) can adversely affect the fuel cell performance in two ways: (a) reduction in surface area available for reactant transport at the channel-gas diffusion layer (GDL) interface, and (b) increase in two-phase pressure drop in channels leading to flow maldistribution and increased pumping power. Further, the channels blocked by water reduce reactant availability at reaction sites. Most of the earlier water transport studies were focused on water droplet formation on the gas diffusion layer (GDL) in the channel and its removal from the gas flow without considering the sidewall interactions. In an actual fuel cell, water under the land emerges in the channel and fills the corner, drawing in additional water from the GDL surface. The present work explores water droplet-sidewall interactions and the transport of water from the corner region. Transverse micro-grooves are introduced on the sidewalls and their effect on water removal from the corner region, flow patterns, area coverage ratio and pressure drop are investigated. The micro-grooves are also seen to introduce a wetting regime that facilitates removal of water at the channel exit without causing blockage at the manifold region.

  4. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    SciTech Connect

    Hong,H.; Patel, D.; Tamm, L.; van den Berg, B.

    2006-01-01

    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM.

  5. Hydration water dynamics and instigation of protein structuralrelaxation

    SciTech Connect

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7

  6. Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth

    NASA Technical Reports Server (NTRS)

    Komar, P. D.

    1979-01-01

    The hydraulics of channelized water flows on Mars and the resulting sediment transport rates are calculated, and similar computations are performed for such terrestrial analogs as the Mississippi River and the catastrophic Lake Missoula floods that formed the Channeled Scabland in eastern Washington State. The morphologies of deep-sea channels formed by catastrophic turbidity currents are compared with the Martian channels, many similarities are pointed out, and the hydraulics of the various flows are compared. The results indicate that the velocities, discharges, bottom shear stresses, and sediment-transport capacity of water flows along the Martian channels would be comparable to those of the oceanic turbidity currents and the Lake Missoula floods. It is suggested that the submarine canyons from which turbidity currents originate are the terrestrial counterparts to the chaotic-terrain areas or craters that serve as sources for many of the Martian channels.

  7. Myrsinane, Premyrsinane, and Cyclomyrsinane Diterpenes from Euphorbia falcata as Potassium Ion Channel Inhibitors with Selective G Protein-Activated Inwardly Rectifying Ion Channel (GIRK) Blocking Effects.

    PubMed

    Vasas, Andrea; Forgo, Peter; Orvos, Péter; Tálosi, László; Csorba, Attila; Pinke, Gyula; Hohmann, Judit

    2016-08-26

    GIRK channels are activated by a large number of G protein-coupled receptors and regulate the electrical activity of neurons, cardiac atrial myocytes, and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the pathophysiology of neuropathic pain, drug addiction, and cardiac arrhythmias. In the heart, GIRK channels are selectively expressed in the atrium, and their activation inhibits pacemaker activity, thereby slowing the heart rate. In the present study, 19 new diterpenes, falcatins A-S (1-19), and the known euphorprolitherin D (20) were isolated from Euphorbia falcata. The compounds were assayed on stable transfected HEK-hERG (Kv11.1) and HEK-GIRK1/4 (Kir3.1 and Kir3.4) cells. Blocking activity on GIRK channels was exerted by 13 compounds (61-83% at 10 μM), and, among them, five possessed low potency on the hERG channel (4-20% at 10 μM). These selective activities suggest that myrsinane-related diterpenes are potential lead compounds for the treatment of atrial fibrillation. PMID:27441737

  8. Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures

    NASA Technical Reports Server (NTRS)

    Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu

    1994-01-01

    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution

  9. Seasonal and Global Variations of Water Vapor and High Clouds Observed with MODIS near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Yang, Ping; Kaufman, Yoram J.; Wiscombe, Warren J.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The NASA Moderate Resolution Imaging Spectrometer (MODIS) on the Terra Spacecraft has been collecting scientific data since February of 2000. MODIS is a major facility instrument for remote sensing of the atmosphere, land surfaces, and ocean color. On the MODIS instruments, there are five channels located within and around the .0.94 micron water vapor band absorption region for remote sensing of atmospheric water vapor. There is also a channel located at 1.375 micron for detecting thin cirrus clouds. We will describe the basic principles for using these near-IR channels for remote sensing of water vapor and high clouds. Based on our analysis of two years# measurements with these channels, we have found that reliable observations of water vapor and high clouds on regional and global scales can be made. We will present results on daily, seasonal and annual variations of water vapor and high clouds.

  10. Experimental Evaluation of Proposed Small-Molecule Inhibitors of Water Channel Aquaporin-1.

    PubMed

    Esteva-Font, Cristina; Jin, Byung-Ju; Lee, Sujin; Phuan, Puay-Wah; Anderson, Marc O; Verkman, A S

    2016-06-01

    The aquaporin-1 (AQP1) water channel is a potentially important drug target, as AQP1 inhibition is predicted to have therapeutic action in edema, tumor growth, glaucoma, and other conditions. Here, we measured the AQP1 inhibition efficacy of 12 putative small-molecule AQP1 inhibitors reported in six recent studies, and one AQP1 activator. Osmotic water permeability was measured by stopped-flow light scattering in human and rat erythrocytes that natively express AQP1, in hemoglobin-free membrane vesicles from rat and human erythrocytes, and in plasma membrane vesicles isolated from AQP1-transfected Chinese hamster ovary cell cultures. As a positive control, 0.3 mM HgCl2 inhibited AQP1 water permeability by >95%. We found that none of the tested compounds at 50 µM significantly inhibited or increased AQP1 water permeability in these assays. Identification of AQP1 inhibitors remains an important priority. PMID:26993802

  11. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

    PubMed

    Bugaj, Vladislav; Pochynyuk, Oleh; Stockand, James D

    2009-11-01

    We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC. PMID:19692483

  12. The verification of millennial-scale monsoon water vapor transport channel in northwest China

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Chengqi; Wang, Yue

    2016-05-01

    Long-term changes of the Asian summer monsoon water vapor transport play a pivotal role in the variability of monsoon precipitation. Paleo-climate simulations have shown that there is an important monsoon vapor transport channel in western China. Previous studies mostly focused on the correlation between monsoon precipitation and intensity. Little research has been done on the verification of the water vapor channel. Compared with speleothem and lacustrine systems, the hydrological cycle of land surface sediments is more directly related to the monsoon water vapor. In this study, we used carbonate δ18O and organic matter δ13C of the surface eolian sediments from the piedmont of the northern Qilian Mountains to verify the monsoon water vapor on the Holocene millennial-scale. Two surface sedimentary sections were selected to study paleo-monsoon water vapor transport. Proxy data, including carbonate δ18O and organic matter δ13C of surface eolian sediments, as well as total organic matter and carbonate content were obtained from the two eolian sections. We also synthesized transient simulations of the CCSM3 and the Kiel climate models. The PMIP 3.0 project and TRACE isotopic simulations were also compared with the reconstructed monsoon water vapor transport. Our findings indicate that the strength of the Holocene Asian summer monsoon is consistent with the water vapor transport in western China that has significant impacts to long-term monsoon precipitation in northern China. This study verifies a significant millennial-scale correlation between the monsoon strength and monsoon water vapor transport intensity along the eastern Qinghai-Tibet Plateau.

  13. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    PubMed

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters. PMID:26371748

  14. The role of transmembrane channel–like proteins in the operation of hair cell mechanotransducer channels

    PubMed Central

    Kim, Kyunghee X.; Beurg, Maryline; Hackney, Carole M.; Furness, David N.; Mahendrasingam, Shanthini

    2013-01-01

    Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel–like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bundle deflections in mice with null mutations of Tmc1, Tmc2, or both. During the first postnatal week, we observed a normal MT current in hair cells lacking Tmc1 or Tmc2; however, in the absence of both isoforms, we recorded a large MT current that was phase-shifted 180°, being evoked by displacements of the hair bundle away from its tallest edge rather than toward it as in wild-type hair cells. The anomalous MT current in hair cells lacking Tmc1 and Tmc2 was blocked by FM1-43, dihydrostreptomycin, and extracellular Ca2+ at concentrations similar to those that blocked wild type. MT channels in the double knockouts carried Ca2+ with a lower permeability than wild-type or single mutants. The MT current in double knockouts persisted during exposure to submicromolar Ca2+, even though this treatment destroyed the tip links. We conclude that the Tmc isoforms do not themselves constitute the MT channel but are essential for targeting and interaction with the tip link. Changes in the MT conductance and Ca2+ permeability observed in the absence of Tmc1 mutants may stem from loss of interaction with protein partners in the transduction complex. PMID:24127526

  15. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity

    PubMed Central

    Londino, James D.; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F.; Noah, James W.

    2013-01-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl−) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H+) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o−) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H+, did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection. PMID:23457187

  16. Modeling of replenishment of sediments on a water-worked gravel bed channel

    NASA Astrophysics Data System (ADS)

    Juez, Carmelo; Battisacco, Elena; Schleiss, Anton J.; Franca, Mário J.

    2016-04-01

    The presence of dams causes a sediment deficit downstream. Hence, the surface structure of the riverbeds is altered by this interruption in the sediment continuity and The presence of dams causes a sediment deficit downstream. The surface structure of the riverbed is altered by this interruption in the sediment continuity and becoming water-worked. The main morphological effects verified in these cases are thus the generation of armored layers, bank instability, riverbed incision, changes in the channel width and coarsening of the bed particles. These results impact on the riverbed topographic variability and structure of the bedforms. Surface complexity is thus reduced with further ecological implications. The lack of fine material and surface complexity leads to the loss of aquatic and riparian habitats, limiting the possibilities for fish spawning. Nowadays, the revitalization of disturbed river reaches forms an integral part of river management. Sediment transport and associated channel morphology are understood as key processes for recreating and maintaining aquatic ecosystems. For this purpose several replenishment techniques have been considered in order to supply sediments lacking in the downstream reaches. The replenishment techniques can be seen as a pulse-like addition of sedimentary material that initially disturbs the channel. In this work, the response of the flow to the complementary material which is added in the channel is studied by means of the 2D shallow water equations in combination with the Exner equation. The numerical scheme is built by means of a weakly-coupled treatment between the hydrodynamic and morphodynamic equations leading to an efficient and robust solution. Computational outcomes are compared with experimental data obtained from several replenishment configurations studied in the laboratory. The results are analyzed by means of: (i) temporal evolution of the material spreading, (ii) occupational ratio along the channel which is

  17. Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging

    NASA Astrophysics Data System (ADS)

    Nagase, Katsuya; Suga, Takeo; Nagumo, Yuzo; Uchida, Makoto; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2015-01-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) for elucidating the reaction distributions is expected to improve the performance, durability, and stability. An oxygen-sensitive film of a luminescent porphyrin was used to visualize the oxygen partial pressures in five straight gas-flow channels of a running PEFC with liquid-water blockages formed at the end of the channels. The blockage greatly lowered and unstabilized the cell voltage. The oxygen partial pressure decreased nearly to 0 kPa in the blocked channel. With a water blockage in a channel, the oxygen partial pressures in the adjacent channels were lowered due to an extra demand of oxygen consumption. When the number of the blocked channels increased, the oxygen partial pressure in the unblocked channels became much lowered. When the water blockages disappeared, the oxygen partial pressures quickly returned to the values before plugging. The influence of the cross flows of air through the gas diffusion layers in straight channels was much smaller than that in serpentine flow channels.

  18. The thermal regime of abandoned channels: a preliminary analysis towards a water temperature model for the Allier River, France

    NASA Astrophysics Data System (ADS)

    Casado, Ana; Peiry, Jean-Luc

    2014-05-01

    The growing recognition of the ecological and water quality significance of river water temperature led to a large number of studies assessing thermal processes in streams and rivers. Yet, thermal processes in abandoned channels, which play an important role in maintaining water quality and biological diversity in fluvial corridors, have received minor attention. This study evaluates water temperature regimes in three abandoned channels of the Allier River, France, and quantifies the regime sensitivity to climatic (air temperature) and hydrological (surface and subsurface flow) influence. Analysis was conducted at annual and daily scales, and at two distinct sections of each abandoned channel: (i) the downstream section, which is well connected to the main stream channel, and (ii) the upstream section, which is poorly connected to the main stream channel and hence subject to greater influence of subsurface flow. Annual and daily water temperature regimes for all channels and sections were classified based on relative differences in the 'shape' (timing) and the 'magnitude' (size) of the thermographs. The climatic and hydrological sensitivity of water temperature regimes was quantified using a Sensitivity Index. Analysis at the annual scale revealed relative similarity in patterns of thermal response over time, with clear differentiation between upstream and downstream channel sections in all sites. Water temperature regimes in the upstream channel sections were strongly linked to subsurface water temperature in terms of both timing and size of the annual thermograph; water temperature regimes in the downstream channel sections were more sensitive to air and river water temperature, especially regarding the timing of the annual regimes. Although annual regimes of water temperature exhibited distinct patterns that were similar across sites and over time, analysis of daily water temperature regimes revealed broad differences within and between sites. Day

  19. Presynaptic Calcium Channel Localization and Calcium Dependent Synaptic Vesicle Exocytosis Regulated by the Fuseless Protein

    PubMed Central

    Long, A. Ashleigh; Kim, Eunju; Leung, Hung-Tat; Woodruff, Elvin; An, Lingling; Doerge, R. W.; Pak, William L.; Broadie, Kendal

    2009-01-01

    Summary A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted 8-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, a ~3-fold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wildtype fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca2+ concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca2+ channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca2+ channel domains required for efficient coupling of the Ca2+ influx and synaptic vesicle exocytosis during neurotransmission. PMID:18385325

  20. Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

    PubMed Central

    Bi, Miao-Miao; Hong, Sen; Ma, Ling-Jun; Zhou, Hong-Yan; Lu, Jia; Zhao, Jing; Zheng, Ya-Juan

    2016-01-01

    Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Caspase-3 and -9 activities were determined by a colorimetric assay. The roles of ClC-2 in glutamate-induced apoptosis were examined by using ClC-2 complementary deoxyribonucleic acid (cDNA) and small inference ribonucleic acid (RNA) transfection technology. Results: Overexpression of ClC-2 in RGC-5 cells significantly decreased glutamate-induced apoptosis and increased cell viability, whereas silencing of ClC-2 with short hairpin (sh) RNA produced opposite effects. ClC-2 overexpression increased the expression of Bcl-2, decreased the expression of Bax, and decreased caspase-3 and -9 activation in RGC-5 cells treated with glutamate, but silencing of ClC-2 produced opposite effects. Conclusion: Our data suggest that ClC-2 chloride channels might play a protective role in glutamate-induced apoptosis in retinal ganglion cells via the mitochondria-dependent apoptosis pathway.

  1. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7

    PubMed Central

    Taylor, Kathryn M.; Hiscox, Stephen; Nicholson, Robert I.; Hogstrand, Christer; Kille, Peter

    2012-01-01

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP protein family (Solute Carrier Family 39A, SLC39A) transiently increase the cytosolic free zinc (Zn2+) concentration in response to extracellular signals. Here, we show that phosphorylation of evolutionarily conserved residues in zinc transporter ZIP7 is associated with the gated release of Zn2+ from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Through pharmacological manipulation, proximity assay, and mutagenesis, we identified CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that eukaryotic transition element channels can be activated post-translationally by phosphorylation eliciting a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals for these events which are characteristic of cancerous cells. Furthermore, the interaction of ZIP7 with CK2, a kinase that is antiapoptotoc and promotes cell division, highlights the potential for ZIP7 as a target for anti-cancer drug development. PMID:22317921

  2. ANOs 3–7 in the anoctamin/Tmem16 Cl− channel family are intracellular proteins

    PubMed Central

    Duran, Charity; Qu, Zhiqiang; Osunkoya, Adeboye O.; Cui, Yuanyuan

    2012-01-01

    Ca2+-activated Cl− channels (CaCCs) participate in numerous physiological functions such as neuronal excitability, sensory transduction, and transepithelial fluid transport. Recently, it was shown that heterologously expressed anoctamins ANO1 and ANO2 generate currents that resemble native CaCCs. The anoctamin family (also called Tmem16) consists of 10 members, but it is not known whether all members of the family are CaCCs. Expression of ANOs 3–7 in HEK293 cells did not generate Cl− currents activated by intracellular Ca2+, as determined by whole cell patch clamp electrophysiology. With the use of confocal imaging, only ANO1 and ANO2 traffic to the plasma membrane when expressed heterologously. Furthermore, endogenously expressed ANO7 in the human prostate is predominantly intracellular. We took a chimeric approach to identify regions critical for channel trafficking and function. However, none of the chimeras of ANO1 and ANO5/7 that we made trafficked to the plasma membrane. Our results suggest that intracellular anoctamins may be endoplasmic reticulum proteins, although it remains unknown whether these family members are CaCCs. Determining the role of anoctamin family members in ion transport will be critical to understanding their functions in physiology and disease. PMID:22075693

  3. Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G-Proteins, PIP2 and Sodium

    PubMed Central

    Whorton, Matthew R.; MacKinnon, Roderick

    2011-01-01

    Summary G-protein-gated K+ channels (Kir3.1–Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here we present the first crystal structures of a G-protein-gated K+ channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G-proteins could open a G-loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP2 show that G-proteins open only the G-loop gate in the absence of PIP2, but in the presence of PIP2 the G-loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na+ ion-binding site, which would allow intracellular Na+ to modulate GIRK channel activity. These data provide a mechanistic description of multi-ligand regulation of GIRK channel gating. PMID:21962516

  4. Crystal Structure of the Mammalian GIRK2 KplusChannel and Gating Regulation by G Proteins PIP2 and Sodium

    SciTech Connect

    M Whorton; R MacKinnon

    2011-12-31

    G protein-gated K{sup +} channels (Kir3.1--Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K{sup +} channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP{sub 2} suggest that G proteins open only the G loop gate in the absence of PIP{sub 2}, but in the presence of PIP{sub 2} the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na{sup +} ion-binding site, which would allow intracellular Na{sup +} to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.

  5. Aquifers in melt-water channels along the southwest flank of the Des Moines Lobe, Lyon County, Minnesota

    USGS Publications Warehouse

    Schneider, Robert; Rodis, Harry G.

    1961-01-01

    The melt-water channels in Lyon County trend southeastward because the flank of the ice sheet was confined by a landmass that sloped to the northeast. Similar buried channels may be present elsewhere along the southwest flank of the Des Moines lobe. If so, they probably can be located by the methods described.

  6. Chryse Planitia region, Mars: Channeling history, flood-volume estimates, and scenarios for bodies of water in the northern plains

    NASA Technical Reports Server (NTRS)

    Rotto, Susan L.; Tanaka, Kenneth L.

    1992-01-01

    The Chryse Planitia region of Mars includes several outflow channels that debouched into a single basin. Here we evaluate possible volumes and areal extents of standing bodies of water that collected in the northern lowland plains, based on evidence provided by topography, fluvial relations, and channel chronology and geomorphology.

  7. The Mycobacterium tuberculosis Outer Membrane Channel Protein CpnT Confers Susceptibility to Toxic Molecules

    PubMed Central

    Danilchanka, Olga; Pires, David

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is protected from toxic solutes by an effective outer membrane permeability barrier. Recently, we showed that the outer membrane channel protein CpnT is required for efficient nutrient uptake by M. tuberculosis and Mycobacterium bovis BCG. In this study, we found that the cpnT mutant of M. bovis BCG is more resistant than the wild type to a large number of drugs and antibiotics, including rifampin, ethambutol, clarithromycin, tetracycline, and ampicillin, by 8- to 32-fold. Furthermore, the cpnT mutant of M. bovis BCG was 100-fold more resistant to nitric oxide, a major bactericidal agent required to control M. tuberculosis infections in mice. Thus, CpnT constitutes the first outer membrane susceptibility factor in slow-growing mycobacteria. The dual functions of CpnT in uptake of nutrients and mediating susceptibility to toxic molecules are reflected in macrophage infection experiments: while loss of CpnT was detrimental for M. bovis BCG in macrophages that enable bacterial replication, presumably due to inadequate nutrient uptake, it conferred a survival advantage in macrophages that mount a strong bactericidal response. Importantly, the cpnT gene showed a significantly higher density of nonsynonymous mutations in drug-resistant clinical M. tuberculosis strains, indicating that CpnT is under selective pressure in human tuberculosis and/or during chemotherapy. Our results indicate that the CpnT channel constitutes an outer membrane gateway controlling the influx of nutrients and toxic molecules into slow-growing mycobacteria. This study revealed that reducing protein-mediated outer membrane permeability might constitute a new drug resistance mechanism in slow-growing mycobacteria. PMID:25645841

  8. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents.

    PubMed

    Singhal, V; Rai, J P N

    2003-02-01

    The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from wastewater for their metabolic use. Slurry of the two plants used for phytoremediation produced significantly more biogas than that produced by the plants grown in deionized water; the effect being more marked with plants used for phytoremediation of 20% pulp and paper mill effluent. Biogas production from channel grass was relatively greater and quicker (maximum in 6-9 days) than that from water hyacinth (in 9-12 days). Such variation in biogas production by the two macrophytes has been correlated with the changes in C, N and C/N ratio of their slurry brought by phytoremediation. PMID:12688463

  9. Ion-water and ion-polypeptide correlations in a gramicidin-like channel. A molecular dynamics study.

    PubMed Central

    Jordan, P C

    1990-01-01

    This work describes a molecular dynamics study of ion-water and ion-polypeptide correlation in a model gramicidin-like channel (the polyglycine analogue) based upon interaction between polarizable, multipolar groups. The model suggests that the vicinity of the dimer junction and of the ethanolamine tail are regions of unusual flexibility. Cs+ binds weakly in the mouth of the channel: there it coordinates five water molecules and the #11CO group with which it interacts strongly and is ideally aligned. In the channel interior it is generally pentacoordinate; at the dimer junction, because of increased channel flexibility, it again becomes essentially hexacoordinate. The ion is also strongly coupled to the #13 CO but not to either #9 or #15, consistent with 13C NMR data. Water in the channel interior is strikingly different from bulk water; it has a much lower mean dipole moment. This correlates with our observation (which differs from that of previous studies) that water-water angular correlations do not persist within the channel, a result independent of ion occupancy or ionic polarity. In agreement with streaming potential measurements, there are seven single file water molecules associated with Cs+ permeation; one of these is always in direct contact with bulk water. At the mouth of an ion-free channel, there is a pattern of dipole moment alteration among the polar groups. Due to differential interaction with water, exo-carbonyls have unusually large dipole moments whereas those of the endo-carbonyls are low. The computed potential of mean force for CS+ translocation is qualitatively reasonable. However, it only exhibits a weakly articulated binding site and it does not quantitatively account for channel energetics. Correction for membrane polarization reduces, but does not eliminate, these problems. PMID:1705448

  10. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    PubMed

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  11. Formation of the chemical composition of water in channel head in postglacial areas (West Pomerania, Poland)

    NASA Astrophysics Data System (ADS)

    Mazurek, Małgorzata; Kruszyk, Robert; Szpikowska, Grażyna

    2016-04-01

    The channel head is a zone of hydrological changes determining the hydrochemical features of water in the final stage of groundwater flow and the start of the surface cycle. The chemistry of water flowing out of a channel head reflects not only the characteristics of groundwater feeding the zone, but also changes it undergoes in this area during the organisation of channel flow. Groundwater interacts with surface water in the hyporheic zone where water from different environments is mixed and exchanged due to high hydraulic and chemical gradients. The goal of this study was to assess spatial differences in the concentrations of nutrients and compounds produced by chemical weathering in a channel head and to establish the role of the hyporheic zone in the transformation of the chemical composition of groundwater supplying a 1st-order stream. The research area was the channel head Żarnowo, located on the southern slope of the upper Parsęta valley. Three hydrochemical mappings were conducted in the headwater alcove consisting of three parts developed in a glaciofluvial plain and an erosional-accumulative alluvial terrace. Water was sampled in places of groundwater outflow in the footslope zone (9 sites), the hyporheic zone (14 sites), and outflows in the individual alcove parts and the rivulet they formed (5 sites). Water temperature, pH, and electrical conductivity were measured in the field. Concentrations of K, Ca, Mg, Na, Fe, Mn, HCO3, Cl, NO3, PO4, SO4 and SiO2 were determined in the laboratory. The chemical composition of ground- and surface water shows the concentration of geogenic components like K, Ca, Mg, Na, HCO3, and SiO2 to be an effect of chemical weathering and the leaching of its products taking place in a zero-discharge catchment. Those ions display little spatial variability and a stability of concentration in individual measurement periods, while the greatest disproportions in their concentrations among the alcove parts were recorded for Cl, NO3

  12. The cAMP Signaling Pathway and Direct Protein Kinase A Phosphorylation Regulate Polycystin-2 (TRPP2) Channel Function.

    PubMed

    Cantero, María del Rocío; Velázquez, Irina F; Streets, Andrew J; Ong, Albert C M; Cantiello, Horacio F

    2015-09-25

    Polycystin-2 (PC2) is a TRP-type, Ca(2+)-permeable non-selective cation channel that plays an important role in Ca(2+) signaling in renal and non-renal cells. The effect(s) of the cAMP pathway and kinase mediated phosphorylation of PC2 seem to be relevant to PC2 trafficking and its interaction with polycystin-1. However, the role of PC2 phosphorylation in channel function is still poorly defined. Here we reconstituted apical membranes of term human syncytiotrophoblast (hST), containing endogenous PC2 (PC2hst), and in vitro translated channel protein (PC2iv). Addition of the catalytic subunit of PKA increased by 566% the spontaneous PC2hst channel activity in the presence of ATP. Interestingly, 8-Br-cAMP also stimulated spontaneous PC2hst channel activity in the absence of the exogenous kinase. Either stimulation was inhibited by addition of alkaline phosphatase, which in turn, was reversed by the phosphatase inhibitor vanadate. Neither maneuver modified the single channel conductance but instead increased channel mean open time. PKA directly phosphorylated PC2, which increased the mean open time but not the single channel conductance of the channel. PKA phosphorylation did not modify either R742X truncated or S829A-mutant PC2iv channel function. The data indicate that the cAMP pathway regulates PC2-mediated cation transport in the hST. The relevant PKA site for PC2 channel regulation centers on a single residue serine 829, in the carboxyl terminus. PMID:26269590

  13. The English Channel: Contamination status of its transitional and coastal waters.

    PubMed

    Tappin, A D; Millward, G E

    2015-06-30

    The chemical contamination (organic compounds, metals, radionuclides, microplastics, nutrients) of English Channel waters has been reviewed, focussing on the sources, concentrations and impacts. River loads were only reliable for Pb, whereas atmospheric loads appeared robust for Cd, Pb, Hg, PCB-153 and γ-HCH. Temporal trends in atmospheric inputs were decreasing. Contaminant concentrations in biota were relatively constant or decreasing, but not for Cd, Hg and HBCDD, and deleterious impacts on fish and copepods were reported. However, data on ecotoxicological effects were generally sparse for legacy and emerging contaminants. Intercomparison of activity concentrations of artificial radionuclides in sediments and biota on both Channel coasts was hindered by differences in methodological approaches. Riverine phosphate loads decreased with time, while nitrate loads remained uniform. Increased biomass of algae, attributable to terrestrial inputs of nutrients, has affected benthic production and shellfisheries. A strategic approach to the identification of contaminant impacts on marine biota is recommended. PMID:25649837

  14. Schlieren visualization of water natural convection in a vertical ribbed channel

    NASA Astrophysics Data System (ADS)

    Fossa, M.; Misale, M.; Tanda, G.

    2015-11-01

    Schlieren techniques are valuable tools for the qualitative and quantitative visualizations of flows in a wide range of scientific and engineering disciplines. A large number of schlieren systems have been developed and documented in the literature; majority of applications involve flows of gases, typically air. In this work, a schlieren technique is applied to visualize the buoyancy-induced flow inside vertical ribbed channels using water as convective fluid. The test section consists of a vertical plate made of two thin sheets of chrome-plated copper with a foil heater sandwiched between them; the external sides of the plate are roughened with transverse, square-cross-sectioned ribs. Two parallel vertical walls, smooth and unheated, form with the heated ribbed plate two adjacent, identical and asymmetrically heated, vertical channels. Results include flow schlieren visualizations with colour-band filters, reconstructions of the local heat transfer coefficient distributions along the ribbed surfaces and comparisons with past experiments performed using air as working fluid.

  15. Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.

    PubMed Central

    Armstrong, S K; Parr, T R; Parker, C D; Hancock, R E

    1986-01-01

    The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS. Images PMID:2420780

  16. Bioluminescence Methodology for the Detection of Protein–Protein Interactions Within the Voltage-Gated Sodium Channel Macromolecular Complex

    PubMed Central

    Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla

    2012-01-01

    Abstract Protein–protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein–protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein–channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders. PMID:22364545

  17. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  18. Phase separation predicted to induce water-rich channels in fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Herbst, Daniel; Witten, Thomas; Tsai, Tsung-Han; Coughlin, Bryan; Maes, Ashley; Herring, Andrew

    2015-03-01

    Fuel cells are a promising alternative energy technology that convert chemical fuel directly into electric power. One important fundamental property is exactly how and where water is absorbed in the polyelectrolyte membrane. Previous theoretical studies have used idealized parameters. In this talk, I show how we made a rigorous connection to experiment to make parameter-free predictions of the water-swelling behavior, using self-consistent field theory. The model block co-polymers we studied form alternating hydrophilic/hydrophobic lamellar domains that absorb water in humid air. I will show how simple measurements of the hydrophilic portion in solution lead to predictions of non-uniform water distribution in the membrane, and compare the results to x-ray scattering. The results suggest locally near-uniform water distributions. In special cases, however, each hydrophilic lamella phase-separates, forming an additional water-rich lamella down the center, a beneficial arrangement for ion conductivity. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance. MURI #W911NF-10-1-0520.

  19. An algorithm to detect tropical deep convective clouds through AMSU-B water vapor channels

    NASA Astrophysics Data System (ADS)

    Xu, Xu; Georg, Heygster; Zhang, Suping

    2009-03-01

    An algorithm to detect tropical deep convective clouds and deep convective overshootings based on the measurements from the three water vapor channels (183.3 GHz±1 GHz, 183.3 GHz±3 GHz and 183.3 GHz±7 GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) is presented. This algorithm is an improved version of the method of Hong et al. (2005). The proposed procedure is based on the statistical analysis of seven years’ (2001-2007) measurements from AMSU-B on NOAA-16. From the 1-d histograms of the brightness temperature of the three water vapor channels and the 2-d histograms of the brightness temperature difference between these channels, new thresholds for brightness temperature differences and the brightness temperature of channel 18 (183.3 GHz±1 GHz) are suggested. The new algorithm is employed to investigate the mean distribution of tropical deep convective clouds and convective overshootings from 30°S to 30°N for the years 2001 to 2007. The major concentration of deep convective clouds and convective overshootings is found over the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), tropical Africa, South America, the Indian Ocean and Indonesia with an average fraction of 0.4%. In terms of these clouds we identify the secondary Intertropical Convergence Zone located in the eastern South Pacific and parallel to the main ITCZ in the North Pacific. The convective overshooting is more frequently observed over land than over the ocean.

  20. Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase.

    PubMed

    Siraskar, Balasaheb; Huang, Dan Yang; Pakladok, Tatsiana; Siraskar, Gulab; Sopjani, Mentor; Alesutan, Ioana; Kucherenko, Yulia; Almilaji, Ahmad; Devanathan, Vasudharani; Shumilina, Ekaterina; Föller, Michael; Munoz, Carlos; Lang, Florian

    2013-02-01

    The 5'-adenosine monophosphate-activated serine/threonine protein kinase (AMPK) is stimulated by energy depletion, increase in cytosolic Ca(2+) activity, oxidative stress, and nitric oxide. AMPK participates in the regulation of the epithelial Na(+) channel ENaC and the voltage-gated K(+) channel KCNE1/KCNQ1. It is partially effective by decreasing PIP(2) formation through the PI3K pathway. The present study explored whether AMPK regulates the renal outer medullary K(+) channel ROMK. To this end, cRNA encoding ROMK was injected into Xenopus oocytes with and without additional injection of constitutively active AMPK(γR70Q) (AMPK(α1)-HA+AMPK(β1)-Flag+AMPKγ1(R70Q)), or of inactive AMPK(αK45R) (AMPK(α1K45R)+AMPK(β1)-Flag+AMPK(γ1)-HA), and the current determined utilizing two-electrode voltage-clamp and single channel patch clamp. ROMK protein abundance was measured utilizing chemiluminescence in Xenopus oocytes and western blot in whole kidney tissue. Moreover, renal Na(+) and K(+) excretion were determined in AMPK(α1)-deficient mice (ampk ( -/- )) and wild-type mice (ampk ( +/+ )) prior to and following an acute K(+) load (111 mM KCl, 30 mM NaHCO(3), 4.7 mM NaCl, and 2.25 g/dl BSA) at a rate of 500 μl/h. As a result, coexpression of AMPK(γR70Q) but not of AMPK(αK45R) significantly decreased the current in ROMK1-expressing Xenopus oocytes. Injection of phosphatidylinositol PI((4,5))P(2) significantly increased the current in ROMK1-expressing Xenopus oocytes, an effect reversed in the presence of AMPK(γR70Q). Under control conditions, no significant differences between ampk ( -/- ) and ampk ( +/+ ) mice were observed in glomerular filtration rate (GFR), urinary flow rate, serum aldosterone, plasma Na(+), and K(+) concentrations as well as absolute and fractional Na(+) and K(+) excretion. Following an acute K(+) load, GFR, urinary flow rate, serum aldosterone, plasma Na(+), and K(+) concentration were again similar in both genotypes, but renal absolute

  1. Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association

    PubMed Central

    2015-01-01

    Some frequently encountered deficiencies in all-atom molecular simulations, such as nonspecific protein–protein interactions being too strong, and unfolded or disordered states being too collapsed, suggest that proteins are insufficiently well solvated in simulations using current state-of-the-art force fields. To address these issues, we make the simplest possible change, by modifying the short-range protein–water pair interactions, and leaving all the water–water and protein–protein parameters unchanged. We find that a modest strengthening of protein–water interactions is sufficient to recover the correct dimensions of intrinsically disordered or unfolded proteins, as determined by direct comparison with small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET) data. The modification also results in more realistic protein-protein affinities, and average solvation free energies of model compounds which are more consistent with experiment. Most importantly, we show that this scaling is small enough not to affect adversely the stability of the folded state, with only a modest effect on the stability of model peptides forming α-helix and β-sheet structures. The proposed adjustment opens the way to more accurate atomistic simulations of proteins, particularly for intrinsically disordered proteins, protein–protein association, and crowded cellular environments. PMID:25400522

  2. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli

    PubMed Central

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics. PMID:25996836

  3. tassel-less1 encodes a boron channel protein required for inflorescence development in maize.

    PubMed

    Leonard, April; Holloway, Beth; Guo, Mei; Rupe, Mary; Yu, GongXin; Beatty, Mary; Zastrow-Hayes, Gina; Meeley, Robert; Llaca, Victor; Butler, Karlene; Stefani, Tony; Jaqueth, Jennifer; Li, Bailin

    2014-06-01

    tassel-less1 (tls1) is a classical maize (Zea mays) inflorescence mutant. Homozygous mutant plants have no tassels or very small tassels, and ear development is also impaired. Using a positional cloning approach, ZmNIP3;1 (a NOD26-like intrinsic protein) was identified as the candidate gene for tls1. The ZmNIP3;1 gene is completely deleted in the tls1 mutant genome. Two Mutator-insertional TUSC alleles of ZmNIP3;1 exhibited tls1-like phenotypes, and allelism tests confirmed that the tls1 gene encodes ZmNIP3;1. Transgenic plants with an RNA interference (RNAi) construct to down-regulate ZmNIP3;1 also showed tls1-like phenotypes, further demonstrating that TLS1 is ZmNIP3;1. Sequence analysis suggests that ZmNIP3;1 is a boron channel protein. Foliar application of boron could rescue the tls1 phenotypes and restore the normal tassel and ear development. Gene expression analysis indicated that in comparison with that of the wild type or tls1 plants treated with boron, the transition from the vegetative to reproductive phase or the development of the floral meristem is impaired in the shoot apical meristem of the tls1 mutant plants. It is concluded that the tls1 mutant phenotypes are caused by impaired boron transport, and boron is essential for inflorescence development in maize. PMID:24685595

  4. Cystic fibrosis: channel, catalytic, and folding properties of the CFTR protein.

    PubMed

    Seibert, F S; Loo, T W; Clarke, D M; Riordan, J R

    1997-10-01

    The identification and characterization of the CFTR gene and protein have provided not only a major impetus to the dissection of the molecular pathophysiology of cystic fibrosis (CF) but also a new perspective on the structure and function of the large superfamily of membrane transport proteins to which it belongs. While the mechanism of the active vectorial translocation of many hydrophobic substrates by several of these transporters remains nearly as perplexing as it has for several decades, considerable insight has been gained into the control of the bidirectional permeation of chloride ions through a single CFTR channel by the phosphorylation of the R-domain and ATP interactions at the two nucleotide binding domains. However, details of these catalytic and allosteric mechanisms remain to be elucidated and await the replacement of two-dimensional conceptualizations with three dimensional structure information. Secondary and tertiary structure determination is required both for the understanding of the mechanism of action of the molecule and to enable a more complete appreciation of the misfolding and misprocessing of mutant CFTR molecules. This is the primary cause of the disease in the majority of the patients and hence understanding the details of the cotranslational interactions with multiple molecular chaperones, the ubiquitin-proteasome pathway and other components of the quality control machinery at the endoplasmic reticulum could provide a basis for the development of new therapeutic interventions. PMID:9511928

  5. Multistep assembly of the protein import channel of the mitochondrial outer membrane.

    PubMed

    Model, K; Meisinger, C; Prinz, T; Wiedemann, N; Truscott, K N; Pfanner, N; Ryan, M T

    2001-04-01

    Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes. PMID:11276259

  6. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel

    PubMed Central

    Kang, Lijun; Gao, Jingwei; Schafer, William R.; Xie, Zhixiong; Xu, X. Z. Shawn

    2010-01-01

    Summary Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none of them has been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using C. elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of micro-seconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results identify TRP-4 as the first TRP protein that functions as an essential pore-forming subunit of a native mechanotransduction channel. PMID:20696377

  7. Infiltration and quality of water for two arroyo channels, Albuquerque, New Mexico, 1988-92

    USGS Publications Warehouse

    Thomas, Carole L.

    1995-01-01

    Selected reaches of Grant Line Arroyo and Tijeras Arroyo in Albuquerque, New Mexico, were studied to collect information about the amount and quality of infiltration through arroyo channels. Infiltration rate was calculated for selected reaches of Grant Line Arroyo and Tijeras Arroyo based on instantaneous streamflow-loss volumes, wetted channel area, and instantaneous evaporation rates measured during 1988-92. Infiltration rates at Grant Line Arroyo ranged from 0.0 to 0.6 foot per day, and at Tijeras Arroyo from 2.28 to 30 feet per day. The evaporation rate ranged from one-tenth of 1 percent to 2 percent of the infiltration rate. Infiltration rates differed with the location of the reach isolated for measurement and with the time of day of the infiltration-rate measurement. Differences in intrinsic permeability of the sediments may be the most important factor affecting spatial variations in infiltration. The most important factor affecting temporal variations in infiltration may be the temperature of the water and sediment where infiltration occurs. Annual evaporation rates were greatest over saturated stream sediments and ranged from 802 to 1,025 millimeters per year or from 31.57 to 40.35 inches per year. Annual evaporation rates were least over unsaturated, unvegetated soil and ranged from 174 to 291 millimeters per year or from 6.85 to 11.46 inches per year. Annual evapotranspiration rates over grasses or shrubs or both were about one-half the rates over saturated stream sediments. Rates were similar for Grant Line and Tijeras Arroyos. The land- surface vegetation, availability of water at the land surface, availability of energy to enable a change of state from water to vapor, existence of a vapor concentration gradient, and a turbulent atmosphere to carry the vapor away may be the factors that determine the amount of evaporation and evapotranspiration. Water in Grant Line Arroyo and Tijeras Arroyo met U. S. Environmental Protection Agency drinking-water

  8. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    NASA Astrophysics Data System (ADS)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  9. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    PubMed

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins

  10. Evidence for Recent Liquid Water on Mars: Channeled Aprons in a Small Crater within Newton Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    Newton Crater is a large basin formed by an asteroid impact that probably occurred more than 3 billion years ago. It is approximately 287 kilometers (178 miles) across. The picture shown here (top) highlights the north wall of a specific, smaller crater located in the southwestern quarter of Newton Crater (above). The crater of interest was also formed by an impact; it is about 7 km (4.4 mi) across, which is about 7 times bigger than the famous Meteor Crater in northern Arizona in North America.

    The north wall of the small crater has many narrow gullies eroded into it. These are hypothesized to have been formed by flowing water and debris flows. Debris transported with the water created lobed and finger-like deposits at the base of the crater wall where it intersects the floor (bottom center top image). Many of the finger-like deposits have small channels indicating that a liquid--most likely water--flowed in these areas. Hundreds of individual water and debris flow events might have occurred to create the scene shown here. Each outburst of water from higher upon the crater slopes would have constituted a competition between evaporation, freezing, and gravity.

    The individual deposits at the ends of channels in this MOC image mosaic were used to get a rough estimate of the minimum amount of water that might be involved in each flow event. This is done first by assuming that the deposits are like debris flows on Earth. In a debris flow, no less than about 10% (and no more than 30%) of their volume is water. Second, the volume of an apron deposit is estimated by measuring the area covered in the MOC image and multiplying it by a conservative estimate of thickness, 2 meters (6.5 feet). For a flow containing only 10% water, these estimates conservatively suggest that about 2.5 million liters (660,000 gallons) of water are involved in each event; this is enough to fill about 7 community-sized swimming pools or

  11. Hydration-dependent dynamic crossover phenomenon in protein hydration water

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fratini, Emiliano; Li, Mingda; Le, Peisi; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2014-10-01

    The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.

  12. Plumes and Blooms: Modeling the Case II Waters of the Santa Barbara Channel. Chapter 15

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Maritorena, S.; Nelson, N. B.

    2003-01-01

    The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-the-art ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case II environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. The PnB field program started in the summer of 1996. At each of the 7 PnB stations, a complete verification bio-geo-optical data set is collected. Included are redundant measures of apparent optical properties (remote sensing reflectance and diffuse attenuation spectra), as well as in situ profiles of spectral absorption, beam attenuation and backscattering coefficients. Water samples are analyzed for component in vivo absorption spectra, fluorometric chlorophyll, phytoplankton pigment (by the SDSU CHORS laboratory), and inorganic nutrient concentrations. A primary goal is to use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). In support of this goal, we have also been addressing SeaWiFS ocean color and AVHRR SST imagery. We also are using the PnB data set to address time/space variability of water masses in the Santa Barbara Channel and its relationship to the 1997/1998 El Nino. However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance, L(sub wN)(lambda), correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions. Last, we remain active in outreach activities.

  13. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.

    PubMed

    Slocińska, Malgorzata; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2016-01-01

    It has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation. The inhibition of UCP4 by GTP (and/or ATP) and mKATP channel by ATP elevated superoxide production. These results suggest a functional cooperation of both energy-dissipating systems in protection against oxidative stress in insects. PMID:26548865

  14. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    SciTech Connect

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl; Dong, Ming; Biggin, Mark D.; Jin, Jian

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.

  15. The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Chaopeng; Riley, William J.; Smithgall, Kurt R.; Melack, John M.; Fang, Kuai

    2016-02-01

    Large-scale land models assume unidirectional land-to-river hydrological interactions, without considering feedbacks between channels and land. Using a tested, physically based model with explicit multiway interactions between overland, channel, wetland, and groundwater flows, we assessed how the representation and properties of channels influence simulated land surface hydrologic, biogeochemical, and ecosystem dynamics. A zone near the channels where various fluxes and states are significantly influenced by the channels, referred to as the fan of influence (FoI) of channels, has been identified. We elucidated two mechanisms inducing the model-derived FoI: the base flow mechanism, in which incised, gaining streams lower the water table and induce more base flow, and the relatively more efficient conveyance of the channel network compared to overland flow. We systematically varied drainage density and grid resolution to quantify the size of the FoI, which is found to span a large fraction of the watershed (25-50%) for hydrologic variables including depth to water table and recharge, etc. The FoI is more pronounced with low-resolution simulations but remains noticeable in hyperresolution (25 m) subbasin simulations. The FoI and the channel influence on basin-average fluxes are also similar in simulations with alternative parameter sets. We found that high-order, entrenched streams cause larger FoI. In addition, removing the simulated channels has disproportionally large influence on modeled wetland areas and inundation duration, which has implications for coupled biogeochemical or ecological modeling. Our results suggest that explicit channel representation provides important feedbacks to land surface dynamics which should be considered in meso or large-scale simulations. Since grid refinement incurs prohibitive computational cost, subgrid channel parameterization has advantages in efficiency over grid-based representations that do not distinguish between overland

  16. Water and sediment budgets for the stormwater-drainage channel at the Navy Ships Parts Control Center near Mechanicsburg, Pennsylvania, water year 1993

    USGS Publications Warehouse

    Reed, L.A.; Durlin, R.R.; Bender, J.K.

    1994-01-01

    The Navy Ships Parts Control Center near Mechanicsburg, Pa., occupies an area of 824 acres, of which 358 are covered by impervious surfaces. Most of the impervious area is drained by stormwater systems that discharge to an open channel that extends about 7,900 feet from its headwaters to its confluence with Trindle Spring Run. The channel drains an area of 992 acres, of which 435 are covered by impervious surfaces. The entire area of the Center including the stormwater-drainage channel is situated in karst terrain. Parts of the drainage channel contain large sinkholes and most of the storm runoff that enters the channel drains to the sinkholes. From 1992 to 1994, the U.S. Geological Survey, in cooperation with the Department of the Navy, conducted a detailed study of water and sediment flows in the stormwater-drainage channel. The purpose of this study was to quantify the discharge of stormwater and suspended sediment to the ground-water system, by way of sinkholes, and to Trindle Spring Run. From October 1, 1992, to September 30, 1993, the data-collection period for the study, discharge and suspended-sediment concentrations were measured at three sites along the drainage channel. During the period, water inflow to the channel totaled 679 acre-feet and outflow to Trindle Spring Run totaled 131 acre-feet. Water loss to sinkholes in the drainage channel totaled 548 acre-feet or 81 percent of inflow. Total sediment inflow to the drainage channel was 97 tons, outflow to Trindle Spring Run was 22 tons, sediment loss to sinkholes was 63 tons, and the residual 12 tons of sediment was deposited in the channel. The effect of filling the sinkholes on flooding was estimated through use of a step-backwater model. The model was used to simulate undampened water-surface elevations that would result from the maximum instantaneous discharge recorded during October 1992-September 1993. The model is constrained by uncertainty in the values of the channel-roughness parameter

  17. Replacement of fish meal in juvenile channel catfish, Ictalurus punctatus, diets using a yeast-derived protein source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effects of a yeast-derived protein source (NuPro) as a replacement for menhaden fish meal on weight gain, specific growth rate (SGR), food conversion ratio (FCR), whole-body composition, and disease resistance in juvenile channel catfish. NuPro replaced 0, 20, 40, 60, 80, and 100% o...

  18. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  19. Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins.

    PubMed

    Leal, Karina; Mochida, Sumiko; Scheuer, Todd; Catterall, William A

    2012-10-16

    Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity. PMID:23027954

  20. Experimental study of Cu-water nanofluid forced convective flow inside a louvered channel

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A.

    2015-03-01

    Heat transfer enhancement plays a very important role for energy saving in plate-fin heat exchangers. In the present study, the influences of simultaneous utilization of a louvered plate-fin channel and copper-base deionized water nanofluid on performance of these exchangers are experimentally explored. The effects of flow rate (2-5 l/min) and nanoparticles weight fraction (0-0.4 %) on heat transfer and pressure drop characteristics are determined. Experimental results indicate that the use of louvered channel instead of the plain one can improve the heat transfer performance. Likewise, addition of small amounts of copper nanoparticles to the base fluid augments the convective heat transfer coefficient remarkably. The maximum rise of 21.7 % in the convective heat transfer coefficient is observed for the 0.4 % wt nanofluid compared to the base fluid. Also, pumping power for the base fluid and nanofluids are calculated based on the measured pressure drop in the louvered channel. The average increase in pumping power is 11.8 % for the nanofluid with 0.4 % wt compared to the base fluid. Applied performance criterion shows a maximum performance index of 1.167 for the nanofluid with 0.1 % wt Finally, two correlations are proposed for Nusselt number and friction factor which fit the experimental data with in ±10 %.

  1. Experimental study of Cu-water nanofluid forced convective flow inside a louvered channel

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A.

    2014-09-01

    Heat transfer enhancement plays a very important role for energy saving in plate-fin heat exchangers. In the present study, the influences of simultaneous utilization of a louvered plate-fin channel and copper-base deionized water nanofluid on performance of these exchangers are experimentally explored. The effects of flow rate (2-5 l/min) and nanoparticles weight fraction (0-0.4 %) on heat transfer and pressure drop characteristics are determined. Experimental results indicate that the use of louvered channel instead of the plain one can improve the heat transfer performance. Likewise, addition of small amounts of copper nanoparticles to the base fluid augments the convective heat transfer coefficient remarkably. The maximum rise of 21.7 % in the convective heat transfer coefficient is observed for the 0.4 % wt nanofluid compared to the base fluid. Also, pumping power for the base fluid and nanofluids are calculated based on the measured pressure drop in the louvered channel. The average increase in pumping power is 11.8 % for the nanofluid with 0.4 % wt compared to the base fluid. Applied performance criterion shows a maximum performance index of 1.167 for the nanofluid with 0.1 % wt Finally, two correlations are proposed for Nusselt number and friction factor which fit the experimental data with in ±10 %.

  2. Automatic Measurement of Water Levels by Using Image Identification Method in Open Channel

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Xue Yang, Jia

    2014-05-01

    Water level data is indispensable to hydrology research, and it is important information for hydraulic engineering and overall utilization of water resources. The information of water level can be transmitted to management office by the network so that the management office may well understand whether the river level is exceeding the warning line. The existing water level measurement method can only present water levels in a form of data without any of images, the methods which make data just be a data and lack the sense of reality. Those images such as the rising or overflow of river level that the existing measurement method cannot obtain simultaneously. Therefore, this research employs a newly, improved method for water level measurement. Through the Video Surveillance System to record the images on site, an image of water surface will be snapped, and then the snapped image will be pre-processed and be compared with its altitude reference value to obtain a water level altitude value. With the ever-growing technology, the application scope of image identification is widely in increase. This research attempts to use image identification technology to analyze water level automatically. The image observation method used in this research is one of non-contact water level gage but it is quite different from other ones; the image observation method is cheap and the facilities can be set up beside an embankment of river or near the houses, thus the impact coming from external factors will be significantly reduced, and a real scene picture will be transmitted through wireless transmission. According to the dynamic water flow test held in an indoor experimental channel, the results of the research indicated that all of error levels of water level identification were less than 2% which meant the image identification could achieve identification result at different water levels. This new measurement method can offer instant river level figures and on-site video so that a

  3. Spacial Distribution of Salinity and the Mechanism of Saltwater Intrusion in the Modaomen Water Channel of Pear River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, J. B.; Bao, Y.

    2011-09-01

    Modaomen channel is an important fresh water resource in Pearl River Delta. It has been impacted by saltwater intrusion frequently in the last decade. This has drawn more and more attention from scientists and engineers. The hydrodynamic mechanism of saltwater intrusion is still impercipient. In the present paper, hydrographs of velocity and salinity in the channel are analyzed based on field observations of velocity and salinity of upper, middle, and lower water layers at several stations along the Modaomen channel. It is found that the transport of salinity in Modaomen channel is obviously different from other estuaries. As the tidal range increases from neap to spring tide, the salinity in each water layer decreases unexpectedly. This peculiar phenomenon is attributed to the extraordinary flow process in the channel. When salinity value in each layer and vertical salinity gradient are lower during spring tide, no matter on rising or ebbing tide, the flow velocity monotonously decreases from water surface to the bottom, which is suggested by common sense. However, when salinity values and vertical salinity gradient are higher during neap tide, the flow velocity unexpectedly increases from water surface to the bottom during flood period, and flood duration of the bottom current is surprisingly as long as 15-18 hours. In addition, an inflexional velocity profile may remain amazingly for about 9 hours. This could be driven by the baroclinic pressure under the condition of tides, topography and upstream runoff discharge of this channel.

  4. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Liu, Liangyun; Wang, Jihua; Huang, Wenjiang; Song, Xiaoyu; Li, Cunjun

    2005-05-01

    Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content ( R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis